UNITED STATES DEPARTMENT OF THE INTERIOR **BUREAU OF LAND MANAGEMENT**

	APPLICATION FO	R PERMIT TO DRILL, DEEPEN OR PRUG BACK	30
1a.	Type of Work	5. Lease Number	
	Deepen	070 F SF 080675 Unit Reporting Numb	
		Unit Reporting Numb	er
1 L	Time of Mall	S. If Indian All or Tribo	
lb.	Type of Well GAS	6. If Indian, All. or Tribe	
2.	Operator	7. Unit Agreement Nam	e
	BURLINGTON RESCURCES Oil & Gas C	Company San Juan 27-4 Uni	+
		<u> </u>	
3.	Address & Phone No. of Operator		
	PO Box 4289, Farmingto	on, NM 87499 San Juan 27-4 Uni 9. Well Number	t
	(505) 326-9700	9. Well Number #133 A	
l .	Location of Well 1590' FNL, 870' FWL	10. Field, Pool, Wildcat Blanco Mesaverde/	Dagin Dakata
	1230, ENT' 810, EMT	11. Sec., Twn, Rge, Mer.	
ati	tude 36*32.82'N, Longitude		(14141F141) 04W
3002	tade so carea ii, aciigatada	API # 30-039-22114 2-3-7	
4.	Distance in Miles from Nearest To		13. State
	15 MILES	Rio Arriba	NM
15.	Distance from Proposed Location	n to Nearest Property or Lease Line	
16.	Acres in Lease	17. Acres Assigned to N 320 W/2 - MV/DK	Vell
	320	320, 2, 31.	
18.	Distance from Proposed Location	n to Nearest Well, Drig, Compl, or Applied for on this Lease	}
19.	Proposed Depth	20. Rotary or Cable Too	ols
	8472'	Rotary	
21.	Elevations (DF, FT, GR, Etc.)	22. Approx. Date Work	will Start
	7192 ' GR		
23.	Proposed Casing and Cementing	Program	
	See Operations Plan at	ctached	
	\mathcal{M}		
24.	Authorized by:	MIN (MINIMU) 4/13/05	
47.	Regulatory A		
		42222111	
PERM	IIT NO.	APPROVAL DATE	

Archaeological Report attached

Threatened and Endangered Species Report attached

NOTE: This format is issued in lieu of U.S. BLM Form 3160-3

Title 18 U.S.C. Section 1001, makes it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or presentations as to any matter within its jurisdiction.

1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Ave., Artesia, NM 88210 District III 1000 Rio Brazos Rd., Aztec, NM 87410 District IV 1220 S. St Francis Dr., Santa Fe, NM 87505

Form C-102 State of New Mexico 2015 APP Energy, Minerals and Natural Resources 27 Permit 9273 Oil Conservation Division 1220 S. St Francis Dr. O70 FARMINGTON MIN Santa Fe, NM 87505

WELL LOCATION AND ACREAGE DEDICATION PLAT

API Number	Pool Name BASIN DAKOTA (PRORATED GAS)	Pool Code 71599
Property Code 7452	Property Name SAN JUAN 27 4 UNIT	Well No. 133A
OGRID No. 14538	Operator Name BURLINGTON RESOURCES OIL & GAS CO	Elevation 7192

Surface And Bottom Hole Location

 UL or Lot	Section 27	Township 27N	Range 04W	Lot Idn	Feet From 1590	N/S Line N	Feet From 870	E/W Line W	County Rio Arriba
	ted Acres 20	Joint o	r Infill	Consoli	dation Code		Order		<u>Kanana a a a a a a a a a a a a a a a a a</u>

		no	R. Proposition of the Company of the
	É	50E26272	TO TO THE REAL PROPERTY.
)_ D		MAY 200	E 3
<u>-</u> 0	, III		all all
		LAS: 5	
and the second	153500000000000000000000000000000000000		Sy Sy
V	3.0	May 2	12 k

OPERATOR CERTIFICATION

I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief.

Electronically Signed By:

Title:

SURVEYOR CERTIFICATION

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

Surveyed By: Fred Kerr Jr. Date of Survey: 10/01/1984 Certificate Number: 3950

OPERATIONS PLAN FOR SAN JUAN 27-4 UNIT #133A

Well: San Juan 27-4 Unit #133A

T-27-N, R-4-W, Sect. 27, Unit E; 1590' FNL, 870' FWL Location:

Rio Arriba County, NM

Latitude 36^o 32.82' Longitude 107^o 14.62'

Blanco Mesaverde and Basin Dakota Formation:

Formation Tops:	Тор	Bottom	Contents
Surface	San Jose		
Ojo Alamo	3601'	3699'	aquifer
Kirtland	3699'	3919'	gas
Fruitland	3919'	4059'	gas
Pictured Cliffs	4059'	4151'	gas
Lewis	4151'	4551'	gas
Huerfanito Bentonite	4551'	5014'	gas
Chacra	5014'	5629'	gas
Upper Cliff House	5629'	5836'	gas
Massive Cliff House	5836'	5876'	gas
Menefee	5876'	6201'	gas
Massive Point Lookout	6201'	6729'	gas
Mancos	6729'	7359'	gas
Gallup	7359'	8158'	gas
Greenhorn	8156'	8227'	gas
Graneros	8227'	8252'	gas
Two Wells	8252'	8378'	gas
Cubero	8378'	8422'	gas
Lower Cubero	8422'	8457'	gas
Oak Canyon	8457'		gas
Total Depth	8472'		

Logging program:

Cased hole - CBL-CCL-GR - TD to 6600'

Mud Program:

<u>Interval</u>	<u>Type</u>	<u>Weight</u>	<u>Vis.</u>	Fluid Loss
6674' – 8472'	Air/Nitrogen	n/a	n/a	n/a

Casing Program:

<u>Hole Size</u>	Depth Interval	<u>Csg.Size</u>	<u>Wt.</u>	<u>Grade</u>	
3-7/8"	~6650' – 8472'	3-1/2" Flush	9.3#/'	L-80	
Tubing Program: 0' – total depth		<u>Tbg.Size</u> 2-1/16"	<u>Wt.</u> 3.25#	<u>Grade</u> J-55	

Operations:

It is intended to deepen the subject well to the Dakota formation by the following procedure:

- 1. MIRU completion rig. TOOH with tubing.
- 2. Set retrievable bridge plug at +/- 5690'.
- 3. Pressure test casing to 1000 psi for 15 minutes. TOOH with bridge plug.
- 4. Lay in acid soluble cement across entire Mesaverde interval. WOC.
- 5. Drill out cement. Test casing to 500 psi for 15 minutes. Repeat cement work until pressure test holds.
- 6. Drill out shoe. Drill Dakota formation to approximately 8472' with mud logger to call final total depth.
- 7. TIH with 3-1/2" flush joint pipe and set at total depth.
- 8. Cement with 26 sxs of type III cement (1.39 yield, 14.5 ppg). WOC. Run CBL. TOC @ 7052'.
- 9. Perforate and fracture stimulate the Dakota formation. Flow back Dakota.
- 10. Set composite plug 50' above top Dakota perforation.
- 11. Chemical cut 3-1/2" casing at +/- 6650'.
- 12. Acidize Mesaverde interval to restore production.

Operations Plan - San Juan 27-4 Unit #133A

Page Two

- 13. Drill out composite plug above the Dakota. Clean out to PBTD.
- 14. Land 2-1/16" IJ tubing.
- 15. RDMO rig. Return well to production as a commingled MV/DK producer.

BOP Specifications, Wellhead and Tests:

Surface to Total Depth:

2" nominal, 2000 psi minimum choke manifold (Reference Figure #3).

Completion Operations:

7 1/16" 2000 psi double gate BOP stack (Reference Figure #4). After nipple-up prior to completion, pipe rams, casing and liner top will be tested to 2000 psi for 15 minutes.

Wellhead:

9 5/8" x 7" x 4 1/2" x 2 1/16" x 2000 psi tree assembly.

General Information:

- Pipe rams will be actuated once each day and blind rams will be actuated once each trip to test proper functioning.
- An upper kelly cock valve with handle available and drill string valves to fit each drill string will be available on the rig floors at all times.
- All BOP tests and drills will be recorded in daily drilling reports.
- Blind and pipe rams will be equipped with hand wheels.

Cementing:

3-1/2" Production Liner

Cement to cover minimum of 1200' above the Dakota formation. Minimum TOC @ 7052'. 26 sxs type III cement (1.39 yield, 14.5 ppg). WOC a minimum of 18 hrs prior to completing.

Special Drilling Operations (Gas/Mist Drilling):

The following equipment will be operational while gas/mist drilling:

- An anchored blooie line will be utilized to discharge all cuttings and circulating medium to the blow pit a minimum of 100' from the wellhead.
- Compressors will be located a minimum of 100' from the wellhead in the opposite direction from the blooie line.
- Engines will have spark arresters or water-cooled exhaust.
- Deduster equipment will be utilized.
- The rotating head will be properly lubricated and maintained.
- A float valve will be utilized above the bit.
- Mud circulating equipment, water, and mud materials will be sufficient to maintain control of the well.

Additional Information:

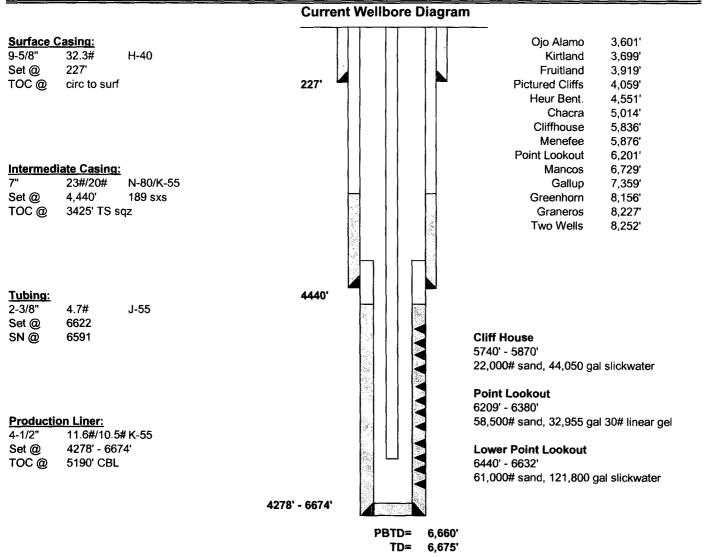
- The Mesaverde and/or Dakota formations will be completed and commingled if both formations are completed.
- No abnormal temperatures or hazards are anticipated.
- Anticipated pore pressures are as follows:

Dakota 1000 psi

Angela Ibara
Sr. Staff Engineer

<u>4/25/05</u>

Date


San Juan 27-4 Unit #133A

1590' FNL , 870' FWL Unit E, Section 27, T27N, R04W Rio Arriba County, NM

LAT: 36 deg 32.82 min

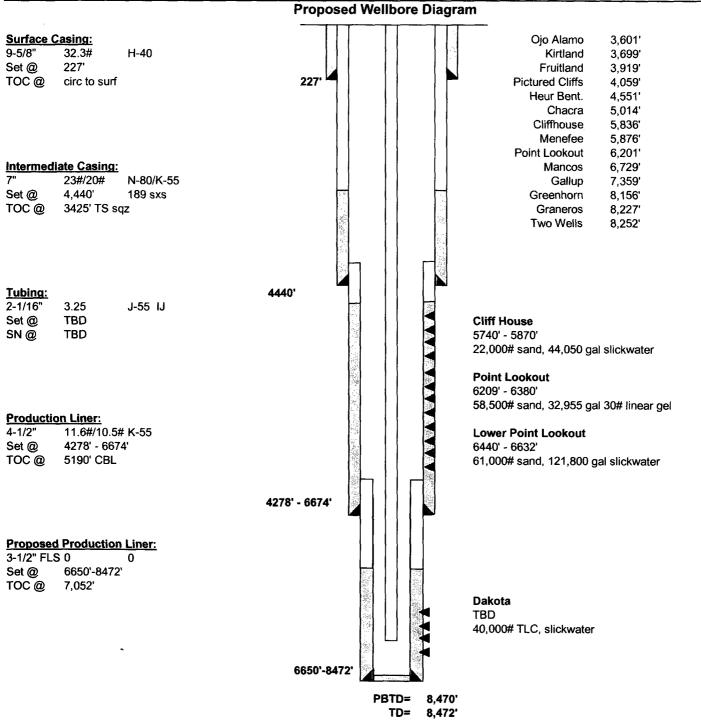
LONG: 107 deg 14.62 min

GL = 7,192' KB= 7,204'

LPLO: 6440', 54', 76', 96', 6521', 41', 48', 63', 87', 96', 6604', 24', 32'

PLO: 6209', 21', 26', 31', 36', 45', 65', 69', 80', 91', 6309', 14', 28', 45', 50', 66', 80'

CH: 5740', 51', 63', 67', 5801', 11', 26', 48', 65', 70'


San Juan 27-4 Unit #133A

1590' FNL , 870' FWL Unit E, Section 27, T27N, R04W Rio Arriba County, NM

LAT: 36 deg 32.82 min

LONG: 107 deg 14.62 min

GL = 7,192' KB= 7,204'

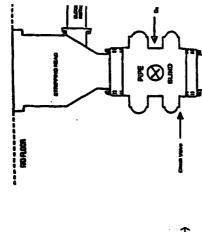
BURLINGTON RESOURCES

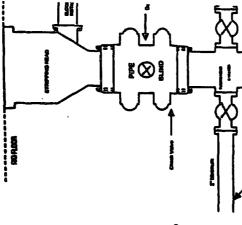
BURLINGTON RESOUR

Completion/Workover Ri BOP Configuration 2,000 pei System

Drilling Rig Chote Menifold Configuration 2000 psi System

Burlington Resources


2000 psi System


ADD 7.00A

ROTATING HEAD:

POLLUPING

Origing Rig

Ę

į

THAT SAVOR

Choke mentibid inetallation from Burface Cesing Point to Total Depth. 2,000pel working pressure equipment with two chokes.

Figure #3

4-20-01

Figure #1

10-02-9

the BOP. All BOP equipment is 2000 pel ressure or greater excluding 500 pal stri

persma. A attipping head to be install

sure double gate BOP to be equi

Operations. 7-1/16" bore, 2000 pel mir Minimum 80P installation for all Comp