3R-1009

"Good Well Investigation"

Work Plan for Ground Water Investigation

Date
May 2012

WORK PLAN FOR GROUNDWATER INVESTIGATION

GOOD WELL INVESTIGATION SAN JUAN COUNTY, NEW MEXICO

Prepared For:
ConocoPhillips Company

District Copy For Scanning Only Has NOT been processed.

MAY 2012 Ref. No. 074922-00 (1)

5551 Corporate Blvd., Suite 200 Baton Rouge, Louisiana 70808

Telephone: (225) 292-9007 Fax: (225) 952-2978

www.CRAworld.com

			TR	RANS	MITTAL	•			
DATE:	5/2/12	2		REFE	RENCE NO.:	074922			
				Proj	ест Nаме:	Good Well In	vestigation		
To:	Brando	on Powel	1						
	Inspec	tion & Er	nforcement Superv	isor					
	1000 R	io Brazos	Road						
	Aztec,	New Me	xico 87410						
	Dallas,	TX 7520	2						
Please fin	d enclose	d:	Draft Originals Prints		Final Other				
Sent via:			Mail Overnight Courier		Same Day Co				
QUAN	TITY				DESCRIPT	TION			
1			opy of the Work Plu Juan County, New				Good Well Investigation		
	☐ As Requested ☐ For Review and Comment ☐ For Your Use ☐ ☐								
COMME	NTS:								
	,			•		•	pany, is pleased to		
			•	er Investi	gation to the	New Mexico Ene	ergy, Minerals, and		
Natural I	Resources	s Departr	nent.			,			
Copy to: Complete	ed by:	Christop	her M. Fetters [Please Print]		Signed:	liter	Man -		

ISO 9001
ENGINEERING DESIGN

Correspondence File

Filing:

RCVD MAY 3'12 OIL CONS. DIV. DIST. 3

WORK PLAN FOR GROUNDWATER INVESTIGATION

GOOD WELL INVESTIGATION SAN JUAN COUNTY, NEW MEXICO

Prepared For:
ConocoPhillips Company

MAY 2012 Ref. NO. 074922-00 (1) Prepared by: Conestoga-Rovers & Associates

5551 Corporate Blvd., Suite 200 Baton Rouge, LA 70808

Office: 225-292-9007

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	1
3.0	OBJECTIVE	1
4.0	INVESTIGATION RATIONALE	2
5.0	REPORTING AND REGULATORY PROCEEDINGS	4
6.0	INVESTIGATION SCOPE OF WORK	5
7.0	INVESTIGATION-DERIVED MATERIAL (IDM) MANAGEMENT	9
8.0	HEALTH AND SAFETY	10
9.0	SCHEDULE	12

LIST OF FIGURES

(Following Text)

FIGURE 1	SITE LOCATION MAP
TIGOTALI	DITE FOCULION MIN

FIGURE 2 SITE MAP

FIGURE 3 PROPOSED MONITOR WELL LOCATION MAP

FIGURE 4 PROPOSED MONITOR WELL PACKER SYSTEM DIAGRAM

LIST OF TABLES

(Following Text)

TABLE 1 PROPOSED GROUNDWATER AND GAS SAMPLE LABORATORY

ANALYTICAL PARAMETERS

TABLE 2 ON-SITE AIR MONITORING PROGRAM ACTION LEVELS

LIST OF ATTACHMENTS

ATTACHMENT 1 ANALYTICAL LABORATORY RESULTS FOR GROUNDWATER

AND GAS SAMPLES COLLECTED IN DECEMBER 2011

ATTACHMENT 2 LABORATORY ANALYTICAL RESULTS FOR ISOTOPE ANALYSIS

COMPLETED ON GAS SAMPLES COLLECTED IN DECEMBER 2011

ATTACHMENT 3 JOURNEY MANAGEMENT PLAN

ATTACHMENT 4 PROJECT EVENT SCHEDULE

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA), on behalf of ConocoPhillips Company, submits herein to the New Mexico Oil Conservation Division (NMOCD) a Work Plan for Groundwater Investigation (Plan) for the Good domestic water well (well number 2566). The area of investigation (Site) is located east of Highway 511 and north of Road 4049 in San Juan County, New Mexico. The Site location and topographic features are shown on Figure 1. The Good domestic water well (Good Well) and other domestic and natural gas production wells identified within a one-half mile radius are presented on Figure 2.

2.0 SITE DESCRIPTION AND BACKGROUND

In December 2011, groundwater and gas samples were collected from the Good Well and the domestic wells 46, 29, and 3 (See Figure 2). In addition, water and gas samples were collected from the Navajo Reservoir, and San Juan 32-8 #25, #204A, and #202; gas samples were collected from meter lines for San Juan 32-8 #25, #204A, and #202. Analytical results from groundwater sampling activities indicate the presence of methane (9,200 μ g/L) and hydrogen sulfide (150 ppmv) in the Good Well, and methane (1,940 μ g/L) with no hydrogen sulfide in the domestic well 29. A copy of the analytical laboratory results for the groundwater and gas samples collected in December 2011 are included as **Attachment 1**.

3.0 OBJECTIVE

The primary objective of this investigation is to determine the relationship/correlation of constituents identified in the Good Well (methane and hydrogen sulfide) and natural gas development in the area and evaluate if the methane contribution is ongoing or associated with a historical event. Investigation activities conducted to accomplish the objectives will be completed using a phased approach. This phase of the investigation will include:

- Compilation and evaluation of existing data including water well driller logs and natural gas well data obtained from the electronic databases
- · Field reconnaissance to document surface conditions and local geologic setting
- Installation of one multiple-unit (i.e., multiple well screens) monitor well to an approximate depth of 750 feet below ground surface (ft bgs)
- Down-hole testing of the borehole including geophysical logging and camera survey
- Groundwater sampling of eight domestic water wells and the newly installed 750 ft bgs monitor well

The proposed tasks form the initial assessment of the overall investigation and are intended to provide data to support the subsequent phases of the investigation. Specifically, the proposed methods for completing the above mentioned tasks will provide comprehensive, detailed descriptions of the lithologic and hydrogeologic characteristics at the Site since limited data are currently available. Attainment of such data will aid in the strategic placement (installation) of additional wells for continuation of this investigation. CRA will submit addenda to this Plan as necessary.

4.0 <u>INVESTIGATION RATIONALE</u>

Natural Gas Production Wells In Relation to the Good Well

Two primary formations are utilized for the production of natural gas in the vicinity of the Site — the Fruitland and Blanco-Mesaverde. The Fruitland Formation, a coal bed methane (CBM) production zone, is comprised mainly of a dry, sweet natural gas that does not contain hydrogen sulfide. The Blanco-Mesaverde Gas Pool is composed of three formations — the Cliff House Sandstone, Menefee Formation, and Point Lookout Sandstone. The major portion of dry gas produced comes from the Cliff House and Point Lookout Sandstones.

Currently, five Fruitland Formation natural gas production wells (32-8 No.202, 32-8 No. 202A, 32-8 No.253, 32-8 No.253A, and 32-8 No. 204A) are in operation within the vicinity of the Site as shown on Figure 2. Recent well integrity and Bradenhead pressure tests indicate the five CBM wells are not compromised. Isotope analysis completed on gas samples collected from the Good Well (DM-2566) and two Fruitland wells (32-8 No.202 and 32-8 No. 204A) in December 2011 did not correlate the methane identified in the Good Well with methane produced in the Fruitland Formation. Analytical laboratory results for isotope analysis completed on the Good Well and on two of the CBM Fruitland wells are included in Attachment 2. Additionally, a review of literature indicates that the Fruitland wells produce sweet natural gas (i.e., no hydrogen sulfide). Therefore, the Fruitland natural gas wells are not suspected to be the potential source of methane or hydrogen sulfide associated with the Good Well.

One Blanco-Mesaverde Gas Pool production well is still active in production for natural gas (32-8 No. 25) within the vicinity of the Site, and a second well was plugged and abandoned in 1994 (32-8 No. 30). Isotope analysis completed on gas samples collected from the Good Well (DM-2566) and the Blanco-Mesaverde production well (32-8 No. 25) showed correlation between the methane identified in the Good Well to methane produced in the Blanco-Mesaverde Formation (See Attachment 2). Therefore, the plugged and abandoned natural gas well (32-8 No. 30) and the active production well completed within the Blanco-Mesaverde Formation remain in consideration as a potential source (either historic or ongoing) to allow upward migration of natural gas that could impact groundwater resources

in the area (i.e., Good Well). Natural gas produced from the Blanco-Mesaverde Formation is not sour by composition. Therefore, the presence of hydrogen sulfide observed within the Good Well may be attributed to an alternative source or secondary reaction in the Site vicinity.

Baseline Sampling of the Monitor Well and Residential Wells

Prior to installation of the proposed 750-foot monitor well, baseline sampling will be completed on the surrounding eight residential wells (including the Good Well) identified during a review of the OSE Water Rights Reporting System. Laboratory analyses obtained during this investigation will aid in the evaluation of water quality in the vicinity of the Site relative to local geology and identify areas which may require further investigation and data collection. A summary of specific water quality and gas parameters are shown in Table 1.

Proposed Monitor Well Location

The regional groundwater flow at the Site is south toward the San Juan River; local groundwater flow may also be in the same direction. Regional studies of joint systems in the San Juan Basin indicate a strong north-south joint set that may have been formed after the deposition of the Uinta-Animas Aquifer. With regional, and potentially local, southward groundwater flow and assuming mostly a north-south joint/fracture orientation, CRA proposes to install a 750-foot monitor well north of the Good Well (upgradient of groundwater flow from the Good Well) and south of the plugged and abandoned well (32-8 No. 30). Figure 3 shows the approximate location of the proposed monitor well; the exact location will be determined by ConocoPhillips based on land owner agreements.

Geophysical Logging and Down-hole Testing of Borehole

Coring of the initial borehole of the 750-foot monitoring well will be performed to allow for discrete soil/rock sample collection to develop an accurate lithologic description of rock/soil type. Each lithological description will include identification of fractures/joints, bedding surfaces, interbed sequences and specific depositional, stratigraphic, or rock features which could provide a vertical conduit or pathway for gas migration from the underlying gas reservoir formations to the upper ground water bearing zones. In addition, after the borehole has been reamed to full diameter via mud or air rotary drilling, down-hole geophysical logging will be completed on the mud-filled open-hole to provide additional lithological interpretation, verify groundwater bearing zone depths and thicknesses, and facilitate cross-well lithological correlation.

Multi-Unit Groundwater Monitor Well

The proposed 750-foot, multi-unit groundwater monitor well (i.e., multiple well screen intervals) will allow for acquisition of discrete vertical groundwater samples and collection of water quality parameters from individual water bearing zones. The materials and methods

for installing the monitor well will be described in Section 6.2, Installation, Survey, and Sampling of Monitor Well.

5.0 REPORTING AND REGULATORY PROCEEDINGS

CRA will file an Application for Permit to Drill a Well with No Consumptive Use of Water (form wr-07) to the New Mexico Office of the State Engineer (OSE) for installation of the proposed monitor well, if required. Following receipt of a permit, the proposed monitor well will be constructed in accordance with the New Mexico Environment Department Monitoring Well Construction and Abandonment Guidelines, and the NMED SWB Ground Water Monitoring System Plan/Ground Water Monitoring Plan Requirements (20.9.9 NEW MEXICO ADMINISTRATIVE CODE SOLID WASTE RULES). CRA will submit Proof of Completion of Well (form wr-11) and a Well Record & Log (form wr-20) to the New Mexico Office of the State Engineer upon installation of the monitor well in order to complete the well registration requirements.

CRA will prepare and submit a report on behalf of ConocoPhillips to the New Mexico Oil Conservation Division (NMOCD) documenting the findings of the domestic water well sampling, and the monitor well installation, sampling, and down-hole testing. The report will summarize field activities, water and gas laboratory results, and chain of custody records. CRA will submit proper documentation to the NMOCD if the scope of work presented in the Plan is modified, or if additional investigation work is required.

6.0 INVESTIGATION SCOPE OF WORK

Investigation work activities will generally consist of the following:

- Site reconnaissance activities prior to commencement of field work
- Mobilization of personnel, materials, and equipment
- Groundwater and gas sampling of eight existing residential wells
- Installation (i.e., drilling) of one groundwater monitoring well to a total depth of approximately 750 ft bgs, and groundwater sampling of the newly installed well

A detailed description of listed tasks follows.

6.1 BASELINE SAMPLING OF RESIDENTIAL WELLS

CRA will conduct a Site reconnaissance prior to field activities to identify appropriate access routes to the domestic well locations and proposed monitor well location and for identification of potential logistical issues that would impact sampling and/or drilling activities.

Initial baseline groundwater sampling activities will consist of collection of one water sample set from each of the eight residential wells, plus two Quality Assurance/Quality Control samples. Gas samples will also be collected concurrent with groundwater samples for each of the eight residential wells.

Groundwater will be collected by use of in-well pumps and will be collected from a point as close to the wellhead as possible prior to any water treatment systems. Wells will be purged of a minimum of three well volumes and/or to stabilization of field parameters including temperature, specific conductivity, pH, oxidation-reduction potential (ORP) and dissolved oxygen (DO). Field parameters will be monitored using a YSI 556 multi-parameter sonde and will be recorded on a well sampling field form. Groundwater samples will be placed in laboratory prepared containers, packed on ice, and shipped under chain-of-custody documentation to Pace Analytical Services, Inc. in Lenexa, Kansas, and analyzed for the parameters listed in Table 1.

Gas samples will be collected by first placing approximately twenty feet of flexible poly-vinyl chloride (PVC) tubing into the well casing. The top of the well casing will then be sealed off to prevent ambient air from entering the well casing. The exposed tubing at the top of the well casing will be clamped shut and allowed to set while the groundwater samples are collected. Once groundwater samples have been collected, gas samples from inside the well casing will be extracted using a laboratory supplied hand pump for Cali-5 Bond bag containers and by means of negative pressure vacuum typical of one liter summa canisters. Gas samples will be sent under chain of custody documentation to Air Tech and Isotech laboratories (sub labs of Pace Analytical) and analyzed for the parameters listed in Table 1.

6.2 INSTALLATION, SURVEY, AND SAMPLING OF MONITOR WELL

CRA proposes the installation of one monitor well with a total depth of approximately 750 ft bgs. The number of screen intervals to be installed will be contingent upon the number of water bearing zones identified during coring and geophysical logging activities.

Isolation of permeable zones will be maintained to the most reasonable extent possible through mud rotary drilling techniques. The protection of water bearing zones will be

maintained by over pumping of the formation material to remove any potential of cross contamination from permeable zones and completed through installation of packers.

Specific tasks associated with installation, design specifications, and sampling of the proposed monitor wells are detailed in the following paragraphs. The proposed location of the monitoring well is shown on **Figure 3**.

Site Reconnaissance

CRA will conduct a Site reconnaissance in order to identify potential gas migration pathways from the subsurface. Site reconnaissance activities will consist of the following:

- Desktop geologic and hydrogeologic study including a joint/fracture study, review of drillers logs for local water and gas wells, and determination of the local and regional groundwater flow to develop a conceptual aquifer model and construct a potentiometric map.
- Identification of appropriate access routes to/from the proposed monitor well location and identification of potential logistical issues that would impact field activities.
- Inspection of the area surrounding well 32-8 No. 30 for distressed or dead vegetation.
 Stressed vegetation could indicate the existence of methane and/or hydrogen sulfide at the surface via natural fractures in the underlying interbeds of sandstone and shale. A shallow gas survey to define the extent of gas impact would follow if distressed or dead vegetation is observed.

Coring and Drilling Activities

CRA proposes mud or air rotary drilling and wireline core retrieval technology implemented by a subcontractor (possessing a drilling license issued by the state of New Mexico) to install the proposed monitor well. In order to obtain an accurate lithologic profile, the coring method will be implemented at five to ten foot intervals from surface to total depth (TD). CRA will collect 2.5 inch diameter core samples for determination of soil/rock type, identification of bedding and fractures, and potential laboratory analysis; and a driller's log will be prepared. The borehole will be subsequently completed to a final diameter of eight-inches by standard air or mud rotary drilling. Formation materials from each of the permeable intervals encountered will be collected from the drilling returns to verify the appropriate well screen slot size and filter pack material. All down-hole equipment will be maintained to prevent well contamination.

CRA will retain a subcontractor to complete an open-hole geophysical survey for acquisition of geophysical data and for guidance on placement of screen intervals during well completion. Correlation of geophysical data with the retrieved core samples will facilitate

lithological interpretation of additional wells with a high level of confidence. CRA proposes the following suite of geophysical parameters:

- Gamma Ray lithological characterization by measuring naturally occurring radiation
- Resistivity (Deep and Shallow) evaluation of the interaction between lithology, permeability, chloride content, and hydrocarbons
- Spontaneous Potential delineate permeable bed boundaries, estimate permeability, and evaluate formation water salinity
- Fluid Resistivity changes in ionic properties / TDS concentrations in the borehole fluid and delineates changes in groundwater quality

Based on coring results, acoustic borehole imaging will be completed on the borehole to identify joints and fractures.

Well Completion

The proposed monitor well casing and wire-wrapped well screen will be six inches in diameter (inside) and both will be of carbon steel material. The location of screen intervals will be placed at water bearing zones as determined by the geophysical survey results and the driller's log. Well screen slot size for each screen interval will be determined by sieve analysis of the formation material collected during drilling and by the composition of core samples collected. A filter pack will be developed around the well screen intervals with the use of a tremie pipe, and the filter pack will be set two feet above the top of the well screen. A 3-foot bentonite seal will be placed above the well screens by the tremie method. The remaining annulus will be grouted with a cement-bentonite grout up to the location of succeeding well screen interval location. A well casing installation log identifying the well screen intervals will be prepared after completion of the monitor well.

The monitor well will be completed with an above grade casing and a locking steel well shroud. The top of the casing will be fitted with a watertight removable cap. The monitor well top of casing elevations will be surveyed to an accuracy of 0.01 feet relative to the North American Vertical Datum (NAVD) of 1988 or other appropriate benchmark. A 4-foot-square concrete well pad, sloped appropriately to direct rain or runoff away from the well, will be constructed around the well shroud. Bollards will be placed around the well pad for protection.

Well Development

Well development will be completed within each screened zoned via the surge-block method followed by pumping/over pumping. The well will be pumped to remove approximately three well volumes or until the water becomes clear. The development water will be collected

and stored in barrels or a frac tank and disposed of appropriately to a ConocoPhillips approved facility.

Vertical Chemical and Video Profile

CRA will evaluate the vertical variation in water quality utilizing a multi-parameter water chemistry probe. CRA will obtain a continuous vertical profile of water chemistry by lowering a direct reading probe through the water column and recording the pH, temperature, electrical conductivity, turbidity, dissolved oxygen, oxygen reduction potential, and depth below water (measured as hydrostatic pressure). The depth-integrated data will be examined for the presence of geochemical conditions that could be indicative of impact from a deeper formation.

A down-hole video survey will be completed to observe potential evolution of methane gas from the formation into the borehole. If observed, the depths will assist in the determination of lithological zones that are likely impacted, and allow targeted investigation. CRA recommends the video survey after completion of the vertical chemical profile to avoid undue mixing of the water column from the movement of the camera, which could reduce the resolution of vertical chemical profile.

Installation of Inflatable Packers

CRA proposes a multi-screen groundwater sample system that consists of a series of permanent inflatable packers as the recommended sample system for the first phase of the Good Well investigation. The multi-level packer system will provide isolation of several water bearing zones in support of the proposed groundwater sample activities, the collection of relatively undisturbed discrete water samples, and effective shut-in of water bearing zones between sample events. The packer system is practical and cost effective for recurring sampling (e.g., monthly) events. Alternative systems such as drilling of multiple monitor wells to various depths (i.e., nested wells) or placement of temporary inflatable packers, which would require the assistance of a drill rig during each sampling event, would prove impractical and cost prohibitive.

Baseline Sampling of Monitor Well

Following completion and development of the proposed monitor well as described in the previous sections, the multi-level packer system will be installed with the assistance of the drill rig. The proposed system will consist of dual packer segments (where water bearing zones will be isolated) and casing segments that will be utilized as spacers between water bearing zones. The system components (dual packer segments and casing spacers) will be laid out adjacent to the cased well in accordance with the casing installation log previously completed during completion of the monitor well. The dual packer installation intervals will correspond to well screen intervals. The packer casing string will be assembled by lowering casing-packer segments down the borehole with a wireline (cabling) and joining each

successive segment (packer-casing or spacer segment) until reaching ground surface. Upon complete installation of the packer system, each packer will be inflated by injection of deionized water with a pump and a packer inflation tool. A casing log, indicating the location/interval of packers and an as-built drawing for the system will be prepared and submitted to the NMOCD upon completion. Figure 4 shows a general diagram of the proposed packer system.

Groundwater and gas sampling of each monitor zone (i.e., water bearing zone) will be completed after pressure tests on the system verify the installed packers will maintain well integrity. A pump will be lowered to the test zone of each dual packer to collect groundwater samples from the designated monitor zones. A multi-parameter water probe will be used to measure geochemical parameters from groundwater collected. As shown on Figure 4, casing located between the dual-packer segments will consist of several openings where formation water enters. Groundwater samples will be placed in laboratory prepared containers, packed on ice, and shipped under chain-of-custody documentation to Pace Analytical Services, Inc., in Lenexa, Kansas, and analyzed for the groundwater parameters listed in Table 1.

Gas samples will be collected by lowering PVC tubing to the designated monitor zone. The exposed tubing at the top of the well casing will be clamped shut and allowed to set for a period of time. Gas samples will be subsequently extracted using a laboratory supplied hand pump for Cali-5 Bond bag containers and by means of negative pressure vacuum typical of one liter summa canisters. Gas samples will be sent under chain of custody documentation to Air Tech and Isotech laboratories (subcontractor laboratories of Pace Analytical) and analyzed for the gas parameters listed in Table 2.

7.0 INVESTIGATION-DERIVED MATERIAL (IDM) MANAGEMENT

The investigation-derived material (IDM) generated during the drilling operations and groundwater sampling activities may include soil cuttings, purge water, personal protective equipment (PPE), decontamination fluids, and disposable sampling equipment. During monitor well installation and ground water sample collection, IDM will be temporarily stored on-Site; drilling IDM will be stored in roll-off boxes and groundwater sampling IDM will be properly identified and labeled. A waste characterization sample will be collected for each IDM for laboratory analysis, then the IDM will be profiled and transported to an appropriate off-Site facility for final disposition under appropriate waste handling documentation.

8.0 HEALTH AND SAFETY

The following guidelines/tools will be implemented to ensure the health and safety of all team members during the work activities presented in the Plan.

Health and Safety Plan (HASP)

All tasks described in this work plan will be firmly executed according to the guidelines and safety expectations outlined in the Site specific Health and Safe Plan (HASP). The HASP will be reviewed by a CRA Regional Health and Safety Manager (RHSM) and will contain project essentials such as emergency contacts and procedures, Job Hazard Analysis (JHAs), the Stakeholder Engagement Plan, applicable Material Safety Data Sheets, and Risk Management and Remediation (RM&R) safety guidance documents (e.g., RM&R HSE Procedures).

Tailgate Safety Meetings

The on-Site project team will engage in a tailgate safety meeting at the beginning of each work day and prior to any new task. The field team will discuss the activities to be implemented that day, identify the safety hazards, remind employees of important safety procedures, and comment on safety issues identified the previous work day. As conditions change throughout the day, additional tailgate safety meetings will be necessary in order to identify new potential hazards. All tailgate safety meetings will be documented, and those documents will be kept with on Site documents for future review as needed.

Job Hazard Analysis

A task specific Job Hazard Analysis (JHAs) will be reviewed, in conjunction with an RM&R GO Card, prior to engaging in a specific task and as conditions change. A JHA Review form will be signed by all conducting the task, and the forms will be kept on Site for future reference as needed. Additional hazards or necessary steps identified will be hand-written (or "dirtied") on the existing JHA. If a JHA has not been prepared for a task, the field team will use a blank JHA to develop one prior to commencement of a task. At the conclusion of each work day, JHAs will be modified and recorded for future use with noted observations and changes. The following are examples of preliminary (seed) JHAs included in the HASP:

- Driving and Off-Road Driving
- Site Visits
- Mobilization-Demobilization
- Coring
- Mud Rotary Drilling
- Fluid Level Monitoring
- Groundwater Sampling

- Monitoring Well Sampling
- Well Maintenance and Inspection

Stakeholders and Visitors

The CRA Site supervisor will be notified of any visitors or stakeholders entering the Site. Visitors and stakeholders will be briefed concerning the Site-specific HASP, emergency procedures, potential Site hazards, and current Site conditions. All personnel and visitors will be required to sign-in and out on the Visitor Sign-In Sheet.

Safe Task Evaluation Process

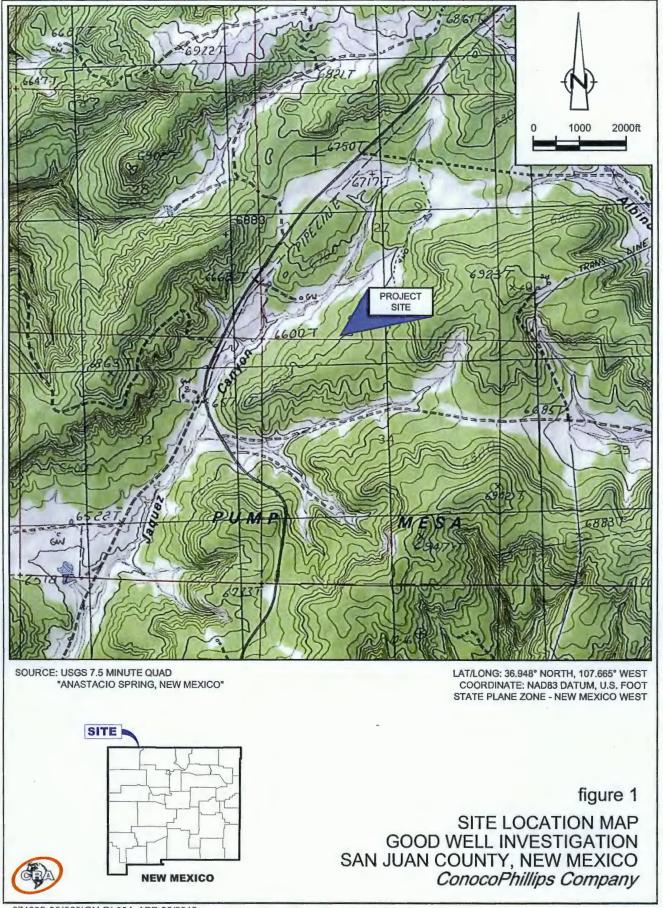
A Safe Task Evaluation Processes (STEP) is a tool used to observe active work in order to identify potential questionable or unsafe behaviors performed by the observee. STEP observations will be completed frequently, as appropriate for each on Site task. Lessons learned during the completion of each STEP will be shared with the team at the next safety meeting. The root cause of each questionable item will be documented on the Daily Reports to recognize possible trends.

Unsafe Acts, Unsafe Conditions, and Stop Work Authorities

The safety of the work team is of highest importance. To this end, any unsafe acts (UA) or unsafe conditions (UC) will be reported promptly to the Site supervisor. Accordingly, Stop Work Authority (SWA) will be implemented at the sight of a UA or UC. The aforementioned (UAs, UCs, and SWA) will be reported to the CRA Project Manager using the appropriate ConocoPhillips reporting procedures.

Air Monitoring and Sampling

Air monitoring will be conducted during all groundwater and gas sampling activities. Equipment to be used for air monitoring during site activities will consist of a 4-gas meter and personal hydrogen sulfide monitors, which will be calibrated on a daily basis. The appropriate actions to be taken at designated action levels are listed in Table 2. All work will be initiated in Level D of personal protective equipment (PPE). An upgrade to Level C will be required if any symptoms occur, if requested by an individual performing the task, or if any irritation to eye, nose, throat, or skin occurs.


Journey Management Plan

The Journey Management Plan (JMP) will instruct project personnel on task-specific routes to be utilized in association with the Site. A copy of the JMP is included as **Attachment 3**.

9.0 SCHEDULE

The additional soil and groundwater delineation and investigation fieldwork is anticipated to commence two weeks following notification to proceed (NTP) from the New Mexico Oil Conservation Division. A proposed schedule is included in **Attachment 4**.

FIGURES

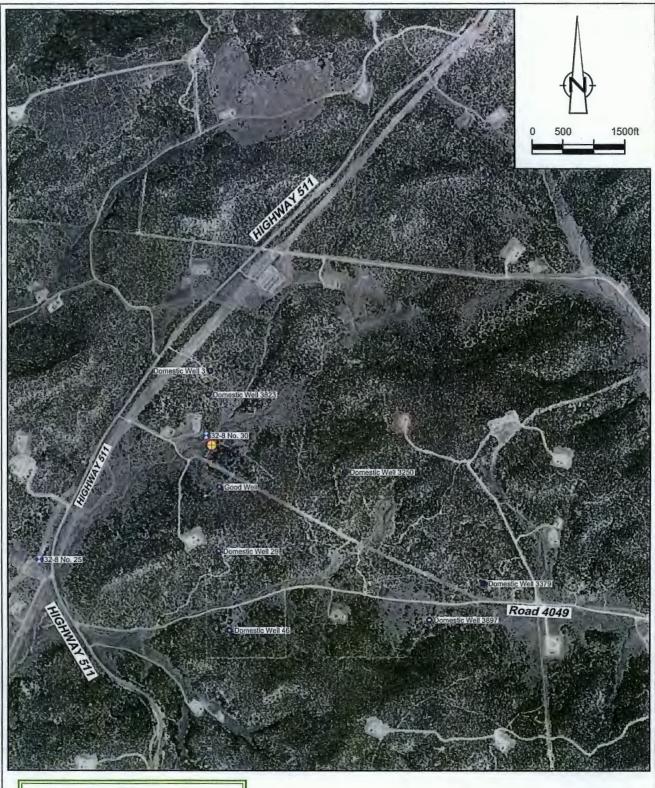



figure 2

SITE MAP GOOD WELL INVESTIGATION SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

 \oplus

Proposed Monitoring Well

•

Natural Gas Production Well

Domestic Well

figure 3

PROPOSED MONITORING WELL LOCATION GOOD WELL INVESTIGATION SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

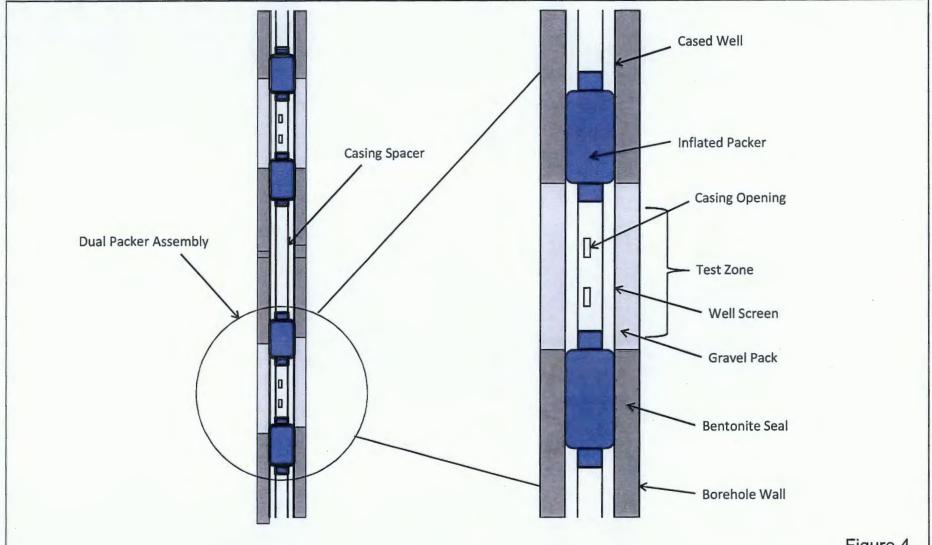


Figure 4

PROPOSED MONITOR WELL PACKER SYSTEM DIAGRAM
GOOD WELL INVESTIGATION
SAN JUAN COUNTY, NEW MEXICO
ConocoPhillips Company

TABLES

TABLE 1

PROPOSED GROUNDWATER AND GAS ANALYTICAL PARAMETERS GOOD WELL INVESTIGATION CONOCOPHILLIPS COMPANY SAN JUAN COUNTY, NEW MEXICO

Phase	Parameter	Unit
Groundwater	VOCs	μg/L
	Magnesium	μg/L
	Calcium	μg/L
	Boron	μg/L
	Potassium	μg/L
	Sodium	mg/L
	Total Dissolved Solids	mg/L
	Chloride	mg/L
	Bromide	mg/L
	Sulfate	mg/L
	Sulfide	mg/L
	TPH (GRO & DRO)	mg/L
	Bicarbonate	mg/L
	Dissolved Methane	μg/L
	Carbon Dioxide, Sulfur, Oxygen, Carbon, and	Isotope Percent
	Hydrogen Isotopes	
Gas	Hydrocarbons/Fixed Gases	ppmv
	VOCs	ppmv
	Specific Gravity	Dimensionless
	British Thermal Unit	BTU/m ³
·	Acetylene	ppmv
	Hydrogen Sulfide	ppmv
	Carbon, Dioxide, Sulfur, Oxygen, Carbon, and Hydrogen Isotopes	Isotope Percent

TABLE 2

ON-SITE AIR MONITORING PROGRAM ACTION LEVELS GOOD WELL INVESTIGATION CONOCOPHILLIPS COMPANY SAN JUAN COUNTY, NEW MEXICO

Monitoring Device	Action Level	Action
Combustible Gas Indicator	>10 Percent LEL	Cease operations and move to a safe place. Notify SHO. Do not continue working until conditions are constantly below 10 percent LEL
Oxygen Meter	<19.5 Percent or >23.5 Percent	Cease operations and move to a safe place. Notify SHO. Do not continue working until oxygen levels are between 19.5 and 23.5 percent
		Note: When oxygen levels are outside this range, percent LEL readings are not reliable
Photoionization Detector (PID)	Benzene present in the Breathing Zone:	Determine via Colorimetric Sampling
10.6 or greater eV lamp	<1.0 ppm or Background	Full-Face Respirator Available
Detector Tubes	\geq 1.0 ppm and \leq 5 ppm	Full-face air purifying respirator Level C PPE MSA GME P100 Cartridge
	>5 ppm and <500 ppm	Supplied air respirator Level B PPE. Implement additional engineering controls
	≥500 ppm	Shut down activities. Notify SHO. Implement additional engineering controls
	Benzene not present in the Breathing Zone:	Determine via Colorimetric Sampling
	<10 ppm or Background	Full-Face Respirator Available
	≥10 ppm and <50 ppm	Wear Full-Face Respirator - Level C PPE
	≥50 ppm and <1,000 ppm	Wear Supplied Air Respirator - Level B PPE, Implement Additional Engineering Controls
	≥1,000 ppm	Shut down activities. Notify SHO. Implement additional engineering controls
	Vinyl Chloride present in the Breathing Zone:	Determine via Colorimetric Sampling
·	<1 ppm or Background	No Action Required - Continue Monitoring
	≥1 ppm	Level B - Continue Monitoring
Dust/Particulate - (Impacted	<2.0 mg/m³ or Background	Full-Face Respirator Available
Soils/Sludges/Sediments)	\geq 2.0 mg/m³ and <50 mg/m³	Wear Full-Face Respirator - Level C PPE
	>50 mg/m³	Wear Supplied Air Respirator - Level B PPE, Implement Additional Engineering Controls
Hydrogen Sulfide	>5 ppm	Shut down activities. Notify SHO. Implement additional engineering controls
Carbon Monoxide	>35 ppm	Shut down activities. Notify SHO. Implement additional engineering controls

If CRA is unable to identify/quantify the contaminants, supplied air will be required when the PID reading is greater than background, as the contaminant will be unknown and NIOSH, OSHA, and the manufacturer's use requirements for Level C (air purifying respirators) will not be met. If PID readings subside, workers can downgrade as necessary. CRA will upgrade to supplied air and attempt to obtain additional information for possible chemicals present in CRA's work area. The Owner will need to provide/obtain additional information as to the identity of the contaminant(s) in order to permit the use of Modified D and/or Level C.

Notes:

SHO - Safety and Health Officer LEL - Lower Explosive Limit

PPE - Personnel Protective Equipment

ppm - parts per million

ATTACHMENT 1

ANALYTICAL LABORATORY RESULTS FOR GROUNDWATER AND GAS SAMPLES COLLECTED IN DECEMBER 2011

December 27, 2011

ADE-1461 EPA Methods TO-3, TO14A,TO15 SIM & Scan, ASTM D1946

FL Cert E8784/LA Cert 04140 EPA Methods TO3, TO14A, TO15, 25C/3C, RSK-175

TX Cert T104704450-09-TX EPA Methods T014A, T015

Pace Analytical ATTN: Anna Custer 9608 Loiret Blvd. Lenexa, KS 66219

LABORATORY TEST RESULTS

Project Reference: 60111459; San Juan 32-8 No 202 (074922)

Lab Number: C120502-01/07

Enclosed are results for sample(s) received 12/05/11 by Air Technology Laboratories. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

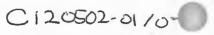
Report Narrative:

- Sample C120502-02 (A-074922-120211-CM-D3; 60111459016) was canceled due to insufficient sample.
- Sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- All results are reported without qualifications.
- The enclosed results relate only to the sample(s).

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson


Operations Manager

MJohnson@AirTechLabs.com

Enclosures

Note: The cover letter is an integral part of this analytical report.

Chain of Custody

			r: 60111459 Woi	korder Nar				32-8 NO 20	_			14/1.49	and a second of	-	est	Its Requested 12/15/2011 Requested Analysis	wat.
AP	nna (Custe	er ical Kansas		Subcon	tract.10		SUB-6101				*266.00	-		2001230	Neguested Allaysis	e-e
LP	hone	a, KS (913	Blvd. 66219 8)599-5665 a.custer@pacelabs.com											EPA 15/16 Standard	M D1946		
-		No. 12	12-79-74 Easter 1 - 12-12 - 22-12	A single profit his	an Green	Value (mail A)	Venileri	Bowerset &	- ∰yF	res	erved	Con	tainers	olffde	AS		
lt	em	Sam	ple ID	Collect Date/Time		Lab ID		Matrix	Tedlar	Summa				Hydrogen Sulfide	Acetylene	LABUSE	ONI
1		A-07	4922-120111-CM-29	12/1/2011 1	1:20	601114	159015	Air	1					X	X		
2		A-07	4922-120211-CM-D3	12/2/2011 0	8:35	601114	159016	Air	1	1				X	X		
3		A-07	4922-120211-CM-2566	12/2/2011 1	1:00	601114	159017	Air	1					X	X		
4		A-07	4922-120211-CM-202	12/2/2011 1	1:35	601114	159018	Air	1					X	X		
5		A-07	4922-120211-CM-204A	12/2/2011 1	2:05	601114	159019	Air	1					X	X		
6		A-07	4922-120211-CM-25	12/2/2011 1	0:10	601114	159020	Air	1					X	X		
7		A-07	4922-120211-CM-DUP	12/2/2011 1		601114		Air	1					X	X		
D	ansfe	ers	Released By		ate/Tim		Received		fina .	1 5 8	<u> </u>	111 111	Date/T		opt d	Comments Sample 60111459016 Tedlar bag rcv'd in su	
1					-							-				eflated. Will send remainder of sample in Su	
2			PEDEX		2/5/1	10413	Ox	www.	0	×4			12/5/	1 car	3	anister when Minn air lab finishes TO-15 nalysis.	
4												-			-		
5										_					\dashv		

Client:

Pace Analytical

Attn:

Anna Custer

Project Name:

San Juan 32-8 NO 202 (074922)

Project No.:

60111459

Date Received:

12/05/11

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	C120502-01 A-074922- 120111-CM-29 / 60111459015		C120502-03 A-074922- 120111-CM- 2566 / 60111459017		C120502-04 A-074922- 120111-CM-202 / 60111459018		C120502-05		
Client Sample I.D.:							A-074922- 120111-CM- 204A / 60111459019		
Date Sampled:	12/01/11		12/02/11		12/02/11		12/02/11		
Date Analyzed:	12/05/11		12/05/11		12/05/11		12/05/11		
QC Batch No.:	111205	GC3A1	111205GC3A1 ZK		111205GC3A1 ZK		111205GC3A1 ZK		
Analyst Initials:	Z	K							
Dilution Factor:	1	.0	10	100		.0	1.0		
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	
Hydrogen Sulfide	ND	0.20	150	20	ND	0.20	ND	0.20	

ND = Not Detected (be	low RL)
-----------------------	---------

RL = Reporting Limit

Reviewed/Approved By:	M/101- 6
	Wark Johnson

Operations Manager

Date 12/11/11

Page 2 of 7

C120502

The cover letter is an integral part of this analytical report

Client:

Pace Analytical

Attn:

Anna Custer

Project Name:

San Juan 32-8 NO 202 (074922)

Project No.:

60111459

Date Received:

12/05/11

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	C1205	02-06	C1205	502-07							
Client Sample L.D.:	A-074922- 120111-CM-25 / 60111459020		A-07- 12011: DU 601114	1-CM- P /							
Date Sampled:			Date Sampled: 12/02/11 12/02/1		2/11						
Date Analyzed:	12/0	5/11	12/05/11								
QC Batch No.:	111205	111205GC3A1 111205GC3A1 ZK ZK		111205GC3A1		111205GC3A1		GC3A1			
Analyst Initials:	Z				1						
Dilution Factor:	1.	.0	10	00							
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv							
Hydrogen Sulfide	ND	0.20	160	20							

ND =	Not	Detected ((below RL)	
1 110	1105	Detected	DCIUM XXLI	

RL = Reporting Limit

Destaura	/ A	J. Dave
Reviewed	/ADDrove	d BA:

Operations Manager

Page 3 of 7

C120502

The cover letter is an integral part of this analytical report

QC Batch No.:

111205GC3A1

Matrix: Units: Air ppmv Page 4 of 7 C120502

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method Blank		LCS		L	CSD		
Date Analyzed:	12/05/11		12/	05/11	12/	05/11		
Analyst Initials:	ZK		ZK		ZK			
Datafile:	05dec027		05dec049		05dec050			
Dilution Factor:	1.0		1.0		1.0			
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	105	70-130%	106	70-130%	1.5	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By: Mark J. Johnson Date

Date: 12/11/11

Operations Manager

The cover letter is an integral part of this analytical report.

Client:

Pace Analytical

Attn:

Anna Custer

Project Name:

San Juan 32-8 NO 202 (074922)

Project No.:

60111459

Date Received:

12/05/11

Matrix:

Water

Reporting Units: ppmv

ASTM D1946

Acetylene	ND	10	ND	10	ND	10	ND	10
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv
Dilution Factor:	1.0		1.0		1.0		1.0	
Analyst Initials:	ZK		ZK		ZK		ZK	
QC Batch No.:	111205GC8A1		111205GC8A1		111205GC8A1		111205GC8A1	
Date Analyzed:	12/05/11		12/05/11		12/05/11		12/05/11	
Date Sampled:	12/01/11		12/02/11		12/02/11		12/02/11	
Client Sample I.D.:	120111-CM-29 / 60111459015		120111-CM- 2566 /		120111-CM-202 / 60111459018		120111-CM- 204A /	
	A-074922-		A-074922-		A-074922-		A-074922-	
Lab No.:	C120502-01		C120502-03		C120502-04		C120502-05	

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

The cover letter is an integral part of this analytical report

Date 12/7/11

Page 5 of 7

C120502

Client:

Pace Analytical

Attn:

Anna Custer

Project Name:

San Juan 32-8 NO 202 (074922)

Project No.:

60111459

Date Received:

12/05/11

Matrix:

Water

Reporting Units:

ppmv

RSK175

Lab No.:	C120502-06		C120502-07			
	A-074922- 120111-CM-25 / 60111459020		A-074922- 120111-CM- DUP /			
Client Sample I.D.:						
Date Sampled:	12/02/11		12/02/11			
Date Analyzed:	12/05/11		12/05/11			
QC Batch No.:	111205GC8A1		111205GC8A1			
Analyst Initials:	ZK		ZK			
Dilution Factor:	1.0		1.0			
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv		
Acetylene	ND	10	ND	10		

ND = N	lot Detec	ted (hel	ow RI	۱
IND - IN	OF Defec	ren (nei	IOM ICL	,

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 12/2/ (/

Page 6 of 7

C120502

QC Batch No.:

111205GC8A1

Matrix:

Air

Page 7 of 7 C120502

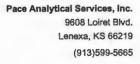
QC for ASTM D1946

Lab No.:	Method Blank		LCS		LCSD			
Date Analyzed:	12/05/11		12/05/11		12/05/11			
Analyst Initials:	ZK		ZK		ZK			
Datafile:	05dec008		05dec005		05dec006			
Dilution Factor:	1.0		1.0		1.0			
ANALYTE	RL (ppmv)	Results (ppmv)	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Acetylene	10	ND	100	70-130%	99	70-130%	0.9	<30

PQL = Practical Quantitation Limit

ND = Not Detected (Below RL).

RL = PQL X Dilution Factor


Reviewed/Approved By:

Mary J. Johnson

Operations Manager

Date: 12/27/

The cover letter is an integral part of this analytical report.

December 22, 2011

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory between December 03, 2011 and December 05, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

OWA CECURITE

Anna Custer

anna.custer@pacelabs.com Project Manager

Enclosures

cc: Kelly Blanchard, COP Conestoga-Rovers & Associa Angela Bown, COP Conestoga-Rovers & Associa

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 41

CERTIFICATIONS

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #: MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: WN00064
Illinois Certification #: 200011
Iowa Certification #: 368
Kansas Certification #: E-10167
Louisiana Certification #: LA080009
Maine Certification #: 2007029
Maryland Certification #: 322

Michigan DEQ Certification #: 9909

Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace
Montana Certification #: MT CERT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New Mexico Certification #: Pace
New York Certification #: 11647
North Carolina Certification #: 530
North Dakota Certification #: R-036
North Dakota Certification #: R-036A
Ohio VAP Certification #: CL101
Oklahoma Certification #: D9921
Oklahoma Certification #: 9507
Oregon Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: 02818

Tennessee Certification #: 02818
Texas Certification #: T104704192
Washington Certification #: C754
Wisconsin Certification #: 999407970

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 2 of 41

SAMPLE SUMMARY

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60111459001	DW-074922-120111-CM-46	Water	12/01/11 09:45	12/03/11 08:45
60111459002	DW-074922-120111-CM-29	Water	12/01/11 11:50	12/03/11 08:45
60111459003	DW-074922-120111-CM-D3	Water	12/01/11 12:55	12/03/11 08:45
60111459004	PW-074922-120111-CM-202	Water	12/01/11 15:40	12/03/11 08:45
60111459005	SW-074922-120211-CM-NAV	Water	12/02/11 09:00	12/03/11 08:45
60111459006	PW-074922-120211-CM-204A	Water	12/02/11 12:15	12/03/11 08:45
60111459007	PW-074922-120211-CM-25	Water	12/02/11 10:30	12/03/11 08:45
60111459008	A-074922-120211-CM-29	Air	12/01/11 11:20	12/03/11 08:45
60111459009	A-074922-120211-CM-D3	Air	12/02/11 08:35	12/03/11 08:45
60111459010	A-074922-120211-CM-202	Air	12/02/11 11:35	12/03/11 08:45
60111459011	A-074922-120211-CM-2566	Air	12/02/11 11:00	12/03/11 08:45
60111459012	A-074922-120211-CM-204A	Air	12/02/11 12:05	12/03/11 08:45
60111459013	A-074922-120211-CM-25	Air	12/02/11 10:10	12/03/11 08:45
60111459014	A-074922-120211-CM-DUP	Air	12/02/11 10:55	12/03/11 08:45
60111459015	A-074922-120111-CM-29	Air	12/01/11 11:20	12/05/11 09:13
60111459016	A-074922-120211-CM-D3	Air	12/02/11 08:35	12/05/11 09:13
60111459017	A-074922-120211-CM-2566	Air	12/02/11 11:00	12/05/11 09:13
60111459018	A-074922-120211-CM-202	Air	12/02/11 11:35	12/05/11 09:13
60111459019	A-074922-120211-CM-204A	Air	12/02/11 12:05	12/05/11 09:13
60111459020	A-074922-120211-CM-25	Air	12/02/11 10:10	12/05/11 09:13
60111459021	A-074922-120211-CM-DUP	Air	12/02/11 10:55	12/05/11 09:13

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 3 of 41

SAMPLE ANALYTE COUNT

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60111459001	DW-074922-120111-CM-46	RSK 175	SK4	1	PASI-M
60111459002	DW-074922-120111-CM-29	RSK 175	SK4	1	PASI-M
60111459003	DW-074922-120111-CM-D3	RSK 175	SK4	1	PASI-M
60111459004	PW-074922-120111-CM-202	RSK 175	SK4	1	PASI-M
60111459005	SW-074922-120211-CM-NAV	RSK 175	SK4	1	PASI-M
60111459006	PW-074922-120211-CM-204A	RSK 175	SK4	1	PASI-M
60111459007	PW-074922-120211-CM-25	RSK 175	SK4	1	PASI-M
60111459008	A-074922-120211-CM-29	TO-15	DR1	62	PASI-M
60111459009	A-074922-120211-CM-D3	TO-15	DR1	62	PASI-M
60111459010	A-074922-120211-CM-202	TO-15	DR1	62	PASI-M
60111459011	A-074922-120211-CM-2566	TO-15	DR1	62	PASI-M
60111459012	A-074922-120211-CM-204A	TO-15	DR1	62	PASI-M
60111459013	A-074922-120211-CM-25	TO-15	DR1	62	PASI-M
60111459014	A-074922-120211-CM-DUP	TO-15	DR1	62	PASI-M

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

Method:

RSK 175

Client:

Description: RSK 175 AIR Headspace COP Conestoga-Rovers & Associates, Inc. NM

Date:

December 22, 2011

General Information:

7 samples were analyzed for RSK 175. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: AIR/13778

- 1e: The sample was not collected in the appropriate container for headspace analysis.
 - · DW-074922-120111-CM-29 (Lab ID: 60111459002)
 - Methane
 - DW-074922-120111-CM-46 (Lab ID: 60111459001)
 - Methane
 - DW-074922-120111-CM-D3 (Lab ID: 60111459003)
 - Methane
 - PW-074922-120111-CM-202 (Lab ID: 60111459004)
 - Methane

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 5 of 41

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

Method:

RSK 175

Description: RSK 175 AIR Headspace

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

December 22, 2011

Analyte Comments:

QC Batch: AIR/13789

1e: The sample was not collected in the appropriate container for headspace analysis.

- PW-074922-120211-CM-204A (Lab ID: 60111459006)
 - Methane
- PW-074922-120211-CM-25 (Lab ID: 60111459007)
 - Methane
- · SW-074922-120211-CM-NAV (Lab ID: 60111459005)
 - Methane

D2: Samples evaluated to 1/2 the reporting limit.

- · SW-074922-120211-CM-NAV (Lab ID: 60111459005)
 - Methane

Page 6 of 41

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Method:

TO-15

Description: TO15 MSV AIR
Client: COP Conestogs

COP Conestoga-Rovers & Associates, Inc. NM

Date:

December 22, 2011

General Information:

7 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: AIR/13823

SS: This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

- · LCS (Lab ID: 1114119)
 - Ethanol
 - Tetrahydrofuran

QC Batch: AIR/13833

SS: This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

- A-074922-120211-CM-D3 (Lab ID: 60111459009)
 - Ethanol
 - Tetrahydrofuran
- DUP (Lab ID: 1115406)
 - Ethanol
- · LCS (Lab ID: 1114983)
 - Ethanol
 - Tetrahydrofuran

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: AIR/13833

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- LCS (Lab ID: 1114983)
 - 1,2,4-Trichlorobenzene
 - 1,2-Dichlorobenzene
 - · Hexachloro-1,3-butadiene
 - Naphthalene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 7 of 41

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

Method:

TO-15

Description: TO15 MSV AIR

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

December 22, 2011

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: AIR/13833

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.

- · LCS (Lab ID: 1114983)
 - Naphthalene

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

- · LCS (Lab ID: 1114983)
 - 1.2.4-Trichlorobenzene
 - 1,2-Dichlorobenzene
 - · Hexachloro-1,3-butadiene

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Sample Comments:

A3: The sample was analyzed by serial dilution.

- · A-074922-120211-CM-2566 (Lab ID: 60111459011)
- · A-074922-120211-CM-25 (Lab ID: 60111459013)
- · A-074922-120211-CM-DUP (Lab ID: 60111459014)

Analyte Comments:

QC Batch: AIR/13823

- A3: The sample was analyzed by serial dilution.
 - A-074922-120211-CM-29 (Lab ID: 60111459008)
 - Dichlorodifluoromethane

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- · A-074922-120211-CM-202 (Lab ID: 60111459010)
 - Dichlorodifluoromethane

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- · A-074922-120211-CM-25 (Lab ID: 60111459013)
 - Benzene

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 8 of 41

ANALYTICAL RESULTS

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

Sample: DW-074922-120111-CM-46	Lab ID:	60111459001	Collected	1: 12/01/11	09:45	Received:	12/03/11 08:45	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical	Method: RSK	175						
Methane	ND u	g/L	10.0	5.0	1		12/07/11 12:1	2 74-82-8	1e

ANALYTICAL RESULTS

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

Sample:	DW-074922-120111-CM-29	Lab ID:	60111459002	Collected:	12/01/11	11:50	Received:	12/03/11 08:45	Matrix: Water	
	Parameters	Results	Units	Report Limit	MDL.	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175	AIR Headspace	Analytical	Method: RSK	175						
Methane		1940 u	ıg/L	10.0	5.0	1		12/07/11 12:2	23 74-82-8	1e

Project:

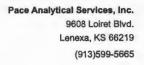
Methane

SAN JUAN 32-8 NO 202 (074922)

ND ug/L

Pace Project No.: 60111459

Received: 12/03/11 08:45 Matrix: Water Collected: 12/01/11 12:55 Sample: DW-074922-120111-CM-D3 Lab ID: 60111459003 Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual **RSK 175 AIR Headspace** Analytical Method: RSK 175 12/07/11 12:34 74-82-8


5.0

10.0

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 11 of 41

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

Sample:	PW-074922-120111-CM-202	Lab ID:	60111459004	Collected:	12/01/11	15:40	Received:	12/03/11 08:45	Matrix: Water	
	Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175	AIR Headspace	Analytical	Method: RSK	175						
Methane		4870 u	g/L	10.0	5.0	1		12/07/11 12:4	5 74-82-8	1e

Project:

Methane

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: SW-074922-120211-CM-

Parameters

Lab ID: 60111459005

Collected: 12/02/11 09:00

Received: 12/03/11 08:45 Matrix: Water

NAV

Results

Units

Analytical Method: RSK 175

Limit

Report MDL

DF

Prepared

Analyzed

CAS No.

Qual

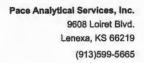
RSK 175 AIR Headspace

ND ug/L

10.0

5.0

1


12/07/11 15:03 74-82-8

1e,D2

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 13 of 41

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: PW-074922-120211-CM-

Lab ID: 60111459006

Collected: 12/02/11 12:15

Received: 12/03/11 08:45

Matrix: Water

204A

Parameters

Results Units Report Limit

MDL

DF

Prepared Analyzed CAS No. Qual

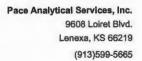
RSK 175 AIR Headspace

Analytical Method: RSK 175

Methane

3620 ug/L

10.0


5.0 1 12/07/11 15:14 74-82-8

1e

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 14 of 41

Project:

SAN JUAN 32-8 NO 202 (074922)

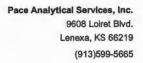
Pace Project No.: 60111459

Sample:	PW-074922-120211-CM-25	Lab ID:	60111459007	Collected:	12/02/11	10:30	Received:	12/03/11 08:45	Matrix: Water	
	Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175	AIR Headspace	Analytical	Method: RSK	175						
Methane		3800 u	ıg/L	10.0	5.0	1		12/07/11 15:2	4 74-82-8	1e

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459


Sample: A-074922-120211-CM-29	Lab ID:	60111459008	Collected:	12/01/1	11:20	Received: 12	/03/11 08:45 Ma	atrix: Air	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytica	l Method: TO-15							
Acetone	ND t	ug/m3	77.2	38.6	160.8		12/14/11 02:55	67-64-1	
Benzene	ND t	ug/m3	52.3	25.7	160.8		12/14/11 02:55	71-43-2	
Benzyl chloride		ug/m3	169	84.4	160.8		12/14/11 02:55	100-44-7	
Bromodichloromethane	ND t	ug/m3	225	113	160.8		12/14/11 02:55	75-27-4	
Bromoform	ND I	ug/m3	338	169	160.8		12/14/11 02:55	75-25-2	
Bromomethane	ND I	ug/m3	127	63.5	160.8		12/14/11 02:55	74-83-9	
1,3-Butadiene	ND I	ug/m3	72.4	36.2	160.8		12/14/11 02:55	106-99-0	
2-Butanone (MEK)	1780	ug/m3	96.5	48.2	160.8		12/14/11 02:55	78-93-3	
Carbon disulfide		ug/m3	101	50.7	160.8		12/14/11 02:55	75-15-0	
Carbon tetrachloride		ug/m3	103	51.5	160.8		12/14/11 02:55	56-23-5	
Chlorobenzene		ug/m3	151	75.6	160.8		12/14/11 02:55	108-90-7	
Chloroethane		ug/m3	86.8	43.4	160.8		12/14/11 02:55	75-00-3	
Chloroform	3710	ug/m3	159	79.6	160.8		12/14/11 02:55	67-66-3	
Chloromethane		ug/m3	67.5	33.8	160.8		12/14/11 02:55	74-87-3	
Cyclohexane	ND I	ug/m3	109	54.7	160.8		12/14/11 02:55	110-82-7	
Dibromochloromethane		ug/m3	273	137	160.8		12/14/11 02:55	124-48-1	
1,2-Dibromoethane (EDB)		ug/m3	257	129	160.8		12/14/11 02:55	106-93-4	
1,2-Dichlorobenzene		ug/m3	193	96.5	160.8		12/14/11 02:55	95-50-1	
1.3-Dichlorobenzene		ug/m3	193	96.5	160.8		12/14/11 02:55	541-73-1	
1,4-Dichlorobenzene		ug/m3	193	96.5	160.8		12/14/11 02:55	106-46-7	
Dichlorodifluoromethane		ug/m3	161	80.4	160.8		12/14/11 02:55	75-71-8	A3
1,1-Dichloroethane		ug/m3	132	65.9	160.8		12/14/11 02:55	75-34-3	
1,2-Dichloroethane		ug/m3	65.9	33.8	160.8		12/14/11 02:55	107-06-2	
1,1-Dichloroethene		ug/m3	130	65.1	160.8		12/14/11 02:55	75-35-4	
cis-1,2-Dichloroethene		ug/m3	130	65.1	160.8		12/14/11 02:55	156-59-2	
trans-1,2-Dichloroethene		ug/m3	130	65.1	160.8		12/14/11 02:55		
1,2-Dichloropropane		ug/m3	151	75.6	160.8		12/14/11 02:55		
cis-1,3-Dichloropropene		ug/m3	148	74.0	160.8		12/14/11 02:55	10061-01-5	
trans-1,3-Dichloropropene		ug/m3	148	74.0	160.8		12/14/11 02:55		
Dichlorotetrafluoroethane		ug/m3	225	113	160.8		12/14/11 02:55	76-14-2	
Ethanol		ug/m3	306	137	160.8		12/14/11 02:55		
Ethyl acetate		ug/m3	117	58.7	160.8		12/14/11 02:55	141-78-6	
Ethylbenzene		ug/m3	142	70.8	160.8		12/14/11 02:55		
4-Ethyltoluene		ug/m3	402	201	160.8		12/14/11 02:55	622-96-8	
n-Heptane		ug/m3	133	66.7	160.8		12/14/11 02:55	142-82-5	
Hexachloro-1,3-butadiene		ug/m3	354	177	160.8		12/14/11 02:55	87-68-3	
n-Hexane		ug/m3	116	57.9	160.8		12/14/11 02:55	110-54-3	
2-Hexanone		ug/m3	133	66.7	160.8		12/14/11 02:55		
Methylene Chloride		ug/m3	114	57.1	160.8		12/14/11 02:55	75-09-2	
4-Methyl-2-pentanone (MIBK)		ug/m3	133	66.7	160.8		12/14/11 02:55	108-10-1	
Methyl-tert-butyl ether		ug/m3	117	58.7	160.8		12/14/11 02:55	1634-04-4	
Naphthalene		ug/m3	434	217	160.8		12/14/11 02:55		
2-Propanol		ug/m3	402	201	160.8		12/14/11 02:55		
Propylene		ug/m3	56.3	28.1	160.8		12/14/11 02:55		
Styrene		ug/m3	140	69.9	160.8		12/14/11 02:55		
1,1,2,2-Tetrachloroethane		ug/m3	112	56.3			12/14/11 02:55		

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: A-074922-120211-CM-29	Lab ID: 60111459008	Collected	: 12/01/1	1 11:20	Received: 12	2/03/11 08:45 Ma	atrix: Air	
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-1	5						
Tetrachloroethene	ND ug/m3	111	54.7	160.8		12/14/11 02:55	127-18-4	
Tetrahydrofuran	6180 ug/m3	96.5	48.2	160.8		12/14/11 02:55	109-99-9	
THC as Gas	13300 ug/m3	122	87.2	2.01		12/12/11 19:49		
Toluene	9380 ug/m3	124	61.9	160.8		12/14/11 02:55	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	159	79.6	160.8		12/14/11 02:55	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	177	88.4	160.8		12/14/11 02:55	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	88.4	45.0	160.8		12/14/11 02:55	79-00-5	
Trichloroethene	ND ug/m3	88.4	45.0	160.8		12/14/11 02:55	79-01-6	
Trichlorofluoromethane	ND ug/m3	177	88.4	160.8		12/14/11 02:55	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ug/m3	257	129	160.8		12/14/11 02:55	76-13-1	
1,2,4-Trimethylbenzene	ND ug/m3	161	80.4	160.8		12/14/11 02:55	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	161	80.4	160.8		12/14/11 02:55	108-67-8	
Vinyl acetate	ND ug/m3	114	57.1	160.8		12/14/11 02:55	108-05-4	
Vinyl chloride	ND ug/m3	41.8	20.9	160.8		12/14/11 02:55	75-01-4	
m&p-Xylene	ND ug/m3	283	142	160.8		12/14/11 02:55	179601-23-1	
o-Xylene	ND ug/m3	142	70.8	160.8		12/14/11 02:55	95-47-6	

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

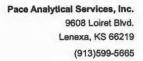
Sample: A-074922-120211-CM-D3	Lab ID:	60111459009	Collected:	12/02/11	08:35	Received: 1	2/03/11 08:45	Matrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
O15 MSV AIR	Analytical	Method: TO-15							
Acetone	15.0 u	ıg/m3	0.77	0.39	1.61		12/14/11 15:0	6 67-64-1	
Benzene	ND L	ıg/m3	0.52	0.26	1.61		12/14/11 15:0	6 71-43-2	
Benzyl chloride	ND L	ıg/m3	1.7	0.85	1.61		12/14/11 15:0	6 100-44-7	
Bromodichloromethane	ND u	ıg/m3	2.3	1.1	1.61		12/14/11 15:0	6 75-27-4	
Bromoform	ND t	ıg/m3	3.4	1.7	1.61		12/14/11 15:0	6 75-25-2	
Bromomethane	ND u	ıg/m3	1.3	0.64	1.61		12/14/11 15:0	6 74-83-9	
1,3-Butadiene	ND t	ug/m3	0.72	0.36	1.61		12/14/11 15:0	6 106-99-0	
2-Butanone (MEK)	15.0 t	ug/m3	0.97	0.48	1.61		12/14/11 15:0	6 78-93-3	
Carbon disulfide	ND u	ug/m3	1.0	0.51	1.61		12/14/11 15:0	6 75-15-0	
Carbon tetrachloride	ND t	ug/m3	1.0	0.52	1.61		12/14/11 15:0	6 56-23-5	
Chlorobenzene	ND t	ug/m3	1.5	0.76	1.61		12/14/11 15:0	6 108-90-7	
Chloroethane	ND t	ug/m3	0.87	0.43	1.61		12/14/11 15:0	6 75-00-3	
Chloroform	16.8 u	ug/m3	1.6	0.80	1.61		12/14/11 15:0	6 67-66-3	
Chloromethane	ND t	ug/m3	0.68	0.34	1.61		12/14/11 15:0	6 74-87-3	
Cyclohexane	8.8 L	ug/m3	1.1	0.55	1.61		12/14/11 15:0	6 110-82-7	
Dibromochloromethane	ND t	ug/m3	2.7	1.4	1.61		12/14/11 15:0	6 124-48-1	
,2-Dibromoethane (EDB)	ND L	ug/m3	2.6	1.3	1.61		12/14/11 15:0	6 106-93-4	
,2-Dichlorobenzene	ND t	ug/m3	1.9	0.97	1.61		12/14/11 15:0	6 95-50-1	
1,3-Dichlorobenzene	ND t	ug/m3	1.9	0.97	1.61		12/14/11 15:0	6 541-73-1	
1,4-Dichlorobenzene	ND t	ug/m3	1.9	0.97	1.61		12/14/11 15:0	6 106-46-7	
Dichlorodifluoromethane	1.7 u	ug/m3	1.6	0.80	1.61		12/14/11 15:0	6 75-71-8	
1,1-Dichloroethane	ND t	ug/m3	1.3	0.66	1.61		12/14/11 15:0	6 75-34-3	
1,2-Dichloroethane	ND t	ug/m3	0.66	0.34	1.61		12/14/11 15:0	6 107-06-2	
,1-Dichloroethene	ND U	ug/m3	1.3	0.65	1.61		12/14/11 15:0	6 75-35-4	
cis-1,2-Dichloroethene	ND t	ug/m3	1.3	0.65	1.61		12/14/11 15:0	6 156-59-2	
rans-1,2-Dichloroethene	ND t	ug/m3	1.3	0.65	1.61		12/14/11 15:0	6 156-60-5	
1,2-Dichloropropane	ND t	ug/m3	1.5	0.76	1.61		12/14/11 15:0	6 78-87-5	
cis-1,3-Dichloropropene	ND t	ug/m3	1.5	0.74	1.61		12/14/11 15:0	6 10061-01-5	
rans-1,3-Dichloropropene	ND t	ug/m3	1.5	0.74	1.61		12/14/11 15:0	6 10061-02-6	
Dichlorotetrafluoroethane	ND t	ug/m3	2.3	1.1	1.61		12/14/11 15:0	6 76-14-2	
Ethanol	2.0J t	ug/m3	3.1	1.4	1.61		12/14/11 15:0	6 64-17-5	SS
Ethyl acetate	ND t	ug/m3	1.2	0.59	1.61		12/14/11 15:0	6 141-78-6	
Ethylbenzene		ug/m3	1.4	0.71	1.61		12/14/11 15:0	6 100-41-4	
4-Ethyltoluene		ug/m3	4.0	2.0	1.61		12/14/11 15:0	6 622-96-8	
n-Heptane	ND t	ug/m3	1.3	0.67	1.61		12/14/11 15:0	6 142-82-5	
dexachloro-1,3-butadiene		ug/m3	3.5	1.8	1.61		12/14/11 15:0	6 87-68-3	
n-Hexane		ug/m3	1.2	0.58	1.61		12/14/11 15:0	6 110-54-3	
2-Hexanone		ug/m3	1.3	0.67	1.61		12/14/11 15:0		
Methylene Chloride		ug/m3	1.1	0.57	1.61		12/14/11 15:0		
-Methyl-2-pentanone (MIBK)		ug/m3	1.3	0.67	1.61		12/14/11 15:0		
Methyl-tert-butyl ether		ug/m3	1.2	0.59	1.61			6 1634-04-4	
Naphthalene		ug/m3	4.3	2.2	1.61		12/14/11 15:0	6 91-20-3	
2-Propanol	2.0J (_	4.0	2.0	1.61		12/14/11 15:0	6 67-63-0	
Propylene	ND t	ug/m3	0.56	0.28	1.61		12/14/11 15:0	6 115-07-1	
Styrene	ND t	ug/m3	1.4	0.70	1.61		12/14/11 15:0	6 100-42-5	
1,1,2,2-Tetrachloroethane	ND L	ug/m3	1.1	0.56	1.61		12/14/11 15:0	6 79-34-5	

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..


Project:

SAN JUAN 32-8 NO 202 (074922)

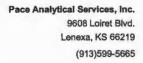
Pace Project No.: 60111459

Sample: A-074922-120211-CM-D3	Lab ID: 60111459009	Collected:	12/02/11	08:35	Received: 12	2/03/11 08:45 M	atrix: Air	
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-1	5						
Tetrachloroethene	ND ug/m3	1.1	0.55	1.61		12/14/11 15:06	127-18-4	
Tetrahydrofuran	482 ug/m3	19.3	9.7	32.2		12/14/11 04:25	109-99-9	SS
THC as Gas	2590 ug/m3	97.9	69.9	1.61		12/14/11 15:06		
Toluene	112 ug/m3	1.2	0.62	1.61		12/14/11 15:06	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	1.6	0.80	1.61		12/14/11 15:06	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.8	0.89	1.61		12/14/11 15:06	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.89	0.45	1.61		12/14/11 15:06	79-00-5	
Trichloroethene	ND ug/m3	0.89	0.45	1.61		12/14/11 15:06	79-01-6	
Trichlorofluoromethane	1.1J ug/m3	1.8	0.89	1.61		12/14/11 15:06	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ug/m3	2.6	1.3	1.61		12/14/11 15:06	76-13-1	
1,2,4-Trimethylbenzene	ND ug/m3	1.6	0.80	1.61		12/14/11 15:06	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.6	0.80	1.61		12/14/11 15:06	108-67-8	
Vinyl acetate	ND ug/m3	1.1	0.57	1.61		12/14/11 15:06	108-05-4	
Vinyl chloride	ND ug/m3	0.42	0.21	1.61		12/14/11 15:06	75-01-4	
m&p-Xylene	ND ug/m3	2.8	1.4	1.61		12/14/11 15:06	179601-23-1	
o-Xylene	ND ug/m3	1.4	0.71	1.61		12/14/11 15:06	95-47-6	

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

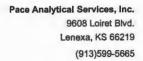

Sample: A-074922-120211-CM-202	Lab ID: 6	01114 59010 C	collected:	12/02/11	11:35	Received: 12	/03/11 08:45 Ma	atrix: Air	
Parameters	Results		port mit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
raidifieters	Results	Onia Lii		MDL	Di	Герагео	Allalyzed	OAG NO.	Que
TO15 MSV AIR	Analytical M	lethod: TO-15							
Acetone	ND ug/	m3	5.8	2.9	12.1		12/14/11 01:25	67-64-1	
Benzene	ND ug/	m3	3.9	1.9	12.1		12/14/11 01:25	71-43-2	
Benzyl chloride	ND ug/	m3	12.7	6.4	12.1		12/14/11 01:25	100-44-7	
Bromodichloromethane	ND ug/	m3	16.9	8.5	12.1		12/14/11 01:25	75-27-4	
Bromoform	ND ug/	m3	25.4	12.7	12.1		12/14/11 01:25		
Bromomethane	ND ug/	m3	9.6	4.8	12.1		12/14/11 01:25	74-83-9	
1,3-Butadiene	ND ug/	m3	5.4	2.7	12.1		12/14/11 01:25	106-99-0	
2-Butanone (MEK)	ND ug/	m3	7.3	3.6	12.1		12/14/11 01:25	78-93-3	
Carbon disulfide	ND ug/	m3	7.6	3.8	12.1		12/14/11 01:25	75-15-0	
Carbon tetrachloride	ND ug/	m3	7.7	3.9	12.1		12/14/11 01:25	56-23-5	
Chlorobenzene	ND ug/	m3	11.4	5.7	12.1		12/14/11 01:25	108-90-7	
Chloroethane	ND ug/	m3	6.5	3.3	12.1		12/14/11 01:25	75-00-3	
Chloroform	ND ug/	m3	12.0	6.0	12.1		12/14/11 01:25	67-66-3	
Chloromethane	ND ug/		5.1	2.5	12.1		12/14/11 01:25	74-87-3	
Cyclohexane	221 ug/	m3	8.2	4.1	12.1		12/14/11 01:25	110-82-7	
Dibromochloromethane	ND ug/	/m3	20.6	10.3	12.1		12/14/11 01:25	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/		19.4	9.7	12.1		12/14/11 01:25	106-93-4	
1,2-Dichlorobenzene	ND ug/		14.5	7.3	12.1		12/14/11 01:25	95-50-1	
1,3-Dichlorobenzene	ND ug/		14.5	7.3	12.1		12/14/11 01:25		
1.4-Dichlorobenzene	ND ug/		14.5	7.3	12.1		12/14/11 01:25	106-46-7	
Dichlorodifluoromethane	ND ug/		12.1	6.0	12.1		12/14/11 01:25	75-71-8	D3
1,1-Dichloroethane	ND ug/		9.9	5.0	12.1		12/14/11 01:25	75-34-3	
1,2-Dichloroethane	ND ug/		5.0	2.5	12.1		12/14/11 01:25	107-06-2	
1,1-Dichloroethene	ND ug/		9.8	4.9	12.1		12/14/11 01:25		
cis-1,2-Dichloroethene	ND ug/		9.8	4.9	12.1		12/14/11 01:25	156-59-2	
trans-1,2-Dichloroethene	ND ug/		9.8	4.9	12.1		12/14/11 01:25	156-60-5	
1,2-Dichloropropane	ND ug/		11.4	5.7	12.1		12/14/11 01:25	78-87-5	
cis-1,3-Dichloropropene	ND ug/		11.1	5.6	12.1		12/14/11 01:25	10061-01-5	
trans-1,3-Dichloropropene	ND ug/		11.1	5.6	12.1		12/14/11 01:25	10061-02-6	
Dichlorotetrafluoroethane	ND ug		16.9	8.5	12.1		12/14/11 01:25		
Ethanol	ND ug/		23.0	10.3	12.1		12/14/11 (1:25		
Ethyl acetate	ND ug/		8.8	4.4	12.1		12/14/11 01:25	141-78-6	
Ethylbenzene	ND ug		10.6	5.3	12.1		12/14/11 01:25	100-41-4	
4-Ethyltoluene	ND ug		30.2	15.1	12.1		12/14/11 01:25	622-96-8	
n-Heptane	70.5 ug		10.0	5.0	12.1		12/14/11 01:25		
Hexachloro-1,3-butadiene	ND ug		26.6	13.3	12.1		12/14/11 01:25		
n-Hexane	106 ug		8.7	4.4	12.1		12/14/11 01:25	110-54-3	
2-Hexanone	ND ug		10.0	5.0	12.1		12/14/11 01:25		
Methylene Chloride	ND ug		8.6	4.3	12.1		12/14/11 01:25	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug		10.0	5.0	12.1		12/14/11 01:25	108-10-1	
Methyl-tert-butyl ether	ND ug		8.8	4.4	12.1		12/14/11 01:25		
Naphthalene	ND ug		32.7	16.3	12.1		12/14/11 01:25		
2-Propanol	ND ug		30.2	15.1	12.1		12/14/11 01:25		
Propylene	ND ug		4.2	2.1	12.1		12/14/11 01:25		
Styrene	ND ug		10.5	5.3	12.1		12/14/11 01:25		
1,1,2,2-Tetrachloroethane	ND ug		8.4	4.2	12.1		12/14/11 01:25		

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 20 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: A-074922-120211-CM-202	Lab ID:	60111459010	Collected:	12/02/11	11:35	Received: 12	2/03/11 08:45 M	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15	i						
Tetrachloroethene	ND ug	g/m3	8.3	4.1	12.1		12/14/11 01:25	127-18-4	
Tetrahydrofuran	ND ug	g/m3	7.3	3.6	12.1		12/14/11 01:25	109-99-9	
THC as Gas	10200 ug	g/m3	736	525	12.1		12/14/11 01:25		
Toluene	ND ug	g/m3	9.3	4.7	12.1		12/14/11 01:25	108-88-3	
1,2,4-Trichlorobenzene	ND ug	g/m3	12.0	6.0	12.1		12/14/11 01:25	120-82-1	
1,1,1-Trichloroethane	ND ug	g/m3	13.3	6.7	12.1		12/14/11 01:25	71-55-6	
1,1,2-Trichloroethane	ND ug	g/m3	6.7	3.4	12.1		12/14/11 01:25	79-00-5	
Trichloroethene	ND ug	g/m3	6.7	3.4	12.1		12/14/11 01:25	79-01-6	
Trichlorofluoromethane	ND ug	g/m3	13.3	6.7	12.1		12/14/11 01:25	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ug	g/m3	19.4	9.7	12.1		12/14/11 01:25	76-13-1	
1,2,4-Trimethylbenzene	ND ug	g/m3	12.1	6.0	12.1		12/14/11 01:25	95-63-6	
1,3,5-Trimethylbenzene	ND us	g/m3	12.1	6.0	12.1		12/14/11 01:25	108-67-8	
Vinyl acetate	ND ug	g/m3	8.6	4.3	12.1		12/14/11 01:25	108-05-4	
Vinyl chloride	ND ug	g/m3	3.1	1.6	12.1		12/14/11 01:25	75-01-4	
m&p-Xylene	ND ug	g/m3	21.3	10.6	12.1		12/14/11 01:25	179601-23-1	
o-Xylene	ND ug		10.6	5.3	12.1		12/14/11 01:25	95-47-6	

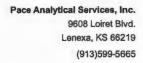
Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: A-074922-120211-CM-2566 Lab ID: 60111459011 Collected: 12/02/11 11:00 Received: 12/03/11 08:45 Matrix: Air

Comments: • The sample was analyzed by serial dilution.


Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical	Method: TO	-15						
Acetone	ND ug	g/m3	281	141	585.6		12/14/11 02:25	67-64-1	
Benzene	ND ug	g/m3	190	93.7	585.6		12/14/11 02:25	71-43-2	
Benzyl chloride	ND ug	g/m3	615	307	585.6		12/14/11 02:25	100-44-7	
Bromodichloromethane	ND ug	g/m3	820	410	585.6		12/14/11 02:25	75-27-4	
Bromoform	ND ug	g/m3	1230	615	585.6		12/14/11 02:25	75-25-2	
Bromomethane	ND us	g/m3	463	231	585.6		12/14/11 02:25	74-83-9	
1,3-Butadiene	ND us	g/m3	264	132	585.6		12/14/11 02:25	106-99-0	
2-Butanone (MEK)	336J ug	_	351	176	585.6		12/14/11 02:25	78-93-3	
Carbon disulfide	ND u	-	369	184	585.6		12/14/11 02:25	75-15-0	
Carbon tetrachloride	ND us	•	375	187	585.6		12/14/11 02:25	56-23-5	
Chlorobenzene	ND u	•	550	275	585.6		12/14/11 02:25	108-90-7	
Chloroethane	ND u	-	316	158	585.6		12/14/11 02:25		
Chloroform	ND u	-	580	290	585.6		12/14/11 02:25		
Chloromethane	ND u	_	246	123	585.6		12/14/11 02:25		
Cyclohexane	25900 u	•	398	199	585.6		12/14/11 02:25		
Dibromochloromethane	ND u	_	996	498	585.6		12/14/11 02:25		
,2-Dibromoethane (EDB)	ND u	_	937	468	585.6				
,2-Dichlorobenzene	ND u	_	703	351	585.6		12/14/11 02:25		
,3-Dichlorobenzene	ND u	_	703	351	585.6		12/14/11 02:25		
.4-Dichlorobenzene	ND u	•	703	351	585.6		12/14/11 02:25		
Dichlorodifluoromethane	ND u	_	586	293	585.6		12/14/11 02:25		
,1-Dichloroethane	ND u	•	480	240	585.6		12/14/11 02:25		
,2-Dichloroethane	ND u	_	240	123	585.6		12/14/11 02:25		
,1-Dichloroethene	ND u	•	474	237	585.6		12/14/11 02:25		
is-1,2-Dichloroethene	ND u	_	474	237	585.6				
	ND u	-	474	237	585.6		12/14/11 02:25		
rans-1,2-Dichloroethene		•	550	275	585.6		12/14/11 02:25		
,2-Dichloropropane	ND u	•	539	269	585.6		12/14/11 02:25		
sis-1,3-Dichloropropene	ND u	_		269	585.6		12/14/11 02:25	10061-01-5	
rans-1,3-Dichloropropene	ND u		539	410	585.6		12/14/11 02:25		
Dichloro etrafluoroethane	ND u	_	820 1110	498	585.6		12/14/11 02:25		
Ethanol	ND u	_	427		585.6		12/14/11 02:25		
Ethyl acetate	ND u	_	515	214 258	585.6		12/14/11 02:25		
Ethylbenzene	ND u	-	1460		585.6		12/14/11 02:25		
l-Ethyltoluene	ND u			732 243			12/14/11 02:25		
n-Heptane	4970 u	•	486		585.6				
-lexachloro-1,3-butadiene	ND u	_	1290	644	585.6		12/14/11 02:25		
-Hexane	23300 u	_	422	211	585.6		12/14/11 02:25		
-Hexanone	ND u	•	486	243	585.6		12/14/11 02:25		
Methylene Chloride	ND u	•	416	208	585.6		12/14/11 02:25		
I-Methyl-2-pentanone (MIBK)	ND u	_	486	243	585.6		12/14/11 02:25		
Methyl-tert-butyl ether	ND u	-	427	214	585.6		12/14/11 02:25		
Naphthalene	ND u	_	1580	791	585.6		12/14/11 02:25		
2-Propanol	ND u	-	1460	732	585.6		12/14/11 02:25		
Propylene	ND u	g/m3	205	102	585.6		12/14/11 02:25		
Styrene	ND u	g/m3	509	255	585.6		12/14/11 02:25	100-42-5	

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 22 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: A-074922-120211-CM-2566

Lab ID: 60111459011

Collected: 12/02/11 11:00

Received: 12/03/11 08:45

Comments:	• The	sample was	analyzed	by	serial dilution	١.
Comments.	- 1116	Salliple was	allalyzeu	IJΥ	Serial ullution	ı

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical	Method: TO	-15						
1,1,2,2-Tetrachloroethane	ND u	ıg/m3	409	205	585.6		12/14/11 02:25	79-34-5	
Tetrachloroethene	ND u	ıg/m3	403	199	585.6		12/14/11 02:25	127-18-4	
Tetrahydrofuran	ND u	ıg/m3	351	176	585.6		12/14/11 02:25	109-99-9	
THC as Gas	837000 u	ıg/m3	35600	25400	585.6		12/14/11 02:25		
Toluene	ND u	ıg/m3	451	225	585.6		12/14/11 02:25	108-88-3	
1,2,4-Trichlorobenzene	ND u	ıg/m3	580	290	585.6		12/14/11 02:25	120-82-1	
1,1,1-Trichloroethane	ND u	ıg/m3	644	322	585.6		12/14/11 02:25	71-55-6	
1,1,2-Trichloroethane	ND u	ıg/m3	322	164	585.6		12/14/11 02:25	79-00-5	
Trichloroethene	ND u	ıg/m3	322	164	. 585.6		12/14/11 02:25	79-01-6	
Trichlorofluoromethane	ND u	ıg/m3	644	322	585.6		12/14/11 02:25	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND u	ıg/m3	937	468	585.6		12/14/11 02:25	76-13-1	
1,2,4-Trimethylbenzene	ND u	ıg/m3	585	293	585.6		12/14/11 02:25	95-63-6	
1,3,5-Trimethylbenzene	ND u	ıg/m3	585	293	585.6		12/14/11 02:25	108-67-8	
Vinyl acetate	ND u	ıg/m3	416	208	585.6		12/14/11 02:25	108-05-4	
Vinyl chloride	ND u	ıg/m3	152	76.1	585.6		12/14/11 02:25	75-01-4	
m&p-Xylene	ND u	ıg/m3	1030	515	585.6		12/14/11 02:25	179601-23-1	
p-Xylene	ND u	ıg/m3	515	258	585.6		12/14/11 02:25	95-47-6	

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

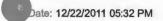
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane 1,2-Dibromoethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND (Units Il Method: TO-15	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane 1,2-Dibromoethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Analytica ND 1	il Method: TO-15		MDL	דע	Frepared	Analyzed	CAS NO.	Gud.
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND (ug/m3							
Benzene Benzyl chloride Bromodichloromethane Bromomethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	206	-							
Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene			24.7	12.4	51.46		12/14/11 00:55	67-64-1	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND I	ug/m3	16.7	8.2	51.46		12/14/11 00:55	71-43-2	
Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,3-Dichlorobenzene 1,3-Dichlorobenzene		ug/m3	54.0	27.0	51.46		12/14/11 00:55	100-44-7	
Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,3-Dichlorobenzene 1,3-Dichlorobenzene	ND I	ug/m3	72.0	36.0	51.46		12/14/11 00:55		
1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,3-Dichlorobenzene 1,3-Dichlorobenzene	ND I	ug/m3	108	54.0	51.46		12/14/11 00:55		
2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,3-Dichlorobenzene 1,3-Dichlorobenzene	ND I	ug/m3	40.7	20.3	51.46		12/14/11 00:55	74-83-9	
Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND I	ug/m3	23.2	11.6	51.46		12/14/11 00:55		
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND I	ug/m3	30.9	15.4	51.46		12/14/11 00:55	78-93-3	
Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene		ug/m3	32.4	16.2	51.46		12/14/11 00:55	5 75-15-0	
Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND I	ug/m3	32.9	16.5	51.46		12/14/11 00:55	56-23-5	
Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene		ug/m3	48.4	24.2	51.46		12/14/11 00:55	108-90-7	
Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene		ug/m3	27.8	13.9	51.46		12/14/11 00:55	75-00-3	
Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene		ug/m3	50.9	25.5	51.46		12/14/11 00:55	67-66-3	
Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene		ug/m3	21.6	10.8	51.46		12/14/11 00:55	74-87-3	
Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	3940		35.0	17.5	51.46		12/14/11 00:55	110-82-7	
1,2-Dibromoethane (EDB) I,2-Dichlorobenzene 1,3-Dichlorobenzene		ug/m3	87.5	43.7	51.46		12/14/11 00:55		
1,2-Dichlorobenzene 1,3-Dichlorobenzene		ug/m3	82.3	41.2	51.46		12/14/11 00:55		
1,3-Dichlorobenzene		ug/m3	61.8	30.9	51.46		12/14/11 00:55		
•		ug/m3	61.8	30.9	51.46		12/14/11 00:55	5 541-73-1	
1.4-Dichlorobenzene		ug/m3	61.8	30.9	51.46		12/14/11 00:55		
Dichlorodifluoromethane		ug/m3	51.5	25.7	51.46		12/14/11 00:55		
1,1-Dichloroethane		ug/m3	42.2	21.1	51.46		12/14/11 00:55		
1,2-Dichloroethane		ug/m3	21.1	10.8	51.46		12/14/11 00:55		
1,1-Dichloroethene		ug/m3	41.7	20.8	51.46		12/14/11 00:55		
cis-1,2-Dichloroethene		ug/m3	41.7	20.8	51.46		12/14/11 00:55		
trans-1,2-Dichloroethene		ug/m3	41.7	20.8	51.46		12/14/11 00:55		
1,2-Dichloropropane		ug/m3	48.4	24.2	51.46		12/14/11 00:55		
cis-1,3-Dichloropropene		ug/m3	47.3	23.7	51.46		12/14/11 00:55		
trans-1,3-Dichloropropene		ug/m3	47.3	23.7	51.46		12/14/11 00:55		
Dichlorotetrafluoroethane		ug/m3	72.0	36.0	51.46		12/14/11 00:55		
Ethanol		ug/m3	97.8	43.7	51.46		12/14/11 00:55		
Ethyl acetate		ug/m3	37.6	18.8	51.46		12/14/11 00:55		
Ethylbenzene	24.0J	-	45.3	22.6	51.46		12/14/11 00:55		
4-Ethyltoluene		ug/m3	129	64.3	51.46		12/14/11 00:55		
n-Heptane	2400	•	42.7	21.4	51.46		12/14/11 00:55		
Hexachloro-1,3-butadiene		ug/m3	113	56.6	51.46		12/14/11 00:55		
n-Hexane	3440	-	37.1	18.5	51.46		12/14/11 00:55		
2-Hexanone		ug/m3	42.7		51.46		12/14/11 00:55		
Methylene Chloride		ug/m3 ug/m3	36.5		51.46		12/14/11 00:55		
4-Methyl-2-pentanone (MIBK)		ug/m3	42.7	21.4			12/14/11 00:55		
Methyl-tert-butyl ether		ug/m3	37.6	18.8	51.46		12/14/11 00:55		
-		-	139		51.46		12/14/11 00:55		
Naphthalene		ug/m3			51.46		12/14/11 00:55		
2-Propanol		ug/m3	129				12/14/11 00:55		
Propylene		ug/m3	18.0		51.46				
Styrene 、 1,1,2,2-Tetrachloroethane	ND	ua/m3	44.8	22.4	51.46		12/14/11 00:55	100-42-5	

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 24 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

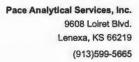


Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: A-074922-120211-CM-204	A Lab ID:	60111459012	Collected:	12/02/1	1 12:05	Received: 12	/03/11 08:45 M	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15	;						
Tetrachloroethene	ND u	g/m3	35.5	17.5	51.46		12/14/11 00:55	127-18-4	~,
Tetrahydrofuran	ND u	g/m3	30.9	15.4	51.46		12/14/11 00:55	109-99-9	
THC as Gas	85800 u	g/m3	3130	2230	51.46		12/14/11 00:55		
Toluene	587 u	g/m3	39.6	19.8	51.46		12/14/11 00:55	108-88-3	
1,2,4-Trichlorobenzene	ND u	g/m3	50.9	25.5	51.46		12/14/11 00:55	120-82-1	
1,1,1-Trichloroethane	ND u	g/m3	56.6	28.3	51.46		12/14/11 00:55	71-55-6	
1,1,2-Trichloroethane	ND u	g/m3	28.3	14.4	51.46		12/14/11 00:55	79-00-5	
Trichloroethene	ND u	g/m3	28.3	14.4	51.46		12/14/11 00:55	79-01-6	
Trichlorofluoromethane	ND u	ıg/m3	56.6	28.3	51.46		12/14/11 00:55	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND u	ıg/m3	82.3	41.2	51.46		12/14/11 00:55	76-13-1	
1,2,4-Trimethylbenzene	ND u	ıg/m3	51.4	25.7	51.46		12/14/11 00:55	95-63-6	
1,3,5-Trimethylbenzene	ND u	ıg/m3	51.4	25.7	51.46		12/14/11 00:55	108-67-8	
Vinyl acetate	ND u	ıg/m3	36.5	18.3	51.46		12/14/11 00:55	108-05-4	
Vinyl chloride	ND u	ıg/m3	13.4	6.7	51.46		12/14/11 00:55	75-01-4	
m&p-Xylene	151 u	ıg/m3	90.6	45.3	51.46		12/14/11 00:55	179601-23-1	
o-Xylene	31.8J u	ıg/m3	45.3	22.6	51.46		12/14/11 00:55	95-47-6	



REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: A-074922-120211-CM-25 Lab ID: 60111459013 Collected: 12/02/11 10:10 Received: 12/03/11 08:45 Matrix: Air

Comments: • The sample was analyzed by serial dilution.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytica	Method: TO-	-15						
Acetone	ND I	ug/m3	147	73.7	307.2		12/14/11 01:55	67-64-1	
Benzene	33500	ug/m3	99.8	49.2	307.2		12/14/11 01:55	71-43-2	E
Benzyl chloride		ıg/m3	323	161	307.2		12/14/11 01:55	100-44-7	
Bromodichloromethane	ND I	ug/m3	430	215	307.2		12/14/11 01:55	75-27-4	
Bromoform	ND I	ug/m3	645	323	307.2		12/14/11 01:55	75-25-2	
Bromomethane	ND I	ug/m3	243	121	307.2		12/14/11 01:55	74-83-9	
1,3-Butadiene	ND (ug/m3	138	69.1	307.2		12/14/11 01:55	106-99-0	
2-Butanone (MEK)	ND (ug/m3	184	92.2	307.2		12/14/11 01:55	78-93-3	
Carbon disulfide		ug/m3	194	96.8	307.2		12/14/11 01:55	75-15-0	
Carbon tetrachloride		ug/m3	197	98.3	307.2		12/14/11 01:55	56-23-5	
Chlorobenzene		ug/m3	289	144	307.2		12/14/11 01:55	108-90-7	
Chloroethane		ug/m3	166	82.9	307.2		12/14/11 01:55	75-00-3	
Chloroform		ug/m3	304	152	307.2		12/14/11 01:55	67-66-3	
Chloromethane		ug/m3	129	64.5	307.2		12/14/11 01:55	74-87-3	
Cyclohexane	19300	-	209	104	307.2		12/14/11 01:55	110-82-7	
Dibromochloromethane		ug/m3	522	261	307.2		12/14/11 01:55	124-48-1	
(EDB)		ug/m3	492	246	307.2			106-93-4	
,2-Dichlorobenzene		ug/m3	369	184	307.2		12/14/11 01:55	95-50-1	
1,3-Dichlorobenzene		ug/m3	369	184	307.2		12/14/11 01:55		
1,4-Dichlorobenzene		ug/m3	369	184	307.2		12/14/11 01:55	106-46-7	
Dichlorodifluoromethane		ug/m3	307	154	307.2			75-71-8	
1,1-Dichloroethane		ug/m3	252	126	307.2		12/14/11 01:55		
1,2-Dichloroethane		ug/m3	126	64.5	307.2		12/14/11 01:55		
1,1-Dichloroethene		ug/m3	249	124	307.2		12/14/11 01:55		
cis-1,2-Dichloroethene		ug/m3	249	124	307.2			156-59-2	
trans-1,2-Dichloroethene		ug/m3	249	124	307.2		12/14/11 01:55	156-60-5	
1,2-Dichloropropane		ug/m3	289	144	307.2		12/14/11 01:55		
cis-1,3-Dichloropropene		ug/m3	283	141	307.2			10061-01-5	
trans-1,3-Dichloropropene		ug/m3	283	141	307.2		12/14/11 01:55		
Dichlorotetrafluoroethane		ug/m3	430	215	307.2		12/14/11 01:55		
Ethanol		ug/m3	584	261	307.2		12/14/11 01:55		
Ethyl acetate		ug/m3	224	112	307.2		12/14/11 01:55	141-78-6	
Ethylbenzene	255J	-	270	135	307.2		12/14/11 01:55	100-41-4	
4-Ethyltoluene		ug/m3	768	384	307.2			622-96-8	
n-Heptane	8430	_	255	127	307.2		12/14/11 01:55		
Hexachloro-1,3-butadiene		ug/m3	676	338	307.2		12/14/11 01:55		
n-Hexane	13900	•	221	111	307.2		12/14/11 01:55		
2-Hexanone		ug/m3	255	127	307.2		12/14/11 01:55		
Methylene Chloride		ug/m3	218	109	307.2		12/14/11 01:55		
4-Methyl-2-pentanone (MIBK)		ug/m3	255	127	307.2			108-10-1	
Methyl-tert-butyl ether		ug/m3	224	112	307.2		12/14/11 01:55		
Naphthalene		ug/m3	829	415	307.2		12/14/11 01:55		
· ·		ug/m3	768	384	307.2		12/14/11 01:55		
2-Propanol		_			307.2			115-07-1	
Propylene		ug/m3	108	53.8					
Styrene	ND	ug/m3	267	134	307.2		12/14/11 01:55	100-42-5	

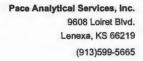
Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 26 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:


SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: A-074922-120211-CM-25 Lab ID: 60111459013 Collected: 12/02/11 10:10 Received: 12/03/11 08:45 Matrix: Air

Comments: • The sample was analyzed by serial dilution.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytica	al Method: TO	-15						
1,1,2,2-Tetrachloroethane	ND	ug/m3	214	108	307.2		12/14/11 01:55	79-34-5	
Tetrachloroethene	ND	ug/m3	212	104	307.2		12/14/11 01:55	127-18-4	
Tetrahydrofuran	ND	ug/m3	184	92.2	307.2		12/14/11 01:55	109-99-9	
THC as Gas	595000	ug/m3	18700	13300	307.2		12/14/11 01:55		
Toluene	22900	ug/m3	237	118	307.2		12/14/11 01:55	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	304	152	307.2		12/14/11 01:55	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	338	169	307.2		12/14/11 01:55	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	169	86.0	307.2		12/14/11 01:55	79-00-5	
Trichloroethene	ND	ug/m3	169	86.0	307.2		12/14/11 01:55	79-01-6	
Trichlorofluoromethane	ND	ug/m3	338	169	307.2		12/14/11 01:55	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	492	246	307.2		12/14/11 01:55	76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	307	154	307.2		12/14/11 01:55	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	307	154	307.2		12/14/11 01:55	108-67-8	
Vinyl acetate	ND	ug/m3	218	109	307.2		12/14/11 01:55	108-05-4	
Vinyl chloride	ND	ug/m3	79.9	39.9	307.2		12/14/11 01:55	75-01-4	
m&p-Xylene	2390	ug/m3	541	270	307.2		12/14/11 01:55	179601-23-1	
p-Xylene	228J	ug/m3	270	135	307.2		12/14/11 01:55	95-47-6	

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: A-074922-120211-CM-DUP Lab ID: 60111459014 Collected: 12/02/11 10:55 Received: 12/03/11 08:45 Matrix: Air

Comments: • The sample was analyzed by serial dilution.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical	Method: TO	-15						
Acetone	ND u	g/m3	147	73.7	307.2		12/14/11 03:25	67-64-1	
Benzene	ND u	g/m3	99.8	49.2	307.2		12/14/11 03:25	71-43-2	
Benzyl chloride	ND u	g/m3	323	161	307.2		12/14/11 03:25	100-44-7	
Bromodichloromethane	ND u	g/m3	430	215	307.2		12/14/11 03:25	75-27-4	
Bromoform	ND u	g/m3	645	323	307.2		12/14/11 03:25	75-25-2	
Bromomethane	ND u	g/m3	243	121	307.2		12/14/11 03:25	74-83-9	
1,3-Butadiene	ND u	g/m3	138	69.1	307.2		12/14/11 03:25	106-99-0	
2-Butanone (MEK)	ND u	g/m3	184	92.2	307.2		12/14/11 03:25	78-93-3	
Carbon disulfide	ND u	g/m3	194	96.8	307.2		12/14/11 03:25	75-15-0	
Carbon tetrachloride		g/m3	197	98.3	307.2		12/14/11 03:25	56-23-5	
Chlorobenzene	ND u	_	289	144	307.2		12/14/11 03:25	108-90-7	
Chloroethane	ND u		166	82.9	307.2		12/14/11 03:25		
Chloroform	ND u	_	304	152	307.2		12/14/11 03:25		
Chloromethane	ND u	•	129	64.5	307.2		12/14/11 03:25		
Cyclohexane	22100 u	_	209	104	307.2		12/14/11 03:25		
Dibromochloromethane	ND u	_	522	261	307.2		12/14/11 03:25		
1,2-Dibromoethane (EDB)	ND u	•	492	246	307.2		12/14/11 03:25		
1,2-Dichlorobenzene	ND u	-	369	184	307.2		12/14/11 03:25		
1,3-Dichlorobenzene	ND u	•	369	184	307.2		12/14/11 03:25		
1.4-Dichlorobenzene	ND u		369	184	307.2		12/14/11 03:25		
Dichlorodifluoromethane		g/m3	307	154	307.2		12/14/11 03:25		
1,1-Dichloroethane	ND u		252	126	307.2		12/14/11 03:25		
1,2-Dichloroethane	ND u	_	126	64.5	307.2		12/14/11 03:25		
1,1-Dichloroethene	ND u	-	249	124	307.2		12/14/11 03:25		
cis-1,2-Dichloroethene		g/m3	249	124	307.2		12/14/11 03:25		
trans-1,2-Dichloroethene	ND u	_	249	124	307.2		12/14/11 03:25		
1,2-Dichloropropane	ND u	-	289	144	307.2		12/14/11 03:25		
cis-1,3-Dichloropropene	ND u	-	283	141	307.2		12/14/11 03:25		
		g/m3	283	141	307.2		12/14/11 03:25		
trans-1,3-Dichloropropene Dichlorotetrafluoroethane	ND u	•	430	215	307.2		12/14/11 03:25		
Ethanoi		-	584	261	307.2		12/14/11 03:25		
	ND u	_	224	112	307.2				
Ethyl acetate	ND u	_	270	135	307.2		12/14/11 03:25		
Ethylbenzene		g/m3	768	384	307.2		12/14/11 03:25		
4-Ethyltoluene	ND u	_					12/14/11 03:25		
n-Heptane	4450 u	•	255	127	307.2		12/14/11 03:25		
Hexachloro-1,3-butadiene	ND u		676	338	307.2		12/14/11 03:25		
n-Hexane	18600 u	_	221	111	307.2		12/14/11 03:25		
2-Hexanone	ND u		255	127	307.2		12/14/11 03:25		
Methylene Chloride	ND u	-	218	109	307.2		12/14/11 03:25		
4-Methyl-2-pentanone (MIBK)	ND u	_	255	127	307.2		12/14/11 03:25		
Methyl-tert-butyl ether	ND u	-	224	112	307.2		12/14/11 03:25		
Naphthalene	ND u	_	829	415	307.2		12/14/11 03:25		
2-Propanol	ND u	-	768	384	307.2		12/14/11 03:25		
Propylene	ND u	g/m3	108	53.8	307.2		12/14/11 03:25	115-07-1	
Styrene	ND u	g/m3	267	134	307.2		12/14/11 03:25	100-42-5	

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 28 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Sample: A-074922-120211-CM-DUP

Lab ID: 60111459014 Collected: 12/02/11 10:55 Received: 12/03/11 08:45 Matrix: Air

Comments: • The sample was analyzed by serial dilution.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytica	Method: TO	-15						
1,1,2,2-Tetrachloroethane	ND t	ıg/m3	214	108	307.2		12/14/11 03:25	79-34-5	
Tetrachloroethene	ND t	ıg/m3	212	104	307.2		12/14/11 03:25	127-18-4	
Tetrahydrofuran	ND t	ıg/m3	184	92.2	307.2		12/14/11 03:25	109-99-9	
THC as Gas	589000	ıg/m3	18700	13300	307.2		12/14/11 03:25		
Toluene	ND t	ıg/m3	237	118	307.2		12/14/11 03:25	108-88-3	
1,2,4-Trichlorobenzene	ND t	ıg/m3	304	152	307.2		12/14/11 03:25	120-82-1	
1,1,1-Trichloroethane	ND t	ıg/m3	338	169	307.2		12/14/11 03:25	71-55-6	
1,1,2-Trichloroethane	ND t	ıg/m3	169	86.0	307.2		12/14/11 03:25	79-00-5	
Trichloroethene	ND t	ıg/m3	169	86.0	307.2		12/14/11 03:25	79-01-6	
Trichlorofluoromethane	ND t	ıg/m3	338	169	307.2		12/14/11 03:25	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND t	ug/m3	492	246	307.2		12/14/11 03:25	76-13-1	
1,2,4-Trimethylbenzene	ND t	ıg/m3	307	154	307.2		12/14/11 03:25	95-63-6	
1,3,5-Trimethylbenzene	ND t	ıg/m3	307	154	307.2		12/14/11 03:25	108-67-8	
Vinyl acetate	ND t	ug/m3	218	109	307.2		12/14/11 03:25	108-05-4	
Vinyl chloride	ND t	ıg/m3	79.9	39.9	307.2		12/14/11 03:25	75-01-4	
m&p-Xylene	ND (ıg/m3	541	270	307.2		12/14/11 03:25	179601-23-1	
p-Xylene	ND I	ıg/m3	270	135	307.2		12/14/11 03:25	95-47-6	

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

QC Batch:

AIR/13778

Analysis Method:

RSK 175

QC Batch Method:

RSK 175

Analysis Description:

RSK 175 AIR HEADSPACE

Associated Lab Samples:

60111459001, 60111459002, 60111459003, 60111459004

METHOD BLANK: 1110878

Associated Lab Samples:

Parameter

Parameter

Parameter

60111459001, 60111459002, 60111459003, 60111459004

Blank

Reporting

Result

Limit

Analyzed

Qualifiers

Methane

ug/L

ND

12/07/11 08:10 10.0

LABORATORY CONTROL SAMPLE & LCSD:

1110879

Units

Units

1110880

LCS LCSD

% Rec

Max

2

Methane

ug/L

Spike Conc. Result

LCS 62.2 LCSD % Rec % Rec Result

102

Limits

104

14

9

RPD 30

Qualifiers

SAMPLE DUPLICATE: 1111318

20942018

166

64.2

60.7

Dup

Max

70-130

Qualifiers

Methane

Methane

Units ug/L

Result

Result

144

70.3

RPD

RPD 30

RPD

SAMPLE DUPLICATE: 1111320

Units Parameter

ug/L

20941878 Result

Dup Result

RPD

Max RPD

Qualifiers

30

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

QC Batch:

AIR/13789

Analysis Method:

RSK 175

QC Batch Method:

RSK 175

Analysis Description:

RSK 175 AIR HEADSPACE

Associated Lab Samples:

60111459005, 60111459006, 60111459007

METHOD BLANK: 1111239

Matrix: Water

Associated Lab Samples:

Parameter

Parameter

60111459005, 60111459006, 60111459007

Units

Units

Blank Result

Spike

Conc.

Reporting

Limit

Analyzed

Qualifiers

Methane

ug/L

ND

10.0 12/07/11 14:13

LABORATORY CONTROL SAMPLE & LCSD:

1111240

1111241

LCS LCSD % Rec

Max

Methane

ug/L

LCS Result

ND

63.4

LCSD Result 62.9

% Rec % Rec 104 104 Limits 70-130 **RPD**

30

Qualifiers

SAMPLE DUPLICATE: 1111791

Parameter

Units

5055462001 Result

60.7

Dup Result

RPD

Max **RPD**

Qualifiers

8.

Methane

ug/L

10.8

RPD

30

30

SAMPLE DUPLICATE: 1111792

Parameter

2510214006 Result

Dup Result **RPD**

Max

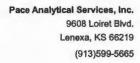
Qualifiers

Methane

ug/L

Units

ND


ND

RPD

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 31 of 41

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

QC Batch:

AIR/13823

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples: 60111459008, 60111459010, 60111459011, 60111459012, 60111459013, 60111459014

METHOD BLANK: 1114118

Matrix: Air

Associated Lab Samples: 60111459008, 60111459010, 60111459011, 60111459012, 60111459013, 60111459014

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	12/13/11 14:52	
1,1,2,2-Tetrachloroethane	ug/m3	ND	0.70	12/13/11 14:52	
1.1.2-Trichloroethane	ug/m3	ND	0.55	12/13/11 14:52	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	1.6	12/13/11 14:52	
1,1-Dichloroethane	ug/m3	ND	0.82	12/13/11 14:52	
1,1-Dichloroethene	ug/m3	ND	0.81	12/13/11 14:52	
1,2,4-Trichlorobenzene	ug/m3	ND	0.99	12/13/11 14:52	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	12/13/11 14:52	
,2-Dibromoethane (EDB)	ug/m3	ND	1.6	12/13/11 14:52	
1,2-Dichlorobenzene	ug/m3	ND	1.2	12/13/11 14:52	
,2-Dichloroethane	ug/m3	ND	0.41	12/13/11 14:52	
1,2-Dichloropropane	ug/m3	ND	0.94	12/13/11 14:52	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	12/13/11 14:52	
1,3-Butadiene	ug/m3	ND	0.45	12/13/11 14:52	
1,3-Dichlorobenzene	ug/m3	ND	1.2	12/13/11 14:52	
1,4-Dichlorobenzene	ug/m3	ND	1.2	12/13/11 14:52	
2-Butanone (MEK)	ug/m3	ND	0.60	12/13/11 14:52	
2-Hexanone	ug/m3	ND	0.83	12/13/11 14:52	
2-Propanol	ug/m3	ND	2.5	12/13/11 14:52	
4-Ethyltoluene	ug/m3	ND	2.5	12/13/11 14:52	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	0.83	12/13/11 14:52	
Acetone	ug/m3	ND	0.48	12/13/11 14:52	
Benzene	ug/m3	ND	0.32	12/13/11 14:52	
Benzyl chloride	ug/m3	ND	1.0	12/13/11 14:52	
Bromodichloromethane	ug/m3	ND	1.4	12/13/11 14:52	
Bromoform	ug/m3	ND	2.1	12/13/11 14:52	
Bromomethane	ug/m3	ND	0.79	12/13/11 14:52	
Carbon disulfide	ug/m3	ND	0.63	12/13/11 14:52	
Carbon tetrachloride	ug/m3	ND	0.64	12/13/11 14:52	
Chlorobenzene	ug/m3	ND	0.94	12/13/11 14:52	
Chloroethane	ug/m3	ND	0.54	12/13/11 14:52	
Chloroform	ug/m3	ND	0.99	12/13/11 14:52	
Chloromethane	ug/m3	ND	0.42	12/13/11 14:52	
cis-1,2-Dichloroethene	ug/m3	ND	0.42	12/13/11 14:52	
cis-1,3-Dichloropropene	ug/m3	ND	0.92	12/13/11 14:52	
Cyclohexane	ug/m3	ND	0.68	12/13/11 14:52	
Dibromochloromethane	ug/m3	ND	1.7	12/13/11 14:52	
Dichlorodifluoromethane	ug/m3	ND	1.0	12/13/11 14:52	
Dichlorotetrafluoroethane	ug/m3	ND	1.4	12/13/11 14:52	
Ethanol	ug/m3	ND	1.9	12/13/11 14:52	
Ethyl acetate	ug/m3	ND	0.73	12/13/11 14:52	
Ethylbenzene	ug/m3	ND	0.73	12/13/11 14:52	
Hexachloro-1,3-butadiene	ug/m3	ND	2.2	12/13/11 14:52	

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 32 of 41

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

METHOD BLANK: 1114118

Matrix: Air

Associated Lab Samples: 60111459008, 60111459010, 60111459011, 60111459012, 60111459013, 60111459014

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
m&p-Xylene	ug/m3	ND	1.8	12/13/11 14:52	
Methyl-tert-butyl ether	ug/m3	ND	0.73	12/13/11 14:52	
Methylene Chloride	ug/m3	ND	0.71	12/13/11 14:52	
n-Heptane	ug/m3	ND	0.83	12/13/11 14:52	
n-Hexane	ug/m3	ND	0.72	12/13/11 14:52	
Naphthalene	ug/m3	ND	2.7	12/13/11 14:52	
o-Xylene	ug/m3	ND	0.88	12/13/11 14:52	
Propylene	ug/m3	ND	0.35	12/13/11 14:52	
Styrene	ug/m3	ND	0.87	12/13/11 14:52	
Tetrachloroethene	ug/m3	ND	0.69	12/13/11 14:52	
Tetrahydrofuran	ug/m3	ND	0.60	12/13/11 14:52	
THC as Gas	ug/m3	ND	60.8	12/13/11 14:52	
Toluene	ug/m3	ND	0.77	12/13/11 14:52	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	12/13/11 14:52	
trans-1,3-Dichloropropene	ug/m3	ND	0.92	12/13/11 14:52	
Trichloroethene	ug/m3	ND	0.55	12/13/11 14:52	
Trichlorofluoromethane	ug/m3	ND	1.1	12/13/11 14:52	
Vinyl acetate	ug/m3	ND	0.71	12/13/11 14:52	
Vinyl chloride	ug/m3	ND	0.26	12/13/11 14:52	

LABORATORY	CONTROL SAMPLE:	1114119

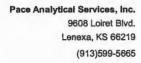
D IDOIGH OILL GOILLING EL	111110					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	48.6	88	66-133	
1,1,2,2-Tetrachloroethane	ug/m3	69.8	66.3	95	70-140	
1,1,2-Trichloroethane	ug/m3	55.5	48.9	88	68-132	
1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	70.8	91	60-137	
1,1-Dichloroethane	ug/m3	41.2	35.2	86	65-131	
1,1-Dichloroethene	ug/m3	40.3	35.4	88	65-132	
1,2,4-Trichlorobenzene	ug/m3	75.5	83.5	111	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	49.8	100	69-140	
1,2-Dibromoethane (EDB)	ug/m3	78.1	71.5	92	71-139	
1,2-Dichlorobenzene	ug/m3	61.2	57.9	95	68-139	
1,2-Dichloroethane	ug/m3	41.2	35.6	86	66-132	
1,2-Dichloropropane	ug/m3	47	40.4	86	69-130	
1,3,5-Trimethylbenzene	ug/m3	50	48.1	96	70-141	
1,3-Butadiene	ug/m3	22.5	20.0	89	68-128	
1,3-Dichlorobenzene	ug/m3	61.2	56.8	93	66-146	
1,4-Dichlorobenzene	ug/m3	61.2	43.0	70	66-142	
2-Butanone (MEK)	ug/m3	30	28.8	96	68-134	
2-Hexanone	ug/m3	41.7	35.1	84	70-144	
2-Propanol	ug/m3	23.8	21.5	90	66-139	
4-Ethyltoluene	ug/m3	50	45.2	90	65-145	
4-Methyl-2-pentanone (MIBK)	ug/m3	41.7	35.8	86	70-139	
Acetone	ug/m3	24.2	18.7	77	56-142	

ate: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 33 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..


Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

LABORATORY CONTROL SAMPLE	: 1114119					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/m3	32.5	30.8	95	69-129	
Benzyl chloride	ug/m3	52.5	36.7	70	68-138	
Bromodichloromethane	ug/m3	68.2	62.1	91	70-130	
Bromoform	ug/m3	105	111	105	67-147	
Bromomethane	ug/m3	39.5	34.5	87	67-127	
Carbon disulfide	ug/m3	31.7	27.2	86	65-131	
Carbon tetrachloride	ug/m3	64	49.9	78	62-137	
Chiorobenzene	ug/m3	46.8	41.7	89	72-133	
Chloroethane	ug/m3	26.8	22.9	85	66-127	
Chloroform	ug/m3	49.7	43.5	88	67-130	
Chloromethane	ug/m3	21	21.2	101	63-127	
cis-1,2-Dichloroethene	ug/m3	40.3	35.7	88	69-130	
cis-1,3-Dichloropropene	ug/m3	46.2	43.2	94	74-137	
Cyclohexane	ug/m3	35	33.7	96	69-137	
Dibromochloromethane	ug/m3	86.6	85.5	99	69-140	
Dichlorodifluoromethane	ug/m3	50.3	43.0	86	62-131	
Dichlorotetrafluoroethane	ug/m3	71.1	65.1	92	63-130	
Ethanol	ug/m3	19.2	17.8	93	63-135	SS
Ethyl acetate	ug/m3	36.6	31.9	87	70-135	
Ethylbenzene	ug/m3	44.2	41.4	94	71-141	
Hexachloro-1,3-butadiene	ug/m3	108	114	106	30-150	
m&p-Xylene	ug/m3	88.3	85.0	96	68-144	
Methyl-tert-butyl ether	ug/m3	36.7	30.7	84	54-136	
Methylene Chloride	ug/m3	35.3	32.1	91	56-143	
n-Heptane	ug/m3	41.7	37.8	91	72-130	
n-Hexane	ug/m3	35.8	29.9	83	68-130	
Naphthalene	ug/m3	53.3	51.3	96	30-150	
o-Xylene	ug/m3	44.2	38.4	87	70-141	
Propylene	ug/m3	17.5	16.0	91	61-139	
Styrene	ug/m3	43.3	40.0	92	68-145	
Tetrachloroethene	ug/m3	69	65.2	94	64-142	
Tetrahydrofuran	ug/m3	30	26.4	88	70-134	SS
THC as Gas	ug/m3	3030	2810	93	66-134	
Toluene	ug/m3	38.3	34.1	89	69-133	
trans-1,2-Dichloroethene	ug/m3	40.3	35.9	89	64-132	
trans-1,3-Dichloropropene	ug/m3	46.2	45.6	99	71-140	
Trichloroethene	ug/m3	54.6	51.6	94	68-132	
Trichlorofluoromethane	ug/m3	57.1	51.1	90	59-136	
Vinyl acetate	ug/m3	35.8	31.9	89	70-142	
Vinyl chloride	ug/m3	26	23.6	91	64-129	

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

QC Batch:

AIR/13833

Analysis Method:

TO-15

QC Batch Method: TO

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples: 60111459009

.....

METHOD BLANK: 1114982

Matrix: Air

Associated Lab Samples:

60111459009

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers	
1,1,1-Trichloroethane	ug/m3	ND	1.1	12/14/11 10:03		
1,1,2,2-Tetrachloroethane	ug/m3	ND	0.70	12/14/11 10:03		
1,1,2-Trichloroethane	ug/m3	ND	0.55	12/14/11 10:03		
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	1.6	12/14/11 10:03		
1,1-Dichloroethane	ug/m3	ND	0.82	12/14/11 10:03		
1,1-Dichloroethene	ug/m3	ND	0.81	12/14/11 10:03		
1,2,4-Trichlorobenzene	ug/m3	ND	0.99	12/14/11 10:03		
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	12/14/11 10:03		
1,2-Dibromoethane (EDB)	ug/m3	ND	1.6	12/14/11 10:03		
1,2-Dichlorobenzene	ug/m3	ND	1.2	12/14/11 10:03		
1,2-Dichloroethane	ug/m3	ND	0.41	12/14/11 10:03		
1,2-Dichloropropane	ug/m3	ND	0.94	12/14/11 10:03		
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	12/14/11 10:03		
1,3-Butadiene	ug/m3	ND	0.45	12/14/11 10:03		
1,3-Dichlorobenzene	ug/m3	ND	1.2	12/14/11 10:03		
1,4-Dichlorobenzene	ug/m3	ND	1.2	12/14/11 10:03		
2-Butanone (MEK)	ug/m3	ND	0.60	12/14/11 10:03		
2-Hexanone	ug/m3	. ND	0.83	12/14/11 10:03		
2-Propanol	ug/m3	ND	2.5	12/14/11 10:03		
4-Ethyltoluene	ug/m3	ND	2.5	12/14/11 10:03		
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	0.83	12/14/11 10:03		
Acetone	ug/m3	ND	0.48	12/14/11 10:03		
Benzene	ug/m3	ND	0.32	12/14/11 10:03		
Benzyl chloride	ug/m3	ND	1.0	12/14/11 10:03		
Bromodichloromethane	ug/m3	ND	1.4	12/14/11 10:03		
Bromoform	ug/m3	ND	2.1	12/14/11 10:03		
Bromomethane	ug/m3	ND	0.79	12/14/11 10:03		
Carbon disulfide	ug/m3	ND	0.63	12/14/11 10:03		
Carbon tetrachloride	ug/m3	ND	0.64	12/14/11 10:03		
Chlorobenzene	ug/m3	ND	0.94	12/14/11 10:03		
Chloroethane	ug/m3	ND	0.54	12/14/11 10:03		
Chloroform	ug/m3	ND	0.99	12/14/11 10:03		
Chloromethane	ug/m3	ND	0.42	12/14/11 10:03		
cis-1,2-Dichloroethene	ug/m3	ND	0.81	12/14/11 10:03		
cis-1,3-Dichloropropene	ug/m3	ND	0.92	12/14/11 10:03		
Cyclohexane	ug/m3	ND	0.68	12/14/11 10:03		
Dibromochloromethane	ug/m3	ND	1.7	12/14/11 10:03		
Dichlorodifluoromethane	ug/m3	ND	1.0	12/14/11 10:03		
Dichlorotetrafluoroethane	ug/m3	ND	1.4	12/14/11 10:03		
Ethanol		ND	1.4			
	ug/m3			12/14/11 10:03		
Ethyl acetate	ug/m3	ND	0.73	12/14/11 10:03		
Ethylbenzene	ug/m3	ND	0.88	12/14/11 10:03		
Hexachloro-1,3-butadiene	ug/m3	ND	2.2	12/14/11 10:03		

ate: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 35 of 41

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

METHOD BLANK: 1114982

Matrix: Air

Associated Lab Samples: 60111459009

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
m&p-Xylene	ug/m3	ND	1.8	12/14/11 10:03	
Methyl-tert-butyl ether	ug/m3	ND	0.73	12/14/11 10:03	
Methylene Chloride	ug/m3	ND	0.71	12/14/11 10:03	
n-Heptane	ug/m3	ND	0.83	12/14/11 10:03	
n-Hexane	ug/m3	ND	0.72	12/14/11 10:03	
Naphthalene	ug/m3	ND	2.7	12/14/11 10:03	
o-Xylene	ug/m3	ND	0.88	12/14/11 10:03	
Propylene	ug/m3	ND	0.35	12/14/11 10:03	
Styrene	ug/m3	ND	0.87	12/14/11 10:03	
Tetrachloroethene	ug/m3	ND	0.69	12/14/11 10:03	
Tetrahydrofuran	ug/m3	ND	0.60	12/14/11 10:03	
THC as Gas	ug/m3	ND	60.8	12/14/11 10:03	
Toluene	ug/m3	ND	0.77	12/14/11 10:03	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	12/14/11 10:03	
trans-1,3-Dichloropropene	ug/m3	ND	0.92	12/14/11 10:03	
Trichloroethene	ug/m3	ND	0.55	12/14/11 10:03	
Trichlorofluoromethane	ug/m3	ND	1.1	12/14/11 10:03	
Vinyl acetate	ug/m3	ND	0.71	12/14/11 10:03	
Vinyl chloride	ug/m3	ND	0.26	12/14/11 10:03	

LABORATORY CONTROL SAMPL	E: 1114983					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	45.9	83	66-133	
1,1,2,2-Tetrachloroethane	ug/m3	69.8	64.9	93	70-140	
1,1,2-Trichloroethane	ug/m3	55.5	47.2	85	68-132	
1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	70.9	91	60-137	
1,1-Dichloroethane	ug/m3	41.2	35.3	86	65-131	
1,1-Dichloroethene	ug/m3	40.3	35.0	87	65-132	
1,2,4-Trichlorobenzene	ug/m3	75.5	208	276	30-150	CH,L3
1,2,4-Trimethylbenzene	ug/m3	50	44.7	89	69-140	
1,2-Dibromoethane (EDB)	ug/m3	78.1	68.3	87	71-139	
1,2-Dichlorobenzene	ug/m3	61.2	98.7	161	68-139	CH,L3
1,2-Dichloroethane	ug/m3	41.2	35.5	86	66-132	
1,2-Dichloropropane	ug/m3	47	37.4	80	69-130	
1,3,5-Trimethylbenzene	ug/m3	50	45.2	90	70-141	
1,3-Butadiene	ug/m3	22.5	18.6	83	68-128	
1,3-Dichlorobenzene	ug/m3	61.2	57.1	93	66-146	
1,4-Dichlorobenzene	ug/m3	61.2	57.9	95	66-142	
2-Butanone (MEK)	ug/m3	30	25.3	84	68-134	
2-Hexanone	ug/m3	41.7	33.4	80	70-144	
2-Propanol	ug/m3	23.8	18.9	80	66-139	
4-Ethyltoluene	ug/m3	50	43.5	87	65-145	
4-Methyl-2-pentanone (MIBK)	ug/m3	41.7	34.5	83	70-139	
Acetone	ug/m3	24.2	18.2	75	56-142	

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 36 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

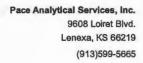
Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

LABORATORY CONTROL SAMPLE:	1114983					
		Spike	LCS	LCS	% Rec	0 115
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/m3	32.5	29.0	89	69-129	
Benzyl chloride	ug/m3	52.5	46.2	88	68-138	
Bromodichloromethane	ug/m3	68.2	61.0	90	70-130	
Bromoform	ug/m3	105	112	106	67-147	
Bromomethane	ug/m3	39.5	31.8	81	67-127	4.
Carbon disulfide	ug/m3	31.7	26.7	84	65-131	
Carbon tetrachloride	ug/m3	64	49.7	78	62-137	
Chlorobenzene	ug/m3	46.8	39.6	85	72-133	
Chloroethane	ug/m3	26.8	21.4	80	66-127	
Chloroform	ug/m3	49.7	41.4	83	67-130	
Chloromethane	ug/m3	21	21.1	101	63-127	
cis-1,2-Dichloroethene	ug/m3	40.3	33.2	82	69-130	
cis-1,3-Dichloropropene	ug/m3	46.2	40.6	88	74-137	
Cyclohexane	ug/m3	35	32.7	93	69-137	
Dibromochloromethane	ug/m3	86.6	82.7	95	69-140	
Dichlorodifluoromethane	ug/m3	50.3	41.5	82	62-131	
Dichlorotetrafluoroethane	ug/m3	71.1	63.3	89	63-130	
Ethanol	ug/m3	19.2	15.9	83	63-135	SS
Ethyl acetate	ug/m3	36.6	30.6	83	70-135	
Ethylbenzene	ug/m3	44.2	39.8	90	71-141	
Hexachloro-1,3-butadiene	ug/m3	108	332	306	30-150	CH,L3
m&p-Xylene	ug/m3	88.3	84.7	96	68-144	
Methyl-tert-butyl ether	ug/m3	36.7	26.8	73	54-136	
Methylene Chloride	ug/m3	35.3	32.6	92	56-143	
n-Heptane	ug/m3	41.7	36.2	87	72-130	
n-Hexane	ug/m3	35.8	27.8	78	68-130	
Naphthalene	ug/m3	53.3	138	258	30-150	CH,L1
o-Xylene	ug/m3	44.2	37.1	84	70-141	
Propylene	ug/m3	17.5	14.4	82	61-139	
Styrene	ug/m3	43.3	38.6	89	68-145	
Tetrachloroethene	ug/m3	69	62.3	90	64-142	
Tetrahydrofuran	ug/m3	30	22.9	76	70-134	SS
THC as Gas	ug/m3	3030	2310	76	66-134	
Toluene	ug/m3	38.3	33.0	86	69-133	
trans-1,2-Dichloroethene	ug/m3	40.3	34.8	86	64-132	
trans-1,3-Dichloropropene	ug/m3	46.2	41.3	89	71-140	
Trichloroethene	ug/m3	54.6	49.5	91	68-132	
Trichlorofluoromethane	ug/m3	57.1	50.8	89	59-136	
Vinyl acetate	ug/m3	35.8	31.8	89	70-142	
Vinyl chloride	ug/m3	26	21.6	83	64-129	

SAMPLE DI	JPLICATE:	1115406
-----------	-----------	---------


Parameter	Units	10177252001 Result	Dup Result	RPD	Max RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND		25	
1,1,2,2-Tetrachioroethane	ug/m3	ND	ND ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		2	5

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 37 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

SAMPLE DUPLICATE: 1115406	11.74	10177252001	Dup	555	Max	0
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	ND	ND		25	
1,2-Dibromoethane (EDB)	ug/m3	ND	ND		25	
1,2-Dichlorobenzene	ug/m3	ND	ND		25	
1,2-Dichloroethane	ug/m3	ND	ND		25	
1,2-Dichloropropane	ug/m3	ND	ND		25	
1,3,5-Trimethylbenzene	ug/m3	ND	ND		25	
1,3-Butadiene	ug/m3	ND	ND		25	
1,3-Dichlorobenzene	ug/m3	ND	ND		25	
1,4-Dichlorobenzene	ug/m3	ND	ND		25	
2-Butanone (MEK)	ug/m3	1.5	1.5	.8	25	
2-Hexanone	ug/m3	ND	ND		25	
2-Propanol	ug/m3	2.5	2.4J		25	
1-Ethyltoluene	ug/m3	ND	ND		25	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	ND		25	
Acetone	ug/m3	8.5	8.3	3	25	
Benzene	ug/m3	ND	ND		25	
Benzyl chloride	ug/m3	ND	ND		25	
Bromodichloromethane	ug/m3	ND	ND		25	
Bromoform	ug/m3	ND	ND		25	
Bromomethane	ug/m3	ND	ND		25	
Carbon disulfide	ug/m3	ND	ND		25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorobenzene	ug/m3	ND	ND		25	
Chloroethane	ug/m3	ND	ND		25	
Chloroform	ug/m3	ND	ND		25	
Chloromethane	ug/m3	0.59	0.54J		25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
cis-1,3-Dichloropropene	ug/m3	ND	ND		25	
Cyclohexane	ug/m3	ND	ND		25	
Dibromochloromethane	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	2.1	2.0	3	25	
Dichlorotetrafluoroethane	ug/m3	ND	ND	3	25	
Ethanol	ug/m3	5.0	5.0	.3		SS
Ethyl acetate	ug/m3	ND	ND	.3	25	33
Ethylbenzene	ug/m3	ND	ND		25	
	1 0	ND				
Hexachloro-1,3-butadiene m&p-Xylene	ug/m3	ND	ND		25	
	ug/m3	ND	ND		25	
Methyl-tert-butyl ether	ug/m3		ND		25	
Methylene Chloride	ug/m3	1.6	1.5	8	25	
n-Heptane	ug/m3	ND	ND		25	
n-Hexane	ug/m3	ND	ND		25	
Naphthalene	ug/m3	ND	ND		25	
o-Xylene	ug/m3	ND	ND		25	
Propylene	ug/m3	ND	ND		25	

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 38 of 41

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

SAMPLE DUPLICATE: 1115406

Parameter	Units	10177252001 Result	Dup Result	RPD	Max RPD	Qualifiers
Styrene	ug/m3	ND	ND		25	
Tetrachloroethene	ug/m3	ND	ND		25	
Tetrahydrofuran	ug/m3	ND	ND		25	
THC as Gas	ug/m3	ND	ND		25	
Toluene	ug/m3	0.68	0.68J		25	
rans-1,2-Dichloroethene	ug/m3	ND	ND		25	
rans-1,3-Dichloropropene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	
Trichlorofluoromethane	ug/m3	1.2	1.2J		25	
Vinyl acetate	ug/m3	ND	ND		25	
Vinyl chloride	ug/m3	ND	ND		25	

QUALIFIERS

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60111459

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

The sample was not collected in the appropriate container for headspace analysis.

LABORATORIES

1e

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

A3	The sample was analyzed by serial dilution.
CH	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
D2	Samples evaluated to 1/2 the reporting limit.
D3	Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
E	Analyte concentration exceeded the calibration range. The reported result is estimated.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.
L3	Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
SS	This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 40 of 41

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60111459

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60111459001	DW-074922-120111-CM-46	RSK 175	AIR/13778		
60111459002	DW-074922-120111-CM-29	RSK 175	AIR/13778		
60111459003	DW-074922-120111-CM-D3	RSK 175	AIR/13778		
60111459004	PW-074922-120111-CM-202	RSK 175	AIR/13778		
60111459005	SW-074922-120211-CM-NAV	RSK 175	AIR/13789		
60111459006	PW-074922-120211-CM-204A	RSK 175	AIR/13789		
60111459007	PW-074922-120211-CM-25	RSK 175	AIR/13789		
60111459008	A-074922-120211-CM-29	TO-15	AIR/13823		
60111459009	A-074922-120211-CM-D3	TO-15	AIR/13833		
60111459010	A-074922-120211-CM-202	TO-15	AIR/13823		
60111459011	A-074922-120211-CM-2566	TO-15	AIR/13823		
60111459012	A-074922-120211-CM-204A	TO-15	AIR/13823		
60111459013	A-074922-120211-CM-25	TO-15	AIR/13823		
60111459014	A-074922-120211-CM-DUP	TO-15	AIR/13823		

Date: 12/22/2011 05:32 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 41 of 41

CHAIN-OF-CUST / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

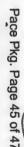
ction A quired Client Information:	Section E Required F		Inform	ation:					Section		mation:											Page:		of	7
mpeny: CRA	Report To:	Chris	stine N	Mathews					Attent	on:	ENF	os	-												
dress: 6121 Indian School Rd NE. Ste 200	Copy To:	Kelly	Bland	chard, A	ngela B	own .	• • • •		Comp	any Na	me:	,	٧.				.3 4	REG	ULAT	ORY	AGENC	Υ			
Albequerque, NM 87110		- 3							Addres	£9:	,	<u> </u>	-			-	-	-	NPDES	Total	GROU				G WATER
न्य 1c: <u>crnathews@craworld.com</u>	Purchase C	Order N	0.:						Pace C								-	-	UST	Г	RCRA		-	OTHER	
one: (505)884-0672 Fax: (505)884-4932	Project Nar	ne:	San J	luan 32-	8 No. 20	02			Referen	roject	Anna	Cus	ter					-	Locati	on			VIIIII		///////
quested Due Date/TAT: standard	Project Nur	nber:	37	401	17	-			Manage Pace P	rofile#:	5514	, 3							STAT	1	NN	Λ			
)/	1-1	-					_					8000	Regu	ested	Analy		-	(Y/N)	V//			
Section D Valid Matrix C	odes	8	6			٠,		T	T						N /A	T		T		1	T				
Required Client Information MATRIX DRINGING WATER	CODE DW	fee to left)	COMP		COLI	LECTED		-	1		Prese	ervati	ves		7		+	-	-		3				
SAMPLE ID (A-Z, 0-9 /,-) Sample IDs MUST BE UNIQUE WATER WASTE	WT WW P SL OL WP AR OT TS	E (see valid not	SAMPLE TYPE (G=GRAR C=(COMPO		COMPC	SITE	SAMPLE TEMP AT COLLECTION	CONTAINERS	Unpreserved	23	Ж	Na ₂ S ₂ O ₃ Methanol	1	# Analysis Test	8015B	EPA 8015B DRO EPA 6010 Diss. Metals***	SM 2540C TDS	SM 2320B Bicarbonate	SM 4500S-2 T Sulfide	(5/17/15)	Residual Chlorine (Y/N)	6	٥١/ ابرز	59
		MA	SAM	DATE	TIME	DATE	TIME	SAM	# O#	Unp	HNO	NaOH	Na ₂ S ₂ (Other	₹ Id	EPA	EPA	SM	SM	SM	33	Res	Pac	e Project I	No./ Lab
DW-074922-120111-LM-41	0	WT	G			12:11	945		1	X	2	D	191							1)					0
DW-074922-12011-(M-2	9	W	6				1150	2	1	X)					0
DW-674922-120111-CM-I			6			12:11			2	X										X					0
PW-674922-12011-14-1			9			12:1.1	1540		2	X	1		1	Ц		\sqcup	_			7					a
		uT	-	==	+	12.24	0		2	*	+		-			11	=		++	- 5	4				
BW-074922-120211-CM-N		WT		-+-	-	12.21		-	12	X	1	+	11			\perp	-	\vdash	++	1)					a
PW-074922-120211-(M-20		W	9	+-	+	12.2.11	1	-	2	4	++	+	1		-	11	-		-	15					0
PW-074922-120211-CM-2	2	WI	9	-		12.61	1080	4	3		+-	++	-		-	11	-	1	++	-3	4				C
DW 0749 22-120211-CM		77 711				ELL	110	5		*		1		H	Z -		=	+		17					
	19	18	7		-	12.4	835	-	11	1	++	11	V	H	-	-	+	++	++	-	1				C
1 A-074922-120211-(M-)	000	AK	2	+-		10.2	1135	-		X	++	1	,	-	-	+	-	++	++	-	1				O.
ADDITIONAL COMMENTS	105	RELIA	OUISI	HED BY /	AFFILIAT	ION	DAT			ΔL.		11	ACCE	PTED	RYIA	FFILIAT	NOI		DATE	3 6	TIME		RAM	PLE CONDIT	TIONS
	1/40	20	72	7.	100	1	100	7.//		7	130	^		7/			0 T 1 4.8		17		845	011	- Union	1	1
The second secon	(45)	ar.	4)	CUM	ICK	т	17.7	-11	14	50	130		1		ر	-		-	-5	10	073	1.4	4	17	1
									-		-							-		_					-
	1.	- 4		•				÷:									-					15			
					SAMPL	ER NAME	ND SIGN	ATUR	RE /			1									7	O	5	Z)	Intact
						PRINT Nam	e of SAME	LER:	10	45	CH	m	M									Temp in °C	Received on ice (Y/N)	Custody Sealer Cooler (Y/N)	Samples in
						SIGNATUR	E of SAME	LER:	YIM	K	TR	TIA	人			DATE S		12	2.1	1		Test	Reco	Cool	dwe
				L							\sim	NVU	_			MIMILIA	ATT):		21	-				1 0	1 0

Minneapolis
-

section A sequired Client Information:	Section B Required Project Information:			Section C	mation:				Page:	2	of	2			
ompany: CRA	Report To: Christine Mathew	S		Attention:	ENFOS										
ddress: 6121 Indian School Rd NE, Ste 200	Copy To: Kelly Blanchard,	Angela Bown		Company Na	ime:		REGULATOR	Y AGENC	γ		A CONTRACTOR				
Albequerque, NM 87110				Address:	-		T NPDES	F GROU	ND WATE	-	DRINKING	WATER			
mail To: cmathews@craworld.com	Purchase Order No.:			Pace Quote Reference:			T UST	T RCRA	RCRA COTHER						
hone: (505)884-0672 Fex: (505)884-4932	Project Name: San Juan 32	-8 No. 202		Pace Project Manager:	Anna Custer		Site Location								
equested Due Date/TAT: standard	Project Number: 67492	2		Pace Profile #:	5514, 3		STATE:	NM							
	0/11-					Requested	Analysis Filte	red (Y/N)							
Section D Valid Matrix C Required Client information MATRIX	codes & G.	COLLECTED			Preservatives	NA									
SAMPLE ID (A-Z, 0-9 / .) Sample IDs MUST BE UNIQUE ** ** ** ** ** ** ** ** **	ATRIX CODE (see vaild codes)		AMPLE TEMP AT COLLI	# OF CONTAINERS Unpreserved	HNO ₃ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other	# Analysis Test EPA 8260 VOC's EPA 8015B GRO EPA 8015B DRO EPA 8015B DRO EPA 6010 Diss. Metals**	SM 2540C TDS EPA 300.0- CI, Br, SO4 SM 2320B Bicarbonate SM 4500S-2 F Sulfide	issolud XSC (TO	Residual Chlorine (Y/N)		ONY Project N				
A-574922-120211-CM-250		TIME DATE	TIME O	1 0	111111111111111111111111111111111111111	→ Ш Ш Ш Ш	N I I I	1	-	Pace	Project	Oll			
2 A 074922-120211-CM- 20	AA ARG -	17.211	1205	110				10				OLZ			
	5 RG -	0.211	100	1 V				V				013			
	DUDITEG -	- 12.2/1	1055	1 1	V			X				014			
5 DW-074922-120211-UM-		12.24	1220	2 1				X							
6 DU-07 4922-120211-(M-M	S/MSDUTG -	- 12.2.4	1246	2 %				X				4			
7															

0															
7%									1						
2				Series and the series			DATE	TIME		CAMP	LE CONDIT	ONE			
ADDITIONAL COMMENTS	RELINQUISHED BY	AFFILIATION	DATE	TIME	1 . 1/2	BY / AFFILIATION			0.4	SAME	LE CONDIT	IONO			
, ca, D, r., rea	Cassie Brown	TEKH	12.211	1445	Berulla	K~?	12-3-11	0845	0.4	Y	7	7			
	1.: :	- X 0.100 T 2.111	_ pulling a line	-	1	W September 1	*				2				
		SAMPLER NAME AN	or the second second	7	07.6		o completely		C	N (N	Sealer (Y/N)	patol			
		PRINT Name of SIGNATURE		(has	Homes	DATE Signed (MM/DD/YY):	12.211		Temp in °C	Received on Ice (Y/N)	Custody	Samples In			
*Important Note: By signing this form you are accepting i	Pace's NET 30 day payment terms and			or any involces n	not paid within 30 days.	(MM/DD/YY):	12-6		F-ALL-C	0-020rev.0		2007			

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.


Section A Required Client information:	Section B Required Project Informatio	n:			ction C	lion:									Page:	i	of	1
Company: CRA	Report To: Christine Ma	thews		Atter	intlon:	ENFOS												
Address 6121 Indian School Rd NE, Ste 200	Copy To: Kelly Blancha	ard, Angela Bown		Com	npany Name						REG	ULATO	RY AGEN	ICY	1990 11			
Albequerque, NM 87110				Addr	ress:						1	NPDES	₩ GR	DUND	WATER	S L.	DRINKING	WATER
Email To: cmalhews@craworld.com	Purchase Order No.:				Quote						10	UST	T RCF	AS		Г	OTHER	
Phone: (505)884-0672 Fax: (505)884-4932	Project Namo: San Jua	n 32-8 No. 202		Pace	Project *	Anna Cu	ster				Sito	Locatio	n	NM				
Requested Due Date/TAT: standard	Project Number: 676	1922				5514, 3						STATE		NIVI	- 6			
									Req	uested	Analy	sis Filte	red (Y/N)) .				
Section D Valid Matrix (Required Client Information MATRIX	CODE S	COLLECTED			F	Preserva	lives	Y/ N										
DRINGING WATER WASTE WASTE WASTE WASTE WASTE WASTE WASTE WASTE SOLUSION OUL SAMPLE ID WIPE AR	ST OF SERVICE OF STREET	COMPOSITE COMPOSITARY EMDIG	AT GOLL	VERS				est	OC's GRO	DRO ss. Metals**	DS Pr SOA	Bicarbonate	16110	,	orine (Y/N)	(,	ould	59
(A-Z, 0-9 /,-) OTHER Sample IDs MUST BE UNIQUE TESUE ** ** ** ** ** ** ** ** **	MATRIX CODE SAMPLE TYPE	ATE TIME DATE	EMPLE TEMP	# OF CONTAINERS	Unpreserved H ₂ SO ₄	HCI NaOH	Na ₂ S ₂ O ₃ Methanol	Analysis I	EPA 8260 VOC's EPA 8015B GRO	EPA 8015B DRO EPA 6010 Diss. A	SM 2540C TDS	SM 2320B Bicarbonate SM 4500S-2 F Sutfide	Hickyle	M2 S	Residual Chlorine (Y/N)		Project No	o./ Lab I.D.
1 1-074922-120211-(M-)	19 RG	12.2.11	120	1									X	X				015
2 H-074922.120211-CM-			835	1		+		-		-		-	X	X	H			016
3 A-074922 120211- (M-		7.2.11	1125	1	+++	++	H	-	-		+	++-	1-10	}	+		-	617
16.22 12		12.7.11	1205	1	+++	++		-	-		+	++	1		++		~	018
	25 46	17.2.11		1				-				1	X	V	+		a	020028
7 11-079922-120211-CM-		12:211		i									10	X	H			021
8	N.S.			1														
9																		
10				_				41				1		\perp	\vdash			
11				-	+++	-		41	-			-			1			
12			DATE	-	TIME		ACCEPT		AFF# 14	TION	-	DATE	TIME	+		CAME	LE CONDITIO	-
ADDITIONAL COMMENTS	10000	BY / AFFILIATION	DATE	-			ACCEPT	EDBI	AFFILIA	IIION ·	-	UAIE	1166	+	-	SAMP	TE COMPILIO	ins .
Place report to	COSSIR BIL	an/ CRH	12/2/1	9	145	Don	TT-N	650	J		1,	45/11	913	+	+		·	
Dale martical			, ,									,						
(10 Anna Custer	·																•	•
10-11-16-11-1		SAMPLER NAME A	ND SIGNATU	RE		_					:				υ l	5 -	Sealed (Y/N)	Intact
		PRINT Nam	e of SAMPLER:	1/2	24996	BO	YUV							و ٦	E C	Received or Ice (Y/N)	let So	(Y/N)
		SIGNATUR	e of SAMPLER:		The.				DATE		12.	7.1	1	1	Temp	20 20	Cooler	Samp

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAI. DOCUMENT. All relevant fields must be completed accurately.

www.panelans.com		Please	report	to	Pall	e An	aly	thea	(, A	MAG	(u	der						
Section A Required Client Information	Section B Required Project Informa			Section C									Pag	101	of	2		
Company CRA	Report To. Christine M			Attention:	ENFOS								L					
Address 6121 Indian School Rd NE, Ste 200	Gopy To: Kerly Blanc	hard, Angela Bown		Company I	ame	•				REGU	LATOR	YAGEN	CY	**				
Albequerque, NM 87110		***	-	Address:						F NPDES & GROUND WATER F DRINKING WATER								
Email To cmathews@craworld.com	Purchase Order No.:			Pace Custe Reference						r us	ST	RCR	A	-	OTHER			
Phone (505)884-0672 Fax (505)884-4932	Project Name: San Ja	uan 32-8 No. 202		Pace Project Manager:	Anna Cus	ter				Site L	ocation			V/////				
Requested Due Date/TAT: standard	Project Number.			Pase Prolites	5514.3						STATE:		IM					
								Reque	sted A	nalysi	s Filter	red (Y/N)						
Section D Valid Matrix Required Check Information MATRIX	CODE S	COLLEC	TED		Preservati	ves	WIL											
DRIBUMO WATER WATER WASTE WATER PRODUCT SOU/SOUD	AM SAM CECOMP) NAME CECOMP 10 MAG CECOMP 10	COMPOSITE	COMPOSITE: ENDAGRAB						etals**	804	nate	ST.	V. V.		de Sandard Sand			
SAMPLE ID OIL MAPS AIR OTHER	or se co			CONTAINERS			Test	GRO SRO SRO SRO SRO SRO SRO SRO SRO SRO S	Diss. M	TDS -CI, Br,	Bicarbo 2 F Sul	180/14						
Sample IDs MUST BE UNIQUE THISUE	MATRIX CODE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# OF CONT	10 E	Na ₂ S ₂ O ₃ Methanol Other	Analysis	EPA 8260 VOC'S EPA 8015B GRO	EPA 6010 Diss. Metals	2540C	2320B 4500S	harasta	Pro Critical Chicago					
ITEM			DATE TIME	# OF	HNO3	Na ₂ S ₂ Metha	Y	EPA E	E C	EPA	SM	8-3	12.00	Pace	Project I	No./ Lab I.D.		
1 DW 074922-12011-1M-4			111 945	LIX			-		1			XX						
2 DW-674922-12011-CM-			21/1/50	i X			-				-	XX	ļļ					
3 DW-014912-12011-1M			1111655	113			-		++			$\Lambda \lambda$						
1 PW-674922-12a1-CM-			1-11 1540	111				-	+-+		-	\$X -	+-		Cha prints - Madrew W.C.			
5 DW 074922-12-211-[M-		1/2	4 1	+ 1 X		-	T		+	\dashv			11	1				
6 BW-674922-120211-1M	- Naw WIG	- 12	2110900	I			-		++	-	-		-	-				
7 PW-174922.120211-CM			221/1215	I I A	++++	+	-		++	-		XX	+-					
1 PW-074922-120211-(M		16	211 1030	111		-	-	-	++	-	-	XX	1/					
· A-674922-120211-CM-			111 120	TIXI	+		-	++	++		-		X					
10 A-674922-120211-(M-D)			211835	11 1	+		-	-	-	+			X					
11 14-074922-120211-CM-1			211 1100	1 3			-	11	-	-			A	-				
12 A-074922-120211-(M-2			1.2.11 1135	IIIXI					1				N	1				
ADDITIONAL COMMENTS	RELINQUISH	ED BY / AFFILIATION	DATE	THILE	1/	ACCEPTED	BYIA	FFILIATK	NC	D	ATE	TIME		SAME	LE CONDIT	IONS		
that it list methods others.	Cassie F	Pan / (R)	7 12211	1445	15	de	- 15	DIG	1-1	0	25-11	100						
Propane, T. N-b-tow T. N-Pentan																		
Litary on usen Nitosen Widose																		
all I was An I	.		:			,						:		1		.*		
White Brecinigravity, Bruku	Carbon 150top	SAMPLER N	AME AND SIGNATE	IRE /									ņ	8 -	Spaled (Y/N)	riaci		
hydrsey isotoped 52H. Mill			IT Name of SAMPLE	: (W/5)	UMD.	M							Temp in	Received or ice (Y/N)	dy Se	(YAN)		
hydrosen isotopes (82HC/14C)	Marbon isotopi	SIG!	NATURE of SAMPLE	" TINC	40 Ni	un		DATE SIG		12.	21	1	1 20	Rec	Cooler	Sam		

F-ALL-Q-020rev.08, 12-Oct-2007

/	Pace Analytical*
1	more carrelates com

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Please report to Pace Analytical Analy Custor

Section 6

Required Client Information.		Required		mation:						ree inf		DIT.												Page:	1	of	2
Company CRA		Report To	Christin	e Mathew	s				_	ention:		NFO	S						7				-				
Augress 6121 Indian	School Rd NE, Ste 200	Copy To	Kelly BI	anchard,	Angela B	OWN			Gen	ipany l	Name:				-				RE	GULA	TOR	Y AGE	NCY			· · · · · · · · · · · · · · · · · · ·	
Albequerqu	ie, NM 87110				-				Add	.628.									٦	NPD	ES	₩ GF	ROUND	TAW	ER 1"	DRINKIN	G WATER
Emed to cmathews@	Dcraworld.com	Purchase (Order No.:	7	***************************************					L Ouole									1-	UST		F RC	RA		5	OTHER	
Phone (505)884-0672	Fax (505)884-4932	Project Ne	me Sa	n Juan 32	-8 No. 20)2		-	Pace	e Projec	A	nna (Custo	3f				-	Si	to Loc	ation						
Requested Due Date/TAT:	standard	Project Nu	mber:	074	192	7				e Profile	#: 5	514.	3				-		1	57	ATE:		NM				
			-		1 - 1 days			-	-								Requ	ested	Ana	lysis	Filter	ed (YII	V)	7//			
Section D Required Client Inform	ORIHRING WATER WATER WASTE WATER	CODE	CacCOMP)		OSITE	ECTED	ФТЕ	NOTO			PI	reser	rativo	es	270			**S		SO4	2 0	Shadi.					
SAMP (A-Z, G- Sample IDs MUS	9/,-) OTHER	P SL OL WP API OI T8	MATRIX CODE (see valid SAMPLE TYPE (G#GRAB		TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	Į.	HORN	Wethanol	Other	EPA 8260 VOC's	EPA 8015B GRO	EPA 8015B DRO EPA 6010 Diss. Metals**	SM 2540C TDS	EPA 300.0- CI, Br, SO4 SM 2320B Bicarboosts	SM 4500S-2 F Suffide	Spoton and og	CSON	Residual Chlorine (Y/N)	Pace	Project N	lo./ Lab l.D.
	-120211-CM - 200	A	RE		11700	12211	1265	-	1	V		-	-	+		1	1	m m	0)	W V	10)	V	1	1	1 400	/ loject i	7
2 A-07442	12-126211-cm-2	5	RG	-		127.11	1010	1	1	1	\top	+	1	\forall		-	+	+		+	11	X		+	. 0	211/	1117
3 A-7749	12-12:211 (M-	D.0-	N/	-	-	17.2	10.12.		1	X	-	+	-	++	+	+	Ħ	-		-	+		X	##	1/2	5111	
4		DOP	4-			Teet			1	P		\Box		11	1	-	\Box			1							
5											1			1							11						
	REC'd.											\top		1										\Box			11
	4922-120211-	Cm-	x cer	4																				T			
8 dis - 0	14922-1202	11-61	200	m5/	225	1				1		\forall	1	11	7		\Box				11			11			
9												\Box		\top										\Box			
10														1							11					A ANA LAS PROPERTIES AND ADMINISTRATION OF THE PARTY OF T	
11																											
12																											
ADDITION	NAL COMMENTS	1 1	RELING	JISHED BY	AFFILIAT	ION	DAT	E		TME	1		B	ECEPI	ED 8	YIAF	FILIAT	HOI		DA	TE	TIME			SAMP	LE CONDITI	ONS
'My, Ca. S. K. Na		Car	BICH	ati /	ORA		122	11	10	44	3=	the	1	2	_	750	RE	+	2-5	12-3-	11	100	0				
											+											· ·······	+	-			
					- I CAMPI	ER NAME A	ND SIGN	ATUE											·							,,	2
										1	r 1	17	3.	14									-	ç E	SV.	Seal	S tria
						SIGNATUR				05				in	ز	0	ATE S	igned /YY);	12	2.	11			Temp in	Received on Ida (Y/N)	Custody Sealer Cooler (YRV)	Samples in (YM)

Sal	nple Condition	Upon Receipt
Pace Analytical Client Name	? CRA	NW Project # 6011459
Courier: Fed Ex UPS USPS Clier	nt Commercial	Pace Optional
C. B. C. I. a C. D. 1 = 1 = 2	Shipping Label Use	d? Vyes No Proj. Due Date: 12/15
Custody Seal on Cooler/Box Present: Yes	□ No /Seals	intact: Yes No
Packing Material: Bubble Wrap Bubble	Bags Foam	None Other
Thermometer Used: (7-191)/ T-194	Type of Ice: We	Blue None Samples on ice, cooling process has begun
Cooler Temperature: 04		Date and Initials of person examining
Temperature should be above freezing to 6°C	/	Comments: contents: 2-3-11 BA
Chain of Custody present:	Yes ONO ON/A	1.
Chain of Custody filled out:	Dyes ONO ON/A	2.
Chain of Custody relinquished:	Dyes ONO ON/A	3.
Sampler name & signature on COC:	Myes ONo ON/A	4.
Samples arrived within holding time:	☐Yes ☐No ☐N/A	5.
Short Hold Time analyses (<72hr):	DYES DINO DNA	6.
Rush Turn Around Time requested:	☐Yes ☐No ☐N/A	7.
Sufficient volume:	Yes DNo DN/A	8.
Correct containers used:	Pres ONO ONA	9.
-Pace containers used:	ZYes ONO ON/A	
Containers intact:	Yes DNo DNA	10.
Unpreserved 5035A soils frozen w/in 48hrs?	DYES DNO BNA	11.
Filtered volume received for dissolved tests	□Yes □No ĐN/A	
Sample labels match COC:	Yes ONO ONA	13. 2VOA with no labelimaybe sample #3.
-Includes date/time/ID/analyses Matrix: W	T/AR	Did not recieve item# 5+6 on PG#2,
All containers needing preservation have been checked.	□Yes □No ØNA	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No ØNA	
Exceptions: VQA poliform, TOC, O&G, WI-DRO (water), Phenolics	12 Yes □No	Initial when Lot # of added completed preservative
Trip Blank present:	□Yes ØNo ØN/A	
Pace Trip Blank lot # (if purchased):	2.12 2.10	
Headspace in VOA vials (>6mm):	□Yes ØNo □NA	16.
	1	
Project sampled in USDA Regulated Area:	□Yes □No ☑N/A	17. List State:
Client Notification/ Resolution: Copy	COC to Client?	Y / N Field Data Required? Y / N
Person Contacted:	. Date/	
Comments/Resolution: 12/5/11 - Client	t yerified 1	the 2 unlabeled vials are for D3 samp
No Vials collected for M	s/MSD or	DUP on pg.2.
12/5 - Tedlar for D3 rovd	in sub la	to deflated Per Christine-fund the
Summa from this sam	ple to sub!	ab when finished of TO-15 in Minn.
Project Manager Review:		Date: 12/5/11
Note: Whenever there is a discrepancy affecting North C Certification Office (i.e out of hold, incorrect preservative		nples, a copy of this form will be sent to the North Carolina DEHNR containers)

F-KS-C-003-Rev.05, 19February2010

January 06, 2012

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory between December 06, 2011 and December 28, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Amended report, Rev. #1: 01/06/2011 revised sample ID's on samples 004-009 to match client COC.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

SWA CECUTE

Anna Custer

anna.custer@pacelabs.com Project Manager

Enclosures

cc: Kelly Blanchard, COP Conestoga-Rovers & Associa Angela Bown, COP Conestoga-Rovers & Associa

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 1 of 67

CERTIFICATIONS

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 A2LA Certification #: 2456.01 Arkansas Certification #: 05-008-0 Illinois Certification #: 001191 lowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-08-TX Utah Certification #: 9135995665

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 2 of 67

SAMPLE SUMMARY

Project:

SAN JUAN 32-8 NO. 202 (074922)

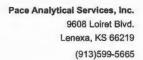
Pace Project No.: 60111560

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60111560001	DW-074922-120111-CM-46	Water	12/01/11 09:45	12/06/11 09:15
60111560002	DW-074922-120111-CM-29	Water	12/01/11 11:50	12/06/11 09:15
60111560003	DW-074922-120111-CM-D3	Water	12/01/11 12:55	12/06/11 09:15
60111560004	PW-074922-120111-CM-202	Water	12/01/11 13:40	12/06/11 09:15
60111560005	PW-074922-120211-CM-DUP	Water	12/02/11 12:30	12/06/11 09:15
60111560006	SW-074922-120211-CM-NAV	Water	12/02/11 09:00	12/06/11 09:15
60111560007	PW-074922-120211-CM-204A	Water	12/02/11 12:15	12/06/11 09:15
60111560008	PW-074922-120211-CM-25	Water	12/02/11 10:30	12/06/11 09:15
60111560009	FB-074922-120211-CM-FB1	Water	12/02/11 13:00	12/06/11 09:15
60111560010	TB-074922-120511-001	Water	12/02/11 00:00	12/06/11 09:15
60111560011	LEVEL III DATA PACKAGE	Water	12/28/11 00:00	12/28/11 12:27

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 3 of 67

SAMPLE ANALYTE COUNT

Project:


SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60111560001	DW-074922-120111-CM-46	EPA 8015B	SDR	3
		EPA 5030B/8015B	PRG	3
		EPA 6010	JGP	5
		EPA 5030B/8260	JDM	70
		SM 2320B	AJM	2
		SM 2540C	BGM	1
		SM 4500-S-2 F	SRM1	1
		EPA 300.0	JML	3
60111560002	DW-074922-120111-CM-29	EPA 8015B	SDR	3
		EPA 5030B/8015B	PRG	3
		EPA 6010	JGP	5
		EPA 5030B/8260	JDM	70
		SM 2320B	AJM	2
		SM 2540C	BGM	1
		SM 4500-S-2 F	SRM1	1
		EPA 300.0	JML	3
60111560003	DW-074922-120111-CM-D3	EPA 8015B	SDR	3
		EPA 5030B/8015B	PRG	3
		EPA 6010	JGP	5
		EPA 5030B/8260	JDM	70
		SM 2320B	AJM	2
		SM 2540C	BGM	1
		SM 4500-S-2 F	SRM1	1
		EPA 300.0	JML	3
60111560004	PW-07 4922-120111-CM-202	IEPA8015B	SDR	3
		EPA 5030B/8015B	PRG	3
		EPA 6010	JGP	5
		EPA 5030B/8260	JDM	70
		EPA 8260	JDM	1
		SM 2320B	AJM	2
		SM 2540C	BGM	1
		SM 4500-S-2 F	SRM1	1
		EPA 300.0	JML	3
60111560005	PW-074922-120211-CM-DUP	EPA 8015B	SDR	3
		EPA 5030B/8015B	PRG	3
		EPA 6010	JGP	5
		EPA 5030B/8260	JDM, JTS	70

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 4 of 67

SAMPLE ANALYTE COUNT

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

_ab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 8260	JDM	1
		SM 2320B	AJM	2
		SM 2540C	BGM	1
		SM 4500-S-2 F	SRM1	1
		EPA 300.0	JML	3
60111560006	SW-074922-120211-CM-NAV	EPA 8015B	SDR	3
		EPA 5030B/8015B	PRG	3
		EPA 6010	JGP	5
		EPA 5030B/8260	JDM	70
		EPA 8260	JDM	1
		SM 2320B	AJM	2
		SM 2540C	BGM	1
		SM 4500-S-2 F	SRM1	1
		EPA 300.0	JML	3
60111560007	PW-074922-120211-CM-204A	EPA 8015B	SDR	3
		EPA 5030B/8015B	PRG	3
		EPA 6010	JGP	5
		EPA 5030B/8260	JDM, JTS	70
		EPA 8260	JDM	1
		SM 2320B	MLA	2
		SM 2540C	BGM	1
		SM 4500-S-2 F	SRM1	1
		EPA 300.0	JML	3
60111560008	PW-074922-120211-CM-25	EPA 8015B	SDR	3
	·	EPA 5030B/8015B	PRG	3
		EPA 6010	JGP	5
		EPA 5030B/8260	JDM, JTS	70
		EPA 8260	JDM	1
		SM 2320B	AJM	2
		SM 2540C	BGM	1
		SM 4500-S-2 F	SRM1	1
		EPA 300.0	JML	3
60111560009	FB-074922-120211-CM-FB1	EPA 5030B/8260	JDM	70
60111560010	TB-074922-120511-001	EPA 8260	JTS	9

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 5 of 67

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

EPA 8015B

60111560

Method: Description

Description: 8015B Diesel Range Organics

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

8 samples were analyzed for EPA 8015B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: OEXT/31413

- S2: Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample reanalysis).
 - PW-074922-120211-CM-204A (Lab !D: 60111560007)
 - · n-Tetracosane (S)
 - · p-Terphenyl (S)
 - PW-074922-120211-CM-DUP (Lab ID: 60111560005)
 - n-Tetracosane (S)
 - · p-Terphenyl (S)
- S4: Surrogate recovery not evaluated against control limits due to sample dilution.
 - PW-074922-120211-CM-25 (Lab ID: 60111560008)
 - · n-Tetracosane (S)
 - p-Terphenyl (S)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 6 of 67

ace Analytical

Pace Analytical Services, inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Method:

EPA 8015B

Description: 8015B Diesel Range Organics

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

Additional Comments:

Analyte Comments:

QC Batch: OEXT/31413

D4: Sample was diluted due to the presence of high levels of target analytes.

• PW-074922-120211-CM-25 (Lab ID: 60111560008)

• p-Terphenyl (S)

Page 7 of 67

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219

(913)599-5665

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No .:

60111560

Method:

EPA 5030B/8015B

Client:

Description: Gasoline Range Organics

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

8 samples were analyzed for EPA 5030B/8015B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- PW-074922-120111-CM-202 (Lab ID: 60111560004)
- · PW-074922-120211-CM-204A (Lab ID: 60111560007)
- PW-074922-120211-CM-25 (Lab ID: 60111560008)
- PW-074922-120211-CM-DUP (Lab ID: 60111560005)
- · SW-074922-120211-CM-NAV (Lab ID: 60111560006)

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: GCV/3966

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Page 8 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Method: EPA 5030B/8015B

Description: Gasoline Range Organics

Client: COP Conestoga-Rovers & Associates, Inc. NM

Date: January 06, 2012

Analyte Comments:

QC Batch: GCV/3971

B: Analyte was detected in the associated method blank.

• PW-074922-120111-CM-202 (Lab ID: 60111560004)

TPH-GRO

• PW-074922-120211-CM-204A (Lab ID: 60111560007)

• TPH-GRO

• PW-074922-120211-CM-25 (Lab ID: 60111560008)

• TPH-GRO

• PW-074922-120211-CM-DUP (Lab ID: 60111560005)

TPH-GRO

- SW-074922-120211-CM-NAV (Lab ID: 60111560006)

• TPH-GRO

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

Method:

EPA 6010

Description: 6010 MET ICP, Dissolved

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

8 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MPRP/16421

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60111560007

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- · MS (Lab ID: 925634)
 - · Sodium, Dissolved
- MSD (Lab ID: 925635)
 - · Sodium, Dissolved

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Page 10 of 67

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219

(913)599-5665

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

EPA 5030B/8260

Description: 8260 MSV

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

Method:

January 06, 2012

General Information:

9 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

pH: Post-analysis pH measurement indicates insufficient VOA sample preservation.

- PW-074922-120111-CM-202 (Lab ID: 60111560004)
- PW-074922-120211-CM-204A (Lab ID: 60111560007)
- PW-074922-120211-CM-25 (Lab ID: 60111560008)
- PW-074922-120211-CM-DUP (Lab ID: 60111560005)

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/42327

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60111560007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 923174)
 - Toluene

QC Batch: MSV/42527

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 11 of 67

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No .:

60111560

Method:

EPA 5030B/8260

Description: 8260 MSV

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

Additional Comments:

Analyte Comments:

QC Batch: MSV/42327

B: Analyte was detected in the associated method blank.

- FB-074922-120211-CM-FB1 (Lab ID: 60111560009)
 - 1,2,4-Trimethylbenzene
- PW-074922-120211-CM-204A (Lab ID: 60111560007)
 - 1,2,4-Trimethylbenzene
- PW-074922-120211-CM-DUP (Lab ID: 60111560005)
 - 1,2,4-Trimethylbenzene
- · SW-074922-120211-CM-NAV (Lab ID: 60111560006)
 - 1,2,4-Trimethylbenzene

Page 12 of 67

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

Method:

EPA 8260 Description: 8260 MSV GRO and Oxygenates

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

5 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recovenes and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

Method:

EPA 8260

Description: 8260 MSV UST, Water

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/42321

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 14 of 67

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No .: 60111560

Method:

SM 2320B

Description: 2320B Alkalinity

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

8 samples were analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Method: SM 2540C

Description: 2540C Total Dissolved Solids

Client: COP Conestoga-Rovers & Associates, Inc. NM

Date: January 06, 2012

General Information:

8 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H5: Reanalysis conducted in excess of EPA method holding time. Results confirm original analysis performed in hold time.

• PW-074922-120211-CM-DUP (Lab ID: 60111560005)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: WET/32477

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- PW-074922-120211-CM-DUP (Lab ID: 60111560005)
 - · Total Dissolved Solids

REPORT OF LABORATORY ANALYSIS

Page 16 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

Method:

SM 4500-S-2 F

Description: 4500S2F Sulfide, Iodometric

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

8 samples were analyzed for SM 4500-S-2 F. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days

Client: COP C

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

8 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/18657

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60111334002,60111380002

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- · MS (Lab ID: 926247)
 - Sulfate
- MS (Lab ID: 926249)
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: WETA/18657

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- PW-074922-120211-CM-DUP (Lab ID: 60111560005)
 - Bromide

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 18 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: DW-074922-120111-CM-46	Lab ID: 60111560001	Collected:	12/01/11 09	:45	Received: 12/	06/11 09:15 M	latrix: Water	
		Report						
Parameters	Results Units	Limit	MDL D)F	Prepared	Analyzed	CAS No.	Qua
015B Diesel Range Organics	Analytical Method: EPA 8	015B Prepa	ration Method	l: EP	A 3510C			
TPH-DRO	ND mg/L	0.50	0.097	1	12/08/11 00:00	12/14/11 21:42		
Surrogates								
p-Terphenyl (S)	64 %	40-118		1	12/08/11 00:00	12/14/11 21:42		
n-Tetracosane (S)	67 %	36-120		1	12/08/11 00:00	12/14/11 21:42	646-31-1	
Gasoline Range Organics	Analytical Method: EPA 5	030B/8015B						
TPH-GRO	0.039J mg/L	0.50	0.025	1		12/10/11 01:19		
Surrogates								
4-Bromofluorobenzene (S)	94 %	63-139		1		12/10/11 01:19	460-00-4	
Preservation pH	1.0			1		12/10/11 01:19		
6010 MET ICP, Dissolved	Analytical Method: EPA 6	010 Prepara	ation Method:	EPA	3010			
Boron, Dissolved	255 ug/L	200	4.6	2	12/13/11 15:20	12/15/11 18:13		
Calcium, Dissolved	297000 ug/L	200	14.2	2	12/13/11 15:20	12/15/11 18:13	7440-70-2	
Magnesium, Dissolved	9410 ug/L	100	20.0	2	12/13/11 15:20	12/15/11 18:13	7439-95-4	
Potassium, Dissolved	4290 ug/L	1000	127	2	12/13/11 15:20	12/15/11 18:13	7440-09-7	
Sodium, Dissolved	1110000 ug/L	2500	71.0	5	12/13/11 15:20	12/15/11 18:10	7440-23-5	
3260 MSV	Analytical Method: EPA 5	030B/8260						
Acetone	ND ug/L	10.0	2.2	1		12/08/11 11:12	67-64-1	
Benzene	ND ug/L	1.0	0.070	1		12/08/11 11:12	71-43-2	
Bromobenzene	ND ug/L	1.0	0.064	1		12/08/11 11:12	108-86-1	
Bromochloromethane	ND ug/L	1.0	0.10	1		12/08/11 11:12	74-97-5	
Bromodichloromethane	ND ug/L	1.0		1		12/08/11 11:12	75-27-4	
Bromoform	ND ug/L	1.0		1		12/08/11 11:12		
Bromomethane	ND ug/L	1.0		1		12/08/11 11:12		
2-Butanone (MEK)	ND ug/L	10.0		1		12/08/11 11:12		
n-Butylbenzene	ND ug/L	1.0		1		12/08/11 11:12		
•	ND ug/L	1.0		1		12/08/11 11:12		
sec-Butylbenzene	ND ug/L	1.0		1		12/08/11 11:12		
tert-Buty Ibenzene	-	5.0		1		12/08/11 11:12		
Carbon disulfide	0.72J ug/L	1.0		1		12/08/11 11:12		
Carbon tetrachloride	ND ug/L	1.0		1		12/08/11 11:12		
Chlorobenzene	ND ug/L			1				
Chloroethane	ND ug/L	1.0				12/08/11 11:12		
Chloroform	ND ug/L	1.0		1		12/08/11 11:12		
Chloromethane	ND ug/L	1.0		1		12/08/11 11:12		
2-Chlorotoluene	ND ug/L	1.0		1		12/08/11 11:12		
4-Chlorotoluene	ND ug/L	1.0		1		12/08/11 11:12		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5		1		12/08/11 11:12		
Dibromochloromethane	ND ug/L	1.0		1		12/08/11 11:12		
1,2-Dibromoethane (EDB)	ND ug/L	1.0		1		12/08/11 11:12		
Dibromomethane	ND ug/L	1.0	0.12	1		12/08/11 11:12	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	0.077	1		12/08/11 11:12		
1,3-Dichlorobenzene	ND ug/L	1.0	0.068	1		12/08/11 11:12	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	0.072	1		12/08/11 11:12		
Dichlorodifluoromethane	ND ug/L	1.0		1		12/08/11 11:12		

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: DW-074922-120111-CM-46	Lab ID:	60111560001	Collected	1: 12/01/11	09:45	Received: 12	2/06/11 09:15 Ma	atrix: Water	
Demonstra	Desulte	Maida	Report	MDI	DF	Prepared	Analyzed	CAS No.	Qua
Parameters	Results	Units	Limit	MDL	DL	Frepared	Analyzeu	CAS NO.	- Que
260 MSV	Analytica	Method: EPA 5	030B/8260						
1,1-Dichloroethane	ND t	ug/L	1.0	0.079	1		12/08/11 11:12	75-34-3	
1,2-Dichloroethane	ND t	ıg/L	1.0	0.080	1		12/08/11 11:12	107-06-2	
1,2-Dichloroethene (Total)	ND (ıg/L	1.0	0.12	1		12/08/11 11:12	540-59-0	
1,1-Dichloroethene	ND t	ıg/L	1.0	0.13	1		12/08/11 11:12	75-35-4	
cis-1,2-Dichloroethene	ND t	ug/L	1.0	0.086	1		12/08/11 11:12	156-59-2	
rans-1,2-Dichloroethene	ND t	_	1.0	0.085	1		12/08/11 11:12	156-60-5	
1,2-Dichloropropane	ND (_	1.0	0.045	1		12/08/11 11:12	78-87-5	
1,3-Dichloropropane	ND I	-	1.0	0.097	1		12/08/11 11:12	142-28-9	
2,2-Dichloropropane	ND t	-	1.0	0.11	1		12/08/11 11:12	594-20-7	
,1-Dichloropropene	ND i	-	1.0	0.088	1		12/08/11 11:12		
cis-1,3-Dichloropropene	ND I	_	1.0	0.066	1		12/08/11 11:12		
rans-1,3-Dichloropropene	ND I	-	1.0	0.080	1		12/08/11 11:12		
Ethylbenzene	ND I		1.0	0.078	1		12/08/11 11:12		
Hexachloro-1,3-butadiene	ND I	_	1.0	0.11	1		12/08/11 11:12		
2-Hexanone	ND I	•	10.0	0.50	1		12/08/11 11:12		
sopropylbenzene (Cumene)	ND (_	1.0	0.069	1		12/08/11 11:12		
o-Isopropyltoluene	ND (_	1.0	0.065	1		12/08/11 11:12		
Methylene chloride	ND	•	1.0	0.12	1		12/08/11 11:12		
4-Methyl-2-pentanone (MIBK)	ND (-	10.0	0.33	1		12/08/11 11:12		
Methyl-tert-butyl ether	ND	_	1.0	0.077	1		12/08/11 11:12		
Naphthalene	ND		10.0	0.14	1		12/08/11 11:12		
n-Propylbenzene	ND	-	1.0	0.071	1		12/08/11 11:12		
Styrene	ND	_	1.0	0.080	1		12/08/11 11:12		
1,1,1,2-Tetrachloroethane	ND	_	1.0	0.12	1		12/08/11 11:12		
1,1,2,2-Tetrachloroethane	ND 1	-	1.0	0.12	1		12/08/11 11:12		
Tetrachloroethene	ND	-	1.0	0.073	1		12/08/11 11:12		
Toluene	ND	•	1.0	0.064	1		12/08/11 11:12		
1,2,3-Trichlorobenzene	ND	_	1.0	0.11	1		12/08/11 11:12		
1,2,4-Trichlorobenzene	ND	-	1.0	0.10	1		12/08/11 11:12		
1,1,1-Trichloroethane	ND	_	1.0	0.13	1		12/08/11 11:12		
1,1,2-Trichloroethane	ND	_	1.0	0.15	1		12/08/11 11:12		
Trichloroethene	ND	_	1.0	0.064	1		12/08/11 11:12		
Trichlorofluoromethane	ND	-	1.0	0.064	1		12/08/11 11:12		
1,2,3-Trichloropropane	ND	_	2.5	0.36	1		12/08/11 11:12		
1,2,4-Trimethylbenzene	ND	_	1.0	0.060	1		12/08/11 11:12		
1,3,5-Trimethylbenzene	ND	-	1.0	0.094	1		12/08/11 11:12		
Vinyl chloride	ND	•	1.0	0.068	1		12/08/11 11:12		
Xylene (Total)	ND	-	3.0	0.15	1		12/08/11 11:12		
Surrogates		-3-	0.0	0.10			.270077. 11.12	. 300 20 1	
4-Bromofluorobenzene (S)	95	%	87-113		1		12/08/11 11:12	460-00-4	
Dibromofluoromethane (S)	99		86-112		1		12/08/11 11:12		
1,2-Dichloroethane-d4 (S)	89		82-119		1		12/08/11 11:12		
Toluene-d8 (S)	103		90-110		1		12/08/11 11:12		
Preservation pH	1.0	-	0.10	0.10	1		12/08/11 11:12		

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 20 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: DW-074922-120111-CM-46	Lab ID: 60111560001	Collected:	12/01/11	09:45	Received: 12	/06/11 09:15 M	atrix: Water	
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical Method: SM 23	320B						
Alkalinity,Bicarbonate (CaCO3)	126 mg/L	20.0	3.8	1		12/15/11 14:30		
Alkalinity, Total as CaCO3	126 mg/L	20.0	3.8	1		12/15/11 14:30		
2540C Total Dissolved Solids	Analytical Method: SM 25	540C						
Total Dissolved Solids	3930 mg/L	5.0	5.0	1		12/08/11 08:13		
4500S2F Sulfide, Iodometric	Analytical Method: SM 45	500-S-2 F						
Sulfide	ND mg/L	0.50	0.23	1		12/08/11 16:50	18496-25-8	
300.0 IC Anions 28 Days	Analytical Method: EPA	300.0						
Bromide	2.6 mg/L	1.0	0.061	1		12/15/11 14:09	24959-67-9	
Chloride	4.8 mg/L	1.0	0.054	1		12/15/11 14:09	16887-00-6	
Sulfate	3310 mg/L	200	15.2	200		12/16/11 09:33	14808-79-8	

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: DW-074922-120111-CM-29	Lab ID: 601115600	002 Collected	d: 12/01/11	11:50	Received: 12/	Received: 12/06/11 09:15 Matrix: Wate		
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Parameters	Results Units	_ LIIIIL	WIDL .	DF	- repared	Analyzed	CAS NO.	Qua
8015B Diesel Range Organics	Analytical Method: Ef	PA 8015B Prep	aration Met	hod: EF	PA 3510C			
TPH-DRO	ND mg/L	0.50	0.097	1	12/08/11 00:00	12/14/11 21:54		
Surrogates								
p-Terphenyl (S)	59 %	40-118		1	12/08/11 00:00	12/14/11 21:54		
n-Tetracosane (S)	60 %	36-120		1	12/08/11 00:00	12/14/11 21:54	646-31-1	
Gasoline Range Organics	Analytical Method: El	PA 5030B/8015	В					
TPH-GRO Surrogates	0.027J mg/L	0.50	0.025	1		12/10/11 01:42		
4-Bromofluorobenzene (S)	95 %	63-139		1		12/10/11 01:42	460-00-4	
Preservation pH	1.0			1		12/10/11 01:42		
6010 MET ICP, Dissolved	Analytical Method: El	PA 6010 Prepa	ration Meth	od: EPA	3010			
Boron, Dissolved	164 ug/L	100	2.3	1	12/13/11 15:20	12/15/11 18:28	7440-42-8	
Calcium, Dissolved	414000 ug/L	100	7.1	1	12/13/11 15:20	12/15/11 18:28		
Magnesium, Dissolved	9590 ug/L	50.0	10.0	1	12/13/11 15:20			
Potassium, Dissolved	5340 ug/L	500	63.4	1	12/13/11 15:20	12/15/11 18:28		
Sodium, Dissolved	684000 ug/L	2500	71.0	5	12/13/11 15:20	12/15/11 18:17		
8260 MSV	Analytical Method: El	PA 5030B/8260						
Acetone	ND ug/L	10.0	2.2	1		12/08/11 11:28	67-64-1	
Benzene	ND ug/L	1.0	0.070	1		12/08/11 11:28		
Bromobenzene	ND ug/L	1.0	0.064	1		12/08/11 11:28		
Bromochloromethane	ND ug/L	1.0	0.10	1		12/08/11 11:28		
Bromodichloromethane	ND ug/L	1.0	0.10	1		12/08/11 11:28		
		1.0	0.11	1		12/08/11 11:28		
Bromoform	ND ug/L			1				
Bromomethane	ND ug/L	1.0	0.22			12/08/11 11:28		
2-Butanone (MEK)	ND ug/L	10.0	0.41	1		12/08/11 11:28		
n-Butylbenzene	ND ug/L	1.0	0.078	1		12/08/11 11:28		
sec-Butylbenzene	ND ug/L	1.0	0.047	1		12/08/11 11:28		
tert-Butylbenzene	ND ug/L	1.0	0.066	1		12/08/11 11:28		
Carbon disulfide	ND ug/L	5.0	0.053	1		12/08/11 11:28		
Carbon tetrachloride	ND ug/L	1.0	0.23	1		12/08/11 11:28		
Chlorobenzene	ND ug/L	1.0	0.093	1		12/08/11 11:28		
Chloroethane	ND ug/L	1.0	0.19	1		12/08/11 11:28		
Chloroform	3.1 ug/L	1.0	0.087	1		12/08/11 11:28	67-66-3	
Chloromethane	ND ug/L	1.0	0.24	1		12/08/11 11:28		
2-Chlorotoluene	ND ug/L	1.0	0.19	1		12/08/11 11:28	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	0.12	1		12/08/11 11:28	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	0.66	1		12/08/11 11:28	96-12-8	
Dibromochloromethane	ND ug/L	1.0	0.091	1		12/08/11 11:28	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	0.13	1		12/08/11 11:28	106-93-4	
Dibromomethane	ND ug/L	1.0	0.12	1		12/08/11 11:28		
1,2-Dichlorobenzene	ND ug/L	1.0	0.077	1		12/08/11 11:28		
1,3-Dichlorobenzene	ND ug/L	1.0	0.068	1		12/08/11 11:28		
1,4-Dichlorobenzene	ND ug/L	1.0	0.072	1		12/08/11 11:28		
Dichlorodifluoromethane	ND ug/L	1.0	0.072	1		12/08/11 11:28		

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

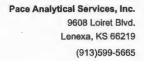
Page 22 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560


Sample: DW-074922-120111-CM-29	Lab ID:	60111560002	Collected	1: 12/01/11	11:50	Received: 12	/06/11 09:15 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
	-	Method: EPA 5							
3260 MSV	•						40/00/44 44 00	75.04.0	
1,1-Dichloroethane	ND t	-	1.0	0.079	1		12/08/11 11:28		
1,2-Dichloroethane	ND t	-	1.0	0.080	1		12/08/11 11:28		
1,2-Dichloroethene (Total)	ND t	-	1.0	0.12	1		12/08/11 11:28		
1,1-Dichloroethene	ND t	-	1.0	0.13	1		12/08/11 11:28		
cis-1,2-Dichloroethene	ND t	ıg/L	1.0	0.086	1		12/08/11 11:28		
rans-1,2-Dichloroethene	ND t	ıg/L	1.0	0.085	1		12/08/11 11:28	156-60-5	
1,2-Dichloropropane	ND t	ıg/L	1.0	0.045	1		12/08/11 11:28	78-87-5	
1,3-Dichloropropane	ND t	ıg/L	1.0	0.097	1		12/08/11 11:28	142-28-9	
2,2-Dichloropropane	ND t	ıg/L	1.0	0.11	1		12/08/11 11:28	594-20-7	
1,1-Dichloropropene	ND t	ıg/L	1.0	0.088	1		12/08/11 11:28	563-58-6	
cis-1,3-Dichloropropene	ND t	ıg/L	1.0	0.066	1		12/08/11 11:28	10061-01-5	
rans-1,3-Dichloropropene	ND t	_	1.0	0.080	1		12/08/11 11:28		
Ethylbenzene	ND I	•	1.0	0.078	1		12/08/11 11:28		
Hexachloro-1,3-butadiene	ND t	-	1.0	0.11	1		12/08/11 11:28		
2-Hexanone	ND t	•	10.0	0.50	1		12/08/11 11:28		
sopropylbenzene (Cumene)	ND t		1.0	0.069	1		12/08/11 11:28		
o-Isopropyltoluene	ND I		1.0	0.065	1		12/08/11 11:28		
Methylene chloride	ND (_	1.0	0.003	1		12/08/11 11:28		
		_							
4-Methyl-2-pentanone (MIBK)	ND I	•	10.0	0.33	1		12/08/11 11:28		
Methyl-tert-butyl ether	ND I		1.0	0.077	1		12/08/11 11:28		
Naphthalene	ND I	•	10.0	0.14	1		12/08/11 11:28		
n-Propylbenzene	ND (-	1.0	0.071	1		12/08/11 11:28		
Styrene	ND (-	1.0	0.080	1		12/08/11 11:28		
1,1,1,2-Tetrachloroethane	ND I	•	1.0	0.12	1		12/08/11 11:28		
1,1,2,2-Tetrachloroethane	ND I	-	1.0	0.12	1		12/08/11 11:28		
Tetrachloroethene	ND i	ıg/L	1.0	0.073	1		12/08/11 11:28		
Toluene	ND I	ug/L	1.0	0.064	1	,	12/08/11 11:28	108-88-3	
1,2,3-Trichlorobenzene	ND I	ug/L	1.0	0.11	1		12/08/11 11:28	87-61-6	
1,2,4-Trichlorobenzene	ND I	ıg/L	1.0	0.10	1		12/08/11 11:28	120-82-1	
1,1,1-Trichloroethane	ND I	ıg/L	1.0	0.13	1		12/08/11 11:28	71-55-6	
1,1,2-Trichloroethane	ND I	ug/L	1.0	0.15	1		12/08/11 11:28	79-130-5	
Trichloroethene	ND I	ug/L	1.0	0.064	1		12/08/11 11:28	79-01-6	
Trichlorofluoromethane	ND I	ug/L	1.0	0.064	1		12/08/11 11:28	75-69-4	
1,2,3-Trichloropropane	ND I	ug/L	2.5	0.36	1		12/08/11 11:28	96-18-4	
1,2,4-Trimethylbenzene	ND I	-	1.0	0.060	1		12/08/11 11:28		
1,3,5-Trimethylbenzene	ND I	ua/L	1.0	0.094	1		12/08/11 11:28	108-67-8	
Vinyl chloride	ND		1.0	0.068	1		12/08/11 11:28		
Xylene (Total)	ND	_	3.0	0.15	1		12/08/11 11:28		
Surrogates		-3-	0.0	0.10					
4-Bromofluorobenzene (S)	95	%	87-113		1 .		12/08/11 11:28	460-00-4	
Dibromofluoromethane (S)	100		86-112		1		12/08/11 11:28		
1,2-Dichloroethane-d4 (S)	89		82-119		1		12/08/11 11:28		
Toluene-d8 (S)	102		90-110		1		12/08/11 11:28		
Preservation pH	1.0	70	0.10	0.10	1		12/08/11 11:28	2001-20-0	

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 23 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: DW-074922-120111-CM-29	Lab ID:	60111560002	Collected: Report	12/01/11	11:50	Received: 12	/06/11 09:15 Ma	atrix: Water	
Parameters	Results	Units	Limit	MDL	DF ·	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity,Bicarbonate (CaCO3)	184 m	ıg/L	20.0	3.8	1		12/15/11 14:30		
Alkalinity, Total as CaCO3	184 m	ng/L	20.0	3.8	1		12/15/11 14:30		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	2620 m	ng/L	5.0	5.0	1		12/08/11 08:14		
4500S2F Sulfide, lodometric	Analytical	Method: SM 45	500-S-2 F						
Sulfide	ND m	ng/L	0.50	0.23	1		12/08/11 16:50	18496-25-8	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Bromide	0.39J m	ng/L	1.0	0.061	1		12/15/11 17:02	24959-67-9	
Chloride	5.6 m	ng/L	1.0	0.054	1		12/15/11 17:02	16887-00-6	
Sulfate	2240 m	ng/L	200	15.2	200		12/16/11 09:49	14808-79-8	

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: DW-074922-120111-CM-D3	Lab ID: 60111560003	Collected	: 12/01/11	12:55	Received: 12/	06/11 09:15 Ma	atrix: Water	
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8015B Diesel Range Organics	Analytical Method: EPA 8	015B Prepa	aration Met	hod: EF	PA 3510C			
TPH-DRO	ND mg/L	0.50	0.097	1	12/08/11 00:00	12/14/11 22:05		
Surrogates								
p-Terphenyl (S)	60 %	40-118		1	12/08/11 00:00	12/14/11 22:05	92-94-4	
n-Tetracosane (S)	61 %	36-120		1	12/08/11 00:00	12/14/11 22:05	646-31-1	
Gasoline Range Organics	Analytical Method: EPA 5	030B/8015E	3					
TPH-GRO	0.027J mg/L	0.50	0.025	1		12/10/11 02:04		
Surrogates	96 %	63-139		1		12/10/11 02:04	460.00.4	
4-Bromofluorobenzene (S) Preservation pH	1.0	03-139		1		12/10/11 02:04 12/10/11 02:04	460-00-4	
Freservation pri	1.0			'		12/10/11 02.04		
6010 MET ICP, Dissolved	Analytical Method: EPA 6	010 Prepar	ation Metho	od: EPA	3010			
Boron, Dissolved	84.8J ug/L	100	2.3	1	12/13/11 15:20	12/15/11 18:32	7440-42-8	
Calcium, Dissolved	106000 ug/L	100	7.1	1	12/13/11 15:20	12/15/11 18:32	7440-70-2	
Magnesium, Dissolved	3160 ug/L	50.0	10.0	1	12/13/11 15:20	12/15/11 18:32	7439-95-4	
Potassium, Dissolved	1650 ug/L	500	63.4	1	12/13/11 15:20	12/15/11 18:32	7440-09-7	
Sodium, Dissolved	169000 ug/L	500	14.2	1	12/13/11 15:20	12/15/11 18:32	7440-23-5	
8260 MSV	Analytical Method: EPA 5	6030B/8260						
Acetone	ND ug/L	10.0	2.2	1		12/08/11 11:43	67-64-1	
Benzene	ND ug/L	1.0	0.070	1		12/08/11 11:43		
Bromobenzene	ND ug/L	1.0	0.064	1		12/08/11 11:43		
Bromochloromethane	ND ug/L	1.0	0.10	1		12/08/11 11:43		
Bromodichloromethane	ND ug/L	1.0	0.11	1		12/08/11 11:43		
Bromoform	ND ug/L	1.0	0.15	1		12/08/11 11:43		
Bromomethane	ND ug/L	1.0	0.22	1		12/08/11 11:43		
2-Butanone (MEK)	ND ug/L	10.0	0.41	1		12/08/11 11:43		
, ,	ND ug/L	1.0	0.078	1		12/08/11 11:43		
n-Butylbenzene	_			1				
sec-Butylbenzene	ND ug/L	1.0	0.047			12/08/11 11:43		
tert-Butylbenzene Carbon disulfide	ND ug/L	1.0	0.066	1		12/08/11 11:43		
	ND ug/L	5.0	0.053			12/08/11 11:43		
Carbon tetrachloride Chlorobenzene	ND ug/L	1.0	0.23	1		12/08/11 11:43		
-111011-1111-1111	ND ug/L	1.0	0.093	1		12/08/11 11:43		
Chloroethane	ND ug/L	1.0	0.19	1		12/08/11 11:43		
Chloroform	ND ug/L	1.0	0.087	1		12/08/11 11:43		
Chloromethane	ND ug/L	1.0	0.24	1		12/08/11 11:43		
2-Chlorotoluene	ND ug/L	1.0	0.19	1		12/08/11 11:43		
4-Chlorotoluene	ND ug/L	1.0	0.12	1		12/08/11 11:43		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	0.66	1		12/08/11 11:43		
Dibromochloromethane	ND ug/L	1.0	0.091	1		12/08/11 11:43		
1,2-Dibromoethane (EDB)	ND ug/L	1.0	0.13	1		12/08/11 11:43		
Dibromomethane	ND ug/L	1.0	0.12	1		12/08/11 11:43		
1,2-Dichlorobenzene	ND ug/L	1.0	0.077	1		12/08/11 11:43	95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	0.068	1		12/08/11 11:43	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	0.072	1		12/08/11 11:43	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	0.15	1		12/08/11 11:43	75-71-8	

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

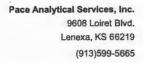
Page 25 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560


Sample: DW-074922-120111-CM-D3	Lab ID: 6011156000	3 Collected	d: 12/01/11	12:55	Received: 12	2/06/11 09:15 Ma	atrix: Water	
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
2260 MSV	Analytical Method: EPA	5030B/8260						
1,1-Dichloroethane	ND ug/L	1.0	0.079	1		12/08/11 11:43	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	0.080	1		12/08/11 11:43	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	0.12	1		12/08/11 11:43	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	0.13	1		12/08/11 11:43	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	0.086	1		12/08/11 11:43	156-59-2	
rans-1,2-Dichloroethene	ND ug/L	1.0	0.085	1		12/08/11 11:43	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	0.045	1		12/08/11 11:43		
1,3-Dichloropropane	ND ug/L	1.0	0.097	1		12/08/11 11:43		
2,2-Dichloropropane	ND ug/L	1.0	0.11	1		12/08/11 11:43		
1,1-Dichloropropene	ND ug/L	1.0	0.088	1		12/08/11 11:43		
cis-1,3-Dichloropropene	ND ug/L	1.0	0.066	1		12/08/11 11:43		
rans-1,3-Dichloropropene	ND ug/L	1.0	0.080	1		12/08/11 11:43		
Ethylbenzene	ND ug/L	1.0	0.078	1		12/08/11 11:43		
Hexachloro-1,3-butadiene	ND ug/L	1.0	0.11	1		12/08/11 11:43		
2-Hexanone	ND ug/L	10.0	0.50	1		12/08/11 11:43		
				1				
sopropylbenzene (Cumene)	ND ug/L	1.0	0.069			12/08/11 11:43		
o-Isopropyltoluene	ND ug/L	1.0	0.065	1		12/08/11 11:43		
Methylene chloride	ND ug/L	1.0	0.12	1		12/08/11 11:43		
4-Methyl-2-pentanone (MiBK)	ND ug/L	10.0	0.33	1		12/08/11 11:43		
Methyl-tert-butyl ether	ND ug/L	1.0	0.077	1		12/08/11 11:43		
Naphthalene	ND ug/L	10.0	0.14	1		12/08/11 11:43		
n-Propylbenzene	ND ug/L	1.0	0.071	1		12/08/11 11:43		
Styrene	ND ug/L	1.0	0.080	1		12/08/11 11:43		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	0.12	1		12/08/11 11:43		
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	0.12	1		12/08/11 11:43		
Tetrachloroethene	ND ug/L	1.0	0.073	1		12/08/11 11:43	127-18-4	
Toluene	ND ug/L	1.0	0.064	1		12/08/11 11:43	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	0.11	1		12/08/11 11:43	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	0.10	1		12/08/11 11:43	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	0.13	1		12/08/11 11:43	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	0.15	1		12/08/11 11:43	79-00-5	
Trichloroethene	ND ug/L	1.0	0.064	1		12/08/11 11:43	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	0.064	1		12/08/11 11:43	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	0.36	1		12/08/11 11:43	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	0.060	1		12/08/11 11:43	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	0.094	1		12/08/11 11:43	108-67-8	
Vinyl chloride	ND ug/L	1.0	0.068	1		12/08/11 11:43	75-01-4	
Xylene (Total)	ND ug/L	3.0	0.15	1		12/08/11 11:43		
Surrogates								
4-Bromofluorobenzene (S)	95 %	87-113		1		12/08/11 11:43	460-00-4	
Dibromofluoromethane (S)	99 %	86-112		1		12/08/11 11:43	1868-53-7	
1,2-Dichloroethane-d4 (S)	88 %	82-119		1		12/08/11 11:43	17060-07-0	
Toluene-d8 (S)	101 %	90-110		1		12/08/11 11:43		
Preservation pH	1.0	0.10	0.10	1		12/08/11 11:43		

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 26 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: DW-074922-120111-CM-D3	Lab ID: 6	0111560003	Collected:	12/01/11	12:55	Received: 12	/06/11 09:15 M	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical M	lethod: SM 23	320B						
Alkalinity,Bicarbonate (CaCO3)	242 mg	/L	20.0	3.8	1		12/15/11 14:30		
Alkalinity, Total as CaCO3	242 mg	/L	20.0	3.8	1		12/15/11 14:30		
2540C Total Dissolved Solids	Analytical M	lethod: SM 25	540C						
Total Dissolved Solids	800 mg	/L	5.0	5.0	1		12/08/11 08:15		
4500S2F Sulfide, Iodometric	Analytical M	lethod: SM 4	500-S-2 F						
Sulfide	ND mg	/L	0.50	0.23	1		12/08/11 16:50	18496-25-8	
300.0 IC Anions 28 Days	Analytical M	lethod: EPA 3	0.008						
Bromide	ND mg	/L	1.0	0.061	1		12/15/11 17:35	24959-67-9	
Chloride	5.6 mg	/L	1.0	0.054	1		12/15/11 17:35	16887-00-6	
Sulfate	396 mg	/L	50.0	3.8	50		12/14/11 22:30	14808-79-8	

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:


60111560

Sample: PW-074922-120111-CM-202	Lab ID: 6011156000	4 Collected	d: 12/01/11	13:40	Received: 12/	06/11 09:15 Ma	atrix: Water	
		Report						
Parameters	Results Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8015B Diesel Range Organics	Analytical Method: EPA	8015B Prepa	aration Met	hod: EF	PA 3510C			
TPH-DRO	9.6 mg/L	0.50	0.097	1	12/08/11 00:00	12/14/11 22:16		
Surrogates								
p-Terphenyl (S)	74 %	40-118		1	12/08/11 00:00	12/14/11 22:16		
n-Tetracosane (S)	80 %	36-120		1	12/08/11 00:00	12/14/11 22:16	646-31-1	
Gasoline Range Organics	Analytical Method: EPA	5030B/8015	3					
TPH-GRO Surrogates	0.030J mg/L	0.50	0.025	1		12/20/11 11:40		B,H1
4-Bromofluorobenzene (S)	86 %	63-139		1		12/20/11 11:40	460-00-4	
Preservation pH	1.0			1		12/20/11 11:40		H1
6010 MET ICP, Dissolved	Analytical Method: EPA	6010 Prepar	ration Meth	od: EPA	3010			
Boron, Dissolved	1800 ug/L	1000	23.0	10	12/13/11 15:20	12/15/11 18:35	7440-42-8	
Calcium, Dissolved	12000 ug/L	1000	71.0	10		12/15/11 18:35		
Magnesium, Dissolved	10800 ug/L	500	100	10		12/15/11 18:35		
Potassium, Dissolved	13000 ug/L	5000	634	10		12/15/11 18:35		
Sodium, Dissolved	2940000 ug/L	5000	142	10		12/15/11 18:35		
8260 MSV	Analytical Method: EPA	5030B/8260						
Acetone	ND ug/L	10.0	2.2	1		12/08/11 11:59	67 64 1	
Benzene			0.070	1				
	ND ug/L	1.0				12/08/11 11:59		
Bromobenzene	ND ug/L	1.0	0.064	1		12/08/11 11:59		
Bromochloromethane	ND ug/L	1.0	0.10	1		12/08/11 11:59		
Bromodichloromethane	ND ug/L	1.0	0.11	1		12/08/11 11:59		
Bromoform	ND ug/L	1.0	0.15	1		12/08/11 11:59		
Bromomethane	ND ug/L	1.0	0.22	1		12/08/11 11:59		
2-Butanone (MEK)	1.2J ug/L	10.0	0.41	1		12/08/11 11:59		
n-Butylbenzene	ND ug/L	1.0	0.078	1		12/08/11 11:59		
sec-Butylbenzene	ND ug/L	1.0	0.047	1		12/08/11 11:59		
tert-Butylbenzene	ND ug/L	1.0	0.066	1		12/08/11 11:59		
Carbon disulfide	ND ug/L	5.0	0.053	1		12/08/11 11:59		
Carbon tetrachloride	ND ug/L	1.0	0.23	1		12/08/11 11:59	56-23-5	
Chlorobenzene	ND ug/L	1.0	0.093	1		12/08/11 11:59	108-90-7	
Chloroethane	ND ug/L	1.0	0.19	1		12/08/11 11:59	75-00-3	
Chloroform	ND ug/L	1.0	0.087	1		12/08/11 11:59	67-66-3	
Chloromethane	ND ug/L	1.0	0.24	1		12/08/11 11:59		
2-Chlorotoluene	ND ug/L	1.0	0.19	1		12/08/11 11:59	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	0.12	1		12/08/11 11:59	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	0.66	1		12/08/11 11:59	96-12-8	
Dibromochloromethane	ND ug/L	1.0	0.091	1		12/08/11 11:59	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	0.13	1		12/08/11 11:59	106-93-4	
Dibromomethane	ND ug/L	1.0	0.12	1		12/08/11 11:59		
1,2-Dichlorobenzene	ND ug/L	1.0	0.077	1		12/08/11 11:59		
1,3-Dichlorobenzene	ND ug/L	1.0	0.068	1		12/08/11 11:59		
1,4-Dichlorobenzene	ND ug/L	1.0	0.072	1		12/08/11 11:59		
Dichlorodifluoromethane	ND ug/L	1.0	0.15	1		12/08/11 11:59		

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 28 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: PW-074922-120111-CM-202	Lab ID:	60111560004	Collected	12/01/11	13:40	Received: 12/06/11 09:15 Matrix: W			
Decemeters	Dogulto	Llaita	Report	MDI	DF	Depressed	Anches	CAS No.	Ove
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS NO.	Qua
260 MSV	Analytical	Method: EPA 5	030B/8260						
1,1-Dichloroethane	ND u	ıg/L	1.0	0.079	1		12/08/11 11:59	75-34-3	
1,2-Dichloroethane	ND u	ıg/L	1.0	0.080	1		12/08/11 11:59	107-06-2	
1,2-Dichloroethene (Total)	ND u	ıg/L	1.0	0.12	1		12/08/11 11:59	540-59-0	
1,1-Dichloroethene	ND u	ıg/L	1.0	0.13	1		12/08/11 11:59	75-35-4	
cis-1,2-Dichloroethene	ND u	ig/L	1.0	0.086	1		12/08/11 11:59	156-59-2	
rans-1,2-Dichloroethene	ND u		1.0	0.085	1		12/08/11 11:59		
,2-Dichloropropane	ND u	_	1.0	0.045	1		12/08/11 11:59		
,3-Dichloropropane	ND u		1.0	0.097	1		12/08/11 11:59		
2,2-Dichloropropane	ND u	•	1.0	0.11	1		12/08/11 11:59		
1,1-Dichloropropene	ND u		1.0	0.088	1		12/08/11 11:59		
cis-1,3-Dichloropropene	ND u	•	1.0	0.066	1		12/08/11 11:59		
rans-1,3-Dichloropropene	ND u	•	1.0	0.080	1		12/08/11 11:59		
Ethylbenzene	ND u		1.0	0.078	1		12/08/11 11:59		
Hexachloro-1,3-butadiene	ND u	•	1.0	0.070	1		12/08/11 11:59		
2-Hexanone	ND u	_	10.0	0.50	1		12/08/11 11:59		
sopropylbenzene (Cumene)	ND U	•	1.0	0.069	1		12/08/11 11:59		
p-Isopropyltoluene	ND u	-	1.0	0.065					
Methylene chloride		•			1		12/08/11 11:59		
-	ND u		1.0	0.12	1		12/08/11 11:59		
I-Methyl-2-pentanone (MIBK)	ND U	•	10.0	0.33	1		12/08/11 11:59		
Methyl-tert-butyl ether	ND u	-	1.0	0.077	1		12/08/11 11:59		
Vaphthalene	ND u	_	10.0	0.14	1		12/08/11 11:59		
n-Propylbenzene	ND u	•	1.0	0.071	1		12/08/11 11:59		
Styrene	ND u		1.0	0.080	1		12/08/11 11:59		
1,1,1,2-Tetrachloroethane	ND u	_	1.0	0.12	1		12/08/11 11:59		
1,1,2,2-Tetrachloroethane	ND·u	_	1.0	0.12	1		12/08/11 11:59		
Tetrachloroethene	ND u	_	1.0	0.073	1		12/08/11 11:59		
Toluene	ND t	-	1.0	0.064	1		12/08/11 11:59		
1,2,3-Trichlorobenzene	ND t	-	1.0	0.11	1		12/08/11 11:59		
1,2,4-Trichlorobenzene	ND t	ıg/L	1.0	0.10	1		12/08/11 11:59	120-82-1	
1,1,1-Trichloroethane	ND u	•	1.0	0.13	1		12/08/11 11:59	71-55-6	
1,1,2-Trichloroethane	ND t	ıg/L	1.0	0.15	1		12/08/11 11:59	79-00-5	
Trichloroethene	ND t	ıg/L	1.0	0.064	1		12/08/11 11:59	79-01-6	
Trichlorofluoromethane	ND t	ıg/L	1.0	0.064	1		12/08/11 11:59		
1,2,3-Trichloropropane	ND t	ıg/L	2.5	0.36	1		12/08/11 11:59		
1,2,4-Trimethylbenzene	ND t	ıg/L	1.0	0.060	1		12/08/11 11:59		
1,3,5-Trimethylbenzene	ND t		1.0	0.094	1		12/08/11 11:59		
Vinyl chloride	ND u		1.0	0.068	1		12/08/11 11:59	75-01-4	
Kylene (Total) Surrogates	ND t	ıg/L	3.0	0.15	1		12/08/11 11:59	1330-20-7	
4-Bromofluorobenzene (S)	98 9	%	87-113		1		12/08/11 11:59	460-00-4	
Dibromofluoromethane (S)	102 9		86-112		1		12/08/11 11:59		
1,2-Dichloroethane-d4 (S)	97 9		82-119		1		12/08/11 11:59		
Toluene-d8 (S)	101 9		90-110		1		12/08/11 11:59		
Preservation pH	7.0	-	0.10	0.10	1		12/08/11 11:59	2001-20-0	рН

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 29 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: PW-074922-120111-CM-202	Lab ID: 60111560004	Collected:	12/01/11	13:40	Received: 12	/06/11 09:15 Ma	atrix: Water	
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
3260 MSV GRO and Oxygenates	Analytical Method: EPA	3260						
TPH-GRO	ND ug/L	500	48.0	1		12/08/11 11:59		
2320B Alkalinity	Analytical Method: SM 2	320B						
Alkalinity, Bicarbonate (CaCO3)	5400 mg/L	20.0	3.8	1		12/15/11 14:30		
Alkalinity, Total as CaCO3	5400 mg/L	20.0	3.8	1		12/15/11 14:30		
2540C Total Dissolved Solids	Analytical Method: SM 2	540C						
Total Dissolved Solids	8160 mg/L	5.0	5.0	1		12/08/11 08:15		
4500S2F Sulfide, Iodometric	Analytical Method: SM 4	500-S-2 F						
Sulfide	ND mg/L	0.50	0.23	1		12/08/11 16:50	18496-25-8	
300.0 IC Anions 28 Days	Analytical Method: EPA	300.0						
Bromide	12.3 mg/L	5.0	0.30	5		12/16/11 11:45	24959-67-9	
Chloride	1530 mg/L	100	5.4	100		12/15/11 18:08	16887-00-6	
Sulfate	0.52J mg/L	1.0	0.076	1		12/15/11 17:51	14808-79-8	

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 30 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

Sample:	PW-074922-120211-CM-
---------	----------------------

Lab ID: 60111560005


Collected:	12/02/11 12:30	Received:	12/06/11 09:15	Maurix: Water

DUP Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8015B Diesel Range Organics	Analytical	Method: EP	A 8015B Prep	aration Met	hod: El	PA 3510C			
TPH-DRO	16.8 n	ng/L	2.5	0.48	5	12/08/11 00:00	12/14/11 22:28		
Surrogates									
o-Terphenyl (S)	60 %	6	40-118		5	12/08/11 00:00	12/14/11 22:28	92-94-4	S2
n-Tetracosane (S)	69 %	6	36-120		5	12/08/11 00:00	12/14/11 22:28	646-31-1	S2
Gasoline Range Organics	Analytical	Method: EP	A 5030B/8015	В					
TPH-GRO	1.6 r	ng/L	0.50	0.025	1		12/20/11 12:03		B,H1
Surrogates	70.0	,	00.400				40/00/44 40:00	400 00 4	
l-Bromofluorobenzene (S)	72 9	/0	63-139		1		12/20/11 12:03	460-00-4	114
Preservation pH	1.0				1		12/20/11 12:03		H1
010 MET ICP, Dissolved	Analytical	Method: EP	A 6010 Prepa	ration Metho	od: EP/	A 3010			
Boron, Dissolved	2090 (ıg/L	2000	46.0	20	12/13/11 15:20	12/15/11 18:39	7440-42-8	
Calcium, Dissolved	14100 u	-	2000	142	20	12/13/11 15:20	12/15/11 18:39	7440-70-2	
Magnesium, Dissolved	14000 u	-	1000	200	20	12/13/11 15:20	12/15/11 18:39	7439-95-4	
Potassium, Dissolved	41600 0	•	10000	1270	20		12/15/11 18:39		
Sodium, Dissolved	3270000 0	•	10000	284	20		12/15/11 18:39		
3260 MSV	Analytical	Method: EP	A 5030B/8260						
Acetone	43.3 L	ıa/L	10.0	3.4	1		12/15/11 18:21	67-64-1	
Benzene	97.8 0	•	1.0	0.070	1		12/08/11 12:14		
Bromobenzene	ND L	-	1.0	0.064	1		12/08/11 12:14		
Bromochloromethane	ND L	-	1.0	0.10	1		12/08/11 12:14		
3romodichloromethane	ND L	-	1.0	0.11	1		12/08/11 12:14		
Bromoform	ND L	_	1.0	0.15	1		12/08/11 12:14		
Bromomethane	ND L	•	1.0	0.13	1		12/08/11 12:14		
2-Butanone (MEK)	ND U	-	10.0	0.41	1		12/08/11 12:14		
· ·	1.2	_	1.0	0.078	1		12/08/11 12:14		
n-Butylbenzene		-	1.0	0.078	1		12/08/11 12:14		
sec-Buty/Ibenzene	0.15J ι ND ι	-	1.0	0.047	1		12/08/11 12:14		
ert-Butylbenzene Carbon disulfide		-	5.0	0.053	1		12/08/11 12:14		
Carbon tetrachloride	ND u	-	1.0	0.033	1		12/08/11 12:14		
		-			1		12/08/11 12:14		
Chlorobenzene	ND L	•	1.0	0.093	1		12/08/11 12:14		
Chloroethane	ND L	-	1.0	0.19	1		12/08/11 12:14		
Chloroform	ND L	-	1.0		1		12/08/11 12:14		
Chloromethane	ND L	-	1.0	0.24	1				
-Chlorotoluene	0.73J t		1.0	0.19			12/08/11 12:14		
-Chlorotoluene	0.18J t		1.0	0.12	1		12/08/11 12:14		
,2-Dibromo-3-chloropropane	ND L	•	2.5	0.66	1		12/08/11 12:14		
Dibromochloromethane	ND L	_	1.0	0.091	1		12/08/11 12:14		
,2-Dibromoethane (EDB)	ND u	_	1.0	0.13	1		12/08/11 12:14		
Dibromomethane	ND u	-	1.0	0.12	1		12/08/11 12:14		
1,2-Dichlorobenzene	ND u	_	1.0	0.077	1		12/08/11 12:14		
1,3-Dichlorobenzene	ND t	_	1.0	0.068	1		12/08/11 12:14		
1,4-Dichlorobenzene	ND t	ıg/L	1.0	0.072	1		12/08/11 12:14	106-46-7	

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 31 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: PW-074922-120211-CM-DUP Lab ID: 60111560005 Collected: 12/02/11 12:30 Received: 12/06/11 09:15 Matrix: Water

DUP									
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV	Analytica	al Method: EP	A 5030B/8260						
Dichlorodifluoromethane	ND	ug/L	1.0	0.15	1		12/08/11 12:14	75-71-8	
,1-Dichloroethane	ND	ug/L	1.0	0.079	1		12/08/11 12:14	75-34-3	
,2-Dichloroethane	ND	ug/L	1.0	0.080	1		12/08/11 12:14	107-06-2	
,2-Dichloroethene (Total)	ND	ug/L	1.0	0.12	1		12/08/11 12:14	540-59-0	
,1-Dichloroethene	ND		1.0	0.13	1		12/08/11 12:14	75-35-4	
is-1,2-Dichloroethene	ND	_	1.0	0.086	1		12/08/11 12:14	156-59-2	
rans-1,2-Dichloroethene	ND	_	1.0	0.085	1		12/08/11 12:14	156-60-5	
,2-Dichloropropane	ND	-	1.0	0.045	1		12/08/11 12:14	78-87-5	
,3-Dichloropropane	ND	-	1.0	0.097	1		12/08/11 12:14	142-28-9	
2,2-Dichloropropane	ND	_	1.0	0.11	1		12/08/11 12:14		
,1-Dichloropropene	ND	_	1.0	0.088	1		12/08/11 12:14		
cis-1,3-Dichloropropene	ND	_	1.0	0.066	1		12/08/11 12:14	10061-01-5	
rans-1,3-Dichloropropene	ND	•	1.0	0.080	1		12/08/11 12:14	10061-02-6	
Ethylbenzene	12.1	-	1.0	0.078	1		12/08/11 12:14	100-41-4	
Hexachloro-1,3-butadiene		ug/L	1.0	0.11	1		12/08/11 12:14		
2-Hexanone		ug/L	10.0	0.50	1		12/08/11 12:14		
sopropylbenzene (Cumene)	0.86J	_	1.0	0.069	1		12/08/11 12:14		
-Isopropyltoluene		ug/L	1.0	0.065	1		12/08/11 12:14		
Methylene chloride		ug/L	1.0	0.12	1		12/08/11 12:14		
-Methyl-2-pentanone (MIBK)		ug/L	10.0	0.33	1		12/08/11 12:14		
Methyl-tert-butyl ether		ug/L	1.0	0.077	1		12/08/11 12:14		
Naphthalene	13.1	•	10.0	0.14	1		12/08/11 12:14		
n-Propylbenzene	0.91J		1.0	0.071	1		12/08/11 12:14	103-65-1	
Styrene		ug/L	1.0	0.080	1		12/08/11 12:14		
1,1,1,2-Tetrachloroethane		ug/L	1.0	0.12	1		12/08/11 12:14		
1,1,2,2-Tetrachloroethane		ug/L	1.0	0.12	1		12/08/11 12:14		
Tetrachloroethene		ug/L	1.0	0.073	1		12/08/11 12:14		
Toluene		ug/L	1.0	0.064	1		12/08/11 12:14		
1,2,3-Trichlorobenzene		ug/L	1.0	0.11	1		12/08/11 12:14		
1,2,4-Trichlorobenzene		ug/L	1.0	0.10	1		12/08/11 12:14		
1,1,1-Trichloroethane		ug/L	1.0	0.13	1		12/08/11 12:14		
1,1,2-Trichloroethane		ug/L	1.0	0.15	1		12/08/11 12:14		
Trichloroethene		ug/L	1.0	0.064	1		12/08/11 12:14		
Trichlorofluoromethane		ug/L	1.0	0.064	1		12/08/11 12:14		
1,2,3-Trichloropropane		ug/L	2.5	0.36	1		12/08/11 12:14		
1,2,4-Trimethylbenzene		ug/L	1.0	0.060	1		12/08/11 12:14		В
1,3,5-Trimethylbenzene		ug/L	1.0	0.094	1		12/08/11 12:14		
/inyl chloride		ug/L	1.0	0.068	1		12/08/11 12:14		
(ylene (Total)		ug/L	3.0	0.15	1		12/08/11 12:14		
Surrogates		-3-	0.0	0.10					
4-Bromofluorobenzene (S)	96	%	87-113		1		12/08/11 12:14	460-00-4	
Dibromofluoromethane (S)	99		86-112		1		12/08/11 12:14		
1,2-Dichloroethane-d4 (S)	94		82-119		1		12/08/11 12:14		
Toluene-d8 (S)	105		90-110		1		12/08/11 12:14		
Preservation pH	7.0		0.10	0.10	1		12/08/11 12:14		рН

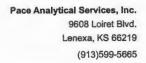
Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 32 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)


Pace Project No.: 60111560

Sample: PW-074922-120211-CM-

Lab ID: 60111560005

Collected: 12/02/11 12:30 Received: 12/06/11 09:15 Matrix: Water

DUP	Lab ID:	00111100000	5 Collected	1. 12/02/11	12:30	Received: 12	2/00/11/09.13 Ma	autx. vvater	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV GRO and Oxygenates	Analytical	Method: EP/	A 8260						
TPH-GRO	860 ug	g/L	500	48.0	1		12/08/11 12:14		
2320B Alkalinity	Analytical	Method: SM	2320B						
Alkalinity, Bicarbonate (CaCO3)	4600 m	g/L	20.0	3.8	1		12/15/11 14:30		
Alkalinity, Total as CaCO3	4640 m	ig/L	20.0	3.8	1		12/15/11 14:30		
2540C Total Dissolved Solids	Analytical	Method: SM	2540C						
Total Dissolved Solids	8300 m	g/L	5.0	5.0	1		12/09/11 09:47		E
Total Dissolved Solids	8320 m	g/L	5.0	5.0	1		12/13/11 17:15		H5
4500S2F Sulfide, Iodometric	Analytical	Method: SM	4500-S-2 F						
Sulfide	1.0 m	ıg/L	0.50	0.23	1		12/08/11 16:50	18496-25-8	
300.0 IC Anions 28 Days	Analytical	Method: EP	A 300.0						
Bromide	9.1J m	ıg/L	10.0	0.61	10		12/16/11 10:22	24959-67-9	D3
Chloride	2190 m	ıg/L	500	27.0	500		12/16/11 12:02	16887-00-6	
Sulfate	14.3 m	a/L	1.0	0.076	1		12/15/11 18:24	14808-79-8	

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: SW-074922-120211-CM- NAV	Lab ID: 60111560006	Collected:	12/02/11 0	9:00	Received: 12/	06/11 09:15 Ma	atrix: Water	
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8015B Diesel Range Organics	Analytical Method: EPA	8015B Prepa	ration Metho	od: EF	PA 3510C			
TPH-DRO	ND mg/L	0.50	0.097	1	12/08/11 00:00	12/14/11 22:39		
Surrogates	0							
p-Terphenyi (S)	65 %	40-118		1	12/08/11 00:00	12/14/11 22:39	92-94-4	
n-Tetracosane (S)	64 %	36-120		1	12/08/11 00:00	12/14/11 22:39	646-31-1	
Gasoline Range Organics	Analytical Method: EPA	5030B/8015B						
TPH-GRO	0.033J mg/L	0.50	0.025	1		12/20/11 12:26		B,H1
Surrogates	olooo iiigiz	0.00	0.020			,		_,
4-Bromofluorobenzene (S)	83 %	63-139		1		12/20/11 12:26	460-00-4	
Preservation pH	1.0			1		12/20/11 12:26		H1
		0040 D	4: NA-4b	J. EDA	2010			
6010 MET ICP, Dissolved	Analytical Method: EPA	6010 Prepara	ation Method	I. EPA	3010			
Boron, Dissolved	16.6J ug/L	100	2.3	1	12/13/11 15:20	12/15/11 18:43	7440-42-8	
Calcium, Dissolved	24900 ug/L	100	7.1	1	12/13/11 15:20	12/15/11 18:43	7440-70-2	
Magnesium, Dissolved	4670 ug/L	50.0	10.0	1	12/13/11 15:20	12/15/11 18:43	7439-95-4	
Potassium, Dissolved	1950 ug/L	500	63.4	1	12/13/11 15:20	12/15/11 18:43	7440-09-7	
Sodium, Dissolved	11900 ug/L	500	14.2	1	12/13/11 15:20	12/15/11 18:43	7440-23-5	
8260 MSV	Analytical Method: EPA	5030B/8260						
Acetone	ND ug/L	10.0	2.2	1		12/08/11 12:30	67-64-1	
Benzene	ND ug/L	1.0	0.070	1		12/08/11 12:30	71-43-2	
Bromobenzene	ND ug/L	1.0	0.064	1		12/08/11 12:30	108-86-1	
Bromochloromethane	ND ug/L	1.0	0.10	1		12/08/11 12:30	74-97-5	
Bromodichloromethane	ND ug/L	1.0	0.11	1		12/08/11 12:30	75-27-4	
Bromoform .	ND ug/L	1.0	0.15	1		12/08/11 12:30	75-25-2	
Bromomethane	ND ug/L	1.0	0.22	1		12/08/11 12:30	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	0.41	1		12/08/11 12:30	78-93-3	
n-Butylbenzene	ND ug/L	1.0	0.078	1		12/08/11 12:30	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	0.047	1		12/08/11 12:30	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	0.066	1		12/08/11 12:30	98-06-63	
Carbon disulfide	0.33J ug/L	5.0	0.053	1		12/08/11 12:30	75-15-0	
Carbon tetrachloride	ND ug/L	1.0	0.23	1		12/08/11 12:30	56-23-5	
Chlorobenzene	ND ug/L	1.0	0.093	1		12/08/11 12:30	108-90-7	
Chloroethane	ND ug/L	1.0	0.19	1		12/08/11 12:30	75-00-3	
Chloroform	ND ug/L	1.0	0.087	1		12/08/11 12:30		
Chloromethane	ND ug/L	1.0	0.24	1		12/08/11 12:30	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	0.19	1		12/08/11 12:30	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	0.12	1		12/08/11 12:30	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	0.66	1		12/08/11 12:30	96-12-8	
Dibromochloromethane	ND ug/L	1.0	0.091	1		12/08/11 12:30	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	0.13	1		12/08/11 12:30	106-93-4	
Dibromomethane	ND ug/L	1.0	0.12	1		12/08/11 12:30	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	0.077	1		12/08/11 12:30		
1,3-Dichlorobenzene	ND ug/L	1.0	0.068	1		12/08/11 12:30		
1,4-Dichlorobenzene	ND ug/L	1.0	0.072	1		12/08/11 12:30		

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 34 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Lab ID: 60111560006 12/02/11 09:00 Received: 12/06/11 09:15 Sample: SW-074922-120211-CM-Collected: NAV Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 5030B/8260 8260 MSV Dichlorodifluoromethane 0.15 12/08/11 12:30 75-71-8 ND ug/L 1.0 1 1,1-Dichloroethane ND ug/L 1.0 0.079 12/08/11 12:30 75-34-3 1 ND ug/L 1,2-Dichloroethane 1.0 0.080 1 12/08/11 12:30 107-06-2 1,2-Dichloroethene (Total) ND ug/L 1.0 0.12 1 12/08/11 12:30 540-59-0 1,1-Dichloroethene ND ug/L 1.0 0.13 1 12/08/11 12:30 75-35-4 0.086 12/08/11 12:30 cis-1.2-Dichloroethene ND ug/L 1.0 1 156-59-2 trans-1,2-Dichloroethene 1.0 0.085 12/08/11 12:30 ND ug/L 156-60-5 1,2-Dichloropropane ND ug/L 1.0 0.045 1 12/08/11 12:30 78-87-5 1,3-Dichloropropane ND ug/L 1.0 0.097 1 12/08/11 12:30 142-28-9 2,2-Dichloropropane ND ug/L 1.0 0.11 1 12/08/11 12:30 594-20-7 0.088 1,1-Dichloropropene ND ug/L 1.0 1 12/08/11 12:30 563-58-6 cis-1,3-Dichloropropene 1.0 0.066 12/08/11 12:30 10061-01-5 ND ug/L 1 trans-1,3-Dichloropropene ND ug/L 1.0 0.080 1 12/08/11 12:30 10061-02-6 0.078 Ethylbenzene 1.0 12/08/11 12:30 100-41-4 ND ug/L 1 1.0 0.11 Hexachloro-1,3-butadiene ND ug/L 1 12/08/11 12:30 87-68-3 2-Hexanone 10.0 0.50 12/08/11 12:30 591-78-6 ND ug/L 1 sopropylbenzene (Cumene) ND ug/L 1.0 0.069 1 12/08/11 12:30 98-82-8 p-Isopropyltoluene ND ug/L 1.0 0.065 1 12/08/11 12:30 99-87-6 Methylene chloride ND ug/L 1.0 0.12 1 12/08/11 12:30 75-09-2 4-Methyl-2-pentanone (MIBK) 10.0 0.33 ND ug/L 1 12/08/11 12:30 108-10-1 Methyl-tert-butyl ether ND ug/L 1.0 0.077 1 12/08/11 12:30 1634-04-4 Naphthalene 2.4J ug/L 10.0 0.14 1 12/08/11 12:30 91-20-3 n-Propylbenzene ND ug/L 1.0 0.071 1 12/08/11 12:30 103-65-1 0.080 Styrene ND ug/L 1.0 1 12/08/11 12:30 100-42-5 1,1,1,2-Tetrachloroethane ND ug/L 0.12 12/08/11 12:30 630-20-6 1.0 1 1,1,2,2-Tetrachloroethane ND ug/L 1.0 0.12 1 12/08/11 12:30 79-34-5 Tetrachloroethene ND ug/L 1.0 0.073 12/08/11 12:30 127-18-4 1 Toluene 0.064 ND ug/L 1.0 1 12/08/11 12:30 108-88-3 1,2,3-Trichlorobenzene ND ua/L 1.0 0.11 1 12/08/11 12:30 87-61-6 1,2,4-Trichlorobenzene ND ug/L 1.0 0.10 1 12/08/11 12:30 120-82-1 1,1,1-Trichloroethane 1.0 0.13 12/08/11 12:30 71-55-6 ND ug/L 1,1,2-Trichloroethane ND ug/L 1.0 0.15 12/08/11 12:30 79-00-5 Trichloroethene ND ug/L 1.0 0.064 1 12/08/11 12:30 79-01-6 0.064 Trichlorofluoromethane ND ug/L 1.0 1 12/08/11 12:30 75-69-4 1,2,3-Trichloropropane 2.5 0.36 ND ug/L 12/08/11 12:30 96-18-4 1 1,2,4-Trimethylbenzene 0.13J ug/L 1.0 0.060 12/08/11 12:30 95-63-6 B 1 1,3,5-Trimethylbenzene ND ug/L 1.0 0.094 1 12/08/11 12:30 108-67-8

Date: 01/06/2012 01:16 PM

4-Bromofluorobenzene (S) Dibromofluoromethane (S)

1,2-Dichloroethane-d4 (S)

Vinyl chloride

Xylene (Total)

Toluene-d8 (S)

Preservation pH

Surrogates

REPORT OF LABORATORY ANALYSIS

1.0

3.0

87-113

86-112

82-119

90-110

0.10

ND ug/L

ND ug/L

98 %

97 %

87 %

101 %

1.0

0.068

0.15

0.10

1

1

1

1

1

Page 35 of 67

12/08/11 12:30 75-01-4

12/08/11 12:30 1330-20-7

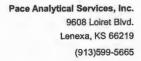
12/08/11 12:30 460-00-4

12/08/11 12:30 1868-53-7

12/08/11 12:30 2037-26-5

12/08/11 12:30

12/08/11 12:30 17060-07-0



Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: SW-074922-120211-CM- NAV	Lab ID: 60111560006	Collected	: 12/02/11	09:00	Received: 12	2/06/11 09:15 Ma	atrix: Water	
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV GRO and Oxygenates	Analytical Method: EPA	8260						
TPH-GRO	ND ug/L	500	48.0	1		12/08/11 12:30		
2320B Alkalinity	Analytical Method: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3)	78.0 mg/L	20.0	3.8	1		12/15/11 14:30		
Alkalinity, Total as CaCO3	78.0 mg/L	20.0	3.8	1		12/15/11 14:30		
2540C Total Dissolved Solids	Analytical Method: SM 2	540C						
Total Dissolved Solids	177 mg/L	5.0	5.0	1		12/09/11 09:48		
4500S2F Sulfide, Iodometric	Analytical Method: SM 4	500-S-2 F						
Sulfide	ND mg/L	0.50	0.23	1		12/08/11 16:50	18496-25-8	
300.0 IC Anions 28 Days	Analytical Method: EPA	300.0						
Bromide	ND mg/L	1.0	0.061	1		12/15/11 18:57	24959-67-9	
Chloride	2.7 mg/L	1.0	0.054	1		12/15/11 18:57	16887-00-6	
Gulfate	33.7 mg/L	5.0	0.38	5		12/16/11 15:50	14808-79-8	

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Received: 12/06/11 09:15 Matrix: Water Sample: PW-074922-120211-CM-Lab ID: 60111560007 Collected: 12/02/11 12:15

2	2	A		L
4	u	4	f	٩

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8015B Diesel Range Organics	Analytical	Method: EP	A 8015B Prep	aration Met	hod: El	PA 3510C			
TPH-DRO	18.3 m	ng/L	2.5	0.48	5	12/08/11 00:00	12/14/11 22:50		
Surrogates	63 %		40-118		5	12/08/11 00:00	12/14/11 22:50	92-94-4	S2
p-Terphenyl (S)	75 %		36-120		5	12/08/11 00:00	12/14/11 22:50		S2
n-Tetracosane (S)	15 %)	30-120		5	12/08/11 00:00	12/14/11 22.50	040-31-1	32
Gasoline Range Organics	Analytical	Method: EP	A 5030B/8015	В					
TPH-GRO	1.7J m	ıg/L	2.5	0.12	5		12/20/11 12:49		B,H1
Surrogates	77 0/		62 120		-		12/20/11 12:49	460.00.4	F1
4-Bromofluorobenzene (S)	77 %	•	63-139		5			460-00-4	H1
Preservation pH	1.0				5		12/20/11 12:49		пі
6010 MET ICP, Dissolved	Analytical	Method: EP	A 6010 Prepa	ration Metho	od: EP/	A 3010			
Boron, Dissolved	2040 u	g/L	1000	23.0	10	12/13/11 15:20	12/15/11 19:11	7440-42-8	
Calcium, Dissolved	13500 u	g/L	1000	71.0	10	12/13/11 15:20	12/15/11 19:11	7440-70-2	
Magnesium, Dissolved	13400 u	g/L	500	100	10	12/13/11 15:20	12/15/11 19:11	7439-95-4	
Potassium, Dissolved	41200 u	g/L	5000	634	10	12/13/11 15:20	12/15/11 19:11	7440-09-7	
Sodium, Dissolved	3030000 u	g/L	5000	142	10	12/13/11 15:20	12/15/11 19:11	7440-23-5	
3260 MSV	Analytical	Method: EP	A 5030B/8260						
Acetone	36.5 u	a/L	10.0	3.4	1		12/15/11 20:22	67-64-1	
Benzene	97.8 u	_	1.0	0.070	1		12/08/11 12:45		
Bromobenzene	ND u	_	1.0	0.064	1		12/08/11 12:45	108-86-1	
Bromochloromethane	ND u	-	1.0	0.10	1		12/08/11 12:45		
Bromodichloromethane	ND u	_	1.0	0.11	1		12/08/11 12:45	75-27-4	
Bromoform	ND u	_	1.0	0.15	1		12/08/11 12:45	75-25-2	
Bromomethane	ND u	-	1.0	0.22	1		12/08/11 12:45	74-83-9	
2-Butanone (MEK)	ND u	_	10.0	0.41	1		12/08/11 12:45		
n-Butylbenzene	1.2 u	_	1.0	0.078	1		12/08/11 12:45	104-51-8	
sec-Butylbenzene	0.16J u	_	1.0	0.047	1		12/08/11 12:45	135-98-8	
tert-Butylbenzene	ND u	•	1.0	0.066	1		12/08/11 12:45	98-06-6	
Carbon disulfide	ND u	g/L	5.0	0.053	1		12/08/11 12:45	75-15-0	
Carbon tetrachloride	ND u	g/L	1.0	0.23	1		12/08/11 12:45	56-23-5	
Chlorobenzene	ND u	g/L	1.0	0.093	1		12/08/11 12:45	108-90-7	
Chloroethane	ND u	g/L	1.0	0.19	1		12/08/11 12:45	75-00-3	
Chloroform	ND u	g/L	1.0	0.087	1		12/08/11 12:45	67-66-3	
Chloromethane	ND u	g/L	1.0	0.24	1		12/08/11 12:45	74-87-3	
2-Chlorotoluene	0.62J u	g/L	1.0	0.19	1		12/08/11 12:45	95-49-8	
4-Chlorotoluene	0.25J u	_	1.0	0.12	1		12/08/11 12:45	106-43-4	
1,2-Dibromo-3-chloropropane	ND u	g/L	2.5	0.66	1		12/08/11 12:45	96-12-8	
Dibromochloromethane	ND u	_	1.0	0.091	1		12/08/11 12:45	124-48-1	
1,2-Dibromoethane (EDB)	ND u	_	1.0	0.13	1		12/08/11 12:45	106-93-4	
Dibromomethane	ND u		1.0	0.12	1		12/08/11 12:45		
1,2-Dichlorobenzene	ND u	_	1.0	0.077	1		12/08/11 12:45	95-50-1	
1,3-Dichlorobenzene	ND u	_	1.0	0.068	1		12/08/11 12:45	541-73-1	
1,4-Dichlorobenzene	ND u	_	1.0	0.072	1		12/08/11 12:45	106-46-7	

Date: 01/06/2012 01:16 PM

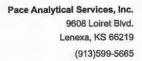
REPORT OF LABORATORY ANALYSIS

Page 37 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

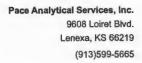

Sample: PW-074922-120211-CM- Lab ID: 60111560007 Collected: 12/02/11 12:15 Received: 12/06/11 09:15 Matrix: Water

204A									
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytica	Method: EP	A 5030B/8260						
Dichlorodifluoromethane	ND t	ıg/L	1.0	0.15	1		12/08/11 12:45	75-71-8	
1,1-Dichloroethane	ND t	ıg/L	1.0	0.079	1		12/08/11 12:45	75-34-3	
1,2-Dichloroethane	ND t	ıg/L	1.0	0.080	1		12/08/11 12:45	107-06-2	
1,2-Dichloroethene (Total)	ND t	ıg/L	1.0	0.12	1		12/08/11 12:45	540-59-0	
1,1-Dichloroethene	ND t	ıg/L	1.0	0.13	1		12/08/11 12:45	75-35-4	
cis-1,2-Dichloroethene	ND t		1.0	0.086	1		12/08/11 12:45	156-59-2	
rans-1,2-Dichloroethene	ND t	ıg/L	1.0	0.085	1		12/08/11 12:45	156-60-5	
1,2-Dichloropropane	ND u	-	1.0	0.045	1		12/08/11 12:45	78-87-5	
1,3-Dichloropropane	ND u	-	1.0	0.097	1		12/08/11 12:45	142-28-9	
2,2-Dichloropropane	ND U		1.0	0.11	1		12/08/11 12:45		
1,1-Dichloropropene	ND t	-	1.0	0.088	1		12/08/11 12:45		
cis-1,3-Dichloropropene	ND t		1.0	0.066	1		12/08/11 12:45		
trans-1,3-Dichloropropene	ND I	_	1.0	0.080	1		12/08/11 12:45		
Ethylbenzene	12.1	_	1.0	0.078	1		12/08/11 12:45		
Hexachloro-1,3-butadiene	ND t	_	1.0	0.11	1		12/08/11 12:45		
2-Hexanone	ND (•	10.0	0.50	1		12/08/11 12:45		
sopropylbenzene (Cumene)	0.92J		1.0	0.069	1		12/08/11 12:45		
p-Isopropyltoluene	0.26J	•	1.0	0.065	1		12/08/11 12:45		
Methylene chloride	ND 1	-	1.0	0.003	1		12/08/11 12:45		
4-Methyl-2-pentanone (MIBK)	ND t	•	10.0	0.12	1		12/08/11 12:45		
Methyl-tert-butyl ether	ND U	_	1.0	0.077	1		12/08/11 12:45		
Naphthalene	13.4	0	10.0	0.14	1		12/08/11 12:45		
n-Propylbenzene	1.0	-	1.0	0.14	1				
		_	1.0	0.071	1		12/08/11 12:45		
Styrene	ND t	_			1		12/08/11 12:45		
1,1,1,2-Tetrachloroethane	ND U	_	1.0	0.12 0.12	1		12/08/11 12:45		
1,1,2,2-Tetrachloroethane	ND U	-	1.0		1		12/08/11 12:45		
Tetrachloroethene	ND t	_	1.0	0.073			12/08/11 12:45		144
Toluene	184	_	1.0	0.064	1		12/08/11 12:45		M1
1,2,3-Trichlorobenzene	ND I	•	1.0	0.11	1		12/08/11 12:45		
1,2,4-Trichlorobenzene	ND I		1.0	0.10	1		12/08/11 12:45		
1,1,1-Trichloroethane	ND I	•	1.0	0.13	1		12/08/11 12:45		
1,1,2-Trichloroethane Trichloroethene	ND I	_	1.0	0.15			12/08/11 12:45		
	ND t	•	1.0	0.064	1		12/08/11 12:45		
Trichlorofluoromethane	ND (1.0	0.064	1		12/08/11 12:45		
1,2,3-Trichloropropane	ND t	_	2.5	0.36	1		12/08/11 12:45		
1,2,4-Trimethylbenzene	9.7	0	1.0	0.060	1		12/08/11 12:45		В
1,3,5-Trimethylbenzene	7.0	-	1.0	0.094	1		12/08/11 12:45		
Vinyl chloride	ND (1.0	0.068	1		12/08/11 12:45		
Xylene (Total)	113	ug/L	3.0	0.15	1		12/08/11 12:45	1330-20-7	
Surrogates	00.1	0/.	07 442		4		10/00/44 40:45	460.00.4	
4-Bromofluorobenzene (S)	99		87-113		1		12/08/11 12:45		
Dibromofluoromethane (S)	94		86-112		1		12/08/11 12:45		
1,2-Dichloroethane-d4 (S)	95		82-119		1		12/08/11 12:45		
Toluene-d8 (S)	102 9	%	90-110		1		12/08/11 12:45		
Preservation pH	7.0		0.10	0.10	1		12/08/11 12:45		pH

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 38 of 67



Project:

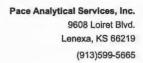
SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: PW-074922-120211-CM- 204A	Lab ID:	60111560007	Collected	i: 12/02/11	12:15	Received: 12	/06/11 09:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV GRO and Oxygenates	Analytical	Method: EPA 8	3260						
TPH-GRO	833 u	ıg/L	500	48.0	1		12/08/11 12:45		
2320B Alkalinity	Analytical	Method: SM 2	320B						
Alkalinity, Bicarbonate (CaCO3)	4560 r	mg/L	20.0	3.8	1		12/15/11 14:30		
Alkalinity, Total as CaCO3	4560 r	mg/L	20.0	3.8	1		12/15/11 14:30		
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C						
Total Dissolved Solids	8730 r	mg/L	5.0	5.0	1		12/09/11 09:48		
4500S2F Sulfide, Iodometric	Analytica	Method: SM 4	500-S-2 F						
Sulfide	ND r	mg/L	0.50	0.23	1		12/08/11 16:50	18496-25-8	
300.0 IC Anions 28 Days	Analytica	Method: EPA	300.0						
Bromide	10.6 r	mg/L	10.0	0.61	10		12/16/11 12:18	24959-67-9	
Chloride	2130	mg/L	200	10.8	200		12/15/11 19:14	16887-00-6	
Sulfate	0.72J r	mg/L	1.0	0.076	1		12/15/11 20:03	14808-79-8	

Project:

SAN JUAN 32-8 NO. 202 (074922)


Pace Project No.: 60111560

Sample: PW-074922-120211-CM-25	Lab ID:	60111560008	Collected:	12/02/11	10:30	Received: 12/	06/11 09:15 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8015B Diesel Range Organics	Analytical	Method: EPA 8	015B Prepa	ration Met	nod: EF	A 3510C			
TPH-DRO	55.3 m	ng/L	5.0	0.97	10	12/08/11 00:00	12/14/11 23:24		
Surrogates									
p-Terphenyl (S)	0 %		40-118		10	12/08/11 00:00	12/14/11 23:24		D4,S4
n-Tetracosane (S)	0 %	6	36-120		10	12/08/11 00:00	12/14/11 23:24	646-31-1	S4
Gasoline Range Organics	Analytical	Method: EPA 8	5030B/8015B						
TPH-GRO Surrogates	0.79J n	ng/L	2.5	0.12	5		12/20/11 14:44		B,H1
4-Bromofluorobenzene (S)	78 %	6	63-139		5		12/20/11 14:44	460-00-4	F1
Preservation pH	1.0				5		12/20/11 14:44		H1
6010 MET ICP, Dissolved	Analytical	Method: EPA	6010 Prepara	ition Metho	od: EPA	3010			
Boron, Dissolved	1560 u	ıg/L	1000	23.0	10	12/13/11 15:20	12/15/11 19:29	7440-42-8	
Calcium, Dissolved	13700 u	-	1000	71.0	10	12/13/11 15:20	12/15/11 19:29	7440-70-2	
Magnesium, Dissolved	6460 u	•	500	100	10	12/13/11 15:20	12/15/11 19:29		
Potassium, Dissolved	22100 u	•	5000	634	10	12/13/11 15:20	12/15/11 19:29		
Sodium, Dissolved	2360000 u	•	5000	142	10	12/13/11 15:20	12/15/11 19:29		
8260 MSV	Analytical	Method: EPA	5030B/8260						
Acetone	160 u	ıa/L	10.0	3.4	1		12/15/11 20:39	67-64-1	
Benzene	73.0 u	-	1.0	0.070	1		12/08/11 14:18		
Bromobenzene	ND u	•	1.0	0.064	1		12/08/11 14:18		
Bromochloromethane	ND u	_	1.0	0.10	1		12/08/11 14:18		
Bromodichloromethane	ND u	_	1.0	0.11	1		12/08/11 14:18		
Bromoform	ND u	•	1.0	0.15	1		12/08/11 14:18		
Bromomethane	ND U	_	1.0	0.22	1		12/08/11 14:18		
2-Butanone (MEK)	18.0 u	•	10.0	3.9	1		12/15/11 20:39		
n-Butylbenzene	1.7	•	1.0	0.078	1		12/08/11 14:18		
sec-Butylbenzene	0.39J	•	1.0	0.047	1		12/08/11 14:18		
tert-Butylbenzene	ND u	•	1.0	0.066	1		12/08/11 14:18		
Carbon disulfide	0.21J	_	5.0	0.053	1		12/08/11 14:18		
Carbon tetrachloride	ND u	-	1.0	0.23	1		12/08/11 14:18		
Chlorobenzene	ND U	-	1.0	0.093	1		12/08/11 14:18		
Chloroethane	ND U	•	1.0	0.093	1		12/08/11 14:18		
Chloroform	ND t	_	1.0	0.19	1		12/08/11 14:18		
	1.6	_	1.0	0.087	1		12/08/11 14:18		
Chloromethane		0							
2-Chlorotoluene	4.2 t	_	1.0	0.19	1		12/08/11 14:18 12/08/11 14:18		
4-Chlorotoluene	2.0 L	_	1.0	0.12	1				
1,2-Dibromo-3-chloropropane	ND U	-	2.5	0.66	1		12/08/11 14:18		
Dibromochloromethane	ND t	-	1.0	0.091	1		12/08/11 14:18		
1,2-Dibromoethane (EDB)	ND t		1.0	0.13	1		12/08/11 14:18		
Dibromomethane	ND t	•	1.0	0.12	1		12/08/11 14:18		
1,2-Dichlorobenzene	ND t	-	1.0	0.077	1		12/08/11 14:18		
1,3-Dichlorobenzene	ND t	-	1.0	0.068	1		12/08/11 14:18		
1,4-Dichlorobenzene	ND t	•	1.0	0.072	1		12/08/11 14:18		
Dichlorodifluoromethane	ND t	ıg/L	1.0	0.15	1		12/08/11 14:18	75-71-8	

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 40 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: PW-074922-120211-CM-25	Lab ID: 6011	560008 Collecte	d: 12/02/11	10:30	Received: 12	atrix: Water	rix: Water	
Parameters	Results Ur	Report its Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV	Analytical Metho	od: EPA 5030B/8260						
1,1-Dichloroethane	ND ug/L	1.0	0.079	1		12/08/11 14:18	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	0.080	1		12/08/11 14:18	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	0.12	1		12/08/11 14:18	540-59-0	
I,1-Dichloroethene	ND ug/L	1.0	0.13	1		12/08/11 14:18	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	0.086	1		12/08/11 14:18	156-59-2	
rans-1,2-Dichloroethene	ND ug/L	1.0	0.085	1		12/08/11 14:18	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	0.045	1		12/08/11 14:18		
1,3-Dichloropropane	ND ug/L	1.0	0.097	1		12/08/11 14:18		
2,2-Dichloropropane	ND ug/L	1.0	0.11	1		12/08/11 14:18		
1,1-Dichloropropene	ND ug/L	1.0	0.088	1		12/08/11 14:18		
cis-1,3-Dichloropropene	ND ug/L	1.0	0.066	1		12/08/11 14:18		
trans-1,3-Dichloropropene	ND ug/L	1.0	0.080	1		12/08/11 14:18		
Ethylbenzene	6.7 ug/L	1.0	0.078	1		12/08/11 14:18		
Hexachloro-1,3-butadiene	ND ug/L	1.0	0.076	1		12/08/11 14:18		
2-Hexanone	4.0J ug/L	10.0	0.50	1				
sopropylbenzene (Cumene)	_		0.069			12/08/11 14:18		
	0.65J ug/L	1.0		1		12/08/11 14:18		
-Isopropyltoluene	0.46J ug/L	1.0	0.065	1		12/08/11 14:18		
Methylene chloride	ND ug/L	1.0	0.12	1		12/08/11 14:18		
-Methyl-2-pentanone (MIBK)	6.9J ug/L	10.0	0.33	1		12/08/11 14:18		
Methyl-tert-butyl ether	ND ug/L	1.0	0.077	1		12/08/11 14:18		
Naphthalene	5.1 J ug/L	10.0	0.14	1		12/08/11 14:18		
n-Propylbenzene	2.0 ug/L	1.0	0.071	1		12/08/11 14:18		
Styrene	ND ug/L	1.0	0.080	1		12/08/11 14:18		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	0.12	1		12/08/11 14:18	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	0.12	1		12/08/11 14:18	79-34-5	
Tetrachloroethene	0.58J ug/L	1.0	0.073	1		12/08/11 14:18	127-18-4	
Toluene	40.5 ug/L	1.0	0.064	1		12/08/11 14:18	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	0.11	1		12/08/11 14:18	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	0.10	1		12/08/11 14:18	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	0.13	1		12/08/11 14:18	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	0.15	1		12/08/11 14:18	79-00-5	
Trichloroethene	ND ug/L	1.0	0.064	1		12/08/11 14:18	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	0.064	1		12/08/11 14:18	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	0.36	1		12/08/11 14:18	96-18-4	
1,2,4-Trimethylbenzene	8.6 ug/L	1.0	0.060	1		12/08/11 14:18	95-63-6	
1,3,5-Trimethylbenzene	6.4 ug/L	1.0	0.094	1		12/08/11 14:18	108-67-8	
Vinyl chloride	ND ug/L	1.0	0.068	1		12/08/11 14:18	75-01-4	
Xylene (Total) Surrogates	20.3 ug/L	3.0	0.15	1		12/08/11 14:18	1330-20-7	
4-Bromofluorobenzene (S)	106 %	87-113		1		12/08/11 14:18	460-00-4	
Dibromofluoromethane (S)	100 %	86-112		1		12/08/11 14:18	1868-53-7	
1,2-Dichloroethane-d4 (S)	97 %	82-119		1		12/08/11 14:18		
Toluene-d8 (S)	103 %	90-110		1		12/08/11 14:18		
Preservation pH	7.0	0.10	0.10	1		12/08/11 14:18		рΗ

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 41 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: PW-074922-120211-CM-25	Lab ID: 60111560008	Collected	12/02/11	10:30	Received: 12	/06/11 09:15 Ma	trix: Water	
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
3260 MSV GRO and Oxygenates	Analytical Method: EPA	3260						
ГРH-GRO	314J ug/L	500	48.0	1		12/08/11 14:18		
2320B Alkalinity	Analytical Method: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3)	3680 mg/L	20.0	3.8	1		12/15/11 14:30		
Alkalinity, Total as CaCO3	3680 mg/L	20.0	3.8	1		12/15/11 14:30		
2540C Total Dissolved Solids	Analytical Method: SM 2	540C						
Total Dissolved Solids	7150 mg/L	5.0	5.0	1		12/09/11 09:48		
500S2F Sulfide, lodometric	Analytical Method: SM 4	500-S-2 F						
Sulfide	ND mg/L	0.50	0.23	1		12/08/11 16:50	18496-25-8	
300.0 IC Anions 28 Days	Analytical Method: EPA	300.0						
Bromide	16.5 mg/L	1.0	0.061	1		12/15/11 20:20	24959-67-9	
Chloride	1700 mg/L	100	5.4	100		12/15/11 20:36	16887-00-6	
Sulfate	2.3 mg/L	1.0	0.076	1		12/15/11 20:20	14808-79-8	

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: FB-074922-120211-CM-FB1	Lab ID: 601111	560009 Collected	1: 12/02/11	13:00	Received: 12	2/06/11 09:15 M	atrix: Water	
		Report						
Parameters	Results Unit	s Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV	Analytical Method	d: EPA 5030B/8260						
Acetone	4.0J ug/L	10.0	2.2	1		12/08/11 14:34	67-64-1	
Benzene	0.12J ug/L	1.0	0.070	1		12/08/11 14:34	71-43-2	
Bromobenzene	ND ug/L	1.0	0.064	1		12/08/11 14:34	108-86-1	
Bromochloromethane	ND ug/L	1.0	0.10	1		12/08/11 14:34	74-97-5	
Bromodichloromethane	ND ug/L	1.0	0.11	1		12/08/11 14:34	75-27-4	
Bromoform	ND ug/L	1.0	0.15	1		12/08/11 14:34	75-25-2	
Bromomethane	ND ug/L	1.0	0.22	1		12/08/11 14:34	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	0.41	1		12/08/11 14:34	78-93-3	
n-Butylbenzene	ND ug/L	1.0	0.078	1		12/08/11 14:34	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	0.047	1		12/08/11 14:34		
tert-Butylbenzene	ND ug/L	1.0	0.066	1		12/08/11 14:34	98-06-6	
Carbon disulfide	ND ug/L	5.0	0.053	1		12/08/11 14:34	75-15-0	
Carbon tetrachloride	ND ug/L	1.0	0.23	1		12/08/11 14:34		
Chlorobenzene	ND ug/L	1.0	0.093	1		12/08/11 14:34		
Chloroethane	ND ug/L	1.0	0.19	1		12/08/11 14:34		
Chloroform	ND ug/L	1.0	0.087	1		12/08/11 14:34		
Chloromethane	ND ug/L	1.0	0.24	1		12/08/11 14:34		
2-Chlorotoluene	ND ug/L	1.0	0.19	1		12/08/11 14:34		
4-Chlorotoluene	ND ug/L	1.0	0.12	1		12/08/11 14:34		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	0.66	1		12/08/11 14:34		
Dibromochloromethane	ND ug/L	1.0	0.091	1		12/08/11 14:34		
1,2-Dibromoethane (EDB)	ND ug/L	1.0	0.13	1		12/08/11 14:34		
Dibromomethane	ND ug/L	1.0	0.13	1		12/08/11 14:34		
1,2-Dichlorobenzene	ND ug/L	1.0	0.077	1		12/08/11 14:34		
1,3-Dichlorobenzene	ND ug/L	1.0	0.068	1		12/08/11 14:34		
1,4-Dichlorobenzene	ND ug/L	1.0	0.072	1		12/08/11 14:34		
Dichlorodifluoromethane	ND ug/L	1.0	0.15	1		12/08/11 14:34		
1,1-Dichloroethane	ND ug/L	1.0	0.079	1		12/08/11 14:34		
1,2-Dichloroethane	ND ug/L	1.0	0.080	1		12/08/11 14:34		
		1.0	0.080	1		12/08/11 14:34		
1,2-Dichloroethene (Total) 1,1-Dichloroethene	ND ug/L ND ug/L	1.0	0.12	1		12/08/11 14:34		
cis-1,2-Dichloroethene		1.0	0.086	1		12/08/11 14:34		
trans-1,2-Dichloroethene	ND ug/L ND ug/L	1.0	0.085	1		12/08/11 14:34		
	ND ug/L	1.0	0.045	1		12/08/11 14:34		
1,2-Dichloropropane		1.0	0.043	1		12/08/11 14:34		
1,3-Dichloropropane 2,2-Dichloropropane	ND ug/L ND ug/L	1.0	0.037	1		12/08/11 14:34		
		1.0	0.088	1		12/08/11 14:34		
1,1-Dichloropropene	ND ug/L		0.066	1		12/08/11 14:34		
cis-1,3-Dichloropropene	ND ug/L	1.0	0.080	1			10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0 1.0	0.080	1		12/08/11 14:34		
Ethylbenzene	ND ug/L							
Hexachloro-1,3-butadiene	ND ug/L	1.0	0.11	1		12/08/11 14:34		
2-Hexanone	ND ug/L	10.0	0.50	1		12/08/11 14:34		
Isopropylbenzene (Cumene)	ND ug/L	1.0	0.069	1		12/08/11 14:34		
p-Isopropyltoluene	ND ug/L	1.0	0.065	1		12/08/11 14:34		
Methylene chloride	ND ug/L	1.0	0.12	1		12/08/11 14:34		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	0.33	1		12/08/11 14:34	108-10-1	

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 43 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: FB-074922-120211-CM-F	FB1 Lab ID:	60111560009	Collected	: 12/02/1	13:00	Received: 12	2/06/11 09:15 Ma	atrix: Water	
D	D	11.7	Report	MO	-			01011	0
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV	Analytical	Method: EPA 5	5030B/8260						
Methyl-tert-butyl ether	ND u	ıg/L	1.0	0.077	1		12/08/11 14:34	1634-04-4	
Naphthalene	2.3J u	ıg/L	10.0	0.14	1		12/08/11 14:34	91-20-3	
n-Propylbenzene	ND u	ıg/L	1.0	0.071	1		12/08/11 14:34	103-65-1	
Styrene	ND u	ıg/L	1.0	0.080	1		12/08/11 14:34	100-42-5	
1,1,1,2-Tetrachloroethane	ND u	ıg/L	1.0	0.12	1		12/08/11 14:34	630-20-6	
1,1,2,2-Tetrachloroethane	ND u	ıg/L	1.0	0.12	1		12/08/11 14:34	79-34-5	
Tetrachloroethene	ND u	ıg/L	1.0	0.073	1		12/08/11 14:34	127-18-4	
Toluene	0.29J u	ıg/L	1.0	0.064	1		12/08/11 14:34	108-88-3	
1,2,3-Trichlorobenzene	ND u	ıg/L	1.0	0.11	1		12/08/11 14:34	87-61-6	
1,2,4-Trichlorobenzene	ND u	ıg/L	1.0	0.10	1		12/08/11 14:34	120-82-1	
1,1,1-Trichloroethane	ND u	ıg/L	1.0	0.13	1		12/08/11 14:34	71-55-6	
1,1,2-Trichloroethane	ND u	ıg/L	1.0	0.15	1		12/08/11 14:34	79-00-5	
Trichloroethene	ND u	ıg/L	1.0	0.064	1		12/08/11 14:34	79-01-6	
Trichlorofluoromethane	ND u	ıg/L	1.0	0.064	1		12/08/11 14:34	75-69-4	
1,2,3-Trichloropropane	ND u	ıg/L	2.5	0.36	1		12/08/11 14:34	96-18-4	
1,2,4-Trimethylbenzene	0.11J u	ıg/L	1.0	0.060	1		12/08/11 14:34	95-63-6	В
1,3,5-Trimethylbenzene	ND u	ıg/L	1.0	0.094	1		12/08/11 14:34	108-67-8	
/inyl chloride	ND u	ıg/L	1.0	0.068	1		12/08/11 14:34	75-01-4	
Xyleпe (Total)	ND u	ıg/L	3.0	0.15	1		12/08/11 14:34	1330-20-7	
Surrogates									
4-Bromofluoroberizene (S)	100 %	6	87-113		1		12/08/11 14:34	460-00-4	
Dibromofluoromethane (S)	97 %	6	86-112		1		12/08/11 14:34	1868-53-7	
1,2-Dichloroethane-d4 (S)	92 %	6	82-119		1		12/08/11 14:34	17060-07-0	
Toluene-d8 (S)	101 9	6	90-110		1		12/08/11 14:34	2037-26-5	
Preservation pH	1.0		0.10	0.10	1		12/08/11 14:34		

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Sample: TB-074922-120511-001	Lab ID:	60111560010	Collected:	12/02/11	00:00	Received: 12	2/06/11 09:15 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical	Method: EPA 8	3260						
Benzene	ND u	ıg/L	1.0	0.15	1		12/08/11 05:17	71-43-2	
Ethylbenzene	ND U	ıg/L	1.0	0.13	1		12/08/11 05:17	100-41-4	
Toluene	ND t	ıg/L	1.0	0.13	1		12/08/11 05:17	108-88-3	
Xylene (Total) Surrogates	ND u	ug/L	3.0	0.20	1		12/08/11 05:17	1330-20-7	
Dibromofluoromethane (S)	101 9	%	86-112		1		12/08/11 05:17	1868-53-7	
Toluene-d8 (S)	99 9	%	90-110		1		12/08/11 05:17	2037-26-5	
4-Bromofluorobenzene (S)	100 9	%	87-113		1		12/08/11 05:17	460-00-4	
1,2-Dichloroethane-d4 (S)	104 9	%	82-119		1		12/08/11 05:17	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		12/08/11 05:17		

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

GCV/3966

Analysis Method:

EPA 5030B/8015B

QC Batch Method:

EPA 5030B/8015B

Analysis Description:

Gasoline Range Organics

Associated Lab Samples:

60111560001, 60111560002, 60111560003

METHOD BLANK: 923981

Matrix: Water

Associated Lab Samples:

60111560001, 60111560002, 60111560003

Blank Result

Reporting Limit

Qualifiers Analyzed

Parameter TPH-GRO

Units

0.026J

12/09/11 23:48

4-Bromofluorobenzene (S)

mg/L %

92

63-139 12/09/11 23:48

LABORATORY CONTROL SAMPLE:

Parameter

923982

Spike Conc.

LCS Result

LCS % Rec % Rec

Qualifiers

TPH-GRO 4-Bromofluorobenzene (S)

mg/L %

Units

0.96

96 97 Limits

74-127 63-139

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 46 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

GCV/3971

Analysis Method:

EPA 5030B/8015B

QC Batch Method:

EPA 5030B/8015B

Analysis Description:

Gasoline Range Organics

Associated Lab Samples:

60111560004, 60111560005, 60111560006, 60111560007, 60111560008

METHOD BLANK: 929378

Matrix: Water

Associated Lab Samples:

60111560004, 60111560005, 60111560006, 60111560007, 60111560008

Blank Result Reporting Limit

Qualifiers Analyzed

TPH-GRO 4-Bromofluorobenzene (S) mg/L %

Units

Units

60111560007

Result

0.031J

89

12/20/11 11:17 63-139 12/20/11 11:17

LABORATORY CONTROL SAMPLE:

Parameter

929379

LCS

LCS

% Rec Limits

TPH-GRO 4-Bromofluorobenzene (S)

mg/L %

Units

mg/L

%

Conc. Result

Spike

% Rec 0.97

97 74-127 92 63-139

% Rec

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Parameter

4-Bromofluorobenzene (S)

TPH-GRO

Preservation pH

Parameter

929380

1.7J

1.0

MS MSD Spike Spike Conc. Conc.

5

MS Result

5

929381

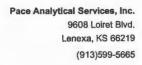
MS MSD

MSD

% Rec

Max Limits RPD RPD Qual 21 H1

5.9 5.9 1.0 1.0


Result

36-145 84 85 78 81 63-139

% Rec

F1 0 H₁

Date: 01/06/2012 01:16 PM

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

MPRP/16421

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3010

Analysis Description:

6010 MET Dissolved

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007, 60111560008

Matrix: Water

METHOD BLANK: 925632 Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

60111560008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Boron, Dissolved	ug/L	ND	100	12/15/11 18:03	
Calcium, Dissolved	ug/L	ND	100	. 12/15/11 18:03	
Magnesium, Dissolved	ug/L	ND	50.0	12/15/11 18:03	
Potassium, Dissolved	ug/L	ND	500	12/15/11 18:03	
Sodium, Dissolved	ug/L	ND	500	12/15/11 18:03	

LABORATORY CONTROL SAM	PLE: 925633	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Boron, Dissolved	ug/L	1000	956	96	80-120	
Calcium, Dissolved	ug/L	10000	9880	99	80-120	
Magnesium, Dissolved	ug/L	10000	10000	100	80-120	
Potassium, Dissolved	ug/L	10000	9880	99	80-120	
Sodium, Dissolved	ug/L	10000	10100	101	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 92563	4		925635							
	60	111560007	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron, Dissolved	ug/L	2040	1000	1000	3030	3030	99	99	75-125	0	20	
Calcium, Dissolved	ug/L	13500	10000	10000	23000	22900	95	95	75-125	0	20	
Magnesium, Dissolved	ug/L	13400	10000	10000	22700	22900	93	95	75-125	1	20	
Potassium, Dissolved	ug/L	41200	10000	10000	51400	51600	102	104	75-125	0	20	
Sodium, Dissolved	ug/L	303000	10000	10000	3200000	3140000	1690	1090	75-125	2	20	M0

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 48 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

MSV/42327

Analysis Method:

EPA 5030B/8260

QC Batch Method:

EPA 5030B/8260

Analysis Description:

8260 MSV Water 10 mL Purge

Associated Lab Samples:

60111560008, 60111560009

METHOD BLANK: 923172

Matrix: Water

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

60111560008, 60111560009

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	12/08/11 10:10	
1,1,1-Trichloroethane	ug/L	ND	1.0	12/08/11 10:10	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	12/08/11 10:10	
1,1,2-Trichloroethane	ug/L	ND	1.0	12/08/11 10:10	
1,1-Dichloroethane	ug/L	ND	1.0	12/08/11 10:10	
1,1-Dichloroethene	ug/L	ND	1.0	12/08/11 10:10	
1,1-Dichloropropene	ug/L	ND	1.0	12/08/11 10:10	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	12/08/11 10:10	
1,2,3-Trichtoropropane	ug/L	ND	2.5	12/08/11 10:10	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	12/08/11 10:10	
1,2,4-Trimethylbenzene	ug/L	0.23J	1.0	12/08/11 10:10	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.5	12/08/11 10:10	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	12/08/11 10:10	
1,2-Dichlorobenzene	ug/L	ND	1.0	12/08/11 10:10	
1,2-Dichloroethane	ug/L	ND	1.0	12/08/11 10:10	
1,2-Dichloroethene (Total)	ug/L	ND	1.0	12/08/11 10:10	
1,2-Dichloropropane	ug/L	ND	1.0	12/08/11 10:10	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	12/08/11 10:10	
1,3-Dichlorobenzene	ug/L	ND	1.0	12/08/11 10:10	
1,3-Dichloropropane	ug/L	ND	1.0	12/08/11 10:10	
1,4-Dichlorobenzene	ug/L	ND.	1.0	12/08/11 10:10	
2,2-Dichloropropane	ug/L	ND	1.0	12/08/11 10:10	
2-Butanone (MEK)	ug/L	ND	10.0	12/08/11 10:10	
2-Chlorotoluene	ug/L	ND	1.0	12/08/11 10:10	
2-Hexanone	ug/L	ND	10.0	12/08/11 10:10	
4-Chlorotoluene	ug/L	ND	1.0	12/08/11 10:10	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	12/08/11 10:10	
Acetone	ug/L	ND	10.0	12/08/11 10:10	
Benzene	ug/L	ND	1.0	12/08/11 10:10	
Bromobenzene	ug/L	ND	1.0	12/08/11 10:10	
Bromochloromethane	ug/L	ND	1.0	12/08/11 10:10	
Bromodichloromethane	ug/L	ND	1.0	12/08/11 10:10	
Bromoform	ug/L	ND	1.0	12/08/11 10:10	
Bromomethane	ug/L	ND	1.0	12/08/11 10:10	
Carbon disulfide	ug/L	ND	5.0	12/08/11 10:10	
Carbon tetrachloride	ug/L	ND	1.0	12/08/11 10:10	
Chlorobenzene	ug/L	ND	1.0	12/08/11 10:10	
Chloroethane	ug/L	ND	1.0	12/08/11 10:10	
Chloroform	ug/L	ND	1.0	12/08/11 10:10	
Chloromethane	ug/L	ND	1.0	12/08/11 10:10	
cis-1,2-Dichloroethene	ug/L	ND	1.0	12/08/11 10:10	

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 49 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

METHOD BLANK: 923172

Matrix: Water

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

60111560008, 60111560009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,3-Dichloropropene	ug/L	ND	1.0	12/08/11 10:10	
Dibromochloromethane	ug/L	ND	1.0	12/08/11 10:10	
Dibromomethane	ug/L	ND	1.0	12/08/11 10:10	
Dichlorodifluoromethane	ug/L	ND	1.0	12/08/11 10:10	
Ethylbenzene	ug/L	ND	1.0	12/08/11 10:10	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	12/08/11 10:10	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	12/08/11 10:10	
Methyl-tert-butyl ether	ug/L	ND	1.0	12/08/11 10:10	
Methylene chloride	ug/L	ND	1.0	12/08/11 10:10	
n-Butylbenzene	ug/L	ND	1.0	12/08/11 10:10	
n-Propylbenzene	ug/L	ND	1.0	12/08/11 10:10	
Naphthalene	ug/L	ND	10.0	12/08/11 10:10	
p-lsopropyltoluene	ug/L	ND	1.0	12/08/11 10:10	
sec-Butylbenzene	ug/L	ND	1.0	12/08/11 10:10	
Styrene	ug/L	ND	1.0	12/08/11 10:10	
tert-Butylbenzene	ug/L	ND	1.0	12/08/11 10:10	
Tetrachloroethene	ug/L	ND	1.0	12/08/11 10:10	
Toluene	ug/L	ND	1.0	12/08/11 10:10	
trans-1,2-Dichloroethene	ug/L	ND	1.0	12/08/11 10:10	
trans-1,3-Dichloropropene	ug/L	ND	1.0	12/08/11 10:10	
Trichloroethene	ug/L	ND	1.0	12/08/11 10:10	
Trichlorofluoromethane	ug/L	ND	1.0	12/08/11 10:10	
Vinyl chloride	ug/L	ND	1.0	12/08/11 10:10	
Xylene (Total)	ug/L	ND	3.0	12/08/11 10:10	
1,2-Dichloroethane-d4 (S)	%	85	82-119	12/08/11 10:10	
4-Bromofluorobenzene (S)	%	98	87-113	12/08/11 10:10	
Dibromofluoromethane (S)	%	98	86-112	12/08/11 10:10	
Toluene-d8 (S)	%	102	90-110	12/08/11 10:10	

LABORATORY CONTROL SAMPLE:	923173						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
1,1,1,2-Tetrachloroethane	ug/L	20	20.3	102	81-121		
1,1,1-Trichloroethane	ug/L	20	19.1	95	82-119		
1,1,2,2-Tetrachloroethane	ug/L	20	19.5	98	78-124		
1,1,2-Trichloroethane	ug/L	20	19.1	95	79-121		
1,1-Dichloroethane	ug/L	20	17.9	89	73-119		
1,1-Dichloroethene	ug/L	20	15.6	78	75-120		
1,1-Dichloropropene	ug/L	20	18.4	92	79-123		
1,2,3-Trichlorobenzene	ug/L	20	19.9	99	73-122		
1,2,3-Trichloropropane	ug/L	20	18.2	91	77-124		
1,2,4-Trichlorobenzene	ug/L	20	20.0	100	75-120		
1,2,4-Trimethylbenzene	ug/L	20	19.9	99	77-120		
1,2-Dibromo-3-chloropropane	ug/L	20	15.5	77	69-125		

Date: 01/06/2012 01:16 PM

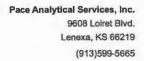
REPORT OF LABORATORY ANALYSIS

Page 50 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:


60111560

ABORATORY CONTROL SAMPL	_E: 923173	Culton	1.00	100	0/ Dec	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dibromoethane (EDB)	ug/L	20	19.4	97	85-121	
1,2-Dichlorobenzene	ug/L	20	20.3	102	82-115	
1,2-Dichloroethane	ug/L	20	17.6	88	77-125	
,2-Dichloroethene (Total)	ug/L	40	38.2	96	79-120	
,2-Dichloropropane	ug/L	20	18.7	94	83-119	
,3,5-Trimethylbenzene	ug/L	20	19.5	98	79-121	
,3-Dichlorobenzene	ug/L	20	19.6	98	79-117	
,3-Dichloropropane	ug/L	20	17.6	88	78-116	
,4-Dichlorobenzene	ug/L	20	19.5	98	83-115	
,2-Dichloropropane	ug/L	20	18.2	91	66-123	
-Butanone (MEK)	ug/L	100	83.8	84	43-165	
-Chlorotoluene	ug/L	20	20.1	101	81-117	
-Hexanone	ug/L	100	78.2	78	47-159	
-Chlorotoluene	ug/L	20	20.3	101	84-116	
-Methyl-2-pentanone (MIBK)	ug/L	100	73.8	74	71-129	
Acetone	ug/L	100	79.9	80	18-192	
Benzene	ug/L	20	19.2	96	82-117	
Promobenzene	ug/L	20	19.5	97	83-116	
romochloromethane	ug/L	20	19.6	98	79-121	
romodichloromethane	ug/L	20	18.1	90	79-114	
romoform	ug/L	20	18.5	93	78-121	
romomethane	ug/L	20	16.7	83	36-146	
Carbon disulfide	ug/L	20	17.8	89	75-138	
Carbon tetrachloride	ug/L	20	19.8	99	80-123	
Chloroberizene	ug/L	20	20.2	101	83-121	
Chloroethane	ug/L	20	17.4	87	42-166	
Chloroform	ug/L	20	19.0	95	82-116	
Chloromethane	ug/L	20	12.7	63	32-117	
is-1,2-Dichloroethene	ug/L	20	19.2	96	80-119	
is-1,3-Dichloropropene	ug/L	20	19.2	96	76-119	
Dibromochloromethane	ug/L	20	19.4	97	81-123	
Dibromomethane	ug/L	20	19.4	98	79-123	
Dichlorodifluoromethane	ug/L	20	11.0	. 55	10-163	
Ethylbenzene	ug/L	20	21.1	105	79-121	
lexachloro-1,3-butadiene	ug/L	20	21.5	107	78-121	
sopropylbenzene (Cumene)	ug/L	20	20.6	103	80-120	
Methyl-tert-butyl ether	ug/L	20	16.9	85	78-119	
Methylene chloride	ug/L	20	19.2	96	75-118	
-Butylbenzene	ug/L	20	19.2	99	80-126	
-Propylbenzene	ug/L	20	20.2	101	83-116	
laphthalene	ug/L	20	19.6	98	66-133	
-Isopropyltoluene	ug/L	20	20.3	102	77-120	
ec-Butylbenzene		20	20.3	102	81-120	
	ug/L					
Styrene	ug/L	20	19.5	97	84-115	
ert-Butylbenzene	ug/L	20	20.2	101	80-117	
Tetrachloroethene	ug/L	20	20.3	102	80-124	
Toluene	ug/L	20	19.8	99	80-120	
rans-1,2-Dichloroethene	ug/L	20	19.0	95	79-120	

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 51 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

LABORATORY CONTROL SAMPL	E: 923173					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
trans-1,3-Dichloropropene	ug/L	20	18.7	93	76-118	
Trichloroethene	ug/L	20	19.8	99	76-122	
Trichlorofluoromethane	ug/L	20	16.8	84	72-120	
Vinyl chloride	ug/L	20	15.9	80	57-163	
Xylene (Total)	ug/L	60	59.8	100	75-120	
1,2-Dichloroethane-d4 (S)	%			85	82-119	
4-Bromofluorobenzene (S)	%			98	87-113	
Dibromofluoromethane (S)	%			97	86-112	
Toluene-d8 (S)	%			102	90-110	

MATRIX SPIKE & MATRIX SPIK	E DUPLICAT	E: 92317	4		923175							
			MS	MSD								
		111560007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20	17.9	18.4	90	92	56-124	3	26	
1,1,1-Trichloroethane	ug/L	ND	20	20	17.0	17.7	85	89	57-128	4	27	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	21.2	22.7	106	113	48-137	6	26	
1,1,2-Trichloroethane	ug/L	ND	20	20	19.2	20.4	96	102	57-136	6	25	
1,1-Dichloroethane	ug/L	ND	20	20	16.0	17.0	80	85	55-130	6	27	
1,1-Dichloroethene	ug/L	ND	20	20	15.0	15.1	75	75	46-146	1	25	
1,1-Dichloropropene	ug/L	ND	20	20	16.7	17.8	84	89	57-137	6	27	
1,2,3-Trichlorobenzene	ug/L	ND	20	20	11.0	13.8	55	69	41-136	22	22	
1,2,3-Trichloropropane	ug/L	ND	20	20	21.6	22.5	108	112	56-136	4	24	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	12.3	14.2	61	71	32-140	15	26	
1,2,4-Trimethylbenzene	ug/L	9.7	20	20	24.8	26.3	76	83	42-133	6	23	
1,2-Dibromo-3-chloropropane	ug/L	ND	20	20	18.3	21.6	91	108	36-167	17	29	
1,2-Dibromoethane (EDB)	ug/L	ND	20	20	20.7	22.7	104	113	45-155	9	21	
1,2-Dichlorobenzene	ug/L	ND	20	20	16.4	16.9	82	85	54-125	3	19	
1,2-Dichloroethane	ug/L	ND	20	20	20.4	21.1	102	105	44-145	3	22	
1,2-Dichloroethene (Total)	ug/L	ND	40	40	35.2	37.2	88	93	46-144	6	26	
1,2-Dichloropropane	ug/L	ND	20	20	17.0	17.8	85	89	60-124	5	26	
1,3,5-Trimethylbenzene	ug/L	7.0	20	20	21.9	22.9	75	80	38-143	4	27	
1,3-Dichlorobenzene	ug/L	ND	20	20	15.8	16.4	79	82	53-123	4	24	
1,3-Dichloropropane	ug/L	ND	20	20	18.4	19.4	92	97	61-130	5	27	
1,4-Dichlorobenzene	ug/L	ND	20	20	16.2	17.0	81	85	53-121	5	25	
2,2-Dichloropropane	ug/L	ND	20	20	16.0	16.7	80	83	21-146	4	25	
2-Butanone (MEK)	ug/L	ND	100	100	82.8	86.0	83	86	29-131	4	27	
2-Chlorotoluene	ug/L	0.62J	20	20	17.0	17.8	82	86	54-131	5	21	
2-Hexanone	ug/L	ND	100	100	82.1	86.5	82	86	41-137	5	24	
4-Chlorotoluene	ug/L	0.25J	20	20	17.0	17.2	84	85	56-130	1	22	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	100	100	85.8	89.9	86	90	38-139	5	25	
Acetone	ug/L	36.5	100	100	102	104	67	69	30-147	2	30	
Benzene	ug/L	97.8	20	20	113	116	77	92	58-139	3	21	
Bromobenzene	ug/L	ND	20	20	17.4	18.2	87	91	57-123	5	21	
Bromochloromethane	ug/L	ND	20	20	18.2	19.2	91	96	56-127	6	24	
Bromodichloromethane	ug/L	ND	20	20	16.3	17.3	81	86	56-125	6	26	
Bromoform	ug/L	ND	20	20	18.0	19.5	90	98	41-132			

Date: 01/06/2012 01:16 PM

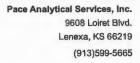
REPORT OF LABORATORY ANALYSIS

Page 52 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:


60111560

MATRIX SPIKE & MATRIX SPII	KE DUPLICATI	E: 92317			923175							
	601	111560007	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qu
Bromomethane	ug/L	ND	20	20	15.2	18.0	76	90	11-162	17	30	
Carbon disulfide	ug/L	ND	20	20	16.9	17.3	85	87	28-155	2	25	
Carbon tetrachloride	ug/L	ND	20	20	18.3	19.3	92	96	54-138	5	23	
Chlorobenzene	ug/L	ND	20	20	. 17.8	18.7	89	93	56-129	5	21	
Chloroethane	ug/L	ND	20	20	16.0	16.4	80	82	42-178	2	33	
Chloroform	ug/L	ND	20	20	17.2	18.0	86	90	55-130	5	23	
Chloromethane	ug/L	ND	20	20	11.4	12.0	57	60	39-141	5	29	
cis-1,2-Dichloroethene	ug/L	ND	20	20	17.0	18.3	85	91	34-152	7	26	
cis-1,3-Dichloropropene	ug/L	ND	20	20	17.6	18.4	88	92	49-128	4	23	
Dibromochloromethane	ug/L	ND	20	20	18.3	19.2	92	96	57-119	4	21	
Dibromomethane	ug/L	ND	20	20	19.3	20.8	97	104	58-123	7	26	
Dichlorodifluoromethane	ug/L	ND	20	20	9.7	9.6	48	48	13-152	1	33	
Ethylbenzene	ug/L	12.1	20	20	30.0	30.9	89	94	56-138	3	19	
lexachloro-1,3-butadiene	ug/L	ND	20	20	12.9	14.0	64	70	34-141	8	27	
sopropylbenzene (Cumene)	ug/L	0.92J	20	20	18.0	18.7	85	89	49-120	4	19	
Methyl-tert-butyl ether	ug/L	ND	20	20	17.5	18.9	88	95	35-140	8	20	
Methylene chloride	ug/L	ND	20	20	17.8	17.9	89	90	44-133	1	27	
n-Butylbenzene	ug/L	1.2	20	20	15.2	16.1	70	75	44-138	6	27	
n-Propylbenzene	ug/L	1.0	20	20	17.3	17.7	81	83	46-136	2	22	
Naphthalene	ug/L	13.4	20	20	30.5	35.2	86	109	26-159	14	34	
p-lsopropyltoluene	ug/L	0.26J	20	20	15.4	16.0	76	78	47-129	3	23	
sec-Butylbenzene	ug/L	0.16J	20	20	15.5	16.1	77	80	51-138	4	23	
Styrene	ug/L	ND	20	20	17.9	18.9	89	94	31-162	6	26	
tert-Butylbenzene	ug/L	ND	20	20	15.8	16.7	79	83	54-135	5	22	
Tetrachloroethene	ug/L	ND	20	20	18.3	18.7	91	94	47-140	3	24	
Toluene	ug/L	184	20	20	195	198	55	72	59-140	2	19	M1
trans-1,2-Dichloroethene	ug/L	ND	20	20	18.2	19.0	91	95	62-130	4	25	
trans-1,3-Dichloropropene	ug/L	ND	20	20	18.3	19.7	91	98	41-111	7	20	
Trichloroethene	ug/L	ND	20	20	17.5	18.0	88	90	37-148	3	25	
Trichlorofluoromethane	ug/L	ND	20	20	15.9	16.6	80	83	53-138	4	30	
Vinyl chloride	ug/L	ND	20	20	14.5	14.8	72	74	47-133	2	32	
Xylene (Total)	ug/L	113	60	60	159	163	77	83	52-146			
1,2-Dichloroethane-d4 (S)	%						95	99	82-119			
4-Bromofluorobenzene (S)	%						100	103	87-113			
Dibromofluoromethane (S)	%						99	103	86-112			
Toluene-d8 (S)	%						101	100	90-110)		
Preservation pH		7.0			7.0	7.0				0		pH

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 53 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

MSV/42527

Analysis Method:

EPA 5030B/8260

QC Batch Method:

EPA 5030B/8260

Analysis Description:

8260 MSV Water 10 mL Purge

Associated Lab Samples:

60111560005, 60111560007, 60111560008


METHOD BLANK: 927095

Matrix: Water

Associated Lab Samples: 60111560005, 60111560007, 60111560008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
2-Butanone (MEK)	ug/L	ND	10.0	12/15/11 17:29	
Acetone	ug/L	ND	10.0	12/15/11 17:29	
1,2-Dichloroethane-d4 (S)	%	96	82-119	12/15/11 17:29	
4-Bromofluorobenzene (S)	%	98	87-113	12/15/11 17:29	
Dibromofluoromethane (S)	%	94	86-112	12/15/11 17:29	
Toluene-d8 (S)	%	101	90-110	12/15/11 17:29	

LABORATORY CONTROL SAMP	PLE: 927096					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
2-Butanone (MEK)	ug/L	100	129	129	43-165	
Acetone	ug/L	100	160	160	18-192	
1,2-Dichloroethane-d4 (S)	%			103	82-119	
4-Bromofluorobenzene (S)	%			97	87-113	
Dibromofluoromethane (S)	%			97	86-112	
Toluene-d8 (S)	%			102	90-110	

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

MSV/42595

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV MO GRO Oxygenates

Associated Lab Samples:

60111560004, 60111560005, 60111560006, 60111560007, 60111560008

METHOD BLANK: 929130

Matrix: Water

Associated Lab Samples:

60111560004, 60111560005, 60111560006, 60111560007, 60111560008

Blank Result Reporting

Parameter

Units

Units

Limit

Analyzed

Qualifiers

TPH-GRO

ug/L

ND

500 12/08/11 10:10

LABORATORY CONTROL SAMPLE:

Parameter

929131

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

TPH-GRO

ug/L

4000

3490

87

58-133

Date: 01/06/2012 01:16 PM

Page 55 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

Benzene

Toluene Xylene (Total)

Ethylbenzene

MSV/42321

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

101

100

104

8260 MSV UST-WATER

Associated Lab Samples:

METHOD BLANK: 922957

Matrix: Water

Associated Lab Samples:

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

Parameter

60111560010

60111560010

Blank Result	Reporting Limit	Analyzed	Qualifiers
ND	1.0	12/08/11 04:42	
ND	1.0	12/08/11 04:42	
0.23J	1.0	12/08/11 04:42	
ND	3.0	12/08/11 04:42	
104	82-119	12/08/11 04:42	

87-113 12/08/11 04:42

86-112 12/08/11 04:42

90-110 12/08/11 04:42

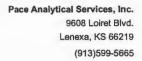
Toluene-d8 (S)

ug/L

ug/L ug/L

ug/L

%


%

%

%

Units

LABORATORY CONTROL SAMPLE:	922958					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	17.8	89	82-117	
Ethylbenzene	ug/L	20	18.1	90	79-121	
Toluene	ug/L	20	17.9	90	80-120	
Xylene (Total)	ug/L	60	54.3	90	79-120	•
1,2-Dichloroethane-d4 (S)	%			104	82-119	
4-Bromofluorobenzene (S)	%			100	87-113	
Dibromofluoromethane (S)	%			102	86-112	
Toluene-d8 (S)	%			102	90-110	

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

OEXT/31413

Analysis Method:

EPA 8015B

QC Batch Method:

EPA 3510C

Analysis Description:

EPA 8015B

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007, 60111560008

Matrix: Water

Associated Lab Samples:

METHOD BLANK: 923077


60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

60111560008

Blank Reporting Analyzed Parameter Units Result Limit Qualifiers TPH-DRO mg/L ND 0.50 12/14/11 21:20 n-Tetracosane (S) % 54 36-120 12/14/11 21:20 % 56 p-Terphenyl (S) 40-118 12/14/11 21:20

LABORATORY CONTROL SAMPLE: 923078

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
TPH-DRO	mg/L	2.5	1.3	53	48-119	M4
n-Tetracosane (S)	%			54	36-120	
p-Terphenyl (S)	%			58	40-118	

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

WET/32586

Analysis Method:

SM 2320B

QC Batch Method:

SM 2320B

Analysis Description:

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

2320B Alkalinity

60111560008

Matrix: Water

METHOD BLANK: 926981 Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

60111560008

Blank Reporting

Result

Limit

Analyzed

Qualifiers

Alkalinity, Total as CaCO3 Alkalinity, Bicarbonate (CaCO3)

Parameter

Units mg/L

6.0J 6.0J

20.0 12/15/11 14:30 20.0 12/15/11 14:30

LABORATORY CONTROL SAMPLE: 926982

mg/L

mg/L

Spike

LCS

LCS

% Rec

9

9

9

Parameter Alkalinity, Total as CaCO3 Units

Conc. 500

Result 490 % Rec 98 Limits 90-110 Qualifiers

SAMPLE DUPLICATE: 926983

Parameter Alkalinity, Total as CaCO3 Alkalinity, Bicarbonate (CaCO3)

Units mg/L

mg/L

60111352001 Result 166

166

4560

Dup Result 164

164

RPD

Max **RPD**

Qualifiers

SAMPLE DUPLICATE: 926984

Parameter Alkalinity, Total as CaCO3 Alkalinity, Bicarbonate (CaCO3)

mg/L

60111560007 Units Result mg/L 4560

Result

Dup

RPD 4520 4520

1 1


1

Max **RPD**

Qualifiers 9

Date: 01/06/2012 01:16 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 58 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

WET/32449

Analysis Method:

SM 2540C

QC Batch Method:

SM 2540C

Analysis Description:

2540C Total Dissolved Solids

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004

METHOD BLANK: 923074

Matrix: Water

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004

Blank Result Reporting

Parameter Units

Limit Analyzed Qualifiers

Total Dissolved Solids

mg/L

ND

5.0 12/08/11 08:09

SAMPLE DUPLICATE: 923075

Parameter

Units

60111329001 Result

Dup Result

RPD

5

Max **RPD**

Qualifiers

Total Dissolved Solids

mg/L

mg/L

438

462

17

17

SAMPLE DUPLICATE: 923076

Parameter

Units

60111335002 Result

Dup Result

RPD

Max

Total Dissolved Solids

374

378

1

RPD

Qualifiers

Date: 01/06/2012 01:16 PM

Project:

QC Batch:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

QC Batch Method:

60111560

Parameter

WET/32477

Analysis Method:

SM 2540C

SM 2540C

Analysis Description:

2540C Total Dissolved Solids

Associated Lab Samples:

60111560005, 60111560006, 60111560007, 60111560008

METHOD BLANK: 923885

Associated Lab Samples:

60111560005, 60111560006, 60111560007, 60111560008

Blank Result

Reporting

Limit

Analyzed

Qualifiers

Total Dissolved Solids

mg/L

Units

Units

Units

ND

12/09/11 09:47 5.0

SAMPLE DUPLICATE: 923886

Parameter

60111560007 Result

Dup Result

RPD

Max **RPD**

Qualifiers

Total Dissolved Solids

mg/L

8730

8350

4

7

SAMPLE DUPLICATE:

923887

Parameter

60111465004 Result

Dup Result **RPD**

Max **RPD**

Total Dissolved Solids

mg/L

Qualifiers

168

157

17

17

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

WET/32534

SM 2540C

Analysis Method:

SM 2540C

Analysis Description:

2540C Total Dissolved Solids

QC Batch Method:

METHOD BLANK: 925810

Parameter

Matrix: Water

Associated Lab Samples:

Associated Lab Samples:

60111560005

60111560005

Blank Result Reporting

Limit

Analyzed

Qualifiers

Total Dissolved Solids

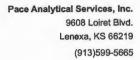
mg/L

Units

ND

5.0 12/13/11 17:15

Date: 01/06/2012 01:16 PM


REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 61 of 67

Pace Pkg. Page 61 of 69

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

WET/32456

Analysis Method:

SM 4500-S-2 F

QC Batch Method:

SM 4500-S-2 F

Analysis Description:

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

Units

4500S2F Sulfide, lodometric

60111560008

METHOD BLANK: 923195

Matrix: Water

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

60111560008

Blank Result Reporting Limit

Analyzed

Sulfide

mg/L

ND

0.50 12/08/11 16:50 Qualifiers

LABORATORY CONTROL SAMPLE: 923196

Parameter

Spike

LCS

LCS

% Rec Limits

Qualifiers

Result Parameter Units Conc. % Rec 97 Sulfide mg/L 10 9.7 80-120

MATRIX SPIKE SAMPLE:

Parameter

Parameter

923197

60111560007

Spike

ND

ND

MS

MS

% Rec

Qualifiers

Sulfide

mg/L

Units

Result

Conc.

10

Result

8.9

% Rec

89

15

Limits

75-125

SAMPLE DUPLICATE: 923198

Units

60111560008 Result

Dup

RPD

Max

Sulfide

mg/L

Result

ND

RPD

Qualifiers

Page 62 of 67

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

QC Batch:

WETA/18657

57

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Method: Analysis Description:

300.0 IC Anions

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

60111560008

METHOD BLANK: 926245

Matrix: Water

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

60111560008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	ND	1.0	12/14/11 15:53	
Chloride	mg/L	0.36J	1.0	12/14/11 15:53	
Sulfate	mg/L	0.20J	1.0	12/14/11 15:53	

METHOD BLANK: 927684

Matrix: Water

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

60111560008

	Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
	Bromide	mg/L	ND	1.0	12/15/11 08:56	
	Chloride	mg/L	0.37J	1.0	12/15/11 08:56	
献	Sulfate	mg/L	0.20J	1.0	12/15/11 08:56	

METHOD BLANK: 928135

Matrix: Water

Associated Lab Samples:

60111560001, 60111560002, 60111560003, 60111560004, 60111560005, 60111560006, 60111560007,

60111560008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	ND	1.0	12/16/11 09:00	
Chloride	mg/L	0.35J	1.0	12/16/11 09:00	
Sulfate	mg/L	0.25J	1.0	12/16/11 09:00	

_				
1	ARCHATO.DV	CONTRIOL	SAMPLE.	026246

Parameter	Units	Spike Conc.	LCS Result	LCS %.Rec	% Rec Limits	Qualifiers
Bromide	mg/L	5	5.0	100	90-110	
Chloride	mg/L	5	5.0	101	90-110	
Sulfate	mg/L	5	5.3	105	90-110	

LABORATORY CONTROL SAMPLE: 927685

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L	5	4.9	98	90-110	
Chloride	mg/L	5	4.9	97	90-110	
Sulfate	mg/L	5	5.0	99	90-110	

Date: 01/06/2012 01:16 PM

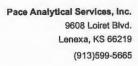
REPORT OF LABORATORY ANALYSIS

Page 63 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO. 202 (074922)


Pace Project No.: 60111560

LABORATORY	CONTROL	SAMPLE:	928136

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L	5	5.0	100	90-110	
Chloride	mg/L	5	4.9	98	90-110	
Sulfate	mg/L	5	4.9	98	90-110	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 92624	7		926248							
Parameter	60 Units	111334002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
Bromide	mg/L	ND	10	10	9.8	10.0	98	100	75-119	2	10	
Chloride	mg/L	10.8	10	10	20.4	20.5	97	97	64-118		12	
Sulfate	mg/L	415	100	100	468	481	53	66	61-119	3	10	MO

MATRIX SPIKE SAMPLE:	926249						
Parameter	Units	60111380002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L	ND	25	25.2	101	75-119	
Chloride	mg/L	45.8	25	71.1	101	64-118	
Sulfate	mg/L	ND	100	161	160	61-119 I	MO

QUALIFIERS

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.:

60111560

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

BATCH QUALIFIERS

Batch: MSV/42321

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: GCV/3966

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/42527

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

В	Analyte was detected in the associated method blank.
D3	Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
D4	Sample was diluted due to the presence of high levels of target analytes.
E	Analyte concentration exceeded the calibration range. The reported result is estimated.
F1	The sample was analyzed at a dilution due to foaming of the sample in the purge vessel.
H1	Analysis conducted outside the EPA method holding time.
H5	Reanalysis conducted in excess of EPA method holding time. Results confirm original analysis performed in hold time.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
M4	A matrix spike/matrix spike duplicate was not performed for this batch due to sample dilution.
S2	Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample re-analysis).
S4	Surrogate recovery not evaluated against control limits due to sample dilution.
Hq	Post-analysis pH measurement indicates insufficient VOA sample preservation.

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 65 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60111560001	DW-074922-120111-CM-46	EPA 3510C	OEXT/31413	EPA 8015B	GCSV/11674
60111560002	DW-074922-120111-CM-29	EPA 3510C	OEXT/31413	EPA 8015B	GCSV/11674
60111560003	DW-074922-120111-CM-D3	EPA 3510C	OEXT/31413	EPA 8015B	GCSV/11674
60111560004	PW-074922-120111-CM-202	EPA 3510C	OEXT/31413	EPA 8015B	GCSV/11674
60111560005	PW-074922-120211-CM-DUP	EPA 3510C	OEXT/31413	EPA 8015B	GCSV/11674
60111560006	SW-074922-120211-CM-NAV	EPA 3510C	OEXT/31413	EPA 8015B	GCSV/11674
60111560007	PW-074922-120211-CM-204A	EPA 3510C	OEXT/31413	EPA 8015B	GCSV/11674
60111560008	PW-074922-120211-CM-25	EPA 3510C	OEXT/31413	EPA 8015B	GCSV/11674
60111560001	DW-074922-120111-CM-46	EPA 5030B/8015B	GCV/3966		
60111560002	DW-074922-120111-CM-29	EPA 5030B/8015B	GCV/3966		
60111560003	DW-074922-120111-CM-D3	EPA 5030B/8015B	GCV/3966		
60111560004	PW-074922-120111-CM-202	EPA 5030B/8015B	GCV/3971		
60111560005	PW-074922-120211-CM-DUP	EPA 5030B/8015B	GCV/3971		
60111560006	SW-074922-120211-CM-NAV	EPA 5030B/8015B	GCV/3971		
60111560007	PW-074922-120211-CM-204A	EPA 5030B/8015B	GCV/3971		
60111560008	PW-074922-120211-CM-25	EPA 5030B/8015B	GCV/3971		
60111560001	DW-074922-120111-CM-46	EPA 3010	MPRP/16421	EPA 6010	ICP/14131
60111560002	DW-074922-120111-CM-29	EPA 3010	MPRP/16421	EPA 6010	ICP/14131
60111560003	DW-074922-120111-CM-D3	EPA 3010	MPRP/16421	EPA 6010	ICP/14131
60111560004	PW-074922-120111-CM-202	EPA 3010	MPRP/16421	EPA 6010	ICP/14131
60111560005	PW-074922-120211-CM-DUP	EPA 3010	MPRP/16421	EPA 6010	ICP/14131
60111560006	SW-074922-120211-CM-NAV	EPA 3010	MPRP/16421	EPA 6010	ICP/14131
60111560007	PW-074922-120211-CM-204A	EPA 3010	MPRP/16421	EPA 6010	ICP/14131
60111560008	PW-074922-120211-CM-25	EPA 3010	MPRP/16421	EPA 6010	ICP/14131
60111560001	DW-074922-120111-CM-46	EPA 5030B/8260	MSV/42327		
60111560002	DW-074922-120111-CM-29	EPA 5030B/8260	MSV/42327		
60111560003	DW-074922-120111-CM-D3	EPA 5030B/8260	MSV/42327		
60111560004	PW-074922-120111-CM-202	EPA 5030B/8260	MSV/42327		
60111560005	PW-074922-120211-CM-DUP	EPA 5030B/8260	MSV/42327		
60111560005	PW-074922-120211-CM-DUP	EPA 5030B/8260	MSV/42527		
60111560006	SW-074922-120211-CM-NAV	EPA 5030B/8260	MSV/42327		
60111560007	PW-074922-120211-CM-204A	EPA 5030B/8260	MSV/42327		
60111560007	PW-074922-120211-CM-204A	EPA 5030B/8260	MSV/42527		
60111560008	PW-074922-120211-CM-25	EPA 5030B/8260	MSV/42327		
60111560008	PW-074922-120211-CM-25	EPA 5030B/8260	MSV/42527		
60111560009	FB-074922-120211-CM-FB1	EPA 5030B/8260	MSV/42327		
60111560004	PW-074922-120111-CM-202	EPA 8260	MSV/42595		
60111560005	PW-074922-120211-CM-DUP	EPA 8260	MSV/42595		
60111560006	SW-074922-120211-CM-NAV	EPA 8260	MSV/42595		
60111560007	PW-074922-120211-CM-204A	EPA 8260	MSV/42595		
60111560008	PW-074922-120211-CM-25	EPA 8260	MSV/42595		
60111560010	TB-074922-120511-001	EPA 8260	MSV/42321		

Date: 01/06/2012 01:16 PM

REPORT OF LABORATORY ANALYSIS

Page 66 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

SAN JUAN 32-8 NO. 202 (074922)

Pace Project No.: 60111560

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60111560001	DW-074922-120111-CM-46	SM 2320B	WET/32586		
60111560002	DW-074922-120111-CM-29	SM 2320B	WET/32586		
60111560003	DW-074922-120111-CM-D3	SM 2320B	WET/32586		
60111560004	PW-074922-120111-CM-202	SM 2320B	WET/32586		
60111560005	PW-074922-120211-CM-DUP	SM 2320B	WET/32586		
60111560006	SW-074922-120211-CM-NAV	SM 2320B	WET/32586		
60111560007	PW-074922-120211-CM-204A	SM 2320B	WET/32586		
60111560008	PW-074922-120211-CM-25	SM 2320B	WET/32586		
60111560001	DW-074922-120111-CM-46	SM 2540C	WET/32449		
60111560002	DW-074922-120111-CM-29	SM 2540C	WET/32449		
60111560003	DW-074922-120111-CM-D3	SM 2540C	WET/32449		
60111560004	PW-074922-120111-CM-202	SM 2540C	WET/32449		
60111560005	PW-074922-120211-CM-DUP	SM 2540C	WET/32477		
60111560005	PW-074922-120211-CM-DUP	SM 2540C	WET/32534		
60111560006	SW-074922-120211-CM-NAV	SM 2540C	WET/32477		
60111560007	PW-074922-120211-CM-204A	SM 2540C	WET/32477		
60111560008	PW-074922-120211-CM-25	SM 2540C	WET/32477		
60111560001	DW-074922-120111-CM-46	SM 4500-S-2 F	WET/32456		
60111560002	DW-074922-120111-CM-29	SM 4500-S-2 F	WET/32456		
60111560003	DW-074922-120111-CM-D3	SM 4500-S-2 F	WET/32456		
60111560004	PW-074922-120111-CM-202	SM 4500-S-2 F	WET/32456		
60111560005	PW-074922-120211-CM-DUP	SM 4500-S-2 F	WET/32456		
60111560006	SW-074922-120211-CM-NAV	SM 4500-S-2 F	WET/32456		
60111560007	PW-074922-120211-CM-204A	SM 4500-S-2 F	WET/32456		
60111560008	PW-074922-120211-CM-25	SM 4500-S-2 F	WET/32456		
60111560001	DW-074922-120111-CM-46	EPA 300.0	WETA/18657	•	
60111560002	DW-074922-120111-CM-29	EPA 300.0	WETA/18657		
60111560003	DW-074922-120111-CM-D3	EPA 300.0	WETA/18657		
60111560004	PW-074922-120111-CM-202	EPA 300.0	WETA/18657		
60111560005	PW-074922-120211-CM-DUP	EPA 300.0	WETA/18657		
60111560006	SW-074922-120211-CM-NAV	EPA 300.0	WETA/18657	,	
60111560007	PW-074922-120211-CM-204A	EPA 300.0	WETA/18657		
60111560008	PW-074922-120211-CM-25	EPA 300.0	WETA/18657	7	

Page

으

CHAIN-OF-CUS Y / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section C Section A Section B Required Client Information: Regulred Project Information: Invoice Information: Report To: Christine Mathews **ENFOS** CRA Address: 6121 Indian School Rd NE, Ste 200 Copy To: Kelly Blanchard, Angela Bown Company Name: REGULATORY AGENCY Albequerque, NM 87110 Address. NPDES GROUND WATER DRINKING WATER Purchase Order No.: ace Ourre Email To: cmathews@craworld.com -UST F RCRA OTHER Reference: Pace Piciect Phone: (505)884-0672 Fax: (505)884-4932 Project Name: San Juan 32-8 No. 202 Anna Custer Site Location NM ace Pr. ile #: 5514, 3 Requested Due Date/TAT: STATE: Requested Analysis Filtered (Y/N) Section D Valid Matrix Codes C=COMP) COLLECTED Preservatives Required Client Information MATRIX CODE DRINKING WATER DW WATER 804 COMPOSITE COMPOSITE WASTE WATER Residual Chlorine (Y/N) (G=GRAB PRODUCT START SOIL/SOLID 300.0-CI, Br, OIL CONTAINERS 8015B GRO WIPE Diss. SAMPLE ID 60111560 CODE (A-Z, 0-9 / ,-) OTHER SAMPLE TYPE 8015B Sample IDs MUST BE UNIQUE 60101 2320B MATRIX # OF 오 Pace Project No./ Lab I.D. DATE TIME DATE 945 18P3Z120 0 DW-074922-12011-CM-46 2.1.11 DW-074922-120111-CM-29 00 WT DW-074922-120111-1M-D3 DL 18P3Z120 0 001 -OLD ACCEPTED BY / AFFILIATION TIME SAMPLE CONDITIONS ADDITIONAL COMMENTS RECINQUISHED BY AFFILIATION TIME *Mg, Ca, B, K, Na 2-6-110915 1.6 3,6 01 SAMPLER NAME AND SIGNATURE 1 30 7 Seale (Y/N) (Y/N) (Y/N) PRINT Name of SAMPLER:

SIGNATURE of SAMPLER

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.6% per month for any invoice

F-ALL-Q-020rev.08, 12-Oct-2007

Sar	nple Condition	Upon Receipt		
Pace Analytical Client Name	CRA		Project # 6011560	_
Courier: Fed Ex UPS USPS Clier Tracking #: 797905240329 Pace Custody Seal on Cooler/Box Present: Yes	Shipping Label Used	Pace Other Yes Intact: Yes	No Optional Proj. Due Date: 216 k	
Packing Material: Bubble Wrap Bubble Thermometer Used: (T-191) T-194	′ >	/		
Cooler Temperature: 2.6/3.6/01// Temperature should be above freezing to 6°C	Type of Ice: (Well)	Blue None Comments:	Date and Initials of person examining contents: 12	
Chain of Custody present:	Yes ONO ONA	1.		
Chain of Custody filled out:	Yes ONO ONA	2.		
Chain of Custody relinquished:	ØYes □No □N/A	3.		
Sampler name & signature on COC:	Ayes ONO ONA	4.		
Samples arrived within holding time:	Yes ONO ON/A	5.		
Short Hold Time analyses (<72hr):	□Yes ØNo □N/A	6.		
Rush Turn Around Time requested:	□Yes No □N/A	7.		
Sufficient volume:	Yes ONO ON/A	8.	•	
Correct containers used:	Yes ONO ON/A	9.		8
-Pace containers used:	Yes ONO ON/A	•		
Containers intact:	Yes ONO ON/A	10.		
Unpreserved 5035A soils frozen w/in 48hrs?	□Yes □No □N/A	11.		
Filtered volume received for dissolved tests	□Yes □No □N/A	12.		
Sample labels match COC:	Yes ONO ONA	13. Add +d 7-5 9	inial PH is bo and Final PH re	202
-Includes date/time/ID/analyses Matrix:	w/	2044,25 411 1	inial to 12 and Final by La	
All containers needing preservation have been checked.	TYes ONO ON/A	14.	V	
All containers needing preservation are found to be in compliance with EPA recommendation.	Yes ONO ON/A		T	-
Exceptions: VOA) coliform, TOC, O&G, WI-DRO (water), Phenolics	ØYes □No	Initial when completed	Lot # of added 6090	
Trip Blank present: Pace Trip Blank for # (if purchased): 1/61/if-3	Yes ONO ONA	15.		
Headspace in VOA vials (>6mm):	□Yes No □N/A	16.		
Project sampled in USDA Regulated Area:	Otes Ono JANIA	17. List State:	J.	
Client Notification/ Resolution: Copy Person Contacted: Comments/ Resolution: 12/7 - Dev CUV US SOCiated W PW - 07/92	Date/ 15the Mat 2-12021	Time: The Street	Field Data Required? Y / N MS/MSD Sumple 15	
Project Manager Review: LAT In ACC			Date: 17 11	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

F-KS-C-003-Rev.05, 19February2010

January 06, 2012

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on December 22, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

OWA CECURITE

Anna Custer

anna.custer@pacelabs.com Project Manager

Enclosures

cc: Kelly Blanchard, COP Conestoga-Rovers & Associa Angela Bown, COP Conestoga-Rovers & Associa

Page 1 of 35

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

CERTIFICATIONS

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #: MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: 959
Idaho Certification #: 200011
Illinois Certification #: 368
Kansas Certification #: E-10167

Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137

Louisiana Certification #: 03086

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 100418 Indiana Certification #: C-49-06 Kansas Certification #: E-10247

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 A2LA Certification #: 2456.01 Arkansas Certification #: 05-008-0 Illinois Certification #: 001191 lowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Mississippi Certification #: Pace Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754

Kentucky Certification #: 0042 Louisiana/NELAC Certification #: 04076 Ohio VAP: CL0065 West Virginia Certification #: 330

Wisconsin Certification #: 999407970

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-08-TX Utah Certification #: 9135995665

SAMPLE SUMMARY

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60112644001	GW-074922-120211-CM-2566	Water	12/20/11 11:30	12/22/11 09:15
60112644002	TB-074922-120211-001	Water	12/20/11 00:00	12/22/11 09:15

SAMPLE ANALYTE COUNT

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60112644001	GW-074922-120211-CM-2566	RSK 175	SK4	1	PASI-M
		EPA 8015B	SDR	3	PASI-K
		EPA 5030/8015 Mod.	KMP	2	PASI-I
		EPA 6010	JGP	5	PASI-K
		EPA 5030B/8260	JDM	70	PASI-K
		SM 2320B	AJM	2	PASI-K
		SM 2540C	BGM	1	PASI-K
		SM 4500-S-2 D	LAJ	1	PASI-K
		EPA 300.0	JML	3	PASI-K
60112644002	TB-074922-120211-001	EPA 8260	PRG	9	PASI-K

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

Method:

RSK 175

Description: RSK 175 AIR Headspace

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for RSK 175. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: AIR/13902

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10179168003

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 1121207)
 - Methane
- · MSD (Lab ID: 1121208)
 - Methane

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Page 5 of 35

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

Method:

RSK 175

Description: RSK 175 AIR Headspace

COP Conestoga-Rovers & Associates, Inc. NM

Client: Date:

January 06, 2012

Analyte Comments:

QC Batch: AIR/13902

4e: The sample was not collected in the appropriate container for headspace analysis.

• GW-074922-120211-CM-2566 (Lab ID: 60112644001)

Methane

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

· GW-074922-120211-CM-2566 (Lab ID: 60112644001)

Methane

· MS (Lab ID: 1121207)

Methane

MSD (Lab ID: 1121208)

Methane

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

Method:

EPA 8015B

Descrip

Description: 8015B Diesel Range Organics

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for EPA 8015B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: GCSV/11742

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

Method:

EPA 5030/8015 Mod. **Description:** Gasoline Range Organics

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for EPA 5030/8015 Mod.. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

Method:

EPA 6010

Description: 6010 MET ICP, Dissolved

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MPRP/16583

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60112644001

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MSD (Lab ID: 932021)
 - · Calcium, Dissolved
 - · Magnesium, Dissolved
 - · Sodium, Dissolved

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: MPRP/16583

1e: MMatrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. Sample was greater than four times the spiek value.

- MS (Lab ID: 932020)
 - · Sodium, Dissolved

REPORT OF LABORATORY ANALYSIS

Page 9 of 35

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

Method:

EPA 6010

Description: 6010 MET ICP, Dissolved

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

Analyte Comments:

QC Batch: MPRP/16583

2e: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. A post digestin spike was performed.

- · MS (Lab ID: 932020)
 - · Magnesium, Dissolved
- · MSD (Lab ID: 932021)
 - · Potassium, Dissolved

3e: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. Sample was greater than four times the spiek value.

- · MS (Lab ID: 932020)
 - · Calcium, Dissolved

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

Method:

EPA 5030B/8260

Description: 8260 MSV Client: COP Cone

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/42853

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No .:

60112644

Method:

EPA 8260

Description: 8260 MSV UST, Water

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

All analytes were below the report limit in the method blank with any exceptions noted below.

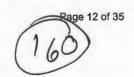
Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recovenes and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/427'47

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.


Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

Method:

SM 2320B **Description: 2320B Alkalinity**

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recovenes and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

Method:

SM 2540C

Description: 2540C Total Dissolved Solids

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

Method:

SM 4500-S-2 D

Description: 4500S2D Sulfide, Total

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for SM 4500-S-2 D. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

Method:

EPA 300.0

011---

Description: 300.0 IC Anions 28 Days

Client:

COP Conestoga-Rovers & Associates, Inc. NM

Date:

January 06, 2012

General Information:

1 sample was analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recovenes and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project:

SAN JUAN 32-8 NO 202 (074922)

60112644

Sample: GW-074922-120211-CM- 2566	Lab ID: 60112	644001 Collected:	12/20/11	1 11:30	Received: 12/	22/11 09:15 M	atrix: Water	
		Report	MDI				01011	•
Parameters	Results Uni	ts Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 AIR Headspace	Analytical Metho	d: RSK 175						
Methane	9230 ug/L	10.0	5.0	1		12/23/11 12:51	74-82-8	4e,E
8015B Diesel Range Organics	Analytical Metho	d: EPA 8015B Prepa	ration Met	thod: Ef	PA 3510C			
TPH-DRO	ND mg/L	0.50	0.097	1	12/23/11 00:00	12/29/11 23:05		
Surrogates								
p-Terphenyl (S)	68 %	40-118		1	12/23/11 00:00	12/29/11 23:05	92-94-4	
n-Tetracosane (S)	63 %	36-120		1	12/23/11 00:00	12/29/11 23:05	646-31-1	
Gasoline Range Organics	Analytical Metho	d: EPA 5030/8015 Mo	od.					
TPH (C06-C10)	ND mg/L	0.20		1		12/31/11 12:42		
Surrogates								
4-Bromofluorobenzene (S)	85 %.	45-130		1		12/31/11 12:42	460-00-4	
6010 MET ICP, Dissolved	Analytical Metho	d: EPA 6010 Prepara	ation Meth	od: EPA	3010			
Boron, Dissolved	127 ug/L	100	2.3	1	12/27/11 12:05	12/30/11 09:58	7440-42-8	
Calcium, Dissolved	218000 ug/L	100	7.1	1	12/27/11 12:05	12/30/11 09:58		
Magnesium, Dissolved	11200 ug/L	50.0	10.0	1	12/27/11 12:05			
Potassium, Dissolved	2910 ug/L	500	63.4	1	12/27/11 12:05	12/30/11 09:58		
Sodium, Dissolved	303000 ug/L	500	14.2	1	12/27/11 12:05			
8260 MSV	Analytical Metho	d: EPA 5030B/8260						
Acetone	167 ug/L	10.0	2.2	1		01/03/12 17:51	67-64-1	
Benzene	ND ug/L	1.0	0.070	1		01/03/12 17:51		
Bromobenzene	ND ug/L	1.0	0.064	1		01/03/12 17:51		
Bromochloromethane	ND ug/L	1.0	0.10	1		01/03/12 17:51		
Bromodichloromethane	ND ug/L	1.0	0.10	1		01/03/12 17:51		
Bromoform	ND ug/L	1.0	0.15	1		01/03/12 17:51		
Bromomethane	_	1.0	0.13	1				
2-Butanone (MEK)	ND ug/L 363 ug/L	10.0	0.22	1		01/03/12 17:51		
n-Butylbenzene			0.41	1		01/03/12 17:51		/
sec-Butylbenzene	ND ug/L	1.0				01/03/12 17:51		
tert-Butylbenzene	ND ug/L	1.0	0.047	1		01/03/12 17:51		
•	ND ug/L	1.0	0.066	-		01/03/12 17:51		
Carbon disulfide	0.16J ug/L	5.0	0.053	1		01/03/12 17:51		
Carbon tetrachloride	ND ug/L	1.0	0.23	1		01/03/12 17:51		
Chlorobenzene	ND ug/L	1.0	0.093	1		01/03/12 17:51		
Chloroethane	ND ug/L	1.0	0.19	1		01/03/12 17:51		
Chloroform	ND ug/L	1.0	0.087	1		01/03/12 17:51		
Chloromethane	ND ug/L	1.0	0.24	1		01/03/12 17:51		
2-Chlorotoluene	ND ug/L	1.0	0.19	1		01/03/12 17:51	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	0.12	1		01/03/12 17:51	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	0.66	1		01/03/12 17:51	96-12-8	
Dibromochloromethane	ND ug/L	1.0	0.091	1		01/03/12 17:51	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	0.13	1		01/03/12 17:51		
Dibromomethane	ND ug/L	1.0	0.12	1		01/03/12 17:51		
1,2-Dichlorobenzene	ND ug/L	1.0	0.077	1		01/03/12 17:51		

Date: 01/06/2012 12:01 PM

REPORT OF LABORATORY ANALYSIS

Page 17 of 35

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO 202 (074922)

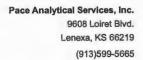
Pace Project No.: 60112644

Sample: GW-074922-120211-CM-2566

Lab ID: 60112644001

Collected: 12/20/11 11:30

Received: 12/22/11 09:15 Matrix. Water

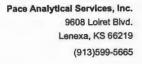

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qu
8260 MSV	Analytical	Method: EP	A 5030B/8260				-		
1,3-Dichlorobenzene	ND ug	a/L	1.0	0.068	1		01/03/12 17:51	541-73-1	
1,4-Dichlorobenzene	ND ug		1.0	0.072	1		01/03/12 17:51	106-46-7	
Dichlorodifluoromethane	ND ug		1.0	0.15	1		01/03/12 17:51	75-71-8	
1,1-Dichloroethane	ND ug	-	1.0	0.079	1		01/03/12 17:51	75-34-3	
1,2-Dichloroethane	ND us		1.0	0.080	1		01/03/12 17:51	107-06-2	
1,2-Dichloroethene (Total)	ND ug		1.0	0.12	1		01/03/12 17:51	540-59-0	
1,1-Dichloroethene	ND ug	-	1.0	0.13	1		01/03/12 17:51	75-35-4	
cis-1,2-Dichloroethene	ND ug		1.0	0.086	1		01/03/12 17:51		
trans-1,2-Dichloroethene	ND us		1.0	0.085	1		01/03/12 17:51		
1,2-Dichloropropane	ND ug		1.0	0.045	1		01/03/12 17:51		
1,3-Dichloropropane	ND u		1.0	0.097	1		01/03/12 17:51		
2,2-Dichloropropane	ND us		1.0	0.11	1		01/03/12 17:51		
1,1-Dichloropropene	ND u	-	1.0	0.088	1		01/03/12 17:51		
cis-1,3-Dichloropropene	ND u		1.0	0.066	1		01/03/12 17:51		
trans-1,3-Dichloropropene	ND u		1.0	0.080	1		01/03/12 17:51		
Ethylbenzene	ND u		1.0	0.078	1		01/03/12 17:51		
Hexachloro-1,3-butadiene	ND u	_	1.0	0.11	1		01/03/12 17:51		
2-Hexanone	ND u	_	10.0	0.50	1		01/03/12 17:51		
sopropylbenzene (Cumene)	ND u		1.0	0.069	1		01/03/12 17:51		
p-Isopropyltoluene	ND u		1.0	0.065	1		01/03/12 17:51		
Methylene chloride	ND u	-	1.0	0.12	1		01/03/12 17:51		
4-Methyl-2-pentanone (MIBK)	ND u	_	10.0	0.12	1		01/03/12 17:51		
Methyl-tert-butyl ether	ND u	_	1.0	0.077	1		01/03/12 17:51		
Naphthalene	ND u		10.0	0.14	1		01/03/12 17:51		
n-Propylbenzene	ND u	_	1.0	0.071	1		01/03/12 17:51		
Styrene	ND u	_	1.0	0.080	1		01/03/12 17:51		
1,1,1,2-Tetrachloroethane	ND u	_	1.0	0.12	1		01/03/12 17:51		
			1.0	0.12	1		01/03/12 17:51		
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND u	•	1.0	0.12	1		01/03/12 17:51		
Toluene	ND u	-	1.0	0.073	1		01/03/12 17:51		
1,2,3-Trichlorobenzene	ND u	_	1.0	0.004	1		01/03/12 17:51		
1,2,4-Trichlorobenzene	ND u	_	1.0	0.10	1		01/03/12 17:51		
1,1,1-Trichloroethane	ND u	_	1.0	0.10	1		01/03/12 17:51		
1,1,2-Trichloroethane	ND u	_	1.0	0.15	1		01/03/12 17:51		
Trichloroethene		•	1.0	0.064	1		01/03/12 17:51		
Trichlorofluoromethane	ND u	-	1.0	0.064	1		01/03/12 17:51		
	ND u	_	2.5	0.36	1		01/03/12 17:51		
1,2,3-Trichloropropane	ND u	_	1.0	0.060	1		01/03/12 17:51		
1,2,4-Trimethylbenzene	ND u	_		0.080	1		01/03/12 17:51		
1,3,5-Trimethylbenzene	ND u		1.0						
Vinyl chloride	ND u	•	1.0	0.068	1		01/03/12 17:51		
Xylene (Total)	ND u	g/L	3.0	0.15	1		01/03/12 17:51	1330-20-7	
Surrogates	98 %	,	07 440		1		01/03/12 17:51	460.00.4	
4-Bromofluorobenzene (S)			87-113		1		01/03/12 17:51		
Dibromofluoromethane (S)	99 %		86-112						
1,2-Dichloroethane-d4 (S)	101 %	0	82-119		1		01/03/12 17:51	17060-07-0	

Date: 01/06/2012 12:01 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 35

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

Sample: GW-074922-120211-CM- 2566	Lab ID: 60	112644001	Collected:	12/20/11	11:30	Received: 12	2/22/11 09:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Me	thod: EPA 5	030B/8260						
Surrogates									
Toluene-d8 (S)	104 %		90-110		1		01/03/12 17:51	2037-26-5	
Preservation pH	1.0		0.10	0.10	1		01/03/12 17:51		
2320B Alkalinity	Analytical Me	thod: SM 2	320B						
Alkalinity,Bicarbonate (CaCO3)	234 mg/l		20.0	3.8	1		12/29/11 16:15		
Alkalinity, Total as CaCO3	234 mg/t	-	20.0	3.8	1		12/29/11 16:15		
2540C Total Dissolved Solids	Analytical Me	ethod: SM 2	540C						
Total Dissolved Solids	1810 mg/l	-	5.0	5.0	1		12/27/11 09:49		
4500S2D Sulfide, Total	Analytical Me	ethod: SM 4	500-S-2 D						
Sulfide, Total	1.7 mg/l	_	0.050	0.018	1		12/27/11 15:19	18496-25-8	
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 3	300.0						
Bromide	0.12J mg/l		1.0	0.061	1		01/06/12 05:51	24959-67-9	
Chloride	8.3 mg/l	_	1.0	0.054	1		01/06/12 05:51	16887-00-6	
Sulfate	1170 mg/l		100	7.6	100		01/06/12 08:36	14808-79-8	

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

Sample: TB-074922-120211-001	Lab ID:	60112644002	Collected	: 12/20/11	00:00	Received: 12	/22/11 09:15 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytica	Method: EPA 8	3260						
Benzene	ND t	ıg/L	1.0	0.050	1		12/28/11 21:24	71-43-2	
Ethylbenzene	0.22J	ıg/L	1.0	0.080	1		12/28/11 21:24	100-41-4	
Toluene	0.36J	ıg/L	1.0	0.070	1		12/28/11 21:24	108-88-3	
Xylene (Total)	ND I	ug/L	3.0	0.18	1		12/28/11 21:24	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	99	%	86-112		1		12/28/11 21:24	1868-53-7	
Toluene-d8 (S)	100	%	90-110		1		12/28/11 21:24	2037-26-5	
4-Bromofluorobenzene (S)	99	%	87-113		1		12/28/11 21:24	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	82-119		1		12/28/11 21:24	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		12/28/11 21:24		

QUALITY CONTROL DATA

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

QC Batch:

AIR/13902

QC Batch Method:

Analysis Method:

RSK 175

RSK 175

Analysis Description:

RSK 175 AIR HEADSPACE

Associated Lab Samples:

METHOD BLANK: 1120389

Parameter

Parameter

Parameter

Matrix: Water

Associated Lab Samples:

60112644001

60112644001

Blank Result

Reporting Limit

Analyzed

Qualifiers

Methane

ug/L

ND

LCS

MSD

Spike

Conc.

52.7

10.0 12/23/11 08:25

LABORATORY CONTROL SAMPLE & LCSD:

1120390

Units

Units

10179168003

Result

46.0

mg/L

1120391

LCS LCSD

% Rec

Max

Qualifiers

Methane

ug/L

Units

Spike Conc. 60.7

MS

Spike

Conc.

50.5

Result Result 63.4

% Rec 67.7 105

MSD

Result

61800

% Rec Limits 112 70-130 **RPD** RPD

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

1121207

1121208

63100

MS

Result

LCSD

MS

% Rec

33900

MSD % Rec

30000

% Rec Limits

30-150

Max RPD RPD

Qual

P6

30 E,MO,

SAMPLE DUPLICATE: 1121211

Parameter

Units

92108905007 Result

Dup Result

RPD

Max RPD

Qualifiers

Methane

Methane

ug/L

ug/L

ND

ND

30

Date: 01/06/2012 12:01 PM

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

QC Batch:

GCV/14404

EPA 5030/8015 Mod.

Analysis Method:

EPA 5030/8015 Mod.

Analysis Description:

Gasoline Range Organics

Associated Lab Samples:

QC Batch Method:

60112644001

METHOD BLANK: 668397

Matrix: Water

Associated Lab Samples:

4-Bromofluorobenzene (S)

60112644001

Reporting

Limit

Qualifiers Analyzed

TPH (C06-C10)

mg/L %.

Units

Units

ND 102

0.20 12/31/11 10:02 45-130 12/31/11 10:02

LABORATORY CONTROL SAMPLE: 668398

Parameter

Parameter

Spike LCS Conc.

LCS % Rec

% Rec Limits

Qualifiers

TPH (C06-C10) 4-Bromofluorobenzene (S)

mg/L %.

10

Blank

Result

Result 10.7

107 118

82-118 45-130

Date: 01/06/2012 12:01 PM

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

QC Batch:

MPRP/16583

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3010

Analysis Description:

6010 MET Dissolved

96

80-120

Sodium, Dissolved

METHOD BLANK: 932018

Associated Lab Samples: 60112644001

Matrix: Water

Associated Lab Samples: 60112644001

ug/L

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Boron, Dissolved	ug/L	ND	100	12/30/11 09:51	
Calcium, Dissolved	ug/L	ND	100	12/30/11 09:51	
Magnesium, Dissolved	ug/L	ND	50.0	12/30/11 09:51	
Potassium, Dissolved	ug/L	ND	500	12/30/11 09:51	
Sodium, Dissolved	ug/L	ND	500	12/30/11 09:51	

LABORATORY CONTROL SAMPLE:	932019					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron, Dissolved	ug/L	1000	940	94	80-120	
Calcium, Dissolved	ug/L	10000	9720	97	80-120	
Magnesium, Dissolved	ug/L	10000	9420	94	80-120	
Potassium Dissolved	ug/l	10000	9480	95	80-120	

10000

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 93202	0		932021							
	60	112644001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron, Dissolved	ug/L	127	1000	1000	996	906	87	78	75-125	9	20	
Calcium, Dissolved	ug/L	218000	10000	10000	201000	184000	-165	-340	75-125	9	20	3e,M0
Magnesium, Dissolved	ug/L	11200	10000	10000	17500	16000	63	48	75-125	9	20	2e,M0
Potassium, Dissolved	ug/L	2910	10000	10000	11000	10200	81	73	75 125	8	20	2e
Sodium, Dissolved	ua/L	303000	10000	10000	277000	252000	-260	-514	75-125	10	20	re.M0

9590

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

QC Batch:

MSV/42853

Analysis Method:

EPA 5030B/8280

EPA 5030B/8260

8260 MSV Water 10 mL Purge

Associated Lab Samples:

QC Batch Method:

60112644001

Matrix: Water

Analysis Description:


METHOD BLANK: 934342 Associated Lab Samples: 60112644001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	01/03/12 16:49	
1,1,1-Trichloroethane	ug/L	ND	1.0	01/03/12 16:49	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	01/03/12 16:49	
1,1,2-Trichloroethane	ug/L	ND	1.0	01/03/12 16:49	
1,1-Dichloroethane	ug/L	ND	1.0	01/03/12 16:49	
1,1-Dichloroethene	ug/L	ND	1.0	01/03/12 16:49	
1,1-Dichloropropene	ug/L	ND	1.0	01/03/12 16:49	
1,2,3-Trichlorobenzene	ug/L	0.23J	1.0	01/03/12 16:49	
1,2,3-Trichloropropane	ug/L	ND	2.5	01/03/12 16:49	
1,2,4-Trichlorobenzene	ug/L	0.14J	1.0	01/03/12 16:49	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	01/03/12 16:49	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.5	01/03/12 16:49	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	01/03/12 16:49	
1,2-Dichlorobenzene	ug/L	ND	1.0	01/03/12 16:49	
1,2-Dichloroethane	ug/L	ND	1.0	01/03/12 16:49	
1,2-Dichloroethene (Total)	ug/L	ND	1.0	01/03/12 16:49	
1,2-Dichloropropane	ug/L	ND	1.0	01/03/12 16:49	
I,3,5-Trimethylbenzene	ug/L	ND	1.0	01/03/12 16:49	
1,3-Dichlorobenzene	ug/L	ND	1.0	01/03/12 16:49	
1,3-Dichloropropane	ug/L	ND	1.0	01/03/12 16:49	
1,4-Dichlorobenzene	ug/L	ND	1.0	01/03/12 16:49	
2,2-Dichloropropane	ug/L	ND	1.0	01/03/12 16:49	
2-Butanone (MEK)	ug/L	ND	10.0	01/03/12 16:49	
2-Chlorotoluene	ug/L	ND	1.0	01/03/12 16:49	
2-Hexanone	ug/L	ND	10.0	01/03/12 16:49	
1-Chlorotoluene	ug/L	ND	1.0	01/03/12 16:49	
4-Methyl-2-pentan one (MIBK)	ug/L	ND	10.0	01/03/12 16:49	
Acetone	ug/L	ND	10.0	01/03/12 16:49	
Benzene	ug/L	ND	1.0	01/03/12 16:49	
Bromobenzene	ug/L	ND	1.0	01/03/12 16:49	
Bromochloromethane	ug/L	ND	1.0	01/03/12 16:49	
Bromodichloromethane	ug/L	ND	1.0	01/03/12 16:49	
Bromoform	ug/L	ND	1.0	01/03/12 16:49	
Bromomethane	ug/L	ND	1.0	01/03/12 16:49	
Carbon disulfide	ug/L	ND	5.0	01/03/12 16:49	
Carbon tetrachloride	ug/L	ND	1.0		
Chlorobenzene	ug/L	ND	1.0	01/03/12 16:49	
Chloroethane	ug/L	ND	1.0	01/03/12 16:49	
Chloroform	ug/L	ND	1.0	01/03/12 16:49	
Chloromethane	ug/L	ND	1.0	01/03/12 16:49	
cis-1,2-Dichloroethene	ug/L	ND	1.0	01/03/12 16:49	
cis-1,3-Dichloropropene	ug/L	ND	1.0	01/03/12 16:49	
Dibromochloromethane	ug/L	ND	1.0	01/03/12 16:49	

Date: 01/06/2012 12:01 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 24 of 35

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

METHOD BLANK: 934342

Matrix: Water

Associated Lab Samples: 60112644001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	1.0	01/03/12 16:49	
Dichlorodifluoromethane	ug/L	ND	1.0	01/03/12 16:49	
Ethylbenzene	ug/L	ND	1.0	01/03/12 16:49	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	01/03/12 16:49	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	01/03/12 16:49	
Methyl-tert-butyl ether	ug/L	ND	1.0	01/03/12 16:49	
Methylene chloride	ug/L	ND	1.0	01/03/12 16:49	
n-Butylbenzene	ug/L	ND	1.0	01/03/12 16:49	
n-Propylbenzene	ug/L	ND	1.0	01/03/12 16:49	
Naphthalene	ug/L	0.21J	10.0	01/03/12 16:49	
p-Isopropyltoluene	ug/L	ND	1.0	01/03/12 16:49	
sec-Butylbenzene	ug/L	ND	1.0	01/03/12 16:49	
Styrene	ug/L	ND	1.0	01/03/12 16:49	
tert-Butylbenzene	ug/L	ND	1.0	01/03/12 16:49	
Tetrachloroethene	ug/L	ND	1.0	01/03/12 16:49	
Toluene	ug/L	ND	1.0	01/03/12 16:49	
trans-1,2-Dichloroethene	ug/L	ND	1.0	01/03/12 16:49	
trans-1,3-Dichloropropene	ug/L	ND	1.0	01/03/12 16:49	
Trichloroethene	ug/L	ND	1.0	01/03/12 16:49	
Trichlorofluoromethane	ug/L	ND	1.0	01/03/12 16:49	
Vinyl chloride	ug/L	ND	1.0	01/03/12 16:49	
Xylene (Total)	ug/L	ND	3.0	01/03/12 16:49	
1,2-Dichloroethane-d4 (S)	%	100	82-119	01/03/12 16:49	
4-Bromofluorobenzene (S)	%	95	87-113	01/03/12 16:49	
Dibromofluoromethane (S)	%	95	86-112	01/03/12 16:49	
Toluene-d8 (S)	%	105	90-110	01/03/12 16:49	


LABORATORY CONTROL SAMPL	E: 934343					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	21.8	109	81-121	
1,1,1-Trichloroethane	ug/L	20	18.6	93	82-119	
1,1,2,2-Tetrachloroethane	ug/L	20	21.8	109	78-124	
1,1,2-Trichloroethane	ug/L	20	20.6	103	79-121	
1,1-Dichloroethane	ug/L	20	17.7	89	73-119	
1,1-Dichloroethene	ug/L	20	15.3	77	75-120	
1,1-Dichloropropene	ug/L	20	17.1	86	79-123	
1,2,3-Trichlorobenzene	ug/L	20	22.2	111	73-122	
1,2,3-Trichloropropane	ug/L	20	21.4	107	77-124	
1,2,4-Trichlorobenzene	ug/L	20	21.1	106	75-120	
1,2,4-Trimethylbenzene	ug/L	20	19.6	98	77-120	
1,2-Dibromo-3-chloropropane	ug/L	20	19.5	97	69-125	
1,2-Dibromoethane (EDB)	ug/L	20	22.2	111	85-121	
1,2-Dichlorobenzene	ug/L	20	21.1	105	82-115	
1,2-Dichloroethane	ug/L	20	18.9	94	77-125	

Date: 01/06/2012 12:01 PM

REPORT OF LABORATORY ANALYSIS

Page 25 of 35

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

LABORATORY CONTROL SAMPLE: 934343

LABORATORY CONTROL SAMPLE:	934343					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethene (Total)	ug/L	40	37.2	93	79-120	
1,2-Dichloropropane	ug/L	20	19.3	97	83-119	
1,3,5-Trimethylbenzene	ug/L	20	19.8	99	79-121	
1.3-Dichlorobenzene	ug/L	20	20.8	104	79-117	
1,3-Dichloropropane	ug/L	20	19.5	97	78-116	
1,4-Dichlorobenzene	ug/L	20	21.3	106	83-115	
2,2-Dichloropropane	ug/L	20	19.1	95	66-123	
2-Butanone (MEK)	ug/L	100	69.8	70	43-165	
2-Chlorotoluene	ug/L	20	20.6	103	81-117	
2-Hexanone	ug/L	100	77.0	77	47-159	
4-Chlorotoluene	ug/L	20	21.3	106	84-116	
4-Methyl-2-pentanone (MIBK)	ug/L	100	89.9	90	71-129	
Acetone	ug/L	100	59.8	60	18-192	
Benzene	ug/L	20	17.9	90	82-117	
Bromobenzene	ug/L	20	21.5	108	83-116	
Bromochloromethane	ug/L	20	18.3	92	79-121	
Bromodichloromethane	ug/L	20	19.0	95	79-114	
Bromoform	ug/L	20	23.0	115	78-121	
Bromomethane	ug/L	20	16.0	80	36-146	
Carbon disulfide	ug/L	20	19.9	100	75-138	
Carbon tetrachloride	ug/L	20	19.8	99	80-123	
Chlorobenzene	ug/L	20	21.2	106	83-121	
Chloroethane	ug/L	20	18.6	93	42-166	
Chloroform	ug/L	20	18.7	94	82-116	
Chloromethane	ug/L	20	14.5	72	32-127	
cis-1,2-Dichloroethene	ug/L	20	17.4	87	80-119	
cis-1,3-Dichloropropene	ug/L	20	19.4	97	76-119	
Dibromochloromethane	_	20	22.1	111	81-123	
Dibromomethane	ug/L	20	19.7	98	79-123	
Dichlorodifluoromethane	ug/L	20	16.5	82	10-163	
	ug/L	20	20.8	104	79-121	
Ethylbenzene Hexachloro-1,3-butadiene	ug/L	20	21.4	107	78-121	
The Problem of the Control of the Co	ug/L	20	20.4	107	80-120	
Isopropylbenzene (Cumene)	ug/L	20	19.0	95	78-119	
Methyl-tert-butyl ether Methylene chloride	ug/L ug/L	20	18.7	93	75-119	
n-Butylbenzene		20	20.2	101	80-126	
•	ug/L	20	19.8	99	83-116	
n-Propylbenzene Naphthalene	ug/L ug/L	20	21.5	108	66-133	
•	_	20	19.5	97	77-120	
p-Isopropyltoluene sec-Butylbenzene	ug/L ug/L	20	19.3	97	81-120	
Styrene	-					
•	ug/L	20 20	19.3	96 97	84-115	
tert-Butylbenzene Tetrachloroethene	ug/L		19.4		80-117	
	ug/L	20	22.3	111	80-124	
Toluene	ug/L	20	19.0	95	80-120	
trans-1,2-Dichloroethene	ug/L	20	19.7	99	79-120	
trans-1,3-Dichloropropene	ug/L	20	22.4	112	76-118	
Trichloroethene	ug/L	20	17.0	85	76-122	
Trichlorofluoromethane	ug/L	20	18.1	91	72-120	

Date: 01/06/2012 12:01 PM

REPORT OF LABORATORY ANALYSIS

Page 26 of 35

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

LABORATORY CONTROL SAME	PLE: 934343	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Vinyl chloride	ug/L	20	17.1	86	57-163	
Xylene (Total)	ug/L	60	59.8	100	75-120	
1,2-Dichloroethane-d4 (S)	%			109	82-119	
4-Bromofluorobenzene (S)	%			97	87-113	
Dibromofluoromethane (S)	%			104	86-112	
Toluene-d8 (S)	%			104	90-110	

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

QC Batch:

Benzene

Toluene

Ethylbenzene

Xylene (Total)

Toluene-d8 (S)

MSV/42747

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV UST-WATER

Associated Lab Samples:

METHOD BLANK: 932457

Parameter

Matrix: Water

100

Associated Lab Samples:

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S) Dibromofluoromethane (S)

60112644002

Units

ug/L

ug/L

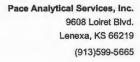
ug/L

ug/L

% %

%

%


60112644002

	Blank Result	Reporting Limit	Analyzed	Qualifiers
_	ND	1.0	12/28/11 19:02	
	ND	1.0	12/28/11 19:02	
	ND	1.0	12/28/11 19:02	
	ND	3.0	12/28/11 19:02	
	101	82-119	12/28/11 19:02	
	97	87-113	12/28/11 19:02	
	100	86-112	12/28/11 19:02	

90-110 12/28/11 19:02

LABORATORY CONTROL SAMPLI	E: 932458					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Faiamotei	Office		Nesuit	70 INCC	Lillius	Qualifiers
Benzene	ug/L	20	20.4	102	82-117	
Ethylbenzene	ug/L	20	20.0	100	79-121	
Toluene	ug/L	20	19.7	98	80-120	
Xylene (Total)	ug/L	60	61.2	102	79-120	
1,2-Dichloroethane-d4 (S)	%			98	82-119	
4-Bromofluorobenzene (S)	%			98	87-113	
Dibromofluoromethane (S)	%			99	86-112	
Toluene-d8 (S)	%			99	90-110	

Date: 01/06/2012 12:01 PM

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

QC Batch:

OEXT/31570

Analysis Method:

EPA 8015B

QC Batch Method:

EPA 3510C

Analysis Description:

EPA 8015B

Associated Lab Samples:

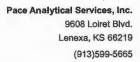
60112644001

METHOD BLANK: 931274

Matrix: Water

Associated Lab Samples: 60112644001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
TPH-DRO	mg/L	ND	0.50	12/29/11 22:42	
n-Tetracosane (S)	%	58	36-120	12/29/11 22:42	
p-Terphenyl (S)	%	65	40-118	12/29/11 22:42	


LABORATORY CONTROL SAMPLE: 931275

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
TPH-DRO	mg/L	2.5	2.0	79	48-119	
n-Tetracosane (S)	%			57	36-120	
p-Terphenyl (S)	%			70	40-118	

Date: 01/06/2012 12:01 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 29 of 35

Project:

SAN JUAN 32-8 NO 202 (074922)

60112644001

60112644001

Pace Project No.:

60112644

QC Batch:

WET/32829

Analysis Method:

SM 2320B

QC Batch Method:

SM 2320B

Analysis Description:

Matrix: Water

2320B Alkalinity

Associated Lab Samples:

METHOD BLANK: 933011

Parameter

Blank

Reporting Limit

Qualifiers

Alkalinity, Total as CaCO3

Associated Lab Samples:

Units

Result 4.0J

20.0 12/29/11 16:15

Alkalinity, Bicarbonate (CaCO3)

mg/L mg/L

4.0J

20.0 12/29/11 16:15

Analyzed

LABORATORY CONTROL SAMPLE:

Parameter

933012

Spike Conc.

LCS Result

LCS % Rec % Rec

Limits Qualifiers

Alkalinity, Total as CaCO3

Units mg/L

500

168

168

500

Dup

Dup

100

RPD

90-110

SAMPLE DUPLICATE: 933231

Parameter Alkalinity, Total as CaCO3 Alkalinity, Bicarbonate (CaCO3)

mg/L mg/L

mg/L

60112457001 Units Result 168

Result 170 170

Qualifiers

SAMPLE DUPLICATE: 933232

Parameter Alkalinity, Total as CaCO3 Alkalinity, Bicarbonate (CaCO3)

60112457002 Units Result mg/L

Result 168

166

166

1

9

Max

RPD

9

Max RPD **RPD** Qualifiers 9 1 1 9

Date: 01/06/2012 12:01 PM

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

QC Batch:

WET/32758

QC Batch Method:

SM 2540C

Analysis Method:

SM 2540C

Analysis Description:

2540C Total Dissolved Solids

Associated Lab Samples:

METHOD BLANK: 931924

60112644001

Matrix: Water

Associated Lab Samples:

60112644001

Blank Result Reporting Limit

Analyzed

Qualifiers

Parameter **Total Dissolved Solids**

mg/L

Units

Units

ND

12/27/11 09:46

SAMPLE DUPLICATE: 931925

60112532010

Dup Result

RPD

Max **RPD**

Total Dissolved Solids

mg/L

Result 820

823

Û

17

Qualifiers

SAMPLE DUPLICATE: 931926

Parameter

Parameter

Units

60112750001 Result

Dup Result **RPD**

Max **RPD**

Qualifiers

Total Dissolved Solids

mg/L

6560

6640

1

17

Date: 01/06/2012 12:01 PM

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

QC Batch:

WET/32778

QC Batch Method:

SM 4500-S-2 D

Analysis Method:

SM 4500-S-2 D

Analysis Description:

4500S2D Sulfide, Total

METHOD BLANK: 932174

Matrix: Water

Associated Lab Samples:

Associated Lab Samples:

60112644001

60112644001

Blank

Reporting

Result

Limit

Analyzed

Qualifiers

Sulfide, Total

mg/L

ND

0.050 12/27/11 14:18

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

932175

Units

Units

Units

Spike Conc.

LCS Result

ND

ND

ND

LCS % Rec % Rec Limits

Qualifiers

Sulfide, Total

mg/L

mg/L

932176

.5

0.50

100

80-120

% Rec

Suifide, Total

60112532001 Result

Spike Conc.

.5

ND

ND

MS Result

MS % Rec

Limits

Qualifiers

SAMPLE DUPLICATE: 932177

MATRIX SPIKE SAMPLE:

Parameter

Parameter

Parameter

Units

Units

60112532002 Result

Dup

RPD

0.50

Max RPD

97

Qualifiers

75-125

Sulfide, Total

Sulfide, Total

SAMPLE DUPLICATE: 932178

mg/L

mg/L

60112532011

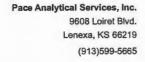
Result

Dup Result

RPD

Max RPD

Qualifiers


20

20

Date: 01/06/2012 12:01 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 32 of 35

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

QC Batch:

WETA/18867

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

Associated Lab Samples:

60112644001

Matrix: Water

METHOD BLANK: 935444 Associated Lab Samples:

60112644001

Blank Reporting Result Limit Analyzed

Bromide Chloride Sulfate

mg/L mg/L mg/L 0.12J 0.44J

ND

1.0 01/06/12 02:32 1.0 01/06/12 02:32 1.0 01/06/12 02:32

Qualifiers

LABORATORY CONTROL SAMPLE: 935445

Parameter

Units

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L	5	4.9	98	90-110	
Chloride	mg/L	5	4.8	97	90-110	
Sulfate	mg/L	5	5.1	102	90-110	

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

QUALIFIERS

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.:

60112644

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-I Pace Analytical Services - Indianapolis
PASI-K Pace Analytical Services - Kansas City
PASI-M Pace Analytical Services - Minneapolis

BATCH QUALIFIERS

Batch: OEXT/31570

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/42747

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/42853

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

1e	MMatrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. Sample was greater	
	than four times the spiek value.	

2e Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. A post digestin spike was performed

3e Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. Sample was greater than four times the spiek value.

4e The sample was not collected in the appropriate container for headspace analysis.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

Spike ievei.

Date: 01/06/2012 12:01 PM

REPORT OF LABORATORY ANALYSIS

Page 34 of 35

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

SAN JUAN 32-8 NO 202 (074922)

Pace Project No.: 60112644

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60112644001	GW-074922-120211-CM-2566	RSK 175	AIR/13902		
60112644001	GW-074922-120211-CM-2566	EPA 3510C	OEXT/31570	EPA 8015B	GCSV/11742
60112644001	GW-074922-120211-CM-2566	EPA 5030/8015 Mod.	GCV/14404		
60112644001	GW-074922-120211-CM-2566	EPA 3010	MPRP/16583	EPA 6010	ICP/14268
60112644001	GW-074922-120211-CM-2566	EPA 5030B/8260	MSV/42853		
60112644002	TB-074922-120211-001	EPA 8260	MSV/42747		
60112644001	GW-074922-120211-CM-2566	SM 2320B	WET/32829		
60112644001	GW-074922-120211-CM-2566	SM 2540C	WET/32758		
60112644001	GW-074922-120211-CM-2566	SM 4500-S-2 D	WET/32778		
60112644001	GW-074922-120211-CM-2566	EPA 300.0	WETA/18867		

Date: 01/06/2012 12:01 PM

CHAIN-OF-CUSTO Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section B Required Project Information:		Section C Invoice Information:	. [Page: of
Company: CRA	Rieport To: Christine Mathews		Attention: ENFOS		
Address: 6121 Indian School Rd NE, Ste 200	Copy To: Kelly Blanchard, Angela Bown	1	Company Name:	REGULATORY AGENCY	
Albequerque, NM 87110			Address:	□ NPDES ♥ GROUNI	WATER DRINKING WATER
Email To: cmathews@craworld.com	Purchase Order No.:		Pace Quote Reference:	UST F RCRA	COTHER
Phone: (505)884-0672 Fax: (505)884-4932	Project Name: San Juan 32-8 No. 202		Pace Project Anna Custer	Site Location	
Requested Due Date/TAT: standard	Project Number: (374927		Pace Profile #: 5514, 3	STATE: NM	1 ////////////////////////////////////
	1.		Requested	Analysis Filtered (Y/N)	
Section D Valid Matrix Co Required Client Information MATRIX	Odes CODE CODE COLECTED DW S COMPOSITE COMPOS		Preservatives >	38	
SAMPLE ID (A-Z, 0-9 /,-) Sample IDs MUST BE UNIQUE WATER WASTE WATER PRODUCT SOIL/SOLLO OIL WIPE AR OTHER TISSUE	PS START ENDORS START ENDORS OF START START ENDORS OF START	SAMPLE TEMP AT COLLEC	# OF CONTAINERS Unpreserved	SM 2540C TDS EPA 300.0- Cl. Br. SO4 SM 2320B Bicarbonate SM 4500S-2 F Sulfide Method	Pace Project No.J Lab I.D. Pace Project No.J Lab I.D. Pace Project No.J Lab I.D.
-TB-074972-1/2111-0	Minnes	ota	3 06	9H X	ar
(3.3.4) (9.1)					
10 11 12 12 12 13 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16					
ADDITIONAL COMMENTS	RELINQUISHED BY AFFILIATION	DATE	TIME ACCEPTED BY / AFFILIATION	DATE	SAMPLE CONDITIONS
Mg, Ca, B, K, Na	(Claudio ivillied)	12-21-11	1400 fleway	12-22-11 0915	2 4 Y Y 7
is to ap to Isotach					
Tar Isotope Undusis					
,		of SAMPLER:	PARSTIAL MATERIANS ATE Signed AND POR MATERIANS AND PORTON	12.21.11	Received on tee (Y/N) Lee (Y/N) Custody Sealed Cooler (Y/N) Samples Intact (Y/N)

F-ALL-Q-020rev.08, 12-Oct-2007

Sa	mple Condition	Upon Receipt	
Pace Analytical Client Name	0P. 1	IM	Project # 40(12644
i		VIV.	
Courler: Fed Ex UPS USPS Clie	ent Commercial	Pace Other	Optional
racking #: 797975884356 Pac	ce Shipping Label Used	? Yes Z	No Proj. Due Date:
Custody Seal on Cooler/Box Present: Yes	No Seals	intact: Yes [No Proj. Name.
Packing Material: Bubble Wrap Bubble	Bags Foam	None Dther	
hermometer Used: 191 T-194	Type of Ice: (Wet	Blue None [Samples on ice, cooling process has begun
Cooler Temperature:		Comments:	Date and Initials of person examining contents: 12-22-11
Chain of Custody present:	ØYes □No □N/A		
Chain of Custody filled out:	Yes ONO ONA		
Chain of Custody med out:	Yes ONO ON/A		
Sampler name & signature on COC:	Yes ONO ON/A		
Samples arrived within holding time:	Zyes ONO ON/A		
Short Hold Time analyses (<72hr):	□Yes ZNo □N/A		
Rush Turn Around Time requested:	□Yes ZNo □N/A		
Sufficient volume:	Øyes □No □N/A	8.	
Correct containers used:	Ayes ONO ON/A	9.	
-Pace containers used:	Yes ONO ON/A		
Containers intact:	Yes No NA	10.	
Inpreserved 5035A soils frozen w/in 48hrs?	□Yes □No ZNVA	11.	
Filtered volume received for dissolved tests	□Yes □No □N/A	12.	
Sample labels match COC:	Yes ONO ONA	13.	
-Includes date/time/ID/analyses Matrix:	ar		
All containers needing preservation have been checked.	Yes ONO ONA	14.	
All containers needing preservation are found to be in compliance with EPA recommendation.	Yes ONO ONA		
Exceptions: VOA coliform, TOC, O&G, WI-DRO (water),	Yes □No	Initial when completed	Lot # of added preservative
Trip Blank present:	Yes ONG ONA	15.	
Pace Trip Blank lot # (if purchased)//07/1-3	,		
Headspace in VOA vials (>6mm):	□Yes \$\textstyle \textstyle \tex	16.	
Project sampled in USDA Regulated Area:	□Yes □No ØN/	17. List State:	٩
Client Notification/ Resolution: Co	ppy COC to Client?	Y / (A)	Field Data Required? Y / N
Person Contacted:	Date	/Time:	
Comments/ Resolution:			
	•	1.00	
100			1-1-1

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

ATTACHMENT 2

8-13 Y 11 11 11 11

LABORATORY ANALYTICAL RESULTS FOR ISOTOPE ANALYSIS COMPLETED ON GAS SAMPLES COLLECTED IN DECEMBER 2011

ANALYSIS

Lab #:

228933

Job#:

16972

Sample Name: A-074922-120211-CM-29

Co. Lab#:

Company:

Pace Analytical

Date Sampled: 12/02/2011

Container:

Cali-5-Bond Bag

Field/Site Name: San Juan 32-8 No. 202

Location:

Formation/Depth: Sampling Point:

Date Received: 12/06/2011

Date Reported:

1/10/2012

Component	Chemical mol. %	δ ¹³ C ‰	δD ‰	δ ¹⁵ N ‰	
Carbon Monoxide	nd		,		
Hydrogen Sulfide	na				
Helium	nd				
Hydrogen	nd				
Argon	0.935				
Oxygen	20.86				
Nitrogen	78.04				
Carbon Dioxide	0.075				
Methane	0.0916				
Ethane	0.0006				
Ethylene	nd				
Propane	nd				
Propylene	nd				
Iso-butane	nd				
N-butane	nd				
Iso-pentane	nd				
N-pentane	nd				
Hexanes +	nd				
Total BTI Vou ft day @ 60das	E 9 14 7pois	a alaulata di	4		

Total BTU/cu.ft. dry @ 60deg F & 14.7psia, calculated:

Specific gravity, calculated:

Lab #:

228934

Job #:

16972

Sample Name: A-074922-120211-CM-D3

Co. Lab#:

Company:

Pace Analytical

Date Sampled:

12/02/2011

Container:

Cali-5-Bond Bag

Field/Site Name: San Juan 32-8 No. 202

Location:

Formation/Depth: Sampling Point:

Date Received: 12/06/2011

Specific gravity, calculated: 1.001

Date Reported:

1/10/2012

Component	Chemical mol. %	δ ¹³ C ‰	δD ‰	δ ¹⁵ N ‰
Carbon Monoxide	nd			
Hydrogen Sulfide	na			
Helium	nd			
Hydrogen	nd			
Argon	0.946			
Oxygen	20.04			
Nitrogen	78.51			
Carbon Dioxide	0.50			
Methane	0.0031			
Ethane	0.0003			
Ethylene	nd			
Propane	0.0002			
Propylene	nd			
Iso-butane	0.0001			
N-butane	0.0002			
Iso-pentane	0.0001			
N-pentane	0.0002			
Hexanes +	nd			
Total BTU/cu.ft. dry @ 60deg	F & 14.7psia,	calculated:	0	

Lab #:

228935

Job #:

16972

Sample Name: A-074922-120211-CM-2566

Co. Lab#:

Company:

Pace Analytical

Date Sampled: 12/02/2011

Container:

Cali-5-Bond Bag

Field/Site Name: San Juan 32-8 No. 202

Location:

Formation/Depth: Sampling Point:

Date Received: 12/06/2011

Specific gravity, calculated: 0.589

Date Reported:

1/10/2012

Component	Chemical	$\delta^{13}C$	δD	$\delta^{15}N$	
	mol. %	‰	‰	‰	
Carbon Monoxide	nd				
Hydrogen Sulfide	na				
Helium	0.0036				
Hydrogen	nd				
Argon	0.0312				
Oxygen	0.17				
Nitrogen	2.37				
Carbon Dioxide	1.46				
Methane	94.20	-36.44	-174.7		
Ethane	1.53	-23.73	-138.0		
Ethylene	nd				
Propane	0.174				
Propylene	0.0002				
Iso-butane	0.0344				
N-butane	0.0171				
Iso-pentane	0.0075				
N-pentane	0.0024				
Hexanes +	0.0031				
Total BTU/cu.ft. dry @ 60deg	F & 14.7psia,	calculated:	989		

Lab #:

228936

Job #:

16972

Sample Name: A-074922-120211-CM-202

Co. Lab#:

Company:

Pace Analytical

Date Sampled:

12/02/2011

Container:

Cali-5-Bond Bag

Field/Site Name: San Juan 32-8 No. 202

Location:

Formation/Depth:

Specific gravity, calculated:

Sampling Point:

Date Received: 12/06/2011

Date Reported:

1/10/2012

Component	Chemical mol. %	δ ¹³ C ‰	δD ‰	δ ¹⁵ N ‰
Carbon Monoxide	nd			
Hydrogen Sulfide	na			
Helium	nd			
Hydrogen	nd			
Argon	0.0458			
Oxygen	1.07			
Nitrogen	3.90			
Carbon Dioxide	10.13			
Methane	84.57	-42.76	-207.4	
Ethane	0.279	-20.47		
Ethylene	nd			
Propane	0.0059			
Propylene	0.0001			
Iso-butane	0.0005			
N-butane	0.0003			
Iso-pentane	nd			
N-pentane	nd			
Hexanes +	nd			
Total BTU/cu.ft. dry @ 60deg	F & 14.7psia,	calculated:	863	

Lab #:

228937

Job #:

16972

Sample Name: A-074922-120211-CM-204

Co. Lab#:

Company:

Pace Analytical

Date Sampled: 12/02/2011

Container:

Cali-5-Bond Bag

Field/Site Name: San Juan 32-8 No. 202

Location:

Formation/Depth: Sampling Point:

Specific gravity, calculated:

Date Received: 12/06/2011

Date Reported:

1/10/2012

Component	Chemical	δ ¹³ C	δD	$\delta^{15}N$
	mol. %	%	‰	‰
Carbon Monoxide	nd			
Hydrogen Sulfide	na			
Helium	nd			
Hydrogen	nd			
Argon	0.126			
Oxygen	2.91			
Nitrogen	10.82			
Carbon Dioxide	9.71			
Methane	76.17	-42.86	-208.6	
Ethane	0.258	-20.68		
Ethylene	nd			
Propane	0.0078			
Propylene	0.0001			
Iso-butane	0.0009			
N-butane	0.0009			
Iso-pentane	0.0002			
N-pentane	0.0001			
Hexanes +	nd			
Total BTU/cu.ft. dry @ 60deg	F & 14.7psia,	calculated:	777	

0.711

Lab #:

228938

Job #:

16972

Sample Name: A-074922-120211-CM-25

Co. Lab#:

Company:

Pace Analytical

Date Sampled: 12/02/2011

Container:

Cali-5-Bond Bag

Field/Site Name: San Juan 32-8 No. 202

Location:

Formation/Depth: Sampling Point:

Date Received: 12/06/2011

Date Reported:

1/10/2012

Component	Chemical mol. %	δ ¹³ C ‰	δD ‰	δ ¹⁵ N ‰
Carbon Monoxide	nd			
Hydrogen Sulfide	na			
Helium	0.0032			
Hydrogen	nd			
Argon	0.0878			
Oxygen	2.04			
Nitrogen	7.66			
Carbon Dioxide	1.83			
Methane	87.27	-35.93	-173.1	
Ethane	1.00	-23.31	-136.3	
Ethylene	nd			
Propane	0.0859			
Propylene	0.0002			
Iso-butane	0.0160			
N-butane	0.0063			
Iso-pentane	0.0024			
N-pentane	0.0007			
Hexanes +	0.0011			
Total BTI Vov. 4 day @ Codes	го 14 7		000	

Total BTU/cu.ft. dry @ 60deg F & 14.7psia, calculated: 906

Specific gravity, calculated: 0.621

REPORT ANALYSIS

Lab #:

228939

Job #:

16972

Sample Name: A-074922-120211-CM-DUP

Co. Lab#:

Company:

Pace Analytical

Date Sampled: 12/02/2011

Container:

Cali-5-Bond Bag

Field/Site Name: San Juan 32-8 No. 202

Location:

Formation/Depth: Sampling Point:

Date Received: 12/06/2011

Specific gravity, calculated: 0.588

Date Reported:

1/10/2012

Component	Chemical mol. %	δ ¹³ C ‰	δD ‰	δ ¹⁵ N ‰
Carbon Monoxide	nd			
Hydrogen Sulfide	na			
Helium	0.0035			
Hydrogen	nd			
Argon	0.0296			
Oxygen	0.12			
Nitrogen	2.24			
Carbon Dioxide	1.46			
Methane	94.38	-36.45	-175.0	
Ethane	1.53	-23.67	-138.1	
Ethylene	nd			
Propane	0.174			
Propylene	0.0001			
Iso-butane	0.0346			
N-butane	0.0171			
Iso-pentane	0.0075			
N-pentane	0.0024			
Hexanes +	0.0029			
Total BTU/cu.ft. dry @ 60deg	F & 14.7psia,	calculated:	991	

ATTACHMENT 3

JOURNEY MANAGEMENT PLAN

Attachment 3

Conestoga-Rovers & Associates Journey Management Plan San Juan County, New Mexico

Job Name: Good Well Investigation Location: San Juan County, New Mexico

Project Number: 074922 Page 1 of 7

PURPOSE

The purpose of this Journey Management Plan (JMP) is to prevent losses associated with motor vehicle related incidents including: injuries to drivers, passengers and pedestrians, damage to motor vehicles and damage to third party property. By communicating potential safety risks before mobilizing to a site, a motor vehicle operator will be able to prepare for and avoid potential hazards.

SCOPE

This JMP applies to all vehicles assigned for the support of site operations, including company owned and personal use vehicles. This JMP includes driving directions and hazards for routes which are expected to be commonly traveled during the life of the project; an on-site driving route with traffic-flow schematic is also included.

SPECIAL NOTE

Because the site, weather and traffic conditions may change frequently the JMP shall be maintained and updated separate from the Site Health and Safety Plan (HASP).

RESPONSIBILITIES

Contract Project Manager

The contract project manager is responsible to ensure that the site has a current JMP.

Field Manager

The field manager is responsible to create and keep current a JMP that is appropriate for the site conditions. It is also the field manager's role to ensure each vehicle operator has a JMP that describes the conditions for his vehicle and equipment prior to mobilizing to the site. A common JMP may be used for several vehicles or as conditions dictate a separate JMP may be specific or unique to an individual vehicle.

Vehicle Operator

The assigned vehicle operator shall not mobilize to the site without first receiving and reviewing the JMP. It is the vehicle operator's responsibility to read and become familiar with the description and stipulations of the JMP prior to mobilizing to the site. DO NOT mobilize to the site to get clarification to the JMP. Because driving conditions may vary, vehicle operators shall also notify the field manager of any hazards not identified on the JMP so that the field manager can update the JMP. Because traffic conditions may change frequently on a project, the JMP shall be maintained and updated separate from the Site Health and Safety Plan.

Job Name: Good Well Investigation Location: San Juan County, New Mexico

Project Number: 074922 Page 2 of 7

Scope of this JMP

This JMP shall include the operation and use of the following vehicles and equipment: Conestoga-Rovers & Associates (CRA) and subcontractor trucks/vans and personal vehicles.

All vehicle operators shall be responsible for ensuring their vehicles are maintained and being familiar with and obeying all laws related to vehicle operation.

GENERAL HAZARDS

It is the vehicle operator's sole responsibility to read and become familiar with the description and stipulations of the JMP <u>prior</u> to mobilizing to the site. All drivers will avoid distractions including but not limited to using cell phones in any form.

Off-Site Hazards

Maintain awareness of heavy traffic flow at peak driving times (early morning, mid-day, and evening rush hour). The driver should anticipate hazards, maintain a safety cushion around the vehicle, and adjust their driving speed. Weather conditions will be monitored throughout the day and prior to mobilization. Rain or mist reduces visibility and wet pavement reduces traction. Turn headlights on to increase visibility regardless of weather conditions. Make sure windshield wipers are in proper working condition. Reduce speed so that stopping can be made safely and obey posted speed limits. Use turn signals appropriately.

On-Site Hazards

The following hazards may be encountered while driving on Site access roads: pedestrians and other vehicles.

The following table summarizes the directions covered in this JMP.

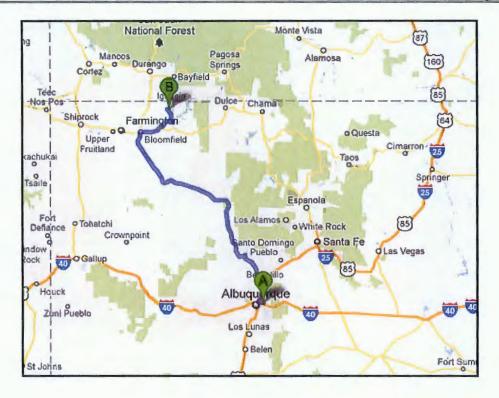
From: To: CRA Office, Albuquerque Site		Page Number
		3
Double Eagle II Airport, (Albuquerque, NM)	CRA Office, Albuquerque	4
Hotel	Site	5

Job Name: Good Well Investigation Location: San Juan County, New Mexico

Project Number: 074922 Page 3 of 7

FROM: CRA office in Albuquerque, NM (A)

TO: Site (B)


ESTIMATED DRIVE TIME: 3 hours 38 min

DIRECTIONS	DISTANCE
Head southeast on Indian School Rd NE toward Jeannedale Dr NE	0.3 miles
Take the 1st right onto Americas Pkwy NE	0.3 miles
Take the 1st right onto Louisiana Blvd NE	279 feet
Slight right to merge onto I-40 W	3.0 miles
Take exit 159C to merge onto I-25 N toward Santa Fe	14.6 miles
Take exit 240 toward NM-473/Bernalillo S	0.1 miles
Merge onto E Avenida Bernalillo	0.7 miles
Turn right onto S Camino Del Pueblo	1.4 miles
Turn left onto US-550 N	151 miles
Turn right onto W Main St	0.3 miles
Turn left onto S 1st St	367 feet
Take the 1st right onto US-64 E/E Broadway Av. Continue to follow US-64 E	11.3 miles
Turn left to stay on NM-511 N	9.9 miles
Arrive at mile marker 25 destination	0.4 miles

Job Name: Good Well Investigation Location: San Juan County, New Mexico

Project Number: 074922

Page 4 of 7

Job Name: Good Well Investigation Location: San Juan County, New Mexico

Project Number: 074922 Page 5 of 7

FROM: Albuquerque International Airport (ABQ)(A)

TO: CRA office in Albuquerque, NM (B) **ESTIMATED DRIVE TIME:** 33 min

DIRECTIONS	DISTANCE
Head east on Sunport Blvd SE toward Girard Blvd SE	0.3 miles
Continue straight onto Girard Blvd SE	0.4 miles
Turn right onto Gibson Blvd SE	2.0 miles
Turn left onto San Pedro Dr SE	3.1 feet
Turn right onto Indian School Rd NE	0.1 miles
 Destination will be on the left at 6121 Indian School Rd NE #200 Albuquerque, NM 87110 	0.3 miles

Job Name: Good Well Investigation Location: San Juan County, New Mexico

Project Number: 074922 Page 6 of 7

FROM: Hotel (Courtyard Farmington) (A)

TO: Site (B)

ESTIMATED DRIVE TIME: 1 hour 6 min

DIRECTIONS	DISTANCE
Head northeast on Scott Ave toward Berg Park Access	0.3 miles
 Turn right onto NM-516/E Main St, Continue to follow NM-516 	12.3 miles
Continue onto N Aztec Blvd	2 miles
Turn right onto NM-173 E/Navajo Dam Rd	18.1 miles
Turn left onto NM-511 N	5.7 miles
Turn left to stay on NM-511 N	12.6 miles
Turn right Destination will be on the left	0.8 miles

Job Name: Good Well Investigation Location: San Juan County, New Mexico Project Number: 074922

Page 7 of 7

CHANGES TO THE JOURNEY MANAGEMENT PLAN

Date	Name	Change/Comment (be specific)
odh -		

Manager Review and Approval	
Signature:	
Date:	

ATTACHMENT 4
PROJECT EVENT SCHEDULE

ATTACHMENT 4 PROJECT EVENT SCHEDULE GOOD WELL INVESTIGATION CONOCOPHILLIPS COMPANY SAN JUAN COUNTY, NEW MEXICO

Activity							May 2012																									
		T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	Т	F	S	S	M	T	W	T	F	S	S	M	T	W	T
	Week	1	2	3	4	5	6	7	8	9	10 1	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Site Tour	(3 days)													-	2.4		*															
Baseline Sampling	(1 week)																															
Mobilization of drill crew	(1 week)																															
																Jun	e 20	12														
		F	S	S	M	T	W	T	F	S	SI	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S	
		1	2	3	4	5	6	7	8	9	10 1	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Drilling, Downhole Testing, and Well Completion	(2 weeks)																															
Packer Installation and Sampling	(1 week)																															
Demobilization	(1 week)																															