	SITE INFORMATION								
	Report Type: Work Plan 2RP-5010								
General Site In	formation:								
Site:		King Tut Fed	leral #001H Bat	tery					
Company:		COG Operati							
	ship and Range		Sec. 19	T 24S	R 32E				
Lease Number	<u>":</u>		P1828468531						
County:		Eddy County				400 70004			
GPS:		Federal	32.203915			-103.72301			
Surface Owner Mineral Owner		Federal							
Directions:		From the intersection of 128 and Buck Johnson Rd., go southwest on Buck Johnson Rd. for 0.43 mi., turn south onto unnamed lease Rd. and go 1.85 miles to location.							
Release Data:									
Date Released.	•	10/4/2018							
Type Release:		Produced Water							
Source of Cont		Flowline							
Fluid Released		44.1 bbl water 10 bbls water							
Official Comm		TO DDIS Water							
Name:	Ike Tavarez				Clair Gonza	ales			
Company:	COG Operating, L	LC			Tetra Tech				
Address:	One Concho Cent				901 West \	Wall Street			
	600 W. Illinois Ave				Suite 100				
City:		Midland Texas, 79701			Midland, Te	exas			
Phone number:									
r none number.	(4 32) 000-3023				1(432) 687-8	3110			
Friorie riumber. Fax:	(432) 684-7137				(432) 687-8	3110			

Site Characterization	
Depth to Groundwater:	160' below surface

Recommended Remedial Action Levels (RRALs)							
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides			
10 mg/kg	50 mg/kg	1,000 mg/kg	2,500 mg/kg	20,000 mg/kg			

December 17, 2018

Mr. Mike Bratcher
District Supervisor
Oil Conservation Division, District 2
811 S. First Street
Artesia, New Mexico 88210

Re: Work Plan for the COG Operating, LLC, King Tut Federal #001H Battery, Unit E, Section 19, Township 24 South, Range 32 East, Eddy County, New Mexico. 2RP-5010

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating, LLC (COG) to assess a release that occurred at the King Tut #1H, Unit E, Section 19, Township 24 South, Range 32 East, Eddy County, New Mexico (Site). The spill site coordinates are 32.203915°, -103.723010°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on October 4, 2018, and released approximately 44.1 barrels of produced water due to a ruptured flowline. Vacuum trucks were used to remove all freestanding fluids, recovering approximately 10 barrels of produced water. The release impacted an area adjacent to the lease road measuring approximately 40' x 100', and then migrated to the south impacting an area measuring approximately 17' x 320'. The initial C-141 Form is included in Appendix A.

Groundwater

No water wells were listed within Section 19 on the New Mexico Office of the State Engineer's (NMOSE) database, the Geology and Groundwater Resources of Eddy County (Report 3), or the USGS National Water Information Database. The nearest well is listed in Township 24 South, Range 31 East, Section 02, on the NMOSE website, approximately 3.45 miles Northwest of the site, and has a reported depth to groundwater of 160' below surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in the area is between 300' and 325' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. A site characterization was performed for the site and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. Additionally, the site is located in a low karst potential area. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH is 2,500 mg/kg (GRO + DRO + MRO). Additionally, based on the site characterization, the proposed RRAL for chlorides is 20,000 mg/kg.

Soil Assessment and Analytical Results

On October 15, 2018, Tetra Tech personnel were onsite to evaluate and sample the release area. A total of six (6) auger holes (AH-1 through AH-6) were installed in the release area to total depths ranging from 2-2.5' to 4-4.5' below surface. A total of eight (8) horizontal delineation samples (H-1 through H-8) were collected around the perimeter of the spill to total depths of 0-1' below surface. Soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Auger Holes

Referring to Table 1, all analyzed samples showed benzene, total BTEX, and TPH concentrations below the laboratory reporting limits. Additionally, none of the samples collected showed any chloride concentrations above the RRAL, with concentrations ranging from below the laboratory reporting limits to 16,600 mg/kg.

Horizontals

Referring to Table 1, none of the samples collected showed benzene, total BTEX, or TPH concentrations above the laboratory reporting limits. Additionally, none of the samples showed any significant chloride concentrations, with concentrations ranging from below the laboratory reporting limits to 188 mg/kg.

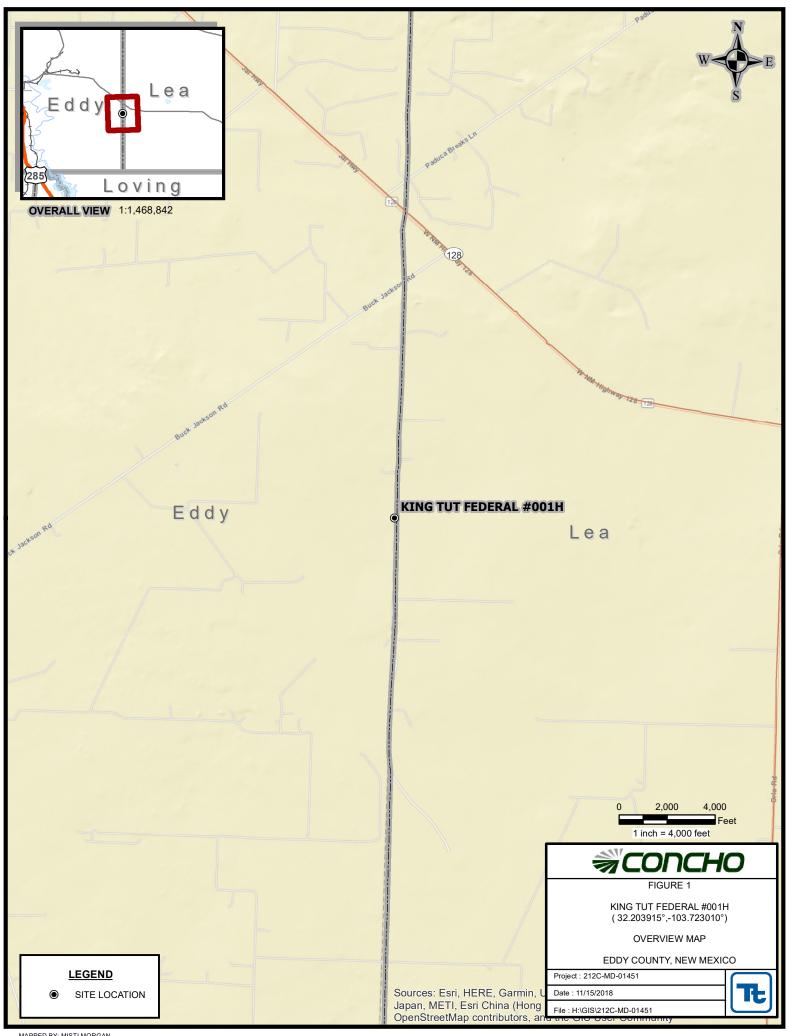
Restoration and Reclamation

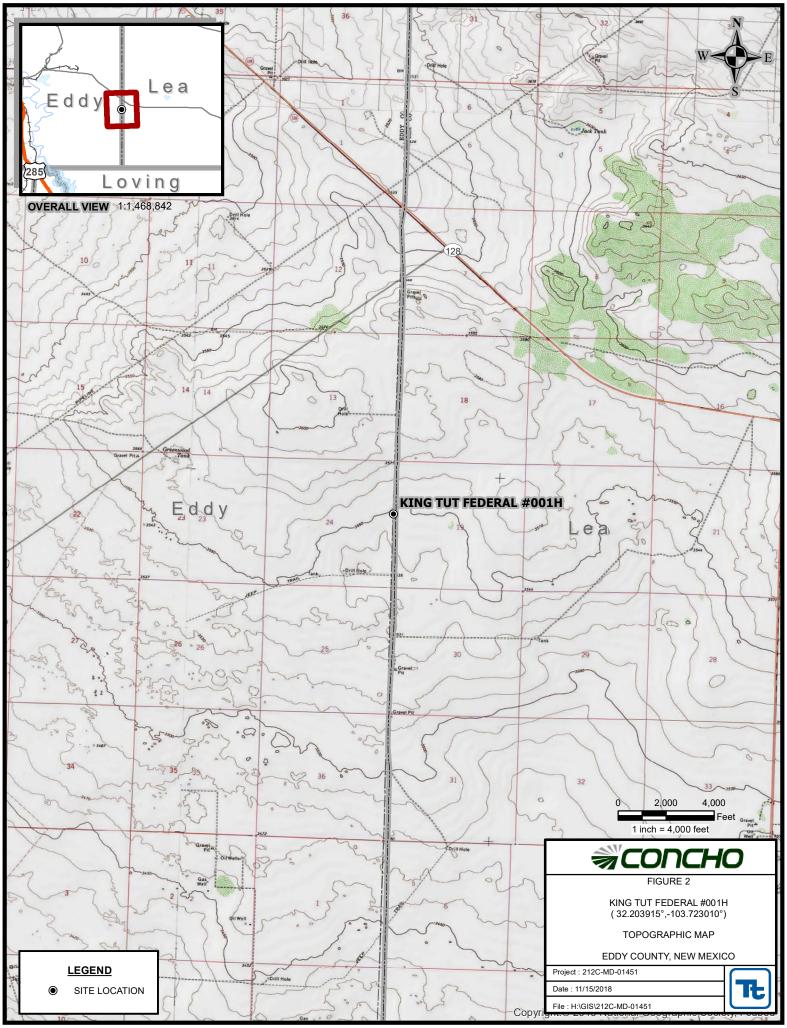
The areas of auger holes (AH-1, AH-2, and AH-3) showed chloride concentrations above 600 mg/kg in the shallow soils in the pasture adjacent to the lease road. These areas will be excavated to a maximum of four (4) feet below surface, as highlighted (green) on Table 1 and shown on Figure 4. Sidewall samples will be collected to ensure proper removal of the impacted soils. Once the excavation is complete, the areas will be backfilled with clean material to surface grade. COG estimates approximately 590 cubic yards will be excavated, and the remediation to be implemented 90 days after the work plan is approved.

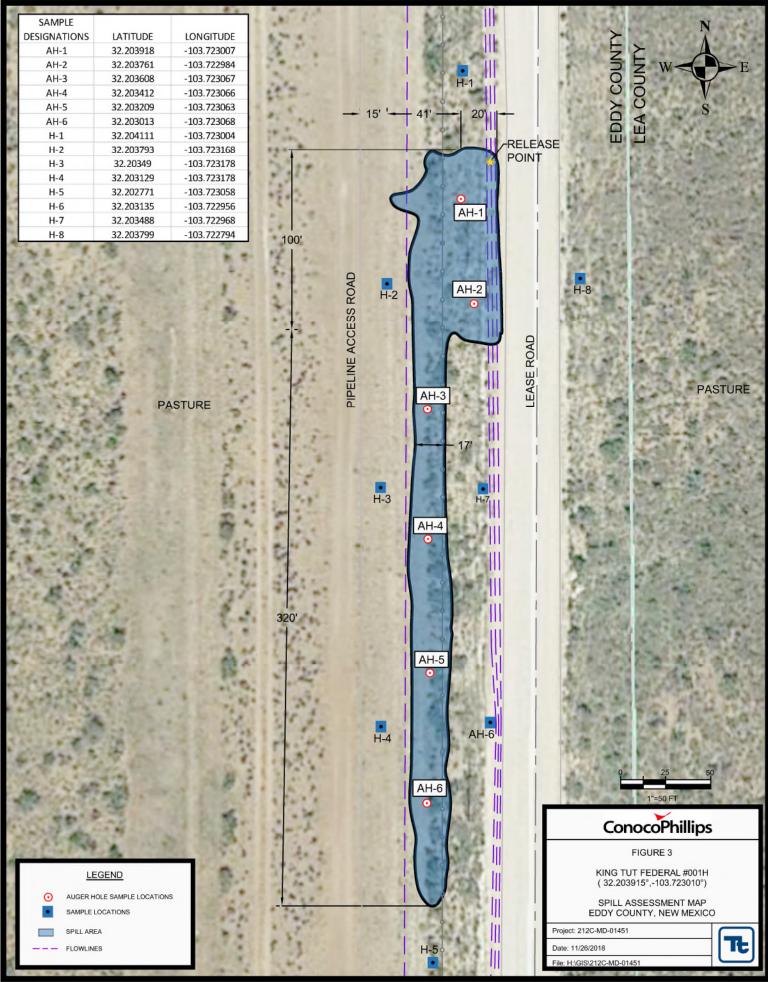
Reseeding will be performed in June 2019 to coincide with the rainy season in Southeastern New Mexico and aid in revegetation. Based on the soils at the site, the BLM Loamy (L) Sites Seed Mixture will be used and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a handheld broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds PLS per acre will be doubled.

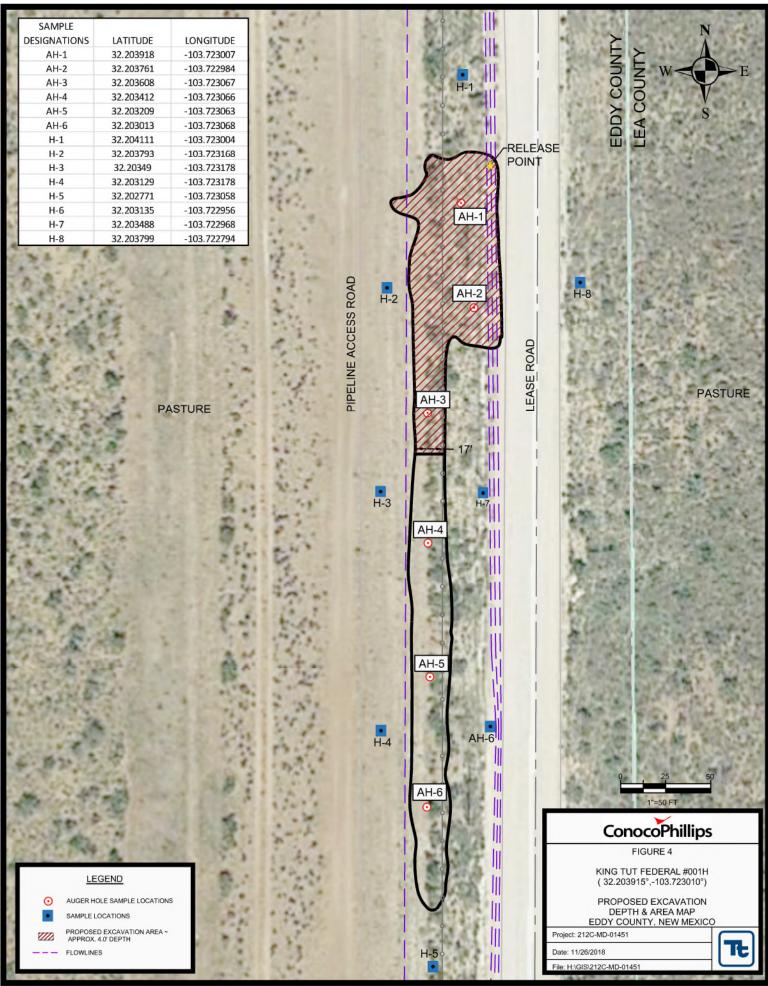
Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the BLM will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The BLM seed mixture details and corresponding pounds PLS per acre are included in Appendix D.

Conclusion


Once the restoration activities have been completed, a final closure report will be submitted. If you have any questions or comments concerning the assessment or remediation activities for this site, please call at (432) 682-4559.


Respectfully submitted, TETRA TECH


Clair Gonzales, Project Manager


cc: Shelly Tucker - BLM lke Tavarez - COG Maria Pruett - NMOCD Johnathon Kell, Geologist II

Figures

Tables

Table 1 COG King Tut #1H Eddy County, New Mexico

	Sample Soil Status TPH (mg/kg)							CAICO							
Sample ID	Sample Date	Sample Depth (ft)	Soil	Status			TPH (mg/kg)			Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
AH-1			In-Situ	Removed	GRO	DRO	GRO+DRO	ORO	Total						
Ап-1	10/15/2018	0-1	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	2,930
	- "	1-1.5	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	9,310
		2-2.5	Х		-	-	-	-	-	-	-	-	-	-	11,400
	"	3-3.5	Х		-	-	-	-	-	-	-	-	-	-	17,000
	II .	4-4.5	Х		-	-	-	-	-	-	-	-	-	-	16,000
AH-2	10/15/2018	0-1	Х		<14.9	<14.9	<14.9	<14.9	<14.9	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	8,170
	"	1-1.5	Х		<14.9	<14.9	<14.9	<14.9	<14.9	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	9,690
	"	2-2.5	Х		-	-	-	-	-	-	-	-	-	-	10,100
	"	3-3.5	Χ		-	-	-	-	-	-	-	-	-	-	11,100
	"	4-4.5	Х			-	-	-	-	-	-	-	-	-	3,240
AH-3	10/15/2018	0-1	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	1,900
	"	1-1.5	X		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00202	<0.00202	<0.00200	<0.00202	<0.00200	6,320
	"	2-2.5	X		-	-	-	-	-	-	-	-	-	-	16,600
	"	2.5-3	X		-	_	_	_	_	_	_	-	_	_	13,000
A11.4									l						,
AH-4	10/15/2018	0-1	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<4.99
	"	1-1.5	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<5.00
	"	2-2.5	Х		-	-	-	-	-	-	-	-	-	-	<5.00
AH-5	10/15/2018	0-1	Х		<14.9	<14.9	<14.9	<14.9	<14.9	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	32.3
	"	1-1.5	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	110
	"	2-2.5	Х		-	-	-	-	-	-	-	-	-	-	55.0
	"	3-3.5	Х		-	-	-	-	-	-	-	-	-	-	42.5
	"	4-4.5	Х		-	-	-	-	-	-	-	-	-	-	22.8
AH-6	10/15/2018	0-1	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<4.95
	10/15/2016	1-1.5	X		<14.9	<14.9	<14.9	<14.9	<14.9	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<4.95
	"	2-2.5	X			- 14.3	-	- 14.3	-	-	-	-	-	-	9.92
	"	3-3.5	X		-		-	<u> </u>	-	_			-	-	<4.98
	"	4-4.5	X				_				_	-			<4.95
		4-4.5													<4.50

Table 1 COG King Tut #1H Eddy County, New Mexico

Samp		Sample	Soil Status		TPH (mg/kg)				Benzene Toluene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride	
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	GRO+DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
H-1	10/15/2018	0-1	Х		<14.9	<14.9	<14.9	<14.9	<14.9	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<4.95
H-2	10/15/2018	0-1	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<4.95
H-3	10/15/2018	0-1	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<4.98
H-4	10/15/2018	0-1	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<4.98
H-5	10/15/2018	0-1	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<4.97
H-6	10/15/2018	0-1	Х		<15.0	<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	188
H-7	10/15/2018	0-1	Х		<14.9	<14.9	<14.9	<14.9	<14.9	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<4.95
H-8	10/15/2018	0-1	Х		<14.9	<14.9	<14.9	<14.9	<14.9	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<4.98

(-) Not Analyzed

Proposed Excavation Depth

Photos

COG Operating LLC King Tut #1H Eddy County, New Mexico

View South - Area of AH-1

View Southeast - Area of AH-2

COG Operating LLC King Tut #1H Eddy County, New Mexico

View East – Area of AH-3

View Southeast - Area of AH-4

COG Operating LLC King Tut #1H Eddy County, New Mexico

View Southeast – Area of AH-5

View South-southeast - Area of AH-6

Appendix A

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NMAP1828469051
District RP	2RP-5010
Facility ID	fMAP1828468531
Application ID	pMAP1828468856

Release Notification

Responsible Party

Responsible	Party	COG Operatir	ng, LLC		OGRID		229137			
Contact Nam	ne	Robert Mcl	Veill	Contact Tel	ephone	(432) 683-7	443			
Contact emai	il	RMcNeill@	conhco.com		Incident # (d	ussigned by OCD)	NMAP1828	469051		
Contact mail	ing address	600 West III	inois Avenue, N	Midlan	ıd, Texas 7	'9701				
			Location	of Re	elease So	urce				
Latitude 32.20391 Longitude										
Site Name		King Tut Fede	eral #001H Batte	ery	Site Type	Flowlin	ne			
Date Release	Discovered	October 4, 20	18		API# (if appli	cable) fMAP1	82846853	1		
Unit Letter	Section	Township	Range		Count	N				
		1			<u> </u>					
E	19	24S	32E		Eddy					
Surface Owner	r: State	Federal Tr	ibal Private (N	Iame: _)		
			Nature and	l Volu	ume of R	elease				
	Matarial	(a) Palaggad (Salagt al	I that apply and attach a	aalaulatic	one or enocific is	actification for the v	ralumas pr avidad i	halow)		
Crude Oil		Volume Release		carculatio	ons or specific j	Volume Recovered (bbls)				
Produced Water Volume Released (bbls) 44.1						Volume Recovered (bbls) 10				
		Is the concentrat	ion of dissolved ch >10,000 mg/l?	in the	Yes No					
Condensa	ite	Volume Release	d (bbls)		Volume Recovered (bbls)					
☐ Natural Gas Volume Released (Mcf)						Volume Recov	ered (Mcf)			
Other (de	scribe)	Volume/Weight	Released (provide	units)		Volume/Weigh	t Recovered (1	provide units)		

Cause of Release

The release was caused by a ruptured flowline. The flowline is being replaced.

The release was in the pasture. A vacuum truck was dispatched to remove all freestanding fluids. Concho will evaluate the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

State of New Mexico Oil Conservation Division

Incident ID	NMAP1828469051
District RP	2RP-5010
Facility ID	fMAP1828468531
Application ID	pMAP1828468856

Was this a major release as defined by	If YES, for what reason(s) does the responent of the volume released was greated the second of the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the volume released was greated to the responent of the responent of the volume released was greated to the responent of the respone	
19.15.29.7(A) NMAC?	9	
Yes No		
If YES, was immediate no	Language of the OCD? By whom? To when the OCD? By whom? To when the OCD?	om? When and by what means (phone, email, etc)?
Immediate notice w Shelly Tucker.	as given by Dakota Neel via e-ma	ail October 4, 2018 at 4:57 pm to Maria Pruett and
	Initial Ro	esponse
The responsible	party must undertake the following actions immediately	y unless they could create a safety hazard that would result in injury
■ The source of the rele	ease has been stopped.	
■ The impacted area ha	s been secured to protect human health and	the environment.
Released materials ha	we been contained via the use of berms or d	ikes, absorbent pads, or other containment devices.
■ All free liquids and re	ecoverable materials have been removed and	l managed appropriately.
If all the actions described	d above have <u>not</u> been undertaken, explain v	why:
Per 19.15.29.8 B. (4) NM	AC the responsible party may commence re	emediation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial	efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.
		pest of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger
public health or the environment	ment. The acceptance of a C-141 report by the C	CD does not relieve the operator of liability should their operations have
		at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name: DeA	Ann Grant	Title: HSE Administrative Assistant
Signature:	nn Opeant	Date:10/8/2018
email:agra	ant@concho.com	Telephone: (432) 253-4513
OCD Only	1111	
Received by:	MU	Date: 10/11/18
-		

Form C-141 Page 3

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)				
Did this release impact groundwater or surface water?	☐ Yes ☐ No				
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No				
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No				
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No				
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No				
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No				
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No				
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No				
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No				
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No				
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No				
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No				
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil				
Characterization Report Checklist: Each of the following items must be included in the report.					
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody					

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141 Page 4

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release noti public health or the environment. The acceptance of a C-141 report by the C failed to adequately investigate and remediate contamination that pose a thre addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	fications and perform corrective actions for releases which may endanger DCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In
Printed Name:	Title:
Signature:_	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Form C-141 Page 5

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	e included in the plan.
☐ Detailed description of proposed remediation technique ☐ Scaled sitemap with GPS coordinates showing delineation point ☐ Estimated volume of material to be remediated ☐ Closure criteria is to Table 1 specifications subject to 19.15.29.1 ☐ Proposed schedule for remediation (note if remediation plan times)	2(C)(4) NMAC
<u>Deferral Requests Only</u> : Each of the following items must be con	firmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around predeconstruction.	oduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health	, the environment, or groundwater.
	e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
☐ Approved ☐ Approved with Attached Conditions of	Approval
Signature:	Date:

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG - King Tut Federal #001H Battery

	23 S	outh	;	31 East			23 5	South	3	32 East			23 S	outh	3:	3 East	
6	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2	1
5	354	168			1 1				480								
,	8	9	10	11	12	7 639	8	9	10	11	12	7 47 !	8	9	10	11	12
40					1 1												325
8	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
9	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
							713	400				400	400				
0	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
														400		225	225
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
	04.0			24 5 4				0 4					04.0				
		outh		31 East			_	South	_	32 East			_	outh		3 East	_
6	5	4 436	3	2	1	6	5	4	3	2	1	6	5	4	3	2	1
				160	1.0	_	380		1.0	1	10				1.0	1	
	8	9	10	11	12	/	8	9	10	11	12	/	8	9	10	11	12
	4	1			 				20	1			J		24.6	1	
8	17 74	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
9	20	21	22	23	24	<mark>19</mark>	20	21	22	23	24	19	20	21	22	23	24
					1 1											208	16.9
0	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
		474			1 1									93.2			
	25 S	outh	;	31 East	:		25 \$	South	3	32 East	<u> </u>		25 S	South	3	3 East	
6	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3 172	2 2	1
	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
		J	'	1	12	,			1.0	1	'-	ľ		Ĭ	10	140	200
8	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	140	13
O	''				13	10	''					10	'	10		-	
9	20	21 390	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
		290							\perp				200	120			
0	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
															125		
1	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
	- 1	I	1		1 1		290	ı	1	1	1	257	1		1	1	

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- **90** Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6)
- 90 Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- **121** Abandoned Waterwell (recently measured)

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is

POD

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

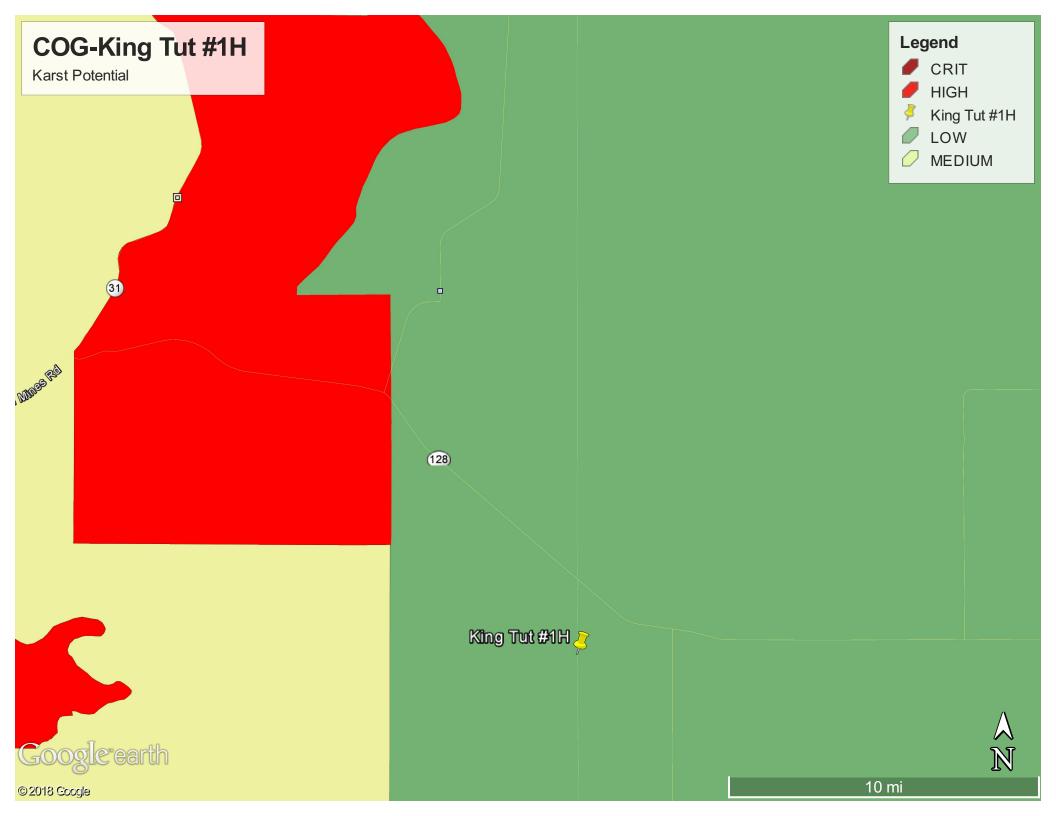
(In feet)

		Sub-		Q	<u> </u>							337-4
POD Number	Code		County		-		Tws	Rng	X	Y	DepthWellDepthWate	Water r Column
<u>C 02405</u>		CUB	ED	4	1	02	24S	31E	617690	3568631*	275 16	0 115
<u>C 02440</u>		C	ED	2	3	10	24S	31E	616103	3566599*	350	
<u>C 02460</u>		C	ED		3	02	24S	31E	617496	3568022*	320	
C 02460 POD2		C	ED		3	02	24S	31E	617496	3568022*	320	
<u>C 02464</u>		C	ED	3 4	1	02	24S	31E	617589	3568530*	320 20	5 115
<u>C 02661</u>		CUB	ED	3 3	1	04	24S	31E	613969	3568485*	708	
<u>C 02783</u>		CUB	ED	3 3	1	04	24S	31E	613911	3568461	708	
C 02783 POD2		CUB	ED	3 3	1	04	24S	31E	613911	3568461	672	
<u>C 02784</u>		C	ED	4 2	4	04	24S	31E	613911	3568461	584	
C 02785		CUB	ED	3 3	1	04	24S	31E	613969	3568485*	692	

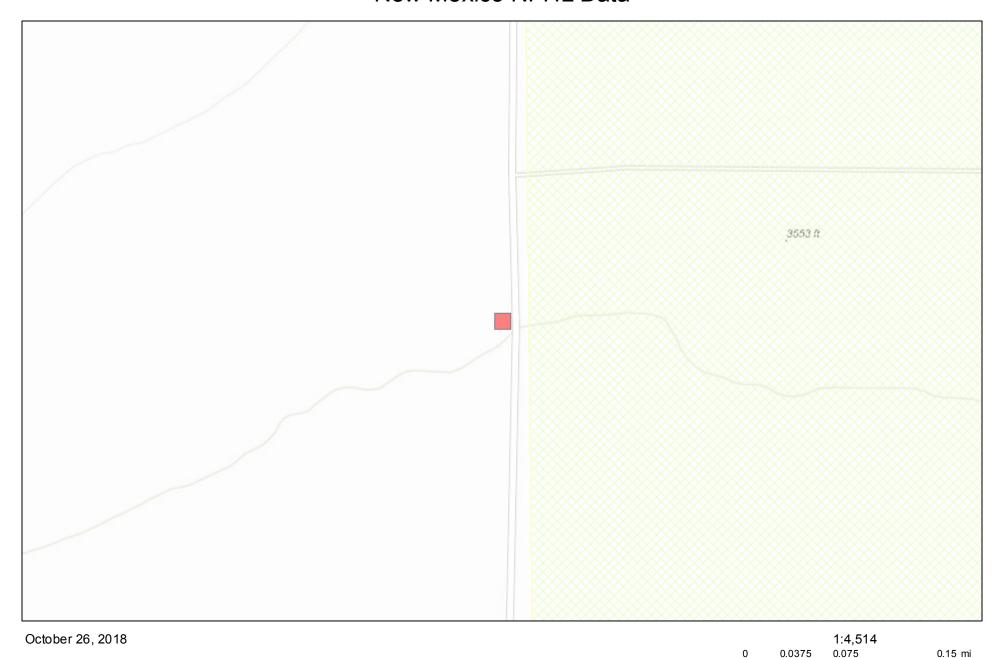
Average Depth to Water: 182 feet 160 feet Minimum Depth: Maximum Depth: 205 feet

Record Count: 10

PLSS Search:


Township: 24S Range: 31E

*UTM location was derived from PLSS - see Help


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/24/18 1:09 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

New Mexico NFHL Data

0.1 Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS,

0.2 km

0.05

Appendix C

Analytical Report 602472

for Tetra Tech- Midland

Project Manager: Clair Gonzales
King Tut #1H
212C-MD-01451
24-OCT-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-28), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-18)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4)
Xenco-Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757)
Xenco-Atlanta (LELAP Lab ID #04176)

Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

24-OCT-18

Project Manager: Clair Gonzales
Tetra Tech- Midland
901 West Wall ST

Midland, TX 79701

Reference: XENCO Report No(s): 602472

King Tut #1H

Project Address: Lea Co,NM

Clair Gonzales:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 602472. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 602472 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Kramer

Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 602472

Tetra Tech- Midland, Midland, TX

King Tut #1H

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
AH #1 (0-1')	S	10-15-18 00:00		602472-001
AH #1 (1-1.5')	S	10-15-18 00:00		602472-002
AH #1 (2-2.5')	S	10-15-18 00:00		602472-003
AH #1 (3-3.5')	S	10-15-18 00:00		602472-004
AH #1 (4-4.5')	S	10-15-18 00:00		602472-005
AH #2 (0-1')	S	10-15-18 00:00		602472-006
AH #2 (1-1.5')	S	10-15-18 00:00		602472-007
AH #2 (2.5-1')	S	10-15-18 00:00		602472-008
AH #2 (3-3.5')	S	10-15-18 00:00		602472-009
AH #2 (4-4.5')	S	10-15-18 00:00		602472-010
AH #3 (0-1')	S	10-15-18 00:00		602472-011
AH #3 (1-1.5')	S	10-15-18 00:00		602472-012
AH #3 (2-2.5')	S	10-15-18 00:00		602472-013
AH #3 (2-5.3')	S	10-15-18 00:00		602472-014
AH #4 (0-1')	S	10-15-18 00:00		602472-015
AH #4 (1-1.5')	S	10-15-18 00:00		602472-016
AH #4 (2-2.5')	S	10-15-18 00:00		602472-017
AH #5 (0-1')	S	10-15-18 00:00		602472-018
AH #5 (1-1.5')	S	10-15-18 00:00		602472-019
AH #5 (2-2.5')	S	10-15-18 00:00		602472-020
AH #5 (3-3.5')	S	10-15-18 00:00		602472-021
AH #5 (4-4.5')	S	10-15-18 00:00		602472-022
AH #6 (0-1')	S	10-15-18 00:00		602472-026
AH #6 (1-1.5')	S	10-15-18 00:00		602472-027
AH #6 (2-2.5')	S	10-15-18 00:00		602472-028
AH #3 (3-3.5')	S	10-15-18 00:00		602472-029
AH #6 (4-4.5')	S	10-15-18 00:00		602472-030
H-1 (0-1')	S	10-15-18 00:00		602472-031
H-2 (0-1')	S	10-15-18 00:00		602472-032
H-3 (0-1')	S	10-15-18 00:00		602472-033
H-4(0-1')	S	10-15-18 00:00		602472-034
H-5 (0-1')	S	10-15-18 00:00		602472-035
H-6 (0-1')	S	10-15-18 00:00		602472-036
H-7 (0-1')	S	10-15-18 00:00		602472-037
AH #5 (5-5.5')	S	10-15-18 00:00		Not Analyzed
AH #5 (6-6.5')	S	10-15-18 00:00		Not Analyzed
AH #5 (7-7.5')	S	10-15-18 00:00		Not Analyzed

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: King Tut #1H

 Project ID:
 212C-MD-01451
 Report Date:
 24-OCT-18

 Work Order Number(s):
 602472
 Date Received:
 10/16/2018

Vork Order Number(s): 602472 Date Received: 10/16/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3066785 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3066907 Inorganic Anions by EPA 300

Lab Sample ID 602472-016 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 602472-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -015, -016.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3067022 Chloride by EPA 300

Lab Sample ID 602472-028 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 602472-012, -013, -014, -017, -018, -019, -020, -021, -022, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035, -036.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3067379 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Tetra Tech- Midland, Midland, TX

Project Name: King Tut #1H

Project Id: 212C-MD-01451
Contact: Clair Gonzales

Project Location:

Lea Co,NM

Date Received in Lab: Tue Oct-16-18 02:23 pm

Report Date: 24-OCT-18 **Project Manager:** Jessica Kramer

	Lab Id:	602472-0	001	602472-0	002	602472-0	03	602472-0	004	602472-0	05	602472-0	006
Analysis Requested	Field Id:	AH #1 (0)-1')	AH #1 (1-	1.5')	AH #1 (2-2	2.5')	AH #1 (3-	3.5')	AH #1 (4-4	4.5')	AH #2 (0)- 1')
Analysis Kequesiea	Depth:												
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	,
	Sampled:	Oct-15-18	00:00	Oct-15-18 (00:00	Oct-15-18 0	0:00	Oct-15-18 (00:00	Oct-15-18 (00:00	Oct-15-18	00:00
BTEX by EPA 8021B	Extracted:	Oct-17-18	14:00	Oct-17-18	14:00							Oct-17-18	14:00
	Analyzed:	Oct-17-18	16:50	Oct-17-18	17:12							Oct-17-18	17:33
	Units/RL:	mg/kg	RL	mg/kg	RL							mg/kg	RL
Benzene		< 0.00199	0.00199	< 0.00200	0.00200							< 0.00201	0.00201
Toluene		< 0.00199	0.00199	< 0.00200	0.00200							< 0.00201	0.00201
Ethylbenzene		< 0.00199	0.00199	< 0.00200	0.00200							< 0.00201	0.00201
m,p-Xylenes		< 0.00398	0.00398	< 0.00401	0.00401							< 0.00402	0.00402
o-Xylene		< 0.00199	0.00199	< 0.00200	0.00200							< 0.00201	0.00201
Total Xylenes		< 0.00199	0.00199	< 0.00200	0.00200							< 0.00201	0.00201
Total BTEX		< 0.00199	0.00199	< 0.00200	0.00200							< 0.00201	0.00201
Chloride by EPA 300	Extracted:	Oct-18-18	Oct-18-18 13:00		Oct-18-18 13:00		3:00	Oct-18-18 1	3:00	Oct-18-18 13:00		Oct-18-18 13:00	
	Analyzed:	Oct-20-18	20:00	Oct-20-18 2	20:06	Oct-20-18 2	0:11	Oct-20-18 2	20:16	Oct-20-18 2	20:38	Oct-20-18	20:43
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		2930	25.0	9310	49.9	11400	100	17000	99.6	16000	99.0	8170	49.7
TPH by SW8015 Mod	Extracted:	Oct-18-18	13:00	Oct-18-18	13:00							Oct-18-18	13:00
	Analyzed:	Oct-18-18	18:25	Oct-18-18	19:21							Oct-18-18	19:39
	Units/RL:	mg/kg	RL	mg/kg	RL							mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0							<14.9	14.9
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0					·		<14.9	14.9
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<15.0	15.0							<14.9	14.9
Total TPH		<15.0	15.0	<15.0	15.0							<14.9	14.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Jessica Kramer Project Assistant

Jessica Vermer

Tetra Tech- Midland, Midland, TX

Project Name: King Tut #1H

Project Id: 212C-MD-01451
Contact: Clair Gonzales

Project Location:

Lea Co,NM

Date Received in Lab: Tue Oct-16-18 02:23 pm

Report Date: 24-OCT-18 **Project Manager:** Jessica Kramer

	Lab Id:	602472-0	007	602472-0	08	602472-0	09	602472-0	10	602472-	011	602472-0	012
Analysis Requested	Field Id:	AH #2 (1-	AH #2 (1-1.5')		AH #2 (2.5-1')		AH #2 (3-3.5')		1.5')	AH #3 (0-1')		AH #3 (1-	-1.5')
Tinutysis Requesicu	Depth:												
	Matrix:	SOIL	,	SOIL		SOIL		SOIL		SOIL	.	SOIL	
	Sampled:	Oct-15-18	00:00	Oct-15-18 0	0:00	Oct-15-18 (00:00	Oct-15-18 (00:00	Oct-15-18	00:00	Oct-15-18	00:00
BTEX by EPA 8021B	Extracted:	Oct-17-18	14:00							Oct-17-18	14:00	Oct-17-18	14:00
	Analyzed:	Oct-17-18	17:55							Oct-17-18	18:17	Oct-17-18	18:38
	Units/RL:	mg/kg	RL							mg/kg	RL	mg/kg	RL
Benzene	· ·	< 0.00199	0.00199							< 0.00200	0.00200	< 0.00202	0.00202
Toluene		< 0.00199	0.00199							< 0.00200	0.00200	< 0.00202	0.00202
Ethylbenzene		< 0.00199	0.00199							< 0.00200	0.00200	< 0.00202	0.00202
m,p-Xylenes		< 0.00398	0.00398							< 0.00399	0.00399	< 0.00403	0.00403
o-Xylene		< 0.00199	0.00199							< 0.00200	0.00200	< 0.00202	0.00202
Total Xylenes		< 0.00199	0.00199							< 0.00200	0.00200	< 0.00202	0.00202
Total BTEX		< 0.00199	0.00199							< 0.00200	0.00200	< 0.00202	0.00202
Chloride by EPA 300	Extracted:	Oct-18-18	13:00	Oct-18-18 1	3:00	Oct-18-18 1	3:00	Oct-18-18 1	3:00	Oct-18-18	13:00	Oct-19-18	08:00
	Analyzed:	Oct-19-18	20:28	Oct-19-18 2	0:33	Oct-19-18 20:39		Oct-19-18 20:44		Oct-19-18	20:49	Oct-19-18	23:20
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		9690	99.8	10100	99.2	11100	99.0	3240	25.0	1900	25.0	6320	49.8
TPH by SW8015 Mod	Extracted:	Oct-18-18	13:00							Oct-18-18	13:00	Oct-18-18	13:00
	Analyzed:	Oct-18-18	19:58							Oct-18-18	20:17	Oct-18-18	20:35
	Units/RL:	mg/kg	RL							mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<14.9	14.9							<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)		<14.9	14.9							<15.0	15.0	<15.0	15.0
Motor Oil Range Hydrocarbons (MRO)		<14.9	14.9							<15.0	15.0	<15.0	15.0
Total TPH		<14.9	14.9							<15.0	15.0	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Jessica Vermer

Jessica Kramer Project Assistant

Tetra Tech- Midland, Midland, TX

Project Name: King Tut #1H

Project Id: 212C-MD-01451 **Contact:** Clair Gonzales Lea Co,NM

Project Location:

Date Received in Lab: Tue Oct-16-18 02:23 pm

Report Date: 24-OCT-18 Project Manager: Jessica Kramer

	Lab Id:	602472-0	13	602472-0	114	602472-0)15	602472-0)16	602472-0	17	602472-	018
			-										
Analysis Requested	Field Id:	AH #3 (2-2	2.5')	AH #3 (2-5	5.5')	AH #4 (0	-1')	AH #4 (1-	1.5)	AH #4 (2-2	2.5')	AH #5 (0	J-1 ⁻)
7 1	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	_
	Sampled:	Oct-15-18 0	00:00	Oct-15-18 0	00:00	Oct-15-18	00:00	Oct-15-18	00:00	Oct-15-18 0	00:00	Oct-15-18	00:00
BTEX by EPA 8021B	Extracted:		-			Oct-17-18	14:00	Oct-17-18	14:00			Oct-23-18	08:00
	Analyzed:					Oct-17-18	18:59	Oct-17-18	19:21			Oct-23-18	19:22
	Units/RL:					mg/kg	RL	mg/kg	RL			mg/kg	RL
Benzene						< 0.00201	0.00201	< 0.00199	0.00199			< 0.00198	0.00198
Toluene						< 0.00201	0.00201	< 0.00199	0.00199			< 0.00198	0.00198
Ethylbenzene						< 0.00201	0.00201	< 0.00199	0.00199			< 0.00198	0.00198
m,p-Xylenes						< 0.00402	0.00402	< 0.00398	0.00398			< 0.00397	0.00397
o-Xylene						< 0.00201	0.00201	< 0.00199	0.00199			< 0.00198	0.00198
Total Xylenes						< 0.00201	0.00201	< 0.00199	0.00199			< 0.00198	0.00198
Total BTEX						< 0.00201	0.00201	< 0.00199	0.00199			< 0.00198	0.00198
Chloride by EPA 300	Extracted:	Oct-19-18 (08:00	Oct-19-18 0	08:00	Oct-18-18	13:00	Oct-18-18	13:00	Oct-19-18 0	8:00	Oct-19-18	08:00
	Analyzed:	Oct-19-18 2	23:25	Oct-19-18 2	23:31	Oct-19-18	11:27	Oct-20-18	20:22	Oct-19-18 2	3:04	Oct-19-18	23:36
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		16600	250	13000	99.6	<4.99	4.99	< 5.00	5.00	< 5.00	5.00	32.3	4.98
TPH by SW8015 Mod	Extracted:					Oct-18-18	13:00	Oct-18-18	13:00			Oct-23-18	10:00
	Analyzed:					Oct-18-18	20:54	Oct-18-18	21:49			Oct-23-18	17:08
	Units/RL:					mg/kg	RL	mg/kg	RL			mg/kg	RL
Gasoline Range Hydrocarbons (GRO)						<15.0	15.0	<15.0	15.0			<14.9	14.9
Diesel Range Organics (DRO)						<15.0	15.0	<15.0	15.0			<14.9	14.9
Motor Oil Range Hydrocarbons (MRO)						<15.0	15.0	<15.0	15.0			<14.9	14.9
Total TPH						<15.0	15.0	<15.0	15.0			<14.9	14.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Jessica Vermer Jessica Kramer Project Assistant

Tetra Tech- Midland, Midland, TX

Project Name: King Tut #1H

Project Id: 212C-MD-01451
Contact: Clair Gonzales

Project Location:

Lea Co,NM

Date Received in Lab: Tue Oct-16-18 02:23 pm

Report Date: 24-OCT-18 **Project Manager:** Jessica Kramer

	Lab Id:	602472-0)19	602472-0	20	602472-0	21	602472-0	22	602472-	026	602472-	027
Analysis Requested	Field Id:	AH #5 (1-	1.5')	AH #5 (2-2	2.5')	AH #5 (3-3	3.5')	AH #5 (4-4	1.5')	AH #6 (0)-1')	AH #6 (1-	-1.5')
Tinutysis Requesicu	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	,	SOIL	
	Sampled:	Oct-15-18 (00:00	Oct-15-18 0	00:00	Oct-15-18 0	00:00	Oct-15-18 (0:00	Oct-15-18	00:00	Oct-15-18	00:00
BTEX by EPA 8021B	Extracted:	Oct-23-18 (08:00							Oct-17-18	14:00	Oct-17-18	14:00
	Analyzed:	Oct-23-18 1	19:44							Oct-17-18	19:43	Oct-17-18	20:04
	Units/RL:	mg/kg	RL							mg/kg	RL	mg/kg	RL
Benzene	,	< 0.00198	0.00198							< 0.00199	0.00199	< 0.00202	0.00202
Toluene		< 0.00198	0.00198							< 0.00199	0.00199	< 0.00202	0.00202
Ethylbenzene		< 0.00198	0.00198							< 0.00199	0.00199	< 0.00202	0.00202
m,p-Xylenes		< 0.00396	0.00396							< 0.00398	0.00398	< 0.00404	0.00404
o-Xylene		< 0.00198	0.00198							< 0.00199	0.00199	< 0.00202	0.00202
Total Xylenes		< 0.00198	0.00198							< 0.00199	0.00199	< 0.00202	0.00202
Total BTEX		< 0.00198	0.00198							< 0.00199	0.00199	< 0.00202	0.00202
Chloride by EPA 300	Extracted:	Oct-19-18 (08:00	Oct-19-18 0	08:00	Oct-19-18 08:00		Oct-19-18 (8:00	Oct-19-18	08:00	Oct-19-18 08:	
	Analyzed:	Oct-19-18 2	23:52	Oct-19-18 2	3:57	Oct-20-18 0	0:02	Oct-20-18 0	0:08	Oct-20-18	00:13	Oct-20-18	00:34
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		110	4.95	55.0	4.99	42.5	4.99	22.8	4.95	<4.95	4.95	<4.98	4.98
TPH by SW8015 Mod	Extracted:	Oct-23-18 1	10:00							Oct-18-18	13:00	Oct-17-18	17:00
	Analyzed:	Oct-23-18 1	17:27							Oct-18-18	22:08	Oct-18-18	01:50
	Units/RL:	mg/kg	RL							mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0							<15.0	15.0	<14.9	14.9
Diesel Range Organics (DRO)		<15.0	15.0							<15.0	15.0	<14.9	14.9
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0							<15.0	15.0	<14.9	14.9
Total TPH		<15.0	15.0			· ·				<15.0	15.0	<14.9	14.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Jessica Kramer

Certificate of Analysis Summary 602472

Tetra Tech- Midland, Midland, TX

Project Name: King Tut #1H

Project Id: 212C-MD-01451
Contact: Clair Gonzales

Project Location:

Lea Co,NM

Date Received in Lab: Tue Oct-16-18 02:23 pm

Report Date: 24-OCT-18 **Project Manager:** Jessica Kramer

	Lab Id:	602472-0	28	602472-0	20	602472-0	30	602472-	031	602472-	132	602472-	033
			-										
Analysis Requested	Field Id:	AH #6 (2-2	2.5')	AH #3 (3-3	5.5')	AH #6 (4-4	1.5)	H-1 (0-	1')	H-2 (0-	1)	H-3 (0-	1')
	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	.	SOIL	
	Sampled:	Oct-15-18 0	00:00	Oct-15-18 0	00:00	Oct-15-18 0	00:00	Oct-15-18	00:00	Oct-15-18	00:00	Oct-15-18	00:00
BTEX by EPA 8021B	Extracted:		-					Oct-17-18	14:00	Oct-17-18	14:00	Oct-17-18	14:00
	Analyzed:							Oct-17-18	21:08	Oct-17-18	21:29	Oct-17-18	21:50
	Units/RL:							mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene	·							< 0.00198	0.00198	< 0.00200	0.00200	< 0.00201	0.00201
Toluene								< 0.00198	0.00198	< 0.00200	0.00200	< 0.00201	0.00201
Ethylbenzene								< 0.00198	0.00198	< 0.00200	0.00200	< 0.00201	0.00201
m,p-Xylenes								< 0.00397	0.00397	< 0.00399	0.00399	< 0.00402	0.00402
o-Xylene								< 0.00198	0.00198	< 0.00200	0.00200	< 0.00201	0.00201
Total Xylenes								< 0.00198	0.00198	< 0.00200	0.00200	< 0.00201	0.00201
Total BTEX								< 0.00198	0.00198	< 0.00200	0.00200	< 0.00201	0.00201
Chloride by EPA 300	Extracted:	Oct-19-18 (08:00	Oct-19-18 0	8:00	Oct-19-18 0	8:00	Oct-19-18	08:00	Oct-19-18	08:00	Oct-19-18	08:00
	Analyzed:	Oct-20-18 (00:18	Oct-20-18 0	0:39	Oct-20-18 0	0:55	Oct-20-18	01:01	Oct-20-18	01:06	Oct-20-18	01:11
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		9.92	4.99	<4.98	4.98	<4.95	4.95	<4.95	4.95	<4.95	4.95	<4.98	4.98
TPH by SW8015 Mod	Extracted:							Oct-17-18	17:00	Oct-17-18	17:00	Oct-17-18	17:00
	Analyzed:							Oct-18-18	02:09	Oct-18-18	02:27	Oct-18-18	02:46
	Units/RL:							mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)	·							<14.9	14.9	<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)								<14.9	14.9	<15.0	15.0	<15.0	15.0
Motor Oil Range Hydrocarbons (MRO)								<14.9	14.9	<15.0	15.0	<15.0	15.0
Total TPH								<14.9	14.9	<15.0	15.0	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Jessica Kramer
Project Assistant

Certificate of Analysis Summary 602472

Tetra Tech- Midland, Midland, TX

Project Name: King Tut #1H

Project Id: 212C-MD-01451 **Contact:** Clair Gonzales

Lea Co,NM **Project Location:**

Date Received in Lab: Tue Oct-16-18 02:23 pm

Report Date: 24-OCT-18 Project Manager: Jessica Kramer

	Lab Id:	602472-0)34	602472-0	35	602472-0	36	602472-	037			
Analysis Requested	Field Id:	H-4(0-1	l')	H-5 (0-1	')	H-6 (0-1	')	H-7 (0-	1')			
Anaiysis Requesieu	Depth:											
	Matrix:	SOIL		SOIL		SOIL		SOIL	,			
	Sampled:	Oct-15-18 (00:00	Oct-15-18 (00:00	Oct-15-18 0	00:00	Oct-15-18	00:00			
BTEX by EPA 8021B	Extracted:	Oct-17-18	14:00	Oct-17-18 1	4:00	Oct-17-18 1	4:00	Oct-17-18	14:00			
	Analyzed:	Oct-17-18	22:11	Oct-17-18 2	2:33	Oct-17-18 2	2:54	Oct-17-18	23:16			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL			
Benzene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200			
Toluene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200			
Ethylbenzene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200			
m,p-Xylenes		< 0.00402	0.00402	< 0.00398	0.00398	< 0.00399	0.00399	< 0.00401	0.00401			
o-Xylene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200			
Total Xylenes		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200			
Total BTEX		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200			
Chloride by EPA 300	Extracted:	Oct-19-18 (08:00	Oct-19-18 (8:00	Oct-19-18 0	8:00	Oct-18-18	15:20			
	Analyzed:	Oct-20-18	01:17	Oct-20-18 0	1:22	Oct-20-18 0	1:27	Oct-19-18	09:36			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL			
Chloride		<4.98	4.98	<4.97	4.97	188	5.00	<4.95	4.95			
TPH by SW8015 Mod	Extracted:	Oct-17-18	17:00	Oct-17-18 1	7:00	Oct-17-18 1	7:00	Oct-17-18	17:00			
	Analyzed:	Oct-18-18 (03:05	Oct-18-18 (3:24	Oct-18-18 0	3:42	Oct-18-18	04:01			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL			
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9			
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9			
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<u> </u>		
Total TPH		<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Jessica Kramer Project Assistant

Jessica Vermer

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample **BKSD/LCSD** Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

Project Name: King Tut #1H

Work Orders: 602472, **Project ID:** 212C-MD-01451

Lab Batch #: 3066785 **Sample:** 602472-001 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 10/17/18 16:50	SURROGATE RECOVERY STUDY							
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluorobe	enzene		0.0379	0.0300	126	70-130				
4-Bromofluoro	benzene		0.0331	0.0300	110	70-130				

Units:	mg/kg	Date Analyzed: 10/17/18 17:12	SURROGATE RECOVERY STUDY								
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1,4-Difluor	obenzene		0.0359	0.0300	120	70-130					
4-Bromoflu	iorobenzene		0.0350	0.0300	117	70-130					

Units: mg/kg Date Analyzed: 10/17/18 17:33 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0382	0.0300	127	70-130	
4-Bromofluorobenzene	0.0353	0.0300	118	70-130	

Units:	mg/kg	Date Analyzed: 10/17/18 17:55	SURROGATE RECOVERY STUDY							
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluor	obenzene	Tanana y voo	0.0376	0.0300	125	70-130				
4-Bromoflu	orobenzene		0.0350	0.0300	117	70-130				

Units: mg/kg	Date Analyzed: 10/17/18 18:17	SURROGATE RECOVERY STUDY								
ВТ	EX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene	v	0.0387	0.0300	129	70-130					
4-Bromofluorobenzene		0.0347	0.0300	116	70-130					

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID**: 212C-MD-01451

Lab Batch #: 3066785 **Sample:** 602472-012 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 10/17/18 18:38	SURROGATE RECOVERY STUDY							
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
		Analytes			נען					
1,4-Difluorober	nzene		0.0385	0.0300	128	70-130				
4-Bromofluorol	benzene		0.0345	0.0300	115	70-130				

Units:	mg/kg	Date Analyzed: 10/17/18 18:59	SURROGATE RECOVERY STUDY								
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluoro	benzene		0.0372	0.0300	124	70-130					
4-Bromofluo	orobenzene		0.0321	0.0300	107	70-130					

Units: mg/kg Date Analyzed: 10/17/18 19:21 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0381	0.0300	127	70-130	
4-Bromofluorobenzene	0.0379	0.0300	126	70-130	

Units:	mg/kg	Date Analyzed: 10/17/18 19:43	SU	RROGATE R	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4 Dig	1	Analytes	0.0206	0.0200		70.120	
1,4-Difluor			0.0386	0.0300	129	70-130	
4-Bromoflu	uorobenzene		0.0334	0.0300	111	70-130	

Units:	mg/kg	Date Analyzed: 10/17/18/20:04	SURROGATE RECOVERY STUDY							
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluoro	benzene		0.0387	0.0300	129	70-130				
4-Bromofluo	orobenzene		0.0319	0.0300	106	70-130				

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID:** 212C-MD-01451

Lab Batch #: 3066785 **Sample:** 602472-031 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 10/17/18 21:08	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobe	enzene	Analytes	0.0377	0.0300	126	70-130			
4-Bromofluoro	obenzene		0.0347	0.0300	116	70-130			

Units: mg/kg Date Analyzed: 10/17/18 21:29 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0375 0.0300 125 70-130 4-Bromofluorobenzene 0.0342 0.0300 114 70-130

Lab Batch #: 3066785 Sample: 602472-033 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 10/17/18 21:50 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0369	0.0300	123	70-130	
4-Bromofluorobenzene	0.0325	0.0300	108	70-130	

Units:	mg/kg	Date Analyzed: 10/17/18 22:11	SURROGATE RECOVERY STUDY						
	вте	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluor	robenzene		0.0333	0.0300	111	70-130			
4-Bromoflu	uorobenzene		0.0342	0.0300	114	70-130			

Units:	mg/kg	Date Analyzed: 10/17/18 22:33	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorob	penzene	Analytes	0.0348	0.0300	116	70-130			
4-Bromofluorobenzene			0.0334	0.0300	111	70-130			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID:** 212C-MD-01451

Units:	ng/kg	Date Analyzed: 10/17/18 22:54	SURROGATE RECOVERY STUDY						
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluorobenz	ene		0.0334	0.0300	111	70-130			
4-Bromofluorobe	enzene		0.0333	0.0300	111	70-130			

Units:	Units: mg/kg Date Analyzed: 10/17/18 23:16 SURROGATE RECOVERY STUDY							
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1,4-Difluor	robenzene		0.0372	0.0300	124	70-130		
4-Bromofluorobenzene			0.0333	0.0300	111	70-130		

Units: mg/kg Date Analyzed: 10/18/18 01:50 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	92.4	99.6	93	70-135	
o-Terphenyl	47.7	49.8	96	70-135	

Units: mg/kg Date Analyzed: 10/18/18 02:09 SURROGATE RECOVERY STUDY							
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	ctane		86.5	99.6	87	70-135	
o-Terpheny	yl		44.3	49.8	89	70-135	

Units:	mg/kg	Date Analyzed: 10/18/18 02:27	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooc	tane		92.1	99.8	92	70-135			
o-Terpheny	<i>i</i> 1		47.8	49.9	96	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID:** 212C-MD-01451

Lab Batch #: 3066702 **Sample:** 602472-033 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mits: mg/kg Date Analyzed: 10/18/18 02:46 SURROGATE RECOVERY STUDY								
TPH by SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]				
1-Chlorooct	tane		89.2	99.9	89	70-135			
o-Terpheny	1		45.6	50.0	91	70-135			

Units:	Units: mg/kg Date Analyzed: 10/18/18 03:05 SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chlorooc	ctane		94.6	99.9	95	70-135			
o-Terpheny	yl		48.9	50.0	98	70-135			

Units: mg/kg Date Analyzed: 10/18/18 03:24 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	87.6	99.7	88	70-135	
o-Terphenyl	44.6	49.9	89	70-135	

Lab Batch #: 3066702 **Sample:** 602472-036 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 10/18/18 03:42	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		96.1	99.8	96	70-135			
o-Terpheny	1		48.7	49.9	98	70-135			

Units:	mg/kg	Date Analyzed: 10/18/18 04:01	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		90.0	99.6	90	70-135			
o-Terphenyl			47.0	49.8	94	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID:** 212C-MD-01451

Units:	ts: mg/kg Date Analyzed: 10/18/18 18:25 SURROGATE RECOVERY STUDY							
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1-Chlorooc	tane		95.5	99.7	96	70-135		
o-Terpheny	1		50.5	49.9	101	70-135		

Units: mg/kg Date Analyzed: 10/18/18 19:21 SURROGATE RECOVERY STUDY **Amount** True Control TPH by SW8015 Mod Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 97.3 99.8 97 70-135 o-Terphenyl 49.9 100 70-135 50.1

Units: mg/kg Date Analyzed: 10/18/18 19:39 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	97.2	99.6	98	70-135	
o-Terphenyl	50.8	49.8	102	70-135	

Units:	mg/kg	Date Analyzed: 10/18/18 19:58	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		96.5	99.6	97	70-135			
o-Terpheny	1		50.5	49.8	101	70-135			

Units:	its: mg/kg Date Analyzed: 10/18/18 20:17 SURROGATE RECOVERY STUDY							
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1-Chloroocta	ane		99.9	99.9	100	70-135		
o-Terphenyl			50.8	50.0	102	70-135		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID:** 212C-MD-01451

Units:	Units: mg/kg Date Analyzed: 10/18/18 20:35 SURROGATE RECOVERY STUDY							
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1-Chlorooct	tane		94.3	99.8	94	70-135		
o-Terpheny	1		49.9	49.9	100	70-135		

Units: mg/kg Date Analyzed: 10/18/18 20:54 SURROGATE RECOVERY STUDY **Amount** True Control TPH by SW8015 Mod Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 94.8 99.8 95 70-135 o-Terphenyl 49.9 49.9 100 70-135

Units: mg/kg Date Analyzed: 10/18/18 21:49 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	96.9	100	97	70-135	
o-Terphenyl	48.7	50.0	97	70-135	

Units:	mg/kg	Date Analyzed: 10/18/18 22:08	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		95.6	99.9	96	70-135			
o-Terpheny			50.6	50.0	101	70-135			

Units:	mg/kg	Date Analyzed: 10/23/18 17:08	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	tane		88.7	99.6	89	70-135			
o-Terpheny	1		45.1	49.8	91	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, Project ID: 212C-MD-01451

Units:	ts: mg/kg Date Analyzed: 10/23/18 17:27 SURROGATE RECOVERY STUDY							
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1-Chlorooct	tane		88.1	99.8	88	70-135		
o-Terpheny	1		44.3	49.9	89	70-135		

Units: mg/kg **Date Analyzed:** 10/23/18 19:22 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Flags Found Limits Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0383 0.0300 128 70-130 4-Bromofluorobenzene 0.0353 0.0300 70-130 118

Units: mg/kg Date Analyzed: 10/23/18 19:44 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0287	0.0300	96	70-130	
4-Bromofluorobenzene	0.0304	0.0300	101	70-130	

Lab Batch #: 3066785 Sample: 7664390-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 10/17/18 16:28 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits Flags [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0377 0.0300 70-130 126 4-Bromofluorobenzene 0.0303 0.0300 101 70-130

Lab Batch #: 3066702 Sample: 7664345-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 10/17/18 19:55	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooc	tane		82.1	100	82	70-135			
o-Terpheny	1		43.2	50.0	86	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID:** 212C-MD-01451

Units: **Date Analyzed:** 10/18/18 17:29 mg/kg SURROGATE RECOVERY STUDY True Control Amount TPH by SW8015 Mod **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1-Chlorooctane 94.5 100 95 70-135 o-Terphenyl 50.0 101 50.3 70-135

Lab Batch #: 3067317 Sample: 7664709-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 10/23/18 11:01 SURROGATE RECOVERY STUDY **Amount** True Control TPH by SW8015 Mod Found Limits Flags Amount Recovery [A] [B] %R %R **Analytes** [D] 1-Chlorooctane 92.0 100 92 70-135 o-Terphenyl 47.8 50.0 96 70-135

Lab Batch #: 3067379 Sample: 7664750-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 10/23/18 15:53 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0339	0.0300	113	70-130	
4-Bromofluorobenzene	0.0325	0.0300	108	70-130	

Units:	mg/kg	Date Analyzed: 10/17/18 14:19	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluoro	benzene	Time yees	0.0309	0.0300	103	70-130			
4-Bromofluorobenzene			0.0344	0.0300	115	70-130			

Lab Batch #: 3066702 Sample: 7664345-1-BKS / BKS Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 10/17/18 20:13	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chloroocta	nne		130	100	130	70-135			
o-Terphenyl			58.4	50.0	117	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID**: 212C-MD-01451

Units:	mg/kg	Date Analyzed: 10/18/18 17:48	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		119	100	119	70-135			
o-Terphenyl			51.8	50.0	104	70-135			

Lab Batch #: 3067317 **Sample:** 7664709-1-BKS / BKS **Batch:** 1 **Matrix:** Solid

Units:	ts: mg/kg Date Analyzed: 10/23/18 11:20 SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chlorooc	tane		127	100	127	70-135			
o-Terpheny	1		51.7	50.0	103	70-135			

Lab Batch #: 3067379 Sample: 7664750-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 10/23/18 13:43 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0308	0.0300	103	70-130	
4-Bromofluorobenzene	0.0344	0.0300	115	70-130	

Lab Batch #: 3066785Sample: 7664390-1-BSD / BSDBatch: 1Matrix: Solid

Units:	mg/kg	Date Analyzed: 10/17/18 14:41	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluoro	benzene		0.0245	0.0300	82	70-130			
4-Bromofluo	orobenzene		0.0240	0.0300	80	70-130			

Lab Batch #: 3066702 Sample: 7664345-1-BSD / BSD Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 10/17/18 20:32	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	tane		124	100	124	70-135			
o-Terpheny	1		52.3	50.0	105	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID:** 212C-MD-01451

Units:	mg/kg	Date Analyzed: 10/18/18 18:06	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		130	100	130	70-135			
o-Terphenyl			53.0	50.0	106	70-135			

Units:	s: mg/kg Date Analyzed: 10/23/18 11:39 SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chlorooc	tane		123	100	123	70-135			
o-Terpheny	·1		48.7	50.0	97	70-135			

Lab Batch #: 3067379 Sample: 7664750-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 10/23/18 14:05 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0334	0.0300	111	70-130	
4-Bromofluorobenzene	0.0340	0.0300	113	70-130	

Units:	Units: mg/kg Date Analyzed: 10/17/18 15:02			SURROGATE RECOVERY STUDY									
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,4-Difluore	obenzene		0.0345	0.0300	115	70-130							
4-Bromoflu	orobenzene		0.0305	0.0300	102	70-130							

Units:	Inits: mg/kg Date Analyzed: 10/17/18 21:09			SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooct	ane		122	99.7	122	70-135						
o-Terphenyl	[55.5	49.9	111	70-135						

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID**: 212C-MD-01451

Units:	mg/kg	Date Analyzed: 10/18/18 18:43	SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooct	tane	Analytes	117	99.8	117	70-135					
o-Terpheny	1		50.9	49.9	102	70-135					

Units:	Jnits: mg/kg Date Analyzed: 10/23/18 12:55 SURROGATE RECOVERY STUDY											
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags					
		Analytes			[D]							
1-Chlorooc	ctane		123	99.8	123	70-135						
o-Terpheny	yl		59.7	49.9	120	70-135						

Units: mg/kg Date Analyzed: 10/23/18 14:26 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0320	0.0300	107	70-130	
4-Bromofluorobenzene	0.0360	0.0300	120	70-130	

Units:	mg/kg	Date Analyzed: 10/17/18 21:28	SURROGATE RECOVERY STUDY									
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooc	tane		119	99.9	119	70-135						
o-Terpheny	1		53.2	50.0	106	70-135						

Units:	ECOVERY S	STUDY					
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	tane		128	99.7	128	70-135	
o-Terpheny	1		56.4	49.9	113	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: King Tut #1H

Work Orders: 602472, **Project ID:** 212C-MD-01451

Units: Date Analyzed: 10/23/18 13:14 mg/kg SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod Found Amount Recovery Limits Flags [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 122 99.8 122 70-135 o-Terphenyl 49.9 120 70-135 59.7

Units: mg/kg Date Analyzed: 10/23/18 14:49 SURROGATE RECOVERY STUDY											
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags						
Analytes			[D]								
1,4-Difluorobenzene	0.0272	0.0300	91	70-130							
4-Bromofluorobenzene	0.0313	0.0300	104	70-130							

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: King Tut #1H

Work Order #: 602472 Project ID: 212C-MD-01451

Analyst: ALJ Date Prepared: 10/17/2018 Date Analyzed: 10/17/2018

 Lab Batch ID: 3066785
 Sample: 7664390-1-BKS
 Batch #: 1
 Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00200	0.0998	0.116	116	0.100	0.0976	98	17	70-130	35	
Toluene	< 0.00200	0.0998	0.0997	100	0.100	0.0891	89	11	70-130	35	
Ethylbenzene	< 0.00200	0.0998	0.118	118	0.100	0.0923	92	24	70-130	35	
m,p-Xylenes	< 0.00399	0.200	0.236	118	0.200	0.202	101	16	70-130	35	
o-Xylene	< 0.00200	0.0998	0.110	110	0.100	0.0904	90	20	70-130	35	

Analyst: ALJ Date Prepared: 10/23/2018 Date Analyzed: 10/23/2018

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00199	0.0996	0.114	114	0.0998	0.123	123	8	70-130	35	
Toluene	< 0.00199	0.0996	0.0969	97	0.0998	0.107	107	10	70-130	35	
Ethylbenzene	< 0.00199	0.0996	0.116	116	0.0998	0.128	128	10	70-130	35	
m,p-Xylenes	< 0.00101	0.199	0.232	117	0.200	0.254	127	9	70-130	35	
o-Xylene	< 0.00199	0.0996	0.109	109	0.0998	0.119	119	9	70-130	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: King Tut #1H

Work Order #: 602472 Project ID: 212C-MD-01451

Analyst: CHE Date Prepared: 10/18/2018 Date Analyzed: 10/19/2018

 Lab Batch ID: 3066907
 Sample: 7664400-1-BKS
 Batch #: 1
 Matrix: Solid

Į	U nits:	mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
		Chloride by EPA 300	Blank	Spike	Blank	Blank	Spike	Blank	Blk. Spk	DDD	Control	Control	Flo

Chloride by EPA 300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<5.00	250	274	110	250	274	110	0	90-110	20	

Analyst: CHE Date Prepared: 10/18/2018 Date Analyzed: 10/19/2018

Lab Batch ID: 3066897 **Sample:** 7664412-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	< 5.00	250	274	110	250	275	110	0	90-110	20	

Analyst: CHE **Date Prepared:** 10/19/2018 **Date Analyzed:** 10/19/2018

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 5.00	250	272	109	250	268	107	1	90-110	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Diesel Range Organics (DRO)

BS / BSD Recoveries

114

1000

1110

3

70-135

20

111

Project Name: King Tut #1H

Project ID: 212C-MD-01451 Work Order #: 602472

Date Prepared: 10/17/2018 **Date Analyzed:** 10/17/2018 **Analyst:** ARM

Lab Batch ID: 3066702 Sample: 7664345-1-BKS **Batch #:** 1 Matrix: Solid

Units:	mg/kg		BLAN	K/BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUI	ΟY			
	TPH by SW8015 Mod	Blank Sample Result [A]	mple Result Added Spike Spike Added Spike Dup. RPD Limits Limits Flag F											
Ana	alytes		[B]	[C]	[D]	[E]	Result [F]	[G]						
Gasolin	ne Range Hydrocarbons (GRO)	<8.00	1000	1130	113	1000	1090	109	4	70-135	20			

1140

ARM **Date Prepared:** 10/18/2018 **Date Analyzed:** 10/18/2018 **Analyst:**

Lab Batch ID: 3066919 **Sample:** 7664441-1-BKS **Batch #:** 1 Matrix: Solid

1000

< 8.13

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<8.00	1000	985	99	1000	957	96	3	70-135	20	
Diesel Range Organics (DRO)	<8.13	1000	984	98	1000	954	95	3	70-135	20	

Analyst: ARM **Date Prepared:** 10/23/2018 **Date Analyzed:** 10/23/2018

Lab Batch ID: 3067317 **Sample:** 7664709-1-BKS **Batch #:** 1 Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<8.00	1000	1030	103	1000	938	94	9	70-135	20	
Diesel Range Organics (DRO)	<8.13	1000	1080	108	1000	1040	104	4	70-135	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: King Tut #1H

Work Order #: 602472

Project ID: 212C-MD-01451 Lab Batch #: 3066785

Date Analyzed: 10/17/2018 **Date Prepared:** 10/17/2018 Analyst: ALJ **QC- Sample ID:** 602472-001 S Batch #: Matrix: Soil

Reporting Units: mg/kg	MATRIX / MATRIX SPIKE RECOVERY STUDY										
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag					
Analytes	[A]	[B]									
Benzene	< 0.00202	0.101	0.0838	83	70-130						
Toluene	< 0.00202	0.101	0.0721	71	70-130						
Ethylbenzene	< 0.00202	0.101	0.0748	74	70-130						
m,p-Xylenes	< 0.00403	0.202	0.153	76	70-130						
o-Xylene	< 0.00202	0.101	0.0714	71	70-130						

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Project Name: King Tut #1H

Work Order #: 602472 Project ID: 212C-MD-01451

Lab Batch ID: 3067379 **QC- Sample ID:** 602878-011 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00199	0.0994	0.0945	95	0.100	0.0881	88	7	70-130	35	
Toluene	< 0.00199	0.0994	0.0769	77	0.100	0.0739	74	4	70-130	35	
Ethylbenzene	< 0.00199	0.0994	0.0904	91	0.100	0.0822	82	10	70-130	35	
m,p-Xylenes	< 0.00398	0.199	0.187	94	0.200	0.170	85	10	70-130	35	
o-Xylene	< 0.00199	0.0994	0.0925	93	0.100	0.0841	84	10	70-130	35	

Lab Batch ID: 3066897 **QC- Sample ID:** 602694-001 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.858	250	259	104	250	262	105	1	90-110	20	

Lab Batch ID: 3066897 **QC- Sample ID:** 602694-002 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 10/19/2018 Date Prepared: 10/18/2018 Analyst: CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.862	251	260	104	251	273	109	5	90-110	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: King Tut #1H

Work Order #: 602472 Project ID: 212C-MD-01451

Lab Batch ID: 3066907 **QC- Sample ID:** 602472-015 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 10/19/2018 **Date Prepared:** 10/18/2018 **Analyst:** CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
,		' '									
Chloride	< 0.857	250	273	109	250	274	110	0	90-110	20	

Lab Batch ID: 3066907 **QC- Sample ID:** 602472-016 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.858	250	313	125	250	312	125	0	90-110	20	X

Lab Batch ID: 3067022 **QC- Sample ID:** 602472-017 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.858	250	266	106	250	270	108	1	90-110	20	

Project Name: King Tut #1H

Work Order #: 602472 Project ID: 212C-MD-01451

Lab Batch ID: 3067022 **QC- Sample ID:** 602472-028 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 10/20/2018 **Date Prepared:** 10/19/2018 **Analyst:** CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	%R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride	9.92	250	324	126	250	330	128	2	90-110	20	X

Lab Batch ID: 3066702 **QC- Sample ID:** 602207-011 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<7.98	997	1020	102	999	1010	101	1	70-135	20	
Diesel Range Organics (DRO)	27.9	997	1060	104	999	1040	101	2	70-135	20	

Lab Batch ID: 3066919 **QC- Sample ID:** 602472-001 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	14.0	998	939	93	997	958	95	2	70-135	20	
Diesel Range Organics (DRO)	<8.11	998	953	95	997	959	96	1	70-135	20	

Project Name: King Tut #1H

Work Order #: 602472 Project ID: 212C-MD-01451

Lab Batch ID: 3067317 **QC- Sample ID:** 603112-003 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<7.99	998	996	100	998	958	96	4	70-135	20	
Diesel Range Organics (DRO)	12.0	998	1040	103	998	1040	103	0	70-135	20	

Project Location: (county, state) Relinquished by: Re**y**nquished by: Project Name: Receiving Laboratory: nvoice to: Client Name: LAB USE LAB# 7 AH #2 (3-3.5') AH #2 (2-2.5') AH #2 (1-1.5') AH #2 (0-1') AH #1 (4-4.5') AH #1 (1-1.5') AH #1 (3-3.5') AH #1 (2-2.5') AH #1 (0-1') Run deeper samples if GRO+DRO exceeds 1,000 mg/kg. Run deeper samples if benzene exceeds 10 mg/kg or total BTEX AH #2 (4-4.5') exceeds 50 mg/kg. Xenco COG - Ike Taverez COG Lea Co, NM King Tut #1H fetra Tech, Inc. SAMPLE IDENTIFICATION Date: Time: Received by Sampler Signature: Received by: 10/15/2018 Project #: Site Manager: 10/15/2018 10/15/2018 10/15/2018 10/15/2018 10/15/2018 10/15/2018 10/15/2018 10/15//2018 EAR: 2018 10/15/2018 DATE SAMPLING TIME WATER Clair Gonzales MATRIX 4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 × X × X × × × × × SOIL Conner Moehring 212C-MD-01451 Date: Date: HCL PRESERVATIVE METHOD HNO₃ × × \times × X × × ICE None # CONTAINERS Z Z Z Z z z z Z z Z FILTERED (Y/N) \times × BTEX 8021B BTEX 8260B Sample Temperature (Circle) HAND DELIVERED TPH TX1005 (Ext to C35) LAB USE ON LY × × × TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C (Circle or Specify Method No Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg REMARKS: TCLP Volatiles ANALYSIS REQUEST Arush: Same Day 24 hr TCLP Semi Volatiles Special Report Limits or TRRP Report FEDEX Rush Charges Authorized RCI STANDARD GC/MS Vol. 8260B / 624 UPS GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) × × × × × × Chloride Chloride Sulfate **TDS** 48 hr General Water Chemistry (see attached list) Anion/Cation Balance (72 hr 9

Analysis Request of Chain of Custody Record

Project Location: (county, state) Relinquished by: Project Name: Receiving Laboratory: nvoice to: lient Name: LAB USE LAB# 4 AH #5 (1-1.5') AH #5 (0-1') AH #4 (2-2.5') AH #3 (2-2.5') AH #3 (1-1.5') AH #4 (1-1.5') AH #4 (0-1") AH #3 (2.5-3') AH #3 (0-1') Xenco King Tut #1H 900 Lea Co, NM COG - Ike Taverez Tetra Tech, Inc. SAMPLE IDENTIFICATION Date: Ime: YEAR: 2018 ORIGINAL COPY Received by: Site Manager: 10/15/2018 Sampler Signature: Project #: 10/15/2018 10/15/2018 10/15/2018 10/15/2018 10/15/2018 10/15/2018 10/15/2018 10/15/201β 10/15/2018 DATE SAMPLING TIME WATER Clair Gonzales MATRIX 4000 N. Big Spring Street, Ste 401 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 × $\overline{\times}$ $\overline{\times}$ $\overline{\times}$ $\overline{\times}$ SOIL Conner Moehring 212C-MD-0145 Date: HCL PRESERVATIVE METHOD HNO₃ × × $\overline{\times}$ × × × × × ICE Time: Time: None # CONTAINERS z z Z z z Z Z Z Z Z FILTERED (Y/N) BTEX 8260B Sample Temperature \times × BTEX 8021B (Circle) HAND DELIVERED FEDEX ONLY TPH TX1005 (Ext to C35) × × × TPH 8015M (GRO - DRO - ORO - MRO) Circle or Specify Method No. Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles REMARKS: ANALYSIS REQUEST RUSH: Same Day 24 hr TCLP Semi Volatiles Rush Charges Authorized JSpecial Report Limits or TRRP Report RCI STANDARD GC/MS Vol. 8260B / 624 UPS GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) × × × × Chloride Sulfate TDS 48 hr \ 72 hr General Water Chemistry (see attached list) Anion/Cation Balance Hold Final 1.000

Page

2 ່ ໘ຸ

Analysis Request of Chain of Custody Record

Relinquished by: Project Location; Comments: Receiving Laboratory: county, state) roject Name: Client Name: CAB USE LAB# đ AH #6 (3-3.5') AH #6 (2-2.5') AH #6 (1-1.5') AH #6 (0-1") AH #5 (5-5.5') AH #5 (4-4.5') AH #5 (3-3.5') AH #5 (7-7.5') AH #5 (6-6.5') Xenco COG King Tut #1H COG - Ike Taverez Lea Co, NM Tetra Tech, Inc. SAMPLE IDENTIFICATION Date: Time: Sampler Signature: Site Manager: R¢ceived by 10/15/2018 10/15/2018 10/15/2018 Project #: Received by: 10/15/2018 10/15/2018 10/15/2018 10/15/2018 EAR: 2018 10/15/2018 10/15/2018 DATE SAMPLING TIME WATER Clair Gonzales MATRIX 4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 × × $\overline{\times}$ $\overline{\times}$ × SOIL × × $\overline{\times}$ × Conner Moehring 212C-MD-0145 Date: HCL PRESERVATIVE METHOD HNO₃ × × × × × $\overline{\times}$ ICE None # CONTAINERS z z z Z z Z Z z z Z FILTERED (Y/N) BTEX 8260B × × BTEX 8021B (Circle) HAND DELIVERED FEDEX Sample Temperature TPH TX1005 (Ext to C35) LAB USE ONLY TPH 8015M (GRO - DRO - ORO - MRO) × PAH 8270C (Circle or Specify Method No. Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg REMARKS:
STANDARD TCLP Volatiles ANALYSIS REQUEST TCLP Semi Volatiles **ZRUSH:** Same Day 24 hr 48 hr (72 hr Special Report Limits or TRRP Report ☐Rush Charges Authorized RCI GC/MS Vol. 8260B / 624 UPS GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) $\overline{\times}$ $\overline{\times}$ $\overline{\times}$ \times Chloride TDS Sulfate General Water Chemistry (see attached list) Anion/Cation Balance Hold

ORIGINAL COPY

AUND Page 3 of

Page 35 of 37

Final 1.000

Client Name:

nvoice to:

Project Location: (county, state) Relinquished by: Receiving Laboratory: Project Name: a H-7 (0-1) H-2 (0-1') H-6 (0-1') H-4 (0-1') H-3 (0-1') H-1 (0-1') H-5 (0-1') Xenco COG COG - Ike Taverez King Tut #1H Lea Co, NM Tetra Tech, Inc. SAMPLE IDENTIFICATION Date: Time: Redeived by Sampler Signature: Site Manager: Received by: 10/15/2018 10/15/2018 10/15/2018 /EAR: 2018 10/15/2018 10/15/2018 10/15/2018 10/15/2018 DATE SAMPLING TIME WATER Clair Gonzales MATRIX 4000 N. Big Spring Street, Ste 401 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 × × X × × × SOIL Conner Moehring 212C-MD-01451 Date: Date: HCL PRESERVATIVE METHOD HNO₃ $\overline{\times}$ $\overline{\times}$ $\overline{\times}$ × × × ICE Time: None となり # CONTAINERS Z z Z Z Z Z z FILTERED (Y/N) × × BTEX 8260B Sample Temperature × × BTEX 8021B (Circle) HAND DELIVERED FEDEX UPS ONLY TPH TX1005 (Ext to C35) $\overline{\times}$ × × × $\overline{\times}$ TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C (Circle or Specify Method No. Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg REMARKS: TCLP Volatiles ANALYSIS REQUEST TCLP Semi Volatiles ARUSH: Same Day 24 hr Special Report Limits or TRRP Report Rush Charges Authorized RCI STANDARD GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) $\times \times \times$ × × Chloride Chloride Sulfate TDS 48 hr General Water Chemistry (see attached list) Anion/Cation Balance 72 hr

LAB USE LAB#

ORIGINAL COPY

4 9

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 10/16/2018 02:23:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 602472

Temperature Measuring device used: R8

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		3.6
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping cor	ntainer/ cooler?	N/A
#5 Custody Seals intact on sample bottle	es?	N/A
#6*Custody Seals Signed and dated?		N/A
#7 *Chain of Custody present?		Yes
#8 Any missing/extra samples?		No
#9 Chain of Custody signed when relinqu	uished/ received?	Yes
#10 Chain of Custody agrees with sampl	e labels/matrix?	Yes
#11 Container label(s) legible and intact?	?	Yes
#12 Samples in proper container/ bottle?		Yes
#13 Samples properly preserved?		Yes
#14 Sample container(s) intact?		Yes
#15 Sufficient sample amount for indicate	ed test(s)?	Yes
#16 All samples received within hold time	e?	Yes
#17 Subcontract of sample(s)?		N/A
#18 Water VOC samples have zero head	dspace?	N/A
* Must be completed for after-hours de Analyst:	livery of samples prior to placing in	the refrigerator
Checklist completed by:	Brianna Teel	Date: 10/16/2018
Checklist reviewed by:	Jessica Kramer	Date: 10/17/2018

Analytical Report 602474

for Tetra Tech- Midland

Project Manager: Clair Gonzales
King Tut #1H
212C-MD-01451
19-OCT-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-27), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-13)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-17)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757)
Xenco-Atlanta (LELAP Lab ID #04176)

Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

19-OCT-18

Project Manager: Clair Gonzales Tetra Tech- Midland 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): 602474

King Tut #1H

Project Address: Lea Co,NM

Clair Gonzales:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 602474. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 602474 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Kramer

Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 602474

Tetra Tech- Midland, Midland, TX

King Tut #1H

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
H-8 (0-1')	S	10-15-18 00:00		602474-001

XENCO

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: King Tut #1H

Project ID: 212C-MD-01451 Report Date: 19-0CT-18

Work Order Number(s): 602474 Date Received: 10/16/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3066785 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Certificate of Analysis Summary 602474

Tetra Tech- Midland, Midland, TX **Project Name: King Tut #1H**

Project Id: 212C-MD-01451 **Contact:** Clair Gonzales Lea Co,NM

Project Location:

Date Received in Lab: Tue Oct-16-18 02:23 pm

Report Date: 19-OCT-18 Project Manager: Jessica Kramer

	Lab Id:	602474-001			
Analysis Requested	Field Id:	H-8 (0-1')			
Anaiysis Requesieu	Depth:				
	Matrix:	SOIL			
	Sampled:	Oct-15-18 00:00			
BTEX by EPA 8021B	Extracted:	Oct-17-18 14:00			
	Analyzed:	Oct-17-18 23:37			
	Units/RL:	mg/kg RL			
Benzene		< 0.00199 0.00199			
Toluene		< 0.00199 0.00199			
Ethylbenzene		< 0.00199 0.00199			
m,p-Xylenes		< 0.00398 0.00398			
o-Xylene		<0.00199 0.00199			
Total Xylenes		< 0.00199 0.00199			
Total BTEX		<0.00199 0.00199			
Chloride by EPA 300	Extracted:	Oct-18-18 15:20			
	Analyzed:	Oct-19-18 09:41			
	Units/RL:	mg/kg RL			
Chloride		<4.98 4.98			
TPH by SW8015 Mod	Extracted:	Oct-17-18 10:00			
	Analyzed:	Oct-17-18 18:42			
	Units/RL:	mg/kg RL			
Gasoline Range Hydrocarbons (GRO)		<14.9 14.9			
Diesel Range Organics (DRO)		<14.9 14.9			
Motor Oil Range Hydrocarbons (MRO)		<14.9 14.9			
Total TPH		<14.9 14.9			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Jessica Kramer Project Assistant

fession Weamer

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

Project Name: King Tut #1H

Work Orders: 602474, **Project ID:** 212C-MD-01451

Lab Batch #: 3066700 **Sample:** 602474-001 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 10/17/18 18:42	SURROGATE RECOVERY STUDY							
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chlorooct	ane		98.3	99.6	99	70-135				
o-Terphenyl			51.8	49.8	104	70-135				

Units: mg/kg **Date Analyzed:** 10/17/18 23:37 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0359 0.0300 120 70-130 4-Bromofluorobenzene 0.0345 0.0300 115 70-130

Lab Batch #: 3066700 Sample: 7664344-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 10/17/18 11:02 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	105	100	105	70-135	
o-Terphenyl	55.4	50.0	111	70-135	

Units:	mg/kg	Date Analyzed: 10/17/18 16:28	SURROGATE RECOVERY STUDY							
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluoro	benzene	•	0.0377	0.0300	126	70-130				
4-Bromofluo	orobenzene		0.0303	0.0300	101	70-130				

Lab Batch #: 3066700 **Sample:** 7664344-1-BKS / BKS **Batch:** 1 **Matrix:** Solid

Units:	mg/kg	Date Analyzed: 10/17/18 11:21	SURROGATE RECOVERY STUDY							
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooct	ane		129	100	129	70-135				
o-Terphenyl			52.8	50.0	106	70-135				

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: King Tut #1H

Work Orders: 602474, Project ID: 212C-MD-01451

Date Analyzed: 10/17/18 14:19 Units: mg/kg SURROGATE RECOVERY STUDY True Control Amount BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0309 0.0300 103 70-130 4-Bromofluorobenzene 0.0344 0.0300 115 70-130

Lab Batch #: 3066700 **Sample:** 7664344-1-BSD / BSD **Batch:** 1 **Matrix:** Solid

Units: mg/kg **Date Analyzed:** 10/17/18 11:40 SURROGATE RECOVERY STUDY **Amount** True Control TPH by SW8015 Mod Found Limits Flags Amount Recovery [A] [B] %R %R **Analytes** [D] 1-Chlorooctane 128 100 128 70-135 o-Terphenyl 50.0 51.6 103 70-135

Lab Batch #: 3066785 Sample: 7664390-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 10/17/18 14:41 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0245	0.0300	82	70-130	
4-Bromofluorobenzene	0.0240	0.0300	80	70-130	

Lab Batch #: 3066700 **Sample:** 602230-005 S / MS **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 10/17/18 12:18	SURROGATE RECOVERY STUDY							
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooct	ane		120	99.9	120	70-135				
o-Terpheny	l		48.9	50.0	98	70-135				

Units: mg/kg	Date Analyzed: 10/17/18 15:02	SURROGATE RECOVERY STUDY						
ВТ	EX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	111111111111111111111111111111111111111	0.0345	0.0300	115	70-130			
4-Bromofluorobenzene		0.0305	0.0300	102	70-130			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: King Tut #1H

Work Orders: 602474, **Project ID**: 212C-MD-01451

Units: Date Analyzed: 10/17/18 12:37 mg/kg SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod Recovery Found Amount Limits Flags [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 128 99.9 128 70-135 o-Terphenyl 49.9 50.0 100 70-135

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: King Tut #1H

Work Order #: 602474 Project ID: 212C-MD-01451

Analyst: ALJ **Date Prepared:** 10/17/2018 **Date Analyzed:** 10/17/2018

 Lab Batch ID: 3066785
 Sample: 7664390-1-BKS
 Batch #: 1
 Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00200	0.0998	0.116	116	0.100	0.0976	98	17	70-130	35	
Toluene	< 0.00200	0.0998	0.0997	100	0.100	0.0891	89	11	70-130	35	
Ethylbenzene	< 0.00200	0.0998	0.118	118	0.100	0.0923	92	24	70-130	35	
m,p-Xylenes	<0.00399	0.200	0.236	118	0.200	0.202	101	16	70-130	35	
o-Xylene	< 0.00200	0.0998	0.110	110	0.100	0.0904	90	20	70-130	35	

Analyst: CHE **Date Prepared:** 10/18/2018 **Date Analyzed:** 10/19/2018

Lab Batch ID: 3066897 **Sample:** 7664412-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 S Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 5.00	250	274	110	250	275	110	0	90-110	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

mg/kg

Diesel Range Organics (DRO)

Units:

BS / BSD Recoveries

100

1000

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

1000

100

0

20

70-135

Project Name: King Tut #1H

Work Order #: 602474 Project ID: 212C-MD-01451

Analyst: ARM **Date Prepared:** 10/17/2018 **Date Analyzed:** 10/17/2018

 Lab Batch ID: 3066700
 Sample: 7664344-1-BKS
 Batch #: 1
 Matrix: Solid

1000

< 8.13

TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[14]	[B]	[C]	[D]	[E]	Result [F]	[G]	, 0	/014	701112	
Gasoline Range Hydrocarbons (GRO)	<8.00	1000	982	98	1000	986	99	0	70-135	20	

998

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: King Tut #1H

Work Order #: 602474

Project ID: 212C-MD-01451 Lab Batch #: 3066785

Date Analyzed: 10/17/2018 **Date Prepared:** 10/17/2018 Analyst: ALJ **QC- Sample ID:** 602472-001 S Batch #: Matrix: Soil

outing United marka

Reporting Units: mg/kg	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[A]	[B]				
Benzene	< 0.00202	0.101	0.0838	83	70-130	
Toluene	< 0.00202	0.101	0.0721	71	70-130	
Ethylbenzene	< 0.00202	0.101	0.0748	74	70-130	
m,p-Xylenes	< 0.00403	0.202	0.153	76	70-130	
o-Xylene	< 0.00202	0.101	0.0714	71	70-130	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: King Tut #1H

Work Order #: 602474 Project ID: 212C-MD-01451

Lab Batch ID: 3066897 **QC- Sample ID:** 602694-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 10/19/2018 **Date Prepared:** 10/18/2018 **Analyst:** CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
, and the second											
Chloride	< 0.858	250	259	104	250	262	105	1	90-110	20	

Lab Batch ID: 3066897 **QC- Sample ID:** 602694-002 S **Batch #:** 1 **Matrix:** Soil

 Date Analyzed:
 10/19/2018
 Date Prepared:
 10/18/2018
 Analyst:
 CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.862	251	260	104	251	273	109	5	90-110	20	

Lab Batch ID: 3066700 **QC- Sample ID:** 602230-005 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<7.99	999	939	94	999	957	96	2	70-135	20	
Diesel Range Organics (DRO)	<8.12	999	964	96	999	980	98	2	70-135	20	

Project Location: (county, state) Relinquished by: Relinquished by Receiving Laboratory: Project Name: Client Name: nvoice to: LAB USE LAB# 7 H-8 (0-1') Xenco COG - Ike Taverez Lea Co, NM 500 King Tut #1H Tetra Tech, Inc. SAMPLE IDENTIFICATION Date: Time: Received by: Sampler Signature: Project #: Site Manager: 10/15/2018 EAR: 2018 DATE SAMPLING TIME WATER Clair Gonzales MATRIX 4000 N. Big Spring Street, Ste 401 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 $\overline{\times}$ SOIL 212C-MD-0145 Conner Moehring Date: Date: HCL PRESERVATIVE METHOD HNO₃ ICE Time: None # CONTAINERS z FILTERED (Y/N) BTEX 8021B BTEX 8260B Sample Temperature (Circle) HAND DELIVERED ONLY ONLY TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C (Circle or Specify Method No.) Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles **ANALYSIS REQUEST** RUSH: Same Day 24 hr 48 hr (72 hr TCLP Semi Volatiles Special Report Limits or TRRP Report Rush Charges Authorized FEDEX UPS RCI STANDARD GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) Chloride TDS Sulfate General Water Chemistry (see attached list) Anion/Cation Balance Hold Page 14 of 15 Final 1.000

ORIGINAL COPY

[M2474

Page

____1 of

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 10/16/2018 02:23:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 602474

Temperature Measuring device used: R8

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		3.6
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping cor	ntainer/ cooler?	N/A
#5 Custody Seals intact on sample bottle		N/A
#6*Custody Seals Signed and dated?		N/A
#7 *Chain of Custody present?		Yes
#8 Any missing/extra samples?		No
#9 Chain of Custody signed when relinqu	uished/ received?	Yes
#10 Chain of Custody agrees with sampl	e labels/matrix?	Yes
#11 Container label(s) legible and intact?	?	Yes
#12 Samples in proper container/ bottle?		Yes
#13 Samples properly preserved?		Yes
#14 Sample container(s) intact?		Yes
#15 Sufficient sample amount for indicate	ed test(s)?	Yes
#16 All samples received within hold time	e?	Yes
#17 Subcontract of sample(s)?		N/A
#18 Water VOC samples have zero head	dspace?	N/A
* Must be completed for after-hours de Analyst:	livery of samples prior to placing in PH Device/Lot#:	n the refrigerator
Checklist completed by: Checklist reviewed by:	Brianna Teel Jessica Vramer Jessica Kramer	Date: 10/16/2018 Date: 10/17/2018

Appendix D

Eddy Area, New Mexico

PA—Pajarito loamy fine sand, 0 to 3 percent slopes, eroded

Map Unit Setting

National map unit symbol: 1w54 Elevation: 2,700 to 5,500 feet

Mean annual precipitation: 5 to 15 inches

Mean annual air temperature: 57 to 70 degrees F

Frost-free period: 180 to 250 days

Farmland classification: Not prime farmland

Map Unit Composition

Pajarito and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Pajarito

Setting

Landform: Interdunes, dunes, plains

Landform position (three-dimensional): Side slope

Down-slope shape: Linear, convex Across-slope shape: Linear, convex

Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 13 inches: loamy fine sand H2 - 13 to 36 inches: fine sandy loam H3 - 36 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High

(2.00 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0

to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 1.0

Available water storage in profile: Moderate (about 7.9 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Minor Components

Wink

Percent of map unit:

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Berino

Percent of map unit:

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 14, Sep 12, 2018 Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 15, Sep 12, 2018

BLM SERIAL #:

COMPANY REFERENCE:

3.1 Seed Mixture 1, for Loamy Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

<u>Species</u>	lb/acre
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

^{*}Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed