		SITE	INFORMAT	ION			
	R	eport Type:	Work Plan	1RP	-5641		
General Site Info	ormation:						
Site:		Baish "A" Batt	ery				
Company:		ConocoPhillip	s				
Section, Towns	hip and Range	Unit H	Sec. 21	T 17S	R 32E		
Lease Number:		Associated AP	I No. N/A				
County:		Lea					
GPS:			32.822975			-103.	764358
Surface Owner:		Federal					
Mineral Owner:		N/A	liamar (Llun, OO/N	Maliaman D	ا ا ا ا		Maljamar Rd. for 2.29
Directions:			t onto dirt road. H				
Release Data:							
Date Released:		6/19/2019					
Type Release:		Produced Water	er/Oil				
Source of Contar	mination:	Heater Treater					
Fluid Released:		6.62 bbl					
Fluids Recovered	d:	0 bbl					
Official Commu	nication:						
Name:	Jenni Fortunato				Greg W. F	Pope	
Company:	Conoco Phillips - F	RMR			Tetra Tecl		
Address:	935 N. Eldridge Pk					Wall Stree	t
Address.	SP2-12-W084	.wy.			Suite 100	vvali Otiec	·
City.		7070					
City:	Houston, Texas 77	079			Midland, T		
Phone number:	(832) 486-2477				(432) 687-	-8134	
Fax:							
Email:	jenni.fortunato@	conocophillips.co	<u>m</u>		<u>Greg.Pop</u>	e@tetrate	ech.com
Ranking Criteria							
Depth to Groundy	vater:		Ranking Score			Site Data	
<50 ft 50-99 ft			20 10				
>100 ft.			0				
				1			
WellHead Protect			Ranking Score			Site Data	
	000 ft., Private <200		20				
Water Source >1,0	000 ft., Private >200	ft.	0				
Surface Body of V	Water:		Ranking Score			Site Data	
<200 ft.			20				
200 ft - 1,000 ft.			10				
>1,000 ft.			0				
		e:	10				
To	otal Ranking Scor						
Site Characteriz	ation						
	ation	92' below surface	9				
Site Characteriz Depth to Groundy Karst Potential:	ation water:	92' below surface	9				
Site Characteriz Depth to Groundy Karst Potential: Recommended	ation vater: Remedial Action I	92' below surface Low Levels (RRALs)		ТРН	GRO+DRO	+MRO)	Chlorides
Site Characteriz Depth to Groundy Karst Potential:	ation water:	92' below surface Low Levels (RRALs)	RO+DRO)	ТРН ((<mark>GRO+DRO</mark> 2,500 mg/k		Chlorides 10,000 mg/kg

November 15, 2019

Rick Rickman
District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Work Plan ConocoPhillips Baish "A" Battery Release Unit Letter H, Section 21, Township 17 South, Range 32 East Lea County, New Mexico 1RP-5641

Dear Mr. Rickman:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips to assess a release that occurred at the Baish "A" Battery, Unit H, Section 21, Township 17 South, Range 32 East, Lea County, New Mexico (Site). The release site coordinates are 32.822983, -103.764178. The Site location is shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico Oil Conservation Division (NMOCD) Initial Site Assessment/Characterization Report (Form C-141), the release occurred on June 6, 2019. The release occurred due to a malfunctioning dump valve on the heater treater and resulted in the discharge of 3 barrels (bbls) of crude oil and 3.62 bbls of produced water to the ground surface. Due to the small volume released, no fluids were recovered. The C-141 Form is shown in Appendix A.

SITE CHARACTERIZATION

A site characterization was performed and per 19.15.29.12 NMAC, no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances and the Site is in a low karst potential area. The Site is within a New Mexico oil and gas production area. The New Mexico Office of the State Engineer (NMOSE) well database indicates that two water wells are located in Section 21, Township 17 South, Range 32 East in with average groundwater depths documented at 92 feet below ground surface. The groundwater database report for these two wells is included in Appendix B.

REGULATORY FRAMEWORK

A risk-based evaluation was performed for the Site in accordance with the NMOCD Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil.

Release Characterization and Remediation Work Plan November 15, 2019

ConocoPhillips

Based upon the Site characterization, the proposed RRALs for soil are:

- Benzene: 10 milligrams per kilogram (mg/kg);
- Total BTEX (sum of benzene, toluene, ethylbenzene, and xylene): 50 mg/kg;
- TPH (GRO + DRO + ORO): 2,500 mg/kg;
- TPH (GRO + DRO): 1,000 mg/kg;
- Chloride: 10,000 mg/kg (600 mg/kg in the top four feet)

INITIAL SITE ASSESSMENT

ConocoPhillips personnel were initially onsite to delineate and sample the release area in July 2019. Seven (7) borings (SP-1 through SP-7) were installed using a hand auger to depths ranging from 4 to 8 feet below ground surface to evaluate the vertical extents of the release. A total of 25 soil samples were collected from these 7 boring locations on July 1, 2019 (Figure 3). Selected samples were submitted to an analytical laboratory for total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylenes (BTEX) and chloride (SM4500Cl-B) analyses. Copies of the analytical laboratory reports and chain-of-custody documentation are included in Appendix C.

ADDITIONAL SITE ASSESSMENT

To completely assess the release area, Tetra Tech personnel were onsite to further delineate and sample the release area in September 2019. Ten (10) borings (BH-1 – BH-10) were installed using an air rotary drilling rig to various depths to evaluate the vertical and horizontal extents of the release. A total of two (2) additional borings were completed to a depth of 6 inches (BH-11 and BH-12) within the lined area of the tank battery using a hand auger. Selected samples were submitted to an analytical laboratory for TPH, BTEX, and chloride (Method 300.0) analyses. Copies of the analytical laboratory reports and chain-of-custody documentation are included in Appendix C. The boring logs are shown in Appendix D.

SUMMARY OF SAMPLING RESULTS

The results of the initial sampling event in July 2019 are summarized in Table 1. The boring locations are shown on Figure 3. The analytical results associated with the samples within the release area were predominantly above the RRALs for BTEX and TPH at the surface. Five of the boring locations (SP-1, SP-2, SP-4, SP-6, and SP-7) had surface samples that exceeded the RRAL for BTEX. In addition, the sample from the 2-foot interval at boring location SP-1 exceeded the RRAL for BTEX. At boring location SP-5, the surface sample results exceed the RRAL for TPH. At boring locations SP-1, SP-2, and SP-7, there were exceedances of the RRAL for TPH from the 3-foot interval. At boring locations SP-3, SP-4, and SP-6, there were exceedances of the RRAL for TPH from the surface down to the 4-foot interval. There was one RRAL exceedance for chloride at boring location SP-3 (SURFACE).

The results of the additional sampling event in September 2019 are summarized in Table 2. The sample locations are shown in Figure 3. The analytical results associated with boring locations BH-1, BH-2, BH-4, BH-5 and BH-8 had exceedances of the RRAL for TPH from the surface to the 3-foot depth interval. There were no exceedances of chloride or BTEX during the September 2019 sampling event.

REMEDIATION WORK PLAN

Based on the soil sample results, ConocoPhillips proposes to remove the impacted material exceeding RRALs shown in Tables 1 and 2 and as depicted in Figure 4. Excavation in the area will be performed using heavy equipment (backhoes and track hoes) to a maximum depth of 5 feet below ground surface within the release area. A 6-inch scrape will be conducted within the secondary containment area in the vicinity of BH-11 and BH-12. Impacted soils within the area containing boring location SP-5 are proposed to be excavated to a depth of 2 feet. The impacted soil areas containing boring locations BH-1, BH-2, BH-4, BH-5, BH-8, SP-1, SP-2 and SP-7 are proposed to be excavated to a depth of 4 feet. The area containing

Release Characterization and Remediation Work Plan November 15, 2019

ConocoPhillips

boring locations SP-3, SP-4 and SP-6 are proposed to be excavated to depth of 5 feet. The estimated volume of material to be remediated is 2,300 cubic yards.

Horizontal delineation of the northern extent of the release was not obtained during the site assessment due to subsurface utilities. However, during the remediation activities, the excavation extent north of BH-1 and BH-5 will be expanded to the north until a discrete sidewall sample can be collected that is below the proposed RRALs.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX and chloride. Once the sample results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade.

REVEGETATION PLAN

The backfilled areas south and east of the pad location will be seeded in Spring 2020 (first favorable growing season) to aid in revegetation. Based on the soil types present at the site, the New Mexico State Land Office (NMSLO) Shallow (SH) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix E.

CONCLUSION

Upon completion of the remedial actions described above, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call me at (512) 338-2861 or (432) 682-4559.

Sincerely,

Tetra Tech, Inc.

Christian M. Llull, P.G.

Project Manager

Greg W. Pope, P.G. Program Manager

CC:

Ms. Jenni Fortunato, RMR - ConocoPhillips

Mr. Gustavo Fejervary-Morena, GPBU - ConocoPhillips

Mr. Jim Amos, BLM

Release Characterization and Remediation Work Plan November 15, 2019

ConocoPhillips

List of Attachments

Figures:

Figure 1 – Site Location/Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Site Assessment and Release Extents

Figure 4 - Proposed Remediation Areas

Tables:

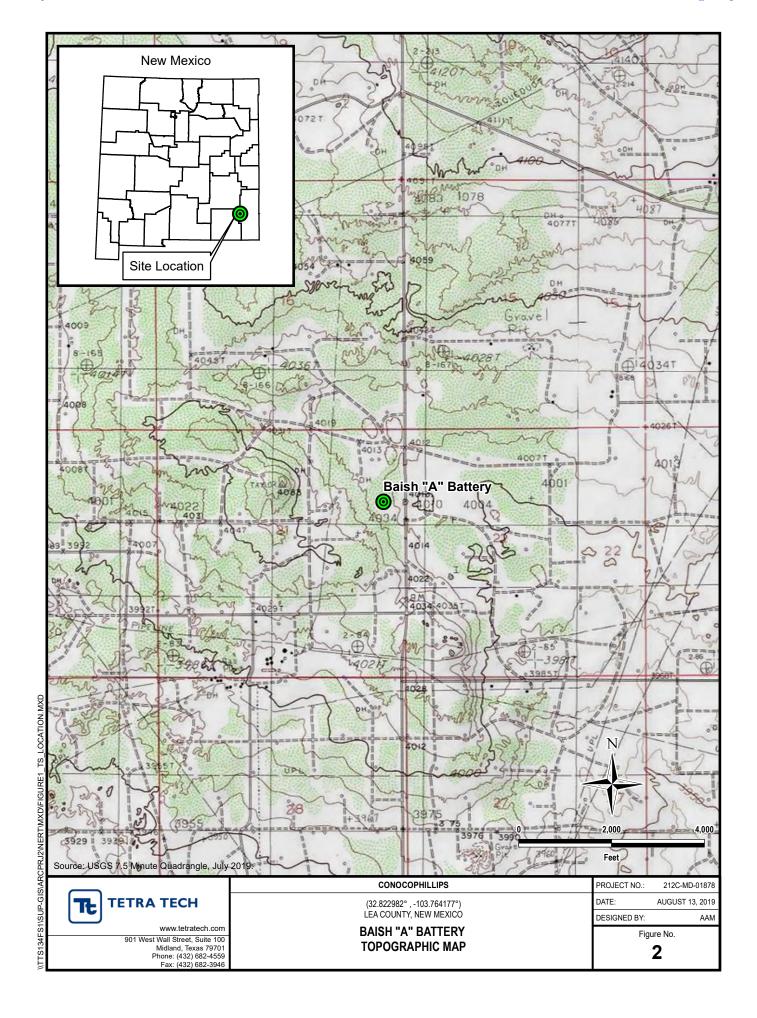
Table 1 – Summary of Analytical Results – Initial Soil Assessment

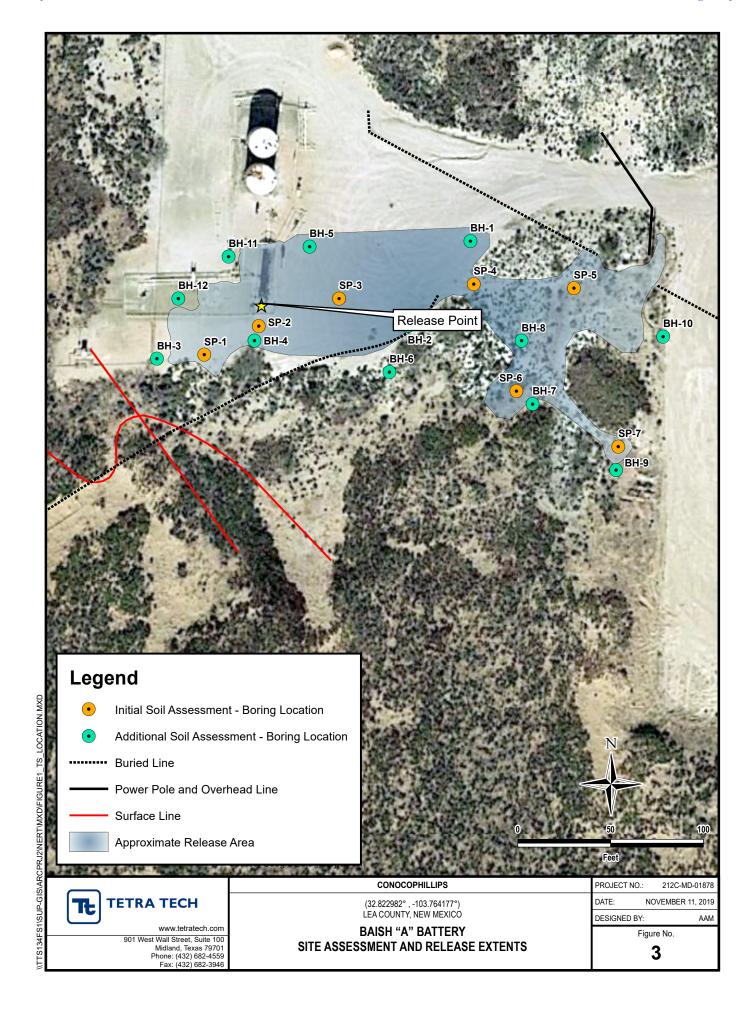
Table 2 – Summary of Analytical Results – Additional Soil Assessment

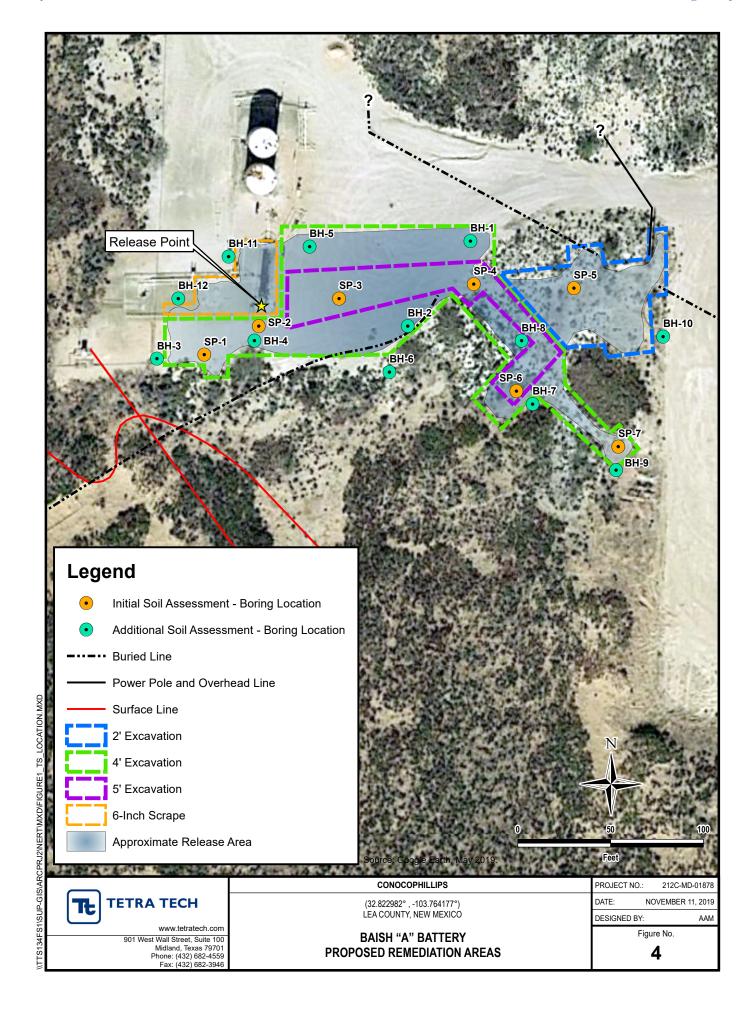
Appendices:

Appendix A – C-141 Form

Appendix B – NMOSE Groundwater Data/Karst Potential Map


Appendix C - Laboratory Analytical Data


Appendix D - Soil Boring Logs


Appendix E - NMSLO Seed Mixture Details

FIGURES

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT BAISH "A" BATTERY RELEASE LEA COUNTY, NM

							BTEX ²					TPH ³								
Sample ID	Sample Date	Sample Interval	Chloride ¹	Benze	no	Tolue	nno	Ethylbe	17010	Xyle	no	Total BTEX	GRO		DRO		ORO		GRO + DRO	TPH (C ₆ - C ₃₆)
Sample ID				Belize	iie	Totache		Ethylbe	Ethylbenzene		хутепе		C ₆ - C ₁₀		>C ₁₀ - C ₂₈		>C ₂₈ - C ₃₆		C6 - C28	1111 (06 036)
		ft. bgs	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg
		0	<16.0	<2.00		6.2		15.2		77.1		98.4	2230		10400		1570		12630	14200
SP-1	07/01/19	2	<16.0	<2.00		3.71		11.3		46.7		61.7	1220		7050		1540		8270	9810
		4	<16.0	<0.050		<0.050		<0.050		0.209		<0.300	<50.0		376		270		376	646
		0	80	<1.00	QR-03	9.35		16.8	QM-07	60.9	QM-07	87.1	1480	QM-07	17300	QM-07	3200		18780	21980
SP-2	07/01/19	2	32	<0.050		<0.050		<0.050		<0.150		<0.300	<10.0		20.3		21.5		20.3	41.8
		4	32	<0.050		<0.050		<0.050		<0.150		<0.300	<10.0		<10.0		<10.0			
		0	1660	<0.050		1.8		3.06		11.6		16.5	281		15600		4190		15881	20071
		2	336	<0.050		<0.050		<0.050		<0.150		<0.300	<10.0		1430		978		1430	2408
SP-3	07/01/19	4	96	<0.050		<0.050		<0.050		<0.150		<0.300	<10.0		1810		1000		1810	2810
		6	192	<0.050		<0.050		<0.050		<0.150		<0.300	<10.0		192		109		192	301
		8	144	<0.050		<0.050		<0.050		<0.150		<0.300	<10.0		95.7		51		95.7	146.7
		0	32	2.44		25.4		18		63.1		109	1690		17700		2900		19390	22290
SP-4	07/01/19	2	32	<0.050		0.064		0.166		0.634		0.864	20.7		142		51.6		162.7	214.3
		4	32	<0.200		4.53		4.39		14.3		23.3	373		2230		393		2603	2996
		0	32	0.3		4.61		3.5		12.1		20.5	682		32500		7580		33182	40762
SP-5	07/01/19	2	128	0.055		0.292		0.372		1.26		1.97	22.3		819		572		841.3	1413
		4	288	<0.050		0.104		0.138		0.461		0.703	<10.0		412		315		412	727
		0	<16.0	<0.500		9.45		11.5		43.9		64.9	1490		22000		4380		23490	27870
SP-6	07/01/19	2	16	<0.050		0.497		0.092		<0.150		0.726	11		416		309		427	736
31 -0	07/01/13	4	32	<0.050		<0.050		<0.050		<0.150		<0.300	<10.0		1430		1120		1430	2550
		6	16	<0.050		<0.050		<0.050		<0.150		<0.300	<10.0		12.1		14.4		12.1	26.5
		0	<16.0	0.515		11		14.4		48.6		74.5	1580		18600		3700		20180	23880
SP-7	07/01/19	2	16	<0.050		<0.050		0.059		0.225		<0.300	12.8		442		122		454.8	576.8
37-7	07/01/19	4	64	<0.050		0.198		0.139		0.401		0.737	24.1		912		193		936.1	1129
		6	16	<0.050		<0.050		<0.050		<0.150		<0.300	<10.0		107		87.1		107	194.1

NOTES:

ft. Feet ${\it Bold\ and\ italicized\ values\ exceed\ the\ proposed\ RRAL\ for\ the\ Site.}$

Below ground surface

Shaded rows indicate depth intervals proposed for excavation and remediation.

mg/kg Milligrams per kilogram

Method SM4500Cl-B

TPH Total Petroleum Hydrocarbons Method 8260B

DRO Diesel Range Organics

Method 8015M

GRO Gasoline Range Organics QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference.

ORO Oil Range Organics QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.

QM-07 The spilke recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

TABLE 2 SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT BAISH "A" BATTERY RELEASE LEA COUNTY, NM

			Field Sc	reening						BTEX ²									TPH ³			
Committe ID	Sample	Sample Interval	Res	ults	Chloride ¹	D	_	Talua		Calculla a co		Volen		Total BTEX	GRO)	DRO)	ORO		GRO + DRO	TDH (C C)
Sample ID	Date	iiiteivai	Chloride PID			Benzene Toluene		Ethylbenzene		Xylene		TOTALBIEX	C ₆ - C ₁₀		>C ₁₀ - C ₂₈		>C ₂₈ - C ₃₆		C6 - C28	TPH (C ₆ - C ₃₆)		
		ft. bgs	pp	om	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg
		0-1	NM	18.1	458	<0.00106		<0.00531		<0.00266		<0.00690	J4		<0.106		1420		1760		1420	3180
		2-3	694	13.4	148	<0.00103		<0.00517		<0.00259		<0.00673	J4		<0.103		1080		1400		1080	2480
BH-1	09/10/19	4-5	307	10.3	408	<0.00103		<0.00513		<0.00257		<0.00667	J4		<0.103		317		663		317	980
		6-7	538	10.3	377	<0.00108		<0.00542		<0.00271		<0.00705	J4		<0.108		28		59.8		28	87.8
		9-10	423	6.6	935	<0.00114		<0.00568		<0.00284		<0.00738	J4		<0.114		25.4		44.4		25.4	69.8
		0-1	NM	112.6	281	<0.00103		<0.00517		<0.00258		<0.00672	J4		0.14	В	2880		1680		2880	4560
		2-3	NM	87.4	157	<0.00102		<0.00512		<0.00256		<0.00666	J4		0.0655	ВJ	1020		1180		1020	2200
BH-2	09/10/19	4-5	113	36.9	70.7	<0.00101		<0.00506		<0.00253		<0.00657	J4		<0.101		152		232		152	384
		6-7	116	17.4	108	<0.00103		<0.00513		<0.00256		<0.00667	J4		0.023	ΒJ	43.2		60.8		43.22	104.02
		9-10	114	9.4	190	<0.00107		<0.00533		<0.00267		<0.00693	J4		<0.107		4.63		15.9		4.63	20.53
		0-1	NM	8.1	23.5	< 0.00103		<0.00514		<0.00257		<0.00668	J4		0.0236	ΒJ	251		455		251.02	706.02
		2-3	36.2	7.2	23.5	<0.00102		<0.00509		<0.00255		<0.00662	J4		<0.102		418		953		418	1371
BH-3	09/10/19	4-5	NM	7.0	23.9	<0.00103		<0.00517		<0.00259		<0.00672			<0.103		189		524		189	713
		6-7	NM	7.8	71.6	0.000532	J	<0.00524		<0.00262		<0.00681		0.000532	<0.105		36.1	J	103		36.1	139.1
		9-10	NM	7.0	260	0.000558	J	<0.00559		<0.00280		<0.00727		0.000558	<0.112	J3	42.5		104		42.5	146.5
		0-1	152	36.1	124	0.0012		<0.00536		<0.00268		<0.00696		0.0012	<0.107		1600		1370		1600	2970
		2-3	NM	39.4	208	0.00152		<0.00508		<0.00254		<0.00660		0.00152	<0.102		3380		2680		3380	6060
BH-4	09/10/19	4-5	NM	39.1	57.9	0.00139		<0.00512		<0.00256		<0.00666		0.00139	<0.102		200		161		200	361
		6-7	112	16.0	145	0.000795	J	<0.00532		<0.00266		<0.00692		0.000795	<0.106		8.7		10.4		8.7	19.1
		9-10	NM	10.0	201	0.000765	J	<0.00551		<0.00276		<0.00716		0.000765	<0.110		7.95		10.8		7.95	18.75
		0-1	NM	2.8	172	<0.00102		<0.00508		<0.00254		<0.00660			<0.103		27		77.3		27	104.3
		2-3	258	2.5	133	0.00115		<0.00508		<0.00254		<0.00660		0.00115	<0.102		1650		4890		1650	6540
		4-5	184	4.4	70.1	0.00066	J	<0.00508		<0.00254		<0.00660		0.00066	<0.102		246		748		246	994
BH-5	09/11/19	6-7	NM	4.2	86.9	0.00111	J	<0.00562		<0.00281		<0.00730		0.00111	<0.112		50.8		143		50.8	193.8
511-5	03/11/13	9-10	98	>1100	57.7	0.00163		0.00351	J	0.486		0.21		0.70114	170		747		561		917	1478
		12-13	NM	100.8	72	<0.00114		<0.00569		0.00826		<0.00740		0.00826	0.598		39.6		51.7		40.20	91.90
		14-15	NM	54.5	95	<0.00114		<0.00569		0.00186	J	<0.00740		0.00186	0.34		33.8		40.5		34.14	74.64
		19-20	NM	6.2	160	<0.00112		<0.00560		<0.00280		<0.00729			<0.112		<4.48		1.55	J		1.55

TABLE 2 SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT BAISH "A" BATTERY RELEASE LEA COUNTY, NM

		C	Field Sci	reening						BTEX ²									TPH ³			
Sample ID	Sample	Sample Interval	Resi	ults	Chloride ¹	Benzene Toluene		Taluana		E+bulb on	Ethylbenzene			Total BTEX	GRO		DRO		ORG)	GRO + DRO	TPH (C ₆ - C ₃₆)
Sample ID	Date	iiiteivai	Chloride	PID				Ethylben	Luiyibelizelle A		ne Total BTEX		C ₆ - C ₁₀		>C ₁₀ - C ₂₈		>C ₂₈ - C ₃₆		C6 - C28	1FH (C ₆ - C ₃₆)		
		ft. bgs	рр	m	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg
		0-1	91.3	17.2	40.9	0.000499	J	<0.00570		<0.00285		<0.00740		0.000499	0.0405	ВJ	30.4		81.3		30.44	111.74
BH-6	09/11/19	2-3	87.1	16.6	42.3	0.000518	J	<0.00533		<0.00266		<0.00692		0.000518	0.0452	ВJ	63.1		148		63.15	211.15
BI1-0	03/11/13	4-5	NM	6.6	20.4	<0.00101		<0.00506		<0.00253		<0.00658			<0.101		1.87	BJJ3	2.44	J	1.87	4.31
		6-7	82.2	4.6	94.9	0.000435	J	<0.00517		<0.00258		<0.00672		0.000435	<0.103		1.78	BJ	3.04	J	1.78	4.82
		0-1	41.8	6.8	3.75	<0.00104		<0.00521		<0.00261		<0.00678			<0.104		7.55	В	46.3		7.55	53.85
BH-7	09/11/19	2-3	36.4	4.7	15.4	<0.00101		<0.00505		<0.00253		<0.00657			<0.101		5.75	В	30.5		5.75	36.25
		4-5	NM	6.3	3.1	<0.00101		<0.00504		<0.00252		<0.00655			0.0463	B J	16.3	ВJ	95.5		16.35	111.85
		0-1	NM	252.8	51.4	<0.00103		<0.00514		0.0138		0.155		0.1688	1.3		3830		2350		3831	6181
		2-3	NM	237.5	63.7	<0.00106		<0.00529		0.0106		0.121		0.1316	1.51		5520		3670		5522	9192
BH-8	09/11/19	4-5	671	36.8	57.6	<0.00103		<0.00515		0.00093	J	0.0217		0.02263	0.142	В	336		1010		336.14	1346
		6-7	180	4.1	74.9	<0.00105		<0.00523		<0.00261		<0.00680			0.0564	ВJ	408		1030		408.06	1438
		9-10	128	3.4	214	<0.00105		<0.00526		<0.00263		<0.00684			0.0498	ВJ	10.6		9.11		10.65	19.76
BH-9	09/11/19	0-1	NM	5.4	22.4	<0.00100		<0.00502		<0.00251		<0.00653			0.0507	ВJ	155		452		155.05	607.05
	,,	2-3	NM	4.9	4.32	<0.00102		<0.00510		<0.00255		<0.00662			0.0508	B J	326		795		326.05	1121
		0-1	134	8.6	4	<0.00114		<0.00569		<0.00284		<0.00739			<0.114		24.7		32		24.7	56.7
BH-10	09/11/19	2-3	112	9.8	3.97	<0.00123		<0.00615		<0.00307		<0.00799			<0.123		<4.92		3.36	J		3.36
		4-5	NM	3.4	2.76	<0.00104		<0.00518		<0.00259		<0.00673			<0.105		115		194		115	309
BH-11	09/11/19	0-0.5	NM	0.1	30.7	<0.00101		<0.00506		<0.00253		<0.00658			<0.102		29.8		72.4		29.8	102.2
BH-12	09/11/19	0-0.5	NM	3.2	2.64	<0.00101		<0.00504		<0.00252		<0.00655			<0.102		21.1		69.9		21.1	91

NOTES:

ft. Feet

bgs Below ground surface mg/kg Milligrams per kilogram

5, 5

ppm Parts per million

NM Not measured

TPH Total Petroleum Hydrocarbons

DRO Diesel Range Organics

GRO Gasoline Range Organics

ORO Oil Range Organics

${\it Bold\ and\ italicized\ values\ exceed\ the\ proposed\ RRAL\ for\ the\ Site.}$

Shaded rows indicate depth intervals proposed for excavation and remediation.

- 1 Method 300.0
- 2 Method 8260B
- 3 Method 8015M
- B The same analyte is found in the associated blank.
- J The identification of the analyte is acceptable; the reported value is an estimate.
- J3 The associated batch QC was outside the established quality control range for precision.
- J4 The associated batch QC was outside the established quality control range for accuracy.

APPENDIX A C-141 Form

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NJEG1922759656
District RP	1RP-5641
Facility ID	fJEG1922759200
Application ID	pJEG1922758212

Release Notification

Responsible Party

Responsible Party Cor	nocoPhillips Con	npany	OGRID 2	217817						
Contact Name Gusta	vo Fejevary	<u> </u>	i i	elephone 432/210-7037						
Contact email g.fejer				Incident # (assigned by OCD)						
Contact mailing address	3300 N A ST. I	Midland Texa	as 79705	·						
<u></u>		Location	of Release S	ource						
Latitude _32.822975	i i	(NAD 83 in dec	Longitude imal degrees to 5 decin	-103.764358 nal places)						
Site Name BAISH A			Site Type	TANK BATTERY						
Date Release Discovered	¹ 6/19/19		API# (if app							
Unit Letter Section	Township	Range	Cour	nty						
H al	175	32 <i>E</i>		La						
Surface Owner: State]	Nature and	Volume of I	Release justification for the volumes provided below)						
☑ Crude Oil	Volume Released ((bbls) 3		Volume Recovered (bbls) 0						
Produced Water	Volume Released ((bbls) 3.62		Volume Recovered (bbls) 0						
,	Is the concentration in the produced wa			Yes No						
Condensate	Volume Released (Volume Recovered (bbls)						
Natural Gas	Volume Released (Mcf)		Volume Recovered (Mcf)						
Other (describe)	Volume/Weight Re	eleased (provide	units)	Volume/Weight Recovered (provide units)						
Cause of Release Dum	p valve had mal	functioned o	n the heater tr	reater.						

Form C-141 Page 2

State of New Mexico Oil Conservation Division

Incident ID	nJEG1922759656
District RP	1RP-5641
Facility ID	fJEG1922759200
Application ID	pJEG1922758212

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19.15.29.7(A) NMAC?	
☐ Yes ☑ No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
	Initial Response
The responsible a	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
The responsion p	any mass under date the following desions immediately funess mey could of each a sujety meant must would result in tighty
☐ The source of the rele	age has been stonned
	s been secured to protect human health and the environment.
l ·	we been contained via the use of berms or dikes, absorbent pads, or other containment devices.
l	ecoverable materials have been removed and managed appropriately.
i —	
If all the actions described	d above have not been undertaken, explain why: Due to the small volume we were not able to
recover any fluid. F	lowever, the site will be remediated according to the NMOCD Requirements.
:	
	AC the responsible party may commence remediation immediately after discovery of a release. If remediation
	a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred t area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
	mation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and
	required to report and/or file certain release notifications and perform corrective actions for releases which may endanger
	nent. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have
	ate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
and/or regulations.	
Printed Name: Gust	avo Fejevary _{Title:} Environmental Coordinator
	CP
Signature:	Date: 7/3/19
email: g.fejerváry@	cop.com Telephone: 432/210-7037
/	
OCD Only	
Received by:Jim Gri	iswold Date: 7/22/19

(ft bgs)

Form C-141 Page 3

State of New Mexico Oil Conservation Division

What is the shallowest depth to groundwater beneath the area affected by the release?

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

 $This information \ must \ be \ provided \ to \ the \ appropriate \ district \ office \ no \ later \ than \ 90 \ days \ after \ the \ release \ discovery \ date.$

☐ Yes ☐ No
☐ Yes ☐ No
cical extents of soil
s.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141 Page 4

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release noti public health or the environment. The acceptance of a C-141 report by the C failed to adequately investigate and remediate contamination that pose a thre addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	fications and perform corrective actions for releases which may endanger DCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Form C-141 Page 5

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	e included in the plan.
 □ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation point □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29.1 □ Proposed schedule for remediation (note if remediation plan times) 	2(C)(4) NMAC
	and is more usually a subject to suppression of the suppression is suppression.
Deferral Requests Only: Each of the following items must be con	firmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around predeconstruction.	oduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health	, the environment, or groundwater.
I hereby certify that the information given above is true and complet rules and regulations all operators are required to report and/or file of which may endanger public health or the environment. The accepta liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD responsibility for compliance with any other federal, state, or local limits of the environment of the environment.	ertain release notifications and perform corrective actions for releases nce of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
och o I	
OCD Only	
Received by:	Date:
☐ Approved ☐ Approved with Attached Conditions of	Approval
Signature:	Date:

APPENDIX B NMOSE Groundwater Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a

water right file.)

(R=POD has been replaced, O=orphaned,

C=the file is

(quarters are 1=NW 2=NE 3=SW 4=SE)

closed) (quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

POD Number	POD Sub- Code basin	County		Q Q 16 4		Tws	Rng	x	Y	•	•	Water Column
RA 12521 POD1	RA	LE	3 3	3 4	21	17S	32E	615127	3631271 🌕	105	92	13
RA 12522 POD1	RA	LE	3 3	3 4	21	17S	32E	614941	3631122 🌍	100		

Average Depth to Water: 92 feet

Minimum Depth: 92 feet

Maximum Depth: 92 feet

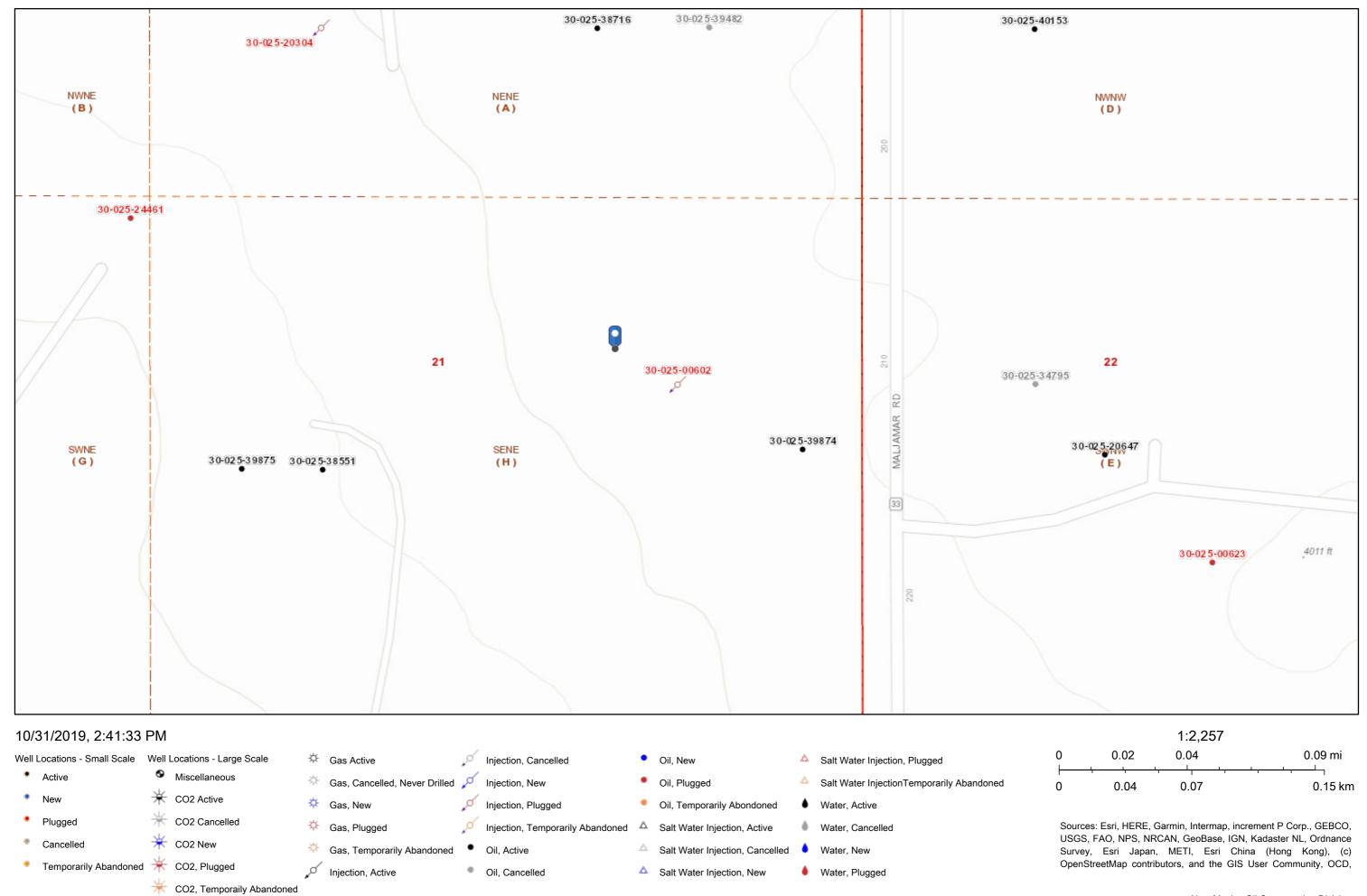
Record Count: 2

Basin/County Search:


County: Lea

PLSS Search:

Section(s): 21


Township: 17S

Range: 32E

Received by OCD: 11/15/2019 12:04:36 PM

Baish "A" Battery

APPENDIX C Laboratory Analytical Data

July 09, 2019

JUSTIN WRIGHT

Conoco Phillips - Hobbs

P. O. BOX 325

Hobbs, NM 88240

RE: BAISH A BATTERY

Enclosed are the results of analyses for samples received by the laboratory on 07/02/19 11:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accredited certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keens

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received:

07/02/2019

Sampling Date:

07/01/2019

Reported:

07/09/2019

Sampling Type:

Soil

Project Name: Project Number: BAISH A BATTERY NONE GIVEN Sampling Condition: Sample Received By: Cool & Intact Tamara Oldaker

Project Location:

COPC - LEA CO NM

Sample ID: SP # 1 - SURFACE (H902258-01)

mg,	/kg	Analyze	d By: ms								
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier			
<2.00	2.00	07/03/2019	ND	1.91	95.7	2.00	0.375				
6.20	2.00	07/03/2019	ND	2.03	101	2.00	3.41				
15.2	2.00	07/03/2019	ND	1.94	96.9	2.00	2.42				
77.1	6.00	07/03/2019	ND	5.82	97.0	6.00	1.52				
98.4	12.0	07/03/2019	ND								
	Result <2.00 6.20 15.2 77.1	<2.00 2.00 6.20 2.00 15.2 2.00 77.1 6.00	Result Reporting Limit Analyzed <2.00 2.00 07/03/2019 6.20 2.00 07/03/2019 15.2 2.00 07/03/2019 77.1 6.00 07/03/2019	Result Reporting Limit Analyzed Method Blank <2.00 2.00 07/03/2019 ND 6.20 2.00 07/03/2019 ND 15.2 2.00 07/03/2019 ND 77.1 6.00 07/03/2019 ND	Result Reporting Limit Analyzed Method Blank BS <2.00 2.00 07/03/2019 ND 1.91 6.20 2.00 07/03/2019 ND 2.03 15.2 2.00 07/03/2019 ND 1.94 77.1 6.00 07/03/2019 ND 5.82	Result Reporting Limit Analyzed Method Blank BS % Recovery <2.00 2.00 07/03/2019 ND 1.91 95.7 6.20 2.00 07/03/2019 ND 2.03 101 15.2 2.00 07/03/2019 ND 1.94 96.9 77.1 6.00 07/03/2019 ND 5.82 97.0	Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC <2.00 2.00 07/03/2019 ND 1.91 95.7 2.00 6.20 2.00 07/03/2019 ND 2.03 101 2.00 15.2 2.00 07/03/2019 ND 1.94 96.9 2.00 77.1 6.00 07/03/2019 ND 5.82 97.0 6.00	Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD <2.00 2.00 07/03/2019 ND 1.91 95.7 2.00 0.375 6.20 2.00 07/03/2019 ND 2.03 101 2.00 3.41 15.2 2.00 07/03/2019 ND 1.94 96.9 2.00 2.42 77.1 6.00 07/03/2019 ND 5.82 97.0 6.00 1.52			

Surrogate: 4-Bromofluorobenzene (PID

105 %

73.3-129

Chloride, SM4500CI-B	mg,	mg/kg		Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/03/2019	ND	416	104	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	2230	50.0	07/03/2019	ND	193	96.5	200	1.97	
DRO >C10-C28*	10400	50.0	07/03/2019	ND	190	95.2	200	5.09	
EXT DRO >C28-C36	1570	50.0	07/03/2019	ND					

Surrogate: 1-Chlorooctane

256 %

41-142

Surrogate: 1-Chlorooctadecane

394 %

37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any daim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 2 of 30

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019 07/09/2019

Project Name: Project Number: **BAISH A BATTERY** NONE GIVEN

Project Location:

COPC - LEA CO NM

Sampling Date:

07/01/2019

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact

Tamara Oldaker

Sample ID: SP # 1 - 2' (H902258-02)

mg	/kg Analyzed By: ms							
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
<2.00	2.00	07/03/2019	ND	1.91	95.7	2.00	0.375	
3.71	2.00	07/03/2019	ND	2.03	101	2.00	3.41	
11.3	2.00	07/03/2019	ND	1.94	96.9	2.00	2.42	
46.7	6.00	07/03/2019	ND	5.82	97.0	6.00	1.52	
61.7	12.0	07/03/2019	ND					
105	% 73.3-12	9						
mg	/kg	Analyze	d By: AC					
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
<16.0	16.0	07/03/2019	ND	416	104	400	0.00	
mg/kg		Analyzed By: MS						
mg,	/kg	Analyze	d By: MS					S-06
mg , Result	/kg Reporting Limit	Analyze Analyzed	d By: MS Method Blank	BS	% Recovery	True Value QC	RPD	S-06 Qualifier
		<u> </u>		BS 193	% Recovery 96.5	True Value QC	RPD 1.97	
Result	Reporting Limit	Analyzed	Method Blank		,	•		
	Result <2.00 3.71 11.3 46.7 61.7 105 : mg/	<2.00 2.00 3.71 2.00 11.3 2.00 46.7 6.00 61.7 12.0 105 % 73.3-12 mg/kg Result Reporting Limit	Result Reporting Limit Analyzed <2.00	Result Reporting Limit Analyzed Method Blank <2.00	Result Reporting Limit Analyzed Method Blank BS <2.00	Result Reporting Limit Analyzed Method Blank BS % Recovery <2.00	Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC <2.00	Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD <2.00

199 % 41-142 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane 306 % 37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Freene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: Project Name: 07/02/2019

07/09/2019 **BAISH A BATTERY**

Project Number: Project Location: NONE GIVEN COPC - LEA CO NM Sampling Date:

07/01/2019

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact

Tamara Oldaker

Sample ID: SP # 1 - 4' (H902258-03)

BTEX 8021B	mg/	'kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2019	ND	1.91	95.7	2.00	0.375	
Toluene*	<0.050	0.050	07/03/2019	ND	2.03	101	2.00	3.41	
Ethylbenzene*	<0.050	0.050	07/03/2019	ND	1.94	96.9	2.00	2.42	
Total Xylenes*	0.209	0.150	07/03/2019	ND	5.82	97.0	6.00	1.52	
Total BTEX	<0.300	0.300	07/03/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 5	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/03/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	07/03/2019	ND	193	96.5	200	1.97	
DRO >C10-C28*	376	50.0	07/03/2019	ND	190	95.2	200	5.09	
EXT DRO >C28-C36	270	50.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	104 5	% 41-142	?						
Surrogate: 1-Chlorooctadecane	118 9	% 37.6-14	7						

*=Accredited Analyte Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

Sampling Date: Sampling Type: 07/01/2019 Soil

Project Name: Project Number: 07/09/2019 **BAISH A BATTERY** NONE GIVEN

Sampling Condition: Sample Received By: Cool & Intact Tamara Oldaker

Project Location:

COPC - LEA CO NM

Sample ID: SP # 2 - SURFACE (H902258-04)

BTEX 8021B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<1.00	1.00	07/04/2019	ND	1.63	81.6	2.00	2.28	QR-03
Toluene*	9.35	1.00	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	16.8	1.00	07/04/2019	ND	1.68	84.2	2.00	3.08	QM-07
Total Xylenes*	60.9	3.00	07/04/2019	ND	5.11	85.1	6.00	2.75	QM-07
Total BTEX	87.1	6.00	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/03/2019	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1480	50.0	07/03/2019	ND	190	94.8	200	0.817	QM-07
DRO >C10-C28*	17300	50.0	07/03/2019	ND	183	91.6	200	0.350	QM-07
EXT DRO >C28-C36	3200	50.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	396	% 41-142	?						
Surrogate: 1-Chlorooctadecane	543	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019 07/09/2019

Project Name: Project Number: **BAISH A BATTERY** NONE GIVEN COPC - LEA CO NM

Project Location:

Sampling Date: Sampling Type: 07/01/2019 Soil

Sampling Condition: Sample Received By: Cool & Intact Tamara Oldaker

Sample ID: SP # 2 - 2' (H902258-05)

BTEX	8021B	
BTEX	8021B	

BTEX 8021B	mg/	/kg	Analyze	ed By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	<0.050	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	<0.050	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	<0.150	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	<0.300	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/03/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	20.3	10.0	07/03/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	21.5	10.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	68.3	% 41-142	?						
G	70.0	0/ 27/14	-						

Surrogate: 1-Chlorooctadecane

70.8 %

37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019 07/09/2019

Project Name: Project Number: **BAISH A BATTERY** NONE GIVEN COPC - LEA CO NM

Project Location:

Sampling Date: Sampling Type: 07/01/2019 Soil

Sampling Condition: Sample Received By: Cool & Intact Tamara Oldaker

Sample ID: SP # 2 - 4' (H902258-06)

BTEX 8021B	
------------	--

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	<0.050	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	<0.050	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	<0.150	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	<0.300	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.3	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/03/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	<10.0	10.0	07/03/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	<10.0	10.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	67.3	% 41-142	1						
Surrogate: 1-Chlorooctadecane	70.1	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019

Project Name: Project Number: **BAISH A BATTERY** NONE GIVEN

Sampling Type:

07/01/2019 Soil

Sampling Condition:

Sampling Date:

Sample Received By:

Cool & Intact Tamara Oldaker

Project Location:

COPC - LEA CO NM

Sample ID: SP # 3 - SURFACE (H902258-07)

BTEX 8021B	mg/kg		Analyzed By: ms					S-04		
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28		
Toluene*	1.80	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398		
Ethylbenzene*	3.06	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08		
Total Xylenes*	11.6	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75		
Total BTEX	16.5	0.300	07/04/2019	ND						
Surrogate: 4-Bromofluorobenzene (PID	131 9	% 73.3-12	9							
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Chloride	1660	16.0	07/03/2019	ND	416	104	400	0.00		
TPH 8015M	mg/kg		Analyzed By: MS						S-06	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
GRO C6-C10*	281	50.0	07/03/2019	ND	190	94.8	200	0.817		
DRO >C10-C28*	15600	50.0	07/03/2019	ND	183	91.6	200	0.350		
EXT DRO >C28-C36	4190	50.0	07/03/2019	ND						
Surrogate: 1-Chlorooctane	145	% 41-142	?							
Surrogate: 1-Chlorooctadecane	577	% 37.6-14	7							

577 % 37.6-147 Surrogate: 1-Chlorooctadecane

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Freene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: Project Name: 07/02/2019

07/09/2019 **BAISH A BATTERY** NONE GIVEN

Project Number: Project Location:

COPC - LEA CO NM

Sampling Date:

07/01/2019

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact

Tamara Oldaker

Sample ID: SP # 3 - 2' (H902258-08)

BTEX 8021B	mg/kg		Analyzed By: ms						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	<0.050	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	<0.050	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	<0.150	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	<0.300	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 73.3-12	9						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	07/03/2019	ND	416	104	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/05/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	1430	10.0	07/05/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	978	10.0	07/05/2019	ND					
Surrogate: 1-Chlorooctane	65.3	% 41-142	?						
Surrogate: 1-Chlorooctadecane	106	% 37.6-14	7						

*=Accredited Analyte Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received:

07/02/2019 07/09/2019

Reported: Project Name:

BAISH A BATTERY NONE GIVEN

Project Number: Project Location:

COPC - LEA CO NM

Sampling Date:

07/01/2019

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact

Tamara Oldaker

Sample ID: SP # 3 - 4' (H902258-09)

BTEX	8021B

BTEX 8021B	mg/kg		Analyzed By: ms						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	<0.050	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	<0.050	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	<0.150	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	<0.300	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 73.3-12	9						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/03/2019	ND	416	104	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/05/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	1810	10.0	07/05/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	1000	10.0	07/05/2019	ND					
Surrogate: 1-Chlorooctane	72.2	% 41-142	?						
Surrogate: 1-Chlorooctadecane	108 9	% 37.6-14	7						

Surrogate: 1-Chlorooctadecane

108 %

*=Accredited Analyte Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019 07/09/2019

Project Name: Project Number: **BAISH A BATTERY** NONE GIVEN COPC - LEA CO NM

Project Location:

Sampling Date:

07/01/2019

Sampling Type:

Soil Sampling Condition:

Cool & Intact

Sample Received By:

Tamara Oldaker

Sample ID: SP # 3 - 6' (H902258-10)

BTEX 8021B	mg/kg		Analyzed By: ms						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	<0.050	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	<0.050	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	<0.150	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	<0.300	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 73.3-12	9						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	07/03/2019	ND	416	104	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	192	10.0	07/03/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	109	10.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	67.1	% 41-142	?						
Surrogate: 1-Chlorooctadecane	83.7	% 37.6-14	7						

*=Accredited Analyte Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received:

07/02/2019

Sampling Date:

07/01/2019

Reported:

GRO C6-C10*

DRO >C10-C28*

Surrogate: 1-Chlorooctadecane

07/09/2019

Sampling Type:

Soil

Project Name: Project Number: BAISH A BATTERY NONE GIVEN

Sampling Condition: Sample Received By: Cool & Intact Tamara Oldaker

Project Location:

COPC - LEA CO NM

Sample ID: SP # 3 - 8' (H902258-11)

BTEX 8021B	mg/kg

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	<0.050	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	<0.050	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	<0.150	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	<0.300	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	07/03/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier

ND

ND

ND

190

183

94.8

91.6

200

200

0.817

0.350

07/03/2019

07/03/2019

07/03/2019

Analyzed By: ms

EXT DRO >C28-C36	51.0	10.0
Surrogate: 1-Chlorooctane	72.3 %	41-142

<10.0

95.7

77.0 %

10.0

10.0

37.6-147

*=Accredited Analyte Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019

Project Name: Project Number: BAISH A BATTERY NONE GIVEN COPC - LEA CO NM

Project Location:

Sampling Date:

07/01/2019 Soil

Sampling Type: Sampling Condition:

Cool & Intact

Sample Received By:

Tamara Oldaker

Sample ID: SP # 4 - SURFACE (H902258-12)

BTEX 8021B	mg/kg		Analyze	Analyzed By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	2.44	1.00	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	25.4	1.00	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	18.0	1.00	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	63.1	3.00	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	109	6.00	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	112	% 73.3-12	9						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/03/2019	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1690	50.0	07/03/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	17700	50.0	07/03/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	2900	50.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	392	% 41-142	?						
Surrogate: 1-Chlorooctadecane	562	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported:

BTEX 8021B

07/02/2019

07/09/2019

Project Name: Project Number: Project Location: BAISH A BATTERY NONE GIVEN COPC - LEA CO NM

mg/kg

Sampling Date: Sampling Type: 07/01/2019

Soil Sampling Condition:

Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: SP # 4 - 2' (H902258-13)

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	0.064	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	0.166	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	0.634	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	0.864	0.300	07/04/2019	ND					

Analyzed By: ms

rogate: 4-Rromofluorobenzene (PII)

73 3-120

Surrogate: 4-Bromofluorobenzene (PID	102	% /3.3-129	,						
Chloride, SM4500CI-B	mg/kg		Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	20.7	10.0	07/03/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	142	10.0	07/03/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	51.6	10.0	07/03/2019	ND					

Surrogate: 1-Chlorooctane

77.0 %

41-142

Surrogate: 1-Chlorooctadecane

81.7 %

37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported:

BTEX 8021B

EXT DRO >C28-C36

07/02/2019

07/09/2019

Project Name: Project Number: BAISH A BATTERY NONE GIVEN COPC - LEA CO NM

Project Location:

mg/kg

Sampling Date:

07/01/2019

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact

Tamara Oldaker

Sample ID: SP # 4 - 4' (H902258-14)

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.200	0.200	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	4.53	0.200	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	4.39	0.200	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	14.3	0.600	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	23.3	1.20	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 5	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	373	10.0	07/09/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	2230	10.0	07/09/2019	ND	183	91.6	200	0.350	

ND

07/09/2019

Analyzed By: ms

Surrogate: 1-Chlorooctane 156 % 41-142 169 % Surrogate: 1-Chlorooctadecane 37.6-147

393

10.0

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019

Project Name: Project Number: BAISH A BATTERY NONE GIVEN

Project Location:

COPC - LEA CO NM

Sampling Date:

07/01/2019

Sampling Type:

Soil Sampling Condition:

Sample Received By:

Cool & Intact

Tamara Oldaker

Sample ID: SP # 5 - SURFACE (H902258-15)

BTEX 8021B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.300	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	4.61	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	3.50	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	12.1	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	20.5	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	128	% 73.3-12	9						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	682	50.0	07/03/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	32500	50.0	07/03/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	7580	50.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	205	% 41-142	?						
Surrogate: 1-Chlorooctadecane	1300	% 37.6-14	7						

*=Accredited Analyte Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Celey D. Keene, Lab Director/Quality Manager

Page 16 of 30

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019

Project Name: Project Number: BAISH A BATTERY NONE GIVEN COPC - LEA CO NM

Project Location:

Sampling Date:

07/01/2019

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact

Tamara Oldaker

Sample ID: SP # 5 - 2' (H902258-16)

В	EX	8071R	
_			_

BTEX 8021B	mg	/kg	Analyzed By: ms			
Analyte	Result	Reporting Limit	Analyzed	Method		

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.055	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	0.292	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	0.372	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	1.26	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	1.97	0.300	07/04/2019	ND					

Surrogate: 4-Bromofluorobenzene (PID

103 %

73.3-129

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	22.3	10.0	07/05/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	819	10.0	07/05/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	572	10.0	07/05/2019	ND					

Surrogate: 1-Chlorooctane

55.4 %

41-142

Surrogate: 1-Chlorooctadecane

75.5 %

37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Celey D. Keene, Lab Director/Quality Manager

Page 17 of 30

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019

Project Name: Project Number: BAISH A BATTERY NONE GIVEN

Project Location:

COPC - LEA CO NM

mg/kg

Sampling Date:

Sampling Type:

07/01/2019 Soil

Sampling Condition: Sample Received By: Cool & Intact

Tamara Oldaker

Sample ID: SP # 5 - 4' (H902258-17)

BTEX	8021B

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	0.104	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	0.138	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	0.461	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	0.703	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
	mg ,	Reporting Limit	Analyze Analyzed	d By: AC Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride, SM4500Cl-B			<u> </u>		BS 416	% Recovery	True Value QC 400	RPD 3.92	Qualifier
Chloride, SM4500Cl-B Analyte	Result	Reporting Limit	Analyzed 07/03/2019	Method Blank		,	_		Qualifier
Chloride, SM4500Cl-B Analyte Chloride	Result	Reporting Limit	Analyzed 07/03/2019	Method Blank		,	_		Qualifier Qualifier
Chloride, SM4500CI-B Analyte Chloride TPH 8015M	Result 288	Reporting Limit 16.0	Analyzed 07/03/2019 Analyze	Method Blank ND d By: MS	416	104	400	3.92	

ND

Analyzed By: ms

Surrogate: 1-Chlorooctane

EXT DRO >C28-C36

71.7 %

315

41-142

07/05/2019

10.0

Surrogate: 1-Chlorooctadecane

108 %

37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Celey D. Keene, Lab Director/Quality Manager

Page 18 of 30

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019

Project Name: Project Number: Project Location: BAISH A BATTERY NONE GIVEN

COPC - LEA CO NM

Sampling Date:

07/01/2019

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact

Tamara Oldaker

Sample ID: SP # 6 - SURFACE (H902258-18)

BTEX 8021B	mg/kg		Analyze	Analyzed By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.500	0.500	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	9.45	0.500	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	11.5	0.500	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	43.9	1.50	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	64.9	3.00	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	123	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	Analyzed By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1490	50.0	07/03/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	22000	50.0	07/03/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	4380	50.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	443	% 41-142	?						
Surrogate: 1-Chlorooctadecane	683	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received:

07/02/2019

Reported: Project Name: 07/09/2019

Project Number: Project Location: NONE GIVEN

BAISH A BATTERY

COPC - LEA CO NM

Sampling Date:

07/01/2019

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact

Tamara Oldaker

Sample ID: SP # 6 - 2' (H902258-19)

BTEX	8021B

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	0.497	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	0.092	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	<0.150	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	0.726	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
				Mada ad Diada	D.C.	0/ D	T VI 00	DDD	Qualifier
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifiei
Analyte GRO C6-C10*	Result	Reporting Limit 10.0	07/05/2019	ND	190	% Recovery 94.8	200	0.817	Qualifiei
,		. 3	,			,	·		Quaimei

Analyzed By: ms

Surrogate: 1-Chlorooctane

68.2 %

41-142

Surrogate: 1-Chlorooctadecane

108 %

37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Celey D. Keene, Lab Director/Quality Manager

Page 20 of 30

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019

Project Name: Project Number: BAISH A BATTERY NONE GIVEN COPC - LEA CO NM

mg/kg

Project Location:

Sampling Date: Sampling Type:

Sampling Condition: Sample Received By: 07/01/2019 Soil

Cool & Intact Tamara Oldaker

Sample ID: SP # 6 - 4' (H902258-20)

ВТ	EX	80	21B	
_				

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	< 0.050	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	< 0.050	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	< 0.150	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	<0.300	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg/	kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/05/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	1430	10.0	07/05/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	1120	10.0	07/05/2019	ND					
Surrogate: 1-Chlorooctane	69.5 9	% 41-142	.						

Analyzed By: ms

Surrogate: 1-Chlorooctadecane

141 %

37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019

Project Name: Project Number: **BAISH A BATTERY** NONE GIVEN

Project Location:

COPC - LEA CO NM

Sampling Date:

07/01/2019

Sampling Type: Sampling Condition: Soil

Cool & Intact

Sample Received By:

Tamara Oldaker

Sample ID: SP # 6 - 6' (H902258-21)

BTEX 8021B	mg/kg		Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	<0.050	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	<0.050	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	<0.150	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	<0.300	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg/	'kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	12.1	10.0	07/03/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	14.4	10.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	75.4	% 41-142	?						
Surrogate: 1-Chlorooctadecane	74.3	% 37.6-14	7						

*=Accredited Analyte Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received:

07/02/2019

Sampling Date:

07/01/2019

Reported:

07/09/2019 **BAISH A BATTERY**

Sampling Type: Sampling Condition: Soil Cool & Intact

Project Name: Project Number:

NONE GIVEN

Sample Received By:

Tamara Oldaker

Project Location:

COPC - LEA CO NM

Sample ID: SP # 7 - SURFACE (H902258-22)

BTEX 8021B	mg/kg		Analyzed By: ms						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS % Recov	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.515	0.500	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	11.0	0.500	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	14.4	0.500	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	48.6	1.50	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	74.5	3.00	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	123	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1580	50.0	07/03/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	18600	50.0	07/03/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	3700	50.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	457	% 41-142	?						
Surrogate: 1-Chlorooctadecane	538	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019

Project Name: Project Number: **BAISH A BATTERY** NONE GIVEN COPC - LEA CO NM

Project Location:

Sampling Date:

07/01/2019

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact Tamara Oldaker

Sample ID: SP # 7 - 2' (H902258-23)

BTEX 8021B	mg/kg		Analyze	Analyzed By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2019	ND	1.63	81.6	2.00	2.28	
Toluene*	<0.050	0.050	07/04/2019	ND	1.75	87.3	2.00	0.398	
Ethylbenzene*	0.059	0.050	07/04/2019	ND	1.68	84.2	2.00	3.08	
Total Xylenes*	0.225	0.150	07/04/2019	ND	5.11	85.1	6.00	2.75	
Total BTEX	<0.300	0.300	07/04/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 5	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg/	'kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	12.8	10.0	07/03/2019	ND	190	94.8	200	0.817	
DRO >C10-C28*	442	10.0	07/03/2019	ND	183	91.6	200	0.350	
EXT DRO >C28-C36	122	10.0	07/03/2019	ND					
Surrogate: 1-Chlorooctane	76.6	% 41-142	!						

Surrogate: 1-Chlorooctadecane

85.7 %

37.6-147

*=Accredited Analyte Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Freene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019 **BAISH A BATTERY**

Project Name: Project Number:

NONE GIVEN COPC - LEA CO NM

Project Location:

Sampling Date:

07/01/2019 Soil

Sampling Type: Sampling Condition:

Cool & Intact

Sample Received By:

Tamara Oldaker

Sample ID: SP # 7 - 4' (H902258-24)

BTEX 8021B	mg/kg		Analyze	Analyzed By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2019	ND	1.61	80.7	2.00	0.0650	
Toluene*	0.198	0.050	07/03/2019	ND	1.71	85.6	2.00	0.670	
Ethylbenzene*	0.139	0.050	07/03/2019	ND	1.64	81.9	2.00	0.327	
Total Xylenes*	0.401	0.150	07/03/2019	ND	4.97	82.9	6.00	0.539	
Total BTEX	0.737	0.300	07/03/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	24.1	10.0	07/04/2019	ND	206	103	200	2.41	
DRO >C10-C28*	912	10.0	07/04/2019	ND	208	104	200	3.99	
EXT DRO >C28-C36	193	10.0	07/04/2019	ND					
Surrogate: 1-Chlorooctane	84.1	% 41-142	?						
Surrogate: 1-Chlorooctadecane	108	% 37.6-14	7						

*=Accredited Analyte Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: Reported: 07/02/2019

07/09/2019

Project Name: Project Number: Project Location: **BAISH A BATTERY** NONE GIVEN COPC - LEA CO NM

Sampling Date:

Sampling Type:

Sampling Condition: Sample Received By: 07/01/2019

Soil

Cool & Intact Tamara Oldaker

Sample ID: SP # 7 - 6' (H902258-25)

ы	ᅜᄉ	80	ZID	
_				-

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2019	ND	1.61	80.7	2.00	0.0650	
Toluene*	<0.050	0.050	07/03/2019	ND	1.71	85.6	2.00	0.670	
Ethylbenzene*	<0.050	0.050	07/03/2019	ND	1.64	81.9	2.00	0.327	
Total Xylenes*	<0.150	0.150	07/03/2019	ND	4.97	82.9	6.00	0.539	
Total BTEX	<0.300	0.300	07/03/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.2	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/05/2019	ND	206	103	200	2.41	
DRO >C10-C28*	107	10.0	07/05/2019	ND	208	104	200	3.99	
EXT DRO >C28-C36	87.1	10.0	07/05/2019	ND					
Surrogate: 1-Chlorooctane	68.7	% 41-142	?						
G	02.6		_						

Surrogate: 1-Chlorooctadecane

82.6 %

37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Kreene

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

← Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476.

į.	Page	<i>53</i>	of I
iame:	ARDINAL LABORA	4	Page 28 of 30
- 1	101 E	Š	Pa
Phis A Bestery	OINAL LABORA 101 East Marland, Hobb (575) 393-2326 Fax (
trend	4B0/ rland, h 2326 F		
	lobb ax (

ARDINAL LABORA I ONICO		Pageof
(575) 393-2326 Fax (575) 393-2476	BILL TO	ANALYSIS REQUEST
العار	P.O. #:	
	Attn:	
665 Fax #:	Address:	
75-631-90%		
2 10 1401	State: Zip:	
Project Name: Baish A Batter	Phone #:	
on: Les County inth	Fax #: SAMPLING	
Justing Will Best		25
(C)OMF ERS		orida H- EX
-	UDGE THER: CID/BAS SE / COC THER:	Chi TP. BT.
(G) # C	0 A 10 0 7-/	
HADLES SPAIL-SURFACE G	_	K K K
25041-3'	7-1 7:23	
3 SPA1-4/2 6		
10 ores	,	
4)	77.7	
1 SPA3-Jurace G		
8 5743-8		
9 59#3-4	The limited to the arrount paid by the client for the	,
10 SPM3 - 4. The analysis of the state of t	contract or tort, shall be limutu in the arrown, pre	30 days past dua at the tate of Levis Jen announcement of the control of the cont
PLEASE NOTE: Labura including Indea for negligence and any other recent damages, including without limitation, business interruptions. The provided in the above stated reasons or otherwise, analyses All claims including lines to includental or consequent damages, including without limitation, business interruptions. The provided in the above stated reasons or otherwise, analyses All claims including lines to includental or consequent damages, including without limitation, business interruptions. The provided in the above stated reasons or otherwise, analyses All claims including lines to include a consequent damages, including without limitation, business interruptions.	th claim is based upon any of the above stated reasons or otherwise.	No No
service in no event shall out of or gelated to the performance of solution. Datte: Datte: T-2-5 Timp: Datin Timp: Datin Timp: Datin	Fax Result:	□ No Add1Fax#:
Relinquished By:		
Temp. Sample Cool	<u>Q</u>	
3.36 #	7 No No No Y C No No No No No No No	
Dicase	60 60 000 100	

30

ō

53 Page 2

11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	Project Location: Lea Court 1 1994	Project Name: SALSA IT LIMITED Phone #:	State:	2/1/1/16	Address: State: Mm Zip: 8840 Attn:	Project Manager: JUSTIM WILLIGHT Company: CONC	Company Name: CONDCOLONIA P.O. #:	X (0/0) 000-2410	ARDINAL LABORATORIES 101 East Marland, Hobbs, NM 88240
			Zip:			7		BILL TO ANALYSIS REQUEST	Pageof

Sampler Name: FOR LAB USE ONLY

MATRIX

PRESERV.

SAMPLING

Lab I.D.

Sample I.D.

(G)RAB OR (C)OMP.

CONTAINERS GROUNDWATER WASTEWATER

SOIL OIL SLUDGE

OTHER:

OTHER:

DATE

TIME

8:17 8:00 ACID/BASE: ICE / COOL

P-17#65 8-17#ds

5P#4-50

000

0

0 0

8:56 10,6

9:07

Terms and Conditions: interest will be charged on all ac 30 days past due at the rate of 24% per annum from the c and all costs of cellections, including atterney's fees.

original date of invoice,

8:50

8:39 8:34 8:30 8:24

SP#5-surface

SP#5-2' 8P#5-4

SPALE-Surface

18-9#ds

90

P.LEASE NOTE: Labiny and Damages, Caronia a name, and their cause whatsoover shall be deemed waived unless made in writing and received by (
p.LEASE NOTE: Labiny and Damages, Caronia and my other cause whatsoover shall be deemed waived unless made in writing and received by (
p.LEASE NOTE: Labiny and Damages, Caronia and my other cause whatsoover shall be deemed waived unless from plant is based use, or
analyses All claims in locational be leafed for incidental or consequential damages, including white incidental caronia made of the performance of services hereunder by Cardinal, regardless of whether such claim is based usen
sorvice in no event shall certain of the performance of services hereunder by Cardinal, regardless of whether such claim is based usen. Sampler Rel Relinduished By: Sampler - UPS - Bus - Other: Delivered By: (Circle One) Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476. duished: Time: Temp. Received By: Sample Condition
Cool Intact
Pes Pes
No No d received by Cardinal within 30 days after completion of the applicable loss of use, or loss of profits incurred by client, its subsidiaries, CHECKED BY: (Initials) REMARKS: Fax Result: Phone Result: NO Add'l Phone #: Add'l Fax #:

Sampler - UPS - Bus - Other: Delivered By: (Circle One)

Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476.

000

Cool Intact
Pres Pres
No No Sample Condition

CHECKED BY: (Initials)

Page 5.	5 of 180
HOP	30
X	of 3

Page 30

Pr Co DINAL LABORATORIES

Sampler Relinquished: Tipe: Tipe: Date: Time:	analyses. All claims service in no event shall Cardinal be liable for incidental of services hereunder service in no exerts arising out of or related to the performance of services hereunder.	PLEASE NOTE: Lability and Damages. Cardinal's liability and client's exclusive remody in the property of the p	25 SP# 7-4)	12 5PHG-6 22 5PH 7-Surface	Lab I.D. Sample I.D.	Sampler Name: With Wight	# 575-631 TUE	State://///	Project Manager: Justin Wright	(575) 393-2326 Fax (575) 393-24/b	101 East Marland, Hobbs, NM 88240
Received By:	by Cardinal, regalitiess of without a Received By: Received By: Fax Result:	PLEASE NOTE: Liability and Damages, Cardina's liability and client's exclusive remody for any claim arising whether based in contract or text, shall be limited to the amount paid by the client for the applicable process of the property of	6 1 7 7 9:41	7-1	# CONTAINERS GROUNDWATE WASTEWATER SOIL OIL SLUDGE OTHER: ACID/BASE: ICE / COOL OTHER: DATE TIME	MATRIX PRESERV. SAMPLING	: COPC City: State: Zip: Phone #:	Zip: 8840 Attn:	P.O. #: Company: COPC	BILL TO	
	No 8)			Chlorie TPH BIEX					ANALYCIC REGORD:	

ANALYTICAL REPORT

September 23, 2019

ConocoPhillips - Tetra Tech

L1139267 Sample Delivery Group:

Samples Received: 09/13/2019

Project Number: 212C-MD-01878

Description: COP Baish A Battery

Report To: Christian Llull

901 West Wall

Suite 100

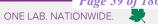
Midland, TX 79701

Entire Report Reviewed By:

Jason Romer

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	4
Cn: Case Narrative	14
Sr: Sample Results	15
BH-1 (0'-1') L1139267-01	15
BH-1 (2'-3') L1139267-02	16
BH-1 (4'-5') L1139267-03	17
BH-1 (6'-7') L1139267-04	18
BH-1 (9'-10') L1139267-05	19
BH-2 (0'-1') L1139267-06	20
BH-2 (2'-3') L1139267-07	21
BH-2 (4'-5') L1139267-08	22
BH-2 (6'-7') L1139267-09	23
BH-2 (9'-10') L1139267-10	24
BH-3 (0'-1') L1139267-11	25
BH-3 (2'-3') L1139267-12	26
BH-3 (4'-5') L1139267-13	27
BH-3 (6'-7') L1139267-14	28
BH-3 (9'-10') L1139267-15	29
BH-4 (0'-1') L1139267-16	30
BH-4 (2'-3') L1139267-17	31
BH-4 (4'-5') L1139267-18	32
BH-4 (6'-7') L1139267-19	33
BH-4 (9'-10') L1139267-20	34
BH-5 (0'-1') L1139267-21	35
BH-5 (2'-3') L1139267-22	36
BH-5 (4'-5') L1139267-23	37
BH-5 (6'-7') L1139267-24	38
BH-5 (9'-10') L1139267-25	39
BH-5 (12'-13') L1139267-26	40
BH-5 (14'-15') L1139267-27	41
BH-5 (19'-20') L1139267-28	42
BH-6 (0'-1') L1139267-29	43
BH-6 (2'-3') L1139267-30	44
BH-6 (4'-5') L1139267-31	45
BH-6 (6'-7') L1139267-32	46
BH-7 (0'-1') L1139267-33	47
BH-7 (2'-3') L1139267-34	48
BH-7 (4'-5') L1139267-35	49



NWIDE.	*	
	¹ Cp	
	² Tc	
	³ Ss	
	⁴ Cn	
	⁵ Sr	
	⁶ Qc	
	⁷ Gl	
	⁸ Al	
	⁹ Sc	

BH-8 (0'-1') L1139267-36	50
BH-8 (2'-3') L1139267-37	51
BH-8 (4'-5') L1139267-38	52
BH-8 (6'-7') L1139267-39	53
BH-8 (9'-10') L1139267-40	54
BH-9 (0'-1') L1139267-41	55
BH-9 (2'-3') L1139267-42	56
BH-10 (0'-1') L1139267-43	57
BH-10 (2'-3') L1139267-44	58
BH-10 (4'-5') L1139267-45	59
BH-11 (0'-0.5') L1139267-46	60
BH-12 (0'-0.5') L1139267-47	61
Qc: Quality Control Summary	62
Total Solids by Method 2540 G-2011	62
Wet Chemistry by Method 300.0	68
Volatile Organic Compounds (GC) by Method 8015D/GRO	73
Volatile Organic Compounds (GC/MS) by Method 8260B	80
Semi-Volatile Organic Compounds (GC) by Method 8015	83
GI: Glossary of Terms	88
Al: Accreditations & Locations	90
Sc: Sample Chain of Custody	91

[°]Qc

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
BH-1 (0'-1') L1139267-01 Solid			-,	09/10/19 12:00	09/13/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348336	1	09/19/19 18:59	09/19/19 19:08	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346408	1	09/16/19 23:40	09/17/19 05:38	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347755	1	09/15/19 01:29	09/18/19 18:18	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347343	1	09/15/19 01:29	09/18/19 00:40	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345951	20	09/14/19 19:39	09/16/19 15:56	TJD	Mt. Juliet, TN
BH-1 (2'-3') L1139267-02 Solid			Collected by	Collected date/time 09/10/19 12:05	Received da 09/13/19 08:-	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348337	1	09/19/19 18:49	09/19/19 18:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346408	1	09/16/19 23:40	09/17/19 05:53	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347755	1	09/15/19 01:29	09/18/19 18:38	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347343	1	09/15/19 01:29	09/18/19 01:01	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345951	20	09/14/19 19:39	09/16/19 15:15	TJD	Mt. Juliet, TN
BH-1 (4'-5') L1139267-03 Solid			Collected by	Collected date/time 09/10/19 12:10	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
wellou	Dateii	Dilution	date/time	Analysis date/time	Analyst	LOCATION
Total Solids by Method 2540 G-2011	WG1348337	1	09/19/19 18:49	09/19/19 18:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346408	1	09/16/19 23:40	09/17/19 07:05	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347755	1	09/15/19 01:29	09/18/19 19:25	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347343	1	09/15/19 01:29	09/18/19 01:22	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345951	40	09/14/19 19:39	09/16/19 16:09	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-1 (6'-7') L1139267-04 Solid				09/10/19 12:20	09/13/19 08:4	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348337	1	09/19/19 18:49	09/19/19 18:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346408	1	09/16/19 23:40	09/17/19 07:19	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347755	1	09/15/19 01:29	09/18/19 19:45	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347343	1	09/15/19 01:29	09/18/19 01:42	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345951	5	09/14/19 19:39	09/16/19 14:49	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (9'-10') L1139267-05 Solid				09/10/19 12:30	09/13/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Calida by Mathad 2E40 C 2011	WC40 40007	1	date/time	date/time	KDM	M+ lultat TM
Total Solids by Method 2540 G-2011	WG1348337	1	09/19/19 18:49	09/19/19 18:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346408	5	09/16/19 23:40	09/17/19 07:34	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347755	1	09/15/19 01:29	09/18/19 20:05	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347343	1	09/15/19 01:29	09/18/19 02:02	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345951	1	09/14/19 19:39	09/16/19 14:22	TJD	Mt. Juliet, TN

SAMPLE SUMMARY

BH-2 (0'-1') L1139267-06 Solid			Collected by	Collected date/time 09/10/19 13:00	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348337	1	09/19/19 18:49	09/19/19 18:57	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1346408	1	09/16/19 23:40	09/17/19 07:48	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347755	1	09/15/19 01:29	09/18/19 20:26	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347343	1	09/15/19 01:29	09/18/19 02:23	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345951	20	09/14/19 19:39	09/16/19 15:42	TJD	Mt. Juliet, TN
BH-2 (2'-3') L1139267-07 Solid			Collected by	Collected date/time 09/10/19 13:05	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Fotal Solids by Mothod 2540 C 2011	WC1240227	1	date/time 09/19/19 18:49	date/time	KDM	Mt Juliot TM
Total Solids by Method 2540 G-2011	WG1348337		09/19/19 18:49	09/19/19 18:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346408	1		09/17/19 08:17	ELN DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347755 WG1347343	1 1	09/15/19 01:29 09/15/19 01:29	09/18/19 20:46 09/18/19 02:44	ADM	Mt. Juliet, TN Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1347343 WG1345951	40	09/14/19 19:39	09/16/19 15:29	TJD	Mt. Juliet, TN
perin-volatile Organic Compounds (QC) by Method 8013	W01343331	40	09/14/19 19.59	09/10/19 13.29	130	Wit. Juliet, TN
3H-2 (4'-5') L1139267-08 Solid			Collected by	Collected date/time 09/10/19 13:10	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1348337	1	09/19/19 18:49	09/19/19 18:57	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/16/19 23:05	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348549	1	09/15/19 01:29	09/19/19 13:10	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347343	1	09/15/19 01:29	09/18/19 03:04	ADM	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1345951	5	09/14/19 19:39	09/16/19 15:02	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (6'-7') L1139267-09 Solid				09/10/19 13:20	09/13/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	. ,	
otal Solids by Method 2540 G-2011	WG1348337	1	09/19/19 18:49	09/19/19 18:57	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/16/19 23:34	LDC	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1347755	1	09/15/19 01:29	09/18/19 22:01	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347733	1	09/15/19 01:29	09/18/19 03:25	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345951	1	09/14/19 19:39	09/16/19 14:35	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (9'-10') L1139267-10 Solid			· 	09/10/19 13:30	09/13/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1348337	1	09/19/19 18:49	09/19/19 18:57	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/16/19 23:43	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1347755	1	09/15/19 01:29	09/18/19 22:21	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1347343	1	09/15/19 01:29	09/18/19 03:46	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	1	09/14/19 16:48	09/15/19 22:32	CLG	Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
BH-3 (0'-1') L1139267-11 Solid				09/10/19 14:00	09/13/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348337	1	09/19/19 18:49	09/19/19 18:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/16/19 23:53	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347755	1	09/15/19 01:29	09/18/19 22:42	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347343	1	09/15/19 01:29	09/18/19 04:06	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	10	09/14/19 16:48	09/16/19 01:48	CLG	Mt. Juliet, TN
BH-3 (2'-3') L1139267-12 Solid			Collected by	Collected date/time 09/10/19 14:10	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1348339	1	09/19/19 18:37	09/19/19 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/17/19 00:03	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347755	1	09/15/19 01:29	09/18/19 23:03	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347343	1	09/15/19 01:29	09/18/19 04:27	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	40	09/14/19 16:48	09/16/19 02:01	CLG	Mt. Juliet, TN
BH-3 (4'-5') L1139267-13 Solid			Collected by	Collected date/time 09/10/19 14:20	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348339	1	09/19/19 18:37	09/19/19 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/17/19 00:22	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:29	09/18/19 15:05	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:29	09/18/19 06:30	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	20	09/14/19 16:48	09/16/19 02:15	CLG	Mt. Juliet, TN
BH-3 (6'-7') L1139267-14 Solid			Collected by	Collected date/time 09/10/19 14:30	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348339	1	09/19/19 18:37	09/19/19 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/17/19 00:31	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:29	09/18/19 15:25	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:29	09/18/19 06:48	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	10	09/14/19 16:48	09/16/19 13:42	TJD	Mt. Juliet, TN
BH-3 (9'-10') L1139267-15 Solid			Collected by	Collected date/time 09/10/19 14:40	Received da 09/13/19 08:	
, ,	Datab	Dilation	Dronous !!	Amalusia	Amelicat	1
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348339	1	09/19/19 18:37	09/19/19 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/17/19 01:00	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:29	09/18/19 15:45	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:29	09/18/19 07:07	BMB	Mt. Juliet, TN
Comi Volatila Organia Compounda (CC) by Method 201E	WC124E000	4	00/14/10 16:40	00/16/10 00:04	CLC	M+ Julia+ TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1345980

09/14/19 16:48

CLG

Mt. Juliet, TN

09/16/19 00:04

SAMPLE SUMMARY

BH-4 (0'-1') L1139267-16 Solid			Collected by	Collected date/time 09/10/19 15:10	Received da 09/13/19 08:-	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348339	1	09/19/19 18:37	09/19/19 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/17/19 01:09	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:29	09/18/19 16:06	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:29	09/18/19 07:25	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	10	09/14/19 16:48	09/16/19 00:30	CLG	Mt. Juliet, TN
BH-4 (2'-3') L1139267-17 Solid			Collected by	Collected date/time 09/10/19 15:20	Received da 09/13/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1348339	1	09/19/19 18:37	09/19/19 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/17/19 01:19	LDC	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:29	09/18/19 16:27	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:29	09/18/19 07:44	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	50	09/14/19 16:48	09/21/19 13:22	JDG	Mt. Juliet, TN
BH-4 (4'-5') L1139267-18 Solid			Collected by	Collected date/time 09/10/19 15:30	Received da 09/13/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1348339	1	09/19/19 18:37	09/19/19 18:47	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/17/19 01:28	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:29	09/18/19 16:47	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:29	09/18/19 08:02	BMB	Mt. Juliet, TN
semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	1	09/14/19 16:48	09/15/19 23:38	CLG	Mt. Juliet, TN
semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	5	09/14/19 16:48	09/16/19 16:49	TJD	Mt. Juliet, TN
3H-4 (6'-7') L1139267-19 Solid			Collected by	Collected date/time 09/10/19 15:40	Received da 09/13/19 08:-	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1348339	1	09/19/19 18:37	09/19/19 18:47	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/17/19 01:38	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:29	09/18/19 17:08	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:29	09/18/19 08:21	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	1	09/14/19 16:48	09/15/19 22:58	CLG	Mt. Juliet, TN
3H-4 (9'-10') L1139267-20 Solid			Collected by	Collected date/time 09/10/19 16:00	Received da 09/13/19 08:-	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1348339	1	09/19/19 18:37	09/19/19 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346419	1	09/16/19 18:10	09/17/19 01:47	LDC	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:29	09/18/19 17:28	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:29	09/18/19 08:40	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	1	09/14/19 16:48	09/15/19 22:45	CLG	Mt. Juliet, TN

Sr

Qc

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
BH-5 (0'-1') L1139267-21 Solid				09/11/19 10:30	09/13/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348339	1	09/19/19 18:37	09/19/19 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 21:20	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1.01	09/15/19 01:35	09/18/19 17:49	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:35	09/18/19 08:58	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	1	09/14/19 16:48	09/15/19 23:51	CLG	Mt. Juliet, TN
BH-5 (2'-3') L1139267-22 Solid			Collected by	Collected date/time 09/11/19 10:40	Received da 09/13/19 08:-	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348340	1	09/19/19 18:12	09/19/19 18:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 21:38	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:35	09/18/19 18:09	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:35	09/18/19 09:17	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	50	09/14/19 16:48	09/16/19 02:28	CLG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (4'-5') L1139267-23 Solid				09/11/19 10:50	09/13/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348340	1	09/19/19 18:12	09/19/19 18:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 21:48	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:35	09/18/19 18:29	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:35	09/18/19 09:36	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	50	09/14/19 16:48	09/16/19 02:41	CLG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (6'-7') L1139267-24 Solid				09/11/19 11:00	09/13/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348340	1	09/19/19 18:12	09/19/19 18:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 21:57	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1347802	1	09/15/19 01:35	09/18/19 18:50	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:35	09/18/19 09:55	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	5	09/14/19 16:48	09/16/19 00:17	CLG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (9'-10') L1139267-25 Solid				09/11/19 11:10	09/13/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis	Analyst	Location
Total Solids by Mathad 2EAO C 2011	WC1240240	1	date/time	date/time	NDM	Mt Juliot TNI
Total Solids by Method 2540 G-2011	WG1348340	1	09/19/19 18:12	09/19/19 18:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1346738 WG1348959	1 25	09/17/19 18:10 09/15/19 01:35	09/17/19 22:07 09/20/19 14:56	LDC JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1348959 WG1347349	25 1	09/15/19 01:35	09/20/19 14:56	JAH BMB	Mt. Juliet, TN Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC/MS) by Method 8015	WG1347349 WG1345980	10	09/14/19 16:48	09/16/19 10:13	CLG	Mt. Juliet, TN
Semi-volatile Organic Compounds (OC) by Method 6013	VVG134330U	10	07.01 CI1PIICO	00.00 6101160	CLU	WIL JUIICL, TIN

Gl

SAMPLE SUMMARY

D. I. F. (10) 10) 1 110000 7 00 0 11 1			Collected by	Collected date/time 09/11/19 11:20	Received da 09/13/19 08:	
BH-5 (12'-13') L1139267-26 Solid Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wethou	Daten	Dilution	date/time	date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348340	1	09/19/19 18:12	09/19/19 18:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 22:16	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1348959	1	09/15/19 01:35	09/20/19 14:08	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:35	09/18/19 10:32	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	1	09/14/19 16:48	09/15/19 23:12	CLG	Mt. Juliet, TN
BH-5 (14'-15') L1139267-27 Solid			Collected by	Collected date/time 09/11/19 11:30	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348340	1	09/19/19 18:12	09/19/19 18:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 22:26	LDC	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348959	1	09/15/19 01:35	09/20/19 14:32	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:35	09/18/19 10:50	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1345980	1	09/14/19 16:48	09/15/19 23:25	CLG	Mt. Juliet, TN
3H-5 (19'-20') L1139267-28 Solid			Collected by	Collected date/time 09/11/19 11:50	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348340	1	09/19/19 18:12	09/19/19 18:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 22:54	LDC	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348619	1	09/15/19 01:35	09/19/19 19:45	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:35	09/18/19 11:08	BMB	Mt. Juliet, TN
semi-Volatile Organic Compounds (GC) by Method 8015	WG1346816	1	09/17/19 13:35	09/17/19 19:11	JDG	Mt. Juliet, TN
3H-6 (0'-1') L1139267-29 Solid			Collected by	Collected date/time 09/11/19 12:00	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1348340	1	09/19/19 18:12	09/19/19 18:23	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 23:04	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348619	1	09/15/19 01:35	09/19/19 20:05	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:35	09/18/19 11:27	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1346816	1	09/17/19 13:35	09/17/19 20:29	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-6 (2'-3') L1139267-30 Solid				09/11/19 12:10	09/13/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348340	1	09/19/19 18:12	09/19/19 18:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 23:33	LDC	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348619	1	09/15/19 01:35	09/19/19 20:26	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 01:35	09/18/19 11:46	BMB	Mt. Juliet, TN
		_				

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1346816

09/17/19 13:35

JDG

Mt. Juliet, TN


09/17/19 20:55

SAMPLE SUMMARY

BH-6 (4'-5') L1139267-31 Solid			Collected by	Collected date/time 09/11/19 12:20	Received da 09/13/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348340	1	09/19/19 18:12	09/19/19 18:23	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 23:42	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348619	1	09/15/19 22:18	09/19/19 20:46	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 22:18	09/18/19 12:04	BMB	Mt. Juliet, TN
Gemi-Volatile Organic Compounds (GC) by Method 8015	WG1346816	1	09/17/19 13:35	09/17/19 19:37	JDG	Mt. Juliet, TN
3H-6 (6'-7') L1139267-32 Solid			Collected by	Collected date/time 09/11/19 12:30	Received da 09/13/19 08:4	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1348341	1	09/19/19 17:46	09/19/19 18:09	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/17/19 23:52	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348619	1	09/15/19 22:18	09/19/19 21:07	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347349	1	09/15/19 22:18	09/18/19 12:23	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1346816	1	09/17/19 13:35	09/17/19 19:24	JDG	Mt. Juliet, TN
3H-7 (0'-1') L1139267-33 Solid			Collected by	Collected date/time 09/11/19 12:50	Received da 09/13/19 08:4	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1348341	1	09/19/19 17:46	09/19/19 18:09	KDW	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/18/19 00:01	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348619	1	09/15/19 22:18	09/19/19 21:27	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 22:18	09/18/19 11:04	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1346816	1	09/17/19 13:35	09/17/19 21:08	JDG	Mt. Juliet, TN
3H-7 (2'-3') L1139267-34 Solid			Collected by	Collected date/time 09/11/19 13:00	Received da 09/13/19 08:	
· '	Detal	Dilation	December	A L t	A a l a l	Leading
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
atal Calida Inc. Mathaul 2F 40 C 2044	WC1240241	1	date/time	date/time	IZDW	M4 India4 TNI
otal Solids by Method 2540 G-2011	WG1348341	1	09/19/19 17:46	09/19/19 18:09	KDW	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/18/19 00:11	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348619	1	09/15/19 22:18	09/19/19 21:47	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B emi-Volatile Organic Compounds (GC) by Method 8015	WG1347795 WG1346816	1	09/15/19 22:18 09/17/19 13:35	09/18/19 11:25 09/17/19 20:42	JHH JDG	Mt. Juliet, TN Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-7 (4'-5') L1139267-35 Solid				09/11/19 13:10	09/13/19 08:	45
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1348341	1	09/19/19 17:46	09/19/19 18:09	KDW	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/18/19 00:20	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348624	1	09/15/19 22:18	09/20/19 05:55	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 22:18	09/18/19 11:45	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1346816	5	09/17/19 13:35	09/17/19 21:21	JDG	Mt. Juliet, TN

SAMPLE SUMMARY

BH-8 (0'-1') L1139267-36 Solid			Collected by	Collected date/time 09/11/19 13:30	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348341	1	09/19/19 17:46	09/19/19 18:09	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/18/19 00:49	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348624	1	09/15/19 22:18	09/20/19 06:17	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 22:18	09/18/19 12:05	JHH	Mt. Juliet, TN
semi-Volatile Organic Compounds (GC) by Method 8015	WG1346816	20	09/17/19 13:35	09/21/19 12:56	JDG	Mt. Juliet, TN
3H-8 (2'-3') L1139267-37 Solid			Collected by	Collected date/time 09/11/19 13:40	Received da 09/13/19 08:-	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
. 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111040 400 44		date/time	date/time	L/DIL/	M. I. P Thi
otal Solids by Method 2540 G-2011	WG1348341	1	09/19/19 17:46	09/19/19 18:09	KDW	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/18/19 00:58 09/20/19 06:40	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348624	1	09/15/19 22:18		BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1347795 WG1346816	1	09/15/19 22:18	09/18/19 12:26	JHH	Mt. Juliet, TN
semi-Volatile Organic Compounds (GC) by Method 8015	WG1340810	50	09/17/19 13:35	09/21/19 13:09	JDG	Mt. Juliet, TN
3H-8 (4'-5') L1139267-38 Solid			Collected by	Collected date/time 09/11/19 13:50	Received da 09/13/19 08:4	
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1348341	1	09/19/19 17:46	09/19/19 18:09	KDW	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/18/19 01:08	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348624	1	09/15/19 22:18	09/20/19 07:59	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 22:18	09/18/19 12:46	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1346816	50	09/17/19 13:35	09/17/19 21:34	JDG	Mt. Juliet, TN
3H-8 (6'-7') L1139267-39 Solid			Collected by	Collected date/time 09/11/19 14:00	Received da 09/13/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1348341	1	09/19/19 17:46	09/19/19 18:09	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/18/19 01:17	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348624	1	09/15/19 22:18	09/20/19 08:22	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 22:18	09/18/19 13:07	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1346816	50	09/17/19 13:35	09/17/19 21:47	JDG	Mt. Juliet, TN
3H-8 (9'-10') L1139267-40 Solid			Collected by	Collected date/time 09/11/19 14:10	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Batti	Siddon	date/time	date/time	, mary st	200011011
otal Solids by Method 2540 G-2011	WG1348341	1	09/19/19 17:46	09/19/19 18:09	KDW	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1346738	1	09/17/19 18:10	09/18/19 01:27	LDC	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1348624	1	09/15/19 22:18	09/20/19 08:44	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 22:18	09/18/19 13:28	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1347218	1	09/17/19 16:59	09/18/19 22:06	CLG	Mt. Juliet, TN

Sr

Qc

Gl

SAMPLE SUMMARY

BH-9 (0'-1') L1139267-41 Solid			Collected by	Collected date/time 09/11/19 14:40	Received da 09/13/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348341	1	09/19/19 17:46	09/19/19 18:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1347692	1	09/18/19 18:40	09/18/19 21:17	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1348624	1	09/15/19 23:40	09/20/19 09:48	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 23:40	09/18/19 13:49	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1347218	20	09/17/19 16:59	09/18/19 23:52	CLG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-9 (2'-3') L1139267-42 Solid				09/11/19 14:50	09/13/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1348343	1	09/19/19 13:37	09/19/19 13:54	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1347474	1	09/18/19 08:10	09/18/19 10:42	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1348624	1	09/15/19 23:40	09/20/19 10:11	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 23:40	09/18/19 14:10	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1347218	20	09/17/19 16:59	09/19/19 00:06	CLG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (0'-1') L1139267-43 Solid				09/11/19 15:00	09/13/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348343	1	09/19/19 13:37	09/19/19 13:54	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1347474	1	09/18/19 08:10	09/18/19 11:10	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1348819	1	09/15/19 23:40	09/20/19 01:02	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 23:40	09/18/19 14:31	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1347218	1	09/17/19 16:59	09/18/19 22:59	CLG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (2'-3') L1139267-44 Solid				09/11/19 15:10	09/13/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
T			0040404007	0040404054	1/511/	14: 1 1:

BH-10 (4'-5') L1139267-45	Solid

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

2						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348343	1	09/19/19 13:37	09/19/19 13:54	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1347474	1	09/18/19 08:10	09/18/19 11:39	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1348819	1.01	09/15/19 23:40	09/20/19 01:43	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 23:40	09/18/19 15:12	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1347221	2	09/17/19 16:20	09/18/19 16:21	TJD	Mt. Juliet, TN

WG1348343

WG1347474

WG1348819

WG1347795

WG1347218

09/19/19 13:37

09/18/19 08:10

09/15/19 23:40

09/15/19 23:40

09/17/19 16:59

Collected by

09/19/19 13:54

09/18/19 11:29

09/20/19 01:22

09/18/19 14:51

09/18/19 22:46

09/11/19 15:20

KDW

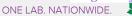
LDC

JHH

JHH

CLG

09/13/19 08:45


Collected date/time Received date/time

Mt. Juliet, TN

SAMPLE SUMMARY

Collected by

Collected by

				,	J		
E	LAB.	NATI	ONW	IDE.	-	K	

BH-11 ('0'-0 5''	L1139267-46	Solid
וו־ווע	0.0	/ L1133207-40	Jona

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348343	1	09/19/19 13:37	09/19/19 13:54	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1347474	1	09/18/19 08:10	09/18/19 11:48	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1348819	1.01	09/15/19 23:40	09/20/19 02:03	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 23:40	09/18/19 15:32	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1347221	5	09/17/19 16:20	09/18/19 06:04	JDG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1347221	5	09/17/19 16:20	09/18/19 16:34	TJD	Mt. Juliet, TN

09/13/19 08:45

Collected date/time Received date/time

09/13/19 08:45

09/11/19 16:00

09/11/19 16:30

BH-12 (0'-0.5') L1139267-47 Solid

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1348343	1	09/19/19 13:37	09/19/19 13:54	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1347474	1	09/18/19 08:10	09/18/19 11:58	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1348819	1.01	09/15/19 23:40	09/20/19 02:24	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1347795	1	09/15/19 23:40	09/18/19 15:59	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1347221	5	09/17/19 16:20	09/18/19 06:19	JDG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1347221	5	09/17/19 16:20	09/18/19 16:47	TJD	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ср

SAMPLE RESULTS - 01

BH-1 (0'-1')
Collected date/time: 09/10/19 12:00

9 12:00

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.2		1	09/19/2019 19:08	WG1348336

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	458		0.845	10.0	10.6	1	09/17/2019 05:38	WG1346408

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.100	0.106	1	09/18/2019 18:18	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	94.0				77.0-120		09/18/2019 18:18	WG1347755

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000425	0.00100	0.00106	1	09/18/2019 00:40	WG1347343
Toluene	U		0.00133	0.00500	0.00531	1	09/18/2019 00:40	WG1347343
Ethylbenzene	U		0.000563	0.00250	0.00266	1	09/18/2019 00:40	WG1347343
Total Xylenes	U	<u>J4</u>	0.00508	0.00650	0.00690	1	09/18/2019 00:40	WG1347343
(S) Toluene-d8	115				75.0-131		09/18/2019 00:40	WG1347343
(S) 4-Bromofluorobenzene	103				67.0-138		09/18/2019 00:40	WG1347343
(S) 1,2-Dichloroethane-d4	113				70.0-130		09/18/2019 00:40	WG1347343

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1420		34.2	4.00	85.0	20	09/16/2019 15:56	WG1345951
C28-C40 Oil Range	1760		5.82	4.00	85.0	20	09/16/2019 15:56	WG1345951
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		09/16/2019 15:56	WG1345951

SAMPLE RESULTS - 02

BH-1 (2'-3') Collected date/time: 09/10/19 12:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.6		1	09/19/2019 18:57	WG1348337

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	148	<u>J5</u>	0.823	10.0	10.3	1	09/17/2019 05:53	WG1346408

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.100	0.103	1	09/18/2019 18:38	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	93.6				77.0-120		09/18/2019 18:38	WG1347755

Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000414	0.00100	0.00103	1	09/18/2019 01:01	WG1347343
Toluene	U		0.00129	0.00500	0.00517	1	09/18/2019 01:01	WG1347343
Ethylbenzene	U		0.000548	0.00250	0.00259	1	09/18/2019 01:01	WG1347343
Total Xylenes	U	<u>J4</u>	0.00495	0.00650	0.00673	1	09/18/2019 01:01	WG1347343
(S) Toluene-d8	112				75.0-131		09/18/2019 01:01	WG1347343
(S) 4-Bromofluorobenzene	103				67.0-138		09/18/2019 01:01	WG1347343
(S) 1,2-Dichloroethane-d4	112				70.0-130		09/18/2019 01:01	WG1347343

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1080		33.3	4.00	82.8	20	09/16/2019 15:15	WG1345951
C28-C40 Oil Range	1400		5.67	4.00	82.8	20	09/16/2019 15:15	WG1345951
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		09/16/2019 15:15	WG1345951

SAMPLE RESULTS - 03

BH-1 (4'-5') Collected date/time: 09/10/19 12:10

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.4		1	09/19/2019 18:57	WG1348337

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	408		0.816	10.0	10.3	1	09/17/2019 07:05	WG1346408

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.100	0.103	1	09/18/2019 19:25	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	93.8				77.0-120		09/18/2019 19:25	WG1347755

Cn

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000411	0.00100	0.00103	1	09/18/2019 01:22	WG1347343
Toluene	U		0.00128	0.00500	0.00513	1	09/18/2019 01:22	WG1347343
Ethylbenzene	U		0.000544	0.00250	0.00257	1	09/18/2019 01:22	WG1347343
Total Xylenes	U	<u>J4</u>	0.00491	0.00650	0.00667	1	09/18/2019 01:22	WG1347343
(S) Toluene-d8	111				75.0-131		09/18/2019 01:22	WG1347343
(S) 4-Bromofluorobenzene	98.3				67.0-138		09/18/2019 01:22	WG1347343
(S) 1,2-Dichloroethane-d4	112				70.0-130		09/18/2019 01:22	WG1347343

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	317		66.1	4.00	164	40	09/16/2019 16:09	WG1345951
C28-C40 Oil Range	663		11.3	4.00	164	40	09/16/2019 16:09	WG1345951
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		09/16/2019 16:09	WG1345951

BH-1 (6'-7')
Collected date/time: 09/10/19 12:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.2		1	09/19/2019 18:57	WG1348337

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	377		0.863	10.0	10.8	1	09/17/2019 07:19	WG1346408

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0235	0.100	0.108	1	09/18/2019 19:45	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	93.2				77.0-120		09/18/2019 19:45	WG1347755

Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00100	0.00108	1	09/18/2019 01:42	WG1347343
Toluene	U		0.00136	0.00500	0.00542	1	09/18/2019 01:42	WG1347343
Ethylbenzene	U		0.000575	0.00250	0.00271	1	09/18/2019 01:42	WG1347343
Total Xylenes	U	<u>J4</u>	0.00519	0.00650	0.00705	1	09/18/2019 01:42	WG1347343
(S) Toluene-d8	113				75.0-131		09/18/2019 01:42	WG1347343
(S) 4-Bromofluorobenzene	97.7				67.0-138		09/18/2019 01:42	WG1347343
(S) 1,2-Dichloroethane-d4	110				70.0-130		09/18/2019 01:42	WG1347343

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	28.0		8.73	4.00	21.7	5	09/16/2019 14:49	WG1345951
C28-C40 Oil Range	59.8		1.49	4.00	21.7	5	09/16/2019 14:49	WG1345951
(S) o-Terphenyl	75.7				18.0-148		09/16/2019 14:49	WG1345951

BH-1 (9'-10')
Collected date/time: 09/10/19 12:30

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	88.1		1	09/19/2019 18:57	WG1348337		

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	935		4.52	10.0	56.8	5	09/17/2019 07:34	WG1346408

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0246	0.100	0.114	1	09/18/2019 20:05	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	92.2				77.0-120		09/18/2019 20:05	WG1347755

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000454	0.00100	0.00114	1	09/18/2019 02:02	WG1347343
Toluene	U		0.00142	0.00500	0.00568	1	09/18/2019 02:02	WG1347343
Ethylbenzene	U		0.000602	0.00250	0.00284	1	09/18/2019 02:02	WG1347343
Total Xylenes	U	<u>J4</u>	0.00543	0.00650	0.00738	1	09/18/2019 02:02	WG1347343
(S) Toluene-d8	114				75.0-131		09/18/2019 02:02	WG1347343
(S) 4-Bromofluorobenzene	100				67.0-138		09/18/2019 02:02	WG1347343
(S) 1,2-Dichloroethane-d4	111				70.0-130		09/18/2019 02:02	WG1347343

Gl

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	25.4		1.83	4.00	4.54	1	09/16/2019 14:22	WG1345951
C28-C40 Oil Range	44.4		0.311	4.00	4.54	1	09/16/2019 14:22	WG1345951
(S) o-Terphenyl	68.3				18.0-148		09/16/2019 14:22	WG1345951

SAMPLE RESULTS - 06 BH-2 (0'-1')
Collected date/time: 09/10/19 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.8		1	09/19/2019 18:57	WG1348337

Wet Chemistry by Method 300.0

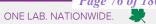
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	281		0.822	10.0	10.3	1	09/17/2019 07:48	WG1346408

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.140	<u>B</u>	0.0224	0.100	0.103	1	09/18/2019 20:26	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	93.5				77.0-120		09/18/2019 20:26	WG1347755

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B


	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000413	0.00100	0.00103	1	09/18/2019 02:23	WG1347343
Toluene	U		0.00129	0.00500	0.00517	1	09/18/2019 02:23	WG1347343
Ethylbenzene	U		0.000548	0.00250	0.00258	1	09/18/2019 02:23	WG1347343
Total Xylenes	U	<u>J4</u>	0.00494	0.00650	0.00672	1	09/18/2019 02:23	WG1347343
(S) Toluene-d8	109				75.0-131		09/18/2019 02:23	WG1347343
(S) 4-Bromofluorobenzene	114				67.0-138		09/18/2019 02:23	WG1347343
(S) 1,2-Dichloroethane-d4	114				70.0-130		09/18/2019 02:23	WG1347343

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2880		33.3	4.00	82.7	20	09/16/2019 15:42	WG1345951
C28-C40 Oil Range	1680		5.66	4.00	82.7	20	09/16/2019 15:42	WG1345951
(S) o-Terphenyl	0.000	J7			18.0-148		09/16/2019 15:42	WG1345951

BH-2 (2'-3')

Collected date/time: 09/10/19 13:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.6		1	09/19/2019 18:57	WG1348337

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	157		0.815	10.0	10.2	1	09/17/2019 08:17	WG1346408

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0655	<u>B J</u>	0.0222	0.100	0.102	1	09/18/2019 20:46	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	93.5				77.0-120		09/18/2019 20:46	WG1347755

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000410	0.00100	0.00102	1	09/18/2019 02:44	WG1347343
Toluene	U		0.00128	0.00500	0.00512	1	09/18/2019 02:44	WG1347343
Ethylbenzene	U		0.000543	0.00250	0.00256	1	09/18/2019 02:44	WG1347343
Total Xylenes	U	<u>J4</u>	0.00490	0.00650	0.00666	1	09/18/2019 02:44	WG1347343
(S) Toluene-d8	109				75.0-131		09/18/2019 02:44	WG1347343
(S) 4-Bromofluorobenzene	107				67.0-138		09/18/2019 02:44	WG1347343
(S) 1,2-Dichloroethane-d4	111				70.0-130		09/18/2019 02:44	WG1347343

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1020		66.0	4.00	164	40	09/16/2019 15:29	WG1345951
C28-C40 Oil Range	1180		11.2	4.00	164	40	09/16/2019 15:29	WG1345951
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		09/16/2019 15:29	WG1345951

BH-2 (4'-5')

Collected date/time: 09/10/19 13:10

SAMPLE RESULTS - 08

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.9		1	09/19/2019 18:57	WG1348337

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	70.7		0.804	10.0	10.1	1	09/16/2019 23:05	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.100	0.101	1	09/19/2019 13:10	WG1348549
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/19/2019 13:10	WG1348549

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000404	0.00100	0.00101	1	09/18/2019 03:04	WG1347343
Toluene	U		0.00126	0.00500	0.00506	1	09/18/2019 03:04	WG1347343
Ethylbenzene	U		0.000536	0.00250	0.00253	1	09/18/2019 03:04	WG1347343
Total Xylenes	U	<u>J4</u>	0.00483	0.00650	0.00657	1	09/18/2019 03:04	WG1347343
(S) Toluene-d8	108				75.0-131		09/18/2019 03:04	WG1347343
(S) 4-Bromofluorobenzene	103				67.0-138		09/18/2019 03:04	WG1347343
(S) 1,2-Dichloroethane-d4	110				70.0-130		09/18/2019 03:04	WG1347343

Gl

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	152		8.14	4.00	20.2	5	09/16/2019 15:02	WG1345951
C28-C40 Oil Range	232		1.39	4.00	20.2	5	09/16/2019 15:02	WG1345951
(S) o-Terphenyl	118				18.0-148		09/16/2019 15:02	WG1345951

BH-2 (6'-7')
Collected date/time: 09/10/19 13:20

SAMPLE RESULTS - 09

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	97.5		1	09/19/2019 18:57	WG1348337	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	108		0.816	10.0	10.3	1	09/16/2019 23:34	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0230	<u>B J</u>	0.0223	0.100	0.103	1	09/18/2019 22:01	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	93.5				77.0-120		09/18/2019 22:01	WG1347755

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000410	0.00100	0.00103	1	09/18/2019 03:25	WG1347343
Toluene	U		0.00128	0.00500	0.00513	1	09/18/2019 03:25	WG1347343
Ethylbenzene	U		0.000544	0.00250	0.00256	1	09/18/2019 03:25	WG1347343
Total Xylenes	U	<u>J4</u>	0.00490	0.00650	0.00667	1	09/18/2019 03:25	WG1347343
(S) Toluene-d8	110				75.0-131		09/18/2019 03:25	WG1347343
(S) 4-Bromofluorobenzene	104				67.0-138		09/18/2019 03:25	WG1347343
(S) 1,2-Dichloroethane-d4	110				70.0-130		09/18/2019 03:25	WG1347343

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	43.2		1.65	4.00	4.10	1	09/16/2019 14:35	WG1345951
C28-C40 Oil Range	60.8		0.281	4.00	4.10	1	09/16/2019 14:35	WG1345951
(S) o-Terphenyl	76.8				18.0-148		09/16/2019 14:35	WG1345951

BH-2 (9'-10')
Collected date/time: 09/10/19 13:30

SAMPLE RESULTS - 10

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	93.8		1	09/19/2019 18:57	WG1348337	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	190		0.848	10.0	10.7	1	09/16/2019 23:43	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.100	0.107	1	09/18/2019 22:21	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	93.6				77.0-120		09/18/2019 22:21	WG1347755

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000426	0.00100	0.00107	1	09/18/2019 03:46	WG1347343
Toluene	U		0.00133	0.00500	0.00533	1	09/18/2019 03:46	WG1347343
Ethylbenzene	U		0.000565	0.00250	0.00267	1	09/18/2019 03:46	WG1347343
Total Xylenes	U	<u>J4</u>	0.00510	0.00650	0.00693	1	09/18/2019 03:46	WG1347343
(S) Toluene-d8	110				75.0-131		09/18/2019 03:46	WG1347343
(S) 4-Bromofluorobenzene	100				67.0-138		09/18/2019 03:46	WG1347343
(S) 1,2-Dichloroethane-d4	110				70.0-130		09/18/2019 03:46	WG1347343

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.63		1.72	4.00	4.26	1	09/15/2019 22:32	WG1345980
C28-C40 Oil Range	15.9		0.292	4.00	4.26	1	09/15/2019 22:32	WG1345980
(S) o-Terphenyl	62.8				18.0-148		09/15/2019 22:32	WG1345980

Page 80 of 180

SAMPLE RESULTS - 11

BH-3 (0'-1') Collected date/time: 09/10/19 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.4		1	09/19/2019 18:57	WG1348337

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	23.5	<u>B</u>	0.817	10.0	10.3	1	09/16/2019 23:53	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0236	<u>B J</u>	0.0223	0.100	0.103	1	09/18/2019 22:42	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	91.7				77.0-120		09/18/2019 22:42	WG1347755

Cn

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000411	0.00100	0.00103	1	09/18/2019 04:06	WG1347343
Toluene	U		0.00128	0.00500	0.00514	1	09/18/2019 04:06	WG1347343
Ethylbenzene	U		0.000544	0.00250	0.00257	1	09/18/2019 04:06	WG1347343
Total Xylenes	U	<u>J4</u>	0.00491	0.00650	0.00668	1	09/18/2019 04:06	WG1347343
(S) Toluene-d8	116				75.0-131		09/18/2019 04:06	WG1347343
(S) 4-Bromofluorobenzene	96.3				67.0-138		09/18/2019 04:06	WG1347343
(S) 1,2-Dichloroethane-d4	109				70.0-130		09/18/2019 04:06	WG1347343

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	251		16.5	4.00	41.1	10	09/16/2019 01:48	WG1345980
C28-C40 Oil Range	455		2.81	4.00	41.1	10	09/16/2019 01:48	WG1345980
(S) o-Terphenyl	49.5				18.0-148		09/16/2019 01:48	WG1345980

BH-3 (2'-3') Collected date/time: 09/10/19 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.2		1	09/19/2019 18:47	WG1348339

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	23.5	<u>B P1</u>	0.810	10.0	10.2	1	09/17/2019 00:03	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.100	0.102	1	09/18/2019 23:03	WG1347755
(S) a,a,a-Trifluorotoluene(FID)	93.3				77.0-120		09/18/2019 23:03	WG1347755

Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000407	0.00100	0.00102	1	09/18/2019 04:27	WG1347343
Toluene	U		0.00127	0.00500	0.00509	1	09/18/2019 04:27	WG1347343
Ethylbenzene	U		0.000540	0.00250	0.00255	1	09/18/2019 04:27	WG1347343
Total Xylenes	U	<u>J4</u>	0.00487	0.00650	0.00662	1	09/18/2019 04:27	WG1347343
(S) Toluene-d8	116				75.0-131		09/18/2019 04:27	WG1347343
(S) 4-Bromofluorobenzene	101				67.0-138		09/18/2019 04:27	WG1347343
(S) 1,2-Dichloroethane-d4	109				70.0-130		09/18/2019 04:27	WG1347343

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	418		65.6	4.00	163	40	09/16/2019 02:01	WG1345980
C28-C40 Oil Range	953		11.2	4.00	163	40	09/16/2019 02:01	WG1345980
(S) o-Terphenyl	109	<u>J7</u>			18.0-148		09/16/2019 02:01	WG1345980

BH-3 (4'-5')
Collected date/time: 09/10/19 14:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.7		1	09/19/2019 18:47	WG1348339

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	23.9	<u>B</u>	0.823	10.0	10.3	1	09/17/2019 00:22	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.100	0.103	1	09/18/2019 15:05	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/18/2019 15:05	WG1347802

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000414	0.00100	0.00103	1	09/18/2019 06:30	WG1347349
Toluene	U		0.00129	0.00500	0.00517	1	09/18/2019 06:30	WG1347349
Ethylbenzene	U		0.000548	0.00250	0.00259	1	09/18/2019 06:30	WG1347349
Total Xylenes	U		0.00494	0.00650	0.00672	1	09/18/2019 06:30	WG1347349
(S) Toluene-d8	112				75.0-131		09/18/2019 06:30	WG1347349
(S) 4-Bromofluorobenzene	84.5				67.0-138		09/18/2019 06:30	WG1347349
(S) 1,2-Dichloroethane-d4	101				70.0-130		09/18/2019 06:30	WG1347349


	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	189		33.3	4.00	82.8	20	09/16/2019 02:15	WG1345980
C28-C40 Oil Range	524		5.67	4.00	82.8	20	09/16/2019 02:15	WG1345980
(S) o-Terphenyl	79.5	<u>J7</u>			18.0-148		09/16/2019 02:15	WG1345980

Page 83 of 180

BH-3 (6'-7')

Collected date/time: 09/10/19 14:30

SAMPLE RESULTS - 14

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.4		1	09/19/2019 18:47	WG1348339

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	71.6		0.833	10.0	10.5	1	09/17/2019 00:31	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.100	0.105	1	09/18/2019 15:25	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	99.3				77.0-120		09/18/2019 15:25	WG1347802

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000532	<u>J</u>	0.000419	0.00100	0.00105	1	09/18/2019 06:48	WG1347349
Toluene	U		0.00131	0.00500	0.00524	1	09/18/2019 06:48	WG1347349
Ethylbenzene	U		0.000555	0.00250	0.00262	1	09/18/2019 06:48	WG1347349
Total Xylenes	U		0.00501	0.00650	0.00681	1	09/18/2019 06:48	WG1347349
(S) Toluene-d8	109				75.0-131		09/18/2019 06:48	WG1347349
(S) 4-Bromofluorobenzene	85.7				67.0-138		09/18/2019 06:48	WG1347349
(S) 1,2-Dichloroethane-d4	98.9				70.0-130		09/18/2019 06:48	WG1347349

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	36.1	J	16.9	4.00	41.9	10	09/16/2019 13:42	WG1345980
C28-C40 Oil Range	103		2.87	4.00	41.9	10	09/16/2019 13:42	WG1345980
(S) o-Terphenyl	71.4				18.0-148		09/16/2019 13:42	WG1345980

Sample Narrative:

L1139267-14 WG1345980: Cannot run at lower dilution due to viscosity of extract

Page 84 of 180

SAMPLE RESULTS - 15

BH-3 (9'-10') Collected date/time: 09/10/19 14:40

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	89.4		1	09/19/2019 18:47	WG1348339		

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	260		0.890	10.0	11.2	1	09/17/2019 01:00	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U	<u>J3</u>	0.0243	0.100	0.112	1	09/18/2019 15:45	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	102				77.0-120		09/18/2019 15:45	WG1347802

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000558	<u>J</u>	0.000448	0.00100	0.00112	1	09/18/2019 07:07	WG1347349
Toluene	U		0.00140	0.00500	0.00559	1	09/18/2019 07:07	WG1347349
Ethylbenzene	U		0.000593	0.00250	0.00280	1	09/18/2019 07:07	WG1347349
Total Xylenes	U		0.00535	0.00650	0.00727	1	09/18/2019 07:07	WG1347349
(S) Toluene-d8	107				75.0-131		09/18/2019 07:07	WG1347349
(S) 4-Bromofluorobenzene	82.7				67.0-138		09/18/2019 07:07	WG1347349
(S) 1,2-Dichloroethane-d4	96.8				70.0-130		09/18/2019 07:07	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	42.5		1.80	4.00	4.48	1	09/16/2019 00:04	WG1345980
C28-C40 Oil Range	104		0.307	4.00	4.48	1	09/16/2019 00:04	WG1345980
(S) o-Terphenyl	67.4				18.0-148		09/16/2019 00:04	WG1345980

Page 85 of 180

SAMPLE RESULTS - 16

BH-4 (0'-1')

Collected date/time: 09/10/19 15:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.4		1	09/19/2019 18:47	WG1348339

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	124		0.852	10.0	10.7	1	09/17/2019 01:09	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.100	0.107	1	09/18/2019 16:06	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	97.9				77.0-120		09/18/2019 16:06	WG1347802

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00120		0.000428	0.00100	0.00107	1	09/18/2019 07:25	WG1347349
Toluene	U		0.00134	0.00500	0.00536	1	09/18/2019 07:25	WG1347349
Ethylbenzene	U		0.000568	0.00250	0.00268	1	09/18/2019 07:25	WG1347349
Total Xylenes	U		0.00512	0.00650	0.00696	1	09/18/2019 07:25	WG1347349
(S) Toluene-d8	106				75.0-131		09/18/2019 07:25	WG1347349
(S) 4-Bromofluorobenzene	83.8				67.0-138		09/18/2019 07:25	WG1347349
(S) 1,2-Dichloroethane-d4	95.8				70.0-130		09/18/2019 07:25	WG1347349

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1600		17.2	4.00	42.8	10	09/16/2019 00:30	WG1345980
C28-C40 Oil Range	1370		2.93	4.00	42.8	10	09/16/2019 00:30	WG1345980
(S) o-Terphenvl	187	J1			18.0-148		09/16/2019 00:30	WG1345980

Sample Narrative:

L1139267-16 WG1345980: Surrogate failure due to matrix interference

Page 86 of 180

SAMPLE RESULTS - 17

BH-4 (2'-3')
Collected date/time: 09/10/19 15:20

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	98.5		1	09/19/2019 18:47	WG1348339	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	208		0.807	10.0	10.2	1	09/17/2019 01:19	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.100	0.102	1	09/18/2019 16:27	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	95.3				77.0-120		09/18/2019 16:27	WG1347802

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00152		0.000406	0.00100	0.00102	1	09/18/2019 07:44	WG1347349
Toluene	U		0.00127	0.00500	0.00508	1	09/18/2019 07:44	WG1347349
Ethylbenzene	U		0.000538	0.00250	0.00254	1	09/18/2019 07:44	WG1347349
Total Xylenes	U		0.00485	0.00650	0.00660	1	09/18/2019 07:44	WG1347349
(S) Toluene-d8	107				75.0-131		09/18/2019 07:44	WG1347349
(S) 4-Bromofluorobenzene	83.8				67.0-138		09/18/2019 07:44	WG1347349
(S) 1,2-Dichloroethane-d4	97.2				70.0-130		09/18/2019 07:44	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3380		81.7	4.00	203	50	09/21/2019 13:22	WG1345980
C28-C40 Oil Range	2680		13.9	4.00	203	50	09/21/2019 13:22	WG1345980
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		09/21/2019 13:22	WG1345980

BH-4 (4'-5')

Collected date/time: 09/10/19 15:30

SAMPLE RESULTS - 18

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.6		1	09/19/2019 18:47	WG1348339

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	57.9		0.815	10.0	10.2	1	09/17/2019 01:28	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.100	0.102	1	09/18/2019 16:47	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		09/18/2019 16:47	WG1347802

Volatile Organic Compounds (GC/MS) by Method 8260B

	December (dec)	0	CDL (de.)	Hard' MOI	MOL (de.)	Dilation	A. a. b. a.t.	Datab
	Result (dry)	<u>Qualifier</u>	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00139		0.000410	0.00100	0.00102	1	09/18/2019 08:02	WG1347349
Toluene	U		0.00128	0.00500	0.00512	1	09/18/2019 08:02	WG1347349
Ethylbenzene	U		0.000543	0.00250	0.00256	1	09/18/2019 08:02	WG1347349
Total Xylenes	U		0.00490	0.00650	0.00666	1	09/18/2019 08:02	WG1347349
(S) Toluene-d8	102				75.0-131		09/18/2019 08:02	WG1347349
(S) 4-Bromofluorobenzene	89.7				67.0-138		09/18/2019 08:02	WG1347349
(S) 1,2-Dichloroethane-d4	105				70.0-130		09/18/2019 08:02	WG1347349

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	200		1.65	4.00	4.10	1	09/15/2019 23:38	WG1345980
C28-C40 Oil Range	161		1.40	4.00	20.5	5	09/16/2019 16:49	WG1345980
(S) o-Terphenyl	75.6				18.0-148		09/15/2019 23:38	WG1345980
(S) o-Terphenyl	0.000	J2			18.0-148		09/16/2019 16:49	WG1345980

Sample Narrative:

L1139267-18 WG1345980: Surrogate failure due to matrix interference

Page 88 of 180

SAMPLE RESULTS - 19

BH-4 (6'-7')
Collected date/time: 09/10/19 15:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.0		1	09/19/2019 18:47	WG1348339

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	145		0.846	10.0	10.6	1	09/17/2019 01:38	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.100	0.106	1	09/18/2019 17:08	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	104				77.0-120		09/18/2019 17:08	WG1347802

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000795	<u>J</u>	0.000426	0.00100	0.00106	1	09/18/2019 08:21	WG1347349
Toluene	U		0.00133	0.00500	0.00532	1	09/18/2019 08:21	WG1347349
Ethylbenzene	U		0.000564	0.00250	0.00266	1	09/18/2019 08:21	WG1347349
Total Xylenes	U		0.00509	0.00650	0.00692	1	09/18/2019 08:21	WG1347349
(S) Toluene-d8	105				75.0-131		09/18/2019 08:21	WG1347349
(S) 4-Bromofluorobenzene	85.9				67.0-138		09/18/2019 08:21	WG1347349
(S) 1,2-Dichloroethane-d4	101				70.0-130		09/18/2019 08:21	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.70		1.71	4.00	4.26	1	09/15/2019 22:58	WG1345980
C28-C40 Oil Range	10.4		0.292	4.00	4.26	1	09/15/2019 22:58	WG1345980
(S) o-Terphenyl	58.2				18.0-148		09/15/2019 22:58	WG1345980

BH-4 (9'-10')
Collected date/time: 09/10/19 16:00

Page 89 of 180

SAMPLE RESULTS - 20

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	90.7		1	09/19/2019 18:47	WG1348339	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	201		0.876	10.0	11.0	1	09/17/2019 01:47	WG1346419

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0239	0.100	0.110	1	09/18/2019 17:28	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	103				77.0-120		09/18/2019 17:28	WG1347802

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•								
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000765	<u>J</u>	0.000441	0.00100	0.00110	1	09/18/2019 08:40	WG1347349
Toluene	U		0.00138	0.00500	0.00551	1	09/18/2019 08:40	WG1347349
Ethylbenzene	U		0.000584	0.00250	0.00276	1	09/18/2019 08:40	WG1347349
Total Xylenes	U		0.00527	0.00650	0.00716	1	09/18/2019 08:40	WG1347349
(S) Toluene-d8	103				75.0-131		09/18/2019 08:40	WG1347349
(S) 4-Bromofluorobenzene	87.5				67.0-138		09/18/2019 08:40	WG1347349
(S) 1,2-Dichloroethane-d4	98.4				70.0-130		09/18/2019 08:40	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.95		1.77	4.00	4.41	1	09/15/2019 22:45	WG1345980
C28-C40 Oil Range	10.8		0.302	4.00	4.41	1	09/15/2019 22:45	WG1345980
(S) o-Terphenyl	65.9				18.0-148		09/15/2019 22:45	WG1345980

BH-5 (0'-1')
Collected date/time: 09/11/19 10:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.5		1	09/19/2019 18:47	WG1348339

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	172		0.807	10.0	10.2	1	09/17/2019 21:20	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

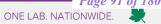
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.100	0.103	1.01	09/18/2019 17:49	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	102				77.0-120		09/18/2019 17:49	WG1347802

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000406	0.00100	0.00102	1	09/18/2019 08:58	WG1347349
Toluene	U		0.00127	0.00500	0.00508	1	09/18/2019 08:58	WG1347349
Ethylbenzene	U		0.000538	0.00250	0.00254	1	09/18/2019 08:58	WG1347349
Total Xylenes	U		0.00485	0.00650	0.00660	1	09/18/2019 08:58	WG1347349
(S) Toluene-d8	105				75.0-131		09/18/2019 08:58	WG1347349
(S) 4-Bromofluorobenzene	86.9				67.0-138		09/18/2019 08:58	WG1347349
(S) 1,2-Dichloroethane-d4	97.0				70.0-130		09/18/2019 08:58	WG1347349



	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	27.0		1.63	4.00	4.06	1	09/15/2019 23:51	WG1345980
C28-C40 Oil Range	77.3		0.278	4.00	4.06	1	09/15/2019 23:51	WG1345980
(S) o-Terphenyl	69.3				18.0-148		09/15/2019 23:51	WG1345980

BH-5 (2'-3')

Collected date/time: 09/11/19 10:40

SAMPLE RESULTS - 22

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.4		1	09/19/2019 18:23	WG1348340

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	133		0.808	10.0	10.2	1	09/17/2019 21:38	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.100	0.102	1	09/18/2019 18:09	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/18/2019 18:09	WG1347802

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00115		0.000406	0.00100	0.00102	1	09/18/2019 09:17	WG1347349
Toluene	U		0.00127	0.00500	0.00508	1	09/18/2019 09:17	WG1347349
Ethylbenzene	U		0.000538	0.00250	0.00254	1	09/18/2019 09:17	WG1347349
Total Xylenes	U		0.00486	0.00650	0.00660	1	09/18/2019 09:17	WG1347349
(S) Toluene-d8	105				75.0-131		09/18/2019 09:17	WG1347349
(S) 4-Bromofluorobenzene	82.5				67.0-138		09/18/2019 09:17	WG1347349
(S) 1,2-Dichloroethane-d4	101				70.0-130		09/18/2019 09:17	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1650		81.8	4.00	203	50	09/16/2019 02:28	WG1345980
C28-C40 Oil Range	4890		13.9	4.00	203	50	09/16/2019 02:28	WG1345980
(S) o-Terphenvl	0.000	J7			18.0-148		09/16/2019 02:28	WG1345980

BH-5 (4'-5')

Collected date/time: 09/11/19 10:50

SAMPLE RESULTS - 23

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.5		1	09/19/2019 18:23	WG1348340

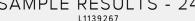
Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	70.1		0.807	10.0	10.2	1	09/17/2019 21:48	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.100	0.102	1	09/18/2019 18:29	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/18/2019 18:29	WG1347802

Qc


Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000660	<u>J</u>	0.000406	0.00100	0.00102	1	09/18/2019 09:36	WG1347349
Toluene	U		0.00127	0.00500	0.00508	1	09/18/2019 09:36	WG1347349
Ethylbenzene	U		0.000538	0.00250	0.00254	1	09/18/2019 09:36	WG1347349
Total Xylenes	U		0.00485	0.00650	0.00660	1	09/18/2019 09:36	WG1347349
(S) Toluene-d8	106				75.0-131		09/18/2019 09:36	WG1347349
(S) 4-Bromofluorobenzene	84.4				67.0-138		09/18/2019 09:36	WG1347349
(S) 1,2-Dichloroethane-d4	96.2				70.0-130		09/18/2019 09:36	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	246		81.7	4.00	203	50	09/16/2019 02:41	WG1345980
C28-C40 Oil Range	748		13.9	4.00	203	50	09/16/2019 02:41	WG1345980
(S) o-Terphenyl	0.000	J7			18.0-148		09/16/2019 02:41	WG1345980

BH-5 (6'-7')
Collected date/time: 09/11/19 11:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.0		1	09/19/2019 18:23	WG1348340

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	86.9		0.893	10.0	11.2	1	09/17/2019 21:57	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0244	0.100	0.112	1	09/18/2019 18:50	WG1347802
(S) a,a,a-Trifluorotoluene(FID)	102				77.0-120		09/18/2019 18:50	WG1347802

Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00111	<u>J</u>	0.000449	0.00100	0.00112	1	09/18/2019 09:55	WG1347349
Toluene	U		0.00140	0.00500	0.00562	1	09/18/2019 09:55	WG1347349
Ethylbenzene	U		0.000595	0.00250	0.00281	1	09/18/2019 09:55	WG1347349
Total Xylenes	U		0.00537	0.00650	0.00730	1	09/18/2019 09:55	WG1347349
(S) Toluene-d8	105				75.0-131		09/18/2019 09:55	WG1347349
(S) 4-Bromofluorobenzene	85.2				67.0-138		09/18/2019 09:55	WG1347349
(S) 1,2-Dichloroethane-d4	98.6				70.0-130		09/18/2019 09:55	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	50.8		9.04	4.00	22.5	5	09/16/2019 00:17	WG1345980
C28-C40 Oil Range	143		1.54	4.00	22.5	5	09/16/2019 00:17	WG1345980
(S) o-Terphenyl	81.6				18.0-148		09/16/2019 00:17	WG1345980

BH-5 (9'-10') SAMPLE RESULTS - 25 Collected date/time: 09/11/19 11:10

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	87.1		1	09/19/2019 18:23	WG1348340	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	57.7		0.913	10.0	11.5	1	09/17/2019 22:07	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	170		0.623	0.100	2.87	25	09/20/2019 14:56	WG1348959
(S) a,a,a-Trifluorotoluene(FID)	94.4				77.0-120		09/20/2019 14:56	WG1348959

Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00163		0.000459	0.00100	0.00115	1	09/18/2019 10:13	WG1347349
Toluene	0.00351	<u>J</u>	0.00144	0.00500	0.00574	1	09/18/2019 10:13	WG1347349
Ethylbenzene	0.486		0.000609	0.00250	0.00287	1	09/18/2019 10:13	WG1347349
Total Xylenes	0.210		0.00549	0.00650	0.00747	1	09/18/2019 10:13	WG1347349
(S) Toluene-d8	107				75.0-131		09/18/2019 10:13	WG1347349
(S) 4-Bromofluorobenzene	100				67.0-138		09/18/2019 10:13	WG1347349
(S) 1,2-Dichloroethane-d4	99.3				70.0-130		09/18/2019 10:13	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	747		18.5	4.00	45.9	10	09/16/2019 00:56	WG1345980
C28-C40 Oil Range	561		3.15	4.00	45.9	10	09/16/2019 00:56	WG1345980
(S) o-Terphenyl	93.8				18.0-148		09/16/2019 00:56	WG1345980

Page 95 of 180

BH-5 (12'-13') SAMPLE RESULTS - 26 Collected date/time: 09/11/19 11:20

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.9		1	09/19/2019 18:23	WG1348340

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	72.0		0.905	10.0	11.4	1	09/17/2019 22:16	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.598		0.0247	0.100	0.114	1	09/20/2019 14:08	WG1348959
(S) a,a,a-Trifluorotoluene(FID)	95.4				77.0-120		09/20/2019 14:08	WG1348959

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000455	0.00100	0.00114	1	09/18/2019 10:32	WG1347349
Toluene	U		0.00142	0.00500	0.00569	1	09/18/2019 10:32	WG1347349
Ethylbenzene	0.00826		0.000603	0.00250	0.00285	1	09/18/2019 10:32	WG1347349
Total Xylenes	U		0.00544	0.00650	0.00740	1	09/18/2019 10:32	WG1347349
(S) Toluene-d8	105				75.0-131		09/18/2019 10:32	WG1347349
(S) 4-Bromofluorobenzene	95.6				67.0-138		09/18/2019 10:32	WG1347349
(S) 1,2-Dichloroethane-d4	104				70.0-130		09/18/2019 10:32	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	39.6		1.83	4.00	4.55	1	09/15/2019 23:12	WG1345980
C28-C40 Oil Range	51.7		0.312	4.00	4.55	1	09/15/2019 23:12	WG1345980
(S) o-Terphenyl	65.0				18.0-148		09/15/2019 23:12	WG1345980

BH-5 (14'-15')
Collected date/time: 09/11/19 11:30

SAMPLE RESULTS - 27

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	87.8		1	09/19/2019 18:23	WG1348340	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	95.0		0.905	10.0	11.4	1	09/17/2019 22:26	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.340		0.0247	0.100	0.114	1	09/20/2019 14:32	WG1348959
(S) a,a,a-Trifluorotoluene(FID)	96.5				77.0-120		09/20/2019 14:32	WG1348959

Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000455	0.00100	0.00114	1	09/18/2019 10:50	WG1347349
Toluene	U		0.00142	0.00500	0.00569	1	09/18/2019 10:50	WG1347349
Ethylbenzene	0.00186	<u>J</u>	0.000603	0.00250	0.00285	1	09/18/2019 10:50	WG1347349
Total Xylenes	U		0.00544	0.00650	0.00740	1	09/18/2019 10:50	WG1347349
(S) Toluene-d8	102				75.0-131		09/18/2019 10:50	WG1347349
(S) 4-Bromofluorobenzene	91.6				67.0-138		09/18/2019 10:50	WG1347349
(S) 1,2-Dichloroethane-d4	103				70.0-130		09/18/2019 10:50	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	33.8		1.83	4.00	4.55	1	09/15/2019 23:25	WG1345980
C28-C40 Oil Range	40.5		0.312	4.00	4.55	1	09/15/2019 23:25	WG1345980
(S) o-Terphenyl	49.2				18.0-148		09/15/2019 23:25	WG1345980

BH-5 (19'-20')
Collected date/time: 09/11/19 11:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.2		1	09/19/2019 18:23	WG1348340

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	160		0.891	10.0	11.2	1	09/17/2019 22:54	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0243	0.100	0.112	1	09/19/2019 19:45	WG1348619
(S) a,a,a-Trifluorotoluene(FID)	94.7				77.0-120		09/19/2019 19:45	WG1348619

Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000448	0.00100	0.00112	1	09/18/2019 11:08	WG1347349
Toluene	U		0.00140	0.00500	0.00560	1	09/18/2019 11:08	WG1347349
Ethylbenzene	U		0.000594	0.00250	0.00280	1	09/18/2019 11:08	WG1347349
Total Xylenes	U		0.00536	0.00650	0.00729	1	09/18/2019 11:08	WG1347349
(S) Toluene-d8	103				75.0-131		09/18/2019 11:08	WG1347349
(S) 4-Bromofluorobenzene	85.9				67.0-138		09/18/2019 11:08	WG1347349
(S) 1,2-Dichloroethane-d4	103				70.0-130		09/18/2019 11:08	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadi. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	Qualifier	mg/kg	mg/kg	mg/kg	Dilution	date / time	<u>Baten</u>
C10-C28 Diesel Range	U		1.80	4.00	4.48	1	09/17/2019 19:11	WG1346816
C28-C40 Oil Range	1.55	<u>J</u>	0.307	4.00	4.48	1	09/17/2019 19:11	WG1346816
(S) o-Terphenyl	52.1				18.0-148		09/17/2019 19:11	WG1346816

BH-6 (0'-1')
Collected date/time: 09/11/19 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.8		1	09/19/2019 18:23	WG1348340

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	40.9		0.906	10.0	11.4	1	09/17/2019 23:04	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0405	<u>B J</u>	0.0247	0.100	0.114	1	09/19/2019 20:05	WG1348619
(S) a,a,a-Trifluorotoluene(FID)	94.9				77.0-120		09/19/2019 20:05	WG1348619

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000499	<u>J</u>	0.000456	0.00100	0.00114	1	09/18/2019 11:27	WG1347349
Toluene	U		0.00142	0.00500	0.00570	1	09/18/2019 11:27	WG1347349
Ethylbenzene	U		0.000604	0.00250	0.00285	1	09/18/2019 11:27	WG1347349
Total Xylenes	U		0.00544	0.00650	0.00740	1	09/18/2019 11:27	WG1347349
(S) Toluene-d8	108				75.0-131		09/18/2019 11:27	WG1347349
(S) 4-Bromofluorobenzene	88.9				67.0-138		09/18/2019 11:27	WG1347349
(S) 1,2-Dichloroethane-d4	101				70.0-130		09/18/2019 11:27	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadi. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	<u>quae.</u>	mg/kg	mg/kg	mg/kg	2	date / time	<u> </u>
C10-C28 Diesel Range	30.4		1.83	4.00	4.56	1	09/17/2019 20:29	WG1346816
C28-C40 Oil Range	81.3		0.312	4.00	4.56	1	09/17/2019 20:29	WG1346816
(S) o-Terphenyl	90.1				18.0-148		09/17/2019 20:29	WG1346816

BH-6 (2'-3')
Collected date/time: 09/11/19 12:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.9		1	09/19/2019 18:23	<u>WG1348340</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	42.3		0.847	10.0	10.7	1	09/17/2019 23:33	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0452	ВЈ	0.0231	0.100	0.107	1	09/19/2019 20:26	WG1348619
(S) a,a,a-Trifluorotoluene(FID)	94.5				77.0-120		09/19/2019 20:26	WG1348619

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000518	J	0.000426	0.00100	0.00107	1	09/18/2019 11:46	WG1347349
Toluene	U		0.00133	0.00500	0.00533	1	09/18/2019 11:46	WG1347349
Ethylbenzene	U		0.000564	0.00250	0.00266	1	09/18/2019 11:46	WG1347349
Total Xylenes	U		0.00509	0.00650	0.00692	1	09/18/2019 11:46	WG1347349
(S) Toluene-d8	104				75.0-131		09/18/2019 11:46	WG1347349
(S) 4-Bromofluorobenzene	87.9				67.0-138		09/18/2019 11:46	WG1347349
(S) 1,2-Dichloroethane-d4	102				70.0-130		09/18/2019 11:46	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	63.1		1.71	4.00	4.26	1	09/17/2019 20:55	WG1346816
C28-C40 Oil Range	148		0.292	4.00	4.26	1	09/17/2019 20:55	WG1346816
(S) o-Terphenyl	66.7				18.0-148		09/17/2019 20:55	WG1346816

BH-6 (4'-5')
Collected date/time: 09/11/19 12:20

SAMPLE RESULTS - 31

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.7		1	09/19/2019 18:23	WG1348340

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	20.4	<u>B</u>	0.805	10.0	10.1	1	09/17/2019 23:42	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.100	0.101	1	09/19/2019 20:46	WG1348619
(S) a,a,a-Trifluorotoluene(FID)	94.5				77.0-120		09/19/2019 20:46	WG1348619

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000405	0.00100	0.00101	1	09/18/2019 12:04	WG1347349
Toluene	U		0.00127	0.00500	0.00506	1	09/18/2019 12:04	WG1347349
Ethylbenzene	U		0.000537	0.00250	0.00253	1	09/18/2019 12:04	WG1347349
Total Xylenes	U		0.00484	0.00650	0.00658	1	09/18/2019 12:04	WG1347349
(S) Toluene-d8	107				75.0-131		09/18/2019 12:04	WG1347349
(S) 4-Bromofluorobenzene	85.6				67.0-138		09/18/2019 12:04	WG1347349
(S) 1,2-Dichloroethane-d4	101				70.0-130		09/18/2019 12:04	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.87	B J J3	1.63	4.00	4.05	1	09/17/2019 19:37	WG1346816
C28-C40 Oil Range	2.44	<u>J</u>	0.277	4.00	4.05	1	09/17/2019 19:37	WG1346816
(S) o-Terphenyl	65.3				18.0-148		09/17/2019 19:37	WG1346816

Page 101 of 180

BH-6 (6'-7')
Collected date/time: 09/11/19 12:30

SAMPLE RESULTS - 32

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.8		1	09/19/2019 18:09	WG1348341

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	94.9		0.822	10.0	10.3	1	09/17/2019 23:52	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.100	0.103	1	09/19/2019 21:07	WG1348619
(S) a,a,a-Trifluorotoluene(FID)	94.9				77.0-120		09/19/2019 21:07	WG1348619

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000435	J	0.000413	0.00100	0.00103	1	09/18/2019 12:23	WG1347349
Toluene	U		0.00129	0.00500	0.00517	1	09/18/2019 12:23	WG1347349
Ethylbenzene	U		0.000548	0.00250	0.00258	1	09/18/2019 12:23	WG1347349
Total Xylenes	U		0.00494	0.00650	0.00672	1	09/18/2019 12:23	WG1347349
(S) Toluene-d8	108				75.0-131		09/18/2019 12:23	WG1347349
(S) 4-Bromofluorobenzene	84.5				67.0-138		09/18/2019 12:23	WG1347349
(S) 1,2-Dichloroethane-d4	102				70.0-130		09/18/2019 12:23	WG1347349

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.78	ВЈ	1.66	4.00	4.13	1	09/17/2019 19:24	WG1346816
C28-C40 Oil Range	3.04	<u>J</u>	0.283	4.00	4.13	1	09/17/2019 19:24	WG1346816
(S) o-Terphenyl	87.5				18.0-148		09/17/2019 19:24	WG1346816

SAMPLE RESULTS - 33 BH-7 (0'-1')
Collected date/time: 09/11/19 12:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.9		1	09/19/2019 18:09	WG1348341

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	3.75	<u>B J</u>	0.829	10.0	10.4	1	09/18/2019 00:01	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.100	0.104	1	09/19/2019 21:27	WG1348619
(S) a,a,a-Trifluorotoluene(FID)	94.5				77.0-120		09/19/2019 21:27	WG1348619

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

3	1 (2									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>			
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time				
Benzene	U		0.000417	0.00100	0.00104	1	09/18/2019 11:04	WG1347795			
Toluene	U		0.00130	0.00500	0.00521	1	09/18/2019 11:04	WG1347795			
Ethylbenzene	U		0.000553	0.00250	0.00261	1	09/18/2019 11:04	WG1347795			
Total Xylenes	U		0.00498	0.00650	0.00678	1	09/18/2019 11:04	WG1347795			
(S) Toluene-d8	116				75.0-131		09/18/2019 11:04	WG1347795			
(S) 4-Bromofluorobenzene	105				67.0-138		09/18/2019 11:04	WG1347795			
(S) 1,2-Dichloroethane-d4	106				70.0-130		09/18/2019 11:04	WG1347795			



	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.55	В	1.68	4.00	4.17	1	09/17/2019 21:08	WG1346816
C28-C40 Oil Range	46.3		0.286	4.00	4.17	1	09/17/2019 21:08	WG1346816
(S) o-Terphenyl	80.9				18.0-148		09/17/2019 21:08	WG1346816

Page 103 of 180

SAMPLE RESULTS - 34

BH-7 (2'-3')
Collected date/time: 09/11/19 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.9		1	09/19/2019 18:09	WG1348341

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	15.4	<u>B</u>	0.804	10.0	10.1	1	09/18/2019 00:11	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.100	0.101	1	09/19/2019 21:47	WG1348619
(S) a,a,a-Trifluorotoluene(FID)	95.0				77.0-120		09/19/2019 21:47	WG1348619

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000404	0.00100	0.00101	1	09/18/2019 11:25	WG1347795
Toluene	U		0.00126	0.00500	0.00505	1	09/18/2019 11:25	WG1347795
Ethylbenzene	U		0.000536	0.00250	0.00253	1	09/18/2019 11:25	WG1347795
Total Xylenes	U		0.00483	0.00650	0.00657	1	09/18/2019 11:25	WG1347795
(S) Toluene-d8	118				75.0-131		09/18/2019 11:25	WG1347795
(S) 4-Bromofluorobenzene	98.4				67.0-138		09/18/2019 11:25	WG1347795
(S) 1,2-Dichloroethane-d4	103				70.0-130		09/18/2019 11:25	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.75	В	1.63	4.00	4.04	1	09/17/2019 20:42	WG1346816
C28-C40 Oil Range	30.5		0.277	4.00	4.04	1	09/17/2019 20:42	WG1346816
(S) o-Terphenyl	67.0				18.0-148		09/17/2019 20:42	WG1346816

Page 104 of 180

BH-7 (4'-5')
Collected date/time: 09/11/19 13:10

SAMPLE RESULTS - 35

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.2		1	09/19/2019 18:09	WG1348341

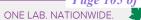
Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	3.10	<u>B J</u>	0.801	10.0	10.1	1	09/18/2019 00:20	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0463	<u>B J</u>	0.0219	0.100	0.101	1	09/20/2019 05:55	WG1348624
(S) a,a,a-Trifluorotoluene(FID)	103				77.0-120		09/20/2019 05:55	WG1348624

Qc


Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000403	0.00100	0.00101	1	09/18/2019 11:45	WG1347795
Toluene	U		0.00126	0.00500	0.00504	1	09/18/2019 11:45	WG1347795
Ethylbenzene	U		0.000534	0.00250	0.00252	1	09/18/2019 11:45	WG1347795
Total Xylenes	U		0.00482	0.00650	0.00655	1	09/18/2019 11:45	WG1347795
(S) Toluene-d8	113				75.0-131		09/18/2019 11:45	WG1347795
(S) 4-Bromofluorobenzene	95.6				67.0-138		09/18/2019 11:45	WG1347795
(S) 1,2-Dichloroethane-d4	105				70.0-130		09/18/2019 11:45	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	16.3	ВЈ	8.11	4.00	20.2	5	09/17/2019 21:21	WG1346816
C28-C40 Oil Range	95.5		1.38	4.00	20.2	5	09/17/2019 21:21	WG1346816
(S) o-Terphenyl	72.6				18.0-148		09/17/2019 21:21	WG1346816

BH-8 (0'-1')
Collected date/time: 09/11/19 13:30 SAMPLE RESULTS - 36

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.4		1	09/19/2019 18:09	WG1348341

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	51.4		0.817	10.0	10.3	1	09/18/2019 00:49	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1.30		0.0223	0.100	0.103	1	09/20/2019 06:17	WG1348624
(S) a,a,a-Trifluorotoluene(FID)	102				77.0-120		09/20/2019 06:17	WG1348624

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000411	0.00100	0.00103	1	09/18/2019 12:05	WG1347795
Toluene	U		0.00128	0.00500	0.00514	1	09/18/2019 12:05	WG1347795
Ethylbenzene	0.0138		0.000544	0.00250	0.00257	1	09/18/2019 12:05	WG1347795
Total Xylenes	0.155		0.00491	0.00650	0.00668	1	09/18/2019 12:05	WG1347795
(S) Toluene-d8	109				75.0-131		09/18/2019 12:05	WG1347795
(S) 4-Bromofluorobenzene	133				67.0-138		09/18/2019 12:05	WG1347795
(S) 1,2-Dichloroethane-d4	106				70.0-130		09/18/2019 12:05	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3830		33.1	4.00	82.2	20	09/21/2019 12:56	WG1346816
C28-C40 Oil Range	2350		5.63	4.00	82.2	20	09/21/2019 12:56	WG1346816
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		09/21/2019 12:56	WG1346816

BH-8 (2'-3')
Collected date/time: 09/11/19 13:40

Page 106 of 180

SAMPLE RESULTS - 37

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.6		1	09/19/2019 18:09	WG1348341

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	63.7		0.841	10.0	10.6	1	09/18/2019 00:58	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

Result	lt (dry) Qualifie	<u>r</u> SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte mg/kg	g	mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction 1.51		0.0229	0.100	0.106	1	09/20/2019 06:40	WG1348624
(S) a,a,a-Trifluorotoluene(FID) 102				77.0-120		09/20/2019 06:40	WG1348624

Cn

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000423	0.00100	0.00106	1	09/18/2019 12:26	WG1347795
Toluene	U		0.00132	0.00500	0.00529	1	09/18/2019 12:26	WG1347795
Ethylbenzene	0.0106		0.000560	0.00250	0.00264	1	09/18/2019 12:26	WG1347795
Total Xylenes	0.121		0.00505	0.00650	0.00687	1	09/18/2019 12:26	WG1347795
(S) Toluene-d8	112				75.0-131		09/18/2019 12:26	WG1347795
(S) 4-Bromofluorobenzene	124				67.0-138		09/18/2019 12:26	WG1347795
(S) 1,2-Dichloroethane-d4	108				70.0-130		09/18/2019 12:26	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5520		85.1	4.00	211	50	09/21/2019 13:09	WG1346816
C28-C40 Oil Range	3670		14.5	4.00	211	50	09/21/2019 13:09	WG1346816
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		09/21/2019 13:09	WG1346816

Page 107 of 180

SAMPLE RESULTS - 38

BH-8 (4'-5')
Collected date/time: 09/11/19 13:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.0		1	09/19/2019 18:09	WG1348341

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	57.6		0.820	10.0	10.3	1	09/18/2019 01:08	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.142	В	0.0224	0.100	0.103	1	09/20/2019 07:59	WG1348624
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/20/2019 07:59	WG1348624

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>	1 (, ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000412	0.00100	0.00103	1	09/18/2019 12:46	WG1347795
Toluene	U		0.00129	0.00500	0.00515	1	09/18/2019 12:46	WG1347795
Ethylbenzene	0.000930	<u>J</u>	0.000546	0.00250	0.00258	1	09/18/2019 12:46	WG1347795
Total Xylenes	0.0217		0.00493	0.00650	0.00670	1	09/18/2019 12:46	WG1347795
(S) Toluene-d8	109				75.0-131		09/18/2019 12:46	WG1347795
(S) 4-Bromofluorobenzene	106				67.0-138		09/18/2019 12:46	WG1347795
(S) 1,2-Dichloroethane-d4	106				70.0-130		09/18/2019 12:46	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	336		83.0	4.00	206	50	09/17/2019 21:34	WG1346816
C28-C40 Oil Range	1010		14.1	4.00	206	50	09/17/2019 21:34	WG1346816
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		09/17/2019 21:34	WG1346816

Page 108 of 180

SAMPLE RESULTS - 39

BH-8 (6'-7')
Collected date/time: 09/11/19 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.6		1	09/19/2019 18:09	WG1348341

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	74.9		0.831	10.0	10.5	1	09/18/2019 01:17	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0564	<u>B J</u>	0.0227	0.100	0.105	1	09/20/2019 08:22	WG1348624
(S) a,a,a-Trifluorotoluene(FID)	103				77.0-120		09/20/2019 08:22	WG1348624

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000418	0.00100	0.00105	1	09/18/2019 13:07	WG1347795
Toluene	U		0.00131	0.00500	0.00523	1	09/18/2019 13:07	WG1347795
Ethylbenzene	U		0.000554	0.00250	0.00261	1	09/18/2019 13:07	WG1347795
Total Xylenes	U		0.00500	0.00650	0.00680	1	09/18/2019 13:07	WG1347795
(S) Toluene-d8	109				75.0-131		09/18/2019 13:07	WG1347795
(S) 4-Bromofluorobenzene	106				67.0-138		09/18/2019 13:07	WG1347795
(S) 1,2-Dichloroethane-d4	106				70.0-130		09/18/2019 13:07	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	408		84.2	4.00	209	50	09/17/2019 21:47	WG1346816
C28-C40 Oil Range	1030		14.3	4.00	209	50	09/17/2019 21:47	WG1346816
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		09/17/2019 21:47	WG1346816

Page 109 of 180

BH-8 (9'-10') SAMPLE F

SAMPLE RESULTS - 40

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	95.0		1	09/19/2019 18:09	WG1348341	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	214		0.837	10.0	10.5	1	09/18/2019 01:27	WG1346738

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0498	ВЈ	0.0228	0.100	0.105	1	09/20/2019 08:44	WG1348624
(S) a,a,a-Trifluorotoluene(FID)	104				77.0-120		09/20/2019 08:44	WG1348624

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	5 1:71 1							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000421	0.00100	0.00105	1	09/18/2019 13:28	WG1347795
Toluene	U		0.00132	0.00500	0.00526	1	09/18/2019 13:28	WG1347795
Ethylbenzene	U		0.000558	0.00250	0.00263	1	09/18/2019 13:28	WG1347795
Total Xylenes	U		0.00503	0.00650	0.00684	1	09/18/2019 13:28	WG1347795
(S) Toluene-d8	115				75.0-131		09/18/2019 13:28	WG1347795
(S) 4-Bromofluorobenzene	105				67.0-138		09/18/2019 13:28	WG1347795
(S) 1,2-Dichloroethane-d4	105				70.0-130		09/18/2019 13:28	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.6		1.70	4.00	4.21	1	09/18/2019 22:06	WG1347218
C28-C40 Oil Range	9.11		0.288	4.00	4.21	1	09/18/2019 22:06	WG1347218
(S) o-Terphenyl	112				18.0-148		09/18/2019 22:06	WG1347218

Page 110 of 180

BH-9 (0'-1')
Collected date/time: 09/11/19 14:40

SAMPLE RESULTS - 41

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.6		1	09/19/2019 18:09	WG1348341

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	22.4	<u>B</u>	0.798	10.0	10.0	1	09/18/2019 21:17	WG1347692

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0507	ВЈ	0.0218	0.100	0.100	1	09/20/2019 09:48	WG1348624
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		09/20/2019 09:48	WG1348624

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000402	0.00100	0.00100	1	09/18/2019 13:49	WG1347795
Toluene	U		0.00125	0.00500	0.00502	1	09/18/2019 13:49	WG1347795
Ethylbenzene	U		0.000532	0.00250	0.00251	1	09/18/2019 13:49	WG1347795
Total Xylenes	U		0.00480	0.00650	0.00653	1	09/18/2019 13:49	WG1347795
(S) Toluene-d8	119				75.0-131		09/18/2019 13:49	WG1347795
(S) 4-Bromofluorobenzene	97.6				67.0-138		09/18/2019 13:49	WG1347795
(S) 1,2-Dichloroethane-d4	98.6				70.0-130		09/18/2019 13:49	WG1347795

Qc

	Result (dry)	<u>Qualifier</u>	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	155		32.3	4.00	80.3	20	09/18/2019 23:52	WG1347218
C28-C40 Oil Range	452		5.50	4.00	80.3	20	09/18/2019 23:52	WG1347218
(S) o-Terphenyl	121	J7			18.0-148		09/18/2019 23:52	WG1347218

Page 111 of 180

SAMPLE RESULTS - 42

BH-9 (2'-3')
Collected date/time: 09/11/19 14:50

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.1		1	09/19/2019 13:54	WG1348343

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	4.32	<u>B J</u>	0.810	10.0	10.2	1	09/18/2019 10:42	WG1347474

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0508	<u>B J</u>	0.0221	0.100	0.102	1	09/20/2019 10:11	WG1348624
(S) a,a,a-Trifluorotoluene(FID)	103				77.0-120		09/20/2019 10:11	WG1348624

Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000408	0.00100	0.00102	1	09/18/2019 14:10	WG1347795
Toluene	U		0.00127	0.00500	0.00510	1	09/18/2019 14:10	WG1347795
Ethylbenzene	U		0.000540	0.00250	0.00255	1	09/18/2019 14:10	WG1347795
Total Xylenes	U		0.00487	0.00650	0.00662	1	09/18/2019 14:10	WG1347795
(S) Toluene-d8	113				75.0-131		09/18/2019 14:10	WG1347795
(S) 4-Bromofluorobenzene	99.6				67.0-138		09/18/2019 14:10	WG1347795
(S) 1,2-Dichloroethane-d4	105				70.0-130		09/18/2019 14:10	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	326		32.8	4.00	81.5	20	09/19/2019 00:06	WG1347218
C28-C40 Oil Range	795		5.58	4.00	81.5	20	09/19/2019 00:06	WG1347218
(S) o-Terphenyl	133	<u>J7</u>			18.0-148		09/19/2019 00:06	WG1347218

Page 112 of 180

SAMPLE RESULTS - 43

BH-10 (0'-1')
Collected date/time: 09/11/19 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.9		1	09/19/2019 13:54	WG1348343

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	4.00	B J P1	0.904	10.0	11.4	1	09/18/2019 11:10	WG1347474

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0247	0.100	0.114	1	09/20/2019 01:02	WG1348819
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		09/20/2019 01:02	WG1348819

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000455	0.00100	0.00114	1	09/18/2019 14:31	WG1347795
Toluene	U		0.00142	0.00500	0.00569	1	09/18/2019 14:31	WG1347795
Ethylbenzene	U		0.000603	0.00250	0.00284	1	09/18/2019 14:31	WG1347795
Total Xylenes	U		0.00544	0.00650	0.00739	1	09/18/2019 14:31	WG1347795
(S) Toluene-d8	114				75.0-131		09/18/2019 14:31	WG1347795
(S) 4-Bromofluorobenzene	103				67.0-138		09/18/2019 14:31	WG1347795
(S) 1,2-Dichloroethane-d4	103				70.0-130		09/18/2019 14:31	WG1347795

Gl

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	24.7		1.83	4.00	4.55	1	09/18/2019 22:59	WG1347218
C28-C40 Oil Range	32.0		0.312	4.00	4.55	1	09/18/2019 22:59	WG1347218
(S) o-Terphenyl	91.4				18.0-148		09/18/2019 22:59	WG1347218

Page 113 of 180

BH-10 (2'-3')
Collected date/time: 09/11/19 15:10

SAMPLE RESULTS - 44

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.3		1	09/19/2019 13:54	WG1348343

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	3.97	<u>B J</u>	0.978	10.0	12.3	1	09/18/2019 11:29	WG1347474

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0267	0.100	0.123	1	09/20/2019 01:22	WG1348819
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		09/20/2019 01:22	WG1348819

Cn

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	D 11/1 \	0 1:6	CDL (L)		1401 (1.)	D.1	A 1 :	D
	Result (dry)	<u>Qualifier</u>	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00100	0.00123	1	09/18/2019 14:51	WG1347795
Toluene	U		0.00154	0.00500	0.00615	1	09/18/2019 14:51	WG1347795
Ethylbenzene	U		0.000652	0.00250	0.00307	1	09/18/2019 14:51	WG1347795
Total Xylenes	U		0.00588	0.00650	0.00799	1	09/18/2019 14:51	WG1347795
(S) Toluene-d8	113				75.0-131		09/18/2019 14:51	WG1347795
(S) 4-Bromofluorobenzene	106				67.0-138		09/18/2019 14:51	WG1347795
(S) 1,2-Dichloroethane-d4	106				70.0-130		09/18/2019 14:51	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.98	4.00	4.92	1	09/18/2019 22:46	WG1347218
C28-C40 Oil Range	3.36	<u>J</u>	0.337	4.00	4.92	1	09/18/2019 22:46	WG1347218
(S) o-Terphenyl	91.7				18.0-148		09/18/2019 22:46	WG1347218

Page 114 of 180

SAMPLE RESULTS - 45

BH-10 (4'-5')
Collected date/time: 09/11/19 15:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.5		1	09/19/2019 13:54	WG1348343

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	2.76	<u>B J</u>	0.824	10.0	10.4	1	09/18/2019 11:39	WG1347474

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.100	0.105	1.01	09/20/2019 01:43	WG1348819
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		09/20/2019 01:43	WG1348819

Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000414	0.00100	0.00104	1	09/18/2019 15:12	WG1347795
Toluene	U		0.00129	0.00500	0.00518	1	09/18/2019 15:12	WG1347795
Ethylbenzene	U		0.000549	0.00250	0.00259	1	09/18/2019 15:12	WG1347795
Total Xylenes	U		0.00495	0.00650	0.00673	1	09/18/2019 15:12	WG1347795
(S) Toluene-d8	114				75.0-131		09/18/2019 15:12	WG1347795
(S) 4-Bromofluorobenzene	96.4				67.0-138		09/18/2019 15:12	WG1347795
(S) 1,2-Dichloroethane-d4	102				70.0-130		09/18/2019 15:12	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	115		3.34	4.00	8.29	2	09/18/2019 16:21	WG1347221
C28-C40 Oil Range	194		0.568	4.00	8.29	2	09/18/2019 16:21	WG1347221
(S) o-Terphenyl	102				18.0-148		09/18/2019 16:21	WG1347221

BH-11 (0'-0.5')
Collected date/time: 09/11/19 16:00

SAMPLE RESULTS - 46

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.8		1	09/19/2019 13:54	WG1348343

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	30.7		0.805	10.0	10.1	1	09/18/2019 11:48	WG1347474

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.100	0.102	1.01	09/20/2019 02:03	WG1348819
(S) a,a,a-Trifluorotoluene(FID)	107				77.0-120		09/20/2019 02:03	WG1348819

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000405	0.00100	0.00101	1	09/18/2019 15:32	WG1347795
Toluene	U		0.00127	0.00500	0.00506	1	09/18/2019 15:32	WG1347795
Ethylbenzene	U		0.000536	0.00250	0.00253	1	09/18/2019 15:32	WG1347795
Total Xylenes	U		0.00484	0.00650	0.00658	1	09/18/2019 15:32	WG1347795
(S) Toluene-d8	113				75.0-131		09/18/2019 15:32	WG1347795
(S) 4-Bromofluorobenzene	99.1				67.0-138		09/18/2019 15:32	WG1347795
(S) 1,2-Dichloroethane-d4	106				70.0-130		09/18/2019 15:32	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	29.8		8.15	4.00	20.2	5	09/18/2019 16:34	WG1347221
C28-C40 Oil Range	72.4		1.39	4.00	20.2	5	09/18/2019 06:04	WG1347221
(S) o-Terphenyl	131				18.0-148		09/18/2019 06:04	WG1347221
(S) o-Terphenyl	129				18.0-148		09/18/2019 16:34	WG1347221

Page 116 of 180

BH-12 (0'-0.5')
Collected date/time: 09/11/19 16:30 SAMPLE RESULTS - 47

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.2		1	09/19/2019 13:54	WG1348343

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	2.64	<u>B J</u>	0.801	10.0	10.1	1	09/18/2019 11:58	WG1347474

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.100	0.102	1.01	09/20/2019 02:24	WG1348819
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		09/20/2019 02:24	WG1348819

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000403	0.00100	0.00101	1	09/18/2019 15:59	WG1347795
Toluene	U		0.00126	0.00500	0.00504	1	09/18/2019 15:59	WG1347795
Ethylbenzene	U		0.000534	0.00250	0.00252	1	09/18/2019 15:59	WG1347795
Total Xylenes	U		0.00482	0.00650	0.00655	1	09/18/2019 15:59	WG1347795
(S) Toluene-d8	113				75.0-131		09/18/2019 15:59	WG1347795
(S) 4-Bromofluorobenzene	101				67.0-138		09/18/2019 15:59	WG1347795
(S) 1,2-Dichloroethane-d4	106				70.0-130		09/18/2019 15:59	WG1347795

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	21.1		8.11	4.00	20.2	5	09/18/2019 16:47	WG1347221
C28-C40 Oil Range	69.9		1.38	4.00	20.2	5	09/18/2019 06:19	WG1347221
(S) o-Terphenyl	107				18.0-148		09/18/2019 06:19	WG1347221
(S) o-Terphenyl	118				18.0-148		09/18/2019 16:47	WG1347221

Page 117 of 180

Тс

[†]Cn

°Sr

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L1139267-01

Method Blank (MB)

WG1348336

L1139257-06 Original Sample (OS) • Duplicate (DUP) (OS) L1139257-06 09/19/19 19:08 • (DUP) R3452742-3 09/19/19 19:08

, ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	89.9	90.0	1	0.104		10

Laboratory Control Sample (LCS)

(LCS) R3452742-2 09/1	19/19 19:08				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Total Solids by Method 2540 G-2011

Page 118 of 180

QUALITY CONTROL SUMMARY

WG1348337

L1139267-02,03,04,05,06,07,08,09,10,11

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3452740-1 09/1	19/19 18:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

L1139267-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1139267-02 09/19/19 18:57 • (DUP) R3452740-3 09/19/19 18:57

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
	%	%		%		%
Total Solids	96.6	96.3	1	U 308		10

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 119 of 180

WG1348339

QUALITY CONTROL SUMMARY L1139267-12,13,14,15,16,17,18,19,20,21

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) R3452737-1 09/19	9/19 18:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1139267-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1139267-12 09/19/19 18:47 • (DUP) R3452737-3	09/19/19 18:4	47		
Original Result DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits

Analyte	%	%		%
Total Solids	98.2	96.1	1	2.15

Laboratory Control Sample (LCS)

(LCS	R3452737-2	09/19/19 18:47

, ,	Spike Amount LCS Result LCS Rec.	Rec. Limits LCS Qualifier
Analyte	% %	%
Total Solids	50.0 50.0 100	85.0-115

[†]Cn

Page 120 of 180

WG1348340 QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-22,23,24,25,26,27,28,29,30,31

Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) R3452736-1 09/1	19/19 18:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1139267-23 Original Sample (OS) • Duplicate (DUP)

(OS) L1139267-23 09/19/19 18:23 • (DUP) R3452736-3 09/19/19 18:23

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	98.5	98.4	1	0.0544		10

Laboratory Control Sample (LCS)

(LCS) R3452736-2 09/19/19 18:23

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	99.9	85.0-115

[†]Cn

Total Solids by Method 2540 G-2011

Page 121 of 180

WG1348341

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-32,33,34,35,36,37,38,39,40,41

Method Blank (MB)

Total Solids

(MB) R3452735-1 09/19/	19 18:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

L1139267-34 Original Sample (OS) • Duplicate (DUP) (OS) L1139267-34 09/19/19 18:09 • (DUP) R3452735-3 09/19/19 18:09

98.9

0.0197

98.9

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%

10

Laboratory Control Sample (LCS)

(LCS) R3452735-2 09/19/19 18:09								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	%	%	%	%				
Total Solids	50.0	50.0	100	85.0-115				

[†]Cn

°Sr

Total Solids by Method 2540 G-2011

^⁴Cn

WG1348343

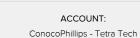
QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-42,43,44,45,46,47

Method Blank (MB)

(MB) R3452923-1 09/1	19/19 13:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			


L1139267-45 Original Sample (OS) • Duplicate (DUP)

(OS) L1139267-45 09/19/19 13:54 • (DUP) R3452923-3 09/19/19 13:54

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.5	97.4	1	0.900		10

Laboratory Control Sample (LCS)

(LCS) R3452923-2 09/19/19 13:54										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	%	%	%	%						
Total Solids	50.0	50.0	100	85.0-115						

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 300.0

L1139267-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3451379-1 09/17/19 (01:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	2.12	<u>J</u>	0.795	10.0

[°]Ss

L1139207-39 Original Sample (OS) • Duplicate (DUP)

(OS) L1139207-39 09/17/19 03:00 • (DUP) R3451379-3 09/17/19 03:14

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	315	309	1	2.11		20

L1139267-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1139267-06 09/17/19 07:48 • (DUP) R3451379-6 09/17/19 08:02

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	281	260	1	7.81		20	

Laboratory Control Sample (LCS)

(LCS) R3451379-2 09/17/19 01:19

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	215	108	90.0-110	

50

L1139267-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1139267-02 09/17/19 05:53 • (MS) R3451379-4 09/17/19 06:07 • (MSD) R3451379-5 09/17/19 06:22

, ,	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	517	148	920	904	149	146	1	80.0-120	J5	J5	1.71	20

Wet Chemistry by Method 300.0

Page 124 of 180

WG1346419

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3451345-1 09/16/19 20:05								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Chloride	3.28	<u>J</u>	0.795	10.0				

L1135822-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1135822-15 09/16/19 21:59 • (DUP) R3451345-3 09/16/19 22:08

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	3700	3540	10	4.45		20

L1139267-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1139267-12 09/17/19 00:03 • (DUP) R3451345-6 09/17/19 00:12

. ,	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	23.5	6.37	1	115	<u>J P1</u>	20

Laboratory Control Sample (LCS)

(LCS) R3451345-2	09/16/19 20:14	

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	211	106	90.0-110	

L1139267-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1139267-08 09/16/19 23:05 • (MS) R3451345-4 09/16/19 23:15 • (MSD) R3451345-5 09/16/19 23:24

(03) [1139207-08 09/10/1	Spike Amount Original Result (dry) (dry) MS Result (dry) MS Result (dry) MS Result (dry) MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits											
	(dry)	(dry)	wis Result (dry)	(dry)	WIS Rec.	MISD Rec.	Dilution	Nec. Lilling	M3 Qualifier	MSD Qualifier	KI D	Ki D Lillits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	506	70.7	586	578	102	100	1	80.0-120			124	20

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 300.0

L1139267-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40

(MB) R3451/29-1 09/1//19 20:18								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Chloride	3.18	<u>J</u>	0.795	10.0				

[°]Ss

L1139267-21 Original Sample (OS) • Duplicate (DUP)

(OS) L1139267-21 09/17/19 21	1:20 • (DUP) I	R3451729-3	09/17/19 21:29
------------------------------	----------------	------------	----------------

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	172	166	1	3.81		20

L1139267-40 Original Sample (OS) • Duplicate (DUP)

(OS) L1139267-40 09/18/19 01:27 • (DUP) R3451729-6 09/18/19 01:36

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	214	226	1	5.47		20

Laboratory Control Sample (LCS)

(LCS)	R3451729-2	09/17/19	20.28

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	210	105	90.0-110	

L1139267-29 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1139267-29 09/17/19 23:04 • (MS) R3451729-4 09/17/19 23:14 • (MSD) R3451729-5 09/17/19 23:23

(,	Spike Amount (dry)		•	•			Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	570	40.9	631	610	104	99.9	1	80.0-120			3.40	20

Page 126 of 180

WG1347474

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 300.0

L1139267-42,43,44,45,46,47

Method Blank (MB)

(MB) R3451957-1 (19/18/19 09:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	2.33	<u>J</u>	0.795	10.0
		Ī		

L1139267-43 Original Sample (OS) • Duplicate (DUP)

(OS) L1139267-43 09/18/1	9 11:10 • (DUP) R	3451957-5 0	9/18/19 11:2	:0		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	4.00	2.98	1	29.2	J P1	20

L1139565-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1139565-01 09/18/19 12:07 • (DUP) R3451957-6 09/18/19 12:36

(,		DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	165	176	1	6.14		20

Laboratory Control Sample (LCS)

(LCS) R3451957-2 09/18/19 09:27

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	203	101	90.0-110	

L1139267-42 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1139267-42 09/18/19 10:42 • (MS) R3451957-3 09/18/19 10:51 • (MSD) R3451957-4 09/18/19 11:01

()	Spike Amount (dry)		MS Result (dry)			MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	510	4.32	557	552	108	107	1	80.0-120			0.872	20

Wet Chemistry by Method 300.0

WG1347692

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-41

Method Blank (MB)

(MB) R3452210-1 09/18/19 20:18									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Chloride	3.00	J	0.795	10.0					

(OS) L1135822-25 09/18/19 20:49 • (DUP) R3452210-3 09/18/19 20:58

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	6900	7290	20	5.39		20

(OS) L1140590-01 09/18/19 23:31 • (DUP) R3452210-6 09/18/19 23:40

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	127	155	10	20.0		20

(LCS) R3452210-2 09/18/19 20:27

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	212	106	90.0-110	

L1139267-41 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1139267-41 09/18/19 21:17 • (MS) R3452210-4 09/18/19 21:27 • (MSD) R3452210-5 09/18/19 21:36

(03) 11139207-41 09/10/19	33) 1133207-41 03/10/13 21:17 • (1/13) 13-432210-4 03/10/13 21:27 • (1/13) 13-432210-3 03/10/13 21:30												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	502	22.4	521	526	99.3	100	1	80 O-120			0.980	20	

Page 128 of 180

WG1347755

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1139267-01,02,03,04,05,06,07,09,10,11,12

Method Blank (MB)

(MB) R3452039-3 09/18/19	9 13:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0289	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120

[†]Cn

(LCS) R3452039-1 09/18/	19 12:26 • (LCSE	D) R3452039-	2 09/18/19 12:4	7							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	5.93	6.91	108	126	72.0-127			15.3	20	
(S) a,a,a-Trifluorotoluene(FID)				110	112	77.0-120					

(00) 11120214 01	00/10/10 14:43	(MC) D24E2O2O 6	00/10/10 00:25	• (MSD) R3452039-7 09/19/19 00:4	Е
(US) L1138214-U1	09/18/19 14:43	11VIS1 R345ZU39-6	09/19/19 00:25	• (IVISD) R3452039-7-09/19/19 00:4	כ

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.50	U	1.89	2.50	29.1	38.5	1	10.0-151			27.9	28
(S) a,a,a-Trifluorotoluene(FID)					90.2	93.5		77.0-120				

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

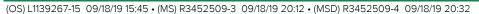
L1139267-13,14,15,16,17,18,19,20,21,22,23,24

Method Blank (MB)

(MB) R3452509-1 09/18/19	11:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120

Volatile Organic Compounds (GC) by Method 8015D/GRO

Laboratory Control Sample (LCS)


(LCS) R3452509-2 09/18	/19 12:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.68	103	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			107	77.0-120	

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.15	U	2.12	4.80	34.5	77.9	1	10.0-151		<u>J3</u>	77.2	28
(S) a,a,a-Trifluorotoluene(FID)					98.0	105		77.0-120				

Page 130 of 180

WG1348549

QUALITY CONTROL SUMMARY L1139267-08

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB)

(MB) R3452747-3 09/19/1	9 11:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3452747-1 09/19/1	CS) R3452747-1 09/19/19 10:55 • (LCSD) R3452747-2 09/19/19 11:15													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits				
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%				
TPH (GC/FID) Low Fraction	5.50	6.13	5.96	112	108	72.0-127			2.89	20				
(S) a,a,a-Trifluorotoluene(FID)				109	112	77.0-120								

Volatile Organic Compounds (GC) by Method 8015D/GRO

WG1348619

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-28,29,30,31,32,33,34

Method Blank (MB)

(MB) R3452760-2 09/19/	/19 12:55			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0247	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.7			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3452760-1 09/19/19	S) R3452760-1 09/19/19 11:49 • (LCSD) R3452760-3 09/19/19 22:28														
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits					
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%					
TPH (GC/FID) Low Fraction	5.50	5.83	5.46	106	99.4	72.0-127			6.39	20					
(S) a,a,a-Trifluorotoluene(FID)				110	106	77.0-120									

Volatile Organic Compounds (GC) by Method 8015D/GRO

WG1348624

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-35,36,37,38,39,40,41,42

Method Blank (MB)

(MB) R3452843-4 09/19/1	19 23:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0508	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120

³Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3452843-1 09/19/	CS) R3452843-1 09/19/19 12:44 • (LCSD) R3452843-3 09/19/19 18:30														
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits					
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%					
TPH (GC/FID) Low Fraction	5.50	5.48	6.46	99.6	117	72.0-127			16.4	20					
(S) a,a,a-Trifluorotoluene(FID)				106	109	77.0-120									

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-43,44,45,46,47

Method Blank (MB)

(MB) R3452748-2 09/19/19 23:20														
	MB Result	MB Qualifier	MB MDL	MB RDL										
Analyte	mg/kg		mg/kg	mg/kg										
TPH (GC/FID) Low Fraction	U		0.0217	0.100										
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120										

Volatile Organic Compounds (GC) by Method 8015D/GRO

(LCS) R3452748-1 09/19/	19 22:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.55	101	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			110	77.0-120	

[†]Cn

L1139451-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(0)	S) L1139451-04	09/20/19 06:09 · (MS) R3452748-3	09/20/19 06:29 • (1	MSD) I	R3452748-4 (09/20/19 06:50

(00) 21100 101 01 00/20/10	()	.0.027.000	0,20,10 00.20	(,	0 00.00						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.50	ND	100	117	72.3	84.2	25	10.0-151			15.1	28
(S) a,a,a-Trifluorotoluene(FID)					110	112		77.0-120				

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1139267-25,26,27

Method Blank (MB)

WG1348959

(MB) R3452960-2 09/20	/19 11:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	96.6			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3452960-1 09/20/	(LCS) R3452960-1 09/20/19 11:09										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
TPH (GC/FID) Low Fraction	5.50	4.96	90.3	72.0-127							
(S) a,a,a-Trifluorotoluene(FID)			101	77.0-120							

Volatile Organic Compounds (GC/MS) by Method 8260B

WG1347343

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3452593-3 09/17/	19 21:57				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000400	0.00100	
Ethylbenzene	U		0.000530	0.00250	
Toluene	U		0.00125	0.00500	
Xylenes, Total	U		0.00478	0.00650	
(S) Toluene-d8	111			75.0-131	
(S) 4-Bromofluorobenzene	99.0			67.0-138	
(S) 1,2-Dichloroethane-d4	117			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3452593-1 09/17/	19 20:35 • (LCSI	D) R3452593-	2 09/17/19 20:	56							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.100	0.0935	80.4	74.8	70.0-123			7.12	20	
Ethylbenzene	0.125	0.119	0.113	95.0	90.8	74.0-126			4.51	20	
Toluene	0.125	0.119	0.110	95.2	87.8	75.0-121			8.06	20	
Xylenes, Total	0.375	0.346	0.299	92.3	79.7	72.0-127		<u>J4</u>	14.6	20	
(S) Toluene-d8				107	107	75.0-131					
(S) 4-Bromofluorobenzene				102	103	67.0-138					
(S) 1,2-Dichloroethane-d4				116	118	70.0-130					

L1139233-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1139233-01 09/18/19	9 04:48 • (MS) R	3452593-4 09	9/18/19 05:09 •	(MSD) R34525	93-5 09/18/19	05:29						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.125	0.0921	1.09	0.885	100	79.2	8	10.0-149			21.0	37
Ethylbenzene	0.125	0.439	2.39	2.09	195	165	8	10.0-160	<u>J5</u>	<u>J5</u>	13.2	38
Toluene	0.125	1.01	4.61	4.48	360	347	8	10.0-156	<u>J5</u>	<u>J5</u>	2.90	38
Xylenes, Total	0.375	1.94	9.65	8.92	257	233	8	10.0-160	<u>J5</u>	<u>J5</u>	7.86	38
(S) Toluene-d8					110	113		75.0-131				
(S) 4-Bromofluorobenzene					114	115		67.0-138				
(S) 1,2-Dichloroethane-d4					112	110		70.0-130				

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L1139267-13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32

Method Blank (MB)

(MB) R3452584-3 09/18	/19 06:11					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Benzene	U		0.000400	0.00100		
Ethylbenzene	U		0.000530	0.00250		
Toluene	U		0.00125	0.00500		
Xylenes, Total	U		0.00478	0.00650		
(S) Toluene-d8	105			75.0-131		
(S) 4-Bromofluorobenzene	81.2			67.0-138		
(S) 1,2-Dichloroethane-d4	101			70.0-130		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(I CS) P3452584-1 09/18/19 04:57 • (I CSD) P3452584-2 09/18/19 05:	E-1E

(/		,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.110	0.111	88.1	88.5	70.0-123			0.508	20	
Ethylbenzene	0.125	0.115	0.112	92.2	89.4	74.0-126			3.13	20	
Toluene	0.125	0.121	0.122	97.0	97.5	75.0-121			0.429	20	
Xylenes, Total	0.375	0.322	0.307	85.9	81.9	72.0-127			4.77	20	
(S) Toluene-d8				100	102	75.0-131					
(S) 4-Bromofluorobenzene				92.6	91.1	67.0-138					
(S) 1,2-Dichloroethane-d4				108	105	70.0-130					

L1139267-32 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1139267-32 09/18/19 12:23 • (MS) R3452584-4 09/18/19 12:41 • (MSD) R3452584-5 09/18/19 13:00

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.129	0.000435	0.0805	0.0981	62.0	75.6	1	10.0-149			19.6	37
Ethylbenzene	0.129	U	0.0817	0.100	63.3	77.7	1	10.0-160			20.5	38
Toluene	0.129	U	0.0939	0.117	72.7	90.4	1	10.0-156			21.7	38
Xylenes, Total	0.387	U	0.232	0.288	59.9	74.3	1	10.0-160			21.5	38
(S) Toluene-d8					108	107		75.0-131				
(S) 4-Bromofluorobenzene					86.7	88.1		67.0-138				
(S) 1.2-Dichloroethane-d4					101	101		70.0-130				

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B <u>L1139267-33,34,35,36,37,38,39,40,41,42,43,44,45,46,47</u>

LCS Qualifier

Method Blank (MB)

(MB) R3452485-2 09/18/19	07:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	114			75.0-131
(S) 4-Bromofluorobenzene	99.7			67.0-138
(S) 1,2-Dichloroethane-d4	103			70.0-130

3 C C

Laboratory Control Sample (LCS)

(LCS) R3452485-1 09/18/1	9 06:51			
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/kg	mg/kg	%	%
Benzene	0.125	0.0960	76.8	70.0-123
Ethylbenzene	0.125	0.114	90.9	74.0-126
Toluene	0.125	0.122	97.7	75.0-121
Xylenes, Total	0.375	0.314	83.7	72.0-127
(S) Toluene-d8			111	75.0-131
(S) 4-Bromofluorobenzene			101	67.0-138
(S) 1,2-Dichloroethane-d4			108	70.0-130

L1139267-33 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1139267-33 09/18/19 11:04 • (MS) R3452485-3 09/18/19 18:02 • (MSD) R3452485-4 09/18/19 18:23

	Spike Amount (dry)	Original Result (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.130	U	0.0938	0.0801	72.0	61.5	1	10.0-149			15.7	37
Ethylbenzene	0.130	U	0.109	0.103	83.6	79.4	1	10.0-160			5.21	38
Toluene	0.130	U	0.115	0.105	88.0	80.4	1	10.0-156			8.94	38
Xylenes, Total	0.391	U	0.296	0.290	75.7	74.2	1	10.0-160			2.03	38
(S) Toluene-d8					114	118		75.0-131				
(S) 4-Bromofluorobenzene					96.9	100		67.0-138				
(S) 1,2-Dichloroethane-d4					108	102		70.0-130				

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-01,02,03,04,05,06,07,08,09

Method Blank (MB)

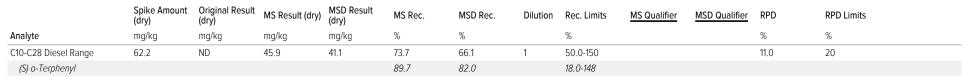
9 22:06			
MB Result	MB Qualifier	MB MDL	MB RDL
mg/kg		mg/kg	mg/kg
U		1.61	4.00
U		0.274	4.00
67.1			18.0-148
	MB Result mg/kg U	MB Result MB Qualifier mg/kg U U	MB Result mg/kg MB Qualifier mg/kg MB MDL mg/kg U 1.61 U 0.274

Semi-Volatile Organic Compounds (GC) by Method 8015

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3450998-2 09/15/	/19 22:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	33.1	66.2	50.0-150	
(S) o-Terphenyl			84.8	18.0-148	



L1138633-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS	L1138633-06	09/16/19 05:05 • (1	MS) R3450998-3	09/16/19 05:18 •	(MSD) R3450998-4	09/16/19 05:31

QUALITY CONTROL SUMMARY L1139267-10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method 8015

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	26.6			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3450999-2 09/15	/19 21:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.0	72.0	50.0-150	
(S) o-Terphenyl			89.6	18.0-148	

L1139267-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1139267-14 09/16/19 13:42 • (MS) R3450999-3 09/16/19 13:55 • (MSD) R3450999-4 09/16/19 14:09

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	52.4	36.1	83.0	82.9	89.6	89.4	10	50.0-150			0.126	20
(S) o-Terphenyl					92.8	91.1		18.0-148				

Sample Narrative:

OS: Cannot run at lower dilution due to viscosity of extract

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1139267-28,29,30,31,32,33,34,35,36,37,38,39

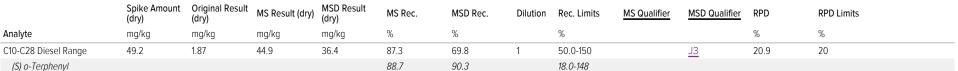
Method Blank (MB)

(MB) R3452048-1 09/17/19 17:13						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
C10-C28 Diesel Range	2.01	<u>J</u>	1.61	4.00		
C28-C40 Oil Range	U		0.274	4.00		
(S) o-Terphenyl	76.7			18.0-148		

Semi-Volatile Organic Compounds (GC) by Method 8015

Laboratory Control Sample (LCS)

(LCS) R3452048-2 09/17/19 17:26					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	35.8	71.6	50.0-150	
(S) o-Terphenyl			90.7	18.0-148	



L1139267-31 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

Page 141 of 180

WG1347218

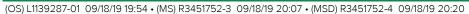
QUALITY CONTROL SUMMARY

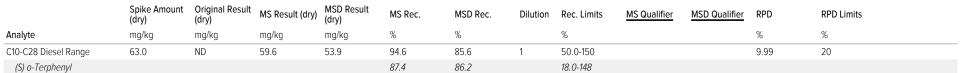
ONE LAB. NATIONWIDE.

L1139267-40,41,42,43,44

Method Blank (MB)

(MB) R3451752-1 09/18/19 01:42							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
C10-C28 Diesel Range	U		1.61	4.00			
C28-C40 Oil Range	U		0.274	4.00			
(S) o-Terphenyl	92.6			18.0-148			


(LCS) R3451752-2 09/18/19 01:57					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	46.9	93.8	50.0-150	
(S) o-Terphenyl			89.8	18.0-148	



WG1347221 QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3451753-1 09/18/19 01:12							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
C10-C28 Diesel Range	U		1.61	4.00			
C28-C40 Oil Range	0.480	<u>J</u>	0.274	4.00			
(S) o-Terphenyl	96.7			18.0-148			

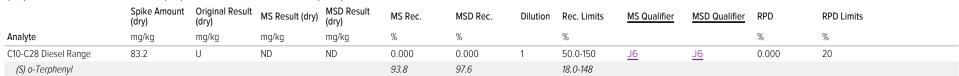
Semi-Volatile Organic Compounds (GC) by Method 8015

Cn

Laboratory Control Sample (LCS)

(LCS) R3451753-2 09/18/19 01:26							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
C10-C28 Diesel Range	50.0	50.7	101	50.0-150			
(S) o-Terphenyl			104	18.0-148			

L1139267-45,46,47



Page 143 of 180 ONE LAB. NATIONWIDE.

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Ss

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

8 1
Al

Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.

Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.

Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as norma for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.

Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.

0 1:6	This column provides a letter and/or number designation that corresponds to additional information concerning the result
Qualifier	reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and
	potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.

	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"
esult	(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL
	(Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
	or report for this analyte.

Result	(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.

Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will
	be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.

Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
---------------------------------	---

Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.

Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
---------------------	--

Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and
	times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
.13	The associated batch QC was outside the established quality control range for precision

GLOSSARY OF TERMS

Qualifier	Description
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

ACCREDITATIONS & LOCATIONS

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

Qc

GI

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accredition is only applicable to the host methods specified on each scene of accredition held by the contamination.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LA000356
South Carolina	84004
South Dakota	n/a
Tennessee 14	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

C147

TŁ	Tetra Tech. Inc.			24	901	Midl Tel	and,T (432)	Street, exas 7 682-4 682-3	559	100											LII	397	67	
Client Name:	ConocoPhillips	Site Manager		Chr	istia	n Llu	_				Т				A	NAL	YS	S R	EQL	JEST	_	-		
Project Name:	COP Baish A Battery		1.	2300							┨.		((irc	le c	or S	ре	cify	Me	etho	d N	lo.)		
Project Location: (county, state)	Lea County, New Mexico	Project #:		2	2120	C-ME	0-018	378		-	$\ \cdot\ $													
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701									- N	11											ist)		
Receiving Laboratory	Pace Analytical	Sampler Sign	ature:	The	_	-			77.			ORO - MRO)	H	Se Hg		1 19						(see attached list)		
Comments:	DPTETRA Acctnum	1		7							X 8260B	1.1	Cd Cr Ph Se Ho	Cd Cr Pb	F - 1		4)C/625			TDS			
		SAME	LING	MA	TRIX	P	RESER	VATIVE	SE SE	(A/N)	BTEX		Ac Ra	As Ba		Illes	8260B / 624	Vol. 8270C/	0			Chemistr	lance	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2019		H			3	Ш	CONTAINERS	FILTERED (Y	8021B	8015M (PAH 8270C		Volatiles	Semi Volatiles	GC/MS Vol. 82	GC/MS Semi. Vol.	2000	PLM (Asbestos)	de 300.0	General Water Chemistry	Anion/Cation Balance TPH 8015R	
ONLY)		DATE	TIME	WATE	SOL SOL	로	HNO H	NONE	00 #	FI	BTEX	표	PAH	TCLP	TCLP	RC L	GC/M	GC/M	NORM	PLM	Chloride	Gene	TPH 8	HOL
	BH-1 (0'- 1')	9/10/2019	1200		X		,)		1	N	X	X									X			
	BH-1 (2'- 3')	9/10/2019	1205	-	X	Ш)	+	1	N	Х	X		Ш]	X	2.21		
	BH-1 (4'- 5')	9/10/2019	1210	+	X	Ш		+	1	N	X	X	\perp	Ш	\perp	1			1		X			
	BH-1 (6'- 7')	9/10/2019	1220	1 /	-	Ш	\ \ \ \ \	+-+	1	N.	X	X	1								X	Ц		
	BH-1 (9'- 10')	9/10/2019	1230	1	X	Н	>	+	1	N	X	X	_			4			1	-	X		P. Control	
	BH-2 (0'- 1') BH-2 (2'- 3')	9/10/2019	1300	1 '	-	\sqcup	_ ×	+-+	1	N	X	X	4	Н	1	_			_	-	X	\sqcup	790	\perp
Party Company	BH-2 (4'- 5')	9/10/2019	1305	1 '		\sqcup	×	+	1	N	X	X	\perp	Н						-	X	\sqcup		\vdash
	BH-2 (6'- 7')	9/10/2019	1310	1	-	H	X	+	1	N	Х	X	+	\perp				Li E		-	X	\sqcup		
	BH-2 (9'- 10')	9/10/2019	1320	-	X		X		1	N	X	X	+	\sqcup		4	Н			+	X	\vdash		+
elinquished by:	Date: Time: 9-12-19 14:45 Date: Time:	9/10/2019 Received by Received by:	1330		>	Date 2.6	7	Time:	:4	N S	-	AB ON	LY			IARK X ST	TAN			10 Te	x 48	hr 72	hr	e f
elinquished by:	9.0. (9. 17.03 Date: Time:	Received by:	X		1	Date	3/10	Time	7:45		Sampl	e Tem	peratu	ire		Ru	sh Cl	narges	Autho					94
	Feder 4510 1659 57	ORIGINAL		RAD					nR/hr		-	9) HAI								acking #		Š.	* _k	

lient Name: Project Name:						Te	1 (432	Fexas 7 2) 682-4 2) 682-3	155	9													L	113	AU	> (
roject Name:	ConocoPhillips	Site Manager:		Ch	ristia	an Ll	ull														QUE					
	COP Baish A Battery											١,	ı	(Circ	cle	or	Sp	eci I	fy N	/let	hoo	l No	0.)	1 1	1 1
roject Location: county, state)	Lea County, New Mexico	Project #:			2120	C-M	D-01	878																		
voice to:	Accounts Payable 90 West Wall Street, Suite 100 Midland, Texas 79701	1			450								(O	Н			Н	-	-	H				d list)		
eceiving Laboratory:	Pace Analytical	Sampler Signa	ature:	0	1. The	5							O-MR		Se Hg									attache		
Comments:	TRA Acctnum							10,		A-12/1-2	5. 10	8260B	DRO - OR		Cd Cr Pb			70	8270C/625				TDS	try (see a		
		SAMP	LING	М	ATRIX			RVATIVE THOD		RS	(Y/N)	BTEX	GRO - D		Ag As Ba		atiles	9/808/					fate T	Chemis	balance	L
LAB#	SAMPLE IDENTIFICATION	YEAR: 2019				Т	П	П		AINE) WS	2	als Ag	atiles	lo Vol			82/6	0010	0.00	Sulfate	/ater	E E	1-10
LAB USE ONLY)	DATE	TIME	WATER	SOIL	보	HNO3	NONE		# CONTAINERS	FILTERED	BTEX 8021B		PAH 8270C	Fotal Metals	rcl P Volatiles	TCLP Semi Volatiles	RCI	GC/MS Se	PCB's 8082 / 608	NORM	PLM (Asbestos) Chloride 300.0	Chloride	General Water Chemistry (see attached list	Anion/Cation TPH 8015R	0 101
	BH-3 (0'- 1')	9/10/2019	1400		Х			x		1	N	Х	X	-								X	-			Ť
	BH-3 (2'- 3')	9/10/2019	1410	T	х	\top	П	x		1	N	Х	X	П	\top	†	П			П	\top	×	Ħ	\top	\top	
	BH-3 (4'- 5')	9/10/2019	1420	\top	Х	T	П	x		1	N	Х	X	П	\top	\top	П		\top	П	\top	X			1	
	BH-3 (6'- 7')	9/10/2019	1430	T	Х	\top	\Box	x		1	N	х	Х	П	\top	\top	П			П	\top	X	П	\top	11	\top
	BH-3 (9'- 10')	9/10/2019	1440		Х		П	x		1	N	Х	Х	П	\top		-		\top	П	\top	X	П	\top	\top	\top
	BH-4 (0'- 1')	9/10/2019	1510		Х		П	x		1	N	Х	Х	П	\top	\top	П	\top	\top	П	\top	X	П		\top	
	BH-4 (2'- 3')	9/10/2019	1520	T	Х		П	x		1	N	Х	Х	П	\top		П		\top	П	\top	X	П			
	BH-4 (4'- 5')	9/10/2019	1530	Т	Х	T		x		1	N	Х	Х	П	\top					П		Х	П	\top	\Box	
	BH-4 (6'- 7')	9/10/2019	1540	Т	Х		П	x		1	N	Х	Х							П		Х	П			
	BH-4 (9'- 10')	9/10/2019	1600		Х			x		1	N	Х	Х	П					31	П	\Box	Х	П		\Box	
Relinquished by:	Date: Time: 9-12-19 14*45 Date: Time:	Received by:	29		9	Da Da	19	Time	4	45			ON ole Ten	ILY			X	STA	NDA		Day	24 hr	48 h	nr 72	hr	
elinquished by:	Date: Time:	Received by:	1	-	Tel	Da G	te:	Time	9:	45	/		Tre ut		es.		_				uthoriz	zed or TRR	IP Rep	port		OK

RAD SCREEN: <0.5 mR/hr

0,3-,2=al

TŁ	Tetra Tech. Inc.				901 \	Midla Tel	nd,T (432)	Street, exas 79 682-49 682-3	970 559	1													L	113	397	.67	
Client Name:	ConocoPhillips	Site Manager:		Chi	ristiar	n Llu	II							-15,								UES					
roject Name:	COP Baish A Battery			7	***							1	1 1	(Circ	le	or	Sp	ec	ify	/ M	eth	od I	No.	.)	1 1	ı
roject Location: county, state)	Lea County, New Mexico	Project #:		- ;	2120	C-MD	-018	378			ing.					165											
rvoice to:	Accounts Payable West Wall Street, Suite 100 Midland, Texas 79701	901			e della								0					Last			+	+	\forall	list			+
leceiving Laborato		Sampler Signa	iture:		7	ta	73		3				O-MRG		Pb Se Hg									(see attached list)			7
Comments:	COPTETRA Acctnum	The state of the s			<u></u>	47	9			Part and	Sept.	8260B	DRO - ORO - MRO)		SQ C				24	8270C/625							
		SAMP	LING	MA	TRIX	PI	RESER	VATIVE HOD		RS	(N/A	BTEX Fxt to C	GRO - D		Ag As Ba		latiles		m I		809	(6)		Sulfate T	salance		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2019 DATE	TIME	WATER	SOIL	HCL	HNO3	NONE		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B BTEX 82 TPH TX1005 (Ext to C35)	TPH 8015M (PAH 8270C	Total Metals Ag As Ba TCLP Metals Ag As Ba		TCLP Semi Volatiles	RCI	GC/MS Vol. 8	Semi.	PCB's 8082 / I	PLM (Asbestos)	8	Chloride Sulfate TDS General Water Chemistry	Anion/Cation Balance	TPH 8015R	HOLD
-2-	BH-5 (0'- 1')	9/11/2019	1030	-	X	1)			1	N	X	X			-					- 2		Х				+
details of the	BH-5 (2'- 3')	9/11/2019	1040	П	х	П)		7	1	Ν	Х	Х	\Box			П	1			\top	\top	Х		\top		
The second	BH-5 (4'- 5')	9/11/2019	1050	П	х	П)			1	Ν	Х	Х						T	T	\top		X	T			
	BH-5 (6'- 7')	9/11/2019	1100	П	Х	П)		1	1	Ν	Х	Х					\Box	\forall	\top		1	Х			\Box	1
	BH-5 (9'- 10')	9/11/2019	1110	П	Х	П)		T	1	Ν	Х	Х			Г		П	T	T	T	\top	Х	T	\Box	П	T
	BH-5 (12'- 13')	9/11/2019	1120	П	Х	П)		T	1	Ν	Х	Х						T		T		Х			П	T
	BH-5 (14'- 15')	9/11/2019	1130	П	х	П)		T	1	Ν	х	Х		\top						\top	\top	Х		1		
	BH-5 (19'- 20')	9/11/2019	1150	П	Х	П)		T	- 1	Ν	Х	Х						T	\top			х				
	BH-6 (0'- 1')	9/11/2019	1200		Х)		7	1	N	х	Х		1	6							Х	1	_	П	
	BH-6 (2'- 3')	9/11/2019	1210	П	Х)		T	1	Ν	Х	X										Х	- 4			
elinquished by:	Date: Time: 9-12-19 14:45 Date: Time: 4/2/9 7:50	Received by:	be	1	9	Date Date	19	Time:	4	(4)	5		AB ON e Ten	ΙLΥ		RE	X	RUS	ANE SH:		ne Da	y 24	hr 4	18 hr	72 h		ak
elinquished by:	Date: Time:	Received by:	ul	_		Date	3/1	Time:	6-	5	-	M.	Les		, e 10,			8 500					TRRP	Repo	rt		۷.
AGA TOP STORY												(Circl	e) HA	AND I	DELIV	ERE) F	EDE	ΧI	UPS	Tr	acking	#: _				

RAD SCREEN: <0.5 mR/hr

TE	Tetra Tech. Inc.					Midla Tel	nd,7 (432	Street, exas 79 682-4 2) 682-3	970 559	1												L	1139	126)	
lient Name:	ConocoPhillips	Site Manager:		Chr	istiar	ı Llu	11							-	Cir							EST	d N	o)		
roject Name:	COP Baish A Battery					12.						1														
roject Location:	Lea County, New Mexico	Project #:		2	212C	-MD	-01	878																		,
nvoice to:	Accounts Payable West Wall Street, Suite 100 Midland, Texas 79701			-6	K . /r:					W.		+	(RQ)	-	P H	20	H	+	+		\forall	+	$\dagger \dagger$	attached list)		
Receiving Laboratory:	Pace Analytical	Sampler Signa	ture:	1	Ŏ	1	6	2				_	ORO - N		Pb Se l				100					e attach		
Comments:	PTETRA Acctnum								le9			X 8260B	8015M (GRO - DRO - ORO - MRO		Total Metals Ag As Ba Cd Cr Pb Se Hg				3 / 624 8270C/625				TDS	istry (see		
		SAMP	LING	MA	TRIX	P		RVATIVE THOD		ERS	(Y/N)	3TEX 8021B BTEX 82	GRO-		Ag As Bi	S	olatiles					(SC)	Sulfate	General Water Chemistry	Anion/Cation Balance TPH 8015R	
	SAMPLE IDENTIFICATION	YEAR: 2019		\Box		П				AN	ED (8021B	5M (8270C	tals A	Volatiles	mi V		Vol. 8	082/		300.	311	Wate	SR 58	
LAB#	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	HNO3	ICE		CONTAINERS	FILTERED	BTEX 80	TPH 801	PAH 82	otal Me	CLP Vo	FCLP Semi Volatiles	RCI	GC/MS Vol. 8260E	CB's 8082 / 608	IORM	PLM (Asbestos)	Chloride	eneral	Anion/Catio	2
ONLY)	30		1000			Ī	工	Ω Z X	Н	# 1	N	X	X	Д.	FF	+	-	Е.	0 0	1	Z	A O		0	-13	
	BH-6 (4'- 5')	9/11/2019	1220	H	X	+	\dashv	X	Н	1	N	X	1 _X	Н	+	+	+	Н	+	+	H	X	1	\vdash	+	+
7 500	BH-6 (6'- 7')	9/11/2019	1230	H	_	+	\dashv	X	Н	1	N	X	T _X	Н	+	+	+	Н	+	+	H	X	-	\vdash	+	+
	BH-7 (0'- 1')	9/11/2019	1250	H	X	+	Н	\rightarrow	Н	1	N	X	T _X	Н	+	+	+	H	+	+	H	- ×	-	\vdash	+	+
	BH-7 (2'- 3')	9/11/2019	1300	H	X	+	Н	X	Н	1	N	X	1 _X	Н	+	+	+	Н	-	+	\forall	1	-	+	+	+
	BH-7 (4'- 5')	9/11/2019	1310	+	X	+	Н	-	Н	1	N	X	1 _X	Н	+	+	+	Н	+	+	\vdash	- ×	-	\vdash	+	+
	BH-8 (0'- 1')	9/11/2019	1330	+	X	+	Н	X	Н	1	N	X	1 _x	Н	+	+	+	H	+	+	H	×	-	\vdash	+	+
	BH-8 (2'- 3')	9/11/2019	1340	\mathbb{H}	Х	+	H	X	H	-	N	X	$\frac{1}{x}$	-	+	+	+	Н	+	+	H	\ \ \ \ \ \ \	_	\vdash	+	+
Access	BH-8 (4'- 5')	9/11/2019	1350	+	Х	+		X			_	\rightarrow	1 _x	-	+		+		+	+		7	-	\vdash	+	+
	BH-8 (6'- 7')	9/11/2019	1400	+	Х	+		X		-	N	X	1 x	-	+	+	+			+	H	-	_	\vdash	+	+
	BH-8 (9'- 10')	9/11/2019	1410		X) Da	to:	X	٥.	,	N		1		Ш	B	EMA	RKS					1			
Relinquished by:	Date: Time: 9-12-19 14:45 Date: Time:	Received by	De	6	19		21	,	4	4			Of ole Te	NLY	,		X	ST	AND		Day	24 hi	r 48 h	hr 72	2 hr	26
Relinquished by:	9/2-/9 7-25 Date: Time:	Received by	al	_	-		te:	Tim		45									h Cha				RP Re	eport		
		00		_		/	_					(Circ	cle) H	AND	DELI	VER	ED I	FEDE	X U	IPS	Trac	king #			_	

RAD SCREEN: <0.5 mR/h: 0.3-,2=0.1

	and the second									_		-	_				_	_		_		_		of 5	_
	Tetra Tech. Inc.			90	٨	Midlan Tel (4	id,Te	Street, exas 79 682-45 682-3	559	00											L	113	926	57	
TE		Site Manager:		Chris		197		002 0			Т					AN	IAL	/SIS	RE	QUI	EST				
Client Name:	ConocoPhillips	Site illuling	* *	Chris	llall	Liuii	W. British			0.0	┨.			(C	ircl	e o	r Sp	эес	ify	Met	tho	d N	0.)		
Project Name:	COP Baish A Battery	7 2									+						27	3***. E							
Project Location:	Lea County, New Mexico	Project #:		2	12C	-MD-	-018	3/8			+									\sqcup	-		st)	+	+
(county, state) Invoice to:	Accounts Payable West Wall Street, Suite 100 Midland, Texas 79701	Sampler Signatu	ure:	2 to 1		A	17	42					FPH 8015M (GRO - DRO - ORO - MHW)	b Se Hg	Pb Se Hg								General Water Chemistry (see attached list)		
Receiving Laboratory:	Pace Analytical			1	164	-/-(8260B	2)	0	d Cr P	Cd Cr		L	3 / 624	C/023			SC	y (see		
Comments:	PTETRA Acctnum	SAMPL	ING	MA	TRIX	PF		RVATIVE	E 00	2	Ĕ	(Ext to C35)	aro - Dr	Ag As Ba Cd Cr Pb	rCLP Metals Ag As Ba Cd Cr Pb	atiles						Sulfate TDS	ar Chemist	dialice	
		YEAR: 2019			T				- INE	FD (Y	21B	TX1005 (F	15M (C		etals A	olatiles mi Vol		/ol. 82	8082 / 608		bestos 300.0	Sulf	Water Hion B	- 1 Control 100	15 2
LAB#	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	HNO3	NONE	A SATING S	FII TERED (Y/N)	_		-	Total Metals	TCLP Me	TCLP Volatiles TCLP Semi Volatiles	RCI	GC/MS Vol. 82608	PCB's 8	NORM	PLM (As		General Wate	TPH 8015R	HOLD
(LAB USE)	BH-9 (0'- 1')	9/11/2019	1440		Х			Х			_	\rightarrow	X	+	1		+	\vdash	+	H	X	-		H	12
2000	BH-9 (2'- 3')	9/11/2019	1450	\perp	Х			Х		1	-	-	X	+	H	+	+	\vdash	+		$+$ $\frac{1}{x}$	+	+	++	+
	BH-10 (0'- 1')	9/11/2019	1500	\perp	Х			X		-	-	╌	x	+	H	+	-	+	2	H	X	+	+		+
P. T. S.	BH-10 (2'- 3')	9/11/2019	1510	\perp	Х	get C		X			+	1	X	+	H	+		+	+	H	T _X	+	+	++	+
	BH-10 (4'- 5')	9/11/2019	1520		X	+		X			X	H	X	+	H			+	+	H	X	+		++	+
	BH-11 (0'- 0.5')	9/11/2019	1600		X	+	H	X	H	-	X	\vdash	X	\pm	H	+	+		+	H	T _X	+		+	+
2 2 2 2 2 2	BH-12 (0'- 0.5')	9/11/2019	1630	+	X		H	X	+		+	1000	A							\forall	1	H	+	+	+
	Mary 188	-2.1							+		18.		\perp			. 4	7								
						Da	ate:	Tim	ne: 4		-		AB L	ISE		REM									
Relinquished by	7.4	Received b	M	1		9.1	/2. ate:	19 Tin	ne:	:45	Sa		ONL	Υ.				TAND JSH:			24 hr	48 h	r 72	hr	٩٤
Relinquished by	Date: Time: 4.12.19 17 - C	D FedE	K	7.	- 0	7/2	ate:	9 /	//22 ne:	کو	4						Ru	ish Cha	arges /	Author	ized				
Relinquished b	Date: Time:	Received to	Cul			9/1	-		8:25											1	or TRF		oort		
A A		V				9					(0	Circle) HAI	ND D	ELIVE	RED	FED	EX l	JPS	Trac	king #:	_			
		ORIGIN	AL COP		BAP	SCI	PEF	M an).5 mf	t/hr		0,	3-	2	=0 92/	od o									

Pace Analytical National Center for Testing & Inno- Cooler Receipt Form	vation	
6 9×650	111	39167
lient: (0176) KA Temperature: 9/3/19 Temperature:	0.1	71007
cooler Received/Opened on		or null
Received By: Adam Burns		
	AND THE REAL PROPERTY.	
Signature: Mi		
NP	Yes	No
Receipt Check List		
COC Seal Present / Intact?		
COC Signed / Accurate?	-	
Bottles arrive intact?	1	
Correct bottles used?		4
Sufficient volume sent?		
If Applicable		
VOA Zero headspace?		No. of Street,
Preservation Correct / Checked?		

APPENDIX D Soil Boring Logs

212C-MD-01878	Tŧ	TETRA	TECH				L	OG OF BORING BH-1			Page 1 of 1
Project Name:	∟ Baish "A" Ba	attery Re	lease			I					
Borehole Location	: GPS: N 3	32.822855	° E -103.	763964	1°	Surface Elev	ation:	4015 ft			
Borehole Number	: BH-1				Borel Diam	nole 8 eter (in.):		Date Started: 9/10/2019	Date Fi	nished	ı: 9/10/2019
	(mdd	ERY (%)	cf)	NDEX	(%	While Drillir Remarks:		ATER LEVEL OBSERVATION OF DRY ft Upon Completion of D		<u>⊼</u> D	RY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD	Approximation (ppm) Approximation (ppm) SCREENING (ppm)	SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pcf)	PLASTICITY INDEX	MINUS NO. 200 (%)	N	1ATE	RIAL DESCRIPTION		DЕРТН (ft)	REMARKS
	18.1			FI		∐∖dense, w	ith occ	ATERIAL; Base material, tan, ve casional small gravel, dry. AND; Tan, loose to medium den		0.5	BH-1 (0'-1')
69	4 13.4					with grav staining.	el, me	dium hydrocarbon odor, with no)		BH-1 (2'-3')
5 30	7 10.8					-SM- SIL moderate with no s	ly cen	AND; Brown, medium dense, nented, with no hydrocarbon od J.	or,	_	BH-1 (4'-5')
53	B 10.3									- - 8	BH-1 (6'-7')
10 42	3 6.6					-CL- SAI with no h	NDY C	CLAY; Brown, medium stiff to sti arbon odor, with no staining.	ff,	_	BH-1 (9'-10')
Sh Bu Sa Wy Gr	elby Va	cetate Liner ane Shear alifornia est Pit	Opera Types	Mud Rotary Contir Flight Wash Rotary	nuous Auger	Auger Air Rotary Core Barrel Direct Push	Notes Ana Surf	s: lytical samples are shown in the ace elevation is an estimated va	e "Remai alue.	rks" c	olumn.
Logger: Joe Tyler			Drillin	g Equip	oment: A	ir Rotary	Driller	: Scarborough Drilling			

212C-MD-018	378	T	Ţ	ETRA	TEC	Н				LOG OF BORING	BH-2	Page 1 of 1
Project Name:	Bais	sh "A" B	atte	ry Re	eleas	se						
Borehole Locat	tion: (GPS: N	32.8	2273 ⁻	1° E -	-103.	7640 ⁻	74°		urface Elevation: 4015 ft		
Borehole Numb	ber: E	BH-2						B D	oreho iame	P	19 Date Finishe	d: 9/10/2019
	LD ipm)	(mdi	RY (%)	ENT (%)	f)		DEX)		WATER LEVEL OBSEINABLE MATER LEVEL OBSEINABLE MATER LEVEL OBSEINABLE MATERIAL MATER		DRY_ft
1 🖂 🗖 🤝	CHLORIDE FIELD SCREENING (ppm)	TPH FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARKS
		112.6								-FILL - FILL MATERIAL; Base material dense, with occasional small gravel, co-sm-SILTY SAND; Tan, loose to mewith gravel, with high hydrocarbon odd	dry. // library. // library.	BH-2 (0'-1')
		87.4								staining. -SM- SILTY SAND; Tan, medium der with medium hydrocarbon odor, with r-SM- SILTY SAND; Brown, medium of the staining of the staining.	no staining.	BH-2 (2'-3')
5	113	36.9								dense, moderately cemented, with no odor, with no staining.	hydrocarbon	BH-2 (4'-5')
	116	17.4									8	BH-2 (6'-7')
10	114	9.4								-CL- SANDY CLAY; Brown, medium with few gravel, with no hydrocarbon ostaining.	stiff to stiff, odor, with no	BH-2 (9'-10')
	Split Spoon Shelby Bulk Sample Grab Sample	v Xc			- T	opera ypes	: Muc Rota Con	ary tinuous nt Auge sh	Ser T	Auger Notes: Air Rotary Core Barrel Direct Push Notes: Analytical samples are sho Surface elevation is an est	own in the "Remarks" o imated value.	column.
Logger: Joe Tyl	/ler				[Drilling	g Equ	iipmei	nt: Air	otary Driller: Scarborough Drilling		

212C-MD-0187	78	t TETRA	ТЕСН			L	OG OF BORING BH-3		Page 1 of 1
Project Name:	Baish "A" E	Battery Rel	ease						-
Borehole Locati	on: GPS: N	32.822685°	E -103.	764515°		Surface Elevation:	4015 ft		
Borehole Numb	er: BH-3				Boreh Diame	ole eter (in.):	Date Started: 9/10/2019	Date Finish	ed: 9/10/2019
ш	(mdd	ERY (%)	ગો	EX		V	VATER LEVEL OBSERVATION DRY ft Upon Completion of D		DRY_ft
I □ I □ I	SCREENING (ppm) TPH FIELD SCREENING (ppm)	SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pcf)	PLASTICITY INDEX	GRAPHIC LOG	MATE	RIAL DESCRIPTION	DEPTH (ft)	REMARKS
	8.1					dense, with oc -SM- SILTY S dense, with few odor, with no s -SM- SILTY S moderately ce	AND; Brown, medium dense, mented, with no hydrocarbon od	1.5	BH-3 (0'-1') BH-3 (2'-3')
5	7					with no stáinin	g.	- - -	BH-3 (4'-5')
	7.8					-SM- SILTY S gravel, with no	AND; Brown, medium dense, wi hydrocarbon odor, with no stain	th ing.	BH-3 (6'-7') BH-3 (9'-10')
Sampler 17	Solit •		Opera	tion			om of borehole at 10.0 feet.		
	Shelby Bulk Sample Grah	Acetate Liner Vane Shear California Fest Pit	Týpes	Mud Rotary Continuo Flight Au Wash Rotary	ger L	Core Barrel Direct Push	alytical samples are shown in the face elevation is an estimated va		column.
Logger: Joe Tyle	er		Drillin	g Equipm	ent: Ai	r Rotary Drille	:r: Scarborough Drilling		

212C-MD-01878	3	L TETRA	ТЕСН			LOG OF BORING BH-4	Page 1 of 1
Project Name:	Baish "A" B	Battery Rel	ease				
Borehole Location	n: GPS: N	32.822711	° E -103	.764344°	,	Surface Elevation: 4015 ft	
Borehole Numbe	: BH-4				Boreh Diam	ole ter (in.): 8 Date Started: 9/10/2019 Date Finish	ed: 9/10/2019
E	(mdd	ERY (%) TENT (%)	cf)	NDEX	(8)	WATER LEVEL OBSERVATIONS While Drilling ☐ DRY ft Upon Completion of Drilling Remarks:	DRY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD		SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pcf)	PLASTICITY INDEX	GRAPHIC LOG	MATERIAL DESCRIPTION 髪	REMARKS
15						-FILL- FILL MATERIAL; Base material, tan, very dense, with occasional small gravel, drySM- SILTY SAND; Tan, loose to medium dense, with gravel, with high hydrocarbon odor, with no staining.	BH-4 (0'-1')
5	39.4					-SM- SILTY SAND; Brown, medium dense, moderately cemented, with medium hydrocarbon odor, with no staining.	BH-4 (2'-3') BH-4 (4'-5')
1-	2 16					-SM- SILTY SAND; Brown, medium dense, cemented, with no hydrocarbon odor, with no staining.	BH-4 (6'-7')
10	10					-SM- SILTY SAND; Brown, medium dense to dense, with few gravel, with no hydrocarbon odor, with no staining. Bottom of borehole at 10.0 feet.	BH-4 (9'-10')
SI BI SS FM G SS	nelby V	cetate Liner 'ane Shear California Test Pit	Opera Types	: Mud Rotary Continud Flight Au Wash Rotary	uger 👢	Auger Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Remarks' Surface elevation is an estimated value.	column.
Logger: Joe Tyler			Drillin	g Equipn	nent: A	Rotary Driller: Scarborough Drilling	

212C-MD-01878 TETRA TECH							A TEC	СН				LOG OF BORING BH-5	Page 1 of 1		
Proje	roject Name: Baish "A" Battery Release						eleas	se							
Bore	hole	Loc	cation:	GPS: N	32.8	32284	19° E	-103	.7642	.46°		Surface Elevation: 4015 ft			
Bore	hole	Nu	mber:	BH-5						E	Boreho Diame	ole started: 9/11/2019 Date Finishe	d: 9/11/2019		
	Е		ppm)	(mdd	ERY (%)	TENT (%)	31)		NDEX			WATER LEVEL OBSERVATIONS	DRY_ft		
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	TPH FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	고 PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (#)	REMARKS		
_	\ \ \ \	M		2.8								-FILL- FILL MATERIAL; Base material, tan, very dense, with occasional small gravel, dry. -SM- SILTY SAND; Tan, loose to medium dense,	BH-5 (0'-1')		
- -			258	2.5								with gravel, with low hydrocarbon odor, with no staining. -SM- SILTY SAND; Brown, medium dense, moderately cemented, with no hydrocarbon odor, with no staining.	BH-5 (2'-3')		
5_		M	184	4.4									BH-5 (4'-5')		
_		M		4.2								_	BH-5 (6'-7')		
10_		\bigvee	98	>1100								-CL- SANDY CLAY; Brown, stiff, with no	BH-5 (9'-10')		
- -		\bigvee										hydrocarbon odor, with no staining.			
- -		\bigvee		100.8								_	BH-5 (12'-13')		
15_		M		54.5								_	BH-5 (14'-15')		
_	$ \langle \langle \rangle $	M										<u>1</u> 7			
- -		M										-CL- SILTY CLAY; Brown, stiff to very stiff, with no hydrocarbon odor, with no staining.			
20	((\mathbb{N}		6.2								20	BH-5 (19'-20')		
												Bottom of borehole at 20.0 feet.			
Sam Type	pler s:	_	Split Spoon Shelby Bulk Sample Sample Sample	v Mc			r T	opera ypes	Mud Rota	ary tinuou nt Aug sh	Auger Air Rotary Lous Lous Rarel Direct Push Auger Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.				
Logg	er:	Joe	Tyler					Drillin	g Equ	ıipme	nt: Air	Rotary Driller: Scarborough Drilling			

212C-MD-01	1878	T	ΕŢ	ETRA	TEC	Н				LC	OG OF BORING BH-6			Page 1 of 1
Project Name	: Ba	ish "A" B	atte	ry Re	eleas	se								
Borehole Loc	ation:	GPS: N	32.8	32266	4° E	-103	.7641			Surface Elevation:	4012 ft			
Borehole Nun	nber:	BH-6						B	oreho iame	le er (in.): 8	Date Started: 9/11/2019	Date F	inished	l: 9/11/2019
ш	ELD ppm)	(mdd	ERY (%)	FENT (%)	of)		NDEX			W	ATER LEVEL OBSERVATIO DRY ft Upon Completion of D		Ā D	<u>RY</u> ft
DEPTH (ft) OPERATION TYPE SAMPLE	SCREENING (ppm)	TPH FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATER	RIAL DESCRIPTION		DEPTH (ft)	REMARKS
	91.3	17.2								-SM- SILTY SA dense, moderat odor, with no sta	ND; Brown, loose to medium tely cemented, with no hydroca aining.	rbon	_	BH-6 (0'-1')
5	87.1	6.6											_	BH-6 (2'-3') BH-6 (4'-5')
	82.2	4.6								Botte	om of borehole at 7.0 feet.		_ 7	BH-6 (6'-7')
Sampler Types:	Split Spoor Shelb Bulk Samp Grab Samp	y	cetate ane S californ	nia	- C	opera ypes	Mud Rota	ary tinuous nt Auge sh	ss Eer	Core Barrel Direct Push	ytical samples are shown in the ace elevation is an estimated v	e "Rema alue.	arks" c	olumn.
Logger: Joe 1	Tyler					rillin	g Equ	iipme	nt: Air	Rotary Driller:	Scarborough Drilling			

212C-MD-0187	8 [t TETRA	TECH				L	OG OF BORING	BH-7			Page 1 of 1
Project Name:	Baish "A" E	Battery Re	lease									
Borehole Location	n: GPS: N	32.822616	6°, E -103	.7638		Surface Elev	vation:	4010 ft				
Borehole Number	r: BH-7				Bore Diar	ehole neter (in.): 8		Date Started: 9/11/	/2019	Date F	inished	i: 9/11/2019
ш с	(mdd	ERY (%) TENT (%)	cf)	NDEX		While Drilli Remarks:		VATER LEVEL OBS			Ā D	RY_ft
1 111 1 12 12 1	SCREENING (ppm) IT TPH FIELD SCREENING (ppm)	SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pcf)	PLASTICITY INDEX	MINUS NO. 200 (%)	GKAPHIC LOG	ИАТЕ	RIAL DESCRIPTI	ON		DEPTH (ft)	REMARKS
	6.8 6.4 4.7					-SM- SII dense, m odor, wit	nodera	AND; Brown, loose tately cemented, with staining.	to medium no hydroca	rbon	_	BH-7 (0'-1') BH-7 (2'-3')
5	6.3										5	BH-7 (4'-5')
	•		'		12,12	1.1	Bot	tom of borehole at 5	.0 feet.			
Sampler \(\sqrt{S}	nlit I		Opera	attion								
	helby \(\begin{array}{c} \lambda \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Acetate Liner /ane Shear California Test Pit	Opera Types	Mud Rota	inuous t Auger h	Auger Air Rotary Core Barrel Direct Push	Note Ana Sur	es: alytical samples are s face elevation is an	shown in the estimated v	e "Rema alue.	arks" c	olumn.
Logger: Joe Tylei			Drillin	g Equi	ipment:	Air Rotary	Drille	:r: Scarborough Drilling				

212C-MD-01	1878	T	ĘŢ	ETRA	TEC	СН				L	OG OF BORING BH-8			Page 1 of 1
Project Name	: Bai	sh "A" B	atte	ry Re	eleas	se								
Borehole Loca	ation:	GPS: N	32.8	32270	9°, E	-103	3.7638	875°		Surface Elevation:	4010 ft			
Borehole Nun	nber:	BH-8						E	Boreho Diame	ole ter (in.):	Date Started: 9/11/2019	Date F	inished	l: 9/11/2019
ш	ELD ppm)	(mdd	ERY (%)	TENT (%)	cf)		NDEX	(%			VATER LEVEL OBSERVATION DRY ft Upon Completion of D		Ā D	RY_ft
DEPTH (ft) OPERATION TYPE SAMPLE	SCREENING (ppm)	TPH FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATE	RIAL DESCRIPTION		DEPTH (ft)	REMARKS
		252.8								-SM- SILTY S dense, with org odor, with no s	AND; Brown, loose to medium ganic material, with high hydrocastaining.	arbon	_	BH-8 (0'-1')
5	671	36.8								-SM- SILTY S moderately cel with no stainin	AND; Brown, medium dense, mented, with no hydrocarbon od g.	or,	3.5	BH-8 (2'-3') BH-8 (4'-5')
	180	4.1								-SM- SILTY S hydrocarbon o	AND: Tan, medium dense, with dor, with no staining.	no	7.5 — —	BH-8 (6'-7') BH-8 (9'-10')
						20-2	Air			DOLL	om of borehole at 10.0 feet.			
	Split Spoon Shelby Bulk Sample Grab Sample	v e X c			Т	opera ypes	Mud Rota Con Fligh Was Rota	ary tinuou: nt Auge sh ary	er L	Core Barrel Direct Push	alytical samples are shown in the face elevation is an estimated va		ırks" c	olumn.
Logger: Joe T	Гуler				[Orillin	g Equ	iipme	nt: Air	Rotary Drille	:r: Scarborough Drilling			

212C-MD-01878	TE TETRA	тесн	LOG OF BORING BH-9	Page 1 of 1
Project Name: B	aish "A" Battery Rel	ease		
Borehole Location:	GPS: N 32.822518	s°, E -103.763711°	Surface Elevation: 4010 ft	
Borehole Number:	BH-9	Bore Dian	hole eter (in.): 8 Date Started: 9/11/2019 Date Finish	ned: 9/11/2019
E E ELD opm)	эрт) ERY (%) ENT (%)	JDEX (%)	WATER LEVEL OBSERVATIONS While Drilling □ DRY ft Upon Completion of Drilling □ Remarks:	DRY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	<u> </u>	DRY DENSITY (pcf) Liquid Limit Description Descript	MATERIAL DESCRIPTION	REMARKS
	5.4		-SM- SILTY SAND; Brown, loose to medium dense, with medium hydrocarbon odor, with no staining. -SM- SILTY SAND; Brown, medium dense, moderately cemented, with no hydrocarbon odor,	BH-9 (0'-1')
	4.9		with no staining. Bottom of borehole at 3.0 feet.	BH-9 (2'-3')
Sampler M Salis		Operation		
Sampler Types: Split Spo Spo She Bulk Sam Gral	by Vane Shear ple California	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Auger Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Remarks' Surface elevation is an estimated value.	' column.
Logger: Joe Tyler		Drilling Equipment:	Air Rotary Driller: Scarborough Drilling	

212C-MD-01878	Tŧ	TETRA	ATECH				LOG OF BORING BH-10	Page 1 of 1
Project Name: E	aish "A" Ba	attery Re	elease					
Borehole Location	: GPS: N	32.82271	4°, E -10	3.7636			Surface Elevation: 4010 ft	
Borehole Number:	BH-10				Bo Di	oreho ame	ter (in.):	9/11/2019
E E	(mdc	ERY (%) TENT (%)	3 f)	1DEX	(%)		WATER LEVEL OBSERVATIONS While Drilling $\overline{\underline{Y}}$ DRY ft Upon Completion of Drilling $\overline{\underline{Y}}$ DRY Remarks:	Y_ft
OPERATION TYPE SAMPLE SAMPLE CHLORIDE FIELD SCHEENING (2002)	ik DI TPH FIELD (Ppm)	SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pcf) LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (#) HL DESCRIPTION	REMARKS
134	8.6						1.5	H-10 (0'-1')
112	9.8						-SM- SILTY SAND; Brown, medium dense, moderately cemented, with no hydrocarbon odor, with no staining.	H-10 (2'-3')
5	3.4							H-10 (4'-5')
9 1/ // /	0.1				-	1. 1.	Bottom of borehole at 5.0 feet.	11-10 (4-5)
Sampler M Sa			Opera	ation				
Bul Sal Wig Gra	k nple Ca	etate Line ane Shear alifornia est Pit	Type:	S: Mud Rota	ary tinuous nt Auger sh		Auger Notes: Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Remarks" columnated value.	umn.
Loager: Joe Tyler			Drillin	ıa Fai	ipmen	nt: Air	Rotary Driller: Scarborough Drilling	

APPENDIX E NMSLO Seed Mixture Details

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

Baish "A" Battery

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	11
Lea County, New Mexico	
KM—Kermit soils and dune land, 0 to 12 percent slopes	
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

This product is generated from the USDA-NRCS certified data as Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the Sep 18, 2016—Nov contrasting soils that could have been shown at a more detailed misunderstanding of the detail of mapping and accuracy of soil The orthophoto or other base map on which the soil lines were Enlargement of maps beyond the scale of mapping can cause projection, which preserves direction and shape but distorts compiled and digitized probably differs from the background Soil map units are labeled (as space allows) for map scales Source of Map: Natural Resources Conservation Service Albers equal-area conic projection, should be used if more imagery displayed on these maps. As a result, some minor line placement. The maps do not show the small areas of The soil surveys that comprise your AOI were mapped at Please rely on the bar scale on each map sheet for map accurate calculations of distance or area are required. Coordinate System: Web Mercator (EPSG:3857) MAP INFORMATION Warning: Soil Map may not be valid at this scale. shifting of map unit boundaries may be evident. Survey Area Data: Version 16, Sep 15, 2019 Lea County, New Mexico Date(s) aerial images were photographed: 20, 2017 of the version date(s) listed below. Web Soil Survey URL: Soil Survey Area: 1:50,000 or larger. measurements. 1:20,000 Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot **US Routes** Spoil Area Wet Spot Other Rails Nater Features **Transportation** Background **MAP LEGEND** W фЭ ŧ Soil Map Unit Polygons Severely Eroded Spot Area of Interest (AOI) Miscellaneous Water Soil Map Unit Points Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Rock Outcrop Special Point Features **Gravelly Spot** Slide or Slip Saline Spot Sandy Spot Sodic Spot **Borrow Pit** ava Flow **Gravel Pit** Clay Spot Area of Interest (AOI) Sinkhole Blowout Landfill Soils

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
КМ	Kermit soils and dune land, 0 to 12 percent slopes	1.5	100.0%
Totals for Area of Interest		1.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KM—Kermit soils and dune land, 0 to 12 percent slopes

Map Unit Setting

National map unit symbol: dmpx Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Dune land: 45 percent

Kermit and similar soils: 45 percent *Minor components:* 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dune Land

Setting

Landform: Dunes

Landform position (two-dimensional): Shoulder, backslope, footslope

Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave

Across-slope shape: Convex

Typical profile

A - 0 to 6 inches: fine sand C - 6 to 60 inches: fine sand

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8e

Hydrologic Soil Group: A Hydric soil rating: No

Description of Kermit

Setting

Landform: Dunes

Landform position (two-dimensional): Shoulder, backslope, footslope

Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave

Across-slope shape: Convex

Parent material: Calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sand C - 8 to 60 inches: fine sand

Properties and qualities

Slope: 5 to 12 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 3 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Sandhills (R042XC022NM)

Hydric soil rating: No

Minor Components

Palomas

Percent of map unit: 3 percent

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Pyote

Percent of map unit: 3 percent

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Maljamar

Percent of map unit: 2 percent

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Wink

Percent of map unit: 2 percent

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council, 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NMSLO Seed Mix

Shallow (SH)

SHALLOW (SH) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Sideoats grama	Vaughn, El Reno	4.0	${f F}$
Blue grama	Lovington, Hachita	3.0	D
Little bluestem	Pastura, Cimmaron	1.5	${f F}$
Green sprangletop	VNS, Southern	1.0	D
Plains bristlegrass	VNS, Southern	1.0	D
Forbs:	00000000	2000	À
Firewheel (Gaillardia)	VNS, Southern	1.0	D
Shrubs:		0	B
Fourwing saltbush	Marana, Santa Rita	1.0	D
Common winterfat	VNS, Southern	0.5	F
	Total PLS/acr	e 13.0	STR
		San	878

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

