District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NCS1629854256
District RP	3RP-364
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible	Party	Harvest Four Co	mers. LLC	OGRID		3/388
Contact Nam	ne	Monica Smith		Contact Te	elephone	505-632-4625
Contact ema	et email msmith@harvestmidstream.com Incident		Incident #	(assigned by OCD)	NCS1629854256	
Contact mail	ling address	1755 Arroyo Dr	ive, Bloomfield, N	ew Mexico 87413	3	
			Location	of Release So	ource	
Latitude	36.8351	62	(NAD 83 in dec	Longitude _ imal degrees to 5 decin	-107.81609 nal places)	2
Site Name	Floranc	e Gas Com J#16A		Site Type	Pipeline, pro	duction pad, former BGT
Date Release	Discovered	Historical		API# (if app	olicable) 30-045-21790	
Unit Letter	Section	Township	Range	Cour	ıtv	
P	6	30N	9W	San Juan		
Surface Owne		⊠ Federal □ Tr	Nature and	Volume of 1)
Crude Oi		l(s) Released (Select al Volume Release		calculations or specific	justification for the volu Volume Recovere	
☑ Produced Water Volume Released (bbls) Unknown		vn	Volume Recovered (bbls)			
Is the concentration of dissolved chloride in the produced water >10,000 mg/l?			nloride in the	Yes No		
⊠ Condensa	Condensate Volume Released (bbls) Unknown		Volume Recovere	ed (bbls)		
Natural Gas Volume Released (Mcf)		Volume Recovere	ed (Mcf)			
Other (describe) Volume/Weight Released (provide units)		units)	Volume/Weight F	Recovered (provide units)		
Cause of Rel			41-1141-1		ı	
mistorical rel	iease(s) on ic	ocation from poten	uai muitipie sourc	es.		

State of New Mexico Oil Conservation Division

Incident ID	NCS1629854256
District RP	3RP-364
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the respons	
release as defined by 19.15.29.7(A) NMAC?	Impacts to groundwater and LNAPL have b	een observed on location.
19.13.29.7(11) TVIVITE:		
Yes No		
		m? When and by what means (phone, email, etc)?
Previous C-141 forms nav	been submitted under the previous operato	r to the NMOCD on November 6, 2016 and May 8, 2017.
	Initial Res	sponse
The responsible p	party must undertake the following actions immediately	unless they could create a safety hazard that would result in injury
The source of the rele	ase has been stopped.	
☐ The impacted area has	s been secured to protect human health and the	ne environment.
Released materials ha	ve been contained via the use of berms or dil	xes, absorbent pads, or other containment devices.
All free liquids and re	coverable materials have been removed and	managed appropriately.
If all the actions described	l above have <u>not</u> been undertaken, explain w	hy:
		mediation immediately after discovery of a release. If remediation
		forts have been successfully completed or if the release occurred ease attach all information needed for closure evaluation.
		est of my knowledge and understand that pursuant to OCD rules and
regulations all operators are	required to report and/or file certain release notific	cations and perform corrective actions for releases which may endanger
public health or the environment failed to adequately investigation	nent. The acceptance of a C-141 report by the OC ate and remediate contamination that pose a threat	D does not relieve the operator of liability should their operations have to groundwater, surface water, human health or the environment. In
addition, OCD acceptance of		sponsibility for compliance with any other federal, state, or local laws
and/or regulations.		
Printed Name: Monica		Title: Environmental Specialist
Signature: Monic	asm4)	Date: 6/27/2019
email: <u>msmith</u>	<u>@harvestmidstream.com</u>	Telephone: 505-632-4625
OCD Only		
Received by:		Date:
Received by.		

State of New Mexico Oil Conservation Division

Incident ID	NCS1629854256
District RP	3RP-364
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>15</u> (ft bgs)		
Did this release impact groundwater or surface water?	⊠ Yes □ No		
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No		
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No		
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No		
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No		
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	⊠ Yes □ No		
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No		
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No		
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No		
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No		
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No		
Did the release impact areas not on an exploration, development, production, or storage site?			
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.			
Characterization Report Checklist: Each of the following items must be included in the report.			
 Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody 			

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

State of New Mexico Oil Conservation Division

Incident ID	NCS1629854256
District RP	3RP-364
Facility ID	
Application ID	

regulations all operators are required to report and/or file certain release notificable public health or the environment. The acceptance of a C-141 report by the OC failed to adequately investigate and remediate contamination that pose a threat addition, OCD acceptance of a C-141 report does not relieve the operator of reand/or regulations.	cations and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have to groundwater, surface water, human health or the environment. In
Printed Name: Monica Smith	Title: Environmental Specialist
Signature: Monicas math	Date:6/27/2019
email: <u>msmith@harvestmidstream.com</u>	Telephone: 505-632-4625
OCD Only	
Received by:	Date:

State of New Mexico Oil Conservation Division

Remediation Plan Checklist: Each of the following items must be included in the plan.

Incident ID	NCS1629854256
District RP	3RP-364
Facility ID	
Application ID	

Remediation Plan

 ☑ Detailed description of proposed remediation technique ☑ Scaled sitemap with GPS coordinates showing delineation points ☑ Estimated volume of material to be remediated ☑ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC ☑ Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 				
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation	n.			
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.				
Extents of contamination must be fully delineated.				
Contamination does not cause an imminent risk to human health, the environment, or groundwater.				
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.				
Printed Name: Monica Smith Title: Environmental Specialist 6/27/2019				
Signature: Date:				
email: <u>msmith@harvestmidstream.com</u> Telephone: 505-632-4625				
OCD Only				
OCD Only				
Received by: Cory Via Email Date: 6/27/19				
Approved Deferral Appro	ved			
Signature: Date: 7/1/19				

State of New Mexico Oil Conservation Division

Incident ID	NCS1629854256
District RP	3RP-364
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.				
A scaled site and sampling diagram as described in 19.15.29.11 NMAC				
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)				
☐ Laboratory analyses of final sampling (Note: appropriate OE	OC District office mu	st be notified 2 days prior to final sampling)		
☐ Description of remediation activities				
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.				
Printed Name: Monica Smith	Title:	Environmental Specialist		
Signature:	Date:			
email: <u>msmith@harvestmidstream.com</u>	Telephone:	505-632-4625		
OCD Only				
Received by:	Date:			
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.				
Closure Approved by:	Date:			
Printed Name:	Title:			
_				

April 30, 2019

Mr. Cory Smith New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, New Mexico 87410

RE: Quarterly Remediation System Operation Report
Remediation Permit Number 3RP-364
Florance Gas Com J16A
Harvest Four Corners, LLC
San Juan County, New Mexico

Dear Mr. Smith:

The following report provides a quarterly summary of remediation system operation and monitoring (O&M) completed during the first quarter of 2019 at the Florance Gas Com J16A (Site) (Remediation Permit Number 3RP-364) located in San Juan County, New Mexico. The activity included in this report is for the period from December 22, 2018 through March 28, 2019. The report was prepared by LT Environmental, Inc. (LTE) on behalf of Harvest Four Corners, LLC (Harvest). Harvest assumed operation of the assets associated with the location from Williams Four Corners LLC (Williams) on October 1, 2018 and is continuing site remediation activities.

The report is provided in accordance with the conditions of approval from the New Mexico Oil Conservation Division (NMOCD) pertaining to the multi-phase extraction (MPE) remediation system described in the *Remedial Assessment Report* submitted by Aptim Environmental & Infrastructure, Inc. in November 2017. Per the requirements, this report includes the following:

- A summary of remediation activities during the quarter;
- The system run time summary (90% run time required);
- The petroleum mass removal and fluid product recovery from the remediation system;
- Amount of liquid captured from the concrete trap/secondary seep tank; and
- Quarterly gas sample analysis results.

The groundwater monitoring results for the project will be provided in a separate report published on an annual basis.

SYSTEM DESCRIPTION

The remediation system at the site includes an MPE system which uses high vacuum blowers to initiate vacuum in remediation wells connected to the blowers via subsurface conduits. The extracted air, petroleum vapors, and fluid enter a fluid/air separation tank. Air and petroleum vapors are passed through two extraction blowers and emitted out exhaust stacks. Separated fluid which includes light non-aqueous phase liquids (LNAPL) and groundwater is pumped to an above ground storage tank for storage and offsite disposal. Operation of the remediation wells is cycled through four zones, with four to six remediation wells per zone. The system layout is depicted on Figure 1. A report summarizing remediation system operation for the previous quarters of system operation have been submitted to the NMOCD by Harvest and Williams.

REMEDIATION SYSTEM OPERATION AND MONITORING

Routine biweekly system operations have been conducted from system startup through the first quarter 2019. The results of these efforts are summarized in tables attached to this report including the following information through the final biweekly site visit for the quarter conducted on March 28, 2019. No site visit was made in February due to weather related access issues to the site; however, there were site visits on January 31 and March 1, 2019.

Vapor Recovery

- The run time for the remediation system listed in Table 1 indicates an average run time for the first quarter of 88.5 percent (%), with a rolling quarterly run time of 95.9%. Temporary system operation interruptions occurred due to routine maintenance requirements, groundwater sampling activities, and temporary power interruption.
- Air/vapor samples from the MPE system inlet piping were collected following cycling of different extraction well zones, typically one sample per zone per quarter. Five samples were collected during this reporting period. Samples were collected using a high-vacuum sampling pump to fill a 1-Liter Tedlar® bag from the system inlet manifold and submitted for analysis for volatile organic compounds (VOCs) by United States Environmental Protection Agency Method 8260B, carbon dioxide, and oxygen, to Hall Environmental Analysis Laboratory of Albuquerque, New Mexico. The analytical results from the first quarter 2019 are summarized in Table 2. Copies of the laboratory analytical reports for the vapor samples are provided in Attachment 1.
- The calculated mass removal rate based on field and analytical results is provided in Table 3. Results indicate that since startup, the system has removed 2,381pounds of VOCs. In the first quarter 2019, the calculated mass removal rate based on VOC data varied from 0.2 lbs per day to 11.5 lbs per day. A total of 514.1 pounds of VOC's were removed during the first quarter of 2019

Fluid Recovery

- Fluid recovery efforts are summarized in Table 4. During the first quarter 2019 total fluid recovery was measured using a flow metering device and LNAPL recovery was calculated based on periodic measurement of recovered fluid in the storage tank. Since startup of the system through March 28, 2019, 84,825 gallons of groundwater have been recovered.
- Table 5 provides a summary of operational data for the SVE system including measurements of applied vacuum and measured flow rates for the individual recovery well lines for the first quarter 2019. The specific zones and period of operation are indicated in this table.

CONCRETE TRAP/SECONDARY SEEP MONITORING

During the first quarter of 2019, the collection sump associated with the seep areas and collection piping was examined for fluid recovery during scheduled O&M visits. No discharge was observed from the seep collection piping during the first four site visits. On March 8, 2019 the tank was inspected by LTE during a scheduled O&M visit and the tank was full. Approximately 1,00 gallons of fluid was removed from the seep collection tank on March 29, 2019.

PLAN FOR NEXT QUARTER OF OPERATION

System Operation

Operation of the remediation system will continue with the goal of optimizing vapor and liquid recovery. Remediation system operation indicates a decline in VOC concentrations for each zone sampled, as expected with this type of system. Based on these data, the frequency for air emission VOC sampling will remain the same in the second quarter 2019. Sampling will continue to comply with the NMOCD Conditions of Approval.

During the second quarter of 2019, the following will be completed:

- Bi-weekly system operation monitoring including cycling operations between the four zones;
- During bi-weekly site visits, temporary operation of wells where LNAPL has been observed will occur for approximately one hour, then the zone of operation will be changed.
- Periodic fluid elevation monitoring in selected remediation wells to evaluate the presence or absence of LNAPL:
- One influent air extraction sample per operational zone, per quarter will be analyzed for oxygen and carbon dioxide; and

• When influent air extraction samples are not collected, a photoionization detector will be used to measure MPE air/vapor exhaust concentrations.

Groundwater Monitoring

A groundwater monitoring event will be conducted on a quarterly basis and periodic fluid elevation measurements will be obtained throughout the quarter. The results of the fluid elevation measurements are reviewed, and system operational adjustments will be made based on these data. Groundwater monitoring results will be provided in an annual report.

Reporting

A quarterly system operation report will be prepared and submitted to NMOCD within 30 days following the end of the first quarter which will include:

- A summary of remediation activities during the quarter;
- The system run time summary;
- The petroleum mass removal and fluid product recovery from the remediation system;
- Amount of liquid captured from the concrete trap/secondary seep tank; and
- Quarterly gas sample analysis results.

Please contact Danny Burns with LTE at 970-385-1096 or Monica Sandoval (Harvest) at 505-632-4625 if you have any questions or concerns.

Sincerely,

LT ENVIRONMENTAL, INC.

Daniel Burns Project Geologist Chris Shephard Chief Engineer

cc: Monica Sandoval, Harvest Four Corners, LLC

Attachments:

Figure 1	Remediation System Well Layout
Table 1	Remediation System Operational Run Time
Table 2	Vapor Analytical Results
Table 3	Mass Removal
Table 4	Fluid Recovery
Table 5	System Operations 3 rd Quarter 2018
Attachment 1	Laboratory Analytical Reports

TABLE 1 **REMEDIATION SYSTEMS OPERATIONAL RUN-TIME**

FLORANCE GC J16A SAN JUAN COUNTY, NEW MEXICO HARVEST FOUR CORNERS, LLC

Date/Time of Reading	Blower Hour Meter Reading	Cumulative Run Time (%)	Rolling Quarterly Run Time (%)	Notes
5/4/18 9:00	42	START UP		
	E	Earlier Data Provid	ed in Previous Quai	rterly Reports
12/21/2018 13:20	5,271	94.2%	95.5%	Online after sampling
1/4/2019 11:40	5,468	92.2%	67.0%	Start of Q1 2019, system down, power failure
1/18/2019 10:00	5,780	92.3%	88.7%	VFD faults
1/31/2019 12:45	6,068	92.3%	89.9%	Monthly gauging
3/1/2019 10:00	6,761	93.0%	94.8%	Monthly gauging
3/14/2019 14:40	7,062	93.1%	94.9%	Repaired collection seep line
3/28/2019 10:30	7,398	93.4%	95.9%	Monthly gauging
	Average (Q1 2019 Run Time	88.5%	

Notes:

% - percent

Dashed line indicates quarter change

TABLE 2 EXTRACTED AIR VOC DATA - FIRST QUARTER 2019

FLORANCE GC J16A SAN JUAN COUNTY, NEW MEXICO HARVEST FOUR CORNERS, LLC

Collection Date:	1/4/2019	1/18/2019	1/31/2019	3/1/2019	3/14/2019	3/28/2019
Collection Time:	13:45	10:00	16:45	10:00	15:00	15:00
Active Remediation Zone:	2	3	4	1	2	3
Benzene (μg/L)	35		22	<1.0	8.0	3.6
Toluene (μg/L)	75		110	1.7	15	14
Ethylbenzene (μg/L)	4.3	N. C. I	11	<1.0	<1.0	1.3
1,2,4-trimethylbenzene (μg/L)	2.8	No Sample	11	<1.0	<1.0	<1.0
1,3,5-trimethylbenzene (μg/L)	3.5	Collected Due to O&M	11	<1.0	<1.0	1.5
Chloromethane (µg/L)	<2.0	Repairs	<2.5	<1.0	<1.0	<1.0
Isoproplybenzene (μg/L)	<2.0	перинз	<2.5	<1.0	<1.0	<1.0
n-Proplybenzene (μg/L)	<2.0		<2.5	<1.0	<1.0	<1.0
Xylenes (μg/L)	61		210	6.7	9.2	35
Total VOCs (μg/L):	181.6		375	8.4	32.2	55.4
PID Reading (ppm)	738		740	563	604	373

Note:

μg/L - micrograms per liter

ppm - parts per million

PID - photo-ionizaton detector

VOCs - volatile organic compounds

TABLE 3 MASS REMOVAL VAPOR PHASE - FIRST QUARTER 2019

FLORANCE GC J16A SAN JUAN COUNTY, NEW MEXICO HARVEST FOUR CORNERS, LLC

Date/Time	Influent VOCs (mg/m³)	Active Remediation Zone	Air Flow Rate (scfm)	Time Period (hr:min:sec)	Time Period (min)	Mass Removed (lbs)	Gal Removed (@0.755 g/cm³)	Mass Removal Rate (lbs/day)	Mass Removal Rate (ton/yr)
12/21/18 14:30	13.2	1	240	335:00:00	20,100	242.4	45.5	17.4	3.2
1/4/19 13:45	181.6	2	364	335:15:00	20,115	4.0	38.5	0.3	0.1
1/18/19 10:00			No Sam	ples Collected [During Site Visit	Due to O&M I	Repairs		
1/31/19 16:45	375.0	4	342	651:00:00	39,060	160.9	0.6	5.9	1.1
3/1/19 14:00	8.4	1	206	693:15:00	41,595	332.5	25.5	11.5	2.1
3/14/19 15:00	32.2	2	370	313:00:00	18,780	2.0	52.8	0.2	0.0
3/28/19 10:30	55.4	3	324	331:30:00	19,890	14.8	0.3	1.1	0.2

Total Quantity of Hydrocarbon Removed 1st quarter 2019	514 lbs	117.7 gal	2.8 bbl
Total Quantity of Hydrocarbon Removed Since Start-up May 2018	2,381 lbs	468.0 gal	11.1 bbl

Notes:

bbl - barrel lbs/day - pounds per day ton/yr - ton per year

gal - gallons mg/m³ - milligrams per cubic meter VOCs - volatile organic compounds

g/cm³ - grams per cubic centimeter min - minute yr - year

hr - hour scfm - standard cubic foot per minute Dashed line indicates a quarter change

lbs - pounds sec - second

TABLE 4 FLUID RECOVERY - FIRST QUARTER 2019

FLORANCE GC J16A SAN JUAN COUNTY, NEW MEXICO HARVEST FOUR CORNERS, LLC

Date/Time	Hour Meter Reading	Tank I	Height	Gallons in Tank	Flow Meter Reading	Gallons Recovered	Cumulative Volume Recovered	LNAPL Thickness	LNAPL Volume	Gallons Removed From Tank	Time Period (hr:min:sec)	Time Period (min)	Recove	ery Rate	Notes
	i i i i i i i i i i i i i i i i i i i	(ft)	(in)		(gal)	this Period	(gal)	(ft)	(gal)	(Off-Site)	(\ ,	(gpm)	(gal/day)	
12/21/18 13:20	5,271	13	8	11,480	37,496	1,019	64,796	0.01	8		339:50:00	20,390	0.05	72	
1/4/19 11:40	5,468	9	11	8,330	47,192	9,696	74,492	0.02	16.92	T	334:20:00	20,060	0.48	696	
1/31/19 0:45	6,068	13	11	11,690	51,665	4,473	78,965			10,080	637:05:00	38,225	0.12	169	3 loads removed
3/1/19 10:00	6,761	1	11	1,610	53,893	2,228	81,193				705:15:00	42,315	0.05	76	
3/14/2019	356	3	8	3,080	55,343	1,450	82,643	0.02	16.92		316:40:00	19,000	0.08	110	
3/28/19 10:30	7,398	6	7	5 <i>,</i> 530	57,525	2,183	84,825	0.03	25.38		331:50:00	19,910	0.11	158	

Notes:

bbl - barrel in - inch

ft - feet LNAPL - light non-aqueous phase liquid

gal - gallon min - minute gal/day - gallon per day sec - second

gpm - gallon per minute Dashed line indicated quarter change

hr - hour

Total Quantity of Groundwater Removed: 84,825 Gal
2,020 bbl

Well ID		Unit	1/4/2019	1/18/2019	1/31/2019	3/1/2019	3/14/2019	3/28/2019
Active Zone			2	3	4	1	2	3
MW-06	WH Vac (Online)	inHg				15.0		
Zone 1	WH Vac (Offline)	inH2O						
	Mani Vac	inHg				18.5		
	PID	ppm				575.0		
	Flow	scfm				36.0		
SB-04	WH Vac (Online)	inHg				15.0		
Zone 1	WH Vac (Offline)	inH2O						
	Mani Vac	inHg				19.0		
	PID	ppm		No readings		613.0		
	Flow	scfm		taken, O&M repairs only		68.0		
SB-12	WH Vac (Online)	inHg		after zone		16.0		
Zone 1	WH Vac (Offline)	inH2O		switch				
	Mani Vac	inHg		3441611		18.5		
	PID	ppm				468.0		
	Flow	scfm				52.0		
SB-13	WH Vac (Online)	inHg				15.5		
Zone 1	WH Vac (Offline)	inH2O						
	Mani Vac	inHg				18.0		
	PID	ppm				107.0		
	Flow	scfm				50.0		

Well ID		Unit	1/4/2019	1/18/2019	1/31/2019	3/1/2019	3/14/2019	3/28/2019
Active Zone			2	3	4	1	2	3
MW-12	WH Vac (Online)	inHg	12.0				15.0	
Zone 2	WH Vac (Offline)	inH2O						
	Mani Vac	inHg	15.5				15.5	
	PID	ppm	355.0				337	
	Flow	scfm	58.0				48.0	
SB-01	WH Vac (Online)	inHg	15.0				15.0	
Zone 2	WH Vac (Offline)	inH2O						
	Mani Vac	inHg	15.0				16.0	
	PID	ppm	514.0				426	
	Flow	scfm	72.0				86.0	
SB-10	WH Vac (Online)	inHg	12.0				15.0	
Zone 2	WH Vac (Offline)	inH2O						
	Mani Vac	inHg	15.5				16.0	
	PID	ppm	173.0	No readings			64	
	Flow	scfm	56.0	taken, O&M repairs only			68.0	
SB-11	WH Vac (Online)	inHg	14.5	after zone			14.0	
Zone 2	WH Vac (Offline)	inH2O		switch				
	Mani Vac	inHg	15.0				15.5	
	PID	ppm	420.0				47	
	Flow	scfm	62.0				52.0	
SB-18	WH Vac (Online)	inHg	10.0				14.5	
Zone 2	WH Vac (Offline)	inH2O						
	Mani Vac	inHg	16.5				16.5	
	PID	ppm	105.0				132	
	Flow	scfm	36.0				34.0	
SB-19	WH Vac (Online)	inHg	14.5				15.0	
Zone 2	WH Vac (Offline)	inH2O						
	Mani Vac	inHg	15.5				16.0	
	PID	ppm	339.0				101	
	Flow	scfm	80.0				82.0	

Well ID		Unit	1/4/2019	1/18/2019	1/31/2019	3/1/2019	3/14/2019	3/28/2019
Active Zone			2	3	4	1	2	3
MW-3R	WH Vac (Online)	inHg						15.0
Zone 3	WH Vac (Offline)	inH2O						
	Mani Vac	inHg						17.0
	PID	ppm						376
	Flow	scfm						70.0
MW-10	WH Vac (Online)	inHg						17.5
Zone 3	WH Vac (Offline)	inH2O						
	Mani Vac	inHg						17.0
	PID	ppm						1
	Flow	scfm						0.0
SB-03	WH Vac (Online)	inHg						18.5
Zone 3	WH Vac (Offline)	inH2O						
	Mani Vac	inHg						17.0
	PID	ppm		No readings				403
	Flow	scfm		taken, O&M repairs only				52.0
SB-06	WH Vac (Online)	inHg		after zone				17.0
Zone 3	WH Vac (Offline)	inH2O		switch				
	Mani Vac	inHg						17.5
	PID	ppm						143
	Flow	scfm						64.0
SB-15	WH Vac (Online)	inHg						15.0
Zone 3	WH Vac (Offline)	inH2O						
	Mani Vac	inHg						17.0
	PID	ppm						42
	Flow	scfm						58.0
SB-16	WH Vac (Online)	inHg						17.0
Zone 3	WH Vac (Offline)	inH2O						
	Mani Vac	inHg						17.0
	PID	ppm						56
	Flow	scfm						80.0

Well ID		Unit	1/4/2019	1/18/2019	1/31/2019	3/1/2019	3/14/2019	3/28/2019
Active Zone			2	3	4	1	2	3
MW-3R	WH Vac (Online)	inHg			15.0			
Zone 4	WH Vac (Offline)	inH2O						
	Mani Vac	inHg			15.5			
	PID	ppm			614.0			
	Flow	scfm			50.0			
SB-05	WH Vac (Online)	inHg			11.5			
Zone 4	WH Vac (Offline)	inH2O						
	Mani Vac	inHg			15.0			
	PID	ppm			353.0			
	Flow	scfm			42.0			
SB-07	WH Vac (Online)	inHg			13.0			
Zone 4	WH Vac (Offline)	inH2O						
	Mani Vac	inHg			15.0			
	PID	ppm		No readings taken, O&M	910.0			
	Flow	scfm		repairs only	40.0			
SB-08	WH Vac (Online)	inHg		after zone	11.5			
Zone 4	WH Vac (Offline)	inH2O		switch				
	Mani Vac	inHg			16.0			
	PID	ppm			398.0			
	Flow	scfm			66.0			
SB-09	WH Vac (Online)	inHg			12.0			
Zone 4	WH Vac (Offline)	inH2O						
	Mani Vac	inHg			16.0			
	PID	ppm			890.0			
	Flow	scfm			80.0			
SB-17	WH Vac (Online)	inHg			14.0			
Zone 4	WH Vac (Offline)	inH2O						
	Mani Vac	inHg			16.0			
	PID	ppm			81.0			
	Flow	scfm			64.0			

FLORANCE GC J16A SAN JUAN COUNTY, NEW MEXICO HARVEST FOUR CORNERS, LLC

Well ID		Unit	1/4/2019	1/18/2019	1/31/2019	3/1/2019	3/14/2019	3/28/2019
Active Zone			2	3	4	1	2	3
Well Field								
	Flow	scfm	364.0		342.0	206.0	370.0	324.0

Notes:

in HG - inches of mercury

inH2O - inches of water

ppm - parts per million

scfm - standard cubic feet per minute

% - percent

*** The flow sensor at the MS Inlet and for the dilution flow do not account for the density of the air or the water entrained, and are anticipated to read low.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 16, 2019

Monica Sandoval

Harvest

1755 Arroyo Dr.

Bloomfield, NM 87413 TEL: (505) 632-4475

FAX

RE: Florance OrderNo.: 1901163

Dear Monica Sandoval:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/5/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indest

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 1901163

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/16/2019

CLIENT: Harvest Client Sample ID: Zone 2 Influent

 Project:
 Florance
 Collection Date: 1/4/2019 1:45:00 PM

 Lab ID:
 1901163-001
 Matrix: AIR
 Received Date: 1/5/2019 11:50:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	:: DJF
Benzene	35	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Toluene	75	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Ethylbenzene	4.3	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Methyl tert-butyl ether (MTBE)	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,2,4-Trimethylbenzene	2.8	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,3,5-Trimethylbenzene	3.5	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,2-Dichloroethane (EDC)	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,2-Dibromoethane (EDB)	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Naphthalene	ND	4.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1-Methylnaphthalene	ND	8.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
2-Methylnaphthalene	ND	8.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Acetone	ND	20	μg/L	20	1/8/2019 11:02:13 AM	R56845
Bromobenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Bromodichloromethane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Bromoform	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Bromomethane	ND	4.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
2-Butanone	ND	20	μg/L	20	1/8/2019 11:02:13 AM	R56845
Carbon disulfide	ND	20	μg/L	20	1/8/2019 11:02:13 AM	R56845
Carbon tetrachloride	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Chlorobenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Chloroethane	ND	4.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Chloroform	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Chloromethane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
2-Chlorotoluene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
4-Chlorotoluene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
cis-1,2-DCE	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
cis-1,3-Dichloropropene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Dibromochloromethane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Dibromomethane	ND	4.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,2-Dichlorobenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,3-Dichlorobenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,4-Dichlorobenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Dichlorodifluoromethane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,1-Dichloroethane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,1-Dichloroethene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,2-Dichloropropane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,3-Dichloropropane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
2,2-Dichloropropane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 4
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical ReportLab Order **1901163**

Date Reported: 1/16/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Harvest

Client Sample ID: Zone 2 Influent

 Project:
 Florance
 Collection Date: 1/4/2019 1:45:00 PM

 Lab ID:
 1901163-001
 Matrix: AIR
 Received Date: 1/5/2019 11:50:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
1,1-Dichloropropene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Hexachlorobutadiene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
2-Hexanone	ND	20	μg/L	20	1/8/2019 11:02:13 AM	R56845
Isopropylbenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
4-Isopropyltoluene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
4-Methyl-2-pentanone	ND	20	μg/L	20	1/8/2019 11:02:13 AM	R56845
Methylene chloride	ND	6.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
n-Butylbenzene	ND	6.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
n-Propylbenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
sec-Butylbenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Styrene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
tert-Butylbenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Tetrachloroethene (PCE)	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
trans-1,2-DCE	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
trans-1,3-Dichloropropene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,2,3-Trichlorobenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,2,4-Trichlorobenzene	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,1,1-Trichloroethane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,1,2-Trichloroethane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Trichloroethene (TCE)	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Trichlorofluoromethane	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
1,2,3-Trichloropropane	ND	4.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Vinyl chloride	ND	2.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Xylenes, Total	61	3.0	μg/L	20	1/8/2019 11:02:13 AM	R56845
Surr: Dibromofluoromethane	108	70-130	%Rec	20	1/8/2019 11:02:13 AM	R56845
Surr: 1,2-Dichloroethane-d4	105	70-130	%Rec	20	1/8/2019 11:02:13 AM	R56845
Surr: Toluene-d8	105	70-130	%Rec	20	1/8/2019 11:02:13 AM	R56845
Surr: 4-Bromofluorobenzene	106	70-130	%Rec	20	1/8/2019 11:02:13 AM	R56845

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 4
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686,7175 • Helena, MT 877.472.0711

ANALYTICAL SUMMARY REPORT

January 15, 2019

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

G19010191

Project Name:

Not Indicated

Energy Laboratories Inc. Gillette WY received the following 1 sample for Hall Environmental on 1/9/2019 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
G19010191-001	1901163-001A; Zone 2 Influent	01/04/19 13	45 01/09/19	Gas	Natural Gas Analysis - BTU Natural Gas Analysis - Compressibility Factor Natural Gas Analysis - GPM Natural Gas Analysis - Molecular Weight Natural Gas Analysis - Routine Natural Gas Analysis - Pressure Base Natural Gas Analysis - Psuedo- Critical Pressure Natural Gas Analysis - Psuedo- Critical Temperature Natural Gas Analysis - Specific Gravity Natural Gas Analysis - Temperature Base

The analyses presented in this report were performed by Energy Laboratories, Inc., 400 W. Boxelder Rd., Gillette, WY 82718, unless otherwise noted.

As appropriate, any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these tests results, please call.

Report Approved By:

Julie Weisz

Digitally signed by Julie L. Weisz Date: 2019.01.15 16:43:44 -07:00

LABORATORY ANALYTICAL REPORT

Prepared by Gillette, WY Branch

Client:

Hall Environmental

Project:

Not Indicated

Client Sample ID: 1901163

1901163-001A; Zone 2 Influent

Location:

Lab ID:

G19010191-001

Report Date: 01/15/19

Collection Date: 01/04/19 13:45

Date Received: 01/09/19

Sampled By: Not Provided

			by. Not i lovided
Analyses	Result Units	Qualifier Method	Analysis Date / By
NATURAL GAS CHROMATOGRAPHIC ANALYSIS REPORT			
Oxygen	21.219 Mol %	GPA 2261	01/15/19 10:02 / blb
Nitrogen	78.054 Mol %	GPA 2261	01/15/19 10:02 / blb
Carbon Dioxide	0.602 Mol %	GPA 2261	01/15/19 10:02 / blb
Hydrogen Sulfide	< 0.001 Mol %	GPA 2261	01/15/19 10:02 / blb
Methane	< 0.001 Mol %	GPA 2261	01/15/19 10:02 / blb
Ethane	< 0.001 Mol %	GPA 2261	01/15/19 10:02 / blb
Propane	< 0.001 Mol %	GPA 2261	01/15/19 10:02 / blb
sobutane	0.035 Mol %	GPA 2261	01/15/19 10:02 / blb
i-Butane	0.001 Mol %	GPA 2261	01/15/19 10:02 / blb
sopentane	0.005 Mo! %	GPA 2261	01/15/19 10:02 / blb
n-Pentane	0.006 Mol %	GPA 2261	01/15/19 10:02 / blb
lexanes plus	0.078 Mol %	GPA 2261	01/15/19 10:02 / blb
GPM @ STD COND/1000 CU.FT., MOISTURE FREE GAS			
SPM Ethane	< 0.0003 gal/MCF	GPA 2261	01/15/19 10:02 / blb
SPM Propane	< 0.0003 gal/MCF		01/15/19 10:02 / blb
SPM isobutane	0.0110 gal/MCF	GPA 2261	01/15/19 10:02 / blb
GPM n-Butane	< 0.0003 gal/MCF		01/15/19 10:02 / blb
GPM Isopentane	0.0020 gal/MCF	GPA 2261	01/15/19 10:02 / blb
SPM n-Pentane	0.0020 gal/MCF	GPA 2261	01/15/19 10:02 / blb
SPM Hexanes plus	0.0340 gal/MCF	GPA 2261	01/15/19 10:02 / blb
PM Pentanes plus	0.0380 gal/MCF	GPA 2261	01/15/19 10:02 / blb
SPM Total	0.0500 gal/MCF	GPA 2261	01/15/19 10:02 / blb
ALCULATED PROPERTIES			
Calculation Pressure Base	14.730 psia	GPA 2261	01/15/19 10:02 / blb
Calculation Temperature Base	60 °F	GPA 2261	01/15/19 10:02 / blb
ompressibility Factor, Z	1.0000 unitless		01/15/19 10:02 / blb
olecular Weight	29.02 unitless	GPA 2261	01/15/19 10:02 / blb
seudo-critical Pressure, psia	548 psia	GPA 2261	01/15/19 10:02 / blb
seudo-critical Temperature, deg R	241 deg R	GPA 2261	01/15/19 10:02 / blb
pecific Gravity (air=1.000)	1.005 unitless	GPA 2261	01/15/19 10:02 / blb
Gross BTU per cu ft @ std cond, dry	5.62 BTU/cu	ft GPA 2261	01/15/19 10:02 / blb
cross BTU per cu ft @ std cond, wet	5.52 BTU/cu	ft GPA 2261	01/15/19 10:02 / blb

Report

RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

QA/QC Summary Report

Trast aur People Trust aur Daia.

Prepared by Gillette, WY Branch

Client: Hall Environmental

Report Date: 01/15/19

Project: Not Indicated

Work Order: G19010191

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261		<u> </u>					An	alytical Run:	R248231
Lab ID:	ICV-1901150940	Initial Calibrat	ion Verificatio	on Standard					01/15	5/19 09:40
Oxygen		0.400	Mol %	0.001	84	75	110			
Nitrogen		5.063	Mol %	0.001	100	90	110			
Carbon Did	oxide	4.891	Mol %	0.001	98	90	110			
Hydrogen S	Sulfide	0.123	Mal %	0.001	122	100	136			
Methane		73.157	Mol %	0.001	100	90	110			
Ethane		4.999	Mol %	0.001	100	90	110			
Propane		5.117	Mol %	0.001	100	. 90	110			
Isobutane		2.005	Mol %	0.001	99	90	110			
n-Butane		1.981	Mol %	0.001	98	90	110			
Isopentane)	0.985	Mol %	0.001	99	90	110			
n-Pentane		0.979	Mol %	0.001	98	90	110			
Hexanes pl	lus	0.300	Mol %	0.001	99	90	110			
Lab ID:	CCV-1901150948	Continuing Ca	alibration Veri	fication Standa	ırd				01/15	5/19 09:48
Oxygen		0.599	Mol %	0.001	100	90	110			
Nitrogen		1.339	Mol %	0.001	95	85	110			
Carbon Dio	oxide	0.962	Mol %	0.001	96	90	110			
Hydrogen S	Sulfide	0.021	Mol %	0.001	84	70	130			
Methane		93.508	Mol %	0.001	100	90	110			
Ethane		1.021	Mol %	0.001	102	90	110			
Propane		1.008	Mol %	0.001	101	90	110			
Isobutane		0.501	Mol %	0.001	100	90	110			
n-Butane		0.489	Mol %	0.001	98	90	110			
Isopentane		0.200	Mol %	0.001	100	90	110			
n-Pentane		0.198	Mol %	0.001	99	90	110			
Hexanes pl	us	0.154	Mol %	0.001	102	90	110			
Lab ID:	CCV-1901151115	Continuing Ca	libration Veri	fication Standa	rd				01/15	/19 11:16
Oxygen		0.581	Mol %	0.001	97	90	110			
Nitrogen		1.279	Mol %	0.001	91	- 85	110			
Carbon Dio	xide	0.965	Mol %	0.001	96	90	110			
Hydrogen S	Sulfide	0.025	Mol %	0.001	100	70	130			
Methane		93.585	Mol %	0.001	100	90	110			
Ethane		1.021	Mol %	0.001	102	90	110			
Propane		1.007	Mol %	0.001	101	90	110			
Isobutane		0.500	Mol %	0.001	100	90	110			
n-Butane		0.488	Mol %	0.001	98	90	110			
Isopentane		0.199	Mol %	0.001	99	90	110			
n-Pentane		0.197	Mol %	0.001	98	90	110			
Hexanes pl	iie	0.157	Mol %	0.001	101	90	110			

Method:

GPA 2261

Batch: R248231

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

QA/QC Summary Report

Prepared by Gillette, WY Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 01/15/19
Work Order: G19010191

Analyte		Result	Units	RL	%REC Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261				-			Batch:	R248231
Lab ID:	G19010191-001ADUP	Sample Dupli	cate		Run: Varia	n GC_190115A		01/15	6/19 10:06
Oxygen		21.217	Mol %	0.001			0.0	10	
Nitrogen		78.051	Mol %	0.001			0.0	10	
Carbon Did	oxide	0.603	Mol %	0.001			0.2	10	
Hydrogen 8	Sulfide	< 0.001	Mol %	0.001				10	
Methane		< 0.001	Mol %	0.001				10	
Ethane		< 0.001	Mol %	0.001				10	
Propane		< 0.001	Mol %	0.001				10	
Isobutane		0.037	Mol %	0.001			5.6	10	
n-Butane		0.001	Mol %	0.001			0.0	10	
Isopentane	2	0.005	Moi %	0.001			0.0	10	
n-Pentane		0.006	Mol %	0.001			0.0	10	
Hexanes pl	lus	0.080	Mol %	0.001			2.5	10	

Work Order Receipt Checklist

Contact and Corrective Action Comments:

None

Hall Environmental G19010191

Login completed by:	Misty Voegele		Date	Received: 1/9/2019	
Reviewed by:	BL2000\kvidick		Re	ceived by: mav	
Reviewed Date:	1/11/2019		Car	rier name: FedEx	
Shipping container/cooler in	good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes 🗸	No 🗀	Not Present	
Custody seals intact on all sa	ample bottles?	Yes 🗌	No 🗌	Not Present ✓	
Chain of custody present?		Yes 🔽	No 🗀		
Chain of custody signed whe	n relinquished and received?	Yes 🔽	No 🗌		
Chain of custody agrees with	sample labels?	Yes 🔽	No 🗌		
Samples in proper container/	bottle?	Yes √	No 🗌		
Sample containers intact?		Yes 🗸	No 🗀		
Sufficient sample volume for	indicated test?	Yes 🔽	No 🔲		
All samples received within h (Exclude analyses that are co such as pH, DO, Res CI, Sul	onsidered field parameters	Yes 🗹	No 🗌		
Temp Blank received in all sh	ripping container(s)/cooler(s)?	Yes	No 📋	Not Applicable ✓	
Container/Temp Blank tempe	rature:	°C			
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted	\square
Water - pH acceptable upon r	receipt?	Yes	No 📋	Not Applicable	
Standard Reporting Lab measurement of a	ng Procedures: nalytes considered field pa	arameters tha	t require analy	sis within 15 minutes	of sampling such as
pH, Dissolved Oxygen	and Residual Chlorine, ar	e qualified as	being analyze	d outside of recomme	ended holding time.
	reported on a wet weight t noted as –dry. For agricul nple analysis.				

Albuquerque, NM 87109 TEL: 505-345-3975	
Hall Environmental Analysis Laboratory 4901 Hawkins NE	CTIMES OF COSTABL VECORD!

	TINA LUTORE GAS AIMETSES		 - 			
	NATION CAS ANALYSIS	1/4/2018 1:45:00 PM	TEDLAR Air	2 Influent	1901163-001A Zone 2 Influent	-
ANALYTICAL COMMENTS	ANALYTIC	X DATE	TYPE MATRIX	CLIENT SAMPLE ID	SAMPLE	, EM
_	MAT	COLLECTION	BOTTLE			
	NOO A					
					.	
						I
		<u>!</u>		Y 82718	CITY, STATE, ZIP: Gillette, WY 82718	CITY, ST/
	EMAIL:	ACCOUNT #:		Boxelder Rd	400 W Boxelder Rd	
	(800) 080-7175				ļ	ADDRESS:
	FAX:	PHONE:	Energy Laboratories	ERGY	Gillette ENERGY	
					T#ATOR:	SID COV

	ļ
	Ì
2	
\subseteq	
0	
0	ļ

Relinquished By:

Date:

Received By:

Ditte:

Time:

HARDCOPY (extra cost)

REPORT TRANSMITTAL DESIRED:

☐ EMAIL

ONLINE

FOR LAB USE ONLY

TAT

Standard V

RUSH

New BD

14d BD [

3rd-BD

Temp of samples

់ក

Attempt to Cool ?

SERCIAL INSTRUCTIONS / COMMENTS.

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please c-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Website: www.hallenvironmental.com

FAX: 505-345-4107

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901163**

16-Jan-19

Client: Harvest Project: Florance

Sample ID 1901163-001a dup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Zone 2 Influent Batch ID: R56845 RunNo: 56845

Prep Date: Analysis Date: 1/8/2019 SeqNo: 1902464 Units: µg/L

Prep Date:	Analysis D	Date: 1/	/8/2019	\$	SeqNo: 1	902464	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	37	2.0						5.99	20	
Toluene	78	2.0						3.43	20	
Ethylbenzene	4.6	2.0						7.77	20	
Methyl tert-butyl ether (MTBE)	ND	2.0						0	20	
1,2,4-Trimethylbenzene	3.3	2.0						14.5	20	
1,3,5-Trimethylbenzene	3.8	2.0						8.92	20	
1,2-Dichloroethane (EDC)	ND	2.0						0	20	
1,2-Dibromoethane (EDB)	ND	2.0						0	20	
Naphthalene	ND	4.0						0	20	
1-Methylnaphthalene	ND	8.0						0	20	
2-Methylnaphthalene	ND	8.0						0	20	
Acetone	ND	20						0	20	
Bromobenzene	ND	2.0						0	20	
Bromodichloromethane	ND	2.0						0	20	
Bromoform	ND	2.0						0	20	
Bromomethane	ND	4.0						0	20	
2-Butanone	ND	20						0	20	
Carbon disulfide	ND	20						0	20	
Carbon tetrachloride	ND	2.0						0	20	
Chlorobenzene	ND	2.0						0	20	
Chloroethane	ND	4.0						0	20	
Chloroform	ND	2.0						0	20	
Chloromethane	ND	2.0						0	20	
2-Chlorotoluene	ND	2.0						0	20	
4-Chlorotoluene	ND	2.0						0	20	
cis-1,2-DCE	ND	2.0						0	20	
cis-1,3-Dichloropropene	ND	2.0						0	20	
1,2-Dibromo-3-chloropropane	ND	4.0						0	20	
Dibromochloromethane	ND	2.0						0	20	
Dibromomethane	ND	4.0						0	20	
1,2-Dichlorobenzene	ND	2.0						0	20	
1,3-Dichlorobenzene	ND	2.0						0	20	
1,4-Dichlorobenzene	ND	2.0						0	20	
Dichlorodifluoromethane	ND	2.0						0	20	
1,1-Dichloroethane	ND	2.0						0	20	
1,1-Dichloroethene	ND	2.0						0	20	
1,2-Dichloropropane	ND	2.0						0	20	
1,3-Dichloropropane	ND	2.0						0	20	
2,2-Dichloropropane	ND	2.0						0	20	
• •										

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 3 of 4

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901163**

16-Jan-19

Client: Harvest Project: Florance

Sample ID 1901163-001a dup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Zone 2 Influent Batch ID: R56845 RunNo: 56845

Prep Date:	Analysis [Date: 1/	8/2019	S	SeqNo: 1	902464	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	2.0						0	20	
Hexachlorobutadiene	ND	2.0						0	20	
2-Hexanone	ND	20						0	20	
Isopropylbenzene	ND	2.0						0	20	
4-Isopropyltoluene	ND	2.0						0	20	
4-Methyl-2-pentanone	ND	20						0	20	
Methylene chloride	ND	6.0						0	20	
n-Butylbenzene	ND	6.0						0	20	
n-Propylbenzene	ND	2.0						0	20	
sec-Butylbenzene	ND	2.0						0	20	
Styrene	ND	2.0						0	20	
tert-Butylbenzene	ND	2.0						0	20	
1,1,1,2-Tetrachloroethane	ND	2.0						0	20	
1,1,2,2-Tetrachloroethane	ND	2.0						0	20	
Tetrachloroethene (PCE)	ND	2.0						0	20	
trans-1,2-DCE	ND	2.0						0	20	
trans-1,3-Dichloropropene	ND	2.0						0	20	
1,2,3-Trichlorobenzene	ND	2.0						0	20	
1,2,4-Trichlorobenzene	ND	2.0						0	20	
1,1,1-Trichloroethane	ND	2.0						0	20	
1,1,2-Trichloroethane	ND	2.0						0	20	
Trichloroethene (TCE)	ND	2.0						0	20	
Trichlorofluoromethane	ND	2.0						0	20	
1,2,3-Trichloropropane	ND	4.0						0	20	
Vinyl chloride	ND	2.0						0	20	
Xylenes, Total	62	3.0						2.09	20	
Surr: Dibromofluoromethane	21		20.00		105	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	19		20.00		94.7	70	130	0	0	
Surr: Toluene-d8	22		20.00		109	70	130	0	0	
Surr: 4-Bromofluorobenzene	22		20.00		110	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 4

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Harvest Work Order Number: 1901163 RcptNo: 1 anne Sham Received By: **Anne Thorne** 1/5/2019 11:50:00 AM anne Am Completed By: Anne Thorne 1/7/2019 1:12:14 PM 1/7/19 Reviewed By: Chain of Custody 1. Is Chain of Custody complete? Yes 🗸 No 🗌 Not Present 2. How was the sample delivered? Courier <u>Log In</u> 3. Was an attempt made to cool the samples? Yes 🔲 NA 🗸 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗌 NA 🔽 Yes 🔽 No 🗌 Sample(s) in proper container(s)? Sufficient sample volume for indicated test(s)? Yes 🔽 No 🗌 7. Are samples (except VOA and ONG) properly preserved? Yes 🗹 Νo No 🗹 8. Was preservative added to bottles? Yes 🗌 NA 🗌 9. VOA vials have zero headspace? Yes 🗔 No 🗌 No VOA Vials 🗹 Yes 🗌 10. Were any sample containers received broken? No 🔽 # of preserved bottles checked 11. Does paperwork match bottle labels? No 🗀 for pH: Yes 🔽 (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? 12. Are matrices correctly identified on Chain of Custody? Yes 🗸 No 🗌 Yes 🗹 No 🔲 13, is it clear what analyses were requested? 14. Were all holding times able to be met? No 🗌 Checked by: Yes 🔽 (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 15. Was client notified of all discrepancies with this order? No 🗆 NA 🗹 Person Notified: Date By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: Additional remarks:

17. Cooler Information

	hain	-of-C	Chain-of-Custody Record	Turn-Around	lime:						_	Ž	Š	ζ	2		ŀ	_	
Client:		Harvest F	Four Corners	ĭx Standard	□ Rush					ANALYSTS LABORATORY		15	U	5 4	Ç	֓֞֞֝֝֞֞֓֓֓֓֓֟֝֟֝֓֓֓֟֟	בַּ בַ	۲ <mark>۲</mark>	
	Moi	1,00	•	Project Name:		2			· 	www	halle.	nviro	www.hallenvironmental.com	a :co	Ε	5)		
Mailing	Mailing Address:			FIOG	Florance			1901	Haw	4901 Hawkins NE		Nbnd	- Albuquerque, NM 87109	e N N	1871	9			
				Project #:				Tel.	505-3	505-345-3975	75	Fax	505	505-345-4107	1107				
Phone #:		970-38	385-1096								An	Analysis		Request					
email c	email or Fax#:			Project Manager:	jer:				/			(1/0							
QA/QC	QA/QC Package:			Delo	DOUND BLUNG-ITE	2-1 TE					(S)S'r							
X Standard	ndard		□ Level 4 (Full Validation)	Monic	N Saldovi	MONILO SONDOVOI- HONVESD					WIS	Oq,							
Accreditation □ NELAP	litation .AP	□ Other	er	Sampler: 🗲	Vic RACCOII	10 V × 10 V					8270	ON, E			(∀		۶,		UNLA
X EDI	X EDD (Type)	PDi	17	Tem	erature: 4子	J-1-0-4-								()	/OΛ:		20.		U AI
				Container	Presentative	等近 (B) 的 。								4OV)	-iməć				Selu
Date	Time	Matrix	Sample Request ID	44.	Type	HEAL NO. 1901163	- X3T8	- ХЗТА)8 НЧТ	л) H9T	EDB (V	s'HA9	RCRA Anions	모 1808	82608	8) 0728	200	992 <u>8</u>		dir Rii∆
14/18	3451 81741	Aif	200e 2 influent	2 Trellar		102									Α.	X	×		ı
						·													ı
																			ı
																			ı
																			1 1
		·																	
																			l I
								_											i i
											- -								- 1
								+	_		_								ı
Date:	Time:	Relinquished by:	ned by:	Received by:		Date Time	Remarks	Ŗ.			•	-							1
6///		Eui Cu	Gueral	Muster	JAKAU Ł	1/4/19 14/18		ď.	Please	, CC:		200	dourns Ottent. com	1500	00,7	2 3			
Date:	Time: } }	Relinquished	ned by:	Received by:	Ch.	01/65/19 01/65/19					β	à Ò) =	Š		_			
	f necessary,	י אול אין	ed to H	ontracted to other acc	redited laboratorie	s. This serves as notice of this	possibilit	/. Any	sub-cor	itracted	data wit	be clea	irly nota	ted on t	he anal	ytical re	port.		1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 12, 2019

Monica Sandoval

Harvest

1755 Arroyo Dr.

Bloomfield, NM 87413

TEL: (505) 632-4475

FAX

RE: Florance GC J 16A OrderNo.: 1902064

Dear Monica Sandoval:

Hall Environmental Analysis Laboratory received 1 sample(s) on 2/2/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 1902064

Received Date: 2/2/2019 10:55:00 AM

Hall Environmental Analysis Laboratory, Inc.

1902064-001

Lab ID:

Date Reported: 2/12/2019

CLIENT: Harvest Client Sample ID: Zone 04 Influent

Matrix: AIR

Project: Florance GC J 16A **Collection Date:** 1/31/2019 4:45:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Benzene	22	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Toluene	110	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Ethylbenzene	11	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Methyl tert-butyl ether (MTBE)	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,2,4-Trimethylbenzene	11	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,3,5-Trimethylbenzene	11	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,2-Dichloroethane (EDC)	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,2-Dibromoethane (EDB)	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Naphthalene	ND	5.0	μg/L	25	2/11/2019 10:53:38 AM	A57627
1-Methylnaphthalene	ND	10	μg/L	25	2/11/2019 10:53:38 AM	A57627
2-Methylnaphthalene	ND	10	μg/L	25	2/11/2019 10:53:38 AM	A57627
Acetone	ND	25	μg/L	25	2/11/2019 10:53:38 AM	A57627
Bromobenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Bromodichloromethane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Bromoform	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Bromomethane	ND	5.0	μg/L	25	2/11/2019 10:53:38 AM	A57627
2-Butanone	ND	25	μg/L	25	2/11/2019 10:53:38 AM	A57627
Carbon disulfide	ND	25	μg/L	25	2/11/2019 10:53:38 AM	A57627
Carbon tetrachloride	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Chlorobenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Chloroethane	ND	5.0	μg/L	25	2/11/2019 10:53:38 AM	A57627
Chloroform	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Chloromethane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
2-Chlorotoluene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
4-Chlorotoluene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
cis-1,2-DCE	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
cis-1,3-Dichloropropene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	25	2/11/2019 10:53:38 AM	A57627
Dibromochloromethane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Dibromomethane	ND	5.0	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,2-Dichlorobenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,3-Dichlorobenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,4-Dichlorobenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Dichlorodifluoromethane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,1-Dichloroethane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,1-Dichloroethene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,2-Dichloropropane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,3-Dichloropropane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
2,2-Dichloropropane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 4
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical ReportLab Order **1902064**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/12/2019

CLIENT: Harvest Client Sample ID: Zone 04 Influent

 Project:
 Florance GC J 16A
 Collection Date: 1/31/2019 4:45:00 PM

 Lab ID:
 1902064-001
 Matrix: AIR
 Received Date: 2/2/2019 10:55:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
1,1-Dichloropropene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Hexachlorobutadiene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
2-Hexanone	ND	25	μg/L	25	2/11/2019 10:53:38 AM	A57627
Isopropylbenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
4-Isopropyltoluene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
4-Methyl-2-pentanone	ND	25	μg/L	25	2/11/2019 10:53:38 AM	A57627
Methylene chloride	ND	7.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
n-Butylbenzene	ND	7.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
n-Propylbenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
sec-Butylbenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Styrene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
tert-Butylbenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,1,1,2-Tetrachloroethane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,1,2,2-Tetrachloroethane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Tetrachloroethene (PCE)	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
trans-1,2-DCE	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
trans-1,3-Dichloropropene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,2,3-Trichlorobenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,2,4-Trichlorobenzene	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,1,1-Trichloroethane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,1,2-Trichloroethane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Trichloroethene (TCE)	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Trichlorofluoromethane	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
1,2,3-Trichloropropane	ND	5.0	μg/L	25	2/11/2019 10:53:38 AM	A57627
Vinyl chloride	ND	2.5	μg/L	25	2/11/2019 10:53:38 AM	A57627
Xylenes, Total	210	3.8	μg/L	25	2/11/2019 10:53:38 AM	A57627
Surr: Dibromofluoromethane	97.9	70-130	%Rec	25	2/11/2019 10:53:38 AM	A57627
Surr: 1,2-Dichloroethane-d4	88.0	70-130	%Rec	25	2/11/2019 10:53:38 AM	A57627
Surr: Toluene-d8	114	70-130	%Rec	25	2/11/2019 10:53:38 AM	A57627
Surr: 4-Bromofluorobenzene	97.9	70-130	%Rec	25	2/11/2019 10:53:38 AM	A57627

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 4
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

LABORATORY ANALYTICAL REPORT

Prepared by Gillette, WY Branch

Client:

Hall Environmental

G19020054-001

Project:

Not Indicated

Client Sample ID: 1902064-001B; Zone 04 Influent Location:

Lab ID:

Report Date: 02/08/19 Collection Date: 01/31/19 16:45

Date Received: 02/05/19

Sampled By: Not Provided

Analyses	Result Units	Qualifier Method	Analysis Date / By

Allaryses	Result Onits	Qualifier metriod	Analysis Date / by
NATURAL GAS CHROMATOGRAPHIC ANALYSIS REPORT			
Oxygen	21.357 Mol %	GPA 2261	02/08/19 10:57 / djb
Nitrogen	78.040 Mol %	GPA 2261	02/08/19 10:57 / djb
Carbon Dioxide	0.535 Mol %	GPA 2261	02/08/19 10:57 / djb
Hydrogen Sulfide	< 0.001 Mol %	GPA 2261	02/08/19 10:57 / djb
Methane	< 0.001 Mol %	GPA 2261	02/08/19 10:57 / djb
Ethane	< 0.001 Mol %	GPA 2261	02/08/19 10:57 / djb
Propane	< 0.001 Mol %	GPA 2261	02/08/19 10:57 / djb
Isobutane	< 0.001 Mol %	GPA 2261	02/08/19 10:57 / djb
n-Butane	< 0.001 Mol %	GPA 2261	02/08/19 10:57 / djb
Isopentane	0.002 Mol %	GPA 2261	02/08/19 10:57 / djb
n-Pentane	0.002 Mol %	GPA 2261	02/08/19 10:57 / djb
Hexanes plus	0.064 Mol %	GPA 2261	02/08/19 10:57 / djb
GPM @ STD COND/1000 CU.FT., MOISTURE FREE GAS			
GPM Ethane	< 0.0003 gal/MCF	GPA 2261	02/08/19 10:57 / djb
GPM Propane	< 0.0003 gal/MCF	GPA 2261	02/08/19 10:57 / djb
GPM Isobutane	< 0.0003 gal/MCF	GPA 2261	02/08/19 10:57 / djb
GPM n-Butane	< 0.0003 gal/MCF	GPA 2261	02/08/19 10:57 / djb
GPM Isopentane	0.0010 gal/MCF	GPA 2261	02/08/19 10:57 / djb
GPM n-Pentane	0.0010 gal/MCF	GPA 2261	02/08/19 10:57 / djb
GPM Hexanes plus	0.0280 gal/MCF	GPA 2261	02/08/19 10:57 / djb
GPM Pentanes plus	0.0290 gal/MCF	GPA 2261	02/08/19 10:57 / djb
GPM Total	0.0290 gal/MCF	GPA 2261	02/08/19 10:57 / djb
CALCULATED PROPERTIES			
Calculation Pressure Base	14.730 psia	GPA 2261	02/08/19 10:57 / djb
Calculation Temperature Base	60 °F	GPA 2261	02/08/19 10:57 / djb
Compressibility Factor, Z	1,0000 unitiess	GPA 2261	02/08/19 10:57 / djb
Molecular Weight	28.99 unitless	GPA 2261	02/08/19 10:57 / djb
Pseudo-critical Pressure, psia	548 psia	GPA 2261	02/08/19 10:57 / djb
Pseudo-critical Temperature, deg R	241 deg R	GPA 2261	02/08/19 10:57 / djb
Specific Gravity (air=1.000)	1.004 unitless	GPA 2261	02/08/19 10:57 / djb
Gross BTU per cu ft @ std cond, dry	3.42 BTU/cu ft	GPA 2261	02/08/19 10:57 / djb
Gross BTU per cu ft @ std cond, wet	3.36 BTU/cu ft	GPA 2261	02/08/19 10:57 / djb

Billings, MT 800.735.4489 - Casper, WY 888.235.0515 Cilletta, WY 866.885.7175 - Helenz, MT 877.472.0711

QA/QC Summary Report

Prepared by Gillette, WY Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 02/08/19 Work Order: G19020054

Analyto		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261							An	alytical Run:	R24865
Lab ID:	ICV-1902080733	Initial Calibrat	ion Verification	n Standard					02/08	19 07:34
Oxygen		0.387	Mol %	0.001	81	75	110			
Nitrogen		4.997	Mol %	0.001	99	90	110			
Carbon Di	ioxide	4.921	Mol %	0.001	99	90	110			
Hydrogen	Sulfide	0.128	Mol %	0.001	127	100	136			
Methane		73.094	Mol %	0.001	100	90	110			
Ethane		5.022	Mol %	0.001	101	90	110			
Propane		5.140	Mol %	0.001	101	90	110			
Isobutane		2.023	Mol %	0.001	100	90	110			
n-Butane		1.999	Mol %	0.001	99	90	110			
isopentan	e	0.996	Mol %	0.001	100	90	110			
n-Pentane)	0.988	Mol %	0.001	99	90	110			
Hexanes p	olus	0.305	Mol %	0.001	101	90	110			
Lab ID:	CCV-1902080859	Continuing Ca	alibration Verifi	cation Standa	ard				02/08	/19 09:00
Oxygen		0.569	Mol %	0.001	95	90	110			
Nitrogen		1.244	Mol %	0.001	89	85	110			
Carbon Di	oxide	0.973	Mol %	0.001	97	90	110			
Hydrogen	Sulfide	0.025	Mol %	0.001	100	70	130			
Methane		93.594	Mol %	0.001	100	90	110			
Ethane		1.028	Mol %	0.001	102	90	110			
Propane		1.014	Mol %	0.001	101	90	110			
Isobutane		0.505	Mol %	0.001	101	90	110			
n-Butane		0.492	Mol %	0.001	98	90	110			
Isopentane	0	0.202	Mol %	0.001	101	90	110			
n-Pentane		0.199	Mol %	0.001	99	90	110			
Hexanes p	olus	0.155	Mol %	0.001	102	90	110			
Lab ID:	CCV-1902081149	Continuing Ca	alibration Verifi	cation Standa	rd				02/08	V19 11:49
Oxygen		0.581	Mol %	0.001	97	90	110			
Nitrogen		1.284	Mol %	0.001	91	85	110			
Carbon Die	oxide	0.972	Mol %	0.001	97	90	110			
Hydrogen	Sulfide	0.026	Mol %	0.001	104	70	130			
Methane		93.557	Mol %	0.001	100	90	110			
Ethane		1.023	Mol %	0.001	102	90	110			
Propane		1.007	Mol %	0.001	101	90	110			
Isobutane		0.505	Mol %	0.001	101	90	110			
n-Butane		0.492	Mol %	0.001	98	90	110			
Isopentane	В	0.201	Mol %	0.001	100	90	110			
n-Pentane		0.198	Mol %	0.001	99	90	110			
Hexanes p	olus	0.154	Mol %	0.001	102	90	110			

Method:

GPA 2261

Batch: R24865B

Qualifiers:

RL - Analyte reporting limit.

Gillings: MT 600.735.4489 - Casper, WY 888.235.0515 Gillette, Wf 866.686,7175 - Helena, MT 877.472,0711

QA/QC Summary Report

Prepared by Gillette, WY Branch

Client: Hall Environmental

Report Date: 02/08/19 Work Order: G19020054

Project: Not Indicated

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: GPA 2261								Batch:	R248658
Lab ID: G19020054-001ADUP	Sample Dupli	cate			Run: Varia	n GC_190208A		02/08	V19 11:02
Oxygen	21.353	Mol %	0.001				0.0	10	
Nitrogen	78.041	Mol %	0.001				0.0	10	
Carbon Dioxide	0.536	Mol %	0.001				0.2	10	
Hydrogen Sulfide	< 0.001	Mol %	0.001					10	
Methane	< 0.001	Mol %	0.001					10	
Ethane	< 0.001	Mol %	0.001					10	
Propane	< 0.001	Mol %	0.001					10	
Isobutane	< 0.001	Mol %	0.001					10	
n-Butane	< 0.001	Mol %	0.001					10	
sopentane	0.002	Mol %	0.001				0.0	10	
n-Pentane	0.002	Mol %	0.001				0.0	10	
Hexanes plus	0.066	Mol %	0.001				3.1	10	

Hall Environmental Analysis Laboratory, Inc.

WO#: **1902064**

12-Feb-19

Client: Harvest

Project: Florance GC J 16A

Sample ID 1902064-001a dup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Zone 04 Influent Batch ID: A57627 RunNo: 57627

Prep Date: Analysis Date: 2/11/2019 SeqNo: 1928377 Units: µg/L

Prep Date:	Analysis D	Date: 2/	11/2019	5	SeqNo: 1	928377	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	2.5						10.5	20	
Toluene	110	2.5						1.55	20	
Ethylbenzene	11	2.5						0.389	20	
Methyl tert-butyl ether (MTBE)	ND	2.5						0	20	
1,2,4-Trimethylbenzene	12	2.5						12.2	20	
1,3,5-Trimethylbenzene	12	2.5						12.0	20	
1,2-Dichloroethane (EDC)	ND	2.5						0	20	
1,2-Dibromoethane (EDB)	ND	2.5						0	20	
Naphthalene	ND	5.0						0	20	
1-Methylnaphthalene	ND	10						0	20	
2-Methylnaphthalene	ND	10						0	20	
Acetone	ND	25						0	20	
Bromobenzene	ND	2.5						0	20	
Bromodichloromethane	ND	2.5						0	20	
Bromoform	ND	2.5						0	20	
Bromomethane	ND	5.0						0	20	
2-Butanone	ND	25						0	20	
Carbon disulfide	ND	25						0	20	
Carbon tetrachloride	ND	2.5						0	20	
Chlorobenzene	ND	2.5						0	20	
Chloroethane	ND	5.0						0	20	
Chloroform	ND	2.5						0	20	
Chloromethane	ND	2.5						0	20	
2-Chlorotoluene	ND	2.5						0	20	
4-Chlorotoluene	ND	2.5						0	20	
cis-1,2-DCE	ND	2.5						0	20	
cis-1,3-Dichloropropene	ND	2.5						0	20	
1,2-Dibromo-3-chloropropane	ND	5.0						0	20	
Dibromochloromethane	ND	2.5						0	20	
Dibromomethane	ND	5.0						0	20	
1,2-Dichlorobenzene	ND	2.5						0	20	
1,3-Dichlorobenzene	ND	2.5						0	20	
1,4-Dichlorobenzene	ND	2.5						0	20	
Dichlorodifluoromethane	ND	2.5						0	20	
1,1-Dichloroethane	ND	2.5						0	20	
1,1-Dichloroethene	ND	2.5						0	20	
1,2-Dichloropropane	ND	2.5						0	20	
1,3-Dichloropropane	ND	2.5						0	20	
2,2-Dichloropropane	ND	2.5						0	20	
, 3.5or.op.opuno								J		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 3 of 4

Hall Environmental Analysis Laboratory, Inc.

WO#: **1902064**

12-Feb-19

Client: Harvest

Project: Florance GC J 16A

Sample ID 1902064-001a dup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Zone 04 Influent Batch ID: A57627 RunNo: 57627

				=						
Prep Date:	Analysis D	ate: 2/	11/2019	9	SeqNo: 1	928377	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	2.5						0	20	
Hexachlorobutadiene	ND	2.5						0	20	
2-Hexanone	ND	25						0	20	
Isopropylbenzene	ND	2.5						0	20	
4-Isopropyltoluene	ND	2.5						0	20	
4-Methyl-2-pentanone	ND	25						0	20	
Methylene chloride	ND	7.5						0	20	
n-Butylbenzene	ND	7.5						0	20	
n-Propylbenzene	ND	2.5						0	20	
sec-Butylbenzene	ND	2.5						0	20	
Styrene	ND	2.5						0	20	
tert-Butylbenzene	ND	2.5						0	20	
1,1,1,2-Tetrachloroethane	ND	2.5						0	20	
1,1,2,2-Tetrachloroethane	ND	2.5						0	20	
Tetrachloroethene (PCE)	ND	2.5						0	20	
trans-1,2-DCE	ND	2.5						0	20	
trans-1,3-Dichloropropene	ND	2.5						0	20	
1,2,3-Trichlorobenzene	ND	2.5						0	20	
1,2,4-Trichlorobenzene	ND	2.5						0	20	
1,1,1-Trichloroethane	ND	2.5						0	20	
1,1,2-Trichloroethane	ND	2.5						0	20	
Trichloroethene (TCE)	ND	2.5						0	20	
Trichlorofluoromethane	ND	2.5						0	20	
1,2,3-Trichloropropane	ND	5.0						0	20	
Vinyl chloride	ND	2.5						0	20	
Xylenes, Total	210	3.8						0.0890	20	
Surr: Dibromofluoromethane	24		25.00		94.1	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	21		25.00		83.2	70	130	0	0	
Surr: Toluene-d8	29		25.00		117	70	130	0	0	
Surr: 4-Bromofluorobenzene	26		25.00		105	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 4 of 4

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Harvest	Work Order Number	1902064		RoptNo: 1
Received By: Victoria Zellar	2/2/2019 10:55:00 AM		Victoria, Be	lla ₁
Completed By: Leah Baca	2/4/2019 9:38:52 AM		Int Bea	**
Reviewed By: VVZ 2/4/19			Land-Julian	
Labeled by DAD 2/4/19				
Chain of Custody	_			
1. Is Chain of Custody complete?		Yes 🗸	No 🗆	Not Present
2. How was the sample delivered?		Courier		
Log In				
Was an attempt made to cool the sample	es?	Yes 🗸	No 🗆	NA 🗌
Were all samples received at a temperat	ture of >0° C to 6.0°C	Yes 🗸	No 🗆	NA 🗆
Sample(s) in proper container(s)?		Yes 🗸	No 🗆	
Sufficient sample volume for indicated te	st/s)?	Yes 🗸	No 🗆	
7. Are samples (except VOA and ONG) pro		Yes 🗹	No 🗆	
Was preservative added to bottles?	geny processors	Yes 🗆	No 🗹	NA 🗆
9. VOA vials have zero headspace?		Yes 🗌	No 🗌	No VOA Vials 🗹
10. Were any sample containers received be	roken?	Yes 🗆	No 🗹	# of preserved
11. Does paperwork match bottle labels?		Yes 🗸	No 🗆	bottles checked for pH:
(Note discrepancies on chain of custody)		🖼	🖂	(<2 or >12 unless noted Adjusted?
2. Are matrices correctly identified on Chair		Yes 🗹	No 🗆	And astori
[3] Is it clear what analyses were requested? 14. Were all holding times able to be met?	•	Yes 🗸	No □ No □	Checked by: DAD 2/4//5
(If no, notify customer for authorization.)		Yes 💌	NO L	Checked by 1710 OF 1717
Special Handling (if applicable)				
15. Was client notified of all discrepancies v	vith this order?	Yes 🗌	No 🗆	NA 🗹
Person Notified:	Date [1115-000		
By Whom:	Via:	eMail [Phone Fax	n Person
Regarding:		-	-	
Client Instructions:				THE AMERICAN STREET
16. Additional remarks:				
17. Cooler Information Cooler No Temp °C Condition	Seal Intact Seal No S	Seal Date	Signed By	I
1 1.6 Good	Yes Searth S	von Date	Orgined by	

HALL ENVIRONMENTAL	www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	04.1) WI LIST UD(\$ 04.1) (A)	BTEX + MTBE TPH (Method 4 EDB (Method 5 EDB (Wethod 5 PAH's (8310 or	XXXX			Remarks: dbyms @ tenv. com ecarroll @ tenv. com
Turn-Around Time:	ame: Nie	Project #;	Project Manager: Montes Sander LTE-Danny Burns Sampler: D. Buons On Ice: Dres a No	Sample Temperature 2.0-CLF) 0 4=16°C. Container Preservative HEAL No. Type and # Type	2 Tedler Coy			Received by: Received by: (Sathur vz date Time Mitminut Rolling 2019
dy Record	Alth. Monica Sandoval Mailing Address:	Phone #:	email or Fax#: mSand6%all of hor ve st QA/QC Package: A Standard Accreditation Devel 4 (Full Validation)	A EDD (Type) PAK Date Time Matrix Sample Request ID	1-3-19 1645 Air Zone Of Influent			Date: Time: Relinquished by: 2-1-14 1275 Date: Time: Relinquished by 2///14 1630 Onno 1 1000 Le

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 11, 2019

Kijun Hong

Harvest

1755 Arroyo Dr.

Bloomfield, NM 87413 TEL: (505) 632-4475

FAX:

RE: Florance GC J 16A OrderNo.: 1903079

Dear Kijun Hong:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/2/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **1903079**Date Reported: **3/11/2019**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Harvest

Client Sample ID: Zone 1 Influent

Project: Florance GC J 16A **Collection Date:** 3/1/2019 2:30:00 PM

Lab ID: 1903079-001 **Matrix:** AIR **Received Date:** 3/2/2019 9:25:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	:: DJF
Benzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Toluene	1.7	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Ethylbenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,2,4-Trimethylbenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,3,5-Trimethylbenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Naphthalene	ND	2.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1-Methylnaphthalene	ND	4.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
2-Methylnaphthalene	ND	4.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Acetone	ND	10	μg/L	10	3/6/2019 11:43:11 AM	W58170
Bromobenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Bromodichloromethane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
Bromoform	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
Bromomethane	ND	2.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
2-Butanone	ND	10	μg/L	10	3/6/2019 11:43:11 AM	W5817
Carbon disulfide	ND	10	μg/L	10	3/6/2019 11:43:11 AM	W5817
Carbon tetrachloride	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
Chlorobenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
Chloroethane	ND	2.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
Chloroform	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
Chloromethane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
2-Chlorotoluene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
4-Chlorotoluene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
cis-1,2-DCE	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
cis-1,3-Dichloropropene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
Dibromochloromethane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
Dibromomethane	ND	2.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
1,2-Dichlorobenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
1,3-Dichlorobenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
1,4-Dichlorobenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
Dichlorodifluoromethane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
1,1-Dichloroethane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
1,1-Dichloroethene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
1,2-Dichloropropane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W5817
1,3-Dichloropropane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
2,2-Dichloropropane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 4
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical ReportLab Order **1903079**

Received Date: 3/2/2019 9:25:00 AM

Hall Environmental Analysis Laboratory, Inc.

1903079-001

Lab ID:

Date Reported: 3/11/2019

CLIENT: Harvest Client Sample ID: Zone 1 Influent

Matrix: AIR

Project: Florance GC J 16A **Collection Date:** 3/1/2019 2:30:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
1,1-Dichloropropene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Hexachlorobutadiene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
2-Hexanone	ND	10	μg/L	10	3/6/2019 11:43:11 AM	W58170
Isopropylbenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
4-Isopropyltoluene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
4-Methyl-2-pentanone	ND	10	μg/L	10	3/6/2019 11:43:11 AM	W58170
Methylene chloride	ND	3.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
n-Butylbenzene	ND	3.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
n-Propylbenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
sec-Butylbenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Styrene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
tert-Butylbenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Tetrachloroethene (PCE)	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
trans-1,2-DCE	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
trans-1,3-Dichloropropene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,2,3-Trichlorobenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,2,4-Trichlorobenzene	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,1,1-Trichloroethane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,1,2-Trichloroethane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Trichloroethene (TCE)	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Trichlorofluoromethane	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
1,2,3-Trichloropropane	ND	2.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Vinyl chloride	ND	1.0	μg/L	10	3/6/2019 11:43:11 AM	W58170
Xylenes, Total	6.7	1.5	μg/L	10	3/6/2019 11:43:11 AM	W58170
Surr: Dibromofluoromethane	99.7	70-130	%Rec	10	3/6/2019 11:43:11 AM	W58170
Surr: 1,2-Dichloroethane-d4	88.3	70-130	%Rec	10	3/6/2019 11:43:11 AM	W58170
Surr: Toluene-d8	113	70-130	%Rec	10	3/6/2019 11:43:11 AM	W58170
Surr: 4-Bromofluorobenzene	96.3	70-130	%Rec	10	3/6/2019 11:43:11 AM	W58170

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 4
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

LABORATORY ANALYTICAL REPORT

Prepared by Gillette, WY Branch

Client:

Hall Environmental

Project:

Not Indicated

Client Sample ID: 1903079-001B; Zone1 Influent

Location:

Lab ID:

G19030067-001

Report Date: 03/08/19

Collection Date: 03/01/19 14:30

Date Received: 03/05/19

Sampled By: Not Provided

Analyses	Result Units	Qualifier Method	Analysis Date / By
NATURAL GAS CHROMATOGRAPHIC ANALYSIS REPORT			
Oxygen	20.821 Mol 9	% GPA 2261	03/08/19 09:55 / blb
Nitrogen	78.179 Mol 9	% GPA 2261	03/08/19 09:55 / blb
Carbon Dioxide	0.995 Mol 9	% GPA 2261	03/08/19 09:55 / blb
Hydrogen Sulfide	< 0.001 Mol 9	% GPA 2261	03/08/19 09:55 / blb
Methane	< 0.001 Mai 9	% GPA 2261	03/08/19 09:55 / blb
Ethane	< 0.001 Mol 9	% GPA 2261	03/08/19 09:55 / blb
Propane	< 0.001 Mol 9	% GPA 2261	03/08/19 09:55 / blb
sobutane	< 0.001 Mol 9	% GPA 2261	03/08/19 09:55 / blb
n-Butane	< 0.001 Mol 3	% GPA 2261	03/08/19 09:55 / blb
sopentane	< 0.001 Mol 9	% GPA 2261	03/08/19 09:55 / blb
n-Pentane	< 0.001 Mol 9	% GPA 2261	03/08/19 09:55 / blb
Hexanes plus	0.005 Mol 3	% GPA 2261	03/08/19 09:55 / blb
GPM @ STD COND/1000 CU.FT., MOISTURE FREE GAS			
GPM Ethane	< 0.0003 gal/M	ICF GPA 2261	03/08/19 09:55 / blb
GPM Propane	< 0.0003 gal/M		03/08/19 09:55 / blb
GPM Isobutane	< 0.0003 gal/M	ICF GPA 2261	03/08/19 09:55 / blb
3PM n-Butane	< 0.0003 gal/M	ICF GPA 2261	03/08/19 09:55 / blb
SPM Isopentane	< 0.0004 gal/M	ICF GPA 2261	03/08/19 09:55 / blb
GPM n-Pentane	< 0.0004 gal/M	ICF GPA 2261	03/08/19 09:55 / blb
GPM Hexanes plus	0.0020 gal/M	ICF GPA 2261	03/08/19 09:55 / blb
GPM Pentanes plus	0.0020 gal/M	ICF GPA 2261	03/08/19 09:55 / blb
SPM Total	0.0020 gal/M	ICF GPA 2261	03/08/19 09:55 / blb
CALCULATED PROPERTIES			
Calculation Pressure Base	14.730 psia	GPA 2261	03/08/19 09:55 / blb
Calculation Temperature Base	60 °F	GPA 2281	03/08/19 09:55 / blb
Compressibility Factor, Z	1.0000 unitle	ss GPA 2261	03/08/19 09:55 / blb
Nolecular Weight	29.00 unitle	68 GPA 2261	03/08/19 09:55 / blb
seudo-critical Pressure, psia	549 psia	GPA 2261	03/08/19 09:55 / blb
Seudo-critical Temperature, deg R	242 deg F	GPA 2281	03/08/19 09:55 / blb
Specific Gravity (air=1.000)	1.004 unitle	ss GPA 2261	03/08/19 09:55 / blb
Gross BTU per cu ft @ std cond, dry	0.23 BTU/	cu ft GPA 2261	03/08/19 09:55 / blb
Gross BTU per cu ft @ std cond, wet	0.23 BTU/	cu ft GPA 2261	03/08/19 09:55 / blb

Billiette WY 866.686.7175 - Helena MT 877.472.0711

QA/QC Summary Report

Prepared by Gillette, WY Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/08/19

Work Order: G19030067

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261							Ar	nalytical Run	R24909
Lab ID:	ICV-1903080924	Initial Calibrat	ion Verification	n Standard					03/08	3/19 09:23
Oxygen		0.398	Mol %	0.001	83	75	110			
Nitrogen		5.059	Mol %	0.001	100	90	110			
Carbon Di	oxide	4.919	Moi %	0.001	99	90	110			
Hydrogen	Sulfide	0.125	Mol %	0.001	124	100	136			
Methane		73.057	Mol %	0.001	100	90	110			
Ethane		5.012	Mol %	0.001	101	90	110			
Propane		5.135	Mol %	0.001	101	90	110			
Isobutane		2.015	Mol %	0.001	100	90	110			
n-Butane		1.993	Mol %	0.001	99	90	110			
Isopentane	9	0.993	Mol %	0.001	99	90	110			
n-Pentane		0.987	Mol %	0.001	99	90	110			
Hexanes p	olus	0.307	Mol %	0.001	101	90	110			
Lab ID:	CCV-1903080928	Continuing Ca	alibration Verifi	ication Standa	ard				03/08	3/19 09:29
Oxygen		0.603	Mol %	0.001	100	90	110			
Nitrogen		1.349	Mol %	0.001	96	85	110			
Carbon Die	oxide	0.972	Mol %	0.001	97	90	110			
Hydrogen :	Sulfide	0.025	Mol %	0.001	100	70	130			
Methane		93.476	Mol %	0.001	100	90	110			
Ethane		1.024	Mol %	0.001	102	90	110			
Propane		1.009	Mol %	0.001	101	90	110			
Isobutane		0.502	Mol %	0.001	100	90	110			
n-Butane		0.489	Mol %	0.001	98	90	110			
sopentane	e	0.200	Mol %	0.001	100	90	110			
n-Pentane		0.197	Mol %	0.001	98	90	110			
Hexanes p	lus	0.154	Mol %	0.001	102	90	110			
Lab ID:	CCV-1903081540	Continuing Ca	alibration Verifi	cation Standa	ard				03/08	3/19 15:40
Oxygen		0.593	Mol %	0.001	99	90	110			
Nitrogen		1.316	Mol %	0.001	94	85	110			
Carbon Did	oxide	0.970	Mol %	0.001	97	90	110			
Hydrogen 8	Sulfide	0.025	Mol %	0.001	100	70	130			
Methane		93.497	Mol %	0.001	100	90	110			
Ethane		1.029	Mol %	0.001	102	90	110			
Propane		1.012	Mol %	0.001	101	90	110			
Isobutane		0.503	Mol %	0.001	100	90	110			
n-Butane		0.492	Mol %	0.001	98	90	110			
Isopentane	10	0.201	Mol %	0.001	100	90	110			
n-Pentane		0.199	Mol %	0.001	99	90	110			
Hexanes p	lus	0.163	Mol %	0.001	108	90	110			

Method:

GPA 2261

Batch: R249091

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Billings, MT 800.735.4489 = Casper, VV 868.235.8515 Gillette, VV 866.686.7175 = Helena, MT 877.472.0713

QA/QC Summary Report

Prepared by Gillette, WY Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/08/19
Work Order: G19030067

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261								Batch:	R24909
Lab ID:	G19030067-001ADUP	Sample Dupli	cate			Run: Varia	n GC_190308A		03/08	/19 10:0
Oxygen		20.820	Mol %	0.001				0.0	10	
Nitrogen		78.179	Mol %	0.001				0.0	10	
Carbon Die	oxide	0.996	Mol %	0.001				0.1	10	
Hydrogen	Sulfide	< 0.001	Mol %	0.001					10	
Methane		< 0.001	Mol %	0.001					10	
Ethane		< 0.001	Mol %	0.001					10	
Propane		< 0.001	Mol %	0.001					10	
Isobutane		< 0.001	Mol %	0.001					10	
n-Butane		< 0.001	Mol %	0.001					10	
Isopentane)	< 0.001	Mol %	0.001					10	
n-Pentane		< 0.001	Mol %	0.001					10	
Hexanes p	lus	0.005	Mol %	0.001				0.0	10	

Hall Environmental Analysis Laboratory, Inc.

WO#: 1903079

11-Mar-19

Client: Harvest

Project: Florance GC J 16A

Sample ID: 1903079-001a dup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Zone 1 Influent Batch ID: W58170 RunNo: 58170

Prep Date:	Analysis D	Date: 3/	6/2019	\$	SeqNo: 19	950779	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0						0	20	
Toluene	1.7	1.0						3.17	20	
Ethylbenzene	ND	1.0						0	20	
Methyl tert-butyl ether (MTBE)	ND	1.0						0	20	
1,2,4-Trimethylbenzene	ND	1.0						0	20	
1,3,5-Trimethylbenzene	ND	1.0						0	20	
1,2-Dichloroethane (EDC)	ND	1.0						0	20	
1,2-Dibromoethane (EDB)	ND	1.0						0	20	
Naphthalene	ND	2.0						0	20	
1-Methylnaphthalene	ND	4.0						0	20	
2-Methylnaphthalene	ND	4.0						0	20	
Acetone	ND	10						0	20	
Bromobenzene	ND	1.0						0	20	
Bromodichloromethane	ND	1.0						0	20	
Bromoform	ND	1.0						0	20	
Bromomethane	ND	2.0						0	20	
2-Butanone	ND	10						0	20	
Carbon disulfide	ND	10						0	20	
Carbon tetrachloride	ND	1.0						0	20	
Chlorobenzene	ND	1.0						0	20	
Chloroethane	ND	2.0						0	20	
Chloroform	ND	1.0						0	20	
Chloromethane	ND	1.0						0	20	
2-Chlorotoluene	ND	1.0						0	20	
4-Chlorotoluene	ND	1.0						0	20	
cis-1,2-DCE	ND	1.0						0	20	
cis-1,3-Dichloropropene	ND	1.0						0	20	
1,2-Dibromo-3-chloropropane	ND	2.0						0	20	
Dibromochloromethane	ND	1.0						0	20	
Dibromomethane	ND	2.0						0	20	
1,2-Dichlorobenzene	ND	1.0						0	20	
1,3-Dichlorobenzene	ND	1.0						0	20	
1,4-Dichlorobenzene	ND	1.0						0	20	
Dichlorodifluoromethane	ND	1.0						0	20	
1,1-Dichloroethane	ND	1.0						0	20	
1,1-Dichloroethene	ND	1.0						0	20	
1,2-Dichloropropane	ND	1.0						0	20	
1,3-Dichloropropane	ND	1.0						0	20	
2,2-Dichloropropane	ND	1.0						0	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- Reporting Detection Limit RL
- Sample container temperature is out of limit as specified

Page 3 of 4

Hall Environmental Analysis Laboratory, Inc.

WO#: 1903079

11-Mar-19

Client: Harvest

Project: Florance GC J 16A

Sample ID: 1903079-001a dup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Zone 1 Influent Batch ID: W58170 RunNo: 58170

Client ID: Zone 1 Influent	Batch	n ID: W	58170	F	RunNo: 5 8	8170				
Prep Date:	Analysis D	oate: 3/	6/2019	9	SeqNo: 1	950779	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0						0	20	
Hexachlorobutadiene	ND	1.0						0	20	
2-Hexanone	ND	10						0	20	
Isopropylbenzene	ND	1.0						0	20	
4-Isopropyltoluene	ND	1.0						0	20	
4-Methyl-2-pentanone	ND	10						0	20	
Methylene chloride	3.3	3.0						200	20	R
n-Butylbenzene	ND	3.0						0	20	
n-Propylbenzene	ND	1.0						0	20	
sec-Butylbenzene	ND	1.0						0	20	
Styrene	ND	1.0						0	20	
tert-Butylbenzene	ND	1.0						0	20	
1,1,1,2-Tetrachloroethane	ND	1.0						0	20	
1,1,2,2-Tetrachloroethane	ND	1.0						0	20	
Tetrachloroethene (PCE)	ND	1.0						0	20	
trans-1,2-DCE	ND	1.0						0	20	
trans-1,3-Dichloropropene	ND	1.0						0	20	
1,2,3-Trichlorobenzene	ND	1.0						0	20	
1,2,4-Trichlorobenzene	ND	1.0						0	20	
1,1,1-Trichloroethane	ND	1.0						0	20	
1,1,2-Trichloroethane	ND	1.0						0	20	
Trichloroethene (TCE)	ND	1.0						0	20	
Trichlorofluoromethane	ND	1.0						0	20	
1,2,3-Trichloropropane	ND	2.0						0	20	
Vinyl chloride	ND	1.0						0	20	
Xylenes, Total	6.8	1.5						0.350	20	
Surr: Dibromofluoromethane	9.5		10.00		94.8	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	8.6		10.00		85.5	70	130	0	0	
Surr: Toluene-d8	11		10.00		107	70	130	0	0	
Surr: 4-Bromofluorobenzene	11		10.00		106	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 4

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	Harvest	Work Order Numl	ber: 1903079		RcptNo: 1	
Received By:	Desiree Dominguez	3/2/2019 9:25:00 A	M	De		
Completed By:	Victoria Zellar	3/4/2019 9:16:49 A	M	Victoria Gelle	m/al.	
Reviewed By:	<u></u>	3/4/19		,	labeled be	V
Chain of Cus	todv	, ,			labeled by	3/4
	ustody complete?		Yes 🗹	No 🗌	Not Present	•
2. How was the	sample delivered?		<u>Courier</u>			
	·					
Log In 3. Was an attem	npt made to cool the samp	les?	Yes 🗹	No 🗆	NA 🗆	
4. Were all samp	oles received at a tempera	ture of >0° C to 6.0°C	Yes 🗹	No 🗌	na 🗆	
5. Sample(s) in p	proper container(s)?		Yes 🔽	No 🗌		
6. Sufficient sam	ple volume for indicated te	est(s)?	Yes 🗹	No 🗌	•	
	except VOA and ONG) pro		Yes 🗹	No 🗌		
	tive added to bottles?		Yes 🗌	No 🗹	NA 🗆	
9. VOA vials hav	e zero headspace?		Yes 🗌	No 🗆	No VOA Vials ✓ ,	
10, Were any san	nple containers received b	roken?	Yes	No 🗹 🗆	-	5
					# of preserved bottles checked	16
	ork match bottle labels?		Yes 🗹	No 🗆	for pH:	117
	ancies on chain of custody correctly identified on Chair		Yes 🗹	No 🗆	(<2 or >12 Adjusted?	unless noted)
	t analyses were requested		Yes 🗹	No 🗆		<u></u>
	ng times able to be met?	•	Yes 🗹	No 🗌	Checked by:	
	ustomer for authorization.)			· L.		
Special Handl	ing (if applicable)					
	rtified of all discrepancies v	vith this order?	Yes	No 🗌	NA 🗹	
Person	Notified:	Date				
By Who	om:	Via	P	hone	In Person	
Regardi		VICE.				
Client Ir	nstructions:		The state of the s			
16. Additional rer	**					
17. <u>Cooler Infor</u>						
	mation Temp ⁰C Condition	Seal Intact Seal No	Seal Date	Signed By		
1	N/A Good	Yes	lacer layer es	2 - 2 0 - 2 - 2 - 2 - 2		

	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis	*OS	JMS Paragram JMS JMS) OS	O / DF 5/8082 04.1) 104.7) 100.2	(GR 310 (Spin) (ON)	15D- etho y 833 ir, Ne emi- emi-	BTEX / 8081 Pe 8081 Pe PAHs b RCRA 8 RCRA 9 RCRA 8 RCRA 8							Remarks:	Poare co. Carrolle Henvicom
Turn-Around Time:	Standard □ Rush	Project Name:	Florance GCJ #16A	Project #:		Project Manager:	Clara - Harvest	Danny Boums - LTE	Sampler: Eハン Curveil On Ice: 翼Yes INo		Cooler Temptinetuding CF: N/A	Container Preservative HEAL No. Type and # Type							Received by: Via: 3 Date Time	Received by: Via: Date Time
Chain-of-Custody Record	Client: Harvest Four corners	Lova	1785 ALTONO Dr.		Phone #: 805-632-4475	CCOST do VA Chist Vest midscream	ige:		Accreditation: Az Compliance Discrete of the compliance of the	ype) PDF		Date Time Matrix Sample Name	9 1430 Air Zone I influent						Date: Time: Relinquished by: Alfig V. St. M. M. Charles	Relinquished by:

/t/
Jesus Submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 01, 2019

Monica Sandoval

Harvest

1755 Arroyo Dr.

Bloomfield, NM 87413 TEL: (505) 632-4475

FAX

RE: Florance GCJ 16A OrderNo.: 1903796

Dear Monica Sandoval:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/16/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1903796**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/1/2019

CLIENT: Harvest Client Sample ID: Zone 2 Influent

 Project:
 Florance GCJ 16A
 Collection Date: 3/14/2019 3:00:00 PM

 Lab ID:
 1903796-001
 Matrix: AIR
 Received Date: 3/16/2019 10:50:00 AM

Analyses	Result	RL	Qua	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst:	DJF
Benzene	8.0	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Toluene	15	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Ethylbenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Methyl tert-butyl ether (MTBE)	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,2,4-Trimethylbenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,3,5-Trimethylbenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,2-Dichloroethane (EDC)	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,2-Dibromoethane (EDB)	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Naphthalene	ND	2.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1-Methylnaphthalene	ND	4.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
2-Methylnaphthalene	ND	4.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Acetone	ND	10	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Bromobenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Bromodichloromethane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Bromoform	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Bromomethane	ND	2.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
2-Butanone	ND	10	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Carbon disulfide	ND	10	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Carbon tetrachloride	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Chlorobenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Chloroethane	ND	2.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Chloroform	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Chloromethane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
2-Chlorotoluene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
4-Chlorotoluene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
cis-1,2-DCE	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
cis-1,3-Dichloropropene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,2-Dibromo-3-chloropropane	ND	2.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Dibromochloromethane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Dibromomethane	ND	2.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,2-Dichlorobenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,3-Dichlorobenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,4-Dichlorobenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Dichlorodifluoromethane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,1-Dichloroethane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,1-Dichloroethene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,2-Dichloropropane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,3-Dichloropropane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
2,2-Dichloropropane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A F0000

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Lab Order **1903796**Date Reported: **4/1/2019**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Harvest Client Sample ID: Zone 2 Influent

 Project:
 Florance GCJ 16A
 Collection Date: 3/14/2019 3:00:00 PM

 Lab ID:
 1903796-001
 Matrix: AIR
 Received Date: 3/16/2019 10:50:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst:	DJF
1,1-Dichloropropene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Hexachlorobutadiene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
2-Hexanone	ND	10	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Isopropylbenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
4-Isopropyltoluene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
4-Methyl-2-pentanone	79	10	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Methylene chloride	ND	3.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
n-Butylbenzene	ND	3.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
n-Propylbenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
sec-Butylbenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Styrene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
tert-Butylbenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,1,1,2-Tetrachloroethane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,1,2,2-Tetrachloroethane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Tetrachloroethene (PCE)	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
trans-1,2-DCE	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
trans-1,3-Dichloropropene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,2,3-Trichlorobenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,2,4-Trichlorobenzene	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,1,1-Trichloroethane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,1,2-Trichloroethane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Trichloroethene (TCE)	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Trichlorofluoromethane	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
1,2,3-Trichloropropane	ND	2.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Vinyl chloride	ND	1.0	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Xylenes, Total	9.2	1.5	D	μg/L	10	3/27/2019 11:01:15 AM	A58683
Surr: Dibromofluoromethane	106	70-130	D	%Rec	10	3/27/2019 11:01:15 AM	A58683
Surr: 1,2-Dichloroethane-d4	89.0	70-130	D	%Rec	10	3/27/2019 11:01:15 AM	A58683
Surr: Toluene-d8	108	70-130	D	%Rec	10	3/27/2019 11:01:15 AM	A58683
Surr: 4-Bromofluorobenzene	96.6	70-130	D	%Rec	10	3/27/2019 11:01:15 AM	A58683

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Billings, MT 800.735.4489 * Casper, WY 888.235.0515 Gillette, WY 866.686.7175 * Helena, MT 877.472.0711

LABORATORY ANALYTICAL REPORT

Prepared by Gillette, WY Branch

Client:

Hall Environmental

Project:

Not Indicated

Client Sample ID:

1903796-001B; Zone 2 Influent

Location:

Lab ID:

G19030271-001

Report Date: 03/26/19

Collection Date: 03/14/19 15:00 **Date Received:** 03/19/19

Sampled By: Not Provided

Analyses	Result Units	Qualifier Method	Analysis Date / By
NATURAL GAS CHROMATOGRAPHIC ANALYSIS REPORT			
Oxygen	22.136 Mol %	GPA 2261	03/26/19 12:54 / blb
Nitrogen	77.610 Mol %	GPA 2261	03/26/19 12:54 / blb
Carbon Dioxide	0.232 Mol %	GPA 2261	03/26/19 12:54 / blb
Hydrogen Sulfide	< 0.001 Mol %	GPA 2261	03/26/19 12:54 / blb
Methane	< 0.001 Mol %	GPA 2261	03/26/19 12:54 / blb
Ethane	< 0.001 Mol %	GPA 2261	03/26/19 12:54 / blb
Propane	< 0.001 Mol %	GPA 2261	03/26/19 12:54 / blb
Isobutane	< 0.001 Mol %	GPA 2261	03/26/19 12:54 / blb
n-Butane	< 0.001 Mol %	GPA 2261	03/26/19 12:54 / blb
Isopentane	0.001 Mol %	GPA 2261	03/26/19 12:54 / blb
n-Pentane	0.002 Mol %	GPA 2261	03/26/19 12:54 / blb
Hexanes plus	0.019 Mol %	GPA 2261	03/26/19 12:54 / blb
GPM @ STD COND/1000 CU.FT., MOISTURE FREE GAS			
GPM Ethane	< 0.0003 gal/MCF	GPA 2261	03/26/19 12:54 / blb
GPM Propane	< 0.0003 gal/MCF	GPA 2261	03/26/19 12:54 / blb
GPM Isobutane	< 0.0003 gal/MCF	GPA 2261	03/26/19 12:54 / blb
GPM n-Butane	< 0.0003 gal/MCF	GPA 2261	03/26/19 12:54 / blb
GPM Isopentane	0.0010 gal/MCF	GPA 2261	03/26/19 12:54 / blb
GPM n-Pentane	0.0010 gal/MCF	GPA 2261	03/26/19 12:54 / blb
GPM Hexanes plus	0.0080 gal/MCF	GPA 2261	03/26/19 12:54 / blb
GPM Pentanes plus	0.0090 gal/MCF	GPA 2261	03/26/19 12:54 / blb
GPM Total	0.0090 gal/MCF	GPA 2261	03/26/19 12:54 / blb
CALCULATED PROPERTIES			
Calculation Pressure Base	14.730 psia	GPA 2261	03/26/19 12:54 / blb
Calculation Temperature Base	60 °F	GPA 2261	03/26/19 12:54 / blb
Compressibility Factor, Z	1.0000 unitless	GPA 2261	03/26/19 12:54 / blb
Molecular Weight	28.95 unitless	GPA 2261	03/26/19 12:54 / blb
Pseudo-critical Pressure, psia	548 psia	GPA 2261	03/26/19 12:54 / blb
Pseudo-critical Temperature, deg R	240 deg R	GPA 2261	03/26/19 12:54 / blb
Specific Gravity (air=1.000)	1.002 unitless	GPA 2261	03/26/19 12:54 / blb
Gross BTU per cu ft @ std cond, dry	1.09 BTU/cu ft	GPA 2261	03/26/19 12:54 / blb
Gross BTU per cu ft @ std cond, wet	1.07 BTU/cu ft	GPA 2261	03/26/19 12:54 / blb

Billings, MT 800.735.4489 * Casper, WY 888.235.0515 Gillette, WY 866.686.7175 . Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Gillette, WY Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/26/19 Work Order: G19030271

	GPA 2261 ICV-1903261230								
Oxygen Nitrogen	ICV-1903261230							Analytical Run	: R249370
Nitrogen		Initial Calibra	tion Verificat	ion Standard				03/2	6/19 12:31
Andrew State of the Company of the C		0.393	Mol %	0.001	82	75	110		
Carbon Dioxid		5.047	Mol %	0.001	100	90	110		
	de	4.902	Mol %	0.001	99	90	110		
Hydrogen Sul	lfide	0.125	Mol %	0.001	124	100	136		
Methane		73.066	Mol %	0.001	100	90	110		
Ethane		5.015	Mol %	0.001	101	90	110		
Propane		5.139	Mol %	0.001	101	90	110		
Isobutane		2.022	Mol %	0.001	100	90	110		
n-Butane		1.999	Mol %	0.001	99	90	110		
Isopentane		0.996	Mol %	0.001	100	90	110		
n-Pentane		0.989	Mol %	0.001	99	90	110		
Hexanes plus	5	0.307	Mol %	0.001	101	90	110		
Lab ID:	CCV-1903261235	Continuing Ca	alibration Ve	rification Standa	ırd			03/2	6/19 12:35
Oxygen		0.586	Mol %	0.001	97	90	110		
Nitrogen		1.305	Mol %	0.001	93	85	110		
Carbon Dioxid	de	0.964	Mol %	0.001	96	90	110		
Hydrogen Sul	lfide	0.022	Mol %	0.001	88	70	130		
Methane		93.565	Mol %	0.001	100	90	110		
Ethane		1.023	Mol %	0.001	102	90	110		
Propane		1.006	Mol %	0.001	101	90	110		
Isobutane		0.503	Mol %	0.001	100	90	110		
n-Butane		0.488	Mol %	0.001	98	90	110		
Isopentane		0.198	Mol %	0.001	99	90	110		
n-Pentane		0.193	Mol %	0.001	96	90	110		
Hexanes plus	:	0.147	Mol %	0.001	97	90	110		
Lab ID:	CCV-1903261302	Continuing Ca	alibration Ver	ification Standa	rd			03/26	6/19 13:03
Oxygen		0.595	Mol %	0.001	99	90	110	00/2	37 10 10.00
Nitrogen		1.334	Mol %	0.001	95	85	110		
Carbon Dioxid	de	0.963	Mol %	0.001	96	90	110		
Hydrogen Sulf	lfide	0.024	Mol %	0.001	96	70	130		
Methane		93.504	Mol %	0.001	100	90	110		
Ethane		1.023	Mol %	0.001	102	90	110		
Propane		1.010	Mol %	0.001	101	90	110		
Isobutane		0.504	Mol %	0.001	101	90	110		
n-Butane		0.491	Mol %	0.001	98	90	110		
Isopentane		0.201	Mol %	0.001	100	90	110		
n-Pentane		0.197	Mol %	0.001	98	90	110		
Hexanes plus		0.154	Mol %	0.001	102	90	110		

Method:

GPA 2261

Batch: R249370

Qualifiers:

RL - Analyte reporting limit.

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Gillette, WY Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/26/19

Work Order: G19030271

Analyte		Result	Units	RL	%REC Low	w Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261								Batch:	R249370
Lab ID:	G19030271-001ADUP	Sample Dupli	cate		Rur	n: Variar	GC_190326A		03/26	/19 12:58
Oxygen		22.139	Mol %	0.001				0.0	10	
Nitrogen		77.608	Mol %	0.001				0.0	10	
Carbon Dio	oxide	0.232	Mol %	0.001				0.0	10	
Hydrogen S	Sulfide	< 0.001	Mol %	0.001					10	
Methane		< 0.001	Mol %	0.001					10	
Ethane		< 0.001	Mol %	0.001					10	
Propane		< 0.001	Mol %	0.001					10	
Isobutane		< 0.001	Mol %	0.001					10	
n-Butane		< 0.001	Mol %	0.001					10	
Isopentane		0.001	Mol %	0.001				0.0	10	
n-Pentane		0.002	Mol %	0.001				0.0	10	
Hexanes pl	us	0.018	Mol %	0.001				5.4	10	

Hall Environmental Analysis Laboratory, Inc.

WO#: **1903796**

01-Apr-19

Client: Harvest

Project: Florance GCJ 16A

Sample ID: 1903796-001a dup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Zone 2 Influent Batch ID: A58683 RunNo: 58683

Prep Date: Analysis Date: 3/27/2019 SeqNo: 1970772 Units: µg/L

Prep Date:	Analysis D	Date: 3/	27/2019	S	eqNo: 19	970772	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	7.3	1.0						9.41	20	D
Toluene	14	1.0						7.08	20	D
Ethylbenzene	ND	1.0						0	20	D
Methyl tert-butyl ether (MTBE)	ND	1.0						0	20	D
1,2,4-Trimethylbenzene	ND	1.0						0	20	D
1,3,5-Trimethylbenzene	ND	1.0						0	20	D
1,2-Dichloroethane (EDC)	ND	1.0						0	20	D
1,2-Dibromoethane (EDB)	ND	1.0						0	20	D
Naphthalene	ND	2.0						0	20	D
1-Methylnaphthalene	ND	4.0						0	20	D
2-Methylnaphthalene	ND	4.0						0	20	D
Acetone	ND	10						0	20	D
Bromobenzene	ND	1.0						0	20	D
Bromodichloromethane	ND	1.0						0	20	D
Bromoform	ND	1.0						0	20	D
Bromomethane	ND	2.0						0	20	D
2-Butanone	ND	10						0	20	D
Carbon disulfide	ND	10						0	20	D
Carbon tetrachloride	ND	1.0						0	20	D
Chlorobenzene	ND	1.0						0	20	D
Chloroethane	ND	2.0						0	20	D
Chloroform	ND	1.0						0	20	D
Chloromethane	ND	1.0						0	20	D
2-Chlorotoluene	ND	1.0						0	20	D
4-Chlorotoluene	ND	1.0						0	20	D
cis-1,2-DCE	ND	1.0						0	20	D
cis-1,3-Dichloropropene	ND	1.0						0	20	D
1,2-Dibromo-3-chloropropane	ND	2.0						0	20	D
Dibromochloromethane	ND	1.0						0	20	D
Dibromomethane	ND	2.0						0	20	D
1,2-Dichlorobenzene	ND	1.0						0	20	D
1,3-Dichlorobenzene	ND	1.0						0	20	D
1,4-Dichlorobenzene	ND	1.0						0	20	D
Dichlorodifluoromethane	ND	1.0						0	20	D
1,1-Dichloroethane	ND	1.0						0	20	D
1,1-Dichloroethene	ND	1.0						0	20	D
1,2-Dichloropropane	ND	1.0						0	20	D
1,3-Dichloropropane	ND	1.0						0	20	D
2,2-Dichloropropane	ND	1.0						0	20	D

Qualifiers:

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

WO#: **1903796**

01-Apr-19

Client: Harvest

Project: Florance GCJ 16A

Sample ID: 1903796-001a dup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Zone 2 Influent Batch ID: A58683 RunNo: 58683

Prep Date:	Analysis D)ate: 3/2	27/2019	S	SeqNo: 19	970772	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0						0	20	D
Hexachlorobutadiene	ND	1.0						0	20	D
2-Hexanone	ND	10						0	20	D
Isopropylbenzene	ND	1.0						0	20	D
4-Isopropyltoluene	ND	1.0						0	20	D
4-Methyl-2-pentanone	ND	10						200	20	RD
Methylene chloride	ND	3.0						0	20	D
n-Butylbenzene	ND	3.0						0	20	D
n-Propylbenzene	ND	1.0						0	20	D
sec-Butylbenzene	ND	1.0						0	20	D
Styrene	ND	1.0						0	20	D
tert-Butylbenzene	ND	1.0						0	20	D
1,1,1,2-Tetrachloroethane	ND	1.0						0	20	D
1,1,2,2-Tetrachloroethane	ND	1.0						0	20	D
Tetrachloroethene (PCE)	ND	1.0						0	20	D
trans-1,2-DCE	ND	1.0						0	20	D
trans-1,3-Dichloropropene	ND	1.0						0	20	D
1,2,3-Trichlorobenzene	ND	1.0						0	20	D
1,2,4-Trichlorobenzene	ND	1.0						0	20	D
1,1,1-Trichloroethane	ND	1.0						0	20	D
1,1,2-Trichloroethane	ND	1.0						0	20	D
Trichloroethene (TCE)	ND	1.0						0	20	D
Trichlorofluoromethane	ND	1.0						0	20	D
1,2,3-Trichloropropane	ND	2.0						0	20	D
Vinyl chloride	ND	1.0						0	20	D
Xylenes, Total	8.8	1.5						5.07	20	D
Surr: Dibromofluoromethane	10		10.00		104	70	130	0	0	D
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130	0	0	D
Surr: Toluene-d8	10		10.00		105	70	130	0	0	D
Surr: 4-Bromofluorobenzene	9.7		10.00		97.0	70	130	0	0	D

E Value above quantitation range

ND Not Detected at the Reporting Limit RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Clier	nt Name:	Harvest		Work C	Order Numb	er: 1903796		RcptNo	: 1
Rece	ived By:	Erin Melen	drez	3/16/201	9 10:50:00	АМ	UNA Int Ba		
Comp	oleted By:	Leah Baca		/ _	9 9:39:37 A	.M	Into Ba	4	
Revie	ewed By:	28		3/18/	19		Law Ja.		
Lab	ele.	by DA	D Zuen						
Chai	n of Cus	tody	D 3/18/1	9					
1. Is	Chain of C	ustody comple	ete?			Yes 🗸	No 🗌	Not Present	
2. Ho	w was the	sample delive	ered?			Courier			
Log	In								
		npt made to co	ool the samples	s?		Yes	No 🗌	NA 🗸	
4. We	ere all samp	oles received a	at a temperatu	re of >0° C to	6.0°C	Yes	No 🗌	NA 🗹	
5. Sa	mple(s) in p	proper contair	ner(s)?			Yes 🗸	No 🗌		
6. Suf	ficient sam	ple volume fo	r indicated test	t(s)?		Yes 🗸	No 🗌		
7. Are	samples (except VOA a	nd ONG) prop	erly preserved	1?	Yes 🗸	No 🗌		
8. Wa	s preserva	tive added to	bottles?			Yes	No 🗸	NA 🗌	
9. vo	A vials hav	e zero headsp	pace?			Yes	No 🗌	No VOA Vials	
10. We	ere any san	nple container	s received bro	ken?		Yes	No 🗸		
						_	_	# of preserved bottles checked	
		ork match bott ancies on chai				Yes 🗸	No 🗌	for pH:	r >12 unless noted)
			fied on Chain	of Custody?		Yes 🗸	No 🗌	Adjusted?	1912 dilicas noted)
		t analyses wer		•		Yes 🗸	No 🗌		
		ng times able ustomer for au				Yes 🗸	No 🗌	Checked by:	DAD 3/18/19
Snooi	al Handl	ing (if appl	liooble)						
						\Box			
15. vva	as client no	otified of all dis	crepancies wit	h this order?		Yes 🗌	No 🗌	NA 🗹	
		Notified:			Date				
	By Who				Via:	eMail	Phone Fax	In Person	
	Regardi	ng: nstructions:							
16 ^									
	dditional rer								
17. <u>C</u>	Cooler Infor	and the second of the second o	01"	0.11		A SERVICE PLEASURE TO	Participation of the Control	0.E	
1	Cooler No	Temp °C NA	Condition	Seal Intact	Seal No	Seal Date	Signed By		

Chai	n-of-CI	Chain-of-Custody Record	Turn-Around	Time:	Water State of the			9	-	7414.	Č	1	L		
Client: Flan	Harvest	Four Corners		□ Rush			7 [_	N N				NALL ENVIRONMENTAL ANALYSTS LABODATODY	70
Monita		~	Project Name:						haller	vironr (www.hallenvironmental.com				Ž
Mailing Address:			Floran	ne GC	7 #16A	490	1 Hav	4901 Hawkins NE		pndne	- Albuqueraue. NM 87109	N N N	7109		
			Project #:		2	Tel.	. 505-	505-345-3975		- Еах	505-345-4107	15-410	7(
Phone #:									Ana	Consult I	Request	st			
email or Fax#:	-	Msandaral @ horvest. com	Project Manager:	jer:	Ε,				10	_	(+0	(111			
QA/QC Package:	je:		Monica Sandavol	andavoi -	Harvese		s'8	SN	S 'V			nzei			
Standard Standard		□ Level 4 (Full Validation)	Evil carroll -		175		ьс	IIS0	<u> </u>		V/+C	ΨΛΙ			
Accreditation:		☐ Az Compliance	Sampler: E	2	2011				OI					Ē.	
□ NELAC	□ Other		On Ice:	₩ Yes	□ No							26			
EDD (Type)	PDF (# of Coolers:												
			Cooler Temp(including CF):	ncluding CF):	/A									~	
				Preservative	HEAL No.	H:80.	94 18 M) 90	M) B(3 A.R. B , F	V) 09	S) 04	oo let	60	0	
Date Time	Matrix	Sample Name	Type and #	Туре	1603796		_		_	_)	>	
3/14/19 1500	Air	Zone 2 Influent	2 Tedlar		100-				7			\times	×	×	
4															
	51														
	= =				0 1								3.5		
					3 3										
=															
					3			1					1		
	=				- ID										
									e T	<u>.</u> !	- 9	4.4			
Sug/14 1500	Relinquished by:	ed by:	Received by:	S. J.	3/15/19 1560	Remarks:									
Jate: Time:	Relinguished by:	uished by:	Received by:	Via:COUL	Cr Date Time 50										
	ary, samples sut	ד מ	ontracted to other ac	credited laboratorie	ss. This serves as notice of this	possibility. A	ny sub-c	ontracted	data will	oe clearly	notated	on the a	nalytica	l report.	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 08, 2019

Monica Sandoval

Harvest

1755 Arroyo Dr.

Bloomfield, NM 87413 TEL: (505) 632-4475

FAX

RE: Florance OrderNo.: 1904019

Dear Monica Sandoval:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/30/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1904019**

Date Reported: 4/8/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Harvest Client Sample ID: Zone 3 Influent

 Project:
 Florance
 Collection Date: 3/28/2019 3:00:00 PM

 Lab ID:
 1904019-001
 Matrix: AIR
 Received Date: 3/30/2019 9:20:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	: DJF
Benzene	3.6	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Toluene	14	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Ethylbenzene	1.3	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Methyl tert-butyl ether (MTBE)	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,2,4-Trimethylbenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,3,5-Trimethylbenzene	1.5	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,2-Dichloroethane (EDC)	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,2-Dibromoethane (EDB)	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Naphthalene	ND	2.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1-Methylnaphthalene	ND	4.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
2-Methylnaphthalene	ND	4.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Acetone	ND	10	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Bromobenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Bromodichloromethane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Bromoform	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Bromomethane	ND	2.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
2-Butanone	ND	10	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Carbon disulfide	ND	10	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Carbon tetrachloride	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Chlorobenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Chloroethane	ND	2.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Chloroform	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Chloromethane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
2-Chlorotoluene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
4-Chlorotoluene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
cis-1,2-DCE	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
cis-1,3-Dichloropropene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,2-Dibromo-3-chloropropane	ND	2.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Dibromochloromethane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Dibromomethane	ND	2.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,2-Dichlorobenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,3-Dichlorobenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,4-Dichlorobenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Dichlorodifluoromethane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,1-Dichloroethane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,1-Dichloroethene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,2-Dichloropropane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,3-Dichloropropane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
2,2-Dichloropropane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/8/2019

CLIENT: Harvest Client Sample ID: Zone 3 Influent

 Project:
 Florance
 Collection Date: 3/28/2019 3:00:00 PM

 Lab ID:
 1904019-001
 Matrix: AIR
 Received Date: 3/30/2019 9:20:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	: DJF
1,1-Dichloropropene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Hexachlorobutadiene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
2-Hexanone	ND	10	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Isopropylbenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
4-Isopropyltoluene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
4-Methyl-2-pentanone	ND	10	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Methylene chloride	ND	3.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
n-Butylbenzene	ND	3.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
n-Propylbenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
sec-Butylbenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Styrene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
tert-Butylbenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,1,1,2-Tetrachloroethane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,1,2,2-Tetrachloroethane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Tetrachloroethene (PCE)	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
trans-1,2-DCE	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
trans-1,3-Dichloropropene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,2,3-Trichlorobenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,2,4-Trichlorobenzene	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,1,1-Trichloroethane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,1,2-Trichloroethane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Trichloroethene (TCE)	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Trichlorofluoromethane	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
1,2,3-Trichloropropane	ND	2.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Vinyl chloride	ND	1.0	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Xylenes, Total	35	1.5	D	μg/L	10	4/5/2019 11:48:01 AM	A58957
Surr: Dibromofluoromethane	107	70-130	D	%Rec	10	4/5/2019 11:48:01 AM	A58957
Surr: 1,2-Dichloroethane-d4	89.7	70-130	D	%Rec	10	4/5/2019 11:48:01 AM	A58957
Surr: Toluene-d8	104	70-130	D	%Rec	10	4/5/2019 11:48:01 AM	A58957
Surr: 4-Bromofluorobenzene	94.0	70-130	D	%Rec	10	4/5/2019 11:48:01 AM	A58957

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Billings, MT 800.735.4489 * Casper, WY 888.235.0515 Gillette, WY 866.686.7175 * Helena, MT 877.472.0711

LABORATORY ANALYTICAL REPORT

Prepared by Gillette, WY Branch

Client:

Hall Environmental

Project:

Not Indicated

Client Sample ID: Location:

1904019-001B; Zone 3 Influent

19040 19-00 TB, Zone 3 Inilitient

Lab ID: G19040074-001

Report Date: 04/05/19

Collection Date: 03/28/19 15:00

Date Received: 04/02/19

Sampled By: Not Provided

		- ampiou	by. Not i lovided
Analyses	Result Units	Qualifier Method	Analysis Date / By
NATURAL GAS CHROMATOGRAPHIC ANALYSIS REPORT			
Oxygen	22.128 Mol %	GPA 2261	04/04/19 09:29 / djb
Nitrogen	77.641 Mol %	GPA 2261	04/04/19 09:29 / djb
Carbon Dioxide	0.226 Mol %	GPA 2261	04/04/19 09:29 / djb
Hydrogen Sulfide	< 0.001 Mol %	GPA 2261	04/04/19 09:29 / djb
Methane	< 0.001 Mol %	GPA 2261	04/04/19 09:29 / djb
Ethane	< 0.001 Mol %	GPA 2261	04/04/19 09:29 / djb
Propane	< 0.001 Mol %	GPA 2261	04/04/19 09:29 / djb
sobutane	< 0.001 Mol %	GPA 2261	04/04/19 09:29 / djb
n-Butane	< 0.001 Mol %	GPA 2261	04/04/19 09:29 / djb
sopentane	< 0.001 Mol %	GPA 2261	04/04/19 09:29 / djb
n-Pentane	< 0.001 Mol %	GPA 2261	04/04/19 09:29 / djb
dexanes plus	0.005 Mol %	GPA 2261	04/04/19 09:29 / djb
GPM @ STD COND/1000 CU.FT., MOISTURE FREE GAS			
GPM Ethane	< 0.0003 gal/MCF	GPA 2261	04/04/19 09:29 / djb
SPM Propane	< 0.0003 gal/MCF	GPA 2261	04/04/19 09:29 / djb
SPM Isobutane	< 0.0003 gal/MCF	GPA 2261	04/04/19 09:29 / djb
GPM n-Butane	< 0.0003 gal/MCF		04/04/19 09:29 / djb
SPM Isopentane	< 0.0004 gal/MCF	GPA 2261	04/04/19 09:29 / djb
GPM n-Pentane	< 0.0004 gal/MCF	GPA 2261	04/04/19 09:29 / djb
SPM Hexanes plus	0.0020 gal/MCF	GPA 2261	04/04/19 09:29 / djb
SPM Pentanes plus	0.0020 gal/MCF	GPA 2261	04/04/19 09:29 / djb
GPM Total	0.0020 gal/MCF	GPA 2261	04/04/19 09:29 / djb
CALCULATED PROPERTIES			
Calculation Pressure Base	14.730 psia	GPA 2261	04/04/19 09:29 / djb
Calculation Temperature Base	60 °F	GPA 2261	04/04/19 09:29 / djb
Compressibility Factor, Z	1.0000 unitless	GPA 2261	04/04/19 09:29 / djb
folecular Weight	28.93 unitless	GPA 2261	04/04/19 09:29 / djb
seudo-critical Pressure, psia	548 psia	GPA 2261	04/04/19 09:29 / djb
seudo-critical Temperature, deg R	240 deg R	GPA 2261	04/04/19 09:29 / djb
pecific Gravity (air=1.000)	1.002 unitless	GPA 2261	04/04/19 09:29 / djb
Gross BTU per cu ft @ std cond, dry	0.26 BTU/cu ft	GPA 2261	04/04/19 09:29 / djb
Gross BTU per cu ft @ std cond, wet			

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Gillette, WY Branch

Client: Hall Environmental

Report Date: 04/05/19 **Work Order:** G19040074

Project: Not Indicated

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	GPA 2261							Analytical Run:	R249515
Lab ID:	ICV-1904040838	Initial Calibrat	ion Verific	ation Standard				04/04	/19 08:39
Oxygen		0.397	Mol %	0.001	83	75	110		
Nitrogen		5.016	Mol %	0.001	100	90	110		
Carbon Di	oxide	4.923	Mol %	0.001	99	90	110		
Hydrogen	Sulfide	0.127	Mol %	0.001	126	100	136		
Methane		73.039	Mol %	0.001	100	90	110		
Ethane		5.023	Mol %	0.001	101	90	110		
Propane		5.140	Mol %	0.001	101	90	110		
Isobutane		2.027	Mol %	0.001	100	90	110		
n-Butane		2.006	Mol %	0.001	99	90	110		
Isopentane	е	0.999	Mol %	0.001	100	90	110		
n-Pentane		0.994	Mol %	0.001	99	90	110		
Hexanes p	lus	0.309	Mol %	0.001	102	90	110		
Lab ID:	CCV-1904040855	Continuing Ca	libration V	erification Standa	rd			04/04	/19 08:56
Oxygen		0.598	Mol %	0.001	99	90	110		
Nitrogen		1.322	Mol %	0.001	94	85	110		
Carbon Did	oxide	0.970	Mol %	0.001	97	90	110		
Hydrogen :	Sulfide	0.025	Mol %	0.001	100	70	130		
Methane		93.485	Mol %	0.001	100	90	110		
Ethane		1.028	Mol %	0.001	102	90	110		
Propane		1.014	Mol %	0.001	101	90	110		
Isobutane		0.507	Mol %	0.001	101	90	110		
n-Butane		0.494	Mol %	0.001	99	90	110		
Isopentane)	0.202	Mol %	0.001	101	90	110		
n-Pentane		0.199	Mol %	0.001	99	90	110		
Hexanes p	lus	0.156	Mol %	0.001	103	90	110		
Lab ID:	CCV-1904041101	Continuing Ca	libration V	erification Standa	rd			04/04	/19 11:01
Oxygen		0.595	Mol %	0.001	99	90	110		
Nitrogen		1.307	Mol %	0.001	93	85	110		
Carbon Dic	oxide	0.971	Mol %	0.001	97	90	110		
Hydrogen S	Sulfide	0.026	Mol %	0.001	104	70	130		
Methane		93.514	Mol %	0.001	100	90	110		
Ethane		1.026	Mol %	0.001	102	90	110		
Propane		1.010	Mol %	0.001	101	90	110		
Isobutane		0.504	Mol %	0.001	101	90	110		
n-Butane		0.492	Mol %	0.001	98	90	110		
Isopentane	£	0.201	Mol %	0.001	100	90	110		
n-Pentane		0.198	Mol %	0.001	99	90	110		
Hexanes pl	lus	0.156	Mol %	0.001	103	90	110		

Method:

GPA 2261

Batch: R249515

Qualifiers:

RL - Analyte reporting limit.

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Gillette, WY Branch

Client: Hall Environmental

Report Date: 04/05/19

Project: Not Indicated

Work Order: G19040074

Analyte	Result	Units	RL %	REC Low Limit High Limit	RPD	RPDLimit	Qual
Method: GPA 2261						Batch:	R249515
Lab ID: G19040074-001ADUP	Sample Dupli	cate		Run: Varian GC_190404A	4	04/04	/19 09:34
Oxygen	22.126	Mol %	0.001		0.0	10	
Nitrogen	77.642	Mol %	0.001		0.0	10	
Carbon Dioxide	0.227	Mol %	0.001		0.4	10	
Hydrogen Sulfide	< 0.001	Mol %	0.001			10	
Methane	< 0.001	Mol %	0.001			10	
Ethane	< 0.001	Mol %	0.001			10	
Propane	< 0.001	Mol %	0.001			10	
Isobutane	< 0.001	Mol %	0.001			10	
n-Butane	< 0.001	Mol %	0.001			10	
Isopentane	< 0.001	Mol %	0.001			10	
n-Pentane	< 0.001	Mol %	0.001			10	
Hexanes plus	0.005	Mol %	0.001		0.0	10	

Hall Environmental Analysis Laboratory, Inc.

WO#: 1904019

08-Apr-19

Client: Harvest **Project:** Florance

Sample ID: 1904019-001a dup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Zone 3 Influent Batch ID: A58957 RunNo: 58957

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 3.1 1.0 15.7 20 D Toluene 15 1.0	Prep Date:	Analysis [Date: 4/	5/2019	8	SeqNo: 19	982999	Units: µg/L			
Toluene 15 1.0 Ethylbenzene 1.5 1.0 Methyl tert-butyl ether (MTBE) ND 1.0 1,2,4-Trimethylbenzene ND 1.0 1,3,5-Trimethylbenzene 1.8 1.0 1,2-Dibriomoethane (EDC) ND 1.0 Naphthalene (EDB) ND 1.0 Naphthalene (EDB) ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Bromobenzene ND 1.0 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 2.0 Bromomethane ND	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit		RPDLimit	Qual
Ethylbenzene 1.5 1.0 12.6 20 D Methyl tert-butyl ether (MTBE) ND 1.0 0 20 D 1,2,4-Trimethylbenzene ND 1.0 0 20 D 1,3,5-Trimethylbenzene 1.8 1.0 0 20 D 1,2-Dibloroethane (EDC) ND 1.0 0 20 D Naphthalene (EDB) ND 1.0 0 20 D Naphthalene ND 4.0 0 20 D 2-Methylnaphthalene ND 4.0 0 20 D 2-Methylnaphthalene ND 4.0 0 20 D Bromobenzene ND 1.0 0 20 D Bromoformethane ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Benzene	3.1	1.0						15.7	20	D
Methyl tert-butyl ether (MTBE) ND 1.0 20 D 1,2,4-Trimethylbenzene ND 1.0 0 20 D 1,3,5-Trimethylbenzene 1.8 1.0 16.3 20 D 1,2-Dichloroethane (EDC) ND 1.0 0 20 D Naphthalene (EDB) ND 1.0 0 20 D Naphthalene ND 4.0 0 20 D 2-Methylnaphthalene ND 4.0 0 20 D 2-Methylnaphthalene ND 4.0 0 20 D Acetone ND 1.0 0 20 D Bromobenzene ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 0 0 20 D 2-Butanone ND 1.0 0 20 D D	Toluene	15	1.0						3.36	20	D
1,2,4-Trimethylbenzene ND 1.0 0 20 D 1,3,5-Trimethylbenzene 1.8 1.0 16.3 20 D 1,2-Dichloroethane (EDC) ND 1.0 0 20 D 1,2-Dibromoethane (EDB) ND 1.0 0 20 D Naphthalene ND 2.0 0 20 D 1-Methylnaphthalene ND 4.0 0 20 D 2-Methylnaphthalene ND 4.0 0 20 D Acetone ND 1.0 0 20 D Bromobenzene ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 0 0 20 D 2-Butanone ND 1.0 0 20 D D	Ethylbenzene	1.5	1.0						12.6	20	D
1,3,5-Trimethylbenzene 1.8 1.0 16.3 20 D 1,2-Dichloroethane (EDC) ND 1.0 0 20 D 1,2-Dibromoethane (EDB) ND 1.0 0 20 D Naphthalene ND 2.0 0 20 D 1-Methylnaphthalene ND 4.0 0 20 D 2-Methylnaphthalene ND 4.0 0 20 D Acetone ND 10 0 20 D Bromobenzene ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 D D 2-Butanone ND 10 0 20 D	Methyl tert-butyl ether (MTBE)	ND	1.0						0	20	D
1,2-Dichloroethane (EDC) ND 1.0 0 20 D 1,2-Dibromoethane (EDB) ND 1.0 0 20 D Naphthalene ND 2.0 0 20 D 1-Methylnaphthalene ND 4.0 0 20 D 2-Methylnaphthalene ND 4.0 0 20 D Acetone ND 10 0 20 D Bromobenzene ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 D D 2-Butanone ND 1.0 0 20 D	1,2,4-Trimethylbenzene	ND	1.0						0	20	D
1,2-Dibromoethane (EDB) ND 1.0 0 20 D Naphthalene ND 2.0 0 20 D 1-Methylnaphthalene ND 4.0 0 20 D 2-Methylnaphthalene ND 4.0 0 20 D Acetone ND 10 0 20 D Bromobenzene ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 D <	1,3,5-Trimethylbenzene	1.8	1.0						16.3	20	D
Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 1.0 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 2.0 Bromomethane ND 2.0 2-Butanone ND 1.0	1,2-Dichloroethane (EDC)	ND	1.0						0	20	D
1-Methylnaphthalene ND 4.0 0 20 D 2-Methylnaphthalene ND 4.0 0 20 D Acetone ND 10 0 20 D Bromobenzene ND 1.0 0 20 D Bromodichloromethane ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 0 20 D 2-Butanone ND 10 0 20 D	1,2-Dibromoethane (EDB)	ND	1.0						0	20	D
2-Methylnaphthalene ND 4.0 0 20 D Acetone ND 10 0 20 D Bromobenzene ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 D 2-Butanone ND 10 0 20 D	Naphthalene	ND	2.0						0	20	D
Acetone ND 10 0 20 D Bromobenzene ND 1.0 0 20 D Bromodichloromethane ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 0 20 D 2-Butanone ND 10 0 20 D	1-Methylnaphthalene	ND	4.0						0	20	D
Bromobenzene ND 1.0 0 20 D Bromodichloromethane ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 0 20 D 2-Butanone ND 10 0 20 D	2-Methylnaphthalene	ND	4.0						0	20	D
Bromodichloromethane ND 1.0 0 20 D Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 0 20 D 2-Butanone ND 10 0 20 D	Acetone	ND	10						0	20	D
Bromoform ND 1.0 0 20 D Bromomethane ND 2.0 0 20 D 2-Butanone ND 10 0 20 D	Bromobenzene	ND	1.0						0	20	D
Bromomethane ND 2.0 0 20 D 2-Butanone ND 10 0 20 D	Bromodichloromethane	ND	1.0						0	20	D
2-Butanone ND 10 0 20 D	Bromoform	ND	1.0						0	20	D
	Bromomethane	ND	2.0						0	20	D
Carbon disulfide ND 10 0 20 D	2-Butanone	ND	10						0	20	D
	Carbon disulfide	ND	10						0	20	D
Carbon tetrachloride ND 1.0 0 20 D	Carbon tetrachloride	ND	1.0						0	20	D
Chlorobenzene ND 1.0 0 20 D	Chlorobenzene	ND	1.0						0	20	D
Chloroethane ND 2.0 0 20 D	Chloroethane	ND	2.0						0	20	D
Chloroform ND 1.0 0 20 D	Chloroform	ND	1.0						0	20	D
Chloromethane ND 1.0 0 20 D	Chloromethane	ND	1.0						0	20	D
2-Chlorotoluene ND 1.0 0 20 D	2-Chlorotoluene	ND	1.0						0	20	D
4-Chlorotoluene ND 1.0 0 20 D	4-Chlorotoluene	ND	1.0						0	20	D
cis-1,2-DCE ND 1.0 0 20 D	cis-1,2-DCE	ND	1.0						0	20	D
cis-1,3-Dichloropropene ND 1.0 0 20 D	cis-1,3-Dichloropropene	ND	1.0						0	20	D
1,2-Dibromo-3-chloropropane ND 2.0 0 20 D	1,2-Dibromo-3-chloropropane	ND	2.0						0	20	D
Dibromochloromethane ND 1.0 0 20 D	Dibromochloromethane	ND	1.0						0	20	D
Dibromomethane ND 2.0 0 20 D	Dibromomethane	ND	2.0						0	20	D
1,2-Dichlorobenzene ND 1.0 0 20 D	1,2-Dichlorobenzene	ND	1.0						0	20	D
1,3-Dichlorobenzene ND 1.0 0 20 D	1,3-Dichlorobenzene	ND	1.0						0	20	D
1,4-Dichlorobenzene ND 1.0 0 20 D	1,4-Dichlorobenzene	ND	1.0						0	20	D
Dichlorodifluoromethane ND 1.0 0 20 D	Dichlorodifluoromethane	ND	1.0						0	20	D
1,1-Dichloroethane ND 1.0 0 20 D	1,1-Dichloroethane	ND									D
1,1-Dichloroethene ND 1.0 0 20 D	1,1-Dichloroethene	ND							0		
1,2-Dichloropropane ND 1.0 0 20 D			1.0						0	20	D
1,3-Dichloropropane ND 1.0 0 20 D	• •										
2,2-Dichloropropane ND 1.0 0 20 D	·									20	

Qualifiers:

Value above quantitation range

Not Detected at the Reporting Limit

RL Reporting Detection Limit

Sample container temperature is out of limit as specified at testcode

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

[%] Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904019**

08-Apr-19

Client: Harvest
Project: Florance

Sample ID: 1904019-001a dup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Zone 3 Influent Batch ID: A58957 RunNo: 58957

Prep Date:	Analysis D)ate: 4/	5/2019	S	SeqNo: 19	982999	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0						0	20	D
Hexachlorobutadiene	ND	1.0						0	20	D
2-Hexanone	ND	10						0	20	D
Isopropylbenzene	ND	1.0						0	20	D
4-Isopropyltoluene	ND	1.0						0	20	D
4-Methyl-2-pentanone	ND	10						0	20	D
Methylene chloride	ND	3.0						0	20	D
n-Butylbenzene	ND	3.0						0	20	D
n-Propylbenzene	ND	1.0						0	20	D
sec-Butylbenzene	ND	1.0						0	20	D
Styrene	ND	1.0						0	20	D
tert-Butylbenzene	ND	1.0						0	20	D
1,1,1,2-Tetrachloroethane	ND	1.0						0	20	D
1,1,2,2-Tetrachloroethane	ND	1.0						0	20	D
Tetrachloroethene (PCE)	ND	1.0						0	20	D
trans-1,2-DCE	ND	1.0						0	20	D
trans-1,3-Dichloropropene	ND	1.0						0	20	D
1,2,3-Trichlorobenzene	ND	1.0						0	20	D
1,2,4-Trichlorobenzene	ND	1.0						0	20	D
1,1,1-Trichloroethane	ND	1.0						0	20	D
1,1,2-Trichloroethane	ND	1.0						0	20	D
Trichloroethene (TCE)	ND	1.0						0	20	D
Trichlorofluoromethane	ND	1.0						0	20	D
1,2,3-Trichloropropane	ND	2.0						0	20	D
Vinyl chloride	ND	1.0						0	20	D
Xylenes, Total	38	1.5						9.02	20	D
Surr: Dibromofluoromethane	11		10.00		109	70	130	0	0	D
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.5	70	130	0	0	D
Surr: Toluene-d8	11		10.00		106	70	130	0	0	D
Surr: 4-Bromofluorobenzene	9.2		10.00		92.4	70	130	0	0	D

Qualifiers:

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Cli	Client Name: Harvest			Work Order Number: 1904019					RcptNo: 1			
Re	Received By: Anne Thorne			3/30/2019 9:20:00 AM				anne Am				
Co	ompleted By: Victoria Zellar 4/1/2019 10:2				9 10:25:42	AM		Victorii	ov Bellov	1 1 1	A i	
Reviewed By: ENH 4/1/A										DAD	ld by	
Chain of Custody												
1.	1. Is Chain of Custody complete?						✓	No		Not Present]	
2. How was the sample delivered?						Cou	rier					
	og In						_			_		
Was an attempt made to cool the samples?						Yes	✓	No		NA L		
4. Were all samples received at a temperature of >0° C to 6.0°C						Yes	V	No		NA 🗆]	
5. §	Sample(s) in	proper conta	iner(s)?			Yes	V	No				
6. Sufficient sample volume for indicated test(s)?						Yes	✓	No [
7. Are samples (except VOA and ONG) properly preserved?						Yes	✓	No [
8. Was preservative added to bottles?						Yes		No 5	✓	NA \square		
9. VOA vials have zero headspace?						Yes		No [lo VOA Vials 🗹		
10. Were any sample containers received broken?						Yes		No		of preserved		
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)						Yes	✓	No [b	ottles checked or pH:	or >12 unless noted)	
12. Are matrices correctly identified on Chain of Custody?						Yes	✓	No [Adjusted?		
13. Is it clear what analyses were requested?						Yes	V	No [
14. Were all holding times able to be met? (If no, notify customer for authorization.)						Yes	V	No [Checked by:	DAD 4/1/19	
Special Handling (if applicable)												
15. V	Nas client no	tified of all di	screpancies v	vith this order?		Yes		No		NA 🗸		
	Person Notified: Date:								_			
	By Whom: Via:					_ eM	eMail Phone Fax			In Person		
	Regarding:											
	Client I	nstructions:										
16.	Additional re	marks:										
17.	Cooler Infor	Cooler Information										
	Cooler No		Condition	Seal Intact	Seal No	Seal D	ate	Signed B	у			
	1	1.0	Good	Yes								
	2	1.0	Good	Yes								