		SITE	INFORMAT	ION					
	Report Type: Work Plan 1RP-5296								
General Site Inf	General Site Information:								
Site: Britt B-21 Flowline Release									
Company:		ConocoPhillips							
Section, Towns	<u> </u>		Sec. 10	T 20S	R 37E				
Lease Number:			No. 30-025-206	49					
County:		Lea			1				
GPS:			32.582014°			-103.238916			
Surface Owner:		Private							
Mineral Owner:		Federal	1 - /110 11 - 00/	NIM 40\ III.		NIMAO (7 OF			
Directions:						n NM18 for 7.25 miles. Turn national na			
		0.75 miles. Turn left on dirt road. Head south on dirt road for 1.3 miles. Turn left on dirt road. Head east for 0.5 mile. Arrive at location. Site is on the right and left side of							
		the road.	east for 0.5 ffile.	Arrive at 10	callon. Site	is on the right and left side of			
		tile road.							
Release Data:		1,04,400,40							
Date Released:		12/1/2018	(0.11						
Type Release:		Produced Wate	r/Oil						
Source of Contain	mınatıon:	Flow Line							
Fluid Released: Fluids Recovere	d:	18 bbl							
riulus Recovere	a.	4 bbl							
Official Commu	nication:								
Name:	Marvin Soriwei				Christian M	I. Llull			
Company:	Conoco Phillips - F	RMR			Tetra Tech				
Address:	935 N. Eldridge Pk	(wy.			8911 North	Capital of Texas Highway			
		-			Building 2, Suite 2310				
City:	Houston, Texas 77	7079			Austin, Tex				
Phone number:	(832) 486-2730				(512) 338-2				
Fax:					<u> </u>				
Email:	marvin.soriwei@	conocophillips.cor	n		christian.ll	ull@tetratech.com			

Site Characterization					
Shallowest Depth to Groundwater:	44' below surface				
Impact to groundwater or surface water:	No				
Extents within 300 feet of a watercourse:	No				
Extents within 200 feet of lakebed, sinkhole, or playa la	No				
Extents within 300 feet of an occupied structure:	No				
Extents within 500 horizontal feet of a private water we	No				
Extents within 1000 feet of any water well or spring:	No				
Extents within incorporated municipal well field:	No				
Extents within 300 feet of a wetland:	No				
Extents overlying a subsurface mine:	No				
Karst Potential:	Low				
	No				
Impact to areas not on a production site:	No				

Recommended Remedial Action Levels (RRALs)										
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides						
10 mg/kg	10 mg/kg 50 mg/kg 100 mg/kg 600 mg/kg									

March 26, 2020

Rick Rickman
District Supervisor
Oil Conservation Division, District 1
1625 N. French Dr.
Hobbs, NM 88240

Re: Release Characterization and Remediation Work Plan
ConocoPhillips
Britt B-21 Flowline Release
Unit Letter O, Section 10, Township 20 South, Range 37 East
Lea County, New Mexico
1RP-5296
Tracking Number NCH1836256201

Dear Mr. Rickman:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from the Britt B-21 Flowline, Unit Letter O, Section 10, Township 20 South, Range 37 East, Lea County, New Mexico (Site). The release site coordinates are 32.582014°, -103.238916°. The Site location is shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), a release occurred on December 1, 2018. Per the initial C-141, the site name is listed as the Britt B-24. This is a clerical error, recognized by NMOCD upon receipt. After conversation and research with COP personnel, the release was determined to have originated from the Britt B-21 flowline, approximately $\frac{3}{4}$ miles to the southwest of the Britt B-24 well pad location. The C-141 states that approximately 5 barrels (bbls) of oil and 13 bbls of produced water were released and approximately 2 bbls of oil and 2 bbls of produced water were recovered.

According to the initial C-141, the cause of the release was a flow line leak that resulted in a 18 bbl release that ran off the pad ran and affected a 12' X 435' X 1" area. However, after conversation and research with COP personnel, the release was determined to have originated from the Britt B-21 flowline at the lease road crossing located at approximately 32.582014°, -103.238916°. The volumes released are accurate, however the dimensions are inaccurate. The actual release was approximately 5' X 235' X 1". The release flowed west along the lease road toward a topographical low, where it pooled in two low lying areas on each side of the lease road. The southern footprint is approximately 25' X 50' and the northern footprint is approximately 15 X 25'. Figure 3 depicts the footprint and extent of the original release.

The initial C-141 was submitted and that version was modified by NMOCD (Christina Hernandez) upon receipt (red pdf boxes) and appeared in the administrative order database online. Based on conversations with NMOCD Compliance Officer Ramona Lopez Marcus, that C-141 for 1RP-5296 was revised and corrected with text edits and callout boxes reflecting corrections. This revised C-141 was submitted via the fee portal and this version was accepted by the NMOCD in an email dated March 10, 2020.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances and the site is in a low karst potential area.

No water wells are listed in Section 10 on the New Mexico Office of the State Engineer (NMOSE) database. There are 55 water wells located in Township 20S and Range 37E. The average depth to groundwater in the area is 44 feet. The NMOSE groundwater data is included as Appendix B.

REGULATORY FRAMEWORK

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil.

Based upon the Site characterization and average depth to groundwater, the proposed RRALs for soil are:

- Benzene: 10 milligrams per kilogram (mg/kg);
- Total BTEX (sum of benzene, toluene, ethylbenzene, and xylene): 50 mg/kg;
- TPH (GRO + DRO + ORO): 100 mg/kg;
- Chloride: 600 mg/kg

INITIAL RESPONSE

In accordance with 19.15.29.8. B. (4) NMAC that states "the responsible party may commence remediation immediately after discovery of a release", ConocoPhillips elected to begin remediation of the impacted area in February 2019. The footprint of the release in the lease road extending from the flow line west to the low-lying areas was scraped to approximately six inches below ground surface (Figure 3). The release area south of the lease road, shown in Figure 3, was excavated to a depth of 2-3.5 feet below grade to remove the impacted soils. Impacted soil was disposed of in a permitted landfill facility.

INITIAL SITE ASSESSMENT

Following initial response excavation activities, COP personnel were onsite to assess and sample the release area in February 2019. Four (4) borings (SP-1 through SP-4) were installed to a total depth of 5 feet below ground surface to evaluate the vertical extents of the release. A total of eight soil samples were collected from these boring locations on February 19, 2019 (Figure 4). In addition to the borings, eight (8) sidewall samples (WALL 1 – WALL 8) were collected from the excavated area south of the lease road. The samples were submitted to an analytical laboratory for Total Petroleum Hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylenes (BTEX) and chlorides (SM4500Cl-B) analysis. A copy of the analytical report and chain-of-custody documentation are included in Appendix C.

ADDITIONAL SITE ASSESSMENT

In order to more fully characterize the vertical and horizontal extent of the release area, Tetra Tech personnel were onsite to further delineate and sample the release area in September 2019. Seven (7) borings (BH-1 – BH-7) were installed using an air rotary drilling rig to various depths. A total of two (2) additional soil samples were collected (ESW-1 and WSW-1) from the east and west sidewalls north of the lease road. ESW-1 and WSW-2 were collected from the edges of the low-lying area north of the lease road. Samples were submitted to an analytical laboratory for TPH, BTEX, and chlorides (Method 300.0). Copies of analytical reports and chain-of-custody documentation are included in Appendix C. Boring logs, included

2

as Appendix D, present soil descriptions, sample depths and field screening data from the additional site assessment.

SUMMARY OF SAMPLING RESULTS

The results of the initial sampling events in February 2019 are summarized in Table 1. The sample locations are shown on Figure 4. The analytical results associated with SP-1 through SP-4 had RRAL exceedances for either TPH or chloride to a depth of 5 feet. The analytical results associated with sidewall sample WALL 3 had a chloride concentration that exceeded the RRAL. All other sidewall sample results were below RRAL for BTEX, TPH and chloride.

The results of the additional sampling event in September 2019 are summarized in Table 2. The sample locations are shown in Figure 4. The analytical results associated with borings BH-1 and BH-3 had chloride concentrations above the RRAL of 600 mg/kg within the 4 to 5-foot interval. The BH-6 analytical results had RRAL exceedances for chloride in the 0 to 3-foot interval. The analytical results for BH-5, located at the downgradient extent of the release, had a TPH concentration at the surface that slightly exceeded the RRAL. All other sample results were below the RRAL for BTEX, TPH and chloride.

REMEDIATION WORK PLAN

Based on the soil sample results, ConocoPhillips proposes to remove the impacted material exceeding RRALs shown in Tables 1 and 2 and as depicted in Figure 5. Excavation in the area will be performed using heavy equipment (backhoes and track hoes) to a maximum depth of 6 feet below ground surface within the release area. Photographic documentation of the Site release area is included as Appendix E.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation floor and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX and chloride. Once the sample results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is 300 cubic yards.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 6. Six (6) confirmation floor samples. and fourteen (14) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses an area of approximately 2,200 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to Pace Laboratories for analysis of TPH, BTEX and chloride. The new sidewall confirmation samples will be used in conjunction with the previously collected sidewall samples to verify impacted soils were removed.

REVEGETATION PLAN

The backfilled areas north and south of the lease road will be seeded in Spring 2020 (first favorable growing season) to aid in revegetation. Based on the soil types present at the site, the New Mexico State Land Office (NMSLO) Shallow (SH) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the PLS per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be

contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix F.

CONCLUSION

ConocoPhillips proposes to complete remediation activities at the Site within 90 days of the date of NMOCD approval of this submittal. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely,

Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager

Greg W. Pope, P.G. Program Manager

CC:

Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips Mr. Gustavo Fejervary-Morena, ConocoPhillips

Ms. Jim Amos, BLM

List of Attachments

Figures:

Figure 1 – Site Location/Overview Map Figure 2 – Site Location/Topographic Map

Figure 3 – Approximate Release Extent and Initial Response Actions

Figure 4 – Release Assessment Map

Figure 5 – Proposed Remediation Areas

Figure 6 – Alternative Confirmation Sampling Plan

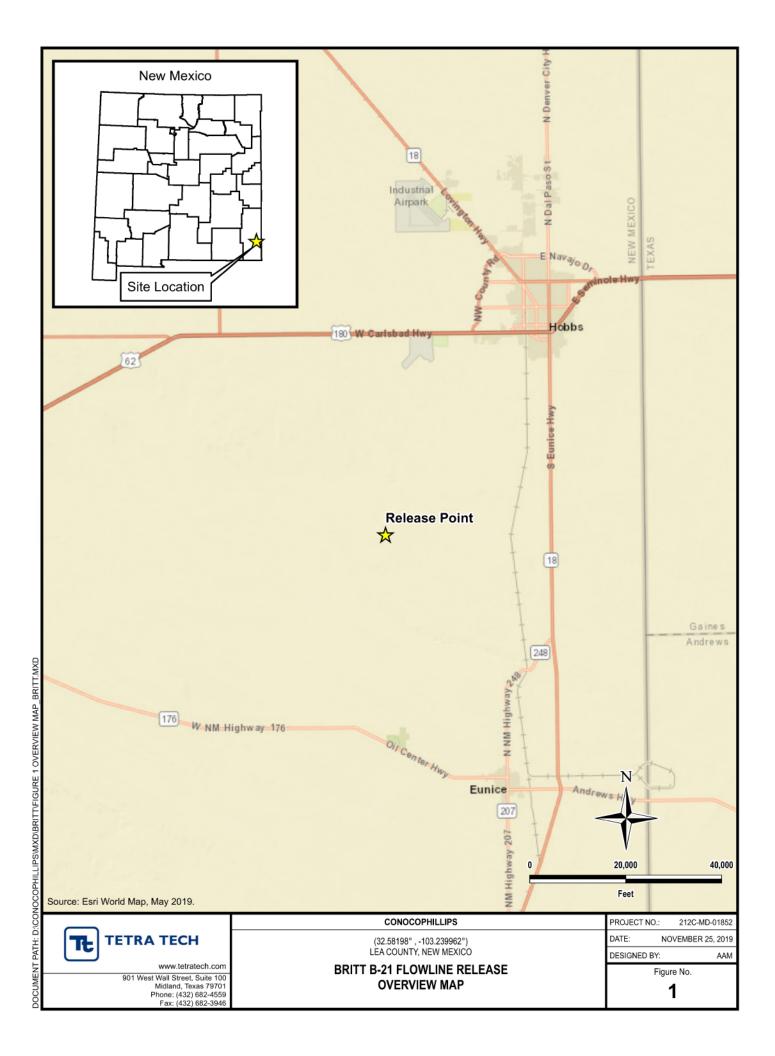
Tables:

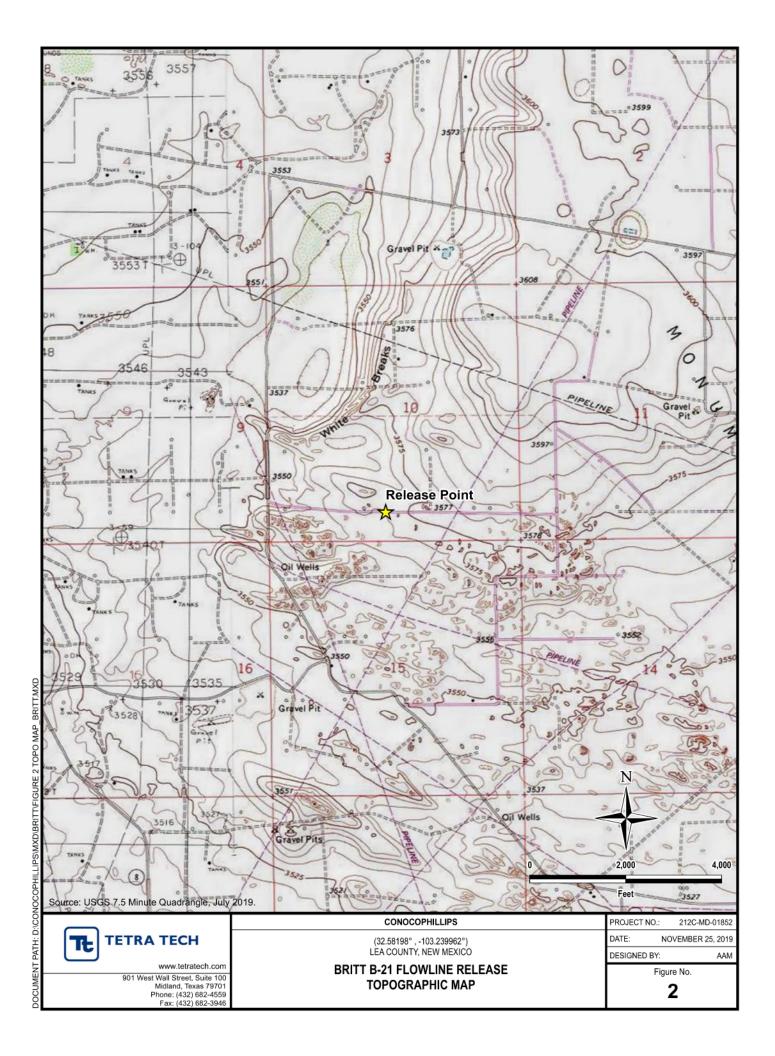
Table 1 – Summary of Analytical Results – Initial Soil Assessment
Table 2 – Summary of Analytical Results – Additional Soil Assessment

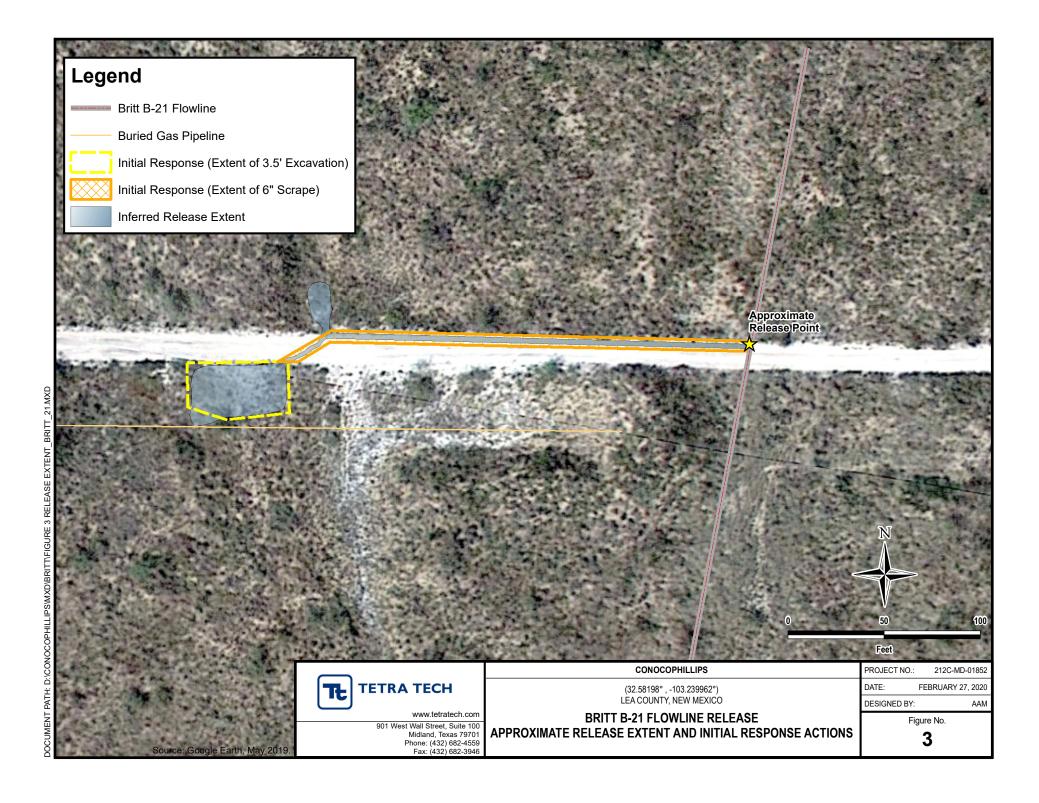
Appendices:

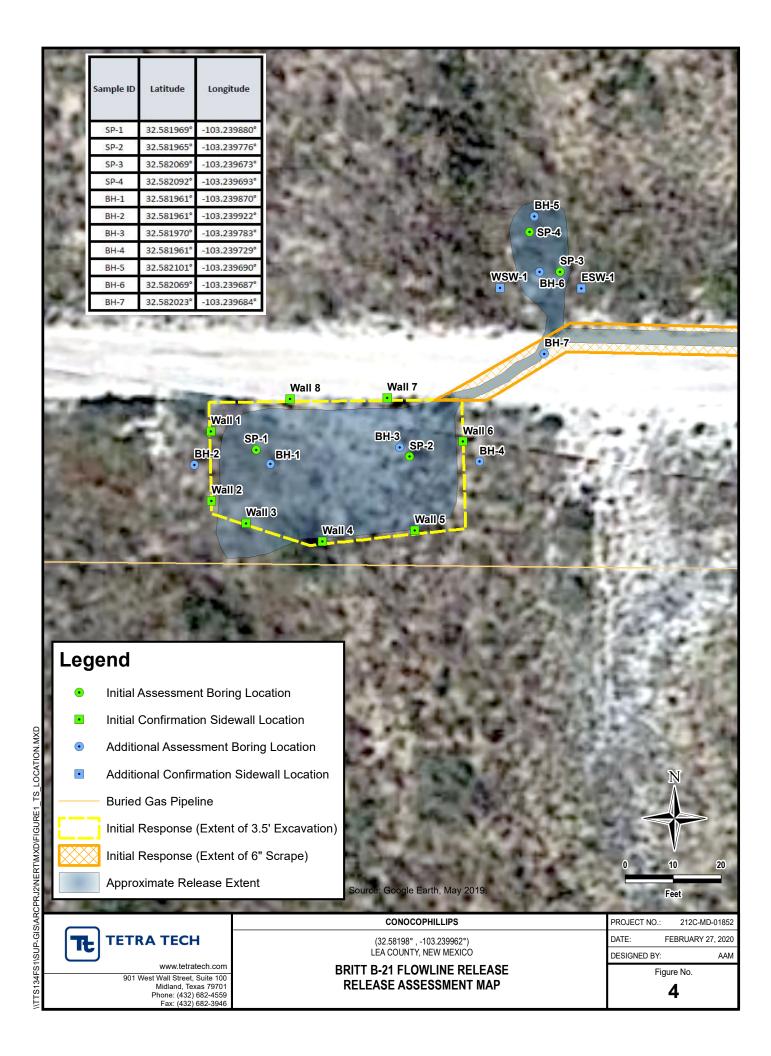
Appendix A - C-141 Form

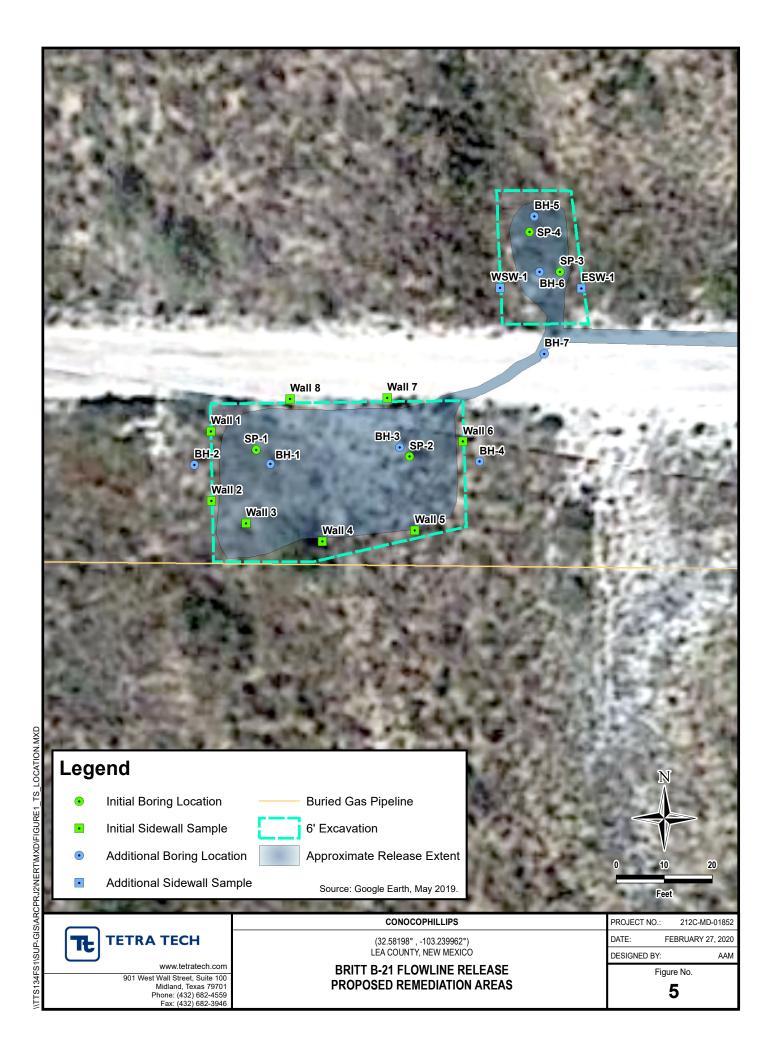
Appendix B – NMOSE Groundwater Data/Karst Potential Map

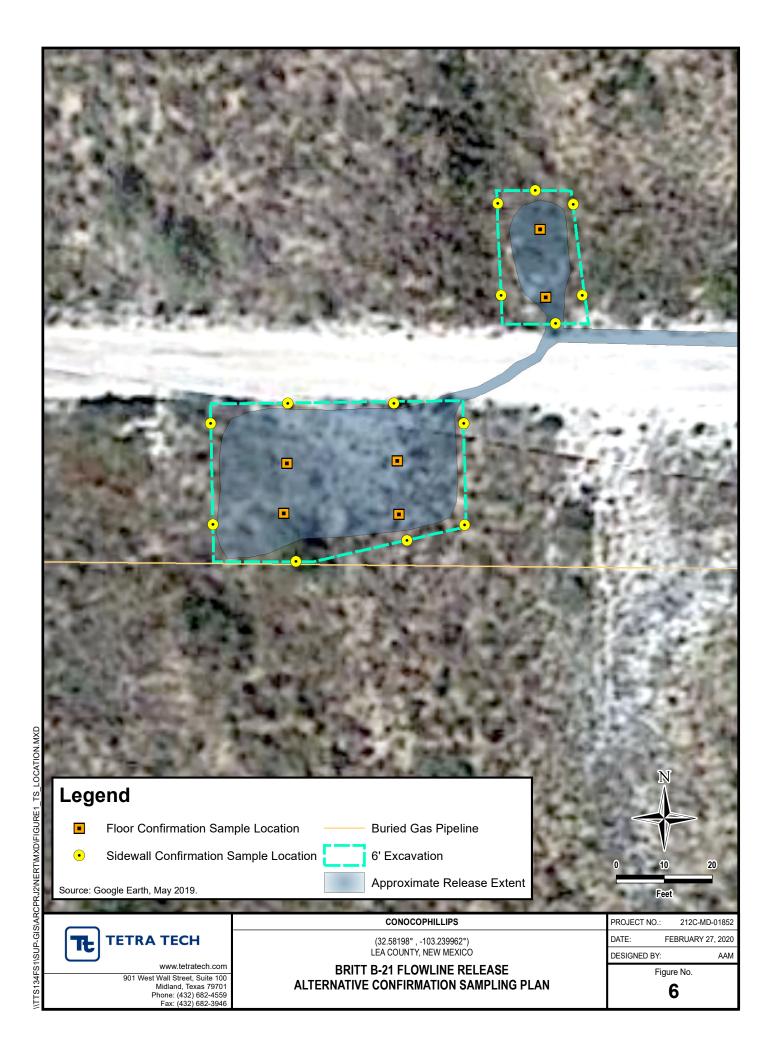

Appendix C - Laboratory Analytical Data


Appendix D – Soil Boring Logs


Appendix E – Photographic Documentation


Appendix F – NMSLO Seed Mixture Details


FIGURES



TABLES

TABLE 1

SUMMARY OF ANALYTICAL RESULTS

INITIAL SOIL ASSESSMENT

1RP-5296

BRITT B-21 FLOWLINE RELEASE

LEA COUNTY, NEW MEXICO

		Commis			BTEX ²				TPH ³												
Sample ID	Sample	Sample Interval	Chloride ¹	Benzene		Toluene	2	Ethylbenze	ne	Xylene		Total BTE	tal RTFX		GRO			EXT DRO		Total TPH (C ₆ - C ₃₆)	
Sumple 12	Date			Demzene		roident		Linyibenize		хуюне		10101512	^	C ₆ - C ₁₀		>C ₁₀ - C ₂₈		>C ₂₈ - C ₃₆		100011111(06 036)	
		ft. bgs	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	
SP-1	02/19/19	3-4	46400	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	
31-1	02/19/19	4-5	<i>752</i>	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	
SP-2	02/19/19	3-4	8660	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	
3F-Z	02/19/19	4-5	3600	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	
SP-3	02/19/19	2-3	1040	<0.050		<0.050		0.051		<0.150		<0.300		75.7		3200		1040		4315.7	
38-3	02/19/19	4-5	48	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		218		87.5		305.5	
SP-4	02/19/19	2-3	752	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		1050		232		1282	
3P-4	02/19/19	4-5	4000	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		22.6		22.7		45.3	
WALL	02/19/19	WALL 1	32	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	
WALL	02/19/19	WALL 2	32	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	
\A/A	02/10/10	WALL 3	1570	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	
WALL	02/19/19	WALL 4	336	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	
\A/A	02/10/10	WALL 5	384	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		21.9		<0.10		21.9	
WALL	02/19/19	WALL 6	48	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	
14/411	02/40/40	WALL 7	80	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	
WALL	02/19/19	WALL 8	48	<0.050		<0.050		<0.050		<0.150		<0.300		<0.10		<0.10		<0.10		<0.10	

NOTES:

ORO

ft. Feet

bgs Below ground surface mg/kg Milligrams per kilogram

ppm Parts per million

TPH Total Petroleum Hydrocarbons
* Field screening measurement

Method 300.0
 Method 8260B
 Method 8015M
 DRO Diesel Range Organics
 GRO Gasoline Range Organics

Oil Range Organics

Bold values exceed the proposed RRALs for the Site.

Shaded rows indicate depth intervals proposed for excavation and remediation.

- B The same analyte is found in the associated blank.
- J The identification of the analyte is acceptable; the reported value is an estimate.
- J3 The associated batch QC was outside the established quality control range for precision.
- J5 The sample matrix interfered with the ability to make accurate determination; spike value is high.
- J6 The sample matrix interfered with the ability to make accurate determination; spike is low.
- V The sample concentration is too high to evaluate accurate spike recoveries.
- U Not detected at the Sample Detection Limit (SDL).

TABLE 2 SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT 1RP-5296 BRITT B-21 FLOWLINE RELEASE

	LEA COUNTY, NM																			
		Sample	Field Screening							BTEX ²					TPH ³					
Sample ID	Sample Date	Interval	Results	Chloride	1	Benzene		Toluene		Ethylbenzer	16	Xylene	Total BTEX	GRO (C ₃ - C ₁	-)4	DRO (C ₁₀ -	· C)	ORO (C ₂₈ - C ₄₀	J	Total TPH (C ₃ - C ₄₀)
Sumple 12	Jumple Date	ft bgs	Chlorides			Delizene		Totalic		zary.wenzer		Ayıcııc	101010127	0.10 (03 01	0,	(-10	-201	(-28 -40	,,	
		it bgs	ppm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		4-5		3740		< 0.00117		< 0.00585		< 0.00293		< 0.00761	-	< 0.117		5.05		5.34		10.39
BH-1	09/17/19	6-7		432		< 0.00107		< 0.00536		< 0.00268		< 0.00697	-	< 0.107		12.1		13.8		25.9
		9-10		125		< 0.00117		< 0.00586		< 0.00293		< 0.00762	-	< 0.117		< 4.69		< 4.69		-
		0-1		213		< 0.00110		< 0.00550		< 0.00275		< 0.00715	-	< 0.110		35.0		45.5		80.5
BH-2	09/17/19	2-3		25.7	В	< 0.00101		< 0.00527		< 0.00253		< 0.00659	-	< 0.101		5.00		10.7		15.7
5.1.2	03/11/13	4-5		8.22	B J	< 0.00107		< 0.00534		< 0.00267		< 0.00694	-	< 0.107		< 4.27		< 4.27		-
		6-7		13.1	В	< 0.00110		< 0.00548		< 0.00274		< 0.00713	-	< 0.110		< 439		< 4.39		-
		4-5		1630		< 0.00117		< 0.00583		< 0.00291		< 0.00758	-	< 0.117		8.52		24.7		33.22
BH-3	09/17/19	6-7		158		< 0.00115		< 0.00574		< 0.00287		< 0.00747	-	< 0.115		3.11	J	6.82		9.93
		9-10		324		< 0.00118		< 0.00591		< 0.00296		< 0.00768	-	< 0.118		4.00	J J3 J6	4.78		8.78
		0-1		55.3		< 0.00107		< 0.00533		< 0.00266		< 0.00693	-	< 0.107		8.93		32.8		41.73
BH-4	09/17/19	2-3		29.1	В	< 0.00101		< 0.00506		< 0.00253		< 0.00658	-	< 0.101		3.58	J	9.88		13.46
	, ,	4-5		80.7		< 0.00107		< 0.00533		< 0.00267		< 0.00693	-	< 0.107		3.74	J	13.2		16.94
		6-7		83.6		< 0.00109		< 0.00544		< 0.00272		< 0.00707	-	< 0.109		< 4.35		0.97	J	0.97
		0-1		53.9		< 0.00108		< 0.00540		< 0.00270		< 0.00702	-	< 0.108		32.6		74.9		107.5
BH-5	09/17/19	2-3		74.5		< 0.00107		< 0.00535		< 0.00267		< 0.00695	-	< 0.107		11.7		36.8		48.5
		4-5		25.9	В	< 0.00111		< 0.00553		< 0.00276		< 0.00719	-	< 0.111	Ш	2.99	J	1.02	J	4.01
		0-1		2660		< 0.00116		< 0.00582		< 0.00291		< 0.00757	-	< 0.116		19.8		37.3		57.1
BH-6	09/17/19	2-3		681		< 0.00115		< 0.00575		< 0.00288		< 0.00748	-	< 0.115		19.1		28.3		47.4
		4-5		51.0		< 0.00119		< 0.00597		< 0.00298		< 0.00760	-	< 0.119		< 4.77		< 4.77		-
		0-1		25.9		< 0.00105		< 0.00527		< 0.00263		< 0.00685	-	< 0.105		2.22	J	12.1		14.32
BH-7	09/17/19	2-3	ļl	50.9		< 0.00105		< 0.00523		< 0.00261		< 0.00679	-	< 0.105	Ш	1.79	J	3.86	J	5.65
		4-5		562		< 0.00108		< 0.00540		< 0.00270		< 0.00702	-	< 0.108		< 4.32		0.797	J	0.797
ESW-1	09/17/19	-		18.7	В	< 0.00110		< 0.00551		< 0.00275		< 0.00716	-	< 0.110	Ш	2.64	J	32.8		35.44
WSW-1	09/17/19	-		18.6	В	< 0.00113		< 0.00565		< 0.00283		< 0.00735	-	< 0.030	B J	< 4.52		7.27		7.27

NOTES:

ft. Feet

ogs Below ground surface

mg/kg Milligrams per kilogram

opm Parts per million

TPH Total Petroleum Hydrocarbons

Field screening measurement

1 Method 300.0

2 Method 8260B

3 Method 8015M

DRO Diesel Range Organics

GRO Gasoline Range Organics

ORO Oil Range Organics

Bold values exceed the proposed RRALs for the Site.

 $Shaded\ rows\ indicate\ depth\ intervals\ proposed\ for\ excavation\ and\ remediation.$

- B The same analyte is found in the associated blank.
- J The identification of the analyte is acceptable; the reported value is an estimate.
- J3 The associated batch QC was outside the established quality control range for precision.
- J5 The sample matrix interfered with the ability to make accurate determination; spike value is high.
- J6 The sample matrix interfered with the ability to make accurate determination; spike is low.
- V The sample concentration is too high to evaluate accurate spike recoveries.
- U Not detected at the Sample Detection Limit (SDL).

APPENDIX A C-141 Forms

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

Responsible Party ConocoPhillips

Contact email Justin.Wright@conocophillips.com

Contact mailing address 29 Vacuum Complex Lane, Lovington

Contact Name Justin Wright

Incorrect GPS

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Britt B-21

Incident ID	NCH1836256201
District RP	1RP-5296
Facility ID	
Application ID	pCH1836256467
	1

Release Notification

Responsible Party

OGRID 217817

Incident #

Contact Telephone +1-575-631-9092

30-025-21223

NCH1836256201 BRITT B 24 @

Coordinates			Location of Release Source								30-025-20649
Latitude 2	32°32'08.80"	"N← 32.582014°				Longitude	103°13'37.92	2-	-103.238	916°	
				(1)	IAD 83 in dec	cimal de	grees to 5 decim	nal places)			
Site Name: B	ritt B 24 <	21					Site Type: 1	Producing well	Flowline	release	
Date Release	Discovered:	Dec. 1, 2	2018				API# (if app	licable)3 0-025-212	223	30-02	5-20649
Unit Letter	Section	Town	nship	R	ange		Coun	tv	1		
<u> </u>	11 ← 10	20S		37E	60	Lea					
	N			Iv	1	<u> </u>					
Surface Owne	r: 🔀 State	∐ Feder	al [] Tr	ıbal [^	Private (/	Vame:)
Federal mi	nerals			Nat	ure and	l Vol	lume of F	Release			
					•	calculat	ions or specific	justification for the			
Crude Oi	l	Volume	Release	d (bbls)	5	Volume Recovered			overed (bbls	s) 2	
Produced	Water	Volume	Release	d (bbls)	13			Volume Reco	overed (bbls	s) 2	
			oncentrated water		lissolved c	hloride	in the Yes No				
Condensa	nte		Release				Volume Recovered (bbls)				
Natural C	das	Volume	Release	d (Mcf))		Volume Recovered (Mcf)				
Other (de	scribe)	Volume	/Weight	Release	ed (provide	e units)	Volume/Weight Recovered (provide units)				e units)
											-1
Cause of Rel	ease – Flow	line leak	resulted	in a 18 .	BBL releas	se that	ran off the pa	ad down the lea	ase road to	the west.	
Dimensions – 12' x 435' x 1' 5' X 235' X 1"											

State of New Mexico Oil Conservation Division

Incident ID	NCH1836256201	
District RP	1RP-5296	
Facility ID		
Application ID	pCH183625646	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible	e party consider this a major release?
☐ Yes ⊠ No		
YOUTH A		
If YES, was immediate no	notice given to the OCD? By whom? To whom?	When and by what means (phone, email, etc)?
	Initial Resp	onse
The responsible p	party must undertake the following actions immediately unle	ss they could create a safety hazard that would result in injury
☐ The source of the rele	ease has been stopped.	
	as been secured to protect human health and the ϵ	environment.
Released materials ha	ave been contained via the use of berms or dikes.	absorbent pads, or other containment devices.
All free liquids and re	recoverable materials have been removed and ma	naged appropriately.
If all the actions described	ed above have <u>not</u> been undertaken, explain why:	
Per 19.15.29.8 B. (4) NM	AAC the responsible party may commence remed	liation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial effor	ts have been successfully completed or if the release occurred e attach all information needed for closure evaluation.
		of my knowledge and understand that pursuant to OCD rules and
		ons and perform corrective actions for releases which may endanger loes not relieve the operator of liability should their operations have
		groundwater, surface water, human health or the environment. In nsibility for compliance with any other federal, state, or local laws
and/or regulations.		
Printed Name: Culler	en Rosine T	itle:HSE Specialist
Signature:Cullen Rosine	<u> </u>	ate:
email:Cullen.j.rosine	e@conocophillips.com Te	lephone:973-727-4779
C-141 resubmitted with	additional corrections via the payment por	tal on 3/10/2020 . cml.
OCD Only	EIVED	
NECE	EIVED	
Received by: By CH	lernandez at 3:46 pm, Dec 28, 201	δ

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

 $This information \ must \ be \ provided \ to \ the \ appropriate \ district \ of fice \ no \ later \ than \ 90 \ days \ after \ the \ release \ discovery \ date.$

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)				
Did this release impact groundwater or surface water?	☐ Yes ☐ No				
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?					
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?					
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No				
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No				
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No				
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No				
Are the lateral extents of the release within 300 feet of a wetland?					
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No				
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No				
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No				
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No				
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil				
Characterization Report Checklist: Each of the following items must be included in the report.					
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody					

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the Gailed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	ifications and perform corrective actions for releases which may endanger DCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name:	Title:
Printed Name: Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	e included in the plan.												
☐ Estimated volume of material to be remediated ☐ Closure criteria is to Table 1 specifications subject to 19.15.29.1	Scaled sitemap with GPS coordinates showing delineation points												
Deferral Requests Only: Each of the following items must be con-	ofirmed as part of any request for deferral of remediation												
 ☐ Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. ☐ Extents of contamination must be fully delineated. 													
Extents of contamination must be fully defineated.													
Contamination does not cause an imminent risk to human health	, the environment, or groundwater.												
rules and regulations all operators are required to report and/or file of which may endanger public health or the environment. The accepta liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD responsibility for compliance with any other federal, state, or local limits and the surface water.	e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of aws and/or regulations.												
Printed Name:													
Signature:	Date:												
email:	Telephone:												
OCD Only													
Received by:	Date:												
☐ Approved ☐ Approved with Attached Conditions of	Approval												
Signature:	Date:												

State of New Mexico Oil Conservation Division

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

☐ A scaled site and sampling diagram as described in 19.15.29.11	NMAC
Photographs of the remediated site prior to backfill or photos of must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
☐ Laboratory analyses of final sampling (Note: appropriate ODC	District office must be notified 2 days prior to final sampling)
☐ Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of a	dediate contamination that pose a threat to groundwater, surface water, C-141 report does not relieve the operator of responsibility for ions. The responsible party acknowledges they must substantially ditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete. Title:
	Telephone:
OCD Only	
	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and vater, human health, or the environment nor does not relieve the responsible r regulations.
Closure Approved by:	Date:
Printed Name:	Title:

APPENDIX B NMOSE Groundwater Data/Karst Potential Map

New Mexico Office of the State Engineer Water Column/Average Depth to Water

No records found.

PLSS Search:

Section(s): 10 Township: 20S Range: 37E

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned,

C=the file is (quarters are 1=NW 2=NE 3=SW 4=SE)

rater right file.) closed) (quarters are smallest to largest) (NAD83 UTM in meters) (In feet)

	POD Sub-		Q	Q	Q						Depth	Depth	Water
POD Number	Code basin (County				Sec	Tws	Rng	Х	Y	_	-	Column
L 01145 POD1	L	LE	4	1	4	06	20S	37E	660695	3608182* 🎒	75	35	40
L 01253	L	LE	1	3	2	80	20S	37E	662125	3607195* 🌍	81	45	36
L 01450	L	LE		3	1	05	20S	37E	661393	3608698*	80	20	60
L 01572 POD1	L	LE	1	3	3	05	20S	37E	661305	3607991* 🌑	70		
L 02102	L	LE		4	3	05	20S	37E	661809	3607897* 🌑	70	46	24
L 02139	L	LE	2	2	2	80	20S	37E	662721	3607604* 🌍	80	38	42
L 02274	L	LE		3	1	80	20S	37E	661420	3607085*	70	38	32
L 02278	L	LE		3	4	05	20S	37E	662212	3607902* 🌍	65	37	28
L 02402	L	LE	1	4	1	28	20S	37E	663415	3602377* 🌍	60	40	20
L 02450	L	LE		2	2	19	20S	37E	661063	3604259*	70	35	35
L 02451	L	LE		1	1	19	20S	37E	659864	3604241* 🎒	70	35	35
L 02460	L	LE		1	2	07	20S	37E	660609	3607477* 🎒	82	38	44
L 02463	L	LE	1	2	3	80	20S	37E	661729	3606787* 🎒	86	30	56
L 02483	L	LE	4	4	1	80	20S	37E	661922	3606990*	84	34	50
L 02488	L	LE		3	2	05	20S	37E	662199	3608709* 🌑	63	32	31
L 02497	L	LE	3	3	3	05	20S	37E	661305	3607791* 🎒	75	35	40
L 02533	L	LE		3	2	07	20S	37E	660616	3607074* 🎒	82	34	48
L 02553	L	LE	4	3	4	06	20S	37E	660701	3607779* 🌑	85	40	45
L 03810	L	LE	4	4	1	06	20S	37E	660286	3608580*	86	37	49
L 04410	L	LE		4	2	19	20S	37E	661070	3603856*	84	35	49
L 04410 S	L	LE	4	1	2	19	20S	37E	660760	3604152* 🌕	100	35	65
L 04412	L	LE	4	2	2	13	20S	37E	669181	3605894* 🌕	140	85	55
L 04412 S	L	LE	4	4	2	13	20S	37E	669189	3605491* 🌑	155	84	71
L 04619	L	LE	3	2	4	06	20S	37E	660897	3608188* 🌍	86	36	50
L 04690	L	LE		1	3	07	20S	37E	659826	3606659*	50	28	22
L 05350	L	LE		2	1	13	20S	37E	668279	3605980*	100		

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned,

C=the file is (quarters are 1=NW 2=NE 3=SW 4=SE)

closed) (quarters are smallest to largest) (NAD83 UTM in meters)

		POD Sub-		Q	O	_O						Denth	Denth	Water
POD Number	Code	basin (County				Sec	Tws	Rng	X	Υ	-	-	Column
L 05351		L	LE		2	2	13	20S	37E	669082	3605995*	115		
L 05447		L	LE		2	2	05	20S	37E	662594	3609117*	50	28	22
L 05980		L	LE	1	4	3	04	20S	37E	663319	3608017*	95		
L 07355		L	LE	2	2	1	33	20S	37E	663636	3601169*	120		
L 07619		L	LE	2	2	4	80	20S	37E	662734	3606797*	70	30	40
L 07620		L	LE	4	4	2	80	20S	37E	662728	3607000*	70	27	43
L 07620 S		L	LE	4	4	2	80	20S	37E	662728	3607000*	75	35	40
L 08157		L	LE	2	2	1	33	20S	37E	663636	3601169*	395	275	120
L 09590		L	LE			4	80	20S	37E	662440	3606491*	70	35	35
L 09590	R	L	LE			4	80	20S	37E	662440	3606491*	70	35	35
L 09590 POD2		L	LE			4	80	20S	37E	662440	3606491*	66	30	36
L 09594		L	LE		2	4	80	20S	37E	662635	3606698*	80		
L 09779		L	LE	2	2	2	05	20S	37E	662693	3609216* 🎒	50	40	10
L 10069		L	LE			1	04	20S	37E	663205	3608920*	39	22	17
L 10117		L	LE	1	1	2	13	20S	37E	668580	3606086*	130	70	60
L 10150		L	LE		1	4	09	20S	37E	663842	3606715*	46	30	16
L 13393 POD1		L	LE	1	3	2	31	20S	37E	660519	3600663 🌕	95	80	15
L 13393 POD2		L	LE	1	3	2	31	20S	37E	660522	3600635 🌕	95	80	15
L 13394 POD1		L	LE	3	1	4	31	20S	37E	660566	3600165 🌕	100	85	15
L 13490 POD1		L	LE	3	1	3	21	20S	37E	663365	3603321 🎒	30		
L 14330 POD1		L	LE	1	1	4	20	20S	37E	662184	3603500 🌕	30	23	7
L 14330 POD2		L	LE	1	1	4	20	20S	37E	662187	3603507 🌕	35	24	11
L 14330 POD3		L	LE	1	1	4	20	20S	37E	662205	3603494 🌕	35	24	11
L 14330 POD4		L	LE	1	1	4	20	20S	37E	662187	3603492 🌕	35	24	11
L 14330 POD5		L	LE	1	1	4	20	20S	37E	662173	3603503 🌍	35	24	11
L 14330 POD6		L	LE	1	1	4	20	20S	37E	662181	3603504 🌍	45	24	21
L 14330 POD7		L	LE	1	1	4	20	20S	37E	662187	3603497 🌍	45	24	21
L 14583 POD1		L	LE	1	3	1	27	20S	37E	664656	3602312 🌍	65	57	8
L 14583 POD2		L	LE	1	3	1	27	20S	37E	664663	3602307 🌍	50		

(In feet)

(A CLW#### in the POD suffix indicates the POD has been replaced

water right file.)

(R=POD has been replaced,

POD

O=orphaned, & no longer serves a C=the file is

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters) closed)

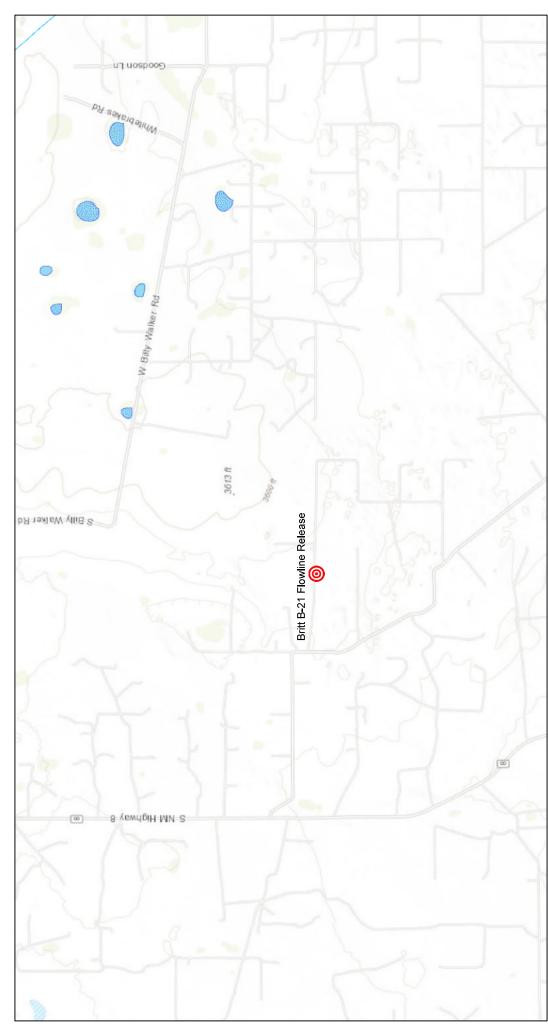
Depth Depth Water

(In feet)

Sub-QQQ **POD Number** Code basin County 64 16 4 Sec Tws Rng **Well Water Column** X

> Average Depth to Water: 44 feet

> > Minimum Depth: 20 feet


Maximum Depth: 275 feet

Record Count: 55

PLSS Search:

Township: 20S Range: 37E

OCD Well Locations

11/6/2019 4:44:34 PM

Override 1

OSE Water-bodies

PLJV Probable Playas

OSE Streams

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAM, Geobase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community.

1<u>.</u>2 mi

1:28,616 0.6

0.3

Britt B-21 Flow Line Release

Karst Potential Map 32.582014°, -103.238916°

(62)

Britt B-21 Flowline Release

Hobbs

Britt B-21 Flowline Release

Eunice

10 mi

Google Earth

© 2020 Google

APPENDIX C Laboratory Analytical Data

February 27, 2019

JUSTIN WRIGHT

Conoco Phillips - Hobbs

P. O. BOX 325

Hobbs, NM 88240

RE: BRITT B #21

Enclosed are the results of analyses for samples received by the laboratory on 02/20/19 11:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keine

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477

Received: 02/20/2019 Reported: 02/27/2019

Project Name: BRITT B #21
Project Number: NONE GIVEN
Project Location: LEA COUNTY, NM

Sampling Date: 02/19/2019

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Jodi Henson

Sample ID: SP #1 - 4' (H900657-01)

BTEX 8021B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	< 0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	46400	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	<10.0	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	99.6	% 41-142	?						
Surrogate: 1-Chlorooctadecane	100	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Sampling Date: 02/19/2019

Reported: 02/27/2019 Sampling Type: Soil

Project Name: BRITT B #21 Sampling Condition: Cool & Intact Sample Received By: Project Number: NONE GIVEN Jodi Henson

Project Location: LEA COUNTY, NM

Sample ID: SP #1 - 5' (H900657-02)

BTEX 8021B	mg	/kg	Analyze	ed By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500CI-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	752	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	<10.0	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	94.5	% 41-142	?						
Surrogate: 1-Chlorooctadecane	93.6	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

 Received:
 02/20/2019
 Sampling Date:
 02/19/2019

 Reported:
 02/27/2019
 Sampling Type:
 Soil

Project Name: BRITT B #21 Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Jodi Henson

Project Location: LEA COUNTY, NM

Sample ID: SP #2 - 4' (H900657-03)

BTEX 8021B	mg	/kg	Analyze	ed By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500CI-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8660	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	<10.0	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	96.9	% 41-142	?						
Surrogate: 1-Chlorooctadecane	96.6	% 37.6-14	7						

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Cardinal Laboratories

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Sampling Date: 02/19/2019 Reported: 02/27/2019 Sampling Type: Soil

Project Name: BRITT B #21 Sampling Condition: Cool & Intact Sample Received By: Project Number: NONE GIVEN Jodi Henson

Project Location: LEA COUNTY, NM

Sample ID: SP #2 - 5' (H900657-04)

BTEX 8021B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3600	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	<10.0	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	97.0	% 41-142	?						
Surrogate: 1-Chlorooctadecane	97.3	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Reported: 02/27/2019

 02/20/2019
 Sampling Date:
 02/19/2019

 02/27/2019
 Sampling Type:
 Soil

Project Name: BRITT B #21
Project Number: NONE GIVEN
Project Location: LEA COUNTY, NM

Sampling Condition: Cool & Intact
Sample Received By: Jodi Henson

Sample ID: SP #3 - 3' (H900657-05)

BTEX 8021B	mg/	mg/kg Analyzed By: ms							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	0.051	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					

Surrogate: 4	-Bromofluorobenzene	(PID	102 %	73.3-129

Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1040	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg/kg		Analyzed By: MS					S-04	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	75.7	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	3200	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	1040	10.0	02/23/2019	ND					

Surrogate: 1-Chlorooctane 124 % 41-142 Surrogate: 1-Chlorooctadecane 378 % 37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

02/19/2019

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Sampling Date:

91.7%

37.6-147

Reported: 02/27/2019 Sampling Type: Soil
Project Name: BRITT B #21 Sampling Condition: Cool 8

Project Name:BRITT B #21Sampling Condition:Cool & IntactProject Number:NONE GIVENSample Received By:Jodi HensonProject Location:LEA COUNTY, NM

Sample ID: SP #3 - 5' (H900657-06)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 %	6 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	218	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	87.5	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	84.3 %	% 41-142	?						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Surrogate: 1-Chlorooctadecane

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Sampling Date: 02/19/2019

Reported: 02/27/2019 Sampling Type: Soil

Project Name: BRITT B #21 Sampling Condition: Cool & Intact Sample Received By: Project Number: NONE GIVEN Jodi Henson

Project Location: LEA COUNTY, NM

Sample ID: SP #4 - 3' (H900657-07)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	752	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	Analyzed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	1050	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	232	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	107 5	% 41-142	?						
G	1.62	0/ 27/1							

Surrogate: 1-Chlorooctadecane 162 % 37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Sampling Date: 02/19/2019

Reported: 02/27/2019 Sampling Type: Soil

Project Name: BRITT B #21 Sampling Condition: Cool & Intact Sample Received By: Jodi Henson Project Number: NONE GIVEN

Project Location: LEA COUNTY, NM

Sample ID: SP #4 - 5' (H900657-08)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4000	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	22.6	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	22.7	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	89.6	% 41-142	?						

Surrogate: 1-Chlorooctadecane 91.8 % 37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Reported: 02/27/2019

02/27/2019 BRITT B #21

Project Number: NONE GIVEN
Project Location: LEA COUNTY, NM

Sampling Date: 02/19/2019

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Jodi Henson

Sample ID: WALL #1 (H900657-09)

Project Name:

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 5	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	<10.0	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	102	% 41-142	,						
Surrogate: 1-Chlorooctadecane	105	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019

Reported: 02/27/2019
Project Name: BRITT B #21
Project Number: NONE GIVEN

Project Location: LEA COUNTY, NM

Sampling Date: 02/19/2019

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Jodi Henson

Sample ID: WALL #2 (H900657-10)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	<10.0	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	96.8	% 41-142	?						
Surrogate: 1-Chlorooctadecane	101	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Sampling Date: 02/19/2019

Reported: 02/27/2019 Sampling Type: Soil

Project Name: BRITT B #21 Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Jodi Henson

Project Location: LEA COUNTY, NM

Sample ID: WALL #3 (H900657-11)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.6	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1570	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	<10.0	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	101 5	% 41-142	,						
Surrogate: 1-Chlorooctadecane	103	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

ma/ka

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Sampling Date: 02/19/2019

Reported: 02/27/2019 Sampling Type: Soil
Project Name: BRITT B #21 Sampling Condition: Cool & Intact

Project Number: NONE GIVEN Sample Received By: Jodi Henson
Project Location: LEA COUNTY, NM

Analyzed By: me

Sample ID: WALL #4 (H900657-12)

RTFY 8021R

B1EX 8021B	mg,	кg	Analyze	a By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	208	104	200	2.47	
DRO >C10-C28*	<10.0	10.0	02/23/2019	ND	231	115	200	7.19	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	101	% 41-142	ı						
Surrogate: 1-Chlorooctadecane	103	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Jodi Henson

Sample Received By:

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Sampling Date: 02/19/2019

Reported: 02/27/2019 Sampling Type: Soil
Project Name: BRITT B #21 Sampling Condition: Cool & Intact

Project Location: LEA COUNTY, NM

NONE GIVEN

Sample ID: WALL #5 (H900657-13)

Project Number:

BTEX 8021B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	nk BS % Recovery	True Value QC	RPD	Qualifier	
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	02/22/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	218	109	200	2.18	
DRO >C10-C28*	21.9	10.0	02/23/2019	ND	246	123	200	10.4	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	99.4	% 41-142	?						
Surrogate: 1-Chlorooctadecane	108	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Reported:

02/27/2019

Project Name: BRITT B #21 Project Number: NONE GIVEN Project Location: LEA COUNTY, NM Sampling Date: 02/19/2019

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Jodi Henson

Sample ID: WALL #6 (H900657-14)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	< 0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	< 0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 %	73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/22/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	218	109	200	2.18	
DRO >C10-C28*	<10.0	10.0	02/23/2019	ND	246	123	200	10.4	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	101 %	6 41-142	<u> </u>						
Surrogate: 1-Chlorooctadecane	107 9	% 37 6-1 <i>4</i>	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Reported: 02/27/2019

02/27/2019 BRITT B #21

NONE GIVEN LEA COUNTY, NM

103 %

111 %

41-142

37.6-147

Sampling Date:

02/19/2019

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact Jodi Henson

Sample ID: WALL #7 (H900657-15)

Project Name:

Project Number:

Project Location:

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/22/2019	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	218	109	200	2.18	
DRO >C10-C28*	28.6	10.0	02/23/2019	ND	246	123	200	10.4	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					

Cardinal Laboratories

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/20/2019 Reported: 02/27/2019

02/27/2019 BRITT B #21

Project Number: NONE GIVEN
Project Location: LEA COUNTY, NM

Sampling Date: 02/19/2019

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Jodi Henson

Sample ID: WALL #8 (H900657-16)

Project Name:

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2019	ND	2.11	106	2.00	0.366	
Toluene*	<0.050	0.050	02/25/2019	ND	1.99	99.4	2.00	1.19	
Ethylbenzene*	<0.050	0.050	02/25/2019	ND	2.06	103	2.00	1.93	
Total Xylenes*	<0.150	0.150	02/25/2019	ND	6.38	106	6.00	1.61	
Total BTEX	<0.300	0.300	02/25/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/22/2019	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2019	ND	218	109	200	2.18	
DRO >C10-C28*	<10.0	10.0	02/23/2019	ND	246	123	200	10.4	
EXT DRO >C28-C36	<10.0	10.0	02/23/2019	ND					
Surrogate: 1-Chlorooctane	103	% 41-142	,						
Surrogate: 1-Chlorooctadecane	107	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch

accepted based on LCS and/or LCSD recovery and/or RPD values.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

			3
(575) 39	101 East N	ARDINAL	
575) 393-2326 Fax (575) 39:	101 East Marland, Hobbs, NM 8	ARDINAL LABORATORI	

IES 88240 of

(575) 393-2326 Fax (575) 393-2476	476					age of land
Company Name: Company hillips		BILL TO			ANALYSIS	S REQUEST
Project Manager: Justin Whicht		P.O. #:				
Address:		Company: Concolh	llips			
City: Hobbs State: AM	Zip:	Attn:				
Phone #: 575-63/-909 Fax #:		Address:				
#:	707	City:				
ame: Britt Bal		State: Zip:				
Project Location: Lea County MM		Phone #:			/	
Test		Fax #:			lec	
FOR LAB USE ONLY	MATRIX	PRESERV. SAMPLING		05	rno	
Lab I.D. Sample I.D.	OR (C)OM AINERS DWATER WATER	: ASE: DOL		loride VI	EX Y Exp	
H900657	# CON	OTHE ACID/ ICE / (OTHE DATE	TIME	1	1)	
1 SPH1-4'		_	8:45	1 1	1	
2 SPH1-51	6	V 2-19-15	8:53 1	1	1	
3 SP#2-41	6	1 2/0	8:58 V	1	1	
4 SPH2-51	9 V	1 3:19	1 1016	1	1	
5 5043-31	G	2-19	1 60.5	1		
6 SA 3-51	6	1 2-19	5.14	4	7	
7 5044-31	G V	V 2-19	81.5	7	7	
8 SP#4-51	6	1 249	4.34 X	T T	V	
District NOTE I and a second District of the State of the	and the said in contra	of or fort shall be limited to the amount nai	d by the client for the		Terms and Conditions: Interes	erms and Conditions: inberest will be charged on all accounts more than
eque	any claim arising whether based in contra e deemed waived unless made in writing a e deemed waived unless made in writing a my without limitation, business interruptions.	ct or tort, shall be limited to the amount pain and received by Cardinal within 30 days afte s, loss of use, or loss of profits incurred by or the party of the party of the above stated to the party of the par	id by the client for the er completion of the appl client, its subsidiaries, people of otherwise	plicable	30 days past due at the rate of 24% per annum from and all costs of collections, including attorney's fees	a entits affol colitations: illations will be changed union economic more more and of days past due at the rate of 24% per annum from the original date of invoice, and all costs of collections, including attorney's fees.
affiliates or successors arising out of or related to the performance of services hereunder by	services hereunder by Cardinal, regardless of whether such clair	claim is based upon any of the above stated rear	Phone Result:	1	No Add'l Phone #:	#
Sampler Relinquished: Date: 1 'do-19 Time: 1'55 Relinquished By: Date:	Received By:	buson	Fax Result: REMARKS:			
Time:						
	- (0	ition CHECKED BY:				
Sampler - UPS - Bus - Other: 5.1 /	F 1	es				

(575) 393-2326 Fax (575) 39	101 East Marland, Hobbs, NA	ARDINAL LABORATO	a	
39	00	20		

IES 88240

BILL TO	ANALYSIS REQUEST
7.0. #:	
Company: AR	
Attn:	
Address:	
City:	
State: Zip:	
Phone #:	/eu
Fax #:	100
PRESERV.	
The state of the s	Est
OIL IL LUDGE THER: CID/BASE: CE / COOL THER:	TPH BIEX
,	V V V V
1 7-19 9:33	
9-16 9:35	V
1 3-19 9:40	
1 2-19 7.95	
1,6 6,0	+
1 2-19 8:48	7 7 7 7
1 2.9 953	
Lability and Darnages. Cardinal's liability and cliant's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the cliant for the rising under the contract or tort, shall be limited to the amount paid by the cliant for the rising and received by Cardinal within 30 days after completion of the a	for the Terms and Conditions: hierest will be charged on all accounts more than of the applicable 3days past due after the rate of 24% per annum from the original date of involce, and the property face.
thon, business interruptions, loss of use, or loss of profits incurred by criem, as subset diess of whether such claim is based upon any of the above stated reasons or other	
Received By: Phone Result:	Result: No Add'l Phone #: No Add'l Fax #:
Jaenson	
ceived By:	
0	
res res	
511 1 2 9 9 9 9	Address: State JMM Zip: Atm: Phone #: 575 - 631 - 902

ANALYTICAL REPORT

October 03, 2019

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1142087

Samples Received: 09/21/2019

Project Number: 212C-MD-01852

COP Britt B-21 Description:

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

49

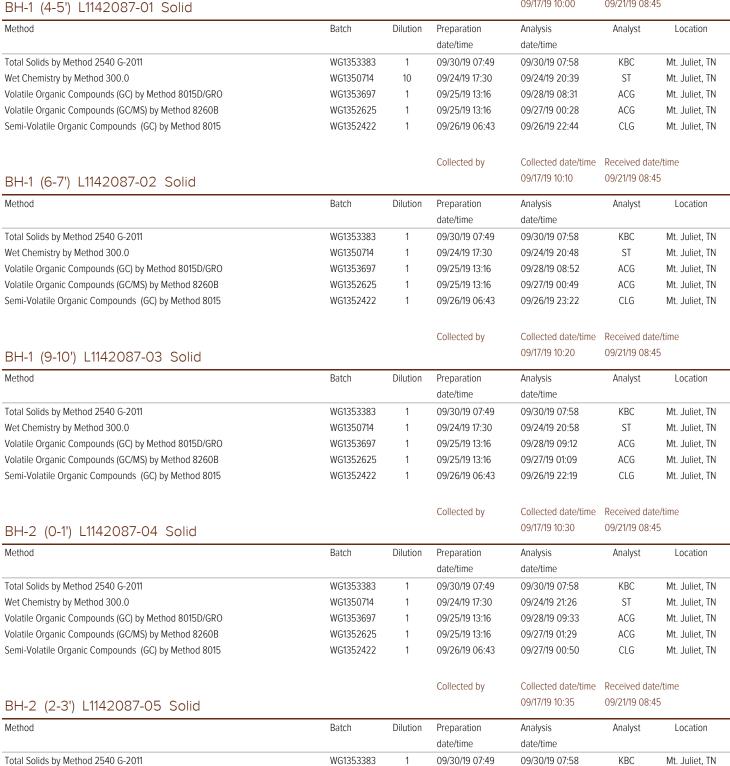
TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	8
Sr: Sample Results	9
BH-1 (4-5') L1142087-01	9
BH-1 (6-7') L1142087-02	10
BH-1 (9-10') L1142087-03	11
BH-2 (0-1') L1142087-04	12
BH-2 (2-3') L1142087-05	13
BH-2 (4-5') L1142087-06	14
BH-2 (6-7') L1142087-07	15
BH-3 (4-5') L1142087-08	16
BH-3 (6-7') L1142087-09	17
BH-3 (9-10') L1142087-10	18
BH-4 (0-1') L1142087-11	19
BH-4 (2-3') L1142087-12	20
BH-4 (4-5') L1142087-13	21
BH-4 (6-7') L1142087-14	22
BH-5 (0-1') L1142087-15	23
BH-5 (2-3') L1142087-16	24
BH-5 (4-5') L1142087-17	25
BH-6 (0-1') L1142087-18	26
BH-6 (2-3') L1142087-19	27
BH-6 (4-5') L1142087-20	28
BH-7 (0-1') L1142087-21	29
BH-7 (2-3') L1142087-22	30
BH-7 (4-5') L1142087-23	31
ESW-1 L1142087-24	32
WSW-1 L1142087-25	33
Qc: Quality Control Summary	34
Total Solids by Method 2540 G-2011	34
Wet Chemistry by Method 300.0	37
Volatile Organic Compounds (GC) by Method 8015D/GRO	39
Volatile Organic Compounds (GC/MS) by Method 8260B	43
Semi-Volatile Organic Compounds (GC) by Method 8015	45
GI: Glossary of Terms	47
Al: Accreditations & Locations	48

Sc: Sample Chain of Custody

3H-1 (4-5') L1142087-01 Solid			Collected by	Collected date/time 09/17/19 10:00	Received date/tim 09/21/19 08:45	ie
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

SAMPLE SUMMARY



DI 1-2 (2-3) L1142007-03 30110						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353383	1	09/30/19 07:49	09/30/19 07:58	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 21:36	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1353697	1	09/25/19 13:16	09/28/19 09:53	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1352625	1	09/25/19 13:16	09/27/19 01:50	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352422	1	09/26/19 06:43	09/26/19 22:32	CLG	Mt. Juliet, TN

ONE LAB. NATIONWIDE.

Collected by	Collected date/time	Received date/time
	09/17/19 10:40	09/21/19 08:45

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353383	1	09/30/19 07:49	09/30/19 07:58	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 22:04	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1353697	1	09/25/19 13:16	09/28/19 10:14	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1352625	1	09/25/19 13:16	09/27/19 02:10	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352422	1	09/26/19 06:43	09/26/19 23:10	CLG	Mt. Juliet, TN

SAMPLE SUMMARY

Collected by Collected date/time Received date/time 09/17/19 10:50 09/21/19 08:45

BH-2 (6-7') L1142087-07 Solid

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353383	1	09/30/19 07:49	09/30/19 07:58	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 22:14	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1353697	1	09/25/19 13:16	09/28/19 10:34	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1352625	1	09/25/19 13:16	09/27/19 02:31	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 14:32	CLG	Mt. Juliet, TN

Collected by Collected date/time Received date/time 09/17/19 11:00 09/21/19 08:45

BH-3 (4-5') L1142087-08 Solid

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353383	1	09/30/19 07:49	09/30/19 07:58	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	5	09/24/19 17:30	09/24/19 22:23	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/29/19 23:40	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1352625	1	09/25/19 13:16	09/27/19 02:51	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 19:35	CLG	Mt. Juliet, TN

Collected by	Collected date/time	Received date/time
	09/17/19 11:10	09/21/19 08:45

BH-3 (6-7')	L1142087-09	Solid
-------------	-------------	-------

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353384	1	09/30/19 07:36	09/30/19 07:46	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 22:33	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 00:04	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1352625	1	09/25/19 13:16	09/27/19 03:11	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 14:44	CLG	Mt. Juliet, TN

Collected by Collected date/time Received date/time 09/21/19 08:45 09/17/19 11:20

BH-3 (9-10') L1142087-10 Solid

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353384	1	09/30/19 07:36	09/30/19 07:46	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 22:42	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 00:28	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 11:59	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 15:22	CLG	Mt. Juliet, TN

	SAMPLE	3 O IVIII	MAKI		ONE	LAB. IVATIOIVVII
BH-4 (0-1') L1142087-11 Solid			Collected by	Collected date/time 09/17/19 11:40	Received da 09/21/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1353384	1	09/30/19 07:36	09/30/19 07:46	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 22:52	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 00:51	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:20	09/27/19 12:20	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 20:00	CLG	Mt. Juliet, TN
BH-4 (2-3') L1142087-12 Solid			Collected by	Collected date/time 09/17/19 11:45	Received da 09/21/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353384	1	09/30/19 07:36	09/30/19 07:46	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 23:21	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 01:15	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 12:41	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 16:51	CLG	Mt. Juliet, TN
BH-4 (4-5') L1142087-13 Solid			Collected by	Collected date/time 09/17/19 11:50	Received date/time 09/21/19 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1353384	1	09/30/19 07:36	09/30/19 07:46	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 23:30	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 01:39	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 13:02	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 17:04	CLG	Mt. Juliet, TN
BH-4 (6-7') L1142087-14 Solid			Collected by	Collected date/time 09/17/19 12:00	Received da 09/21/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1353384	1	09/30/19 07:36	09/30/19 07:46	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 23:40	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 02:03	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 13:23	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 16:00	CLG	Mt. Juliet, TN
BH-5 (0-1') L1142087-15 Solid			Collected by	Collected date/time 09/17/19 12:15	Received da 09/21/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1353384	1	09/30/19 07:36	09/30/19 07:46	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 23:49	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354847	1	09/25/19 13:16	10/01/19 14:47	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 13:43	JHH	Mt. Juliet, TN
, , ,						*

SAMPLE SUMMARY

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1352423

09/26/19 06:54

09/26/19 19:10

CLG

Mt. Juliet, TN

ONE LAB. NATIONWIDE.

Collected date/time	Received date/time
09/17/19 12:20	09/21/19 08:45

Collected date/time Received date/time

Collected date/time Received date/time

09/21/19 08:45

09/21/19 08:45

09/17/19 12:30

09/17/19 12:45

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353384	1	09/30/19 07:36	09/30/19 07:46	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350714	1	09/24/19 17:30	09/24/19 23:59	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 02:50	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 14:04	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 18:45	CLG	Mt. Juliet, TN

SAMPLE SUMMARY

Collected by

Collected by

Collected by

Collected by

Collected by

BH-5 (4-5') L1142087-17 Solid

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353384	1	09/30/19 07:36	09/30/19 07:46	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350996	1	09/24/19 11:30	09/24/19 14:32	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 03:14	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 14:25	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 18:32	CLG	Mt. Juliet, TN

BH-6 (0-1') L1142087-18 Solid

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353384	1	09/30/19 07:36	09/30/19 07:46	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350996	5	09/24/19 11:30	09/24/19 14:48	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 03:38	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 14:46	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 19:48	CLG	Mt. Juliet, TN

BH-6 (2-3') L1142087-19 Solid

Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1353492	1	09/27/19 17:58	09/27/19 18:11	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350996	1	09/24/19 11:30	09/24/19 15:05	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 04:02	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 15:07	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 18:57	CLG	Mt. Juliet, TN

Collected date/time	Received date/time
09/17/19 12:50	09/21/19 08:45

Collected date/time Received date/time

09/21/19 08:45

09/17/19 13:00

BH-6 (4-5') L1142087-20 Solid

2110 (10) 21112007 20 00114						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353492	1	09/27/19 17:58	09/27/19 18:11	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350996	1	09/24/19 11:30	09/24/19 15:21	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 04:25	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 15:27	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 15:10	CLG	Mt. Juliet, TN

BH-7 (0-1') L1142087-21 Solid			Collected by	Collected date/time 09/17/19 14:00	Received da 09/21/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353492	1	09/27/19 17:58	09/27/19 18:11	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1350996	1	09/24/19 11:30	09/24/19 15:38	ST	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 04:49	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 15:48	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 19:23	CLG	Mt. Juliet, T
			Collected by	Collected date/time		
BH-7 (2-3') L1142087-22 Solid				09/17/19 14:10	09/21/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353492	1	09/27/19 17:58	09/27/19 18:11	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1350996	1	09/24/19 11:30	09/24/19 15:54	ST	Mt. Juliet, 1
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354293	1	09/25/19 13:16	09/30/19 05:13	BMB	Mt. Juliet, 1
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 16:09	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 16:26	CLG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	nte/time
BH-7 (4-5') L1142087-23 Solid				09/17/19 14:20	09/21/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353492	1	09/27/19 17:58	09/27/19 18:11	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1350996	1	09/24/19 11:30	09/24/19 16:27	ST	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354044	1	09/25/19 13:16	09/28/19 18:00	JHH	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 16:30	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 16:13	CLG	Mt. Juliet, T
			Collected by	Collected date/time		
ESW-1 L1142087-24 Solid				09/17/19 14:50	09/21/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1353492	1	09/27/19 17:58	09/27/19 18:11	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1350996	1	09/24/19 11:30	09/24/19 17:16	ST	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354044	1	09/25/19 13:16	09/28/19 18:21	JHH	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 16:51	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 20:13	CLG	Mt. Juliet, 1
			Collected by	Collected date/time	Received da	ite/time
				00/17/10 15:00	00/21/10 00:	45

SAMPLE SUMMARY

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1353492	1	09/27/19 17:58	09/27/19 18:11	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1350996	1	09/24/19 11:30	09/24/19 18:06	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1354044	1	09/25/19 13:16	09/28/19 18:41	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1353348	1	09/25/19 13:16	09/27/19 17:11	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1352423	1	09/26/19 06:54	09/26/19 16:38	CLG	Mt. Juliet, TN

09/17/19 15:00

09/21/19 08:45

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.4		1	09/30/2019 07:58	WG1353383

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	3740		9.31	10.0	117	10	09/24/2019 20:39	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0254	0.100	0.117	1	09/28/2019 08:31	WG1353697
(S) a,a,a-Trifluorotoluene(FID)	103				77.0-120		09/28/2019 08:31	WG1353697

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000468	0.00100	0.00117	1	09/27/2019 00:28	WG1352625
Toluene	U		0.00146	0.00500	0.00585	1	09/27/2019 00:28	WG1352625
Ethylbenzene	U		0.000620	0.00250	0.00293	1	09/27/2019 00:28	WG1352625
Total Xylenes	U		0.00560	0.00650	0.00761	1	09/27/2019 00:28	WG1352625
(S) Toluene-d8	117				75.0-131		09/27/2019 00:28	WG1352625
(S) 4-Bromofluorobenzene	107				67.0-138		09/27/2019 00:28	WG1352625
(S) 1,2-Dichloroethane-d4	112				70.0-130		09/27/2019 00:28	WG1352625

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.05		1.88	4.00	4.68	1	09/26/2019 22:44	WG1352422
C28-C40 Oil Range	5.34		0.321	4.00	4.68	1	09/26/2019 22:44	WG1352422
(S) o-Terphenyl	43.0				18.0-148		09/26/2019 22:44	WG1352422

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 10:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.3		1	09/30/2019 07:58	WG1353383

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	432		0.853	10.0	10.7	1	09/24/2019 20:48	WG1350714

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.100	0.107	1	09/28/2019 08:52	WG1353697
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/28/2019 08:52	WG1353697

СQс

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000429	0.00100	0.00107	1	09/27/2019 00:49	WG1352625
Toluene	U		0.00134	0.00500	0.00536	1	09/27/2019 00:49	WG1352625
Ethylbenzene	U		0.000568	0.00250	0.00268	1	09/27/2019 00:49	WG1352625
Total Xylenes	U		0.00513	0.00650	0.00697	1	09/27/2019 00:49	WG1352625
(S) Toluene-d8	110				75.0-131		09/27/2019 00:49	WG1352625
(S) 4-Bromofluorobenzene	108				67.0-138		09/27/2019 00:49	WG1352625
(S) 1,2-Dichloroethane-d4	119				70.0-130		09/27/2019 00:49	WG1352625

Sc

		, ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.1		1.73	4.00	4.29	1	09/26/2019 23:22	WG1352422
C28-C40 Oil Range	13.8		0.294	4.00	4.29	1	09/26/2019 23:22	WG1352422
(S) o-Terphenyl	49.1				18.0-148		09/26/2019 23:22	WG1352422

SAMPLE RESULTS - 03 ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 10:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.3		1	09/30/2019 07:58	<u>WG1353383</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	125		0.932	10.0	11.7	1	09/24/2019 20:58	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0254	0.100	0.117	1	09/28/2019 09:12	WG1353697
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/28/2019 09:12	WG1353697

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000469	0.00100	0.00117	1	09/27/2019 01:09	WG1352625
Toluene	U		0.00147	0.00500	0.00586	1	09/27/2019 01:09	WG1352625
Ethylbenzene	U		0.000621	0.00250	0.00293	1	09/27/2019 01:09	WG1352625
Total Xylenes	U		0.00560	0.00650	0.00762	1	09/27/2019 01:09	WG1352625
(S) Toluene-d8	113				75.0-131		09/27/2019 01:09	WG1352625
(S) 4-Bromofluorobenzene	108				67.0-138		09/27/2019 01:09	WG1352625
(S) 1,2-Dichloroethane-d4	112				70.0-130		09/27/2019 01:09	WG1352625

Sc

	•	, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.89	4.00	4.69	1	09/26/2019 22:19	WG1352422
C28-C40 Oil Range	U		0.321	4.00	4.69	1	09/26/2019 22:19	WG1352422
(S) o-Terphenyl	60.2				18.0-148		09/26/2019 22:19	WG1352422

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.0		1	09/30/2019 07:58	<u>WG1353383</u>

Wet Chemistry by Method 300.0

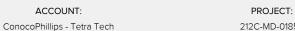
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	213		0.874	10.0	11.0	1	09/24/2019 21:26	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0239	0.100	0.110	1	09/28/2019 09:33	WG1353697
(S) a,a,a-Trifluorotoluene(FID)	102				77.0-120		09/28/2019 09:33	WG1353697

СQс

GI


Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000440	0.00100	0.00110	1	09/27/2019 01:29	WG1352625
Toluene	U		0.00137	0.00500	0.00550	1	09/27/2019 01:29	WG1352625
Ethylbenzene	U		0.000583	0.00250	0.00275	1	09/27/2019 01:29	WG1352625
Total Xylenes	U		0.00525	0.00650	0.00715	1	09/27/2019 01:29	WG1352625
(S) Toluene-d8	114				75.0-131		09/27/2019 01:29	WG1352625
(S) 4-Bromofluorobenzene	108				67.0-138		09/27/2019 01:29	WG1352625
(S) 1,2-Dichloroethane-d4	112				70.0-130		09/27/2019 01:29	WG1352625

Sc

	<u>'</u>	, ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	35.0		1.77	4.00	4.40	1	09/27/2019 00:50	WG1352422
C28-C40 Oil Range	45.5		0.301	4.00	4.40	1	09/27/2019 00:50	WG1352422
(S) o-Terphenyl	47.7				18.0-148		09/27/2019 00:50	WG1352422

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 10:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.7		1	09/30/2019 07:58	<u>WG1353383</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	25.7	В	0.806	10.0	10.1	1	09/24/2019 21:36	WG1350714

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.100	0.101	1	09/28/2019 09:53	WG1353697
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/28/2019 09:53	WG1353697

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000405	0.00100	0.00101	1	09/27/2019 01:50	WG1352625
Toluene	U		0.00127	0.00500	0.00507	1	09/27/2019 01:50	WG1352625
Ethylbenzene	U		0.000537	0.00250	0.00253	1	09/27/2019 01:50	WG1352625
Total Xylenes	U		0.00484	0.00650	0.00659	1	09/27/2019 01:50	WG1352625
(S) Toluene-d8	112				75.0-131		09/27/2019 01:50	WG1352625
(S) 4-Bromofluorobenzene	107				67.0-138		09/27/2019 01:50	WG1352625
(S) 1,2-Dichloroethane-d4	112				70.0-130		09/27/2019 01:50	WG1352625

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.00		1.63	4.00	4.05	1	09/26/2019 22:32	WG1352422
C28-C40 Oil Range	10.7		0.278	4.00	4.05	1	09/26/2019 22:32	WG1352422
(S) o-Terphenyl	81.8				18.0-148		09/26/2019 22:32	WG1352422

Total Solids

SAMPLE RESULTS - 06

WG1353383

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 10:40

Total Solids by	Method 2540 G-2	O11				
	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	8.22	ВЈ	0.849	10.0	10.7	1	09/24/2019 22:04	WG1350714

09/30/2019 07:58

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

93.6

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.100	0.107	1	09/28/2019 10:14	WG1353697
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/28/2019 10:14	WG1353697

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000427	0.00100	0.00107	1	09/27/2019 02:10	WG1352625
Toluene	U		0.00134	0.00500	0.00534	1	09/27/2019 02:10	WG1352625
Ethylbenzene	U		0.000566	0.00250	0.00267	1	09/27/2019 02:10	WG1352625
Total Xylenes	U		0.00511	0.00650	0.00694	1	09/27/2019 02:10	WG1352625
(S) Toluene-d8	113				75.0-131		09/27/2019 02:10	WG1352625
(S) 4-Bromofluorobenzene	104				67.0-138		09/27/2019 02:10	WG1352625
(S) 1,2-Dichloroethane-d4	110				70.0-130		09/27/2019 02:10	WG1352625

Sc

		, ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.00	4.27	1	09/26/2019 23:10	WG1352422
C28-C40 Oil Range	U		0.293	4.00	4.27	1	09/26/2019 23:10	WG1352422
(S) o-Terphenyl	59.6				18.0-148		09/26/2019 23:10	WG1352422

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 10:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.2		1	09/30/2019 07:58	WG1353383

Wet Chemistry by Method 300.0

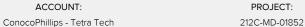
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	13.1	В	0.872	10.0	11.0	1	09/24/2019 22:14	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0238	0.100	0.110	1	09/28/2019 10:34	WG1353697
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/28/2019 10:34	WG1353697

СQс

GI


Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000439	0.00100	0.00110	1	09/27/2019 02:31	WG1352625
Toluene	U		0.00137	0.00500	0.00548	1	09/27/2019 02:31	WG1352625
Ethylbenzene	U		0.000581	0.00250	0.00274	1	09/27/2019 02:31	WG1352625
Total Xylenes	U		0.00524	0.00650	0.00713	1	09/27/2019 02:31	WG1352625
(S) Toluene-d8	115				75.0-131		09/27/2019 02:31	WG1352625
(S) 4-Bromofluorobenzene	105				67.0-138		09/27/2019 02:31	WG1352625
(S) 1,2-Dichloroethane-d4	118				70.0-130		09/27/2019 02:31	WG1352625

Sc

		, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.00	4.39	1	09/26/2019 14:32	WG1352423
C28-C40 Oil Range	U		0.300	4.00	4.39	1	09/26/2019 14:32	WG1352423
(S) o-Terphenyl	65.0				18.0-148		09/26/2019 14:32	WG1352423

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	85.8		1	09/30/2019 07:58	WG1353383

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1630		4.63	10.0	58.3	5	09/24/2019 22:23	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0253	0.100	0.117	1	09/29/2019 23:40	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	95.5				77.0-120		09/29/2019 23:40	WG1354293

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000466	0.00100	0.00117	1	09/27/2019 02:51	WG1352625
Toluene	U		0.00146	0.00500	0.00583	1	09/27/2019 02:51	WG1352625
Ethylbenzene	U		0.000618	0.00250	0.00291	1	09/27/2019 02:51	WG1352625
Total Xylenes	U		0.00557	0.00650	0.00758	1	09/27/2019 02:51	WG1352625
(S) Toluene-d8	111				75.0-131		09/27/2019 02:51	WG1352625
(S) 4-Bromofluorobenzene	106				67.0-138		09/27/2019 02:51	WG1352625
(S) 1,2-Dichloroethane-d4	114				70.0-130		09/27/2019 02:51	WG1352625

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.52		1.88	4.00	4.66	1	09/26/2019 19:35	WG1352423
C28-C40 Oil Range	24.7		0.319	4.00	4.66	1	09/26/2019 19:35	WG1352423
(S) o-Terphenyl	62.8				18.0-148		09/26/2019 19:35	WG1352423

SAMPLE RESULTS - 09 ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 11:10

L1142087

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.1		1	09/30/2019 07:46	<u>WG1353384</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	158		0.913	10.0	11.5	1	09/24/2019 22:33	WG1350714

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0249	0.100	0.115	1	09/30/2019 00:04	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	95.7				77.0-120		09/30/2019 00:04	WG1354293

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000459	0.00100	0.00115	1	09/27/2019 03:11	WG1352625
Toluene	U		0.00144	0.00500	0.00574	1	09/27/2019 03:11	WG1352625
Ethylbenzene	U		0.000609	0.00250	0.00287	1	09/27/2019 03:11	WG1352625
Total Xylenes	U		0.00549	0.00650	0.00747	1	09/27/2019 03:11	WG1352625
(S) Toluene-d8	112				75.0-131		09/27/2019 03:11	WG1352625
(S) 4-Bromofluorobenzene	105				67.0-138		09/27/2019 03:11	WG1352625
(S) 1,2-Dichloroethane-d4	109				70.0-130		09/27/2019 03:11	WG1352625

Sc

PAGE:

17 of 52

		, ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.11	J	1.85	4.00	4.59	1	09/26/2019 14:44	WG1352423
C28-C40 Oil Range	6.82		0.315	4.00	4.59	1	09/26/2019 14:44	WG1352423
(S) o-Terphenyl	77.2				18.0-148		09/26/2019 14:44	WG1352423

SAMPLE RESULTS - 10 ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 11:20

Total Solids by N	Method 2540 G-2	2011				
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	84.6		1	09/30/2019 07:46	WG1353384	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	324		0.940	10.0	11.8	1	09/24/2019 22:42	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0257	0.100	0.118	1	09/30/2019 00:28	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	94.7				77.0-120		09/30/2019 00:28	WG1354293

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000473	0.00100	0.00118	1	09/27/2019 11:59	WG1353348
Toluene	U		0.00148	0.00500	0.00591	1	09/27/2019 11:59	WG1353348
Ethylbenzene	U		0.000627	0.00250	0.00296	1	09/27/2019 11:59	WG1353348
Total Xylenes	U		0.00565	0.00650	0.00768	1	09/27/2019 11:59	WG1353348
(S) Toluene-d8	112				75.0-131		09/27/2019 11:59	WG1353348
(S) 4-Bromofluorobenzene	111				67.0-138		09/27/2019 11:59	WG1353348
(S) 1,2-Dichloroethane-d4	99.9				70.0-130		09/27/2019 11:59	WG1353348

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.00	J J3 J6	1.90	4.00	4.73	1	09/26/2019 15:22	WG1352423
C28-C40 Oil Range	4.78		0.324	4.00	4.73	1	09/26/2019 15:22	WG1352423
(S) o-Terphenyl	69.0				18.0-148		09/26/2019 15:22	WG1352423

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 11:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.8		1	09/30/2019 07:46	WG1353384

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	55.3		0.848	10.0	10.7	1	09/24/2019 22:52	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.100	0.107	1	09/30/2019 00:51	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	94.4				77.0-120		09/30/2019 00:51	WG1354293

СQс

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000426	0.00100	0.00107	1	09/27/2019 12:20	WG1353348
Toluene	U		0.00133	0.00500	0.00533	1	09/27/2019 12:20	WG1353348
Ethylbenzene	U		0.000565	0.00250	0.00266	1	09/27/2019 12:20	WG1353348
Total Xylenes	U		0.00510	0.00650	0.00693	1	09/27/2019 12:20	WG1353348
(S) Toluene-d8	112				75.0-131		09/27/2019 12:20	WG1353348
(S) 4-Bromofluorobenzene	108				67.0-138		09/27/2019 12:20	WG1353348
(S) 1,2-Dichloroethane-d4	101				70.0-130		09/27/2019 12:20	WG1353348

Sc

Gl

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.93		1.72	4.00	4.26	1	09/26/2019 20:00	WG1352423
C28-C40 Oil Range	32.8		0.292	4.00	4.26	1	09/26/2019 20:00	WG1352423
(S) o-Terphenyl	62.7				18.0-148		09/26/2019 20:00	WG1352423

Collected date/time: 09/17/19 11:45

L1142087

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.8		1	09/30/2019 07:46	WG1353384

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	29.1	<u>B</u>	0.805	10.0	10.1	1	09/24/2019 23:21	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.100	0.101	1	09/30/2019 01:15	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	95.5				77.0-120		09/30/2019 01:15	WG1354293

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000405	0.00100	0.00101	1	09/27/2019 12:41	WG1353348
Toluene	U		0.00126	0.00500	0.00506	1	09/27/2019 12:41	WG1353348
Ethylbenzene	U		0.000536	0.00250	0.00253	1	09/27/2019 12:41	WG1353348
Total Xylenes	U		0.00484	0.00650	0.00658	1	09/27/2019 12:41	WG1353348
(S) Toluene-d8	110				75.0-131		09/27/2019 12:41	WG1353348
(S) 4-Bromofluorobenzene	105				67.0-138		09/27/2019 12:41	WG1353348
(S) 1,2-Dichloroethane-d4	106				70.0-130		09/27/2019 12:41	WG1353348

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.58	J	1.63	4.00	4.05	1	09/26/2019 16:51	WG1352423
C28-C40 Oil Range	9.88		0.277	4.00	4.05	1	09/26/2019 16:51	WG1352423
(S) o-Terphenyl	75.7				18.0-148		09/26/2019 16:51	WG1352423

SAMPLE RESULTS - 13 ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 11:50

Total Solids	by N	Method	2540	G-2011
	- /			

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.7		1	09/30/2019 07:46	WG1353384

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	80.7		0.848	10.0	10.7	1	09/24/2019 23:30	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.100	0.107	1	09/30/2019 01:39	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	94.5				77.0-120		09/30/2019 01:39	WG1354293

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000427	0.00100	0.00107	1	09/27/2019 13:02	WG1353348
Toluene	U		0.00133	0.00500	0.00533	1	09/27/2019 13:02	WG1353348
Ethylbenzene	U		0.000565	0.00250	0.00267	1	09/27/2019 13:02	WG1353348
Total Xylenes	U		0.00510	0.00650	0.00693	1	09/27/2019 13:02	WG1353348
(S) Toluene-d8	113				75.0-131		09/27/2019 13:02	WG1353348
(S) 4-Bromofluorobenzene	108				67.0-138		09/27/2019 13:02	WG1353348
(S) 1,2-Dichloroethane-d4	101				70.0-130		09/27/2019 13:02	WG1353348

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.74	J	1.72	4.00	4.27	1	09/26/2019 17:04	WG1352423
C28-C40 Oil Range	13.2		0.292	4.00	4.27	1	09/26/2019 17:04	WG1352423
(S) o-Terphenyl	62.5				18.0-148		09/26/2019 17:04	WG1352423

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.9		1	09/30/2019 07:46	<u>WG1353384</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	83.6		0.865	10.0	10.9	1	09/24/2019 23:40	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.100	0.109	1	09/30/2019 02:03	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	95.0				77.0-120		09/30/2019 02:03	WG1354293

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000435	0.00100	0.00109	1	09/27/2019 13:23	WG1353348
Toluene	U		0.00136	0.00500	0.00544	1	09/27/2019 13:23	WG1353348
Ethylbenzene	U		0.000577	0.00250	0.00272	1	09/27/2019 13:23	WG1353348
Total Xylenes	U		0.00520	0.00650	0.00707	1	09/27/2019 13:23	WG1353348
(S) Toluene-d8	117				75.0-131		09/27/2019 13:23	WG1353348
(S) 4-Bromofluorobenzene	106				67.0-138		09/27/2019 13:23	WG1353348
(S) 1.2-Dichloroethane-d4	99.6				70 0-130		09/27/2019 13:23	WG1353348

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.00	4.35	1	09/26/2019 16:00	WG1352423
C28-C40 Oil Range	0.974	<u>J</u>	0.298	4.00	4.35	1	09/26/2019 16:00	WG1352423
(S) o-Terphenyl	75.2				18.0-148		09/26/2019 16:00	WG1352423

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.6		1	09/30/2019 07:46	WG1353384

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	53.9		0.859	10.0	10.8	1	09/24/2019 23:49	WG1350714

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.100	0.108	1	10/01/2019 14:47	WG1354847
(S) a,a,a-Trifluorotoluene(FID)	92.9				77.0-120		10/01/2019 14:47	WG1354847

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	09/27/2019 13:43	WG1353348
Toluene	U		0.00135	0.00500	0.00540	1	09/27/2019 13:43	WG1353348
Ethylbenzene	U		0.000572	0.00250	0.00270	1	09/27/2019 13:43	WG1353348
Total Xylenes	U		0.00516	0.00650	0.00702	1	09/27/2019 13:43	WG1353348
(S) Toluene-d8	116				75.0-131		09/27/2019 13:43	WG1353348
(S) 4-Bromofluorobenzene	99.0				67.0-138		09/27/2019 13:43	WG1353348
(S) 1,2-Dichloroethane-d4	102				70.0-130		09/27/2019 13:43	WG1353348

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	32.6		1.74	4.00	4.32	1	09/26/2019 19:10	WG1352423
C28-C40 Oil Range	74.9		0.296	4.00	4.32	1	09/26/2019 19:10	WG1352423
(S) o-Terphenyl	58.1				18.0-148		09/26/2019 19:10	WG1352423

SAMPLE RESULTS - 16 ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 12:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.5		1	09/30/2019 07:46	WG1353384

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	74.5		0.850	10.0	10.7	1	09/24/2019 23:59	WG1350714

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.100	0.107	1	09/30/2019 02:50	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	94.8				77.0-120		09/30/2019 02:50	WG1354293

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000428	0.00100	0.00107	1	09/27/2019 14:04	WG1353348
Toluene	U		0.00134	0.00500	0.00535	1	09/27/2019 14:04	WG1353348
Ethylbenzene	U		0.000567	0.00250	0.00267	1	09/27/2019 14:04	WG1353348
Total Xylenes	U		0.00511	0.00650	0.00695	1	09/27/2019 14:04	WG1353348
(S) Toluene-d8	114				75.0-131		09/27/2019 14:04	WG1353348
(S) 4-Bromofluorobenzene	108				67.0-138		09/27/2019 14:04	WG1353348
(S) 1,2-Dichloroethane-d4	104				70.0-130		09/27/2019 14:04	WG1353348

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11.7		1.72	4.00	4.28	1	09/26/2019 18:45	WG1352423
C28-C40 Oil Range	36.8		0.293	4.00	4.28	1	09/26/2019 18:45	WG1352423
(S) o-Terphenyl	58.7				18.0-148		09/26/2019 18:45	WG1352423

SAMPLE RESULTS - 17 L1142087

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 12:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.4		1	09/30/2019 07:46	WG1353384

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	25.9	В	0.879	10.0	11.1	1	09/24/2019 14:32	WG1350996

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0240	0.100	0.111	1	09/30/2019 03:14	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	96.3				77.0-120		09/30/2019 03:14	WG1354293

СQс

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000442	0.00100	0.00111	1	09/27/2019 14:25	WG1353348
Toluene	U		0.00138	0.00500	0.00553	1	09/27/2019 14:25	WG1353348
Ethylbenzene	U		0.000586	0.00250	0.00276	1	09/27/2019 14:25	WG1353348
Total Xylenes	U		0.00529	0.00650	0.00719	1	09/27/2019 14:25	WG1353348
(S) Toluene-d8	114				75.0-131		09/27/2019 14:25	WG1353348
(S) 4-Bromofluorobenzene	105				67.0-138		09/27/2019 14:25	WG1353348
(S) 1,2-Dichloroethane-d4	104				70.0-130		09/27/2019 14:25	WG1353348

Semi-Volatile Organic Compounds (GC) by Method 8015

		, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.99	<u>J</u>	1.78	4.00	4.42	1	09/26/2019 18:32	WG1352423
C28-C40 Oil Range	1.02	J	0.303	4.00	4.42	1	09/26/2019 18:32	WG1352423
(S) o-Terphenyl	84.7				18.0-148		09/26/2019 18:32	WG1352423

Gl

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 12:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.9		1	09/30/2019 07:46	WG1353384

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	2660		4.63	10.0	58.2	5	09/24/2019 14:48	WG1350996

Volatile Organic Compounds (GC) by Method 8015D/GRO

y) <u>Qualifier</u>	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
	mg/kg	mg/kg	mg/kg		date / time	
	0.0253	0.100	0.116	1	09/30/2019 03:38	WG1354293
			77.0-120		09/30/2019 03:38	WG1354293
		mg/kg	mg/kg mg/kg	mg/kg mg/kg mg/kg 0.0253 0.100 0.116	mg/kg mg/kg mg/kg 0.0253 0.100 0.116 1	mg/kg mg/kg mg/kg date / time 0.0253 0.100 0.116 1 09/30/2019 03:38

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000466	0.00100	0.00116	1	09/27/2019 14:46	WG1353348
Toluene	U		0.00146	0.00500	0.00582	1	09/27/2019 14:46	WG1353348
Ethylbenzene	U		0.000617	0.00250	0.00291	1	09/27/2019 14:46	WG1353348
Total Xylenes	U		0.00557	0.00650	0.00757	1	09/27/2019 14:46	WG1353348
(S) Toluene-d8	115				75.0-131		09/27/2019 14:46	WG1353348
(S) 4-Bromofluorobenzene	108				67.0-138		09/27/2019 14:46	WG1353348
(S) 1,2-Dichloroethane-d4	106				70.0-130		09/27/2019 14:46	WG1353348

Semi-Volatile Organic Compounds (GC) by Method 8015

	•	, ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	19.8		1.87	4.00	4.66	1	09/26/2019 19:48	WG1352423
C28-C40 Oil Range	37.3		0.319	4.00	4.66	1	09/26/2019 19:48	WG1352423
(S) o-Terphenyl	42.2				18.0-148		09/26/2019 19:48	WG1352423

Gl

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 12:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	86.9		1	09/27/2019 18:11	WG1353492

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	681		0.915	10.0	11.5	1	09/24/2019 15:05	WG1350996

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0250	0.100	0.115	1	09/30/2019 04:02	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	94.7				77.0-120		09/30/2019 04:02	WG1354293

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000460	0.00100	0.00115	1	09/27/2019 15:07	WG1353348
Toluene	U		0.00144	0.00500	0.00575	1	09/27/2019 15:07	WG1353348
Ethylbenzene	U		0.000610	0.00250	0.00288	1	09/27/2019 15:07	WG1353348
Total Xylenes	U		0.00550	0.00650	0.00748	1	09/27/2019 15:07	WG1353348
(S) Toluene-d8	110				75.0-131		09/27/2019 15:07	WG1353348
(S) 4-Bromofluorobenzene	103				67.0-138		09/27/2019 15:07	WG1353348
(S) 1,2-Dichloroethane-d4	107				70.0-130		09/27/2019 15:07	WG1353348

Semi-Volatile Organic Compounds (GC) by Method 8015

		, ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	19.1		1.85	4.00	4.60	1	09/26/2019 18:57	WG1352423
C28-C40 Oil Range	28.3		0.315	4.00	4.60	1	09/26/2019 18:57	WG1352423
(S) o-Terphenyl	55.8				18.0-148		09/26/2019 18:57	WG1352423

Gl

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.8		1	09/27/2019 18:11	WG1353492

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	51.0		0.949	10.0	11.9	1	09/24/2019 15:21	WG1350996

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0259	0.100	0.119	1	09/30/2019 04:25	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	96.2				77.0-120		09/30/2019 04:25	WG1354293

СQс

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000477	0.00100	0.00119	1	09/27/2019 15:27	WG1353348
Toluene	U		0.00149	0.00500	0.00597	1	09/27/2019 15:27	WG1353348
Ethylbenzene	U		0.000633	0.00250	0.00298	1	09/27/2019 15:27	WG1353348
Total Xylenes	U		0.00571	0.00650	0.00776	1	09/27/2019 15:27	WG1353348
(S) Toluene-d8	113				75.0-131		09/27/2019 15:27	WG1353348
(S) 4-Bromofluorobenzene	104				67.0-138		09/27/2019 15:27	WG1353348
(S) 1,2-Dichloroethane-d4	105				70.0-130		09/27/2019 15:27	WG1353348

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.92	4.00	4.77	1	09/26/2019 15:10	WG1352423
C28-C40 Oil Range	U		0.327	4.00	4.77	1	09/26/2019 15:10	WG1352423
(S) o-Terphenyl	61.9				18.0-148		09/26/2019 15:10	WG1352423

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.9		1	09/27/2019 18:11	WG1353492

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	25.9		0.838	10.0	10.5	1	09/24/2019 15:38	WG1350996

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.100	0.105	1	09/30/2019 04:49	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	94.7				77.0-120		09/30/2019 04:49	WG1354293

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000421	0.00100	0.00105	1	09/27/2019 15:48	WG1353348
Toluene	U		0.00132	0.00500	0.00527	1	09/27/2019 15:48	WG1353348
Ethylbenzene	U		0.000558	0.00250	0.00263	1	09/27/2019 15:48	WG1353348
Total Xylenes	U		0.00504	0.00650	0.00685	1	09/27/2019 15:48	WG1353348
(S) Toluene-d8	112				75.0-131		09/27/2019 15:48	WG1353348
(S) 4-Bromofluorobenzene	106				67.0-138		09/27/2019 15:48	WG1353348
(S) 1,2-Dichloroethane-d4	112				70.0-130		09/27/2019 15:48	WG1353348

		, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.22	<u>J</u>	1.70	4.00	4.21	1	09/26/2019 19:23	WG1352423
C28-C40 Oil Range	12.1		0.289	4.00	4.21	1	09/26/2019 19:23	WG1352423
(S) o-Terphenyl	66.1				18.0-148		09/26/2019 19:23	WG1352423

ONE LAB. NATIONWIDE.

L114208

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.7		1	09/27/2019 18:11	WG1353492

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	50.9		0.831	10.0	10.5	1	09/24/2019 15:54	WG1350996

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.100	0.105	1	09/30/2019 05:13	WG1354293
(S) a,a,a-Trifluorotoluene(FID)	95.2				77.0-120		09/30/2019 05:13	WG1354293

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000418	0.00100	0.00105	1	09/27/2019 16:09	WG1353348
Toluene	U		0.00131	0.00500	0.00523	1	09/27/2019 16:09	WG1353348
Ethylbenzene	U		0.000554	0.00250	0.00261	1	09/27/2019 16:09	WG1353348
Total Xylenes	U		0.00500	0.00650	0.00679	1	09/27/2019 16:09	WG1353348
(S) Toluene-d8	113				75.0-131		09/27/2019 16:09	WG1353348
(S) 4-Bromofluorobenzene	108				67.0-138		09/27/2019 16:09	WG1353348
(S) 1.2-Dichloroethane-d4	104				70.0-130		09/27/2019 16:09	WG1353348

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.79	<u>J</u>	1.68	4.00	4.18	1	09/26/2019 16:26	WG1352423
C28-C40 Oil Range	3.86	J	0.286	4.00	4.18	1	09/26/2019 16:26	WG1352423
(S) o-Terphenyl	70.6				18.0-148		09/26/2019 16:26	WG1352423

ONE LAB. NATIONWIDE.

L1142087

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.6		1	09/27/2019 18:11	WG1353492

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	562		0.859	10.0	10.8	1	09/24/2019 16:27	WG1350996

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.100	0.108	1	09/28/2019 18:00	WG1354044
(S) a,a,a-Trifluorotoluene(FID)	94.9				77.0-120		09/28/2019 18:00	WG1354044

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	09/27/2019 16:30	WG1353348
Toluene	U		0.00135	0.00500	0.00540	1	09/27/2019 16:30	WG1353348
Ethylbenzene	U		0.000572	0.00250	0.00270	1	09/27/2019 16:30	WG1353348
Total Xylenes	U		0.00516	0.00650	0.00702	1	09/27/2019 16:30	WG1353348
(S) Toluene-d8	111				75.0-131		09/27/2019 16:30	WG1353348
(S) 4-Bromofluorobenzene	105				67.0-138		09/27/2019 16:30	WG1353348
(S) 1,2-Dichloroethane-d4	105				70.0-130		09/27/2019 16:30	WG1353348

Sc

	·							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.00	4.32	1	09/26/2019 16:13	WG1352423
C28-C40 Oil Range	0.797	<u>J</u>	0.296	4.00	4.32	1	09/26/2019 16:13	WG1352423
(S) o-Terphenyl	77.4				18.0-148		09/26/2019 16:13	WG1352423

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 14:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.8		1	09/27/2019 18:11	WG1353492

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	18.7	В	0.876	10.0	11.0	1	09/24/2019 17:16	WG1350996

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0239	0.100	0.110	1	09/28/2019 18:21	WG1354044
(S) a,a,a-Trifluorotoluene(FID)	94.7				77.0-120		09/28/2019 18:21	WG1354044

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000441	0.00100	0.00110	1	09/27/2019 16:51	WG1353348
Toluene	U		0.00138	0.00500	0.00551	1	09/27/2019 16:51	WG1353348
Ethylbenzene	U		0.000584	0.00250	0.00275	1	09/27/2019 16:51	WG1353348
Total Xylenes	U		0.00527	0.00650	0.00716	1	09/27/2019 16:51	WG1353348
(S) Toluene-d8	111				75.0-131		09/27/2019 16:51	WG1353348
(S) 4-Bromofluorobenzene	108				67.0-138		09/27/2019 16:51	WG1353348
(S) 1,2-Dichloroethane-d4	109				70.0-130		09/27/2019 16:51	WG1353348

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.64	J	1.77	4.00	4.41	1	09/26/2019 20:13	WG1352423
C28-C40 Oil Range	32.8		0.302	4.00	4.41	1	09/26/2019 20:13	WG1352423
(S) o-Terphenyl	88.6				18.0-148		09/26/2019 20:13	WG1352423

ONE LAB. NATIONWIDE.

Collected date/time: 09/17/19 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.5		1	09/27/2019 18:11	WG1353492

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	18.6	В	0.899	10.0	11.3	1	09/24/2019 18:06	WG1350996

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0304	ВЈ	0.0245	0.100	0.113	1	09/28/2019 18:41	WG1354044
(S) a,a,a-Trifluorotoluene(FID)	95.0				77.0-120		09/28/2019 18:41	WG1354044

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000452	0.00100	0.00113	1	09/27/2019 17:11	WG1353348
Toluene	U		0.00141	0.00500	0.00565	1	09/27/2019 17:11	WG1353348
Ethylbenzene	U		0.000599	0.00250	0.00283	1	09/27/2019 17:11	WG1353348
Total Xylenes	U		0.00540	0.00650	0.00735	1	09/27/2019 17:11	WG1353348
(S) Toluene-d8	113				75.0-131		09/27/2019 17:11	WG1353348
(S) 4-Bromofluorobenzene	110				67.0-138		09/27/2019 17:11	WG1353348
(S) 1,2-Dichloroethane-d4	110				70.0-130		09/27/2019 17:11	WG1353348

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.82	4.00	4.52	1	09/26/2019 16:38	WG1352423
C28-C40 Oil Range	7.27		0.310	4.00	4.52	1	09/26/2019 16:38	WG1352423
(S) o-Terphenyl	90.5				18.0-148		09/26/2019 16:38	WG1352423

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L1142087-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3455995-1 C	09/30/19 07:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

³Ss

[†]Cn

L1142087-06 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.6	93.8	1	0.173		10

Laboratory Control Sample (LCS)

(LCS) R3455995-2 09/30/19 07:58

(LCS) R3455995-2 U9/30	J/19 U7:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	Ī

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L1142087-09,10,11,12,13,14,15,16,17,18

Method Blank (MB)

 (MB) R3455993-1
 09/30/19 07:46

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %

 Total Solids
 0.00100
 %

Ss

L1142087-17 Original Sample (OS) • Duplicate (DUP)

(OS) L1142087-17 09/30/19 07:46 • (DUP) R3455993-3 09/30/19 07:46

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	90.4	89.1	1	1.49		10

Laboratory Control Sample (LCS)

(LCS) R3455993-2 09/30/19 07:46

(LCS) R3455993-2 09/30/		LCS Result	LCS Rec.	Rec. Limits	LCS Qualific
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L1142087-19,20,21,22,23,24,25

Method Blank (MB)

Total Solids

(MB) R3455506-1 09/27/19 18:11											
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	%		%	%							

L1142087-25 Original Sample (OS) • Duplicate (DUP)

0.000

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	88.5	88.7	1	0.205		10

Ss

Laboratory Control Sample (LCS)

(LCS) R3455506-2	09/27/19	12.1
ILC31 K34333000-Z	U3/2//13	IO.I

(LCS) R3455506-2 09/2//	Spike Amount	t LCS Res	ult LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 300.0

L1142087-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16

Method Blank (MB)

(MB) R3454194-1 09/24	/19 19:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	3.02	J	0.795	10.0

L1142081-24 Original Sample (OS) • Duplicate (DUP)

(OS) L1142081-24 09/24/19	9 19:52 • (DUP)	R3454194-3	09/24/19 2	0:00		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	14.6	14.1	1	2.92		20

L1142087-16 Original Sample (OS) • Duplicate (DUP)

(OS) L1142087-16 09/24/19 23:59 • (DUP) R3454194-6 09/25/19 00:08

(33) 211 . 2337 . 13 . 33/2 1/1.	Original Result (dry)		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	74.5	74.3	1	0.292		20

Laboratory Control Sample (LCS)

(LCS) R3454194-2 09/24/19 19:17

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	218	109	90.0-110	

L1142087-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1142087-05 09/24/19 21:36 • (MS) R3454194-4 09/24/19 21:45 • (MSD) R3454194-5 09/24/19 21:55

(65) 21142607 65 65/24/15 21:50 - [Miss] (65/24/15 21:50 - [Miss] (65/24												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	507	25.7	561	556	106	105	1	80.0-120			0.987	20

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 300.0

L1142087-17,18,19,20,21,22,23,24,25

Method Blank (MB)

(MB) R3454000-1 09/24	/19 12:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	2.39	J	0.795	10.0

Ss

L1137571-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1137571-15 09/24/19	13:59 • (DUP) R	3454000-3	09/24/19 14	:15		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	8920	9440	20	5 72		20

L1142087-22 Original Sample (OS) • Duplicate (DUP)

(OS) L1142087-22 09/24/19 15:54 • (DUP) R3454000-4 09/24/19 16:11

(00) 21112007 22 00/2 1/1	Original Result (dry)		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	50.9	54.5	1	6.74		20

Laboratory Control Sample (LCS)

(LCS) R3454000-2 09/24/19 12:20

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	200	100	90.0-110	

L1142087-24 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1142087-24 09/24/19 17:16 • (MS) R3454000-5 09/24/19 17:33 • (MSD) R3454000-6 09/24/19 17:49

(88) 21112887 21 8372 17	, ,	Original Result (dry)		. ,		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	551	18.7	584	618	103	109	1	80.0-120			5.67	20

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1142087-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3455677-2 09/28/19 03:44								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
TPH (GC/FID) Low Fraction	U		0.0217	0.100				
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120				

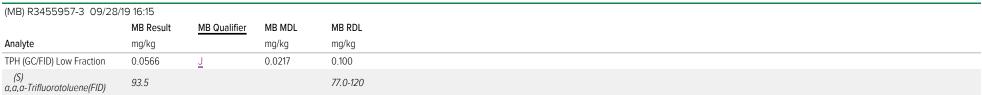
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3455677-1 09/28/	.CS) R3455677-1 09/28/19 03:03 • (LCSD) R3455677-5 09/28/19 11:56										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	6.36	6.10	116	111	72.0-127			4.14	20	
(S) a,a,a-Trifluorotoluene(FID)				111	110	77.0-120					

L1142072-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1142072-0	6 09/28/19 07:50 •	(MS) R3455677-3	09/28/19 11:15 • (N	ASD) R3455677-4	09/28/19 11:35

(00) 211 12072 00 0072071	0 07.00 (0)		0,20,10 11110	(, , , , , , , , , , , , , , , , , , , ,								_
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	Ś
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	5.50	ND	116	121	84.1	87.7	25	10.0-151			4.20	28	
(S) a,a,a-Trifluorotoluene(FID)					107	107		77.0-120					



ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1142087-23,24,25

Method Blank (MB)

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3455957-2 09/28/19 15:34									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
TPH (GC/FID) Low Fraction	5.50	5.09	92.6	72.0-127					
(S) a,a,a-Trifluorotoluene(FID)			105	77.0-120					

GI

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1142087-08,09,10,11,12,13,14,16,17,18,19,20,21,22

Method Blank (MB)

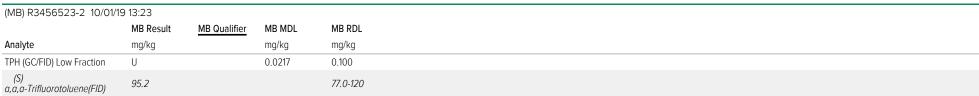
(MB) R3456104-3 09/29/19 20:31							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	U		0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	97.1			77.0-120			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3456104-1 09/29/19 18:56 • (LCSD) R3456104-2 09/29/19 19:20												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
TPH (GC/FID) Low Fraction	5.50	5.04	5.16	91.7	93.8	72.0-127			2.30	20		
(S) a,a,a-Trifluorotoluene(FID)				103	102	77.0-120						

L1141941-49 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	L
TPH (GC/FID) Low Fraction	7.41	U	161	132	84.2	69.3	25.75	10.0-151			19.3	28	
(S) a,a,a-Trifluorotoluene(FID)					101	102		77.0-120					



ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1142087-15

Method Blank (MB)

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3456523-1 10/01/	19 10:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.48	99.6	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			103	77.0-120	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L1142087-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(LCS) R3455303-1 09/26/	/19 19:43				Г
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	L
Benzene	0.125	0.0989	79.2	70.0-123	
Ethylbenzene	0.125	0.112	90.0	74.0-126	
Toluene	0.125	0.118	94.2	75.0-121	
Xylenes, Total	0.375	0.319	85.1	72.0-127	
(S) Toluene-d8			109	<i>75.0-131</i>	
(S) 4-Bromofluorobenzene			104	67.0-138	
(S) 1 2-Dichloroethane-d4			11.3	70 0-130	

L1142081-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1142081-18 09/26/19	9 21:04 • (MS) R	3455303-3 09	/27/19 05:14 • (MSD) R34553	03-4 09/27/19	05:35						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.132	U	0.0805	0.0939	61.2	71.4	1	10.0-149			15.3	37
Ethylbenzene	0.132	U	0.103	0.125	78.7	94.9	1	10.0-160			18.7	38
Toluene	0.132	U	0.103	0.119	78.5	90.3	1	10.0-156			14.0	38
Xylenes, Total	0.395	U	0.281	0.310	71.2	78.7	1	10.0-160			9.96	38
(S) Toluene-d8					113	115		75.0-131				
(S) 4-Bromofluorobenzene					104	102		67.0-138				
(S) 1,2-Dichloroethane-d4					95.0	99.6		70.0-130				

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L1142087-10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

Method Blank (MB)

(MB) R3455976-2 09/27/19	9 10:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	111			75.0-131
(S) 4-Bromofluorobenzene	102			67.0-138
(S) 1,2-Dichloroethane-d4	114			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3455976-1 09/27/	19 09:26				Г
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	L
Benzene	0.125	0.100	80.0	70.0-123	
Ethylbenzene	0.125	0.121	96.5	74.0-126	
Toluene	0.125	0.119	95.5	75.0-121	
Xylenes, Total	0.375	0.350	93.3	72.0-127	
(S) Toluene-d8			111	75.0-131	
(S) 4-Bromofluorobenzene			106	67.0-138	
(S) 1.2-Dichloroethane-d4			107	70 0-130	

L1142409-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1142409-01 09/27/19	9 17:32 • (MS) R	3455976-3 09	9/27/19 18:53 • (MSD) R345597	76-4 09/27/19	19:13						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.142	U	0.779	0.810	68.4	71.2	8	10.0-149			3.98	37
Ethylbenzene	0.142	0.130	1.14	1.22	88.8	96.1	8	10.0-160			7.02	38
Toluene	0.142	U	0.890	0.964	78.2	84.7	8	10.0-156			8.00	38
Xylenes, Total	0.427	1.39	4.96	5.16	105	110	8	10.0-160			3.82	38
(S) Toluene-d8					106	107		<i>75.0-131</i>				
(S) 4-Bromofluorobenzene					119	121		67.0-138				
(S) 1,2-Dichloroethane-d4					117	104		70.0-130				

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method 8015

L1142087-01,02,03,04,05,06

Method Blank (MB)

(MB) R3455190-1 09/26	6/19 21:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	73.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3455190-2 09/26	/19 21:41				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	40.3	80.6	50.0-150	
(S) o-Terphenyl			78.5	18.0-148	

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method 8015

L1142087-07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

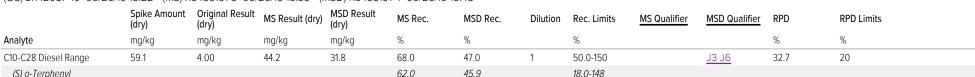
Method Blank (MB)

(S) o-Terphenyl

(MB) R3455191-1 09/26	6/19 14:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	80.0			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3455191-2 09/26	5/19 14:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	37.4	74.8	50.0-150	
(S) o-Terphenyl			74.9	18.0-148	



GI

L1142087-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1142087-10 09/26/19 15:22 • (MS) R3455191-3 09/26/19 15:35 • (MSD) R3455191-4 09/26/19 15:48

45.9

18.0-148

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
CANGIIIIGI	Deschonon

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Circle) HAND DELIVERED FEDEX UPS Tracking #:

Analysis Request of Chain of Custody Record Page: 1 of 3 901 West Wall Street, Suite 100 Tetra Tech, Inc. **B248** Midland, Texas 79701 TŁ Tel (432) 682-4559 Fax (432) 682-3946 Site Manager: Client Name: **ANALYSIS REQUEST** Chrisian Llull Conoco Phillips (Circle or Specify Method No.) Project Name: COP Britt B-21 Project #: Project Location: 212C-MD-01852 Lea County, New Mexico (county, state) Invoice to: Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701 8015M (GRO - DRO - ORO - MRO) Se Hg Sampler Signature: Receiving Laboratory: Pace Analytical Comments: **COPTETRA Acctnum** PH TX1005 (Ext to C35) PRESERVATIVE SAMPLING MATRIX Metals Ag As FILTERED (Y/N) CONTAINERS METHOD YEAR: 2019 SAMPLE IDENTIFICATION LAB# NATER NONE HNO3 SOIL LAB USE DATE TIME 1 2 CE ONLY N X X X X BH-1 (4'- 5') 9/17/2019 1000 X -01 X X X X N BH-1 (6'- 7') 9/17/2019 1010 02 X X X X N BH-1 (9'- 10') 9/17/2019 1020 03 X N X X 1030 X BH-2 (0'- 1') 9/17/2019 09 05 X X X X N BH-2 (2'- 3') 9/17/2019 1035 X N X 9/17/2019 1040 BH-2 (4'- 5') X X 9/17/2019 1050 X X N 07 BH-2 (6'- 7') N X X X BH-3 (4'- 5') 9/17/2019 1100 X 08 X X BH-3 (6'- 7') 9/17/2019 1110 X X N 09 10 BH-3 (9'- 10') 9/17/2019 1120 N REMARKS: Date: Date: Time: Received by: Time: Relinquished by: LAB USE X STANDARD ONLY Date: RUSH: Same Day 24 hr 48 hr 72 hr Date: Relinquished by: Received by: Sample Temperature Rush Charges Authorized Received by: Date: Relinquished by: Special Report Limits or TRRP Report

ORIGINAL COPY

1142087

Page: 2 of 3

TE	Tetra Tech. Inc.				901 V	Midla Tel	nd,T (432	exas () 682	et, Si 3 797 2-455 2-394	9	0		L.													
Client Name:	Conoco Phillips	Site Manager:	4	Chr	risian	Llul	ı								46					RE						
Project Name:	COP Britt B-21											(Circle or Specify Method No.)							1.1							
Project Location: (county, state)	Lea County, New Mexico	Project #: 212C-MD-01852																								
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701	01											(0)			9								d list)		
Receiving Laboratory:	Pace Analytical	Sampler Signa	ture:	0	40	to							N- OF		b Se Hg	P Se H								attached		
COP1	ETRA Acctnum				0							(8260B	TX1005 (Ext to C35) 8015M (GRO - DRO - ORO - MRO)		Ag As Ba Cd Cr Pb Se Hg	a Cd Cr F			324	/00/00/2			TDS	(see		
	20 mag	SAMPL	ING	MA	TRIX	P		RVATI	IVE	.RS	(Y/N)		(Ext to (GRO - I		As Ba	g As B	Volatiles		8260B / 624	908				Chemistry	alance	
LAB# (LAB USE ONLY	SAMPLE IDENTIFICATION	YEAR: 2019 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		# CONTAINERS	FILTERED (Y	X 8021B	TPH TX1005 (PAH 8270C	Metals	Metals	CLP Volatiles		SC/MS Vol. 82	GC/MS Semi. Vol. 82/UC/625 PCB's 8082 / 608	NORM	PLM (Asbestos)	Chloride Sulfate	General Water	Anion/Cation Balance TPH 8015R	НОГР
H	BH-4 (0'- 1')	9/17/2019	1140		X			X		1	N	X	X	-)	_	Ü		
12	BH-4 (2'- 3')	9/17/2019	1145		X			X		1	N	Х	X	(m)	<			
B	BH-4 (4'- 5')	9/17/2019	1150		Х			X	5 0	1	N	Х	X)	<			
14	BH-4 (6'- 7')	9/17/2019	1200		Х			Х		1	N	Х	X)	<			1
15	BH-5 (0'- 1')	9/17/2019	1215		Х			X		-1	N	Х	X		1)	<			
16	BH-5 (2'- 3')	9/17/2019	1220		X			Х		1	N	Х	X)	(
17	BH-5 (4'- 5')	9/17/2019	1230		Х			Х		1	N	Х	X								2-)	<			
B	BH-6 (0'- 1')	9/17/2019	1245		Х		es.	X		1	N	Х	X)	<			
19	BH-6 (2'- 3')	9/17/2019	1250		Х			X		1	N	Х	X)	<			
20	BH-6 (4'- 5')	9/17/2019	1300		X			X		1	N	Х	X)	<			
Relinquished by:	J. Ly 9-20-19 13:00	Received by:	De	1		100	ate:	A	ime:	3:0	1		LAE	B US		F		ST		DARD	,	e A				-
Relinquished by:	Date: Time: 920 15:35	Received by: Date: Time: 9-20 15:31									7	Sample Temperature				RUSH: Same Day 24 hr 48 hr 72 hr										
Relinquished by: Date: Time: Received by: Date: Time: 9/21/19 8:30													Special Report Limits or TRRP Report													
		1										(Cir	cle) I	HANI	D DE	LIVE	RED	FEC	DEX	UPS	3 Т	rackir	ng #:			/^_
		ORIGINAL	COPY																							

Analysis Request of Chain of Custody Record

1142087 Page: 3 of 3 901 West Wall Street, Suite 100

TE .	Tetra Tech, Inc.				1	Midla Tel	nd,7 (432	Геха 2) 68	eet, Si is 797 2-455 32-394	9	0							-								
lient Name:	Conoco Phillips	Site Manager: Chrisian Llull												(0	irc					REC fy N			I N	0.)		
roject Name:	COP Britt B-21											1	11	1												-
roject Location: county, state)	Lea County, New Mexico	Project #: 212C-MD-01852																								
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	1				_							(NRO)		PH H	2							3	ned list)		
Receiving Laboratory:	Pace Analytical	Sampler Signa	ture:	ö	12	t							ORO - MRO)		Ph Se P				10					e attached		
Comments:	ETRA Acctnum											K 8260B	1		a Cd Cr	5		624	8270C/625					istry (see		
		SAMP	LING	MA	ATRIX	F	RESE	ERVA		RS	(N/)	BTE)	GRO - DRO		Ag As Ba	2000	Volatiles	8260B / 624	Vol. 82	809	(S		Sulfate	Salance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2019 DATE			SOIL	HCL	HNO ₃	ICE	NONE	# CONTAINERS	FILTERED (Y/N)		TPH 8015M (PAH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	TCLP Semi Vo	RCI GC/MS Vol. 8		PCB's 8082/	NORM PLM (Asbestos)	Chloride 300.0	Chloride Su	General Water Chemistry Anion/Cation Balance	TPH 8015R	НОГР
(ONLY)	BH-7 (0'- 1')	9/17/2019	1400	>	X	-	_	X	_	1	N	X	X									Х				
21	BH-7 (2'- 3')	9/17/2019	1410		X			Х		1	N	Х	X	To a					1			X			Ш	
22	BH-7 (4'- 5')	9/17/2019	1420		Х			Х		1	N	Х	X									X				
24	ESW-1	9/17/2019	1450		X		1 X X	X		1	N	X	X									X			Ш	*
25	WSW-1	9/17/2019	1500		Х			X		1	N	Х	X							H		X				
											42.0	1														
Relinquished by:	Date: Time: 9-50-19 13 ioo	Received by	he	1	/	2	ate:	>	-	3.0	7		LAB	US		R		STA	AND		Day	24 by	. 19	hr 7	2 br	
Relinquished by:	Date: Time: Date: Time:	Received by: Sample Temperature Received by: Date: Time:								SH: Same Day 24 hr 48 hr 72 hr th Charges Authorized																
		ORIGINA	Cr	u	1		1/0	41/	11	01.		(Cir	rcle) I	HANI	D DE	LIVE	RED	FED	EX	UPS	Tra	acking) #: _			

ORIGINAL COPY

Pace Analytical National Center for Testing & Innovation Cooler Receipt Form 1142087 COPTETRA 3.0 Temperature: Cooler Received/Opened On:913 /19 Received By: Paul Minnich Signature: No Yes NP Receipt Check List COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used? Sufficient volume sent? If Applicable VOA Zero headspace? Preservation Correct / Checked?

APPENDIX D Soil Boring Logs

212	C-M	D-0	1852	T	ΕJT	ETRA	TEC	н				LOG OF BORING BH-1		Page 1 of 1				
Proje	ct N	ame	e: Britt	B-21 F	lowl	ine F	Relea	se										
Borel	nole	Loc	ation:	GPS: N	32.5	8196 ⁻	1° E -	103.2	23987	70°	;	Surface Elevation: 3570 ft						
Borel	nole	Nur	mber:	BH-1						Bo Di	oreho ame	le er (in.): 8 Date Started: 9/17/2019 Date	ate Finished: 9/17/2019					
	Е		ppm)	(mdd	$ar{ar{\Lambda}}$ D	RY_ft												
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	Г СПООПР СІМІТ	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARKS				
												-AIR- EXISTING EXCAVATION						
5		X	2730	9.2								-SM- SILTY SAND; White to tan, loose to medium dense, with no hydrocarbon odor, with no staining.	_	BH-1 (4'-5') BH-1 (6'-7')				
	$\rangle\rangle$													Bii i (0 7)				
10		X	123	0.7								-SM- SILTY SAND; White, dense to very dense, cemented, with no hydrocarbon odor, with no staining, grading to SANDSTONE. Bottom of borehole at 10.0 feet.	8 - 10	BH-1 (9'-10')				
Sampler Types: Split Spoon Shelby Shelby Sample Sample California Grab Sample Test Pit								Opera ypes	Mud Rota Cont Fligh Was Rota	ry inuous t Auger h		Auger Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Rei Surface elevation is an estimated value. Driller: Scarborough Drilling	narks" c	column.				

212C-MD-0185	2 1	TETRA	TECH				LOG OF BORING BH-2								
Project Name:	Britt B-21 F	lowline F	Release	;											
Borehole Locatio	n: GPS: N	32.58196	1° E -10	3.23992	22°	Surface Elev	ation:	3570 ft							
Borehole Numbe	r: BH-2				Bore Diar	ehole meter (in.):		Date Started:	9/17/2019	Date Finished	: 9/17/2019				
E E	(mdd	ERY (%)	3f)	DEX			WATER LEVEL OBSERVATIONS While Drilling <u>□ DRY</u> ft Upon Completion of Drilling <u>□</u>								
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIEL	SCREENING (ppm) VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pdf)		MINUS NO. 200 (%)	GRAPHII		RIAL DESCR		DEPTH (ft)	REMARKS				
	6							AND; Brown, don, don, with little s		_	BH-2 (0'-1') BH-2 (2'-3')				
5 60	0.8 6.1					gravel, wi	ith no	AND; White, de hydrocarbon o IDSTONE.	ense, cemented, dor, with no stail	with	BH-2 (4'-5')				
(\	9.1 4.8							om of borehole		7	BH-2 (6'-7')				
S B S	helby Value Cample	cetate Liner ane Shear alifornia est Pit		ration es: Mud Rota Cont Fligh Was Rota	ry inuous t Auger h	Auger Air Rotary Core Barrel Direct Push		lytical samples	are shown in the s an estimated v		olumn.				

212	C-M	ID-0	1852	T	ΕŢ	ETRA	TEC	Н				LOG OF BORING BH-3 Page 1 of	; 1		
Proje	ct N	lam	e: Brit	t B-21 F	lowl	ine F	Relea	ase							
Borel	hole	Loc	cation:	GPS: N	32.5	8197	0° E .	-103.2	23978	33°		Surface Elevation: 3570 ft			
Borel	hole	Nu	mber:	BH-3						Bo Di	oreho iame	pole eter (in.): 8 Date Started: 9/17/2019 Date Finished: 9/17/2019	9		
	Ē		ELD (ppm)	(mdd	WATER LEVEL OBSERVATIONS While Drilling Variable for the properties of the properti										
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	Г СІДОІВ СІМІТ	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (E) HE G REMARK	S		
												-AIR- EXISTING EXCAVATION			
5		X	1490 165	6.7								-SM- SILTY SAND; Tan, medium dense to dense, with few gravel, with low hydrocarbon odor, with no staining. -SM- SILTY SAND; White, medium dense to dense, cemented, with gravel, with no hydrocarbon odor, with no staining, grading to SANDSTONE. BH-3 (4'-5') BH-3 (6'-7')			
10	((Μ		3.3								Bottom of borehole at 10.0 feet.			
0		-							tion						
Samı Type			Split Spoon Shelby Bulk Sample Grab Sample		/ane S Californiest P	nia)pera ypes	Mud Rota Cont Fligh Was Rota	ry inuous t Auge h	r 👢	Auger Air Rotary Core Barrel Direct Push Auger Notes: Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.			

212	C-M	D-0	1852	TETRA TECH								LOG OF BORING BH-4		Page 1 of 1
Proje	Project Name: Britt B-21 Flowline Release													
Bore	hole	Loc	cation:	GPS: N	32.5	8196	1° E	-103.	23972	29°		urface Elevation: 3570 ft		
Bore	hole	Nu	mber:	BH-4						B	oreho iame	Date Started: 9/17/2019 Date Fini	shed	9/17/2019
			opm)	(mdd	ERY (%)	ENT (%)	J)		NDEX			WATER LEVEL OBSERVATIONS	Z DI	RY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARKS
_		X	38.5	10.6								-SM- SILTY SAND; Brown, dense, with no hydrocarbon odor, with no staining.		BH-4 (0'-1') BH-4 (2'-3')
5_		X	159	10.2								-SM- SILTY SAND; Brown, medium dense to dense, with few gravel, with no hydrocarbon odor, with no staining.	3.5	BH-4 (4'-5')
	$\langle \langle \rangle$	X		7.3								dense, cemented, with gravel, with no hydrocarbon odor, with no staining, grading to SANDSTONE.	,	BH-4 (6'-7')
Sam _l Type	oler s:		Split Spoor Shelb Shelb Samp Grab Samp	y	cetate dane scalifor est P	nia	- C	Opera ypes	: Mud Rota	ary tinuous nt Auge sh	s E	Auger Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Remark Surface elevation is an estimated value.	(s" c	olumn.
												D :::		

212	:C-M	D-0	1852	TETRA TECH								LOG OF BORING BH-5	Page 1 of 1
Proje	Project Name: Britt B-21 Flowline Release												
Bore	hole	Loc	ation:	GPS: N	32.5	8210	1° E	-103.	23969	90°		Surface Elevation: 3570 ft	
Borehole Number: BH-5										B	oreho iame	le er (in.): 8 Date Started: 9/17/2019 Date Finisher	d: 9/17/2019
	ш		ppm)	(mdd	ERY (%)	rent (%)	3 ()		NDEX			WATER LEVEL OBSERVATIONS	RY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UNC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	Г СІДОІБ СІМІТ	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (3) HE GB HE GB HE GB HE GB HE HE GB HE HE HE HE HE HE HE HE HE H	REMARKS
_		X		24.1								-SM- SILTY SAND; Brown, dense, with low hydrocarbon odor, with no staining.	BH-5 (0'-1')
_			153	9.1								-SM- SILTY SAND; White, medium dense to	BH-5 (2'-3')
5		X	81.2	8.2								dense, cemented, with gravel, with no hydrocarbon odor, with no staining, grading to SANDSTONE. Bottom of borehole at 5.0 feet.	BH-5 (4'-5')
0									tion				
Sam Type	pler s:		Split Spoor Shelby Bulk Samp Grab Samp	v le X C			T	Opera ypes	Mud Rota	ary tinuous nt Auge sh	s E	Auger Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Remarks" of Surface elevation is an estimated value.	column.
												D. 11	

212C-MD-01852	TETRA T	тесн	LOG OF BORING BH-6	Page 1 of 1
Project Name: Br	tt B-21 Flowline Re	elease	1	
Borehole Location:	GPS: N 32.582069°	E -103.239687°	Surface Elevation: 3570 ft	
Borehole Number:	BH-6	Boreh Diame	ole eter (in.): 8 Date Started: 9/17/2019 Date Finished:	9/17/2019
(Indo	ppm) ERY (%) ENT (%)	X	WATER LEVEL OBSERVATIONS While Drilling □ DRY ft Upon Completion of Drilling □ DRY Remarks:	RY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	SCREENING (ppm) SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pcf) T LIQUID LIMIT D PLASTICITY INDEX MINUS NO. 200 (%) GRAPHIC LOG		REMARKS
1840	4.2		-SM- SILTY SAND; White, medium dense to dense, cemented, with gravel, with no hydrocarbon odor, with no staining.	BH-6 (0'-1')
430	7.1			BH-6 (2'-3')
5 ((/ \	7.4		Bottom of borehole at 5.0 feet.	3H-6 (4'-5')
Sampler Types: Split Spoo	y Vane Shear le California	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Auger Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Remarks" consumption of the properties of the pr	olumn.

2120	C-MI	D-0	1852	TETRA TECH					ı	LO	G OF BOF	RING BH-7			Page 1 of 1			
Proje	ct N	am	e: Brit	tt B-21 F	low	ine F	Relea	ase										
Borel	nole	Loc	cation:	GPS: N	32.5	8202	3° E	-103.	23968	34°		Surface Elevation	n:	3570 ft				
Borel	nole	Nu	mber:	BH-7						B	oreho iame	ole ter (in.):		Date Started:	9/17/2019	Date Fi	nished	: 9/17/2019
	ш		ELD ppm)	(mdd	ERY (%)	FENT (%)	ગ		NDEX						OBSERVATIC on Completion of [<u>Ā</u> D	RY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UVOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MAT	ER	IAL DESCR	RIPTION		DEPTH (ft)	REMARKS
_		X	91.4	5.1								-SM- SILTY hydrocarbon	SA	ND; Brown, d or, with no sta	ense, with no aining.		_	BH-7 (0'-1') BH-7 (2'-3')
- - 5			00.2	1.9								dense, with g no staining, g	grav grad	el. with no hy		with	3.5	BH-7 (4'-5')
									ition									
Samp Types	oler s:	_	Split Spoor Shelby Bulk Samp Grab Samp	y	cetat dane scalifor	nia	- T	opera ypes	: Mud Rota	ary tinuous nt Auge sh		Air Rotary Ar		tical samples	are shown in the		rks" c	olumn.
							Т.		_									

APPENDIX E Photographic Documentation

TETRA TECH, INC. PROJECT NO. 212C-MD-01852	DESCRIPTION	View northeast over previously excavated area from initial response.	1
	SITE NAME	Britt B-21 Flowline Release	7/16/2019

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north of west sidewall of previously excavated area from initial response.	2
212C-MD-01852	SITE NAME	Britt B-21 Flowline Release	7/16/2019

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View northwest over previously excavated area from initial response.	3
212C-MD-01852	SITE NAME	Britt B-21 Flowline Release	7/16/2019

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north of north sidewall of previously excavated area from initial response.	4
212C-MD-01852	SITE NAME	Britt B-21 Flowline Release	7/16/2019

APPENDIX F NMSLO Seed Mixture Details

VRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Lea County, New Mexico	13
KM—Kermit soils and dune land, 0 to 12 percent slopes	13
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

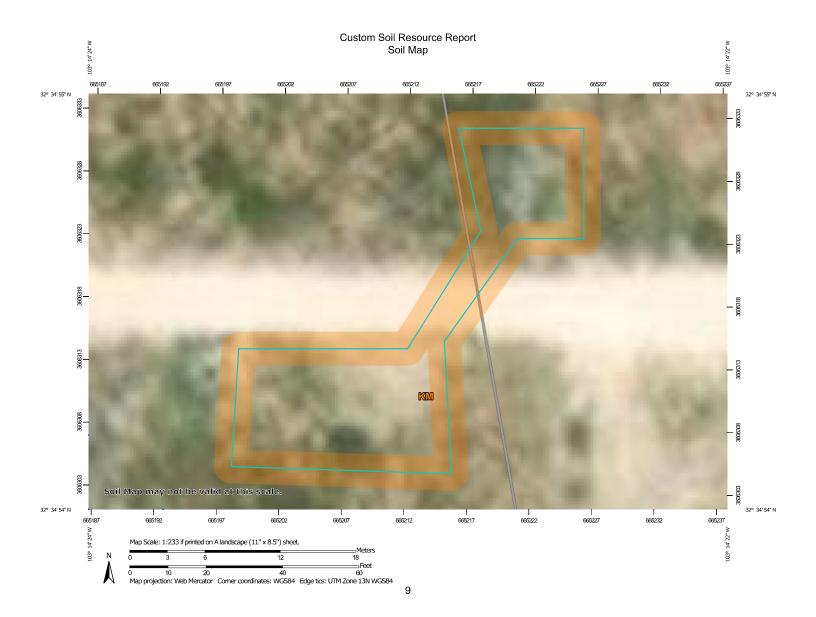
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

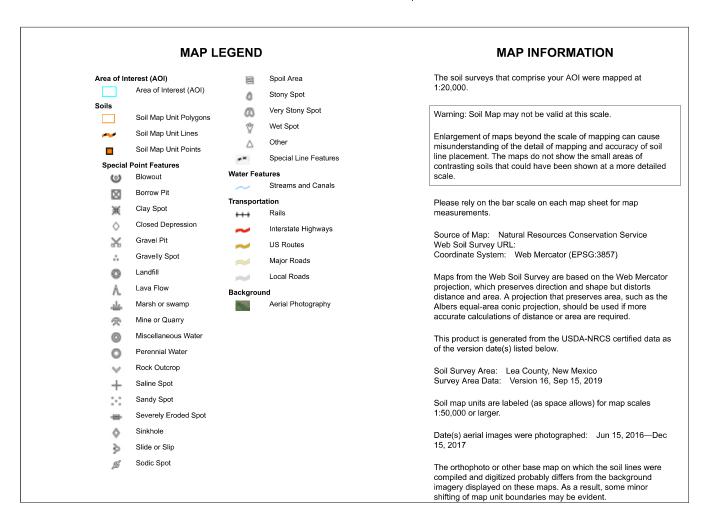
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
KM	Kermit soils and dune land, 0 to 12 percent slopes	0.1	100.0%
Totals for Area of Interest		0.1	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KM—Kermit soils and dune land, 0 to 12 percent slopes

Map Unit Setting

National map unit symbol: dmpx Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Dune land: 45 percent

Kermit and similar soils: 45 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dune Land

Setting

Landform: Dunes

Landform position (two-dimensional): Shoulder, backslope, footslope

Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave

Across-slope shape: Convex

Typical profile

A - 0 to 6 inches: fine sand C - 6 to 60 inches: fine sand

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8e

Hydrologic Soil Group: A Hydric soil rating: No

Description of Kermit

Setting

Landform: Dunes

Landform position (two-dimensional): Shoulder, backslope, footslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex, linear, concave

Across-slope shape: Convex

Parent material: Calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sand C - 8 to 60 inches: fine sand

Properties and qualities

Slope: 5 to 12 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 3 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Sandhills (R042XC022NM)

Hydric soil rating: No

Minor Components

Palomas

Percent of map unit: 3 percent

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Pyote

Percent of map unit: 3 percent

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Maljamar

Percent of map unit: 2 percent

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Wink

Percent of map unit: 2 percent

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2 054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

SANDY (S) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX	
G.				
Grasses:	THE I - WAIG G.	2.0	TO .	
Sand bluestem	Elida, VNS, So.	2.0	<u>F</u>	
Little bluestem	Cimarron, Pastura	3.0	\mathbf{F}	
Black grama	VNS, Southern	1.0	D	
Sand dropseed	VNS, Southern	4.0	\mathbf{S}	
Plains bristlegrass	VNS, Southern	2.0	D	
Forbs:	7		4	
Firewheel (Gaillardia)	VNS, Southern	1.0	D	
Annual Sunflower	VNS, Southern	1.0	D	
Shrubs:		9	B	
Fourwing Saltbush	VNS, Southern	1.0	F	
	Total PLS/ac	re 16.0	8 8	

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

