Form 3160-4 (August 1999) ## UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT FORM APPROVED OMB No. 1004-0137 Expires: November 30, 2000 WELL COMPLETION OR RECOMPLETION REPORT AND LOG | | WELL CO | | | K KE | JOIVIPL | EHON | KEFOR | (I A | 1D LO | G | | N | MSF07827 | 8 | | |------------------------------------|-------------------------------------|------------------------|---|-------------------|-------------------|-----------------------|---------------------|---------------------------|--|-----------------------|--------------------------------------|-----------------------|---------------------|------------------|---| | la. Type of | Well O | il Well | | /ell | □ Dry | Other | | | 4 | | 1 | 6. If | Indian, Allo | ttee or | Tribe Name | | b. Type of | Completion | | w Well | □ Worl | (Over | □ Deepen | | Plug Ba | ick [| Diff. Re | esvr. | 7. Ut
N | nit or CA Ag | greeme
6B | nt Name and No. | | 2. Name of CONOC | Operator
OPHILLIPS (| COMPA | NY | | Conta | act: CHRIS
E-Mail | GUSTA
CHRIS | ARTIS
TINA. | GUSTAF |
ŖŢĮS@C | оиосф | 8. Le
PHI S | ase Name a | nd Wel
29-6 U | II No.
INIT 104M | | | P O BOX 21
HOUSTON, | TX 772 | 252 | | | Į F | ²h;﴿83ૢ2` | 486.24 | nclude at | rea code) | 、 I | | | | 9-27592-00-C1 | | Location At surface | of Well (Report Sec 14 Total SWSE 3 | 29N R6 | on clearly and
SW Mer NM
1445FEL 36 | Ρ | | i | 8587 (C) | ents)* | ************************************** | | 5. T | В | | V / BA | Exploratory SIN DAKOTA Block and Survey | | At top pr | rod interval rep | | | | | (| | | | <i>5</i> | ာါ | 01 | Area Sec | : 14 T2 | 29N R6W Mer NN | | At total o | - | | | | | | (ie) | | 6 8 | | <i>i</i> / | R | IO ARRIBA | 4 | NM | | 4. Date Sp
11/07/20 | | | | te T.D.
16/200 | Reached
4 | | Ø.
16: √D
70: | Date Co
2& A
1/13/2 | mpleted
Re
005 \ \\ | eady to Pr | od. | 17. E | levations (I
652 | DF, KB
8 GL | 3, RT, GL)* | | 8. Total De | | MD
TVD | 7951 | | 19. Plug l | Back T.D.: | MD
TV | | 7950 | | 20. Dept | | dge Plug Se | 1 | MD
TVD | | | ectric & Other
OT GR CCL | Mechan | ical Logs Ru | ın (Subr | nit copy of | each) | | | 2 | Was I | vell cored'
OST run?
ional Sur | ?
vey? | R⊼No ñ | ⊣ Yes | (Submit analysis)
(Submit analysis)
(Submit analysis) | | B. Casing an | d Liner Record | (Repor | rt all strings | | | 1- | | | | | I a4 . | | | | | | Hole Size | Size/Grad | de | Wt. (#/ft.) | Top
(MD | | ttom Sta
(ID) | ge Cemer
Depth | | No. of S
Type of (| | Slurry '
(BBI | | Cement T | `op* | Amount Pulled | | 12.250
8.750 | | 6 H-40
0 J-55 | 32.3
20.0 | | 0 | 229
3746 | | _ | | 150
620 | | | | 0 | | | 6.250 | | N-80 | 11.6 | | 0 | 7951 | | \dashv | | 465 | | | | 2700 | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | • | | | | | | | | 24. Tubing
Size | Depth Set (MD |) Pa | cker Depth (| MD) | Size | Depth Se | t (MD) | Pacl | cer Depth | (MD) | Size | De | pth Set (MI | D) T | Packer Depth (MD | | 2.375 | 77 | 96 | | | 0.20 | • | | | | () | | | | | | | · | ng Intervals | | | | | 26. Per: | foration F | | | | | | | | D 0.0 | | 4) | ormation
DAKC | TA | Тор | 7790 | Bottom
787 | 72 | Perfora | | 790 TO | 7872 | Size
0.34 | _ | No. Holes | OPEN | Perf. Status | |)
3) | 27.4.0 | | | 1 | | - | | | | 1411 | | + | | | | | C) | | | | | | | | | | | | | I | t | | | D) | acture, Treatm | amt Cam | -out Courses | Eto. | | | | | | | | | | <u> </u> | | | | Depth Interval | ent, Cen | iciit Squeeze | , Etc. | | | | Amo | unt and T | Type of M | aterial | | | | | | | • | TO 78 | 72 FRAC'D | W/SLIC | KWATER (| @ 1.25 G/M | G FR; 40, | | | | | 340 B | BLS FLUID. | | • | | | | | | | | | | | | ion - Interval A | | | | | | | | | | | | | | | | ate First
roduced
01/13/2005 | | lours
ested
24 | Test
Production | Oil
BBL
0.0 | Gas
MCF
375 | Water
BBL
5.0 1 | | Dil Gravit
Corr. API | | Gas
Gravity | | Product | ion Method
FLOV | VS FR(| DM WELL | | hoke
ze
1/2 | | Ssg.
ress.
390.0 | 24 Hr.
Rate | Oil
BBL
O | Gas
MCF
37 | Water
BBL | | Gas:Oil
Ratio | | Well St | atus
GSI | | | | | | | tion - Interval | | | | | | | | | L | | | | | | | ate First
oduced | | lours
ested | Test
Production | Oil
BBL | Gas
MCF | Water
BBL | | Oil Gravit
Corr. API | | Gas
Gravity | | Product | ion Method | | | | noke
ze | | Sg.
ress. | 24 Hr.
Rate | Oil
BBL | Gas
MCF | Water
BBL | | Gas:Oil
Ratio | | Well St | atus | | ACCEP | FED | FOR RECORI | | | SI | | | | | | | | | | | | FF | 0 ~ | 1 00: | | | ions and space | SÍON #5 | 3464 VERI | FIED B | Y THE B | LM WELI | INFOR | MATI | ON SYS | ТЕМ | | 1 | | U | 1 2005 | | | ** BLI | W REV | /ISED ** | BLM | REVISE | D ** BL | M REV | ISEC |) ** BL | M REV | ISED * | * B | .1949/161/16
By | aga | FIELD OFFICE | | | | | | | | | | | NW | OCD | | L, | O I | - | XIS | | Porous Zones o | Test Production 24 Hr. Rate Test Production 24 Hr. Rate (Include Aquife f porosity and coval tested, cushid | rs): | Gas MCF Gas MCF Gas MCF Gas MCF cof: Cored etool open | Water C BBL C Water BBL C Water BBL C C | nut-in pressures | Gas Gravity Well Status Gas Gravity Well Status | Production Method Production Method Formation (Log) Markers | Тор | |---|---|---|---|---|--|--|--|--| | Press. Interval D Hours Tested Press. Csg. Press. F Gas(Sold, us Porous Zones ortant zones orig depth intervis. | Test Production 24 Hr. Rate ed for fuel, vent (Include Aquife f porosity and coval tested, cushidatested) Top 0 1201 | Oil BBL Oil BBL oil BBL ed, etc.) rs): ontents there on used, time Bottom | Gas
MCF
Gas
MCF | Water GBBL GBBL GINTERVALS and all I, flowing and sh | Dil Gravity Corr. API Gas: Oil Ratio drill-stem nut-in pressures | Gas
Gravity
Well Status | Formation (Log) Markers | Тор | | Press. Csg. Press. Csg. Press. F Gas(Sold, us Porous Zones or or tant zones or g depth intervis. | 24 Hr. Rate ed for fuel, vent (Include Aquife f porosity and coval tested, cushidate) Top 0 1201 | Oil BBL ed, etc.) rs): ontents there on used, time Bottom 1201 | Gas
MCF | Water C BBL F Intervals and all I, flowing and sh | Gas:Oil
Ratio
drill-stem
nut-in pressures | Gravity Well Status | Formation (Log) Markers | Тор | | Tested Csg. Press. f Gas(Sold, us Porous Zones or or tant zones or g depth intervise. | 24 Hr. Rate ed for fuel, vent (Include Aquife f porosity and coval tested, cushidate) Top 0 1201 | Oil BBL ed, etc.) rs): ontents there on used, time Bottom 1201 | Gas
MCF | Water C BBL F Intervals and all I, flowing and sh | Gas:Oil
Ratio
drill-stem
nut-in pressures | Gravity Well Status | Formation (Log) Markers | Тор | | Fress. Forous Zones of ortant zones of depth intervises. | Rate ed for fuel, vent (Include Aquife f porosity and cral tested, cushic Top 0 1201 | ed, etc.) rs): contents there on used, time Bottom 1201 | MCF | intervals and all | drill-stem
nut-in pressures | | · · | Тор | | Porous Zones or
ortant zones or
ng depth intervis. | (Include Aquife f porosity and coval tested, cushing Top 0 1201 | rs): ontents there on used, time Bottom | of: Cored
e tool open | , flowing and sh | nut-in pressures | 31.1 | · · | Top | | ortant zones of
ng depth interv
s. | f porosity and coval tested, cushid | Bottom | oof: Cored
e tool open | , flowing and sh | nut-in pressures | 31.1 | · · | Тор | | ortant zones of
ng depth interv
s. | f porosity and coval tested, cushid | Bottom | of: Cored
e tool open | , flowing and sh | nut-in pressures | | | Тор | | tion | 0
1201 | 1201 | | Descriptions, | Contents etc | | ** | Тор | | | 1201 | | | | Contents, etc. | | Name | Meas. Depth | | | | 2711 | | | | ! | OJO ALAMO
FRUITLAND
LEWIS SHALE
CLIFF HOUSE
POINT LOOKOUT
GALLUP
DAKOTA | 2591
3181
3631
5241
5636
6891
7731 | | | | | | | | | | | | a downhole of | comminaled w | ell producin | g from the
ached. | e Blanco Mesa | verde and Bas | in
· | | | | | | | | | | | | | | | • | • ′ | | | | | • | ectional Survey | | ify that the for | egoing and attac | ched informa | ition is con | mplete and corre | ect as determined | from all avail | able records (see attached inst | tructions): | | | Elect | ronic Subm
For CON | ission #53
IOCOPHI | 3464 Verified by
ILLIPS COMP | y the BLM Wel
ANY, sent to the | l Information
he Farmington | System. | , | | | | | F. 0 2400111 | 9 -7 | | | | | | (Elect | tronic Submiss | ion) | | | Date <u>01/</u> | 27/2005 | | | | i e | ed attachment Mechanical I otice for plugg fy that the for (Election 1001 a | a downhole commingled well Schematic and Daily Sun ed attachments: Mechanical Logs (1 full set relative for plugging and cement fy that the foregoing and attachments Committed to Print) CHRIS GUSTARTIS (Electronic Submisses | ed attachments: Mechanical Logs (1 full set req'd.) otice for plugging and cement verification fy that the foregoing and attached informs Electronic Subm For CON Committed to AFMSS for Print) CHRIS GUSTARTIS (Electronic Submission) | a downhole commingled well producing from the Schematic and Daily Summary is attached. Bed attachments: Mechanical Logs (1 full set req'd.) Otice for plugging and cement verification Fy that the foregoing and attached information is considered to Submission #53 For CONOCOPHI Committed to AFMSS for processing print) CHRIS GUSTARTIS (Electronic Submission) | a downhole commingled well producing from the Blanco Mesall Schematic and Daily Summary is attached. ed attachments: Mechanical Logs (1 full set req'd.) Otice for plugging and cement verification Electronic Submission #53464 Verified b For CONOCOPHILLIPS COMP Committed to AFMSS for processing by ADRIENT Print) CHRIS GUSTARTIS (Electronic Submission) (Electronic Submission) | a downhole commingled well producing from the Blanco Mesaverde and Bas I Schematic and Daily Summary is attached. ed attachments: Mechanical Logs (1 full set req'd.) Otice for plugging and cement verification Electronic Submission #53464 Verified by the BLM Well For CONOCOPHILLIPS COMPANY, sent to the Committed to AFMSS for processing by ADRIENNE BRUMLEY Print) CHRIS GUSTARTIS Title AU (Electronic Submission) Date 01/ Detection 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person known. | a downhole commingled well producing from the Blanco Mesaverde and Basin II Schematic and Daily Summary is attached. Bed attachments: Mechanical Logs (1 full set req'd.) Otice for plugging and cement verification For consideration of the BLM Well Information is complete and correct as determined from all available Electronic Submission #53464 Verified by the BLM Well Information For CONOCOPHILLIPS COMPANY, sent to the Farmington Committed to AFMSS for processing by ADRIENNE BRUMLEY on 02/01/2005 Perint CHRIS GUSTARTIS Title AUTHORIZED FOR COMPANY (Electronic Submission) Date 01/27/2005 | a downhole commingled well producing from the Blanco Mesaverde and Basin Bed attachments: Mechanical Logs (1 full set req'd.) re | | Wall Name San New Park 1646 1496 1 | ConocoPhillips | END OF WELL SCHEMATIC | | |--|---|---|---| | Surface Cashing | API #: 30-039-27592 Location: 355' FSL & 1445' FEL Sec. 14- T29N - R6W Rio Arriba County, NM Elevation: 6528' GL (above MSL) Drl Rig RKB: 13' above Ground Level Datum: Drl Rig RKB = 13' above GL | Spud Time: 18:00 Date TD Reached: 15-Nov-04 11" 3M x 7 1/16" 5M Tubing Head Release Drl Rig: 16-Nov-04 11" 3M x 11" 3M Casing Spool Release Time: 10:00 9-5/8" 8 RD x 11" 3M Casing Head SurfaceCement | | | Size 7 | Size 9 5/8 in Set at 229 ft # Jnts: 5 Wt. 32.3 ppf Grade H-40 Hole Size 12 1/4 in Conn STC Excess Cmt 125 % Csg Shoe TD of 12-1/4" hole Notified BLM @ 11:45 hrs on 05-N | + 3% \$001 Calcium Chloride + 0.25 lb/sx D029 Cellophane Flakes 1.16 cuft/sx, 174.0 cuft slurry at 15.8 ppg Displacement: 14.7 bbls fresh wtr Bumped Plug at: 01:30 hrs w/ 471 psi Final Circ Press: Returns during job: YES CMT Returns to surface: 12 bbls Floats Held: No floats used W.O.C. for 6.00 hrs (plug bump to start NU BOP) | | | Displacement: 149 bbs Bumped Plug at: 1931 hrs wit 1399 psi Final Circ Press: Returns during job: YES | Size 7 in 91 jts Set at 3746 ft 0 pups Wt. 20 ppf Grade J-55 Hole Size 8 3/4 in Conn STC Excess Cmt 150 % Top of Float Collar T.O.C. SURFACE Bottom of Casing Shoe Pup @ ft TD of 8-3/4" Hole Pup @ ft Notified BLM @ 10:44 hrs on 10-N | Date cmt'd: 11-Nov-04 Lead: 400 sx Class G Cement + 0.25 lb/sx D029 Cellophane Flakes + 3% D079 Extender + 0.20% D046 Antifoam + 10.00 lb/sx Phenoseal 2.72 cuft/sx, 1088.0 cuft slurry at 11.7 ppg Tail: 220 sx 50/50 POZ: Class G Cement + 0.25 lb/sx D029 Cellophane Flakes + 2% D020 Bentonite + 1.50 lb/sx D024 Gilsonite Extender + 3% S001 Calcium Chloride + 0.10% D046 Antifoam + 6 lb/sx Phenoseal | | | Size 4 1/2 182 182 | | Bumped Plug at: 19:31 hrs w/ 1399 psi Final Circ Press: Returns during job: YES CMT Returns to surface: 70 bbls Floats Held: X Yes No W.O.C. for 6.00 hrs (plug bump to start NU BOP) | • | | Top of Float Collar 7950 ft Bottom of Casing Shoe 7951 ft TD of 8-3/4" Hole: 7951 ft Schematic prepared by: Michael P. Neuschafer, Drilling Engineer 17-November-2004 9-5/8" Surf: No float equipment was run. Ran a guide shoe and an aluminum baffle plate 1 jt above the guide shoe @ 186'. Displaced top wiper plug with water. Shut in casing head and WOC before backing out landing jt. CENTRALIZERS @ 219', 142', 100', 58'. Total: 4 DISPLACED WI 149.0 BBLS. DRILL WATER. CENTRALIZERS @ 3736', 3661', 3579', 3497', 3415', 3333', 205', 81', 40'. TURBOLIZERS @ 2757', 2716', 2675', 2633', 2582'. | Size 4 1/2 bit 182 bits its 2 bits 2 bits 2 bits 3 4 bits 3 bits 3 bits 3 bits 3 bits 3 bits 4 bits< | Used Date cmt'd: 16-Nov-04 | | | COMMENTS: Michael P. Neuschafer, Drilling Engineer 17-November-2004 | Top of Float Collar
Bottom of Casing Shoe | Returns during job: None Planned CMT Returns to surface: None Planned Floats Held: X Yes No | | | | 9-5/8" Surf: No float equipment was run. Ran a guidd Displaced top wiper plug with water. Shu CENTRALIZERS @ 219', 142', 100', 58'. 7" Intermediate DISPLACED W/ 149.0 BBLS. DRILL WA CENTRALIZERS @ 3736', 3661', 3579'. | Michael P. Neuschafer, Drilling Engineer 17-November-2004 shoe and an aluminum baffle plate 1 jt above the guide shoe @ 186'. In casing head and WOC before backing out landing jt. ER. Total: 4 | | . | SAN JUAN 2 | | | Service of the servic | Summary | | | il Comp | | |-------------------------|--|---|--|--|---|--|--|--| | API/UWI
300392759200 | County
RIO ARRIBA | State/Province
NEW MEXIC | | gal Location
29N-06W-14-O | N/S Dist. (ft)
355.0 | N/S Ref.
S | E/W Dist. (ft)
1445.0 | E/W Ref. | | Ground Elevation (ft) | Spud Date | 1 - | Release Date | Latitude (DMS)
36° 43' 9.768" N | • | Longitude (DMS)
107° 25' 39.6 | AO" \A/ | | | 6528.00 | | 7/2004 | 1/16/2004 | 30° 43° 9.700° N | | 107 25 39.0 | | | | Start Date | KIPO ATERONOMOGO NO SESSON | CONTRACTOR CONTRACTOR | | Ops This Rpt | r sama para arti di sa su un a ilimitat de su di | PRESENTE METER INVESTMENT | ROSTOLES ESTA | | | 11/18/2004 07:00 | | | | RGER PRESSURED U
26' TO 2200'. RAN GR | | | | 26' TO 2500'. | | 11/20/2004 07:00 | HELD PRE-JOB SAF
TOOL. SWI. | ETY MEETING. | RU ISOLATION 1 | OOL. TESTED 4 1/2" | CSG TO 6700 # FC | R 30 MIN. HE | ELD OK. RD I | SOLATION | | | GUN. PERFORATE
TOTAL OF 75 HOLE
#. SET POP OFF @
STEPPED DOWN R.
2108 #. STEPPED D
25 MIN 512 #. 30 M
SLICKWATER @ 1.: | ED FROM 7790' ES @ 0.34 DIA. F
6300 #. BROKE
ATE TO 38 BPM (
OWN RATE TO
IN 406 #. PUMPI
25 g/mg FR, 40,0 | - 7872' W/ 2 SPF
RU ISOLATION T
E DOWN FORMA
@ 2630 #. STEP
10 BPM @ 1853
ED 1000 GALS C
00 # 20/40 CARE | ED THE DAKOTA. RIH, 7834' - 7846' W/ 2 SP
COL. RU SCHLUMBER
TION @ 5 BPM @ 184
PED DOWN RATE TO 3
#. ISIP 1740 #. 5 MIN
OF 15% HCL ACID @ 7
COLITE SAND & 4340 E
5 40 # PER GAL. ISIP | PF, 7854' - 7858' W
RGER. FRAC'D TH
7#. PUMPED PF
80 BPM @ 2357#.
1254#. 10 MIN 10
BPM @ 1242#. F
BBLS FLUID. AVG | 7/2 SPF, 7866
HE DAKOTA.
RE PAD @ 45
STEPPED DO
)27 #. 15 MIN
FRAC'D THE [
RATE 50 BPI | S' - 7872' W/2
TESTED LINE
BPM @ 2968
DWN RATE TO
I 837 #. 20 M
DAKOTA W/
M. AVG PRE | SPF. A
ES TO 8000
#.
O 20 BPM @
IIN 655 #. | | 12/01/2004 07:00 | HELD SAFETY MEE WELLHEAD. RIH W MEN/PL W/3 1/8" 90 1/2 SPF, 5616' - 562 1/2 SPF. A TOTAL (OFF @ 6300 #. BR TO 30 BPM @ 177 # @ 60 #. FRAC'D TH LAST 15% OF TOTA BBLS FLUID. AVG I #. FRAC GRADIEN' PERFORATED THE | TING. RU BLUE / 4 1/2" COMPOS DEGREE SELEC 24' W/ 1/2 SPF, 5 DF 37 HOLES W/ OKE DOWN FOR 5. STEPPED DON IE MEN & PL W/ NL PROPPANT W RATE 55 BPM. A F .44. RIH W/ 4 1/ CH & MEN W/ 3 N/ 1/2 SPF, 5292 | JET. COULD NO
ITE PLUG. SET
OT FIRE PERFOR
6644' - 5652' W/
0.34 DIA. RU SC
MATION @ 5 BR
WN RATE TO 20
65 Q SLICK FO/
OLUME WITH PR
AVG PRISSURE
2" COMPOSITE
1/8" 90 DEGREE | 2.44 FPER GAL. ISIP
DT GET IN HOLE BECA
PLUG @ 5830'. TESTE
RATING GUN. PERFOR
1/2 SPF, 5664' - 5674'
CHLUMBERGER. FRAC
M @ 2598 #. PUMPE
BPM @ 53 #. ISIP 0 #
AM W/ 1 G/MG FR, 150
ROPNET FOR PROPPA
2884 #. MAX PRESSUR
PLUG. SET PLUG @ 5
SELECT FIRE PERFOR
SPF, 5349' - 5355' W/ 1 | USE WELLHEAD NED PLUG TO 4800: RATED FROM 550 W/ 1/2 SPF, 5687* C'D THE MEN/ PL. D PRE PAD @ 40 PUMPED 1000 1,000 # OF 16/30 B NT FLOWBACK C RE 3404 #. MAX S 1406'. TESTED PLI RATING GUN. PEF | WAS FROZEN #. HELD OK. 8' - 5516' W/ 1 - 5699' W/ 1/ TESTED LINE BPM @ 809 # GALS OF 159 RADY SAND A CONTROL. 1,8 EAND CONS 1 JG TO 4800 # RFORATED FF | I. THAWED C
PERFORATE
/2 SPF, 5570'
2 SPF, 5726'
ES TO 8000 #
#. STEPPED D
% HCL ACID (
AND TREATE
128,400 SCF N
I. 5 # PER GAI
F. HELD OK.
ROM 5228' - 5 | UT ED THE - 5580' W/ - 5730' W/ SET POP DOWN RATE 0 10 BPM ED THE 12 & 1519 L. ISIP 2043 | | | 5 BPM & 3100 #. F
791#. STEP TO 10 E
65 Q SLICK FOAM
VOLUME WITH PRO
AVG PSI= 2410 #. N
FRAC EQUIP. RD S | PUMPED PRE PA
BPM & 93# ISIP (
W/ 1 G/MG FR, 1
DPNET FOR PRO
MAX PSI= 2620 #
TINGER ISOLATIO | D @ 40 BPM & 2
) #. PUMPED 1
100,000 # OF 16/
)PPANT FLOWB.
. MAX SAND CO
ON TOOL. OPEN | ED LINES TO 8000 #. S
601 #. STEPPED RATE
000 GALS OF 15% HC
80 BRADY SAND AND
ACK CONTROL. 1,2
0NS 1.5 # PER GAL. IS
WELL TO FLOW ON 1
SJ 29-6#107M , ROAD | E TO 31 BPM & 15
L ACID @ 10 BPM
TREATED THE L
66,700 SCF N2 &
SIP 1669 #. FRAC
4/64" CHOKE. | 66 #. STEPPE
@ 184 #. FR
AST 15% OF ⁻
1059 BBLS FL
GRADIENT .4 | ED RATE TO
PAC'D THE ME
TOTAL PROP
JUID. AVG RA
14. RD SCHL | 20.5 BPM &
EN /CH W/
PPANT
ATE 40 BPM.
UMBERGER | | | CREWS. SPOT UNIT
CSG. DOWN. SET H
HANGER. RU AIR LI | T. UNLOAD AND S
HANGER ND FRA
NES.PREP TO RI | SPOT EQUIPMEN
AC VALVE AND S
U BLOOIE LINES | IT. RU UNIT AND EQUI
POOL. NU BOPE. TES
AND SET CONCRETE | PMENT. SICP=420
T BOPE TO 250#
BLOCKS. | #. RU 2" HAR E
LOW, AND 30 | D LINE TO PIT
100# HIGH. PC | C BLEED
DOH W/ | | | LINE. RU BLOOIE LI
ELEVATORS NOT F
W/ TURNED DOWN | NE. SET CONCR
UNCTIONING PF
COLLARS TO 28 | ETE BLOCKS. M
ROPERLY. WAIT
135'. SECURE WE | WAYS TO PREVENT IN
U BIT SUB AND 3 7/8"
FOR NEW ELEVATOR:
ELL. DRAIN EQUIPMEN | 4 BLADED MILL O
S. TIH PICKING UF
T. SDFN. | N JT OF 2 3/8'
P FROM FLOA | " TBG. SLIP G
AT W/ 90 JTS : | GRIP
2 3/8" TBG | | | MIST. UNLOAD HOI
FILL FROM 5153' TO
AROUND MILL. LOS
1700# WITHIN MINU | LE @ 2913'. CON
) 5184' W/ 1 JT.W
IT CIRCULATION
ITES. (TBG. IS PI | ITINUE TO TIH V
VENT THROUGH
, WORK TO RE (
LUGGED.) POOH | ENTS AND WAYS TO
// 71 JTS 2 3/8". TAG F
SAND BRIDGE. HIGH
SAIN CIRCULATION. UI
I W/ 123 JTS. C/O MILL | ILL @ 5153'. RU A
PRESSURES BEL
VABLE. POOH W/
DRAIN EQUIPME | IR, BREAK CI
OW BRIDGE.
40 JTS. RU A
NT. SECURE ' | RCULATION ,
BLEW FLUID
IR , PRESSUF
WELL SDFN, | AND C/O
AND SAND
RE UP TO | | | TIH W/ 3 7/8" MILL, I
TO TIH W/ 23 JTS .
5250'.CIRCULATE C
SICP= 400#, PJSM \ | BIT SUB ,STRING
TAGGED FILL @
LEAN. POOH W/
W/ CREWS. DISC | S FLOAT AND 14
5152', BREAK C
4 JTS 2 3/8" TBC
CUSSED DAYS E | ENTS AND WAYS TO
0 JTS 2 3/8" TBG. BRE
IRCULATION W/ AIR. 1
6. DRAIN EQUIPMENT.
VENTS AND WAYS TO
106 W/ AIR ASSIST. RU | AK CIRCULATION
UNLOAD HOLE. C
SECURE WELL S
PREVENT INCIDI | W/ AIR. UNLO
O FILL FROM
D F HOLIDAY
ENT. BWD, TII | OAD HOLE, O
1 5152' TO
'WE.
H W/5 JTS AN | ONTINUE | | | JTS AND TAG FILL | @ 5514'. UNLOA | D HOLE AND C | O FILL FROM 5514' TO
G. DRAIN EQUIPMENT | CBP @ 5640' W/ | AIR ASSIST. | CIRCULATE | CLEAN. | | SAN JUAN 2 | 96 UNIT | #104M | | | | esekilekanik il e ilkinjel | Initi | al Com | pletion | |--------------------------------------|--|--|---|--|--|---|---|---|---| | | | al de les des | ilin nin | Daily | [,] Summary | | | na, antaniski jelik.
Nasila sapasala | an same and in 1540 b.
Same and and a same | | API/UWI
300392759200 | County
RIO AR | L | ate/Province | | Legal Location
M-29N-06W-14-O | N/S Dist.
355 | ` ' | E/W Dist. (ft)
1445.0 | E/W Ref. | | Ground Elevation (ft) | Sp | ud Date | Rig | Release Date | Latitude (DMS) | | Longitude (DMS | 5) | | | 6528.00 |) | 11/07/200 | 4 | 11/16/2004 | 36° 43' 9.768" N | <u> </u> | 107° 25' 39 | .648" W | | | Start Date | | es ancomputation and | en e | naginisainas en maseus. | Ons This Ro | t | eren egeljálsokokok | | STACK MARKS CONTROLS | | | BLOOIE T. TII
C/O FILL FRO
ATMOSPHER
FLOW TEST
MV PERFS 5
FLOW UP CS
2 3/8" TBG S
SITP= N/A | H W/ 16 JTS `
DM 5658' TO (
E.
IS AS FOLLO
228'- 5730'.
G W/ 1/2" CH | TBG. AND
CBP @ 58
DWS. | O TAG FILL @ 5
330'. CIRCULATI | 'S EVENTS AND WA
658'. RU POWER SI
E CLEAN. (PUH TO S
DKE COEFICIENT O | WIVEL. BREAK CIR(
5479" MID PERF) FL | CULATION W/ A | NR/MIST. UNL | OAD HOLE. | | | LD SWIVEL.
TBG. PREP T | SSED BY G. I
POOH W/ 18:
O LOG MV. S | NUNEZ W
5 JTS 2 3
SECURE V | VELL AND SDFI | L AND BIT SUB. MU | | | | | | | NO FILL. BRE
LOGGING OF
COMPLETION
FLOW @ 95#
SECURE WE | EAK CIRCULA
PERATIONS)
N PROFILE &
F. (380# CSG
LL SDFN. | ATION W/
.RU FLOV
AFTER F
i). LOG M | AIR. UNLOAD I
V LINE TO TBG.
RAC LOGGING
V INTERVAL. P | s and ways to prevented in the control of contr | CLEAN. POOH W/2
I H&H WIRELINE, RI
V PERFS. OPEN WE
ETRIVE DATA. RD S | 21 JTS TO 5150'
H W/ EOT LOCA
ELL TO FLOW O
SERVICE COMP | . (TBG SET @
ATOR. POOH,
N 1/2" CHOKE
PANYS. |) 5150' FOR
RU
E. STABILZED | | 01/03/2005 00:00 | MU AND TIH
TO CBP @ 5 | W/ 184 JTS 2
830'. RU SWI | 2 3/8" TBC
/EL. DRIL | 6. TAG FILL @ 5 | ND WAYS TO PREV
5766'. BREAK CIRCI
SRE UP TO 1700#. I
L SDFN. | JLATION W/ AIR MI | ST. UNLOAD H | OLE. C/O FILI | _ FROM 5766' | | | TORQUING U
SPOT. DECID
TAPPERED O | JP W/ 1 POIN
DED TO POOI
DFF. UNABLE | T SET DO
H. RIH W/
TO GET | WN. WORK FO | . RU SWIVEL. CLEA
R 3 HRS STILL NOT
D STRING MILL. TO
) LOCATION TILL TI | MAKING HOLE. CAI
OH W/ 249 JTS AND | LLED ENGINEEI
LD MILL. ALL F | RING. PROBA | BLE TIGHT | | 01/05/2005 00:00
01/06/2005 00:00 | | | | D. MU AND TIH | W/ 3 1/8" PILOT MIL | L. 3 3/4" STRING M | IILL. BIT SUB. S | TRING FLOA | T AND 247 | | | JTS 2 3/8" TE
7856'. MILL C | IG. TAG FILL
IN TIGHT SP | @ 7802'.
OT FROM | . BREAK CIRCU
1 7856' TO 7860' | ILATION W/ AIR, UN
'. CIRCULATE CLEA | ILOAD HOLE. C/O F
N. POOH W/ 200 jts | FILL FROM 7802
2 3/8" tbg. SEC | 2' TO TIGHT S
URE WELL S | POT @
DFN. | | 01/07/2005 07:00 | TBG. LD BHA | A, MU AND T
ED SOLID @ | IH W/ 3 J | TS 2 1/16" TBG, | EVENTS AND WAY
X/O, AND 244 JTS
DEEPER. CIRCULAT | 2 3/8" TBG. TAG FI | LL @ 7802'. C/0 | W/ AIR ASS | IST. TO | | 01/08/2005 00:00 | 7875' NO FIL | L. TOOH W/ | 248 JTS 2 | 2 3/8' AND 3 JTS | EVENTS AND WAY
3 2 1/16" TBG. MU A
7. ELEVATORS BRO | ND RIH W/ EXP CH | <, 1.81" FN AND | 40JTS 2 3/8" | _ | | | SICP= 450#. F
TBG IN HOLE
TRYING TO F
TBG. DROP E
WELL SDFN. | PJSM W/ CRE
E. TIH W/ 188
PULL OUT OF
BALL TO PUM | EWS. DISC
JTS. TAC
TIGHT:
IP OUT CI | CUSSED DAYS
G FILL @ 7808'.
SPOT @ 7860'-
K. PRESSURE L | EVENTS AND WAYS
BREAK CIRCULATI
7856'. WORK TO FF
IP W/ AIR. PRESSUF | S TO PREVENT INC
ON W/ AIR. UNLOA
REE TBG. LOST PAR
RE UP TO 2000# IN I | DENT. BWD, CO
D HOLE. C/O TO
RTIAL CIRCULA
MINUTES. TBG. | ONTINUE TO I
O 7863'. TBG.
TION. POOH
IS PLUGGED. | ORIFT PROD
STUCK
W/ 5 JTS
SECURE | | | TBG. BOTTO
FILL @ 7791' | M TWO JTS I
. BREAK CIR | PLUGGEI
CULATIO | D W/ SAND. CLI
N W/ AIR. UNLI | S EVENTS AND WA'
EAN OUT FN AND C
OAD HOLE. C/O FIL
CHOKE @ SURFAC | CHECK. MU EXP. C
L FROM 7791' TO 7 | K, 1.81" FN AND
'856'. PUH W/ 5 | 248 JTS 2 3/8
JTS 2 3/8" TE | " TBG. TAG | | | FTP= 95#, SIG
3/8" TBG. TAI
POOH W/ 6 J
FILL @ 7871'.
UP TBG. THF
W/ TOOLS. S
BOOT. DO NO | CP= 320#. PJ
G FILL @ 78*
TS TBG. TO 7
POOH, RU P
ROUGH 1/2" (
PINNER IS NO
OT KNOW IF | SM W/ CF
11'. BREA
7706'. PJS
ROTECHI
CHOKE .F
OT TURNI
USEABLE | REWS. DISCUS
K CIRCULATIO
M W/ H&H WIRI
NICS COMPLET
TP STABILIZED
ING. (SCALE FI
E DATA WAS CO | SED DAYS EVENTS N W/ AIR, UNLOAD ELINE AND PROTEC ION PROFILE LOGG 0 @ 55#, SICP= 390# NES IN SPINNER). C DLLECTED.RD SER | AND WAYS TO PR
HOLE. C/O FILL FR
CHNICS. RU SLICK I
BING TOOLS. RIH . C
#. WELL UNLOADIN
DOWN LOAD DATA.
VICE COMPANYS. S | EVENT INCIDED
ROM 7811' TO 76
LINE UNIT. RIH V
DPEN WELL FLO
G FLUID. LOG I
PROTECHNICS
SECURE WELL | NT. BWD, TIH
880'.CIRCULA
W/ EOT LOCA
DWING TO ATI
DAKOTA INTE
COMPUTER
SDFN. | TE CLEAN.
TOR. TAG
MOSPHERE
RVAL. POOH | | SAN JUAN 2 | | #1041 | | | Daily | Summa | ry | | | al Com | olello | |----------------------------------|--|---|--|---|--|----------------------------------|---|--|--|---|---| | API/UWI
300392759200 | County
RIO AF | RRIBA | State/Prov
NEW M | ince | Surface | Legal Location
1-29N-06W-14-0 | | N/S Dist. (ft)
355.0 | N/S Ref.
S | E/W Dist. (ft)
1445.0 | E/W Ref. | | Fround Elevation (ft)
6528.00 | s | Spud Date
11/07/2 | 2004 | Rig Release | e Date
16/2004 | Latitude (DMS)
36° 43' 9.768 | 3" N | | Longitude (DMS)
107° 25' 39. | | | | Start Date | complements. | | 双倍四数数数 经订股股票 | i stanicalno (ne se s | OOKAZAZNA) | Ops Thi | ette periodinaken
S Rot | ww.com. | na processo managemente | 000000000000000000000000000000000000000 | MARCHINE PROFESSION | | 01/13/2005 00:00 | RIH W/ EOT
FLOWING TO
W/ TOOLS. I
FLOAT. LAN
HANGER FO
EQUIPMENT
DK PRODUC | LOCATOR O ATMOSF RETRIVE I ID WELL W OR LEAKS. T. FACILITIE | R, TAG FIL
PHERE W
DATA. TIH
V/ 246 JTS
RU AIR,
ES NOT IN
BE DETER | L @ 7871' / 1/2" CHC H DRIFTIN S, 10', & 6' BLOW WI I PLACE | '. POOH, R
DKE @ SUI
IG W/ 1 JT
' SUB. EO'
ELL AROU
TURN OVE
BY PROTE(| | NTS AND WA
S MEMORY F
TABILIZED @
2 3/8' SUB, 6'
OP OF FN @
O. SD AIR. LET
OR AND WFS I | PROD. LOGG
65# FTP, & 3
2 3/8" SUB, 1
7795'.ND BO
TBG FREE F
FOR PRODUC | ING TOOLS.
90# SICP. LC
JT 2 3/8" TE
PE, NU MAS
FLOW TO PU
CTION. | RIH. OPEN T
OG DK INTER
IG. RU HANG
STER VALVE.
JRGE O2. RD | BG
VAL. POOH
ER W/
CHECK
UNIT AND | | | PRODUCTIC | | | BOPD, 12 | BWPD. | | | | | | | | | (((((FINAL | REPURI | _))))) | • | • | • | | | • | , | • | ı | | | | | | | | | | | |