
M200#4 SECTION S, TZZS, RZTE Z418 FAL, 171 FEL FDDy CO. , N.M. API#: 30-15-32945

OCD Rule 118

Mult factor for 300 ppm ROE Mult factor for 100 ppm ROE

Flow Rate of Pure H2S in Gas Stream (Actual Volume Fraction) H2S Concentration Volume Fraction H2S Concentration Volume Fraction in percent %	2 0.004 0.40%	mcf/day decimal equivalent percent	
500 ppm radius of exposure (public road)	71	feet	ANSWER
300 ppm radius of exposure	99	feet	ANSWER
100 ppm radius of exposure (public area)	155	feet	ANSWER

Conversions:

To convert H2S in percent to parts per million (ppm) Put H2S in % in blue shaded area; read answer to the right in the vellow shaded area in ppm

To convert H2S from parts per million (ppm) to perecent Put H2S in ppm in blue shaded area; read answer to the right in the yellow shaded area in percent

To convert gas flow in cubic feet per day to mcf per day
put cubic feet per day in blue shaded area; read answer
to the right in the voltous charled area in MCE

To convert gas flow from MCF per day to cubic feet per day put MCF per day in blue shaded area; read answer to the right in the yellow shaded area in Cubic feet per day

Input H2S in % below	ppm 100000	ANSWER
Input H2S in ppm below	% 0.0214%	ANSWER

Input cubic feet per day below	mcf/day 125,999	ANSW

input MCF day below 599

599000

ANSWER

EXAMPLE CALCULATIONS and DEFINITIONS:

Calculate the 100 PPM ROE for a gas well that contains 10,000 ppm of H2S and the absolute open gas flow rate is calculated to be 1000 mcf/day Problem:

cf = cubic feet = ft3

X (feet) = [1.589 x H2S Concentration x Q] 6258 P-G Eq.

H2S concentration is found by taking 10000 ppm / 1,000,000 ppm = .01 (Decimal equivalent)

Q is gas flow rate in ft3/day can be found by 1000 mcf/day x 1000 ft3/mcf = 1,000,000 (ft3/day)

 $x(ft) = [1.589 \times .01 \times 1,000,000]^{.6258}$ x(ft) = [1.589 x <u>10,000</u>].62

100 ROE = 426 feet

Note: The actual H2S Volume fraction (pure H2S) in this case would be 10,000 cl/day obtained by the product of H2S concentration x Q (.01 x 1,000,000 cf/day) = 10,000 cf/day