MAY 1 6 1966

NEW MEXICO OIL CONSERVATION COMMISSION

MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS Pool Undesignated Formation Morrow Sand County Initial X Annual Special Date of Test Company TEXACO Inc. Lease Wooley Unit Well No. Unit F Sec. 16 Twp. 178 Rge. 308 Purchaser None Casing 3-1/2 Wt. I.D. Set at 11,300 Perf. 11.102 To 1 Tubing 1-1/2 Wt.2.75 I.D.1.610 Set at 11,113 Perf. To Gas Pay: From 11102 To 11143 L11113 xG.799 TGL 8879 Bar.P Producing Thru: Casing Tubing X Type Well Single Single-Bradenhead-G. G. or Date of Completion: 2-1-64 Packer None Reservoir Temp.	2-1-64 1 1.143 ress. 13.2
Cool Undesignated Formation Morrow Sand County Initial X Annual Special Date of Test Company TEXACO Inc. Lease Wooley Unit Well No. Unit F Sec. 16 Twp. 178 Rge. 308 Purchaser None Casing 3-1/2 Wt. I.D. Set at 11,300 Perf. 11.102 To Casing 1-1/2 Wt.2.75 I.D.,1.610 Set at 11,113 Perf. To Case Pay: From 11102 To 11143 L11113 xG.799 CL 8879 Bar.P Perducing Thubing X Type Well Single-Bradenhead-G. G. or	2-1-64 1 1.143 ress. 13.2
mitial X Annual Special Date of Test ompany TEXACO Inc. Lease Wooley Unit Well No. nit F Sec. 16 Twp. 178 Rge. 308 Purchaser None asing 3-1/2 Wt. I.D. Set at 11,300 Perf. 11.102 To ubing 1-1/2 Wt. 2.75 I.D. 1.610 Set at 11,113 Perf. To as Pay: From 11102 To 11143 L11113 xG.799 -GL 8879 Bar.P roducing Thru: Casing Tubing X Type Well Single-Bradenhead-G. G. or	2-1-64 1 1.143 ress. 13.2
Items Items Items Wooley Unit Well No. Init F Sec. 16 Twp. 178 Rge. 30K Purchaser None Init Init Init Set at 11,300 Perf. 11,102 Init Init Init Init Init Init Init Init Init	ress. 13.2
mit F Sec. 16 Twp. 178 Rge. 308 Purchaser None asing 3-1/2 Wt. I.D. Set at 11,300 Perf. 11,102 To ubing 1-1/2 Wt. 2.75 I.D. 1.610 Set at 11,113 Perf. To as Pay: From 11102 To 11143 L11113 xG.799 -GL. 8879 Bar.P roducing Thru: Casing Tubing X Type Well Single-Bradenhead-G. G. or	ress. 13.2 G.O. Dual
asing 3-1/2 Wt. I.D. Set at 11,300 Perf. 11.102 To 1 ubing 1-1/2 Wt.2.75 I.D.1.610 Set at 11.113 Perf. To as Pay: From 11102 To 11143 L11113 xG.799 -GL 8879 Bar.P roducing Thru: Casing Tubing X Type Well Single- Single-Bradenhead-G. G. or	ress. 13.2
tubing 1-1/2 Wt. 2.75 I.D. 1.610 Set at 11.113 Perf. To as Pay: From 11102 To 11143 L11113 xG.799 = GL 8879 Bar.P roducing Thru: Casing Tubing X Type Well Single-Bradenhead-G. G. or	ress. 13.2 G.O. Dual
roducing Thru: Casing Tubing X Type Well Single-Bradenhead-G. G. or	G.O. Dual
roducing Thru: Casing Tubing X Type Well Single-Bradenhead-G. G. or	G.O. Dual
Single-Bradenhead-G. G. or the of Completion: 2-1-64 Packer None Reservoir Temp.	
ate of Completion: 2-1-64 Packer None Reservoir Temp.	
OBSERVED DATA	
ested Through (Meter) Type Taps	Flange
Flow Data Tubing Data Casing Data (Choke) Press. Diff. Temp. Press. Temp. Press. Temp	Duratio
(Line) (Orifice) (Orifice)	of Flo
Chine) (Orifice) Size Size psig h _w o _F . psig o _F . psig o _F .	Hr. 72
2" 1.000 32 22 60 2660 2760	24
2" 1.000 32 50 80 2419 2567 2" 1.000 52 45 72 2243 2442	24
2" 1.000 60 56 75 1800 2120	24 24
FLOW CALCULATIONS Coefficient Pressure Flow Temp. Gravity Compress.	Rate of Flow
Factor Factor Factor	Q-MCFPD
$(24-\text{Hour})$ $\sqrt{h_{\text{w}}p_{\text{f}}}$ psia F_{t} F_{g} F_{pv}	@ 15.025 psi
6.386 31.53 45.2 1.000 .9129	183.8
6.386 47.54 45.2 .9813 .9129 6.386 54.17 65.2 .9887 .9129	272.0 312.2
6.386 31.53 45.2 1.000 .9129 6.386 47.54 45.2 .9813 .9129 6.386 54.17 65.2 .9887 .9129 6.386 64.02 73.2 .9859 .9129	368.0
PRESSURE CALCULATIONS	<u> </u>
Liquid Hydrocarbon Ratio 33,410 cf/bbl. Specific Gravity Sevity of Liquid Hydrocarbons 52.0 deg. Specific Gravity Fl	
vity of Liquid Hydrocarbons 52.0 deg. Specific Gravity Fl P _C 3093.2 P _C P _C	
P_{w} P_{t}^{2} $F_{c}Q$ $(F_{c}Q)^{2}$ $(F_{c}Q)^{2}$ P_{w}^{2} $P_{c}^{2}-P_{w}^{2}$	Cal. Pw
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cal. Pw Pw Pc
2773.2 7691 1877	896
2580.2 6657 2011 2455.2 6028 3540	834 794
2133.2 4550 5018	.690
solute Potential: 710 MCFPD; n .831 MPANY TEXACO Inc.	
MPANY TEXACO Inc. DRESS Box 1270, Midland, Texas	
ENT and TITLE F. W. Moore, District Supervisor (Gas) J. Tr. True	ne
TNESSED	

REMARKS

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q = Actual rate of flow at end of flow period at W. H. working pressure ($P_{\rm W}$). MCF/da. @ 15.025 psia and 60° F.
- P_c = 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- Pw- Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- Pf Meter pressure, psia.
- hw Differential meter pressure, inches water.

Ln iii

- $F_g = Gravity$ correction factor.
- F_t Flowing temperature correction factor.
- Fpv Supercompressability factor.
- n I Slope of back pressure curve.
- Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.

olid.