District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

)

Incident ID	NVF1908732743
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Hilcorp Energy Company	OGRID 372171
Contact Name Jennifer Deal	Contact Telephone 505-801-6517
Contact email jdeal@hilcorp.com	Incident # NVF1908732743
Contact mailing address 382 Road 3100, Aztec NM 87410	

Location of Release Source

Latitude 36.8154221_

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Sunray B 1A	Site Type Gas Well
Date Release Discovered 3/25/2019 @ 11:45am	API# 30-045-23166

Unit Letter	Section	Township	Range	County
Е	15	30N	10W	San Juan

Surface Owner: State Federal Tribal Private (Name: _____

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls) 10.44	Volume Recovered (bbls) 0
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

A release of 10.44bbls of oil/condensate was released due to a water level controller micro-switch pulled away from open/close tabs causing water dump to stay closed. The water carried over to the condensate tank causing the tank to overfill. Nothing was recovered. Switch is being fixed. Release remained inside the berm.

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	NVF1908732743
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>50</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖂 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141	State of New Mexico	Le sident ID	NUE1009720742
Page 4	Oil Conservation Division	District DD	NVF1908732743
I ugo 4		District RP	
		Facility ID	
		Application ID	
I hereby certify that the im regulations all operators an public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name:Jenn Signature: email:jdeal@hilcor	formation given above is true and complete to the best of nerequired to report and/or file certain release notification: nment. The acceptance of a C-141 report by the OCD doe igate and remediate contamination that pose a threat to grower of a C-141 report does not relieve the operator of response ifer Deal	my knowledge and understand that pur s and perform corrective actions for rel es not relieve the operator of liability sl oundwater, surface water, human healt sibility for compliance with any other for Environmental Specialist =5/10/2019 phone:(505) 324-5128	suant to OCD rules and leases which may endanger hould their operations have h or the environment. In ederal, state, or local laws
OCD Only			
Received by:		Date:	

State of New Mexico Oil Conservation Division

Incident ID	NVF1908732743
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: *Each of the following items must be included in the closure report*.

 A scaled site and sampling diagram as described in 19.15.29.11 NMAC

 Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Nam	e:Jennifer Deal	Title:	Environmental Specialist
Signature:		Date:5/10/	2019
email:	_jdeal@hilcorp.com	Telephone:	_505-801-6517
OCD Only			
Received by:	OCD	Date: _	7/1/19
Closure appr remediate co party of com	roval by the OCD does not relieve the responsible pontamination that poses a threat to groundwater, surful pliance with any other federal, state, or local laws	arty of liability shoul face water, human hea and/or regulations.	d their operations have failed to adequately investigate and alth, or the environment nor does not relieve the responsible
Closure App	proved by: _ long him	Date:	7/11/19
Printed Nam	e. Cory	Title	Environmental Specalist

Site layout

Ν

Photographs – Impacted Area (3/25/19)

Field Data

Juneary	-B#1A		Uste 4-26-11
	N. W	nu	1
	40	1	
	8,		-
33' W. WALL	N. BASE T' DEEP	E.BASE 4'DEEP	E. WALL
	S' DEEP	1	
	1		_
	S. Wi	he	

Data table of soil contaminant concentration data

TABLE 1													
	SOIL ANALYTICAL RESULTS												
	SUNRAY B 1A												
					HILCORP ENERGY - L	48 WEST							
Sell Secola Identification	Sample	Field	Benzene	Toluene	Etherline and the second second	Total	Total	Chlorides	GRO	DRO	MRO	MRO+DRO	TPH
Son Sample Identification	Date	Headspace	(mg/kg)	(mg/kg)	Ethylbenzene (mg/kg)	Xylenes	BTEX	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
W Wall	4/26/2019		< 0.000505	< 0.00505	<0.000505	< 0.00152	< 0.00505	12.1	< 0.101	<4.0	<4.0	<4.0	<4.0
W Base	4/26/2019		< 0.0005	< 0.005	< 0.0005	< 0.0015	< 0.005	14	<0.1	<4.0	<4.0	<4.0	<4.0
N Wall	4/26/2019		< 0.0005	< 0.005	< 0.0005	< 0.0015	< 0.005	<10	<0.1	6.14	<4.0	6.14	6.14
E Wall	4/26/2019		< 0.0005	< 0.005	< 0.0005	< 0.0015	< 0.005	13	<0.1	74.00	24	98.00	98.00
S Wall	4/26/2019		< 0.0005	< 0.005	< 0.0005	< 0.0015	< 0.005	11	<0.1	<4.0	<4.0	<4.0	<4.0
E Base	4/26/2019		< 0.0005	< 0.005	< 0.0005	< 0.0015	< 0.005	10.2	<0.1	28.00	8.15	36.15	36.15
NMOCD Standar	ds	NE	10	NE	NE	NE	50	10,000	NE	NE	NE	1,000	2,500

Depth to water determination

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters)

No records found.

PLSS Search:

Section(s): 15

Township: 30N Range: 10W

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

3/28/19 9:08 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Depth to water determination

Info pulled from NMOCD Website for Sunray A 3 (Full permit is attached)

SUNRAY A 3

Site Specific Hydrogeology

A visual site inspection confirming the information contained herein was performed on the well 'SUNRAY A 3', which is located at 36.81462 degrees North latitude and 107.87393 degrees West longitude. This location is located on the Turley 7.5' USGS topographic quadrangle. This location is in section 15 of Township 30 North Range 10 West of the Public Land Survey System (New Mexico Principal Meridian). This location is located in San Juan County, New Mexico. The nearest town is Aztec, located 6.7 miles to the west. The nearest large town (population greater than 10,000) is Farmington, located 19.2 miles to the west (National Atlas). The nearest highway is State Highway 173, located 1.1 miles to the south. The location is on BLM land and is 1,739 feet from the edge of the parcel as notated in the BLM land status layer updated January 2008. This location is in the Animas. Colorado, New Mexico, Sub-basin. This location is located in scation is closated and receives 14.5 inches of rain each year. The vegetation at this location is classified as Colorado Plateau Mixed Bedrock Canyon and Tableland as per the Southwest Regional Gap Analysis Program.

The estimated depth to ground water at this point is 446 feet. This estimation is based on the data published on the New Mexico Engineer's iWaters Database website and water depth data from ConocoPhillips' Cathodic wells. Groundwater data available from the NM State Engineer's iWaters Database for wells near the proposed site are attached. The nearest stream is 192 feet to the northwest and is classified by the USGS as an intermittent stream. The nearest perrenial stream is 2,660 feet to the southwest. The nearest water body is 2,570 feet to the southwest. It is classified by the USGS as an intermittent lake and is 0.3 acres in size. The nearest spring is 8,148 feet to the east. All stream, river, water body and spring information was determined as per the USGS Hydrographic Dataset (High Resolution), downloaded 3/2008. The nearest water well is 8,116 feet to the west. The nearest wetland is a 0.3 acre other located 2,560 feet to the southwest. The slope at this location is 10 degrees to the southwest as calculated from USGS 30M National Elevation Dataset. This information is also discerned from the aerial and topographic map included. The surface geology at this location is SAN JOSE FORMATION-Siltstone, shale, and sandstone with a Sandstone dominated formations of all ages substrate. The soil at this location is 'Rock outcrop-Travessilla-Weska complex, extremely steep' and is well drained and not hydric with severe erosion potential as taken from the NRCS SSURGO map unit, downloaded January 2008. The nearest underground mine is 10.3 miles to the north as indicated on the Mines, Mills and Quarries Map of New Mexico provided.

Depth to water determination

Ν

Determination of water sources and significant watercourses within ½ mile of the lateral extent of the

release

Ν

Photographs – 4/26/19 Sampling Event

South Wall

East Wall and East Base

Photographs – 4/26/19 Sampling Event

West Base

East Base and East Wall

North Wall and North Base

Photographs – 4/26/19 Sampling Event

North Wall

East Wall

West Base

Topographic/Aerial Maps

Ν

Sunray B 1A

- During the period of 4/10 4/15, 2019, Hilcorp hauled a total of ~340 yds of soil to IEI and brought in about 340 yds of clean soil
- Excavation size was approximately 33'x40'x6' deep
- Confirmation sampling occurred on April 26, 2019 at 9:00am. Emmanuel with BLM was onsite with Kurt and directed sampling

Jennifer Deal

From:	Jennifer Deal
Sent:	Tuesday, April 23, 2019 8:10 AM
To:	Cory Minton; Powell, Brandon, EMNRD; whitney thomas (I1thomas@blm.gov);
	Abiodun Adeloye
Cc:	Kurt Hoekstra; Bobby Spearman; Davin LeBoeuf
Subject:	Confirmation Sampling - Sunray B 1A

Good morning,

Hilcorp is providing 48 hour notice of confirmation sampling to occur at the Sunray B 1A on Friday, April 26, 2019 at 9:00am. Please let me know if you have any questions.

Thanks,

Jennifer Deal Environmental Specialist Hilcorp Energy – L48 West jdeal@hilcorp.com 382 Road 3100 Aztec, NM 87410 Office: (505) 324-5128 Cell: (505) 801-6517

ANALYTICAL REPORT

HilCorp-Farmington, NM

Entire Report Reviewed By:

Sample Delivery Group:	L1093382
Samples Received:	04/27/2019
Project Number:	SUN RAY B #1A
Description:	SUN RAY B #1A
Site:	SUN RAY B #1A
Report To:	Jennifer Deal
	382 Road 3100
	Aztec, NM 87401

Dapline R Richards

Daphne Richards Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

ACCOUNT: HilCorp-Farmington, NM PROJECT: SUN RAY B #1A SDG: L1093382 DATE/TIME: 05/06/19 12:13 PAGE: 1 of 17

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

TABLE OF CONTENTS

*

Ср

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
W WALL L1093382-01	5
W BASE L1093382-02	6
N WALL L1093382-03	7
E BASE L1093382-04	8
S WALL L1093382-05	9
E WALL L1093382-06	10
Qc: Quality Control Summary	11
Wet Chemistry by Method 9056A	11
Volatile Organic Compounds (GC) by Method 8015/8021	12
Semi-Volatile Organic Compounds (GC) by Method 8015	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SDG: L1093382 DATE/TIME: 05/06/19 12:13 PAGE: 2 of 17

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

W WALL L1093382-01 Solid			Collected by Kurt	Collected date/time 04/26/19 09:08	Received da 04/27/19 08:	te/time 45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1274268	1	05/03/19 09:40	05/03/19 14:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1273392	1.01	04/29/19 00:18	04/30/19 17:15	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1274151	1	05/02/19 05:10	05/02/19 19:09	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
W BASE L1093382-02 Solid			Kurt	04/26/19 09:12	04/27/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1274268	1	05/03/19 09:40	05/03/19 14:20	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015/8021	WG1273392	1	04/29/19 00:18	04/30/19 17:39	JHH	Mt. Juliet. Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1274151	1	05/02/19 05:10	05/02/19 19:25	TJD	Mt. Juliet, Th
			Collected by	Collected date/time	Received da	te/time
N WALL L1093382-03 Solid			Kurt	04/26/19 09:15	04/27/19 08:	45
Vethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Net Chemistry by Method 9056A	WG1274268	1	05/03/19 09:40	05/03/19 14:29	ELN	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method 8015/8021	WG1273392	1	04/29/19 00:18	04/30/19 18:03	JHH	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1274151	1	05/02/19 05:10	05/02/19 19:41	TJD	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
EBASE L1093382-04 Solid			Kurt	04/26/19 09:23	04/27/19 08:	45
flethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Net Chemistry by Method 9056A	WG1274268	1	05/03/19 09:40	05/03/19 14:37	ELN	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method 8015/8021	WG1273392	1	04/29/19 00:18	04/30/19 18:27	JHH	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1274151	1	05/02/19 05:10	05/02/19 19:57	TJD	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
SWALL L1093382-05 Solid			Kurt	04/26/19 09:26	04/27/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Vet Chemistry by Method 9056A	WG1274268	1	05/03/19 09:40	05/03/19 14:46	ELN	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method 8015/8021	WG1273392	1	04/29/19 00:18	04/30/19 18:50	JHH	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1274151	1	05/02/19 05:10	05/02/19 20:14	TJD	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
E WALL L1093382-06 Solid			Kurt	04/26/19 09:30	04/27/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Net Chemistry by Method 9056A	WG1274268	1	05/03/19 09:40	05/03/19 15:11	ELN	Mt. Juliet, TI
	WG1273392	1	04/29/19 00:18	04/30/19 19:14	JHH	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015/8021						

SDG: L1093382

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Project Manager

Тс Ss Cn Sr Qc Gl AI Sc

SDG: L1093382 DATE/TIME: 05/06/19 12:13 PAGE: 4 of 17 (S) o-Terphenyl

79.0

SAMPLE RESULTS - 01

*

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	12.1		10.0	1	05/03/2019 14:12	<u>WG1274268</u>	
Volatile Organic Comp	ounds (GC	C) by Meth	od 8015/8	021			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000505	1.01	04/30/2019 17:15	WG1273392	
Toluene	ND		0.00505	1.01	04/30/2019 17:15	WG1273392	
Ethylbenzene	ND		0.000505	1.01	04/30/2019 17:15	WG1273392	
Total Xylene	ND		0.00152	1.01	04/30/2019 17:15	WG1273392	
TPH (GC/FID) Low Fraction	ND		0.101	1.01	04/30/2019 17:15	WG1273392	
(S) a,a,a-Trifluorotoluene(FID)	95.4		77.0-120		04/30/2019 17:15	WG1273392	
(S) a,a,a-Trifluorotoluene(PID)	98.4		72.0-128		04/30/2019 17:15	WG1273392	
Semi-Volatile Organic	Compound	ds (GC) by	/ Method 8	3015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.00	1	05/02/2019 19:09	WG1274151	
C28-C40 Oil Range	ND		4.00	1	05/02/2019 19:09	WG1274151	

05/02/2019 19:09

18.0-148

WG1274151

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch
nalyte	mg/kg		mg/kg		date / time	
loride	14.0		10.0	1	05/03/2019 14:20	WG1274268
atile Organic Comp	ounds (GC	C) by Meth	od 8015/8	021		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
te	mg/kg		mg/kg		date / time	
ıe	ND		0.000500	1	04/30/2019 17:39	<u>WG1273392</u>
ie	ND		0.00500	1	04/30/2019 17:39	<u>WG1273392</u>
enzene	ND		0.000500	1	04/30/2019 17:39	<u>WG1273392</u>
Xylene	ND		0.00150	1	04/30/2019 17:39	<u>WG1273392</u>
C/FID) Low Fraction	ND		0.100	1	04/30/2019 17:39	<u>WG1273392</u>
,a,a-Trifluorotoluene(FID)	97.5		77.0-120		04/30/2019 17:39	<u>WG1273392</u>
,a,a-Trifluorotoluene(PID)	102		72.0-128		04/30/2019 17:39	WG1273392
ni-Volatile Organic	Compound	ds (GC) by	Method 8	3015		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
yte	mg/kg		mg/kg		date / time	
28 Diesel Range	ND		4.00	1	05/02/2019 19:25	WG1274151
40 Oil Range	ND		4.00	1	05/02/2019 19:25	WG1274151
o-Terphenyl	86.0		18.0-148		05/02/2019 19:25	WG1274151

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	ND		10.0	1	05/03/2019 14:29	WG1274268
Volatile Organic Comp	ounds (GC	C) by Meth	od 8015/8	021		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND		0.000500	1	04/30/2019 18:03	WG1273392
Toluene	ND		0.00500	1	04/30/2019 18:03	WG1273392
Ethylbenzene	ND		0.000500	1	04/30/2019 18:03	WG1273392
Total Xylene	ND		0.00150	1	04/30/2019 18:03	WG1273392
TPH (GC/FID) Low Fraction	ND		0.100	1	04/30/2019 18:03	WG1273392
(S) a,a,a-Trifluorotoluene(FID)	96.6		77.0-120		04/30/2019 18:03	<u>WG1273392</u>
(S) a,a,a-Trifluorotoluene(PID)	101		72.0-128		04/30/2019 18:03	WG1273392
Semi-Volatile Organic	Compound	ds (GC) by	Method 8	3015		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	6.14		4.00	1	05/02/2019 19:41	WG1274151
C28-C40 Oil Range	ND		4.00	1	05/02/2019 19:41	WG1274151
(S) o-Terphenyl	80.0		18.0-148		05/02/2019 19:41	WG1274151

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	10.2		10.0	1	05/03/2019 14:37	WG1274268	
Volatile Organic Comp	oounds (GC	C) by Meth	od 8015/80	021			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	04/30/2019 18:27	WG1273392	
Toluene	ND		0.00500	1	04/30/2019 18:27	WG1273392	
Ethylbenzene	ND		0.000500	1	04/30/2019 18:27	WG1273392	
Total Xylene	ND		0.00150	1	04/30/2019 18:27	WG1273392	
TPH (GC/FID) Low Fraction	ND		0.100	1	04/30/2019 18:27	WG1273392	
(S) a,a,a-Trifluorotoluene(FID)	97.1		77.0-120		04/30/2019 18:27	WG1273392	
(S) a,a,a-Trifluorotoluene(PID)	100		72.0-128		04/30/2019 18:27	<u>WG1273392</u>	
Semi-Volatile Organic	Compound	ds (GC) by	Method 8	3015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	28.0		4.00	1	05/02/2019 19:57	WG1274151	
C28-C40 Oil Range	8.15		4.00	1	05/02/2019 19:57	<u>WG1274151</u>	
(S) o-Terphenyl	77.4		18.0-148		05/02/2019 19:57	WG1274151	

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	10.8		10.0	1	05/03/2019 14:46	WG1274268	
Volatile Organic Comp	ounds (GC	C) by Meth	od 8015/8	021			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	04/30/2019 18:50	WG1273392	
Toluene	ND		0.00500	1	04/30/2019 18:50	WG1273392	
Ethylbenzene	ND		0.000500	1	04/30/2019 18:50	<u>WG1273392</u>	
Total Xylene	ND		0.00150	1	04/30/2019 18:50	<u>WG1273392</u>	
TPH (GC/FID) Low Fraction	ND		0.100	1	04/30/2019 18:50	<u>WG1273392</u>	
(S) a,a,a-Trifluorotoluene(FID)	98.8		77.0-120		04/30/2019 18:50	<u>WG1273392</u>	
(S) a,a,a-Trifluorotoluene(PID)	103		72.0-128		04/30/2019 18:50	<u>WG1273392</u>	
Semi-Volatile Organic	Compound	ds (GC) by	Method 8	3015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.00	1	05/02/2019 20:14	WG1274151	
C28-C40 Oil Range	ND		4.00	1	05/02/2019 20:14	WG1274151	
(S) o-Terphenyl	83.0		18.0-148		05/02/2019 20:14	WG1274151	

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	13.4		10.0	1	05/03/2019 15:11	WG1274268	
Volatile Organic Comp	ounds (GC	c) by Meth	od 8015/80	021			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	04/30/2019 19:14	WG1273392	
Toluene	ND		0.00500	1	04/30/2019 19:14	WG1273392	
Ethylbenzene	ND		0.000500	1	04/30/2019 19:14	WG1273392	
Total Xylene	ND		0.00150	1	04/30/2019 19:14	WG1273392	
TPH (GC/FID) Low Fraction	ND		0.100	1	04/30/2019 19:14	WG1273392	
(S) a,a,a-Trifluorotoluene(FID)	97.0		77.0-120		04/30/2019 19:14	WG1273392	
(S) a,a,a-Trifluorotoluene(PID)	101		72.0-128		04/30/2019 19:14	<u>WG1273392</u>	
Semi-Volatile Organic	Compound	ds (GC) by	Method 8	3015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	74.0		4.00	1	05/02/2019 20:30	WG1274151	
C28-C40 Oil Range	24.0		4.00	1	05/02/2019 20:30	WG1274151	
(S) o-Terphenyl	94.0		18.0-148		05/02/2019 20:30	WG1274151	

WG1274268

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

¹Cp

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3408105-1 C	05/03/19 11:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		0.795	10.0

Laboratory Control Sample (LCS)

(LCS) R3408105-2 05/03/19 11:56						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Chloride	200	195	97.6	80.0-120		

L1093382-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1093382-06 05/03/19 15:11 • (MS) R3408105-4 05/03/19 15:20 • (MSD) R3408105-5 05/03/19 15:28												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	13.4	511	523	99.5	102	1	80.0-120			2.38	15

PROJECT: SUN RAY B #1A SDG: L1093382 DATE/TIME: 05/06/19 12:13 PAGE: 11 of 17 Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3406920-5 04/30)/19 11:02				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000120	0.000500	
Toluene	U		0.000150	0.00500	
Ethylbenzene	U		0.000110	0.000500	
Total Xylene	U		0.000460	0.00150	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	98.1			77.0-120	
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3406920-1 04/30/	19 09:01 • (LCSI	D) R3406920-2	2 04/30/19 09:	26						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0452	0.0530	90.5	106	76.0-121			15.9	20
Toluene	0.0500	0.0464	0.0535	92.7	107	80.0-120			14.4	20
Ethylbenzene	0.0500	0.0470	0.0546	94.1	109	80.0-124			15.0	20
Total Xylene	0.150	0.138	0.159	91.7	106	37.0-160			14.8	20
(S) a,a,a-Trifluorotoluene(FID)				97.6	98.3	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				101	101	72.0-128				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3406920-3 04/30/	'19 09:50 • (LC:	SD) R3406920	-4 04/30/19 10	:14						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.16	5.84	93.9	106	72.0-127			12.2	20
(S) a,a,a-Trifluorotoluene(FID)				104	105	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				107	108	72.0-128				

ACCOUNT:
HilCorp-Farmington, NM

PROJECT: SUN RAY B #1A SDG: L1093382 DATE/TIME: 05/06/19 12:13 PAGE: 12 of 17 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3407730-1 05/02/	19 17:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	86.9			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3407730-2 05/02/19 18:06 • (LCSD) R3407730-3 05/02/19 18:19											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Extractable Petroleum Hydrocarbon	50.0	34.4	34.5	68.8	69.0	50.0-150			0.290	20	
C10-C28 Diesel Range	50.0	37.3	37.4	74.6	74.8	50.0-150			0.268	20	
(S) o-Terphenyl				105	101	18.0-148					

DATE/TIME: 05/06/19 12:13

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL Method Detection Limit. ND Not detected at the Reporting Limit (or MDL where applicable). RDL Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate: used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to b detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). J The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used if the sample matrix contains an interfering material, the sample analysis will target all analytes recovered or duplicated within these ranges. Original Sample The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG. Qualifier The sociumn provides a letter and/or number designation that corres
ND Not detected at the Reporting Limit (or MDL where applicable). RDL Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (s) Matrix Spike/Duplicate: used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to b detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the isboratory can accurately report. the sample may be diluted for analysis. If a value different than 1 is used in this field, it isboratory can accurately report. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges. Original Sample The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contristing angle. The Original Sample in the prep batch used to determine the Consecutive and Definitional information concerning the reserved. Qualifier The column provides a letter and/or number designation that corresponds to additional information concerning the reserved. Qualifier The on-spiked sample in the prep batch used to determine theulabers and or adaptes for porte
RDL Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (5) Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to b detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample may be diluted for analysis. If a value different than 11 is used in this field, th result reported has already been corrected for this factor. Limits The neares % inference value that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 11 is used in this field, th result reported has already been corrected for this factor. Qualifier The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG. Qualifier The actual analytical final represent, a definition per Qualifier is provided within the Glossary and Definintors page and potentially a discussion of possible imp
Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. Surrogate [Surrogate Standard] - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to b detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor. Limits These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges. Original Sample The Coriginal Sample may not be included within the reported SDG. Qualifier The consplicted for a specific analyte, the result orditional information concerning the result analytical final result (orrected for any sample specific chanacteristics) reported for your sample. If there wand mo
RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to to detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, th result reported has aliready been corrected for this factor. Limits These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges. Original Sample The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contr sample. The Original Sample may not be included within the reported SDG. Qualifier The acuual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there wa no measurable result returned for a
SDG Sample Delivery Group. (5) Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to b detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the higherabilimit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, ti result reported has already been corrected for this factor. Limits The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contr sample. The Original Sample may not be included within the reported SDG. Original Sample The non-spiked sample in the prep batch used to determine the Case Narration concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within thes Gossary and Definitions page and potentially a discussion of possible implications of the Qualifier is provided within the Gossary and Definitions page and potentially a discussion of possible implications of the Qualifier is present a definition per Qualifier is present. Qualifier The non-spiked sample th
(S)Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.UNot detected at the Reporting Limit (or MDL where applicable).AnalyteThe name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.DilutionIf the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, th result reported has already been corrected for this factor.LimitsThe non-spiked sample in the prep batch. Successful QC Sample analysis will target all analyte ser recovered or duplicated within these ranges.Original SampleThe non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.QualifierThis column provides a letter and/or number designation that corresponds to additional information concerning the res reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentality addiscussion of possible implications of the Qualifier in the case Narrative if applicable.QualifierConfidence level of 2 sigma.ResultConfidence level of 2 sigma.ResultA brief discussion about the included sample results, includin
U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, th result reported has already been corrected for this factor. Limits These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges. Original Sample The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contr sample. The Original Sample may not be included within the reported SDG. Qualifier This column provides a letter and/or number designation that corresponds to additional information concerning the reportent. If a Qualifier is present, a definition per Qualifier is provided within these case. Result Confidence level of 2 sigma. Result Confidence level of 2 sigma. Case Narrative (Cn) A brief discussion about the includes sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory or
Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor. Limits These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges. Original Sample The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contrest as more reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable. Result The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could dete or report for this analyte. Qualifier Confidence level of 2 sigma. Result Confidence level of 2 sigma. <
DilutionIf the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.LimitsThese are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.Original SampleThe non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contr sample. The Original Sample may not be included within the reported SDG.QualifierThis column provides a letter and/or number designation that corresponds to additional information concerning the ree reported. If a Qualifier is previded within the Case Narrative if applicable.ResultResult analytical final result (corrected for any sample specific characteristics) reported for your sample. If there wa no measurable result returned for a specific analyte, the results column should always be accompanied by either an MDL (Method Detectable Levels). The information in the results column should always be accompanied by either an MDL (Rediochemistry)Case Narrative (Cn)A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample results of the laboratory from the field or during the analytical process. If present, there will be accion in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
LimitsThese are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.Original SampleThe non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contr sample. The Original Sample may not be included within the reported SDG.QualifierThis column provides a letter and/or number designation that corresponds to additional information concerning the respondent of a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.ResultThe actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there wa no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could dete or report for this analyte.Uncertainty (Radiochemistry)Confidence level of 2 sigma.Case Narrative (Cn)A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported analytical perior do your samples. These analyses are not be a section in the Case Narrative to discuss the meaning of any data qualifie
Original SampleThe non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contr sample. The Original Sample may not be included within the reported SDG.QualifierThis column provides a letter and/or number designation that corresponds to additional information concerning the res reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.ResultThe actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there wa no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could dete or report for this analyte.Uncertainty (Radiochemistry)Confidence level of 2 sigma.Case Narrative (Cn)A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.Quality Control Summary (Qc)This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported draterial
QualifierThis column provides a letter and/or number designation that corresponds to additional information concerning the rest reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.ResultThe actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there wa no measurable result returned for a specific characteristic characteristics) reported for your sample. If there wa no measurable result returned for a specific characteristic characteristic of the ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could dete or report for this analyte.Uncertainty (Radiochemistry)Confidence level of 2 sigma.Case Narrative (Cn)A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.Quality Control Summary (Qc)This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples troically by the validity of the results reported for your samples. These analyses are not being performed on your samples troically by the plaboratory quality control analyses requ
ResultThe actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there wa no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could dete or report for this analyte.Uncertainty (Radiochemistry)Confidence level of 2 sigma.Case Narrative (Cn)A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.Quality Control Summary (Qc)This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples topically, but on laboratory control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples topically. But on laboratory control was the value of an your samples topically. But on laboratory control was the performed on your samples topically but on laboratory control of your samples. These analyses are not being performed on your samples topically but on laboratory control analyses are not being performed on your samples topically but on laboratory control was to analytical methods to assist in evaluating the validity of the re
Uncertainty (Radiochemistry) Confidence level of 2 sigma. Case Narrative (Cn) A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report. Quality Control Summary (Qc) This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples twoically, but on laboratory concreted material
Case Narrative (Cn) A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report. Quality Control Summary (Qc) This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not
Quality Control Summary (Qc) This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material
being penomied on your sumples typically, but on aboratory generated material.
Sample Chain of Custody (Sc) This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr) This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss) This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates at times of preparation and/or analysis.
Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PROJECT: SUN RAY B #1A SDG: L1093382 DATE/TIME: 05/06/19 12:13 PAGE: 14 of 17

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebr
Alaska	17-026	Neva
Arizona	AZ0612	New
Arkansas	88-0469	New
California	2932	New
Colorado	TN00003	New
Connecticut	PH-0197	North
Florida	E87487	North
Georgia	NELAP	North
Georgia ¹	923	North
ldaho	TN00003	Ohio
Illinois	200008	Oklal
Indiana	C-TN-01	Oreg
lowa	364	Penn
Kansas	E-10277	Rhod
Kentucky ¹⁶	90010	South
Kentucky ²	16	South
Louisiana	AI30792	Tenn
Louisiana ¹	LA180010	Texa
Maine	TN0002	Texa
Maryland	324	Utah
Massachusetts	M-TN003	Verm
Michigan	9958	Virgin
Minnesota	047-999-395	Wash
Mississippi	TN00003	West
Missouri	340	Wisco
Montana	CERT0086	Wvor

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ^{1 4}	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

HilCorp-Farmington, NM

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

SUN RAY B #1A

L1093382

PAGE: 15 of 17

05/06/19 12:13

Τс Ss Cn Sr Qc Gl AI Sc

			Billing Inform	nation:			1913		Ana	alysis / Cont	ainer / Pres	ervative			Chain of Custody	Page of
HilCorp-Farmington, N 382 Road 3100	M		PO Box 61529 Houston, TX 77208												Pace A National Cent	nalytical [®] er for Testing & Innovation
Aztec, NIVI 87401		diff.	Khoe	estvere!	nilcorp.co	an					1.1			1.25	12065 Lebanon Rd	
Report to: JENNIFER DEAL Project			Email To:	City/State Collected:	p-com		o, weo								Mount Juliet, TN 371 Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859	791
Client Project #				Lab Project #	and a second		38								-	30-
Fax:						0'0							Table # + ()70		
Collected by (print):	SUDERY B# 1A			P.O. #	0	aq-9	1	P					Acctnum: HILCORANM Template:			
Collected by (signature) Kut Hoe klike Immediately Bocked on Ice N X X	Rush? (L Same Da Next Day Two Day Three Day	ab MUST Be y X Five y 5 Da y 10 D ay	Notified) Day y (Rad Only) Day (Rad Only)	Quote #	sults Needed	No. of	SIDE He	TEX 802	101210						Prelogin: TSR: 288 - Dap PB: Shipped Via:	nne Richards
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	F	BT	3						Remarks	Sample # (lab only)
AL ALANA	Como	(501)		4-26	9:08	1	x	X	X							
N. RACE	111	1)		1,	9:12	1	X	X	X	-					an a sha gayarta sana daa	
W, DADE	11	1)	the second	11	9:15	1	X	X	X			North State				
N, WALL	11	11		N)	9:23	1	X	X	X							
E, BASE	l p	N		11	9:26	1	X	X	X		1.00 A.		in see		energian dir beginnen Stradis	
5. WALL	n	N		1)	9:30	1	X	X	X							
				and the second s												
		- Carlotter				14										
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	Remarks:		South State	pH Temp COC Seal Present/I COC Signed/Accurat Bottles arrive int Correct bottles us					Sample Receipt 1 Present/Intac ned/Accurate: arrive intact: bottles used: ont volume sent	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ t \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $						
	Samples ret	Tracking #		73	15	89	147	5010	2 a		VOA Zer	If Application Headspace:	hecked: Y			
Relinquished by (Signature)		Date:	26-19	Time: 3:12	Received by: (Sign	nature)				Trip Blank	Received:	Yes / No HCL / M TBR	eoH	If process	vation required by	ogin: Date/Time
Relinquished by : (Signature)	~	Date:		Time:	Received by: (Sig	nature)				Temp: 4.2.50 :	·C E	sottles Receiv	2 2	if preserv	vacion required by	
Relinquished by : (Signature)		Date:		Time:	Received for lab	by: (Sigi	Signature)				Date: Time: 4 27 19 845			Hold:		NCF / OK

Pyrene	1,000 mg/kg2					
Organic Compounds in G	round Water					
Benzone	<5 µg/l₃					
Teluene	<560 µg/l₃					
Toluene	<700 μg/l₃					
Ethylpenzene Vulanes (Total)	<1,400 μg/l _{3,4}					
Inorganics in So	oils					
Electrical Conductivity (EC)	< 1.1x background					
Sedium Adsorption Ratio (SAR)	<125					
	6-9					
Inorganics in Groun	d Water					
Total Dissolved Solids (TDS)	<1.25 x background ₃					
Total Dissolved Solids (196)	<1.25 x background3					
Chiorides	<1.25 x background ₃					
Metals in Soi	ls					
Amonio	0.39 mg/kg2					
Arsenic Barium (I DNR True Total Barium)	15,000 mg/kg2					
Barron (Hot Water Soluble)	2 mg/l3					
Boroll (Hot Water Soluble)	70 mg/kg3,6					
Cadmium Chromium (III)	120,000 mg/kg ²					
Chromium (//)	23 mg/kg2,6					
	3,100 mg/kg2					
Copper	400 mg/kg2					
Lead (inorganic)	23 mg/kg2					
Mercury	1,600 mg/kg _{2,6}					
NICKEI (SOIUDIE Saits)	390 mg/kg2,6					
Selenium	390 mg/kg2					
Silver	23.000 mg/kg2,6					
Zinc	and Ground Water					
Liquid Hydrocarbons including condensate and oil	Below detection level					
Liquid nydrocarbons including condensate and on						

SUNRAY A 3

Site Specific Hydrogeology

A visual site inspection confirming the information contained herein was performed on the well 'SUNRAY A 3', which is located at 36.81462 degrees North latitude and 107.87393 degrees West longitude. This location is located on the Turley 7.5' USGS topographic quadrangle. This location is in section 15 of Township 30 North Range 10 West of the Public Land Survey System (New Mexico Principal Meridian). This location is located in San Juan County, New Mexico. The nearest town is Aztec, located 6.7 miles to the west. The nearest large town (population greater than 10,000) is Farmington, located 19.2 miles to the west (National Atlas). The nearest highway is State Highway 173, located 1.1 miles to the south. The location is on BLM land and is 1,739 feet from the edge of the parcel as notated in the BLM land status layer updated January 2008. This location is in the Animas. Colorado, New Mexico, Sub-basin. This location is located 1984 meters or 6507 feet above sea level and receives 14.5 inches of rain each year. The vegetation at this location is classified as Colorado Plateau Mixed Bedrock Canyon and Tableland as per the Southwest Regional Gap Analysis Program.

The estimated depth to ground water at this point is 446 feet. This estimation is based on the data published on the New Mexico Engineer's iWaters Database website and water depth data from ConocoPhillips' Cathodic wells. Groundwater data available from the NM State Engineer's iWaters Database for wells near the proposed site are attached. The nearest stream is 192 feet to the northwest and is classified by the USGS as an intermittent stream. The nearest perrenial stream is 2,660 feet to the southwest. The nearest water body is 2,570 feet to the southwest. It is classified by the USGS as an intermittent lake and is 0.3 acres in size. The nearest spring is 8,148 feet to the east. All stream, river, water body and spring information was determined as per the USGS Hydrographic Dataset (High Resolution), downloaded 3/2008. The nearest water well is 8,116 feet to the west. The nearest wetland is a 0.3 acre other located 2,560 feet to the southwest. The slope at this location is 10 degrees to the southwest as calculated from USGS 30M National Elevation Dataset. This information is also discerned from the aerial and topographic map included. The surface geology at this location is SAN JOSE FORMATION-Siltstone, shale, and sandstone with a Sandstone dominated formations of all ages substrate. The soil at this location is 'Rock outcrop-Travessilla-Weska complex, extremely steep' and is well drained and not hydric with severe erosion potential as taken from the NRCS SSURGO map unit, downloaded January 2008. The nearest underground mine is 10.3 miles to the north as indicated on the Mines. Mills and Quarries Map of New Mexico provided.

Regional Hydrogeological context:

The San Jose Formation of Eocene age occurs in New Mexico and Colorado, and its outcrop forms the land surface over much of the eastern half of the central basin. It overlies the Nacimiento Formation in the area generally south of the Colorado-New Mexico State line and overlies the Animas Formation in the area generally north of the State line. The San Jose Formation was deposited in various fluvial-type environments. In general, the unit consists of an interbedded sequence of sandstone, siltstone, and variegated shale. Thickness of the San Jose Formation generally increases from west to east (200 feet in the west and south to almost 2,700 feet in the center of the structural basin). Ground water is associated with alluvial and fluvial sandstone aquifers. Thus, the occurrence of ground water is mainly controlled by the distribution of sandstone in the formation. The distribution of such sandstone is the result of original depositional extent plus any post-depositional modifications, namely erosion and structural deformation. Transmissivity data for San Jose Formation are minimal. Values of 40 and 120 feet squared per day were determined from two aquifer tests (Stone et al, 1983, table 5). The reported or measured discharge from 46 water wells completed in San Jose Formation ranges from 0.15 to 61 gallons per minute and the median is 5 gallons per minute. Most of the wells provide water for livestock and domestic use. The San Jose Formation is a very suitable unit for recharge from precipitation because soils that form on the unit are sandy and highly permeable and therefore readily adsorb precipitation. However, low annual precipitation, relatively high transpiration and evaporation rates, and deep dissection of the San Jose Formation by the San Juan River and its tributaries all tend to reduce the effective recharge to the unit.

Stone et al., 1983, Hydrogeology and Water Resources of the San Juan Basin, New Mexico: Socorro, New Mexico Bureau of Mines and Mineral Resources Hydrologic Report 6, 70 p.

New Mexico Office of the State Engineer

D	E
1000	1 At
1 020	
	L 1.7 A

Township: 30N	Range: 10W Section	is:
NAD27 X:	Y: Zone:	Search Radius:
County: Basin	:	Number: Suffix:
Owner Name: (First)	(Last)	C Non-Domestic C Domestic @ A
POD / Surface Data Report	Avg Depth to	Water Report Water Column Report

WATER COLUMN REPORT 08/21/2008

	(quarter	s are	e 1=	NW	2=N	E 3=SW 4=SE)							
	(quarter	s are	e bi	gge	st	to smallest)			Depth	Depth	Water	(in	feet)
POD Number	Tws	Rng	Sec	P	a a	Zone	x	Y	Well	Water	Column		
SJ 00050	30N	10W	02	1	3 2				520	306	214		
SJ 03460	30N	1.0W	02	1	3 2				520	500	20		
SJ 03230	3 ON	10W	03	1	2 1				120	70	50		
SJ 03113	30N	1.0W	05	4	14				42	30	12		
SJ 00589	30N	10W	08	1	1 1				175	150	25		
SJ 00774	30N	10W	08	1	2 1				195	160	35		
SJ 02316	30N	10W	08	1	3				210	98	112		
SJ 02102	30N	10W	08	1	3 4				190	90	100		
SJ 01527	30N	10W	08	2	2				120	60	60		
SJ 01193	30N	10W	08	2	2				100	70	30		
SJ 02808	30N	10W	08	2	3 4				165	105	60		
SJ 01102	30N	10W	08	2	4				200	159	41		
SJ 02998	30N	10W	08	3	3 1				260	117	143		
SJ 02772	30N	10W	08	4	2 2				200	160	40		
SJ 00523	30N	10W	80	4	4				160	120	40		
SJ 01362	30N	10W	20	1	3 3				238	190	48		
SJ 03442	30N	10W	20	1	4 1				200				
SJ 02782	30N	10W	20	1	4 4				250				
SJ 02797	30N	10W	20	2	4 1				70				
SJ 00024	30N	10W	23	2	4 2				305				
SJ 00051	30N	10W	23	2	4 2				305				
SJ 00197	30N	10W	23	4	2				975	500	475		
SJ 00010	30N	10W	24	2					292				
SJ 01116	30N	10W	33	2	1				105	45	60		
SJ 01059	30N	10W	34	1	2 4				115	75	40		
SJ 01182	30N	10W	34	1	3 3				235	125	110		

Record Count: 26