District I

1625 N French Dr , Hobbs, NM 88240

District II

1301 W Grand Ave , Artesia, NM 88210

District III

State of New Mexico Energy Minerals and Natural Resources

Department Oil Conservation Division 1220 South St. Francis Dr. Form C-144 July 21, 2008

For temporary pits, closed-loop sytems, and below-grade tanks, submit to the appropriate NMOCD District Office

	٦.	_	
$\overline{}$	/ /	`	`
١	l)	. ``	•
	$\overline{}$	~	

1000 Rio Brazos Rd , Aztec, NM 87410	Santa Fe, NM 87505	For permanent pits and exceptions submit to the Santa Fe
District IV 1220 S St Francis Dr , Santa Fe, NM 87505		Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.
	Closed-Loop System, Below	-Grade Tank, or
V 1 1 1 -	Alternative Method Permit or	
Type of action:	Permit of a nit closed-loop system, below-	grade tank, or proposed alternative method
		y-grade tank, or proposed alternative method
	Modification to an existing permit	finde talk, or proposed attendance hediod
=	• •	g permitted or non-permitted pit, closed-loop system,
	pelow-grade tank, or proposed alternative	
Instructions: Please submit one applica	ntion (Form C-144) per individual pit, clo	osed-loop system, below-grade tank or alternative request
		perations result in pollution of surface water, ground water or the
environment. Nor does approval relieve the	operator of its responsibility to comply with any other a	applicable governmental authority's rules, regulations or ordinances
Operator: Burlington Resources Oil & G	as Company, LP	OGRID#: <u>14538</u>
Address: P.O. Box 4289, Farmington, N	M 87499	
Facility or well name: HUERFANITO U	NIT 98S	
API Number:	-34572 OCD Permi	t Number
U/L or Qtr/Qtr: A(NE/NE) Section:	35 Township: 27N Range	e: 9W County: San Juan
Center of Proposed Design: Latitude:	36.535718 °N Longitud	le: <u>107.75155</u> °W NAD: <u>1927</u> 1983
Surface Owner: X Federal	State Private Tribal Trust of	or Indian Allotment
X Pit: Subsection F or G of 19 15 17 11 N Temporary. X Drilling Workover Permanent Emergency Cavitat X Lined Unlined Liner tyl X String-Reinforced Liner Seams X Welded X Factory	ion P&A	PE HDPE PVC Other 4400 bbl Dimensions L 65' x W 45' x D 10'
	notice of intent)	pplies to activities which require prior approval of a permit or
Lined Unlined Liner type Liner Seams Welded Factory		PE HDPE PVD Other OIL CONS. DIV. DIST.
Below-grade tank: Subsection I of 19	15 17 11 NMAC	and automatic overflow shut-off
Volume bbl	Type of fluid	\\Z\\Z\\\\\\\\\\\\\\\\\\\\\\\\\\
Tank Construction material.		C. OIL DENIE DIN DOIL
Secondary containment with leak detection	<u> </u>	and automatic overflow shut-off
Visible sidewalls and liner	Visible sidewalls only Other	193028
Liner Type Thicknessr	nil HDPE PVC Ot	ther
5 Alternative Method:		
Submittal of an exception request is required	Exceptions must be submitted to the Santa Fe	Environmental Bureau office for consideration of approval

6,		1			
Fencing: Subsection D of 19 15 17 11 NMAC (Applies to permanent pit, temporary pits, and below-grade tanks) Chain link, six feet in height, two strands of barbed wire at top (Required if located within 1000 feet of a permanent residence, school, hospital, institution or church)					
Four foot height, four strands of barbed wire evenly spaced between one and four feet Alternate. Please specify					
7	-				
Netting: Subsection E of 19 15 17.11 NMAC (Applies to permanent pits and permanent open top tanks) Screen Netting Other		ļ			
Monthly inspections (If netting or screening is not physically feasible)					
8 Signs: Subsection C of 19 15 17.11 NMAC					
12" X 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers					
X Signed in compliance with 19 15 3 103 NMAC					
9					
Administrative Approvals and Exceptions: Justifications and/or demonstrations of equivalency are required Please refer to 19 15.17 NMAC for guidance.					
Please check a box if one or more of the following is requested, if not leave blank:					
Administrative approval(s) Requests must be submitted to the appropriate division district of the Santa Fe Environmental Bureau office (Fencing/BGT Liner)	for consideration of a	pproval			
Exception(s) Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval					
Siting Criteria (regarding permitting): 19.15.17.10 NMAC Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of acceptable	le				
source material are provided below. Requests regarding changes to certain siting criteria may require administrative approval from the appropriate district office or may be considered an exception which must be submitted to the Santa Fe Environmental Bureau Office for					
consideration of approval. Applicant must attach justification for request. Please refer to 19.15.17.10 NMAC for guidance. Siting criteri	ia				
does not apply to drying pads or above grade-tanks associated with a closed-loop system.					
Ground water is less than 50 feet below the bottom of the temporary pit, permanent pit, or below-grade tank. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	Yes	No			
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other watercourse, lakebed, sinkhole, or playa (measured from the ordinary high-water mark).	lake Yes	□No			
- Topographic map; Visual inspection (certification) of the proposed site					
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application.	Yes	□No			
(Applies to temporary, emergency, or cavitation pits and below-grade tanks)	□NA				
- Visual inspection (certification) of the proposed site; Aerial photo; Satellite image		_			
Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application.	Yes				
(Applied to permanent pits) - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	│□NA				
Within 500 horizonal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock water purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application.	ering Yes	□No .			
- NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site.					
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended - Written confirmation or verification from the municipality; Written approval obtained from the municipality	Yes	No			
Within 500 feet of a wetland. - US Fish and Wildlife Wetland Identification map, Topographic map; Visual inspection (certification) of the proposed site	Yes	No			
Within the area overlying a subsurface mine Written confirmation or verification or map from the NM EMNRD - Mining and Mineral Division	Yes	□No			
Within an unstable area.	Yes	No			
- Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map					
Within a 100-year floodplain - FEMA map	Yes	No			

Temporary Pits, Emergency Pits and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19 15 17 9 NMAC					
Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC					
Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9					
Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC					
Design Plan - based upon the appropriate requirements of 19 15 17.11 NMAC					
Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC					
Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of					
19.15.17.9 NMAC and 19.15 17 13 NMAC					
Previously Approved Design (attach copy of design) API or Permit					
12					
Closed-loop Systems Permit Application Attachment Checklist: Subsection B of 19 15 17 9 NMAC Instructions Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached					
Geologic and Hydrogeologic Data (only for on-site closure) - based upon the requirements of Paragraph (3) of Subsection B of 19 15.17.9					
Siting Criteria Compliance Demonstrations (only for on-site closure) - based upon the appropriate requirements of 19.15 17.10 NMAC					
Design Plan - based upon the appropriate requirements of 19.15 17.11 NMAC					
Operating and Maintenance Plan - based upon the appropriate requirements of 19 15 17.12 NMAC					
Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.15 17.9					
NMAC and 19.15.17.13 NMAC					
Previously Approved Design (attach copy of design) API					
Previously Approved Operating and Maintenance Plan API					
13					
Permanent Pits Permit Application Checklist: Subsection B of 19 15.17.9 NMAC					
Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached.					
Hydrogeologic Report - based upon the requirements of Paragraph (I) of Subsection B of 19.15.17 9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC					
Climatological Factors Assessment					
Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC					
Dike Protection and Structural Integrity Design: based upon the appropriate requirements of 19.15.17.11 NMAC					
Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC					
Liner Specifications and Compatibility Assessment - based upon the appropriate requirements of 19.15.17.11 NMAC					
Quality Control/Quality Assurance Construction and Installation Plan					
Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17 12 NMAC Freeboard and Overtopping Prevention Plan - based upon the appropriate requirements of 19.15 17.11 NMAC					
Nuisance or Hazardous Odors, including H2S, Prevention Plan					
Emergency Response Plan					
Oil Field Waste Stream Characterization					
Monitoring and Inspection Plan					
Erosion Control Plan Clause Plan book and to a sequence of Subsection C of 10.15.170 NIMAC and 10.15.1713 NIMAC					
Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17 13 NMAC					
14 Proposed Closure: 19 15 17 13 NMAC					
Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan.					
Type: Drilling Workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Closed-loop System					
Alternative					
Proposed Closure Method Waste Excavation and Removal Waste Removal (Closed-loop systems only)					
On-site Closure Method (only for temporary pits and closed-loop systems)					
In-place Burial On-site Trench					
Alternative Closure Method (Exceptions must be submitted to the Santa Fe Environmental Bureau for consideration)					
15					
Waste Excavation and Removal Closure Plan Checklist: (19 15 17.13 NMAC) Instructions: Each of the following items must be attached to the closure plan.					
Please indicate, by a check mark in the box, that the documents are attached.					
Protocols and Procedures - based upon the appropriate requirements of 19 15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19 15 17 13 NMAC					
Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings)					
Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19 15 17.13 NMAC					
Re-vegetation Plan - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC					
Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC					

16 Waste Removal Closure For Closed-loop Systems That Utilize Above Gr	ound Steel Tanks or Haul-off Rins Only: (19 15 17 13 D NMAC)				
Instructions Please identify the facility or facilities for the disposal of liquid	is, drilling fluids and drill cuttings. Use attachment if more than two	9			
facilities are required	Dienocal Faculty Permit #				
Disposal Facility Name:					
Disposal Facility Name Will any of the proposed closed-loop system operations and associated					
Yes (If yes, please provide the information No Required for impacted areas which will not be used for future service and of					
Soil Backfill and Cover Design Specification - based upon the		AC			
Re-vegetation Plan - based upon the appropriate requirements	· · · · · · · · · · · · · · · · · · ·				
Site Reclamation Plan - based upon the appropraite requiremen	nts of Subsection G of 19 15 17.13 NMAC				
Siting Criteria (Regarding on-site closure methods only: 19 15 17 Instructions Each siting criteria requires a demonstration of compliance in the clocertain siting criteria may require administrative approval from the appropriate di office for consideration of approval Justifications and/or demonstrations of equiv	osure plan Recommendations of acceptable source material are provided istrict office or may be considered an exception which must be submitted to	o the Santa Fe Environmental Bureau			
Ground water is less than 50 feet below the bottom of the buried wast		Yes No			
- NM Office of the State Engineer - IWATERS database search; USGS	Data obtained from nearby wells	N/A			
Ground water is between 50 and 100 feet below the bottom of the bur	ied waste	Yes No			
- NM Office of the State Engineer - 1WATERS database search, USGS,	Data obtained from nearby wells	N/A			
Ground water is more than 100 feet below the bottom of the buried wa	aste.	Yes No			
- NM Office of the State Engineer - tWATERS database search, USGS;	Data obtained from nearby wells	□N/A			
Within 300 feet of a continuously flowing watercourse, or 200 feet of any oth (measured from the ordinary high-water mark)	er significant watercourse or lakebed, sinkhole, or playa lake	Yes No			
- Topographic map; Visual inspection (certification) of the proposed site					
Within 300 feet from a permanent residence, school, hospital, institution, or conversal inspection (certification) of the proposed site; Aerial photo, satel		Yes No			
		Yes No			
Within 500 horizontal feet of a private, domestic fresh water well or spring th purposes, or within 1000 horizontal fee of any other fresh water well or sprin - NM Office of the State Engineer - iWATERS database; Visual inspection	g, in existence at the time of the initial application				
Within incorporated municipal boundaries or within a defined municipal fresh pursuant to NMSA 1978, Section 3-27-3, as amended.		Yes No			
- Written confirmation or verification from the municipality, Written app Within 500 feet of a wetland		Yes No			
- US Fish and Wildlife Wetland Identification map, Topographic map; V	isual inspection (certification) of the proposed site				
Within the area overlying a subsurface mine - Written confirantion or verification or map from the NM EMNRD-Min	ung and Mineral Division	Yes No			
Within an unstable area.	mg alla Maletta ambien	☐Yes ☐No			
- Engineering measures incorporated into the design, NM Bureau of Geo	logy & Mineral Resources, USGS, NM Geological Society,				
Topographic map					
Within a 100-year floodplain - FEMA map		Yes No			
On-Site Closure Plan Checklist: (19 15 17 13 NMAC) Instruction by a check mark in the box, that the documents are attached.		sure plan. Please indicate,			
Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19 15 17 10 NMAC Proof of Surface Owner Notice - based upon the appropriate requirements of Subsection F of 19 15 17 13 NMAC					
Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of 19 15 17 11 NMAC					
Construction/Design Plan of Temporary Pit (for in place burial of a drying pad) - based upon the appropriate requirements of 19 15 17 11 NMAC Construction/Design Plan of Temporary Pit (for in place burial of a drying pad) - based upon the appropriate requirements of 19 15 17 11 NMAC					
Protocols and Procedures - based upon the appropriate require					
Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19 15 17 13 NMAC					
Waste Material Sampling Plan - based upon the appropriate requirements of Subsection F of 19 15 17 13 NMAC					
Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standards cannot be achieved)					
Soil Cover Design - based upon the appropriate requirements of Subsection H of 19 15 17 13 NMAC					
Re-vegetation Plan - based upon the appropriate requirements					
Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19 15 17 13 NMAC					

19
Operator Application Certification: I hereby certify that the information submitted with this application is true, accurate and complete to the best of my knowledge and belief
Name (Print) Title
Signature Date
e-mail address Telephone
C-mail additions
OCD Approval: Permit Application (including closure plan) Closure Plan (only) OCD Conditions (see attachment) OCD Representative Signature: Approval Date: 9/27/2011 Title: OCD Permit Number:
Closure Report (required within 60 days of closure completion): Subsection K of 19 15 17 13 NMAC Instructions Operators are required to obtain an approved closure plan prior to implementing any closure activities and submitting the closure report. The closure report is required to be submitted to the division within 60 days of the completion of the closure activities. Please do not complete this section of the form until an approved closure plan has been obtained and the closure activities have been completed. X Closure Completion Date: JULY 28,2008
22
Closure Method: Waste Excavation and Removal X On-site Closure Method Alternative Closure Method Waste Removal (Closed-loop systems only) If different from approved plan, please explain
Closure Report Regarding Waste Removal Closure For Closed-loop Systems That Utilize Above Ground Steel Tanks or Haul-off Bins Only: Instructions: Please identify the facility or facilities for where the liquids, drilling fluids and drill cuttings were disposed. Use attachment if more than two facilities were utilized. Disposal Facility Name Disposal Facility Permit Number Disposal Facility Name Disposal Facility Permit Number Were the closed-loop system operations and associated activities performed on or in areas that will not be used for future service and opeartions? Yes (If yes, please demonstrate compliane to the items below)
Required for impacted areas which will not be used for future service and operations Site Reclamation (Photo Documentation) Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique
Closure Report Attachment Checklist: Instructions: Each of the following items must be attached to the closure report. Please indicate, by a check mark in the box, that the documents are attached. X Proof of Closure Notice (surface owner and division) X Proof of Deed Notice (required for on-site closure) X Plot Plan (for on-site closures and temporary pits) X Confirmation Sampling Analytical Results (if applicable) Waste Material Sampling Analytical Results (if applicable) X Disposal Facility Name and Permit Number X Soil Backfilling and Cover Installation X Re-vegetation Application Rates and Seeding Technique X Site Reclamation (Photo Documentation) On-site Closure Location. Latitude 36.537222 °N Longitude 107.7511944 °W NAD 1927 X 1983
25 Operator Closure Certification: I hereby certify that the information and attachments submitted with this closure report is ture, accurate and complete to the best of my knowledge and belief. I also certify that the closure complies with all applicable closure requirements and conditions specified in the approved closure plan
Name (Print) Marie E Jaramillo / Title Staff Regulatory Tech
Signature Date: 2 10
e-mail address: marie e jaramillo@conocophillips com Telephone: 505-326-9865

Form C-144

Oil Conservation Division

Page 5 of 5

Burlington Resources Oil Gas Company, LP San Juan Basin Closure Report

Lease Name: HUERFANITO UNIT 98S

API No.: 30-045-34572

In accordance with Rule 19.15.17.13 NMAC the following information describes the closure of the temporary pit referenced above. All proper documentation regarding closure activities is being included with the C-144. The temporary pit for this location was constructed and location drilled before June 16, 2008 (effective date for Rule 19.15.17). While closure of the temporary pit did fall within the rule some dates for submittals are after the rig release date.

- Details on Capping and Covering, where applicable. (See report)
- Plot Plan (Pit Diagram) (Included as an attachment)
- Inspection Reports (Included as an attachment)
- Sampling Results (Included as an attachment)
- C-105 (Included as an attachment)
- Copy of Deed Notice will be filed with County Clerk (Not required on Federal, State, or Tribal land as stated by FAQ dated October 30, 2008)

General Plan:

1. All free standing liquids will be removed at the start of the pit closure process from the pit and disposed of in a division—approved facility or recycle, reuse or reclaim the liquids in a manner that the appropriate division district office approves.

All recovered liquids were disposed of at Basin Disposal (Permit #NM-01-005) and any sludge or soil required to be removed to facilitate closure was hauled to Envirotech Land Farm (Permit #NM-01-011) and JFJ Landfarm % IEI (Permit #NM-01-0010B).

2. The preferred method of closure for all temporary pits will be on-site burial, assuming that all the criteria listed in sub-section (B) of 19.15.17.13 are met.

The pit was closed using onsite burial.

3. The surface owner shall be notified of BR's closing of the temporary pit as per the approved closure plan using certified mail, return receipt requested.

The closure process notification to the landowner was sent via email. (See Attached)(Well located on Federal Land, certified mail is not required for Federal Land per BLM/OCD MOU.)

4. Within 6 months of the Rig Off status occurring BR will ensure that temporary pits are closed, re-contoured, and reseeded.

Provision 4 of the closure plan requirements were not met due to rig move off date as noted on C-105 which was prior to pit rule change. Burlington will ensure compliance with this rule in the future.

- 5. Notice of Closure will be given to the Aztec Division office between 72 hours and one week of closure via email, or verbally. The notification of closure will include the following:
 - i. Operator's name
 - ii. Location by Unit Letter, Section, Township, and Range. Well name and API number.

Notification is attached.

6. Liner of temporary pit shall be removed above "mud level" after stabilization. Removal of liner will consist of manually or mechanically cutting liner at mud level and removing all remaining liner. Care will be taken to remove "All" of the liner i.e., edges of liner entrenched or buried. All excessive liner will be disposed of at a licensed disposal facility.

Liner of temporary pit was removed above "mud level" after stabilization. Removal of the liner consisted of manually cutting liner at mud level and removing all remaining liner. Care was taken to remove "ALL" of the liner i.e., edges of liner entrenched or buried. All excessive liner was disposed of at a licensed disposal facility, (San Juan County Landfill).

7. Pit contents shall be mixed with non-waste containing, earthen material in order to achieve the solidification process. The solidification process will be accomplished using a combination of natural drying and mechanically mixing. Pit contents will be mixed with non-waste, earthen material to a consistency that is deemed a safe and stable. The mixing ratio shall not exceed 3 parts clean soil to 1 part pit contents.

Burlington mixed the Pit contents with non-waste containing, earthen material in order to achieve the solidification process. The solidification process was accomplished by using a combination of natural drying and mechanically mixing. Pit contents were mixed with non-waste, earthen material to a consistency that is deemed as safe and stable. The mixing ratio consisted of approximately 3 parts clean soil to 1 part pit contents.

8. A five point composite sample will be taken of the pit using sampling tools and all samples tested per Subsection B of 19.15.17.13(B)(1)(b). In the event that the criteria are not met, all contents will be handled per Subparagraph (a) of Paragraph (1) of Subsection B of 19.15.17.13 i.e., Dig and haul.

A five point composite sample was taken of the pit using sampling tools and all samples tested per Subsection B of 19.15.17.1 3(B)(1)(b). (Sample results attached).

Components	Tests Method	Limit (mg/Kg)	Results
Benzene	EPA SW-846 8021B or 8260B	0.2	ND ug/kg
BTEX	EPA SW-846 8021B or 8260B	50	ND ug/kG
TPH	EPA SW-846 418.1 •	2500	40.3mg/kg
GRO/DRO	EPA SW-846 8015M	500	5.0 mg/Kg
Chlorides	EPA 300.1	1000/500	0.482 mg/L

9. Upon completion of solidification and testing standards being passed, the pit area will be backfilled with compacted, non-waste containing, earthen material. A minimum of four feet of cover shall be achieved and the cover shall include one foot of suitable material to establish vegetation at the site, or the background thickness of topsoil, whichever is greater. If standard testing fails BR will dig and haul all contents pursuant to 19.15.17.13.i.a. After doing such, confirmation sampling will be conducted to ensure a release has not occurred.

The pit material passed solidification and testing standards. The pit area was then backfilled with compacted, non-waste containing, earthen material. More than four feet of cover was achieved and the cover included one foot of suitable material to establish vegetation at the site.

10. During the stabilization process if the liner is ripped by equipment the Aztec OCD office will be notified within 48 hours and the liner will be repaired if possible. If the liner can not be repaired then all contents will be excavated and removed.

The integrity of the liner was not damaged in the pit closure process.

11. Dig and Haul Material will be transported to the Envirotech Land Farm located 16 miles south of Bloomfield on Angel Peak Road, CR 7175. Permit # NM010011

Dig and Haul was not required.

12. Re-contouring of location will match fit, shape, line, form and texture of the surrounding. Re-shaping will include drainage control, prevent ponding, and prevent erosion. Natural drainages will be unimpeded and water bars and/or silt traps will be place in areas where needed to prevent erosion on a large scale. Final recontour shall have a uniform appearance with smooth surface, fitting the natural landscape.

The pit area was re-contoured to match fit, shape, line, form and texture of the surrounding area. Reshaping included drainage control, to prevent ponding and erosion. Natural drainages were unimpeded and water bars and/or silt traps were placed in areas where needed to prevent erosion on a large scale. Final recontour has a uniform appearance with smooth surface, fitting the natural landscape.

13. Notification will be sent to OCD when the reclaimed area is seeded.

Provision 13 was accomplished through complying with BLM seeding requirements as allowed by the BLM/OCD MOU.

14. BR shall seed the disturbed areas the first growing season after the operator closes the pit. Seeding will be accomplished via drilling on the contour whenever practical or by other division-approved methods. BLM or Forest Service stipulated seed mixes will used on federal lands. Vegetative cover will equal 70% of the native perennial vegetative cover (un-impacted) consisting of at least three native plant species, including at least one grass, but not including noxious weeds, and maintain that cover through two successive growing seasons. Repeat seeding or planting will be continued until successful vegetative growth occurs.

Provision 14 was accomplished through complying with BLM seeding requirements as allowed by the BLM/OCD MOU.

15. The temporary pit will be located with a steel marker, no less than four inches in diameter, cemented in a hole three feet deep in the center of the onsite burial upon the abandonment of all the wells on the pad. The marker will be flush with the ground to allow access of the active well pad and for safety concerns. The marker will include a threaded collar to be used for future abandonment. The top of the marker will contain a welded steel 12" square plate that indicates the onsite burial of the temporary pit. The plate will be easily removable and a four foot tall riser will be threaded into the top of the collar marker and welded around the base with the operator's information at the time of all wells on the pad are abandoned. The operator's information will include the following: Operator Name, Lease Name, Well Name and number, Unit Number, Section, Township, Range and an indicator that the marker is an onsite burial location.

Provision 15 was accomplished by installing a steel marker in the temporary pit, no less than four inches in diameter, cemented in a hole three feet deep in the center of the onsite burial. The marker is flush with the ground to allow access of the active well pad and for safety concerns. The top of the marker contains a welded steel 12" square plate that indicates the onsite burial of the temporary pit. The plate contains the following: Operator Name, Lease Name, Well Name and number, Unit Number, Section, Township, Range and an indicator that the marker is an onsite burial location.

The plate will be easily removable and a four foot tall riser will be threaded into the top of the collar marker and welded around the base with the following operator's information at the time of all wells on the pad are abandoned. The riser will be labeled: BR, BLM, HUERFANITO UNIT 98S, UL-A, Sec. 35, T 27N, R 9W, API # 30-045-34572

Tafoya, Crystal

From:

Tafoya, Crystal

Sent:

Thursday, July 10, 2008 8:16 AM

To:

'mark_keliy@nm.blm.gov'

Subject:

OCD Pit Closure Notification

The following temporary pits will be closed on-site. The new OCD Pit Rule 17 requires the surface owner be notified. Please feel free to contact me at any time if you have any questions. Thank you!

Allison Unit 2B

Allison Unit 40N

Angel Peak B 27E

Ballard 1.1F

Cain 725S

Canyon Largo Unit 250N

Canyon Largo Unit 279E

Canyon Largo Unit 288E

Canyon largo Unit 297E

Canyon Largo Unit 465E

Carson SRC 4E

Day B 4P

Day B 5A

East 17S

EPNG A 1B

EPNG B 1M

Federal A 1E

Filan 5M

Filan 5N

Fogelson 4 100

Fogelson 4 100S

Grambling C 202S

Hagood 19

Hamner 9S

Hardie 4P

Hare 295

Heaton Com 100

Helms Federal 1G

Howell 12

Huerfanito Unit 103F

Huerfanito Unit 29S

Huerfanito Unit 39S

Huerfanito Unit 47S

Huerfanito Unit 50E

Huerfanito Unit 75E

Huerfanito Unit 83E

Huerfanito Unit 87E Huerfanito Unit 90E

Huerfanito Unit 90M

Huertanito Unit 98S

Huerfano Unit 108F

Huerfano Unit 282E

Huerfano unit 305

Huerfano unit 307

Huerfano Unit 554

Johnston Federal 24S

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Rd., Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised October 12, 2005 Submit to Appropriate District Office State Lease - 7 Copies Fee Lease - 3 Copies

☐ AMMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

1 A	PI Number		2	Pool Code	. 3 Pool Name BASIN FRUITLAND COAL				
⁴ Property Cod	le	5 Property Name HUERFANITO UNIT						⁶ Well Number 98S	
7 OGRID No	D.	8 Operator Name BURLINGTON RESOURCES OIL AND GAS COMPANY LP				⁹ Elevation 6353			
					10 SURFACE	LOCATION			
UL or lot no. A	Section 35	Township 27-N	Range 9-W	Lot Idn	Feet from the 1145	North/South line NORTH	Feet from the 675	East/West line EAST	County SAN JUAN
			11 E	Bottom He	ole Location	If Different Fro	m Surface		
UL or lot no.	Section	Township	Range		Feet from the	North/South line	Feet from the	East/West line	County
Dedicated Acres 320.00	Joint o	or Infill	Consolidation	Code 15	Order No.	<u>I.</u>			I

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

16 N 89°20' W N 89°22'06" W		LAT: 36.53571 —— LONG: 107.75155	D 83 18° N 6 0° W D 27	2645.6' (R) 2643.9' (M)	17 OPERATOR CERTIFICATION I hereby certify that the information contained herein is true and 'complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of such a mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. Signature
		LONG: 107°45.05621 E/2 DEDICATE USA SF- SECTIO T-27-N,	ED ACREAGE -080117 ON 35	N 2'30' E N 2'26'59" E	Printed Name Title and E-mail Address Date 18 SURVEYOR CERTIFICATION 1 hereby certify that the well location shown on this plat was plotted from felid notes of actual surveys made by
i.	`	USA SF SECTI T-27-N,	ON 35		me or under my supervision, and that the same is true and correct to the best of my belief. Date of Survey: 10/04/07 Signature and Seal of Professional Surveyor RROADHUS REPORT OF THE STATE OF THE
					Certificate Number: NIM 17393

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client	ConocoPhillips	Project #:	96052-0026
Sample ID:	Huerfanito #98S	Date Reported:	07-31-08
Laboratory Number:	46519	Date Sampled:	07-28-08
Chain of Custody No:	4871	Date Received:	07-29-08
Sample Matrix:	Soil	Date Extracted:	07-29-08
Preservative:		Date Analyzed:	07-30-08
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	5.0	0.1
Total Petroleum Hydrocarbons	5.0	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Drill Mud

Analyst

Review Master

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	ConocoPhillips	Project #:	96052-0026
Sample ID:	Huerfanito #98S Background	Date Reported:	07-31-08
Laboratory Number:	46520	Date Sampled:	07-28-08
Chain of Custody No:	4871	Date Received:	07-29-08
Sample Matrix:	Soil	Date Extracted:	07-29-08
Preservative:		Date Analyzed:	07-30-08
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Drill Mud

Analyst

Mustum Wasters

Review

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	07-30-08 QA/QC	Date Reported:	07-31-08
Laboratory Number:	46516	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	07-30-08
Condition:	N/A	Analysis Requested:	TPH

	l-Cal Date:	I-Cal RF.	C-CaliRF	% Difference	Accept Range
Gasoline Range C5 - C10	05-07-07	9.8870E+002	9.8910E+002	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	1.0131E+003	1.0135E+003	0.04%	0 - 15%

Blank Conc. (mg/L=mg/Kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept Range
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	ND	250	246	98.4%	75 - 125%
Diesel Range C10 - C28	ND	250	252	101%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 46516 - 46420.

Analyst

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	ConocoPhillips	Project #:	96052-0026
Sample ID:	Huerfanito #98S	Date Reported:	07-31-08
Laboratory Number:	46519	Date Sampled:	07-28-08
Chain of Custody:	4871	Date Received:	07-29-08
Sample Matrix:	Soil	Date Analyzed:	07-30-08
Preservative:		Date Extracted:	07-29-08
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	96.0 %
	1,4-difluorobenzene	96.0 %
	Bromochlorobenzene	96.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Drill Mud

Analyst

Musturn Waters
Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	ConocoPhillips	Project #:	96052-0026
Sample ID:	Huerfanito #98S Background	Date Reported:	07-31-08
Laboratory Number:	46520	Date Sampled:	07-28-08
Chain of Custody:	4871	Date Received:	07-29-08
Sample Matrix:	Soil	Date Analyzed:	07-30-08
Preservative:		Date Extracted:	07-29-08
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	97.0 %
	1,4-difluorobenzene	97.0 %
	Bromochlorobenzene	97.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Drill Mud

Analyst

Mistra Muceters
Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	N/A	Project #:	N/A
Sample ID:	07-30-BT QA/QC	Date Reported:	07-31-08
Laboratory Number:	46516	Date Sampled:	N/A
Sample Matrix:	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	07-30-08
Condition:	N/A	Analysis:	BTEX

Calibration and Detection Limits (ug/L)		C-Cal RF. Accept Rand		Blank Conc	Detecta Limit
Benzene	9.7882E+007	9.8078E+007	0.2%	ND	0.1
Toluene	7.6436E+007	7.6589E+007	0.2%	ND	0.1
Ethylbenzene	5.9728E+007	5.9847E+007	0.2%	ND	0.1
p,m-Xylene	1.2204E+008	1.2229E+008	0.2%	ND	0.1
o-Xylene	5.5920E+007	5.6033E+007	0.2%	ND	0.1

Duplicate Conc. (ug/Kg)	* Sample * Du	plicate	%Dlff。	Accept Range	Detect Limit
Benzene	5.7	5.6	1.8%	0 - 30%	0.9
Toluene	8.0	7.7	3.8%	0 - 30%	1.0
Ethylbenzene	2.9	2.4	17.2%	0 - 30%	1.0
p,m-Xylene	7.2	6.2	13.9%	0 - 30%	1.2
o-Xylene	4.3	4.0	7.0%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Amo	ount Spiked Spik	ked Sample	% Recovery	Accept Range
Benzene	5.7	50.0	55.3	99.3%	39 - 150
Toluene	8.0	50.0	56.0	96.6%	46 - 148
Ethylbenzene	2.9	50.0	49.9	94.3%	· 32 - 160
p,m-Xylene	7.2	100	105	98.1%	46 - 148
o-Xylene	4.3	50.0	49.3	90.8%	46 - 148

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 46516 - 46524.

Analyst

Mustin m Walter
Review

TRACE METAL ANALYSIS

ConocoPhillips	Project #:	96052-0026
Huerfanito #98S	Date Reported:	07-30-08
46519	Date Sampled:	07-28-08
4871	Date Received:	07-29-08
Soil	Date Analyzed:	07-29-08
	Date Digested:	07-29-08
Intact	Analysis Needed:	Total Metals
	Huerfanito #98S 46519 4871 Soil	Huerfanito #98S Date Reported: 46519 Date Sampled: 4871 Date Received: Soil Date Analyzed: Date Digested:

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	TCLP Regulatory Level (mg/Kg)
Arsenic	0.083	0.001	5.0
Barium	10.2	0.001	100
Cadmium	0.002	0.001	1.0
Chromium	0.191	0.001	5.0
Lead	0.196	0.001	5.0
Mercury	0.003	0.001	0.2
Selenium	0.013	0.001	1.0
Silver	ND	0.001	5.0

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Solls.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectroscopy, SW-846, USEPA, December 1996.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C

section 261.24, August 24, 1998.

Comments:

Drill Mud.

Analyst

Review

TRACE METAL ANALYSIS

5.0

0.2

1.0

5.0

Client:	ConocoPhillips	Project #:	96052-0026
Sample ID:	Huerfanito #98S Background	Date Reported:	07-30-08
Laboratory Number:	46520	Date Sampled:	07-28-08
Chain of Custody:	4871	Date Received:	07-29-08
Sample Matrix:	Soil	Date Analyzed:	07-29-08
Preservative:		Date Digested:	07-29-08
Condition:	Intact	Analysis Needed:	Total Metals
M. Andrewson		Det.	TCLP Regulatory
	Concentration	Limit	Level
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)
Arsenic	0.074	0.001	5.0
	0.070	0.001	100
Barium Cadmium	0.070 0.002	0.001 0.001	100 1.0

ND - Parameter not detected at the stated detection limit.

0.171

0.001

ND

ND

References:

Lead

Silver

Mercury

Selenium

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

0.001

0.001

0.001

0.001

Spectroscopy, SW-846, USEPA, December 1996.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C

section 261.24, August 24, 1998.

Comments:

Drill Mud.

Analyst

Review

TRACE METAL ANALYSIS Quality Control / Quality Assurance Report

Client:		QA/QC		Project #:			QA/QC
Sample ID:		07-29 TM (DAVAC	Date Repo	orted:		07-30-08
Laboratory Number:		46499		Date Sam	pled:		N/A
Sample Matrix:		Soil		Date Rece	eived:		N/A
Analysis Requested:		Total RCR	A Metals	Date Anal	yzed:		07-29-08
Condition:		N/A		Date Dige	sted:		07-28-08
the command faith with the same and the faithful fire	instrument ank (mg/K	All the state of t	Detectio Limit	in Sample	Duplicate	%) Diff.	Acceptance Range
Arsenic	ND	ND	0.001	0.051	0.052	0.8%	0% - 30%
Barium	ND	ND	0.001	6.49	6.53	0.7%	0% - 30%
Cadmium	ND	ND	0.001	0.006	0.006	0.7 %	0% - 30% 0% - 30%
Chromium	ND	ND	0.001	0.006	0.006	11.0%	0% - 30% 0% - 30%
				••••			
Lead	ND	ND	0.001	0.182	0.188	3.3%	0% - 30%
Mercury	ND	ND	0.001	0.003	0.002	7.7%	0% - 30%
Selenium	ND	ND	0.001	0.037	0.037	0.0%	0% - 30%
Silver	ND	ND	0.001	ND	ND	0.0%	0% - 30%
Spike			Sample	e Spiked	Percent		Acceptance
Spike Conc: (mg/Kg):		Added	Sample	e Spiked Sample			Range
e conocina da la comocina de la comocina del comocina del comocina de la comocina del comocina de la comocina del comocina de la comocina del comocina de la comocina del comocina		Ser Succession		Campic			
Arsenic		0.250	0.051	0.314	104%		80% - 120%
Barium		0.500	6.49	6.92	99.1%		80% - 120%
Cadmium		0.250	0.006	0.273	107%		80% - 120%
Chromium		0.500	0.175	0.581	86.1%		80% - 120%
Lead		0.500	0.182	0.583	85,5%		80% - 120%
Mercury		0.100	0.003	0.105	102%		80% - 120%
Selenium		0.100	0.037	0.152	111%		80% - 120%
Silver		0.100	ND	0.090	90.0%		80% - 120%
OHAGI		J. 100	ITD	0.030	30.070		00/0 - 1E0/0

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

QA/1QC for Samples 46499, 46501, 46502, 46517 - 46520.

Analyst

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

CATION / ANION ANALYSIS

Client:	ConocoPhillips	Project #:	96052-0026
Sample ID:	Huerfanito #98S	Date Reported:	07-31-08
Laboratory Number:	46519	Date Sampled:	07-28-08
Chain of Custody:	4871	Date Received:	07-29-08
Sample Matrix:	Soil Extract	Date Extracted:	07-29-08
Preservative:	•	Date Analyzed:	07-29/07-30-08
Condition:	Intact	•	

	Analytical			
Parameter	Result	Units		
pH	8.57	s.u.		
Conductivity @ 25° C	708	umhos/cm		
Total Dissolved Solids @ 180C	540	mg/L		
Total Dissolved Solids (Calc)	498	mg/L		
SAR	11.0	ratio		
Total Alkalinity as CaCO3	56.0	mg/L		
Total Hardness as CaCO3	37.3	mg/L		
Bicarbonate as HCO3	56.0	mg/L	0.92	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	0.300	mg/L	0.00	meq/L
Nitrite Nitrogen	0.016	mg/L	0.00	meq/L
Chloride	98.0	mg/L	2.76	meq/L
Fluoride	0.940	mg/L	0.05	meq/L
Phosphate	1.70	mg/L	0.05	meq/L
Sulfate	185	mg/L	3.85	meq/L
iron	1.60	. mg/L	0.06	meq/L
Calcium	12.0	mg/L	0.60	meq/L
Magnesium	1.78	mg/L	0.15	meq/L
Potassium	10.2	mg/L	0.26	meq/L
Sodium	154	mg/L	6.70	meq/L
Cations			7.76	meq/L
Anions			7.64	meq/L
Cation/Anion Difference			1.56%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Drill Mud.

Analyst Analyst

Anstern Wastern Review

ENVIROTECH LABS

CATION / ANION ANALYSIS

Client:	ConocoPhillips	Project #:	96052-0026
Sample ID:	Huerfanito #98S Background	Date Reported:	07-31-08
Laboratory Number:	46520	Date Sampled:	07-28-08
Chain of Custody:	4871	Date Received:	07-29-08
Sample Matrix:	Soil Extract	Date Extracted:	07-29-08
Preservative:		Date Analyzed:	07-29/07-30-08
Condition:	Intact		

	Analytical			
Parameter	Result	Units		
pH	8.11	\$.U.		
Conductivity @ 25° C	123	umhos/cm		
Total Dissolved Solids @ 180C	80.0	mg/L		
Total Dissolved Solids (Calc)	79.2	mg/L		
SAR	1.6	ratio		
Total Alkalinity as CaCO3	84.0	mg/L		
Total Hardness as CaCO3	22.2	mg/L		
Bicarbonate as HCO3	84.0	mg/L	1.38	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	0.752	mg/L	0.01	meq/L
Nitrite Nitrogen	0.021	mg/L	0.00	meq/L
Chloride	0.482	mg/L	0.01	meq/L
Fluoride	0.064	mg/L	0.00	meg/L
Phosphate	<0.01	mg/L	0.00	meq/L
Sulfate	0.808	mg/L	0.02	meq/L
Iron	2.03	· mg/L	0.07	meq/L
Calcium	5.91	mg/L	0.30	meq/L
Magnesium	1.81	mg/L	0.15	meq/L
Potassium	0.892	mg/L	0.02	meq/L
Sodium	17.5	mg/L	0.76	meq/L
Cations			1.30	meq/L
Anions			1.42	meq/L
Cation/Anion Difference			8.58%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Drill Mud.

Analyst

(Mesthern Wastern Review

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	ConocoPhillips	Project #:	96052-00026
Sample ID:	Huerfanito #98S	Date Reported:	07-30-08
Laboratory Number:	46519	Date Sampled:	07-28-08
Chain of Custody No:	4871	Date Received:	07-29-08
Sample Matrix:	Soil	Date Extracted:	07-29-08
Preservative:		Date Analyzed:	07-29-08
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

40.3

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Drill Mud.

Analyst

Mester of libeter

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	ConocoPhillips	Project #:	96052-00026
Sample ID:	Huerfanito #98S Background	Date Reported:	07-30-08
Laboratory Number:	46520	Date Sampled:	07-28-08
Chain of Custody No:	4871	Date Received:	07-29-08
Sample Matrix:	Soil	Date Extracted:	07-29-08
Preservative:		Date Analyzed:	07-29-08
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
 	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

25.9

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Drill Mud.

Analyst

Mustu m Waller

EPA METHOD 418.1 TOTAL PETROLEUM HYROCARBONS QUALITY ASSURANCE REPORT

N/A

N/A

07-30-08

Client: QA/QC Project #: Sample ID: **QA/QC** Date Reported: Date Sampled: Laboratory Number: 07-29-TPH.QA/QC 46516 Sample Matrix: Freon-113

Date Analyzed: 07-29-08 N/A Date Extracted: 07-29-08 Preservative: Condition:

N/A Analysis Needed: **TPH**

Calibration I-Cal Date C-Cal Date I-Cal RF: C-Cal RF: % Difference Accept. Range 07-02-08 07-29-08 1,440 1,492 3.6% +/- 10%

Blank Conc. (mg/Kg) Concentration Detection Limit

TPH

ND 13.8

Duplicate Conc. (mg/Kg) Duplicate % Difference . Sample Accept. Range TPH 40.3 12.6% +/- 30% 46.1

Spike Added Spike Result % Recovery Accept Range Spike Conc. (mg/Kg) Sample

TPH 80 - 120% 46.1 2,000 1,640 80.2%

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments: QA/QC for Samples 46516 - 46520.

Analyst

Submit To Appropri Two Copies <u>District I</u>	ate District	Office	e	State of New Mexico Energy, Minerals and Natural Resources								rm C-105 July 17, 2008					
1625 N French Dr , <u>District II</u> 1301 W. Grand Ave				Oil Conservation Division								1. WELL API NO. 30-045-34572					
District III 1000 R10 Brazos Ro	I., Aztec, N	M 874	10		1220 South St. Francis Dr.							2. Type of Lease STATE ☐ FEE ☒ FED/INDIAN					
District IV 1220 S St Francis					Santa Fe, NM 87505							3. State Oil				·	IAIN
												SF-080117			n otya ko t race)		2703
	WELL COMPLETION OR RECOMPLETION REPORT AND LOG								5. Lease Nan								
4. Reason for filing: COMPLETION REPORT (Fill in boxes #1 through #31 for State and Fee wells only)							HUERFA	NITO	_			<u> </u>					
						6. Well Num 98S	ber:										
C-144 CLOSURE ATTACHMENT (Fill in boxes #1 through #9, #15 Date Rig Released and #32 and/or #33, attach this and the plat to the C-144 closure report in accordance with 19 15.17.13.K NMAC)																	
7. Type of Completion: □ NEW WELL □ WORKOVER □ DEEPENING □ PLUGBACK □ DIFFERENT RESERVOIR □ OTHER																	
8 Name of Opera		<u>, wo</u>	KKOVEK	DEEF	ENING	LIPLUGBACI	<u>. Пт</u>	ЛГГІ	SKEI	VI KESEK V	/OIN	9. OGRID				·	
Burlington R		s Oil	l Gas Co	mpany	, LP							14538					
10. Address of Op PO Box 4298, Far	perator rmington,	NM 8	37499									11. Pool name	e or W	ildcat			
12.Location	Unit Ltr	S	Section	Town	ship	Range	Lot			Feet from t	he	N/S Line	Feet	from the	E/W	Line	County
Surface:						,						,					
BH:																	
13. Date Spudded	1 14. Da	ite T.E	D. Reached		Date Rig 12/08	Released			16.	Date Compi	leted	(Ready to Pro	duce)		7. Eleva T, GR, 6		and RKB,
18. Total Measure	ed Depth o	of Wel	11	19.	Plug Bac	k Measured Dep	oth		20.	Was Direct	iona	l Survey Made	?	21. Ty	e Electr	nc and Ot	her Logs Run
22. Producing Int	erval(s), o	f this	completion	- Top, Bo	ttom, Na	nme								I			
23					CAS	ING REC	ORI) (R	lepo	ort all st	ring	es set in w	ell)				
CASING SI	ZE T	W	VEIGHT L	3./FT.		DEPTH SET				LE SIZE		CEMENTIN		CORD	A	MOUNT	PULLED
					ļ												
	-+				-												
													_			•	
24.	TOP		1 -	OTTON	LIN	ER RECORD	ENT	COL) I''I''	7	25.					ED CET	
SIZE	TOP		E	BOTTOM		SACKS CEM	ENI	SCF	REEN	N	217	E DEPTH SET PACK		EK SEI			
																<u> </u>	
26. Perforation	record (in	iterval	l, size, and	number)		-1						RACTURE, CEMENT, SQUEEZE, ETC. AMOUNT AND KIND MATERIAL USED					
						*		DEI	РГН.	INTERVAL	,	AMOUNT A	AND I	AND MA	TERIA	L USED	
									-								
													'				
28.										TION							
Date First Produc	etion		Prod	uction Me	thod (Fla	owing, gas lift, p	umping	g - S12	e an	d type pump)	Well Statu	s (Pro	d. or Shu	t-in)		
Date of Test	Hours	Teste	d	Choke Size	;	Prod'n For Test Period		Oıl	- Bbl		Gas	Gas - MCF		Water - Bbl.		Gas - C	Dil Ratio
Flow Tubing Press.	Casing	g Press		Calculated Hour Rate	24-	Oil - Bbl.			Gas	- MCF	<u> </u>	Water - Bbl. Oil Gravity - API - (Corr.)			r.)		
29. Disposition of	f Gas (Sol	d, used	d for fuel,	ented, etc)								30.	est Witn	essed By	/	
31. List Attachme	ents		•								•						
32. If a temporary pit was used at the well, attach a plat with the location of the temporary pit.																	
33. If an on-site burial was used at the well, report the exact location of the on-site burial:																	
Latitude 36.537222°N Longitude 107.7511944°W NAD □1927 ☑1983																	
I hereby certify that the information shown on both sides of this form is true and complete to the best of my knowledge and belief Printed																	
Signature E-mail Address	Signature																

ConocoPhillips

Pit Closure Form:	
Date: 1/29/08	
Well Name: Hur Sambo# 985	
Footages:	Unit Letter: <u>A</u>
Section: <u>35</u> , T- <u>21</u> -N, R- <u>9</u> -W, County:	Sow Juan State: N.M.
Contractor Closing Pit: A-Z	
Construction Inspector: Enc Snith	Date: <u>↑/≥9/08</u>

60

Jaramillo, Marie E

From:

Busse, Dollie L

Sent:

Wednesday, July 23, 2008 12:44 PM

To:

Brandon Powell; Busse, Dollie L; Mark Kelly; Robert Switzer; Sherrie Landon

Cc:

Smith Eric (sconsulting.eric@gmail.com); A&Z; Chavez, Virgil E; GRP:SJBU Production Foreman; GRP:SJBU Production Leads; Kramme, Jeff L; Blair, Maxwell O; Blakley, Maclovia; Clark, Joan E; Farrell, Juanita R; Finkler, Jane; Maxwell, Mary Alice; McWilliams, Peggy L;

Seabolt, Elmo F

Subject:

Clean Up Notice - Huerfanito 98S

Importance:

High

Attachments:

Huerfanito Unit 98S.pdf

A&Z Contracting will move a tractor to the Huerfanito 98S on Saturday, July 26 to start the reclamation process. Please contact Eric Smith (608-1387) if you have any questions or need additional information.

Thanks! Dollie

Network #: 10211525 (NANN)

Operator:

Burlington Resources

Legals:

1145' FNL, 675' FEL Section 35, T27N, R9W Unit Letter 'A' (NENE) San Juan County, NM

Lease:

SF-080117

API#:

30-045-34572

Surface/Minerals:

BLM/BLM

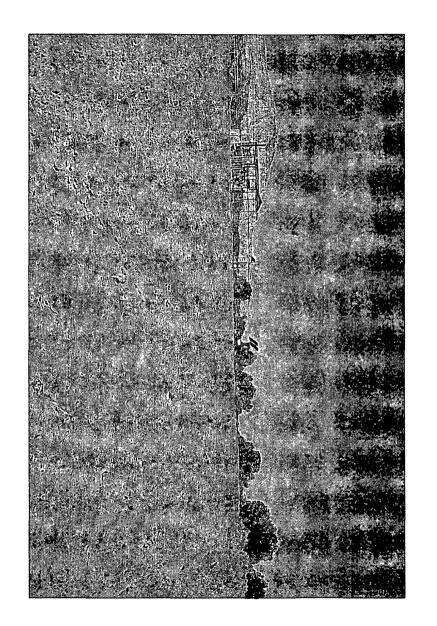
98S.pdf (133 K...

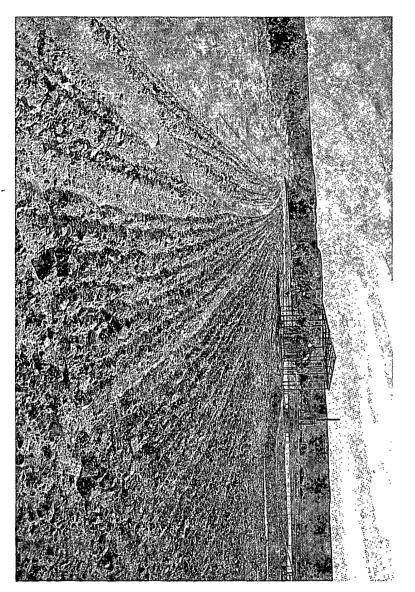
Dollie L. Busse

ConocoPhillips Company-SJBU

Construction Technician Project Development 505-324-6104 505-599-4062 (fax)

Dollie.L.Busse@conocophillips.com


ConocoPhillips


Reclamation Form:		
Date: 9/3/08		
Well Name: Hurr Can	to unit 985	<u>></u>
Footages: 1145 FNL	675'5-1	Unit Letter: 🛕
Section: <u>35</u> , T- <u>21</u>	N, R- <u></u> W, Cou	nty: San Trace State: 10.17
Reclamation Contractor	r: A-Z	
Reclamation Date:	8-15/08	
Road Completion Date:		
Seeding Date:	8-24/08	<u> </u>
	o \	
Construction inspector	200	Date: 9/3/08
Inspector Signature:		

(Car

WELL PAD SAFETY AND ENVIRONMENTAL CHECK LIST

WELL NAME: Huerfantio Unit 98S

ΔP	Ј #•	30-	.04	5_	34	572
-	ITT.	JU-	~~	J-	-	J 1 Z

DATE	INSPECTOR	SAFETY CHECK	LOCATION CHECK	PICTURES TAKEN	COMMENTS
4/11/08	Johnny R. McDonald	Х	X		
4/29/08	Jared Chavez	Х	Х		Location and pit in good condition
5/16/08	Jared Chavez				Basic Energy rig #1549 is on location
6/9/08	Scott Smith	Х	Х	Х	Fence not secured to t-post, NE corner hole in liner
6/16/08	Scott Smith	Х	Х	Х	Fence and liner in good condition
6/23/08	Scott Smith	X	Х	Х	Some small oil stains on location, contacted MVCI
6/30/08	Scott Smith	Х	Х	Х	Fence and liner in good condition
7/7/08	Scott Smith	Х	X	Х	Fence liner in good condition
7/14/08	Scott Smith	Χ	Х	Х	1 hole in liner W side at reserve pit
6/3/09	Jared Chavez	Х	Х	X	Fence needs tightened, called MVCI
			<u> </u>		