District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Dr.

Form C-144

Revised June 6, 2013

For temporary pits, below-grade tanks, and multi-well fluid management pits, submit to the appropriate NMOCD District Office.

For permanent pits submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.

Pit, Below-Grade Tank, or

Santa Fe, NM 87505

13999 Proposed Alternative Meth	od Permit or Closure Plan Application
Type of action: Below grade tank registr	OII COME DIVIDIOT O
Darmit of a nit or propos	ed alternative method
	grade tank, or proposed alternative method FEB 16 2016
Modification to an existi	
	tted for an existing permitted or non-permitted pit, below-grade tank,
or proposed alternative method	
	n C-144) per individual pit, below-grade tank or alternative request
environment. Nor does approval relieve the operator of its responsibility to	of liability should operations result in pollution of surface water, ground water or the comply with any other applicable governmental authority's rules, regulations or ordinances.
Operator: Bridgecreek Resources (CO),LLC	OGRID #:310262
Address: 405 Urban Street, Suite 400, Lakewood, CO 80228	
Facility or well name: Kingsnake 34-6	
API Number: 30-045-35735	OCD Permit Number: 13257
U/L or Qtr/Qtr F SENW Section 34 Township 31N	Range 15W County: San Juan .
	Longitude108.4067055 NAD: □1927 ⊠ 1983
Surface Owner: ⊠ Federal □ State □ Private ⊠ Tribal Trust or Inc	
	THE ANOTHER
Z.	
Pit: Subsection F, G or J of 19.15.17.11 NMAC	
Temporary: ☑ Drilling ☐ Workover	
☐ Permanent ☐ Emergency ☐ Cavitation ☐ P&A ☐ Multi-Wel	l Fluid Management Low Chloride Drilling Fluid
☐ Lined ☐ Unlined Liner type: Thickness <u>20</u> mil ☐ L	LDPE HDPE PVC Other
String-Reinforced	
Liner Seams: ☐ Welded ☐ Factory ☒ Other Burrito Wrapped	Volume:bbl Dimensions: L_61ft_x W_35ft_x D_12ft
W. P. Carlotte (2)	
3.	
Below-grade tank: Subsection I of 19.15.17.11 NMAC	
Volume:bbl Type of fluid:	
Tank Construction material:	
☐ Secondary containment with leak detection ☐ Visible sidewalls	
☐ Visible sidewalls and liner ☐ Visible sidewalls only ☐ Other	
Liner type: Thicknessmil	/C Other
4.	
Alternative Method:	
Submittal of an exception request is required. Exceptions must be su	bmitted to the Santa Fe Environmental Bureau office for consideration of approval.
Fencing: Subsection D of 19.15.17.11 NMAC (Applies to permanent	pits, temporary pits, and below-grade tanks)
	equired if located within 1000 feet of a permanent residence, school, hospital,
institution or church)	1 Japanese Janese J
☐ Four foot height, four strands of barbed wire evenly spaced between	en one and four feet
DAN DISCOURSE	
Alternate. Please specify	

Netting: Subsection E of 19.15.17.11 NMAC (Applies to permanent pits and permanent open top tanks) Screen Netting Other	
☐ Monthly inspections (If netting or screening is not physically feasible)	
7. Signs: Subsection C of 19.15.17.11 NMAC ☐ 12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers ☐ Signed in compliance with 19.15.16.8 NMAC	
Variances and Exceptions: Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance. Please check a box if one or more of the following is requested, if not leave blank: Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.	
9. <u>Siting Criteria (regarding permitting)</u> : 19.15.17.10 NMAC <i>Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of accematerial are provided below.</i> Siting criteria does not apply to drying pads or above-grade tanks.	ptable source
General siting	5 to 1
Ground water is less than 25 feet below the bottom of a low chloride temporary pit or below-grade tank. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ☐ No ☐ NA
Ground water is less than 50 feet below the bottom of a Temporary pit, permanent pit, or Multi-Well Fluid Management pit. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	Yes No
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. (Does not apply to below grade tanks) - Written confirmation or verification from the municipality; Written approval obtained from the municipality	☐ Yes ☐ No
Within the area overlying a subsurface mine. (Does not apply to below grade tanks) - Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division	☐ Yes ☐ No
 Within an unstable area. (Does not apply to below grade tanks) Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map 	☐ Yes ☐ No
Within a 100-year floodplain. (Does not apply to below grade tanks) - FEMA map	☐ Yes ☐ No
Below Grade Tanks	
Within 100 feet of a continuously flowing watercourse, significant watercourse, lake bed, sinkhole, wetland or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 200 horizontal feet of a spring or a fresh water well used for public or livestock consumption;. - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Temporary Pit using Low Chloride Drilling Fluid (maximum chloride content 15,000 mg/liter)	
Within 100 feet of a continuously flowing watercourse, or any other significant watercourse or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). (Applies to low chloride temporary pits.) - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 300 feet from a occupied permanent residence, school, hospital, institution, or church in existence at the time of initial application.	☐ Yes ☐ No
- Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	
Within 200 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 300feet of any other fresh water well or spring, in existence at the time of the initial application. NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No

Within 100 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Temporary Pit Non-low chloride drilling fluid	
Within 300 feet of a continuously flowing watercourse, or any other significant watercourse, or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☐ No
Within 500 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 1000 feet of any other fresh water well or spring, in the existence at the time of the initial application; - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 300 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Permanent Pit or Multi-Well Fluid Management Pit	
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☐ No
Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 500 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19.15.17.9 Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the do attached. Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19 and 19.15.17.13 NMAC	9 NMAC
☐ Previously Approved Design (attach copy of design) API Number: or Permit Number:	
Multi-Well Fluid Management Pit Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the do attached. Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC A List of wells with approved application for permit to drill associated with the pit. Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19 and 19.15.17.13 NMAC Hydrogeologic Data - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC	
☐ Previously Approved Design (attach copy of design) API Number: or Permit Number:	

Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the	documents are
### Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Climatological Factors Assessment	
13. Proposed Closure: 19.15.17.13 NMAC Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan.	
Type: Drilling Workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Multi-well F Alternative Proposed Closure Method: Waste Excavation and Removal Waste Removal (Closed-loop systems only) On-site Closure Method (Only for temporary pits and closed-loop systems) In-place Burial On-site Trench Burial Alternative Closure Method	luid Management Pit
Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC	
Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable south provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. In 19.15.17.10 NMAC for guidance.	rce material are Please refer to
Ground water is less than 25 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	Yes No
Ground water is between 25-50 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	Yes No
Ground water is more than 100 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	Yes No
Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☐ No
Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Written confirmation or verification from the municipality; Written approval obtained from the municipality	☐ Yes ☐ No
Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance	Yes No

adopted pursuant to NMSA 1978, Section 3-27-3, as amended. - Written confirmation or verification from the municipality; Written approval obtained from the municipality	☐ Yes ☐ No
Within the area overlying a subsurface mine. - Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division	☐ Yes ☐ No
Within an unstable area.	
 Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map 	☐ Yes ☐ No
Within a 100-year floodplain.	☐ Yes ☐ No
- FEMA map	l res l No
On-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure p by a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Proof of Surface Owner Notice - based upon the appropriate requirements of Subsection E of 19.15.17.13 NMAC Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of Subsection K of 19.15.17 Construction/Design Plan of Temporary Pit (for in-place burial of a drying pad) - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of 19.15.17.13 NMAC Waste Material Sampling Plan - based upon the appropriate requirements of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standards came Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC	7.11 NMAC 9.15.17.11 NMAC
17. Operator Application Certification: I hereby certify that the information submitted with this application is true, accurate and complete to the best of my knowledge and be Name (Print): Christine Campbell Signature: Date: 2/9//6	lief.
e-mail address: ccampbell@palomarnr.com Telephone: 303-945-2642	
18. OCD Approval: Permit Application (including closure plan) Closure Plans (see attachment)	
OCD Representative Signature: Approval Date: 3/	palie
	y p
Title: OCD Permit Number:	
Closure Report (required within 60 days of closure completion): 19.15.17.13 NMAC Instructions: Operators are required to obtain an approved closure plan prior to implementing any closure activities and submitting. The closure report is required to be submitted to the division within 60 days of the completion of the closure activities. Please do not section of the form until an approved closure plan has been obtained and the closure activities have been completed. Closure Completion Date: 12-22-15	
20. Closure Method: Waste Excavation and Removal ☑ On-Site Closure Method ☐ Alternative Closure Method ☐ Waste Removal (Closed-l ☐ If different from approved plan, please explain.	oop systems only)
Closure Report Attachment Checklist: Instructions: Each of the following items must be attached to the closure report. Please in mark in the box, that the documents are attached. Proof of Closure Notice (surface owner and division) Proof of Deed Notice (required for on-site closure for private land only) Plot Plan (for on-site closures and temporary pits) Confirmation Sampling Analytical Results (if applicable) Waste Material Sampling Analytical Results (required for on-site closure) Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique Site Reclamation (Photo Documentation) On-site Closure Location: Latitude 36.8587483 Longitude 108.4060123 NAD:	ndicate, by a check

Operator Closure Certification:	
I hereby certify that the information and attachments submitted with this closubelief. I also certify that the closure complies with all applicable closure requi	
	itle: Regulatory Lead
Signature: Christin Campbell	Date: 2/9/16
e-mail address: ccampbell@palomarnr.com	Telephone: 303-945-2642

Bridgecreek Resources (Colorado) LLC

Kingsnake 34-6 API: 30-045-35735

NMOCD Pit Permit: 13257

Bridgecreek Resources (Colorado) LLC Temporary Pit Closure Report

In accordance with Rule 19.15.17.9 NMAC and 19.15.17.13 NMAC the following information describes the closure of the temporary pit on Bridgecreek locations. All proper documentation regarding closure activities in being included with the C-144.

- Detail on Capping and Covering, where applicable
- · Plot Plan (Pit diagram)
- Sampling Results

General Plan

- The preferred method of closure for all temporary pits will be on-site burial, pursuant to Subsection B of 19.15.17.9 and assuming that all criteria listed in sub-section (D) of 19.15.17.13 are met.
- Prior to closure, the surface owner shall be notified at least 72 hrs but not more than one week prior to Bridgecreek's proposed closure plan using a means that provides proof of notice i.e., certified mail, return receipt requested.
 - Email notification was provided to all required parties on 12/10/16. Certified mail is not required for Federal land per BLM/OCD MOU.
- 3. Within 6 months of the Rig-off status occurring Bridgecreek will ensure that temporary pits are closed. Re-contouring and reseeding will occur during interim reclamation.
 - a. Closure occurred from December 16 to December 22, 2015. Bridgecreek will notify OCD upon reseeding of reclaimed area no later than 6 months following rig release date.
- 4. Notice of Closure will be given to the Aztec Division office 72 hours but not more than one week of closure via email, or verbally, The notification of closure will include the following:
 - i. Operator's name
 - Location by Unit Letter, Section, Township, and Range. Well name and API Number
 - b. Notification was done via email on 12/10/15 to all required parties.
- All contents, including synthetic pit liners, will be buried in place. By folding outer edges of the pit liner to overlap waste material, and then installing a geomembrane liner cover that is 20 mil string reinforced LLDPE, synthetic material, impervious, resistant to ultra violet

 Bridgecreek Resources (Colorado) LLC Kingsnake 34-6

API: 30-045-35735

NMOCD Pit Permit: 13257

light, petroleum hydrocarbons, salts, acid and alkaline.

- a. The burial trench was lined with a 20 mil string reinforced LLDPE liner, stabilized cuttings were placed in liner and burrito wrapped to entirely cover the stabilized cuttings. The entire trench was capped with 4 feet of clean fill dirt and compacted to ground level.
- 6. Cuttings will be contained in four-sided impermeable bins on location. Cuttings will be mixed with non-waste saw dust material in order to achieve the solidification process. The solidification process will be accomplished using a combination of natural drying and mechanically mixing. Cuttings will be mixed with non-waste, saw dust material to a consistency that is deemed a safe and stable. Cuttings will be mixed while in the four-sided bins. The mixing ratio shall not exceed 3 parts clean soil to 1 part pit contents. The stabilized mixture must pass the paint filter liquids test (EPA SW-846, Method 9095 or other test methods approved by the division.
 - a. The cuttings were stabilized in steel bins on location at a 3:1 clean soil to pit contents ratio prior to passing the paint filter test method.
- 7. A five point composite sample will be taken of the pit using sampling tools and all samples tested per Subsection D of 19.15.17.13 (5). The concentration of any contaminant in the stabilized waste is cannot be higher than the parameters listed in Table II of 19.15.17.13 NMAC. In the event that the criteria are not met, all contents will be handled per Subsection C of 19.15.17.13
 - a. A six-point composite sample was taken. Constituents listed in the UMU Table/COGCC Table are below standards NMOCD limits. The burial was approved by the BLM and the UMU Tribe Environmental Department. (Sample results are attached).

b.

- Upon completion of stabilization and testing in bins, the trench will be dug, lined and stabilized cuttings deposited and burrito-wrapped. The burrito-wrapped stabilized cuttings will be covered with a minimum of four feet of clean fill dirt.
 - a. Closure occurred from December 16 to December 22, 2015. A two-foot base layer of clean soil was placed at the bottom of the lined trench to protect the base from being impaired during mixing. Stabilized cuttings were placed in liner and burrito wrapped to entirely cover the stabilized cuttings. The entire trench was capped with 4 feet of clean fill dirt and compacted to ground level.
- 9. Upon completion of interim reclamation re-contouring of location will match fit, shape, line, form and texture of the surrounding area. Re- shaping will include drainage control, prevent ponding, and prevent erosion. Natural drainages will be unimpeded and water bars and/or silt traps will be placed in areas where needed to prevent

Bridgecreek Resources (Colorado) LLC

Kingsnake 34-6 API: 30-045-35735

NMOCD Pit Permit: 13257

erosion on a large scale. Final re-contour shall have a uniform appearance with smooth surface, fitting the natural landscape.

- a. The trench area was re-contoured to match fit, shape, line, form and texture of surrounding area. Re-shaping included drainage control, to prevent ponding, and erosion. Natural drainages were unimpeded and silt traps or berms were placed in areas where needed to prevent erosion on a large scale. Final re-contour has a uniform appearance with smooth surface, fitting natural landscape.
- 10. Notification will be sent to OCD when the reclaimed area is seeded.
 - Notification will be provided to OCD via form 3160-5 Sundry Form upon completion.
- 11. Following 19.15.17.13 (H) (5) (a-e), Bridgecreek shall seed the distributed areas the first growing season after the operator completes interim reclamation. Seeding will be accomplished via drilling on the contour whenever practical or by other division-approved methods. Suggested BIA stipulated seed mixed will be used on federal lands. Vegetative cover will equal 70% of the native perennial vegetative cover (un-impacted) consisting of at least three native plant species, including at least one grass, but not including noxious weeds, and maintain that cover thorough two successive growing seasons. Repeat seeding or planting will be continued until successful vegetative growth occurs.
 - a. Seeding will begin during the next growing season. Seeding will be accomplished via drilling on the contour whenever practical or by other division-approved methods. BIA stipulated seed mixed will be used on federal lands. Vegetative cover will equal 70% of the native perennial vegetative cover (un-impacted) consisting of at least three native plant species, including at least one grass, but not including noxious weeds, and maintain that cover thorough two successive growing seasons. Repeat seeding or planting will be continued until successful vegetative growth occurs.
- 12. The temporary pit will be located with a steel marker, no less than four inches in diameter, cemented in a hole three feet deep in the center of the onsite burial upon the abandonment of all the wells on the pad. The marker will be a four foot tall riser with the operator's information at the time of all wells on the pad are abandoned. The operator's information will include the following: Operator Name, Lease Name, Well Name and Number, unit Number, Section, Township, Range and an indicator that the marker is an onsite burial location.
 - a. A steel temporary marker has been ordered will be placed in the center of the onsite burial trench as soon as the weather permits in accordance with 19.15.16.8 NMAC.

Bridgecreek Resources (Colorado) LLC

Kingsnake 34-6 API: 30-045-35735

NMOCD Pit Permit: 13257

DISPOSAL FACILITY NAME AND PERMIT NUMBER

Aqua Moss Disposal 3782 Provo Bloomfield, NM 87413

Sunco Disposal Well #001, API 30-045-28653

BIA Seed MIX 2015

UMU Indian Reservation

Species	Variety	% of Mix	#PLS/ac
Galleta	Viva	25	1.0
Alkali sacaton	Salado	25	0.4
Western wheatgrass	Arriba	15	2.4
Blue grama	Hatchita	15	0.5
Indian ricegrass	Nezpar	10	1.2
Sand dropseed	VNS	10	0.05

10. PLANS FOR SURFACE RECLAMATION

- The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil; control erosion; and minimize habitat and forage loss, visual impact, and weed infestation, during the life of the well or facilities.
- The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources and wildlife habitats. To ensure that the long term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning and vegetative productivity.
- Bridgecreek will notify the BLM, the UMU Energy and the UMU Environmental Department at least 3 days before beginning any of the approved surface reclamation operations.
- Within six months after the last well on the pad has been completed or plugged, Bridgecreek will contact the BLM by filing a Form 3160-5 with a reclamation plan for approval to reduce the size of the drill pad and reclaim the ground approximately as shown on Attachment H.
- The well pad and access road would cover an area of approximately 3.99 acres, but will be reduced after interim reclamation (following drilling and completion) to approximately 3.03 acres (+/- 0.3 acres) as shown on Attachment H.

■ INTERIM RECLAMATION

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production. In areas planned for interim reclamation, all the surfacing material used to build the well pad will be removed and returned to the original source or recycled to repair or build roads and well pads.
- B. The areas planned for interim reclamation will then be recontoured to blend with the surrounding topography as much as possible. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the blend with surrounding topography during interim reclamation.
- C. Topsoil will be evenly respread and revegetated over the entire disturbed area not needed for all-weather operations including cuts & fills. To seed the area, the proper BIA approved seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites.
- D. BIA approved seed mix will be broadcast or drilled at an appropriate time prior to the winter season. Bridgecreek will notify the BLM with a Sundry Form 3160-5 upon completion of interim reclamation.
- E. Bridgecreek is responsible for consultation with the BLM and UMU Environmental Department for acceptable weed control methods and shall comply with the following:
 - A BLM Sundry Form 3160-5 will be submitted for permission to use any pesticide other than "Roundup" by Scotts Company prior to use.

- All commercial pesticide applicators must hold a valid New Mexico Commercial Applicators license, and the license must be valid for the applicable pesticide application category.
- F. Proper erosion control methods will be used on the area to control erosion, runoff and siltation of the surrounding area.
- G. The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.
- H. Interim reclamation will be considered successful when the desired vegetative species are established and evidence of vegetation reproduction, either by spreading of rhizomatous species or seed production, is established. Interim reclamation will additionally be deemed a success when erosion is controlled, weeds are considered a minimum threat, and a uniform vegetative cover has been established with an individual plant density of at least 70 percent of pre-disturbance levels.

■ FINAL RECLAMATION

- Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- J. All surfacing material will be removed and returned to the original source pit or recycled to repair or build roads and well pads.
- K. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be recontoured to the contour existing prior to initial construction or a contour that blends with the surrounding topography. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. Areas to be reclaimed will be recontoured to blend with the surrounding landscape, emphasizing restoration of existing drainage patterns and landform to pre-construction condition, to the extent practicable.
- L. Upon final reclamation after cessation of production operations, seedbed preparation of compacted areas will be ripped to a minimum depth of 12 inches, with a maximum furrow spacing of 2 feet. Where practicable, ripping will be conducted in two passes at perpendicular directions. Disking will be conducted if large clumps or clods remain after ripping. Any tilling or disking that occurs along the contour of the slope and seed drills will also be run along the contour to provide terracing and prevent rapid run-off and erosion. If broadcast seeding is used, a dozer or other tracked equipment will track perpendicular to the slope prior to broadcast seeding. Access will be ripped (along the contour when possible) to a minimum depth of 6 inches, water barred, and reseeded with a BIA approved seed mix.
- M. After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BIA seed mixture, free of noxious weeds.
- N. Proper erosion control methods will be used on the entire area to control erosion, runoff and siltation of the surrounding area. This may include erosion control blankets, straw bales, or straw wattles as appropriate to limit erosion and sediment transport from any stockpiled soils.
- All unused equipment and structures including pipelines, tanks, etc. that serviced the well will be removed for proper disposal.

P. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, and that erosion is controlled.

DGECREEK RESOURCES (CO) LLC
KINGSNAKE 34 - 6
SENW, Section 34-T31N-R15W
2128' FNL & 2060' FWL
MU TRIBAL LEASE # 751-14-1038
API # 30-045-35735
SAN JUAN COUNTY, NM
EMERGENCY # (505) 599-5284

Christine Campbell

From: Kelly Williams

Sent: Thursday, December 10, 2015 12:20 PM

To: Scott Clow (sclow@utemountain.org); Gordon Hammond

(ghammond@utemountain.org); Scott Clow (sclow@utemountain.org); Ryan Joyner

(rjoyner@blm.gov); Cory.Smith@state.nm.us

Cc: Christine Campbell; Steve Veal; Bob Schulz; John Thompson;

andrew@adkinsenvironmental.com

Subject: Advance Notification - Cuttings Burial

Attachments: Sundry Notice - Cuttings.pdf

To Whom it May Concern:

This is an advance notification that Bridgecreek Resources (Colorado), LLC., operator, will be burying the cuttings from the Kingsnake 34-6, API: 30-045-35735-00-X1 well on the Ute Mountain Ute Reservation in New Mexico.

Weeminuche will be burying the cuttings on Tuesday morning - December 15th, 2015.

Pertinent Information

Township: 31N Range: 15W Section: 34 County: San Juan

Location: Ute Mountain Ute Reservation in New Mexico

If you need any additional information please feel free to email me or call me directly at 303-945-2631.

Best regards,

Kelly Williams

KELLY WILLIAMS OFFICE MANAGER

PALOMAR NATURAL RESOURCES 405 Urban Street - Suite 400, Lakewood, CO 80228 303-945-2630 (main office) 303-945-2631 (direct) kwilliams@palomarnr.com

Form 3160-5 (August 2007)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED OMB NO. 1004-0135 Expires: July 31, 2010

5. Lease Serial No.

SUNDRY	NOTICES AND REPOR	751141038	751141038			
abandoned wel	s form for proposals to o I. Use form 3160-3 (APD	frill or to re-enter an) for such proposals.	6. If Indian, Allotted UTE MOUNTA			
SUBMIT IN TRI	PLICATE - Other instruct	tions on reverse side.	7. If Unit or CA/Ag	reement, Name and/or No.		
Type of Well Gas Well □ Oth	er		8. Well Name and N KINGSNAKE 34			
Name of Operator BRIDGECREEK RESOURCE	Contact: (CHRISTINE CAMPBELL bridgecreekresources.com	9. API Well No. 30-045-35735	-00-S1		
3a. Address 405 URBAN STREET, SUITE LAKEWOOD, CO 80228	400	3b. Phone No. (include area code Ph: 303-945-2642	e) 10. Field and Pool, VERDE GALL	or Exploratory UP		
4. Location of Well (Footage, Sec., T.	, R., M., or Survey Description)	W. Take and	11. County or Parisl	n, and State		
Sec 34 T31N R15W SENW 21 36.858868 N Lat, 108.406705			SAN JUAN CO	DUNTY, NM		
12. CHECK APPR	ROPRIATE BOX(ES) TO	INDICATE NATURE OF	NOTICE, REPORT, OR OTH	ER DATA		
TYPE OF SUBMISSION	3	ТҮРЕ С	F ACTION	50		
D Notice of Intent	☐ Acidize	□ Deepen	☐ Production (Start/Resume)	☐ Water Shut-Off		
□ Notice of Intent	☐ Alter Casing ☐ Fracture Treat ☐ Reclamation		☐ Reclamation	■ Well Integrity		
Subsequent Report ■	□ Casing Repair	■ New Construction	☐ Recomplete	☑ Other		
☐ Final Abandonment Notice	☐ Change Plans	☐ Plug and Abandon	□ Temporarily Abandon	Emergency Pits or Cl osure		
	☐ Convert to Injection	☐ Plug Back	■ Water Disposal			
	For BRIDGECREEK I	28518 verified by the BLM We RESOURCES COLO LLC, sel essing by TRACEY AYZE on Title REGU	nt to the Durango			
Signature (Electronic S		Date 01/14/				
	THIS SPACE FO	R FEDERAL OR STATE	OFFICE USE			
Approved By ACCEPT	ED	DAN RAE TitleACTING	SINOWITZ MINERALS STAFF CHIEF	Date 01/22/2016		
Conditions of approval, if any, are attached certify that the applicant holds legal or equivalent would entitle the applicant to condu	itable title to those rights in the		0	De Hall		
Title 18 U.S.C. Section 1001 and Title 43 States any false, fictitious or fraudulent s				or agency of the United		

January 10, 2015

Mr. Ryan Joyner
Bureau of Land Management
Tres Rios Field Office
Land and Minerals
15 Burnett Court
Durango, CO 81301

RE: Analytical Result Amendment to Cutting Trench Closure Report. Bridgecreek Resources. Kingsnake 34-6. Sec. 34, T31N.R15W.

Lease #751-14-1038.

Mr. Joyner:

On the behalf of Bridgecreek Resources (Bridgecreek), Adkins Consulting Inc. (ACI) is pleased to submit this amendment to the closure plan report.

Attached is the Certificate of Analysis for the confirmation sample of mixed buried cuttings. Constituents listed in the UMU Table are below standards except for pH and arsenic. Arsenic was discussed in the closure plan and is not evaluated further.

Sample ID	Date	TPH(EPA 8015)	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Chloride	Arsenic	pH
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Burial Confirmation	12/21/2015	32.9	<0.10	0.3	0.11	0.37	245	5.7	9.32
UMU Table (COGCC Table 910-1)		500	0.17	85	100	175		0.39	6-9
NMOCD (Rule 19.15.17; DTW > 100 ft)	2250 5 24	1,000	10	AL HONSE		Joseph E. B.			0'00
CDPHE-HMWMD/EPA RSLs			5.10	4,700	25	250		3.00	
Notes:			1						
exceeds UMU Table standards						0.545			
exceeds EPA RSL Standards								A STATE OF	

pH exceeds standards as shown in the above table. pH is important in nutrient uptake in plants. The mixed drill cuttings are encapsulated in a 20-mil LLDPE string-reinforced liner and covered with 4-feet of clean fill dirt; therefore, pH will not effect revegetation efforts.

The extent of the burial trench was identified with a T-post in each corner (Figure 1, below). A permenant center marker will be placed according to the SUPO to identify the burial cell and dimensions.

Figure 1: T-Posts placed at each corner of cuttings trench.

If you have any questions or comments please contact me at 970-570-9535.

Andrew Parker

Adkins Consulting, Inc

Durango, CO

970-570-9535

andrew@adkinsenvironmental.com

Cc: Christine Campbell, Bridgecreek Resources

Appendix A

Figure 1: Excavating the cuttings trench.

Figure 2: Mixing the drill cuttings with clean soil from trench excavation. Stablization was achieved at a ratio of 1 (clean): 1 (cuttings).

Figure 3: Placing the 3(clean):1(cuttings) mixed drill cuttings into the cuttings trench. The trench is lined with a 20-mil string reinforced LLDPE liner.

Figure 4: Spreading the mixed cuttings in the burial trench.

Figure 5: Mixed (3:1) drill cuttings. The soil matrix is approximately 1/3 rock, 1/3 fines, and 1/3 stablized cuttings.

Figure 6: Bedrock from the excavation spoils that make up a portion of the buried cuttings matrix.

Analytical Report

Report Summary

Client: Bridgecreek Resources, LLC

Chain Of Custody Number:

Samples Received: 12/21/2015 3:50:00PM

Job Number: 15090-0001 Work Order: P512045

Project Name/Location: Kingsnake 34-6

Entire Report Reviewed By:

Tim Cain, Laboratory Manager

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

1/6/16

Date:

Bridgecreek Resources, LLC 405 Urban St Suite 400 Lakewood CO, 80228 Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 Christine Campbell Reported: 06-Jan-16 12:15

Analyical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container	
Burial Confirmation (3:1)	P512045-01A	Soil	12/21/15	12/21/15	Glass Jar, 4 oz.	
	P512045-01B	Soil	12/21/15	12/21/15	Glass Jar, 4 oz.	
	P512045-01C	Soil	12/21/15	12/21/15	Glass Jar, 4 oz.	
	P512045-01D	Soil	12/21/15	12/21/15	Glass Jar, 4 oz.	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

405 Urban St Suite 400 Lakewood CO, 80228 Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 Christine Campbell Reported: 06-Jan-16 12:15

Burial Confirmation (3:1) P512045-01 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021						171.4		Kill of the	
Benzene	ND	0.10	mg/kg	1	1552010	12/22/15	12/22/15	EPA 8021B	
Toluene	0.30	0.10	mg/kg	1	1552010	12/22/15	12/22/15	EPA 8021B	
Ethylbenzene	0.11	0.10	mg/kg	1	1552010	12/22/15	12/22/15	EPA 8021B	
p,m-Xylene	0.25	0.20	mg/kg	1	1552010	12/22/15	12/22/15	EPA 8021B	
o-Xylene	0.12	0.10	mg/kg	1	1552010	12/22/15	12/22/15	EPA 8021B	
Total Xylenes	0.37	0.10	mg/kg	1	1552010	12/22/15	12/22/15	EPA 8021B	
Total BTEX	0.78	0.10	mg/kg	1	1552010	12/22/15	12/22/15	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		115 %	50	-150	1552010	12/22/15	12/22/15	EPA 8021B	
Nonhalogenated Organics by 8015		12000	111					40	
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	1552010	12/21/15	12/22/15	EPA 8015D	- 1
Diesel Range Organics (C10-C28)	32.9	25.0	mg/kg	1	1552008	12/21/15	12/22/15	EPA 8015D	
Oil Range Organics (C28-C40+)	ND	50.0	mg/kg	1	1552008	12/21/15	12/22/15	EPA 8015D	
Surrogate: n-Nonane		106 %	50	-200	1552008	12/21/15	12/22/15	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.7 %	50	-150	1552010	12/21/15	12/22/15	EPA 8015D	
Total Metals by 6010				3					
Arsenic	5.70	0.94	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	
Barium	212	9.40	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	
Cadmium	1.30	0.94	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	
Chromium	55.9	4.70	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	
Copper	3.51	1.88	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	
Lead	35.0	0.94	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	
Mercury	ND	0.94	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	
Nickel	21.6	0.94	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	
Selenium	ND	4.70	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	
Silver	ND	0.94	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	
Zinc	111	1.88	mg/kg	0.9	1552017	12/22/15	12/22/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Project Name:

Kingsnake 34-6

405 Urban St Suite 400 Lakewood CO, 80228

Project Number: Project Manager:

15090-0001 Christine Campbell

Reported: 06-Jan-16 12:15

Burial Confirmation (3:1) P512045-01 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Cation/Anion Analysis						Territoria.			Silver S
pH @25°C	9.32		pH Units	1	1552019	12/22/15 13:33	12/22/15 13:50	9040C/4500 H	
Electrical Conductivity	4260		umhos/cm	1	1552019	12/22/15 13:33	12/22/15 13:50	9050A/2510	
Sodium Absorption Ratio	1.27		N/A	1	1552023	12/23/15	12/23/15	[CALC]	
Chloride	245	20.0	mg/kg	1	1552013	12/22/15	12/22/15	EPA 300.0	
Calcium	54.9	0.50	mg/L	1	1552020	12/22/15	12/22/15	EPA 6010C	
Magnesium	3.11	0.20	mg/L	1	1552020	12/22/15	12/22/15	EPA 6010C	
Sodium	35.8	2.00	mg/L	1	1552020	12/22/15	12/22/15	EPA 6010C	
Boron-Hot Water Soluble by EPA 6010								31. 145	
Boron	ND	0.50	mg/L	1	1552018	12/22/15	12/22/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 Christine Campbell Reported:

06-Jan-16 12:15

Volatile Organics by EPA 8021 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		11.45								
Batch 1552010 - Purge and Trap EPA 5030A			-	1						
Blank (1552010-BLK1)			164 / 7	Prepared: 2	21-Dec-15	Analyzed:	22-Dec-15		No.	
Benzene	ND	0.10	mg/kg							
Toluene	ND	0.10	"							
Ethylbenzene	ND	0.10								
p,m-Xylene	ND	0.20	**							
o-Xylene	ND	0.10	**							
Total Xylenes	ND	0.10	**							
Total BTEX	ND	0.10								
Surrogate: 4-Bromochlorobenzene-PID	0.331			0.320		103	50-150			
LCS (1552010-BS1)				Prepared: 2	21-Dec-15	Analyzed:	22-Dec-15			
Benzene	10.6	0.10	mg/kg	10.0		106	70-130			
Toluene	10.4	0.10	**	10.0		104	70-130			
Ethylbenzene	10.4	0.10	**	10.0		104	70-130			
p,m-Xylene	20.7	0.20	**	20.0		103	70-130			
o-Xylene	10.1	0.10	*	10.0		101	70-130			
Surrogate: 4-Bromochlorobenzene-PID	0.335		*	0.320		105	50-150			
Matrix Spike (1552010-MS1)	Sou	rce: P512043-	01	Prepared: 2	21-Dec-15	Analyzed:	22-Dec-15		A CONTRACT	
Benzene	11.1	0.10	mg/kg	10.0	ND	111	54.3-133			400
Toluene	10.9	0.10	**	10.0	ND	109	61.4-130			
Ethylbenzene	10.9	0.10	*	10.0	ND	109	61.4-133			
p,m-Xylene	21.6	0.20		20.0	ND	108	63.3-131			
o-Xylene	10.6	0.10		10.0	ND	106	63.3-131			
Surrogate: 4-Bromochlorobenzene-PID	0.331		"	0.320	0	103	50-150		W. P.	
Matrix Spike Dup (1552010-MSD1)	Sou	rce: P512043-	01	Prepared: 2	21-Dec-15	Analyzed:	22-Dec-15			
Benzene	10.0	0.10	mg/kg	10.0	ND	100	54.3-133	10.4	20	
Toluene	9.82	0.10	*	10.0	ND	98.3	61.4-130	10.5	20	
Ethylbenzene	9.82	0.10		10.0	ND	98.3	61.4-133	10.5	20	
p,m-Xylene	19.5	0.20	**	20.0	ND	97.5	63.3-131	10.3	20	
o-Xylene	9.60	0.10		10.0	ND	96.1	63.3-131	9.51	20	
Surrogate: 4-Bromochlorobenzene-PID	0.334			0.320		104	50-150		19848	10%

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Project Name:

Kingsnake 34-6

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager:

Reporting

15090-0001 Christine Campbell

Spike

Reported:

RPD

%REC

06-Jan-16 12:15

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1552008 - DRO Extraction EPA 3550M										100
Blank (1552008-BLK1)				Prepared &	Analyzed:	21-Dec-15				
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg							
Surrogate: n-Nonane	57.4		m	50.0		115	50-200			
LCS (1552008-BS1)				Prepared &	Analyzed:	21-Dec-15				
Diesel Range Organics (C10-C28)	550	25.0	mg/kg	500		110	38-132			
Surrogate: n-Nonane	55.3		"	50.0		111	50-200			
Matrix Spike (1552008-MS1)	Source	e: P512043-	01	Prepared &	Analyzed:	21-Dec-15				
Diesel Range Organics (C10-C28)	543	25.0	mg/kg	500	ND	109	38-132			
Surrogate: n-Nonane	57.3			50.0		115	50-200			
Matrix Spike Dup (1552008-MSD1)	Source	e: P512043-	01	Prepared: 2	21-Dec-15	Analyzed: 2	22-Dec-15			
Diesel Range Organics (C10-C28)	527	25.0	mg/kg	500	ND	105	38-132	2.99	20	
Surrogate: n-Nonane	53.9		**	50.0		108	50-200			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

405 Urban St Suite 400 Lakewood CO, 80228 Project Name:

Kingsnake 34-6

Project Number:

15090-0001

Project Manager:

Christine Campbell

Reported:

06-Jan-16 12:15

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1552010 - Purge and Trap EPA 5030A							Trans	egu és		
Blank (1552010-BLK1)		3.6		Prepared: 2	1-Dec-15	Analyzed: 2	22-Dec-15		W . N	
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	17075			[- T-6			
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.305		*	0.320		95.2	50-150	2.5		
LCS (1552010-BS1)				Prepared: 2	1-Dec-15	Analyzed: 2	22-Dec-15			
Gasoline Range Organics (C6-C10)	112	20.0	mg/kg	106	1741	106	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.299		*	0.320		93.5	50-150	1	4	
Matrix Spike (1552010-MS1)	Sou	rce: P512043-	01	Prepared: 2	1-Dec-15	Analyzed: 2	22-Dec-15			
Gasoline Range Organics (C6-C10)	118	20.0	mg/kg	106	ND	111	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.304		**	0.320		95.0	50-150			
Matrix Spike Dup (1552010-MSD1)	Sou	ırce: P512043-	01	Prepared: 2	1-Dec-15	Analyzed: 2	22-Dec-15			
Gasoline Range Organics (C6-C10)	108	20.0	mg/kg	106	ND	102	70-130	9.03	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.306		"	0.320		95.7	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

laboratory@envirotech-inc.com

405 Urban St Suite 400 Lakewood CO, 80228 Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 Christine Campbell Reported:

06-Jan-16 12:15

Total Metals by 6010 - Quality Control Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1552017 - Metal Solid Digest	ion EPA 3051A					1				a len
Blank (1552017-BLK1)				Prepared &	Analyzed:	22-Dec-15			- raal	
Arsenic	ND	1.00	mg/kg						173	
Barium	ND	10.0	**							
Cadmium	ND	1.00	**							
Chromium	ND	5.00	**							
Copper	ND	2.00	**							
Lead	ND	1.00	**							
Mercury	ND	1.00	**							
Nickel	ND	1.00	**							
Selenium	ND	5.00	*							
Silver	ND	1.00	*							
Zinc	ND	2.00	**							
CS (1552017-BS1)				Prepared &	Analyzed:	22-Dec-15				
Arsenic	76.1	1.00	mg/kg	90.0		84.5	80-120			
Barium	82.0	10.0	*	90.0		91.1	80-120			
admium	79.6	1.00	-	90.0		88.5	80-120			
Chromium	81.6	5.00	*	90.0		90.6	80-120			
Copper	72.0	2.00		90.0		80.0	80-120			
ead	81.4	1.00	*	90.0		90.5	80-120			
Mercury	82.0	1.00	**	100		82.0	80-120			
Nickel	78.9	1.00	*	90.0		87.6	80-120			
Selenium	73.6	5.00	*	90.0		81.8	80-120			
iilver	78.2	1.00		90.0		86.9	80-120			
line	78.5	2.00	*	90.0		87.2	80-120			
Iatrix Spike (1552017-MS1)	Sour	ce: P512043-	01	Prepared &	Analyzed:	22-Dec-15				
rsenic	81.7	0.98	mg/kg	88.2	1.72	90.7	75-125			
Jarium	157	9.80		88.2	76.3	92.0	75-125			
Cadmium	82.5	0.98	*	88.2	ND	93.5	75-125			
Chromium	91.3	4.90	*	88.2	6.81	95.8	75-125			
opper	73.5	1.96	*	88.2	ND	83.3	75-125			
ead	92.1	0.98	**	88.2	6.97	96.5	75-125			
fercury	82.6	0.98	*	98.0	0.99	83.2	75-125			
lickel	84.0	0.98	*	88.2	2.50	92.4	75-125			
elenium	79.0	4.90		88.2	ND	89.6	75-125			
ilver	2.82	0.98		88.2	ND	3.20	75-125			SPK
Line	96.3	1.96		88.2	12.9	94.5	75-125			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

Project Name:

Kingsnake 34-6

405 Urban St Suite 400

Project Number: Project Manager: 15090-0001

Lakewood CO, 80228

Christine Campbell

Reported: 06-Jan-16 12:15

Total Metals by 6010 - Quality Control

Envirotech Analytical Laboratory

		Re	porting		Spike	Source		%REC		RPD	
Analyte	Result		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1552017 - Metal Solid Digestion EPA 3051A

Matrix Spike Dup (1552017-MSD1)	Sourc	Source: P512043-01				Prepared & Analyzed: 22-Dec-15					
Arsenic	76.4	0.96	mg/kg	86.7	1.72	86.1	75-125	6.73	20		
Barium	162	9.63	"	86.7	76.3	98.8	75-125	2.81	20		
Cadmium	78.0	0.96		86.7	ND	90.0	75-125	5.66	20		
Chromium	86.6	4.82		86.7	6.81	92.1	75-125	5.23	20		
Copper	68.9	1.93	**	86.7	ND	79.5	75-125	6.51	20		
Lead	86.4	0.96	**	86.7	6.97	91.7	75-125	6.34	20		
Mercury	80.5	0.96	"	96.3	0.99	82.6	75-125	2.49	20		
Nickel	79.6	0.96	**	86.7	2.50	88.9	75-125	5.40	20		
Selenium	72.4	4.82	**	86.7	ND	83.5	75-125	8.78	20		
Silver	77.4	0.96	*	86.7	ND	89.3	75-125	186	20		D1
Zinc	90.4	1.93	**	86.7	12.9	89.3	75-125	6.32	20		

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Bridgecreek Resources, LLC 405 Urban St Suite 400 Lakewood CO, 80228

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001

Christine Campbell

Reported: 06-Jan-16 12:15

Cation/Anion Analysis - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Omis	Level	Result	70KEC	Limis	KID	Limit	Notes
Batch 1552013 - Anion Extraction EPA 300.0						- Pari			1 1	Sille
Blank (1552013-BLK1)	A-1			Prepared &	Analyzed	22-Dec-15			46.03	
Chloride	ND	20.0	mg/kg							
LCS (1552013-BS1)				Prepared &	Analyzed	22-Dec-15				
Chloride	489	20.0	mg/kg	500		97.8	90-110			
Matrix Spike (1552013-MS1)	Sour	ce: P512043-	01	Prepared &	Analyzed	22-Dec-15				1
Chloride	499	20.0	mg/kg	500	ND	99.7	80-120			1,711
Matrix Spike Dup (1552013-MSD1)	Sour	ce: P512043-	01	Prepared &	Analyzed	22-Dec-15				
Chloride	501	20.0	mg/kg	500	ND	100	80-120	0.400	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

405 Urban St Suite 400 Lakewood CO, 80228 Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001

Christine Campbell

Reported: 06-Jan-16 12:15

Cation/Anion Analysis - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
The state of the s				30.00	2130411	,				110100
Batch 1552020 - Metal Water Digestion	EPA 3015A						3.51			g1. (1)
Blank (1552020-BLK1)				Prepared &	Analyzed:	22-Dec-15				
Calcium	ND	0.50	mg/L							
Magnesium	ND	0.20	**							
Sodium	ND	2.00	. "							
LCS (1552020-BS1)				Prepared &	k Analyzed:	22-Dec-15				
Calcium	93.0	0.50	mg/L	100	74	93.0	80-120	-		
Magnesium	88.4	0.20	"	100		88.4	80-120			
Sodium	98.0	2.00	**	100		98.0	80-120			
Matrix Spike (1552020-MS1)	Sou	rce: P512043-	01	Prepared &	Analyzed:	22-Dec-15				
Calcium	99.7	0.50	mg/L	100	8.77	90.9	75-125			
Magnesium	93.5	0.20	**	100	5.44	88.0	75-125			
Sodium	100	2.00		100	4.55	95.8	75-125			
Matrix Spike Dup (1552020-MSD1)	Sou	rce: P512043-	01	Prepared &	Analyzed:	22-Dec-15				
Calcium	98.8	0.50	mg/L	100	8.77	90.0	75-125	0.929	20	
Magnesium	92.3	0.20	*	100	5.44	86.9	75-125	1.24	20	
Sodium	99.1	2.00		100	4.55	94.6	75-125	1.26	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Inhoratory Convictors inc. com

Project Name:

Kingsnake 34-6

405 Urban St Suite 400

Project Number:

15090-0001

Reported:

Lakewood CO, 80228

Project Manager: Christine Campbell

06-Jan-16 12:15

Boron-Hot Water Soluble by EPA 6010 - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1552018 - Boron HW Soluble Digestion										
Blank (1552018-BLK1)	1			Prepared &	Analyzed:	22-Dec-15				
Boron	ND	0.50	mg/L							
LCS (1552018-BS1)				Prepared &	Analyzed:	22-Dec-15				
Boron	4.51		mg/L	4.00		113	80-120			
Matrix Spike (1552018-MS1)	Sour	rce: P512045-	01	Prepared &	Analyzed:	22-Dec-15				114
Boron	2.45		mg/L	4.00	0.11	58.6	75-125			SPK1
Matrix Spike Dup (1552018-MSD1)	Sour	ce: P512045-	01	Prepared &	Analyzed:	22-Dec-15				
Boron	2.68		mg/L	4.00	0.11	64.4	75-125	9.00	20	SPK1

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

laboratory@envirotech-inc.com

Project Name:

Kingsnake 34-6

405 Urban St Suite 400 Lakewood CO, 80228 Project Number:

15090-0001

Project Manager: Christine Campbell

Reported: 06-Jan-16 12:15

Notes and Definitions

SPK1 The spike recovery is outside of quality control limits.

D1 Duplicates or Matrix Spike Duplicates Relative Percent Difference is outside of control limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

envirotech-inc.com

Page 13 of 29

Client: Bridgecreek Resources			RUSH?	la	ab Use Only			Ana	alysis	and Method		lab	Only
Project: Kingsnake 34-6 Sampler: Andrew Parker Phone: 970-570-9535			1d 3d	P517	Lab WO#	015 4 MRO			0.0	1-016 à		mber	Correct Cont/Prsrv (s) Y/N
Email(s): andrew Oadkins environmental.com Project Manager: Christine Camp hell			Page		0-0001	GRO/DRO by 8015	/ 8021	418.1	Chloride by 300.0	Cobec Table		Lab Number	Cont
Sample ID	Sample Date	Sample Time	Matrix		ntainers YPE/Preservative	GRO/D	BTEX by 8021	TPH by 418.1	Chlorid	1940)			Correct
Burial Confirmation (3:1)	12/2//15	14:00	Soil	4 - 4	=Zjar	X			×	×		1	p
				1		-							
						-							
						+							
					1	-							
						-							
Relinquished by: (Signature) Date Time Charles of 12/21/15 15:50	Received by: (Signature)		Date 12/21/15		Recei		on lo	2011	b Use Only				
Relinquished by: (Signature) Date Time	Received	by: (Signat	ure)	Date		10,0 /G Ter		11	T2_4	85	T3 <u>l</u>	4.5	
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other					Container Type:		THE REAL PROPERTY.			tic, ag - amber	glass, v	VOA	
**Samples requiring thermal preservation must be received on ice the day the Sample(s) dropped off after hours to a secure drop off area. Carbon and the sample of the sa	5296 US No	Chain of	Custody	Notes/Billin	ove 0 but less than 6 'ng info: Pull representation (1/3 co	ck,	ve 1/3 505/632	Fine 1865	+r:x	from ja	hoppingo	lump.	Control of

Page 14 of 29

ANALYTICAL REPORT

EnviroTech- NM

Sample Delivery Group:

L808781

Samples Received:

12/23/2015

Project Number:

15090-0001

Description:

Kingsnake 34-6

Site:

P512045

Report To:

Tim Cain and Lynn Cook

5796 US. Highway 64

Farmington, NM 87401

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards

¹ Cp: Cover Page		1
² Tc: Table of Contents		2
³ Ss: Sample Summary		3
⁴ Cn: Case Narrative		4
⁵ Sr: Sample Results		5
BURIAL CONFIRMATION (3:1) L808781-01		5
⁶ Qc: Quality Control Summary		6
Total Solids by Method 2540 G-2011		6
Wet Chemistry by Method 2580 B-2011		7
Wet Chemistry by Method 3060A/7196A		8
Wet Chemistry by Method 9045D		9
Semi Volatile Organic Compounds (GC/MS) by Met	hod 8270C-SIM	10
⁷ Gl: Glossary of Terms		13
⁸ Al: Accreditations & Locations		14
⁹ Sc: Chain of Custody		15

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

BURIAL CONFIRMATION (3:1) L808781-01 Solid	d		Collected by A . Parker	Collected date/time 12/21/15 14:00	Received date/time 12/23/15 10:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG838629	1	12/29/15 20:40	12/30/15 11:27	FMB
Total Solids by Method 2540 G-2011	WG838723	1	12/28/15 14:21	12/28/15 14:28	MEL
Wet Chemistry by Method 2580 B-2011	WG838169	1	12/23/15 19:04	12/23/15 20:11	MZ
Wet Chemistry by Method 3060A/7196A	WG838198	1	12/28/15 08:43	12/28/15 14:39	SJM
Wet Chemistry by Method 9045D	WG838148	1	12/26/15 10:13	12/26/15 10:13	SJM

Ср

Dapline R Richards

Daphne Richards

Technical Service Representative

BURIAL CONFIRMATION (3:1) Collected date/time: 12/21/15 14:00

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

Market Comment	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.8		1	12/28/2015 14:28	WG838723

Wet Chemistry by Method 2580 B-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	mV			date / time		
ORP	55		1	12/23/2015 20:11	WG838169	

Wet Chemistry by Method 3060A/7196A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chromium, Hexavalent	ND		2.31	1	12/28/2015 14:39	WG838198

Wet Chemistry by Method 9045D

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	SU			date / time	
рН	9.21	100	1	12/26/2015 10:13	WG838148

Sample Narrative:

9045D L808781-01 WG838148: 9.21 at 23.3c

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	ualifier RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
Anthracene	ND	0.00692	1	12/30/2015 11:27	WG838629
Acenaphthene	ND	0.00692	1	12/30/2015 11:27	WG838629
Acenaphthylene	ND	0.00692	1	12/30/2015 11:27	WG838629
Benzo(a)anthracene	ND	0.00692	1	12/30/2015 11:27	WG838629
Benzo(a)pyrene	ND	0.00692	1	12/30/2015 11:27	WG838629
Benzo(b)fluoranthene	ND	0.00692	1	12/30/2015 11:27	WG838629
Benzo(g,h,i)perylene	ND	0.00692	1	12/30/2015 11:27	WG838629
Benzo(k)fluoranthene	ND	0.00692	1	12/30/2015 11:27	WG838629
Chrysene	ND	0.00692	1	12/30/2015 11:27	WG838629
Dibenz(a,h)anthracene	ND	0.00692	1	12/30/2015 11:27	WG838629
Fluoranthene	ND	0.00692	1	12/30/2015 11:27	WG838629
Fluorene	ND	0.00692	1	12/30/2015 11:27	WG838629
Indeno(1,2,3-cd)pyrene	ND	0.00692	1	12/30/2015 11:27	WG838629
Naphthalene	0.0358	0.0231	1	12/30/2015 11:27	WG838629
Phenanthrene	0.00838	0.00692	1	12/30/2015 11:27	WG838629
Pyrene	ND	0.00692	1	12/30/2015 11:27	WG838629
I-Methylnaphthalene	0.0237	0.0231	1	12/30/2015 11:27	WG838629
2-Methylnaphthalene	0.0339	0.0231	1	12/30/2015 11:27	WG838629
2-Chloronaphthalene	ND	0.0231	1	12/30/2015 11:27	WG838629
(S) Nitrobenzene-d5	93.3	22.1-146		12/30/2015 11:27	WG838629
(S) 2-Fluorobiphenyl	83.7	40.6-122		12/30/2015 11:27	WG838629
(S) p-Terphenyl-d14	62.9	32.2-131		12/30/2015 11:27	WG838629

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) 12/28/15 14:28			
(110) 12/20/10 11/20	MB Result	MB Qualifier	MB RDL
Analyte	%		%
Total Solids	0.000200		

L808794-08 Original Sample (OS) • Duplicate (DUP)

(OS) 12/28/15 14:28 • (DUP) 12/28/15 14:28		
Original F	Result	DU

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	85.2	84.9	1	0.353		5

Laboratory Control Sample (LCS)

(LCS) 12/28/15 14:28									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits LCS Qualit	er				
Analyte	%	%	%	%					
Total Solids	50.0	50.0	100	85 O-115					

GI

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 2580 B-2011

L808781-01

L808166-05 Original Sample (OS) • Duplicate (DUP)

(OS) 12/23/15	20-11	(DI ID)	12/22/15	20-11
1031 12/23/13	20.11 *	IUUF	12/23/13	20:11

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mV	mV		%		%
ORP	87.0	87	1	0.000	- 10	20

L808781-01 Original Sample (OS) • Duplicate (DUP)

(OS) 12/23/15 20:11 • (DUP) 12/23/15 20:11

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mV	mV		%		%
ORP	55.0	55	1	0.000		20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mV	mV		%		%
ORP	55.0	55	1	0.000		20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(200) 12/20/10 20:11 (2000) 12/20/10 20:11	(LCS)	12/23/15	20:11	· (LCSD)	12/23/15 20:11
--	-------	----------	-------	----------	----------------

(LCS) 12/23/15 20.11 • (LCSD) 1.	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mV	mV	mV	%	%	%			%	%
ORP	100	100	99	100	99.0	90.0-110			1.01	20

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L808781-01

Method Blank (MB)

Wet Chemistry by Method 3060A/7196A

(MB) 12/28/15 14:29			
	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
Chromium.Hexavalent	ND		2.00

L808818-02 Original Sample (OS) • Duplicate (DUP)

(OS) 12/28/15 14:43 • (DUP) 12	/28/15 14:43					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chromium.Hexavalent	2.24	2.12	1	5.50		20

⁶Qc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 12/28/15 14:33 · (LCSD)	12/28/15 14:33										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Chromium.Hexavalent	97.4	86.2	87.0	88.5	89.3	80.0-120			0.924	20	

Sc

L808818-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amo	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chromium, Hexavalent	20.0	2.24	15.0	17.6	63.8	76.8	1	75.0-125	<u>J6</u>		16.0	20

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9045D

L808781-01

L808770-01 Original Sample (OS) • Duplicate (DUP)

(OS) 12/26/15 10:13 • (DUP) 12/26/15 10:13

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
pH	8.15	8.14	1	0.123	-	1

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

1	LCS	12/26/15	10:13 •	(LCSD)	12/26/15 10:13

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
nalyte	su	su	Su	%	%	%			%	%
1	6.72	6.70	6.71	99.7	99.9	98.5-102			0.149	1

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

L808781-01

Method Blank (MB)

(MB) 12/30/15 10:03				The second secon	54714
	MB Result	MB Qualifier	MB RDL		
Analyte	mg/kg		mg/kg		
Anthracene	ND		0.00600		ple li
Acenaphthene	ND		0.00600		
Acenaphthylene	ND		0.00600		
Benzo(a)anthracene	ND		0.00600		
Benzo(a)pyrene	ND		0.00600		
Benzo(b)fluoranthene	ND		0.00600		
Benzo(g,h,i)perylene	ND		0.00600		
Benzo(k)fluoranthene	ND		0.00600		
Chrysene	ND		0.00600		
Dibenz(a,h)anthracene	ND		0.00600		
Fluoranthene	ND		0.00600		
Fluorene	ND		0.00600		
Indeno(1,2,3-cd)pyrene	ND		0.00600		
Naphthalene	ND		0.0200		
Phenanthrene	ND		0.00600		
Pyrene	ND		0.00600		
1-Methylnaphthalene	ND		0.0200		
2-Methylnaphthalene	ND		0.0200		
2-Chloronaphthalene	ND		0.0200		
(S) p-Terphenyl-d14	84.7		32.2-131		
(S) Nitrobenzene-d5	97.9		22.1-146		
(S) 2-Fluorobiphenyl	92.9		40.6-122		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		200	%	%
Anthracene	0.0800	0.0596	0.0606	74.5	75.8	50.3-130			1.69	20
Acenaphthene	0.0800	0.0584	0.0572	72.9	71.5	52.4-120			2.03	20
Acenaphthylene	0.0800	0.0599	0.0568	74.9	71.1	49.6-120			5.25	20
Benzo(a)anthracene	0.0800	0.0610	0.0628	76.3	78.5	46.7-125			2.85	20
Benzo(a)pyrene	0.0800	0.0565	0.0555	70.6	69.4	42.3-119			1.67	20
Benzo(b)fluoranthene	0.0800	0.0586	0.0601	73.3	75.1	43.6-124			2.42	20
Benzo(g,h,i)perylene	0.0800	0.0673	0.0676	84.1	84.6	45.1-132			0.490	20
Benzo(k)fluoranthene	0.0800	0.0624	0.0646	78.0	80.7	46.1-131			3.41	20

ACCOUNT: EnviroTech- NM PROJECT: 15090-0001 SDG: L808781 DATE/TIME: 12/31/15 16:43 Page 24 of 29

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

L808781-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

10					
11051	12/30/15	08-56	(I CSD)	12/30/15	09.42

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Chrysene	0.0800	0.0635	0.0659	79.4	82.4	49.5-131			3.74	20
Dibenz(a,h)anthracene	0.0800	0.0648	0.0682	81.0	85.3	44.8-133			5.15	20
Fluoranthene	0.0800	0.0607	0.0637	75.9	79.6	49.3-128			4.79	20
Fluorene	0.0800	0.0638	0.0610	79.8	76.2	50.6-121			4.63	20
Indeno(1,2,3-cd)pyrene	0.0800	0.0653	0.0697	81.6	87.2	46.1-135			6.56	20
Naphthalene	0.080.0	0.0621	0.0638	77.6	79.7	49.6-115			2.75	20
Phenanthrene	0.0800	0.0587	0.0592	73.3	74.0	48.8-121			0.920	20
Pyrene	0.0800	0.0620	0.0695	77.5	86.9	44.7-130			11.4	20
1-Methylnaphthalene	0.0800	0.0657	0.0677	82.1	84.6	50.6-122			3.03	20
2-Methylnaphthalene	0.0800	0.0671	0.0672	83.9	84.0	50.4-120			0.0600	20
2-Chloronaphthalene	0.0800	0.0539	0.0621	67.4	77.6	53.9-121			14.0	20
(S) p-Terphenyl-d14				71.3	74.5	32.2-131				
(S) Nitrobenzene-d5				85.8	83.6	22.1-146				
(S) 2-Fluorobiphenyl				69.9	75.2	40.6-122				

L808593-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OSI	12/30/15	17:05 • 1	MS	12/30/15	17:26 .	MSD)	12/30/15	17:47

(OS) 12/30/15 17:05 • (MS) 12/	ACCEPTANCE OF STANFORD STANFORD	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%	Dilution	%	MIS Qualifier	M3D Gddilliel	%	%
Anthracene	0.0800	ND	0.0482	0.0477	60.3	59.7	1	26.5-141			1.09	21.2
Acenaphthene	0.0800	ND	0.0498	0.0499	62.3	62.4	1	31.9-130			0.200	20
Acenaphthylene	0.0800	ND	0.0533	0.0547	66.7	68.4	1	33.7-129			2.52	20
Benzo(a)anthracene	0.0800	0.000613	0.0484	0.0468	59.7	57.8	1	18.3-136			3.29	24.6
Benzo(a)pyrene	0.0800	ND	0.0467	0.0453	58.4	56.7	1	16.9-135			2.94	25.2
Benzo(b)fluoranthene	0.0800	ND	0.0428	0.0412	53.5	51.6	1	10.0-134			3.70	30.9
Benzo(g,h,i)perylene	0.0800	ND	0.0473	0.0451	59.2	56.4	1	14.1-140			4.76	25.5
Benzo(k)fluoranthene	0.0800	ND	0.0489	0.0486	61.1	60.7	1	18.2-138			0.690	25.6
Chrysene	0.0800	ND	0.0511	0.0502	63.9	62.8	1	17.1-145			1.79	24.2
Dibenz(a,h)anthracene	0.0800	ND	0.0520	0.0501	65.0	62.7	1	18.5-138			3.69	24.3
Fluoranthene	0.0800	ND	0.0454	0.0470	56.8	58.7	1	15.4-144			3.35	27.1
Fluorene	0.0800	ND	0.0512	0.0527	64.0	65.9	1	23.5-136			2.84	20
Indeno(1,2,3-cd)pyrene	0.0800	ND	0.0495	0.0477	61.9	59.6	1	14.5-142			3.80	25.8
Naphthalene	0.0800	0.000723	0.0598	0.0622	73.9	76.9	1	29.2-128			3.90	20
Phenanthrene	0.0800	ND	0.0461	0.0458	57.6	57.2	1	20.1-134			0.670	23.6
Pyrene	0.0800	ND	0.0523	0.0487	65.4	60.9	1	11.0-148			7.17	26.1

ACCOUNT: EnviroTech- NM

PROJECT: 15090-0001

SDG: L808781 DATE/TIME: 12/31/15 16:43

Page 25 of 29

11 of 15

QUALITY CONTROL SUMMARY L808781-01

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

L808593-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 12/30/15 17:05 • (MS) 12/	/30/15 17:26 • (MSI	D) 12/30/15 17:47										
	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
1-Methylnaphthalene	0.0800	ND	0.0584	0.0612	73.0	76.5	1	28.4-137			4.77	20
2-Methylnaphthalene	0.0800	ND	0.0584	0.0607	72.9	75.8	1	26.6-137			3.88	20
2-Chloronaphthalene	0.0800	ND	0.0536	0.0526	67.0	65.8	1	38.6-126			1.78	20
(S) p-Terphenyl-d14					70.7	85.5		32.2-131				
(S) Nitrobenzene-d5					87.6	111		22.1-146				
(S) 2-Fluorobiphenyl					76.3	94.0		40.6-122				

Abbreviations and Definitions

J6

Sample Delivery Group.
Method Detection Limit.
Reported Detection Limit.
Not detected at the Reporting Limit (or MDL where applicable).
Relative Percent Difference.
Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD from a quality control sample. The Original Sample may not be included within the reported SDG.
Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Recovery.
Sample Detection Limit.
Method Quantitation Limit.
Unadjusted Method Quantitation Limit.

The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.**"Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina 1	DW21704
Florida	E87487	North Carolina 2	41
Georgia	NELAP	North Dakota	R-140
Georgia 1	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas 5	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERTO086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789	
A2LA - ISO 170255	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
FPA-Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁷⁹ Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/Address:	74.	WE WAS	Billing Info						A	lnalysis /	Contain	er / Pre	servath	ve			Chain of Custody	Pageof
Envirotech IncNN 5796 US Highway 64 Farmington, NM 87401			5796 US	ts Payable 5 Highway 64 ton, NM 8740)1			1		FUVIROFILM 10091551		Sales .				90.40	YOUR LAB	ESC
Report to: Lynn Cook & Tim	Cain		Email To:	Lynn Cook &	Tim Cain		0	7		3					Lan	3.00	12065 Lebanon Rd Mount Juliet, TN 375 Phone: 615-758-585 Phone: 800-767-585	SE NOW S
Project Description: King Sna Ke	34-6			City/State Collected:			27	homin		OFF						- 4	Fax: 615-758-5859	308 781
Phone: Fax: Collected by (print):	Client Project # 15090-000		P.O. # 142 780		740			1									Acctnum:	243
Collected by (signature): A. PATKET Immediately Packed on Ice N Y X	Rush? (I	ab MUST Be	200%	Date R	esults Needed	No.	AH SI	Hexavalort		f guote							Template: Prelogin: TSR: PB: Shipped Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	0	T		fet			THE REAL PROPERTY.				Rem./Contaminant	Sample # (lab only)
Bucial Confirmation	3:1)	55	100	12/4/15	1400	1	×	×					1		DES.			امر
27		1		THE	75 TU	- 40		PPO		97				2 17	1000	9000	TANKE B	
*					100	The same		100				w .			74			
				Adrig 18				Table 1	No.			100			65		1 4 4 17	
		T CAN PASS	- 33	Marin	-			1-1-5									100	
	W. C.		n - 1972 1	10° Y.		100				- 1					REAL PROPERTY.			
	(F-2)		3		Sept."	4											199	
	100					7									75.0	-		100
	1							- 2	4						1500			
						-		19								1000		
* Matrix: SS-Soil GW-Groundwater Pull refrese statie Remarks: 1/3 rock, 1/1	WW-WasteW MATRIX Fine 5	fram 1/3	rinking Water whi	or OT-Other	x 019 5				19	pH _ Flow_		_ Tem				300	92739	1894
Relinquished by : (Signature) Relinquished by : (Signature)		Date: 17/22 Date:	115	Ime: Re	tel E-	×	SS.	K.	-	_	dEx [ed via: Couri	er O			ndition	: (lab	use only)
		Date:	21		eceived for lab b	-11	ture)			Temp: 3,2			THE RESERVE TO SERVE THE PARTY.	40	- 0	C Seal	Intact: YY	N NA
neimquished by : (signature).			2000		-		The latest	E377 2576		12	-		10		771	08:33		

Exhibits

Tables

Table 1: Summary of Analytical Results

Sample ID	Description	Date	DRO (8015D)	MRO (8015D)	GRO (8015D)	TPH(EPA 8015)	Benzene	Toluene	Ethylbenzene	Xylenes (total)
			mg/kg	mg/kg	mg/kg	me/kg	mg/kg	mg/kg	mg/kg	rng/kg
1 (not evaluated in report)	3:1 field composite (omit)	11/13/2015	509	na	96.2	605.2	0.33	1.18	0.67	2.43
2	5pt composite from bin 1	11/13/2015	106	na	141	247	0.49	1.73	1.05	3.77
	Spt composite from bin 2	11/13/2015	419	na	66.9	485.9	0.26	0.9	0.53	1.85
4	5pt composite from bin 3	11/13/2015	189	na	102	291	1.08	2.42	0.97	2.94
Spoil Pile	From Prairie Falcon 19-1	3/31/2015	<10	na	<5.0	<65	<0.050	<0.050	<0.050	<0.099
UMU Table (COGCC Table 910-1)				area gurer le cuit	William Co.	500	0.17	85	100	175
NMOCD (Rule 19.15.17; DTW > 100 ft)	A CHARLES AND A PLANT	Robert Control		STREET CONTROL OF	The second	1,000	10	15.0155000	No. of the later of the	ALCOHOLD DE
COPHE-HIMSURAD/EPA RSIS		CALL COLUMN 1	A COLUMN S		A LISTANIA SE		5.20	4,700	25	250

Notes

exceeds UMU Table standards

Table 1: Summary of Analytical Results

Sample IO	Description	Date	Chloride	Mercury	Arsenic	Barkum	Boron	Catimium	Chromium	Chromium VI	Copper	Lead	Nickel	Selerium	Silver
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1 (not evaluated in report)	3:1 field composite (omit)	11/13/2015	59.2	<0.96	8.16	254	<0.5	<0.96	38.4	na	2.47	23.4	19.9	<4.82	<0.96
2	5pt composite from bin 1	11/13/2015	78.4	< 0.96	6,55	259	<0.49	<0.96	34	ma	<1.93	20.4	17.1	<4.82	< 0.96
3	5pt composite from bin 2	11/13/2015	75	< 0.96	5.67	5840	<0.5	<0.95	27.8	na	21.3	17	12.5	<4.76	< 0.95
4	5pt composite from bin 3	11/13/2015	92	<0.98	5.79	176	< 0.49	<0.98	50.7	na	2.46	23.6	19.9	<4.88	<0.98
Spoil Pile	From Prairie Falcon 19-1	3/31/2015	23	<0.034	3.8	140	NS	<0.10	7.2	<2	6.2	3.4	7.8	<2.5	<0.25
UMU Table (COGCC Table 910-1)		Managara (States	100000000	23	0.39	15,000	4 (exempt)	70	120,000	23	3,100	400	1,600	390	390
NMOCD (Rule 19.15.17; DTW > 100 ft)	and the state of t	Sifetiment States	35,050,000,000	STATE OF THE	BITTO CONTRACTOR	(Cultificati	Grand State Land	Street Land	Military Control (1971)	CONTRACTOR OF STREET	Militar Laukall	N. S. C.	a pulsania		1000
COPHE-HWWWIO/EPA RSU		diam'r less compl	mar dien der der	35	3.00	22,480	Distriction of the last	98	180,000	6	4,700	800	2,200	580	580

Notes

exceeds UMU Table standards

exceeds EPA RSL Standards

Table 1: Summary of Analytical Results

Sample ID	Description	Date	Zinc	pH	Naphthalene	Acenaphthene	Fluorene	Anthracene	Fluoranthene	Pyrene	Benzo(A)anthracene	Chrysene
			mg/kg	SEASON .	rng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1 (not evaluated in report)	3:1 field composite (amit)	11/13/2015	120	7.57	0.217	0.00883	0.06269	×0.00768	<0.00788	<0.00768	<0.00768	<0.00768
2	5pt composite from bin 1	11/13/2015	105	8.86	0.181	<0.00835	0.0136	<0.00835	<0.00835	<0.00635	<0.00835	<0.00835
3	5pt composite from bin 2	11/13/2015	207	9.16	0.199	<0.00783	0.0154	<0.00783	<0.00783	<0.00738	<0.00783	<0.00783
4	5pt composite from bin 3	11/13/2015	85.4	9.06	0.149	<0.00672	0.00768	< 0.00672	< 0.00672	<0.00672	<0.00672	< 0.00672
Spoil Pile	From Prairie Faicon 19-1	3/31/2015	27	8.1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
UMU Table (COGCC Table 910-1)		Section 1	23,000	5-9	25	1,000	1,000	1,000	1,000	1,000	0,22	22
NMOCD (Rule 19.15.17; DTW > 100 ft)		Bellion Boulan	Chillia Selle	10000		STATE OF THE PARTY.		STATE OF THE PARTY OF	State State State State	SECRETARION IN		BIDDERS
COPHE-WMWMD/IPA ISSE		Company of the last of the	35,000	ala.	17	4,500	3,000	23,060	3,000	2.300	2.90	290

Notes

permada FPA DE Standards

Table 1: Summary of Analytical Results

Sample ID	Description	Date	Benzo(B)fluoranthene	Benzo(K)fioranthene	Benzo(A)pyrene	Dibenzo(A.H)anthracene
			mg/kg	mg/kg	mg/kg	mg/kg
(not evaluated in report)	3:1 field composite (omit)	11/13/2015	<0.00768	<0.00768	<0.00768	<0.00768
	5pt composite from bin 1	11/13/2015	<0.00835	<0.00835	<0.00835	<0.00835
	Spt composite from bin 2	11/13/2015	<0.00783	<0.00783	<0.00783	<0.00783
	5pt composite from bin 3	11/13/2015	<0.00672	<0.00672	<0.00872	<0.00672
Spoil Pile	From Prairie Falcon 19-1	3/31/2015	<0.020	<0.020	<0.020	<0.020
IMU Table (COSCC Table 910-1)		SCHUMMARA BE	0.22	2.20	0.022	0.022
NMOCD (Nule 19.15.17; DTW > 100 ft)	Reconstruction					
COPFE-HMWMD/EPA RSLs		Burner Branch	2.90	29.00	0.29	0.790

Notes:

exceeds UNIO Table standards

Table 1: Summary of Analytical Results

Sample ID	Description	Date	Indeno(1,2,3-cd)pyrene	Sodium Absportion Ratio	Electrical Conductivity	ORP
		9	rng/kg	Committee of the second	mmhos/cm	mV
1 (not evaluated in report)	3:1 field composite (omit)	11/13/2015	<0.00768	1.88	2.39	na
2	5pt composite from bin 1	11/13/2015	<0.00835	1.3	0.734	na
3	Spt composite from bin 2	11/13/2015	<0.00783	2	1,43	na
4	5pt composite from bin 3	11/13/2015	< 0.00672	1.54	1.02	ne
Spoll Pile	From Prairie Falcon 19-1	3/31/2015	<0.020	5.4	1.32	82
UMU Table (COGCC Table 918-1)		E-shesses	0.22	42	of or 2x background	8 15411
NMOCD (Rule 19:15.17; DTW > 100 ft)				IN THE RESERVE TO THE	the control of the co	
CDPHE-HMWMD/EPA RSLs	The second second	A PARTICIPATION OF THE PARTY OF	2.90			

Notes:

is UMU Table standards

Table 2: Mixing Ratio

Mixing Ratio	Sample ID	DRO (8015D)	MRO (8015D)	GRO (8015D)	TPH(EPA 8015)	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Chloride	Mercury	Arsenic	Barium
clean:cuttings	No. of the last of	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1:1	Average of 2, 3, 4	124.00	na	54.15	203.15	0.33	0.87	0.45	1.48	52.42	0.50	4.90	1115.83
2:1	Average of 2, 3, 4	86.00	na	37.77	157.10	0.24	0.59	0.32	1.02	42.61	0.34	4.53	790.56
3:1	Average of 2, 3, 4	67.00	na	29.58	134,08	0.19	0.46	0.25	0.79	37.71	0.27	4.35	627.92
MU Table (COGCC Table 910-1)	2 CA (SECTION)	COLUMN THE PARTY OF			500	0.17	85	100	175	- Maddle III Store	23	0,39	15,000
MOCD (Rule 19.15.17; DTW > 100 ft)					1,000	10	Per Section			80,000	NO STONE		HERE.
OPHE-HMWMD/EPA RSLs		A COLUMN TO A COLU	100 Description 20	\$100 No. 100 N		5.10	4,700	25	250		35	1	22,40

Notes: exceeds UMU Table standards exceeds EPA RSI Standards

Table 2: Mixing Ratio

Mixing Ratio	Sample ID	Boron	Cadmium	Chromium	Chromium VI	Copper	Lead	Nickel	Selenium	Silver	Zinc	pH	Naphthalene	Acenaphthene	Fluorene
clean:cuttings	A CONTRACTOR OF THE PARTY OF TH	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg
1:1	Average of 2, 3, 4	0.25	0.53	22,35	na	7.38	11.87	12.15	3.61	0.61	79.73	8.56	0.10	0.01	0.02
2:1	Average of 2, 3, 4	0.16	0.39	17.30	na	6.99	9.04	10.70	3.21	0.49	62.16	8.41	0.07	0.02	0.02
3:1	Average of 2, 3, 4	0.12	0.32	14.78	na	6.79	7,63	9.98	3.01	0.43	53.37	8.33	0.06	0.02	0.02
JMU Table (COGCC Table 910-1)			70	120,000	23	3,100	400	1,600	390	390	23,000	6-9	23	1,000	1,000
IMOCD (Rule 19.15.17; DTW > 100 ft)		BOULD'S					MICE SELECT	MODILLIE							
OPHE-HMWMD/EPA RSta	Barrier Barrer	44-14-19	30	188,008	6.30	4,700	800	2,200	580	580	35,000	1000000	17	4,500	3,000

Notes:

eds UMU Table standards

exceeds FPA RSI Standards

Table 2: Mixing Ratio

Mixing Ratio	Sample ID	Anthracene	Fluoranthene	Pyrene	Benzo(A)anthracene	Chrysene	Benzo(B)fluoranthene	Benzo(K)floranthene	Benzo(A)pyrene
clean; cuttings		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1:1	Average of 2, 3, 4	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
2:1	Average of 2, 3, 4	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
3:1	Average of 2, 3, 4	0.02	0.02	0.02	0.02	0.02	0.02	0,02	0.02
//U Table [COGCC Table 910-1]	Necesia constitui i	1,000	1,000	1,000	0.22	22	0.22	2.20	0.022
10CD (Rule 19.15.17; DTW > 100 ft)							Control of the Contro	and the same of the same of	
PHE-HMWMD/EPA RSLs	A DO AND ASSESSED OF	23,000	3,000	2,300	2.90	290	2.90	29	0.29

Notes: exceeds UMU Table standards exceeds EPA RSL Standards

Table 2: Mixing Ratio

Mixing Ratio	Sample ID	Dibenzo(A,H)anthracene	Indeno(1,2,3-cd)pyrene	Sodium Absportion Ratio	Electrical Conductivit
clean:cuttings		mg/kg	mg/kg	Committee of the commit	mmhos/cm
1:1	Average of 2, 3, 4	0.01	0.01	3.51	1.19
2:1	Average of 2, 3, 4	0.02	0.02	4.14	1.23
3:1	Average of 2, 3, 4	0.02	0.02	4.45	1.26

UMU Table (COGCC Table 910-1)	医顶盖后线 医加斯	0.022	0.22	<12	<4 or 2x background
NMOCD (Rule 19.15.17; DTW > 100 ft)	LESON CONTRACTOR				
CDPHE-HMWMD/EPA RSLs	ALECCIONE DE LA	0.29	2.9		

Notes:	and the board
exceeds UMU Table standards	
exceeds EPA RSL Standards	District Co. D.

Appendix A

Analytical Report

Report Summary

Client: Bridgecreek Resources, LLC

Chain Of Custody Number:

Samples Received: 11/13/2015 3:45:00PM

Job Number: 15090-0001 Work Order: P511030

Project Name/Location: Kingsnake 34-6

Entire Report Reviewed By:

1 .0

Tim Cain, Laboratory Manager

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

11/24/15

Date:

Bridgecreek Resources, LLC 405 Urban St Suite 400 Lakewood CO, 80228 Project Name: Project Number:

Project Manager:

Kingsnake 34-6 15090-0001

John Thompson

Reported: 24-Nov-15 12:22

Analyical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
1	P511030-01A	Soil	11/13/15	11/13/15	Glass Jar, 4 oz.
	P511030-01B	Soil	11/13/15	11/13/15	Glass Jar, 4 oz.
2	P511030-02A	Soil	11/13/15	11/13/15	Glass Jar, 4 oz.
	P511030-02B	Soil	11/13/15	11/13/15	Glass Jar, 4 oz.
3	P511030-03A	Soil	11/13/15	11/13/15	Glass Jar, 4 oz.
	P511030-03B	Soil	11/13/15	11/13/15	Glass Jar, 4 oz.
4	P511030-04A	Soil	11/13/15	11/13/15	Glass Jar, 4 oz.
	P511030-04B	Soil	11/13/15	11/13/15	Glass Jar, 4 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Bridgecreek Resources, LLC

Project Name:

Kingsnake 34-6

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 John Thompson Reported:

24-Nov-15 12:22

1 P511030-01 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021	1 1 1					116			
Benzene	0.33	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	STATE OF
Toluene	1.18	0.10	mg/kg	1.	1547002	11/16/15	11/17/15	EPA 8021B	
Ethylbenzene	0.67	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
p,m-Xylene	1.73	0.20	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
o-Xylene	0.70	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Total Xylenes	2.43	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Total BTEX	4.61	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		104 %	50	-150	1547002	11/16/15	11/17/15	EPA 8021B	16
Nonhalogenated Organics by 8015		77.17	10	172		19 1		the Kir	1111
Gasoline Range Organics (C6-C10)	96.2	20.0	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8015D	
Diesel Range Organics (C10-C28)	509	25.0	mg/kg	1	1547001	11/16/15	11/16/15	EPA 8015D	
Surrogate: n-Nonane		94.5 %	50	-200	1547001	11/16/15	11/16/15	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		112 %	50-150		1547002	11/16/15	11/17/15	EPA 8015D	
Total Metals by 6010	-	All Land	3-4-6		Ser s	-			160
Arsenic	8.16	0.96	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	
Barium	254	9.64	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	
Cadmium	ND	0.96	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	
Chromium	38.4	4.82	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	
Copper	2.47	1.93	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	
Lead	23.4	0.96	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	
Mercury	ND	0.96	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	
Nickel	19.9	0.96	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	
Selenium	ND	4.82	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	
Silver	ND	0.96	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	
Zinc	120	1.93	mg/kg	1	1547006	11/16/15	11/17/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

envirotech-inc.com

Bridgecreek Resources, LLC 405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 John Thompson Reported:

24-Nov-15 12:22

1 P511030-01 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Cation/Anion Analysis		because							THE .
pH @22.1°C	7.57		pH Units	1	1547026	11/19/15	11/20/15	EPA 9045D	
Electrical Conductivity	2390		umhos/cm	1	1547026	11/19/15	11/20/15	EPA 120.1	
Sodium Absorption Ratio	1.88		N/A	1	1547012	11/17/15	11/20/15	[CALC]	
Chloride	59.2	20.0	mg/kg	1	1547030	11/20/15	11/20/15	EPA 300.0	
Calcium	61.8	0.50	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Magnesium	3.23	0.20	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Sodium	56.0	2.00	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Boron-Hot Water Soluble by EPA 6010	A PARTY				and the	40	- L- 10H	1 2 3 3	1.00
Boron	ND ·	0.50	mg/L	1	1547005	11/16/15	11/17/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Bridgecreek Resources, LLC

Project Name:

Kingsnake 34-6

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 John Thompson Reported: 24-Nov-15 12:22

P511030-02 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021								Park Marin	Duani
Benzene	0.49	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Toluene	1.73	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Ethylbenzene	1.05	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
p,m-Xylene	2.66	0.20	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
o-Xylene	1.11	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Total Xylenes	3.77	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Total BTEX	7.04	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		106 %	50	-150	1547002	11/16/15	11/17/15	EPA 8021B	List.
Nonhalogenated Organics by 8015	The State	200			List.				
Gasoline Range Organics (C6-C10)	141	20.0	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8015D	
Diesel Range Organics (C10-C28)	106	25.0	mg/kg	1	1547001	11/16/15	11/16/15	EPA 8015D	
Surrogate: n-Nonane		97.8 %	50	-200	1547001	11/16/15	11/16/15	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID	A STATE OF THE STA	114%	50	-150	1547002	11/16/15	11/17/15	EPA 8015D	CL.
Total Metals by 6010	As - Property						lather to		- Notes
Arsenic	6.55	0.96	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Barium	259	9.63	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Cadmium	ND	0.96	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Chromium	34.0	4.82	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Copper	ND	1.93	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Lead	20.4	0.96	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Mercury	ND	0.96	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Nickel	17,1	0.96	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Selenium	ND	4.82	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Silver	ND	0.96	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Zinc	105	1.93	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

envirotech-inc.com

Bridgecreek Resources, LLC 405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 John Thompson Reported:

24-Nov-15 12:22

2 P511030-02 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Cation/Anion Analysis					Tel			122.37	SHE?
pH @21.9°C	8.86		pH Units	1	1547026	11/19/15	11/20/15	EPA 9045D	
Electrical Conductivity	734		umhos/cm	1	1547026	11/19/15	11/20/15	EPA 120.1	
Sodium Absorption Ratio	1.30		N/A	1	1547012	11/17/15	11/20/15	[CALC]	
Chloride	78.4	20.0	mg/kg	1	1547030	11/20/15	11/20/15	EPA 300.0	
Calcium	71.8	0.50	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Magnesium	4.36	0.20	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Sodium	41.8	2.00	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Boron-Hot Water Soluble by EPA 6010		3 10 10				400			246
Boron	ND	0.49	mg/L	1	1547005	11/16/15	11/17/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Bridgecreek Resources, LLC

405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001

John Thompson

Reported:

24-Nov-15 12:22

3 P511030-03 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021					750		SET S		Ker
Benzene	0.26	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Toluene	0.90	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Ethylbenzene	0.53	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
p,m-Xylene	1.31	0.20	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
o-Xylene	0.55	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Total Xylenes	1.85	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Total BTEX	3.54	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		104 %	50	-150	1547002	11/16/15	11/17/15	EPA 8021B	7
Nonhalogenated Organics by 8015	37. 3	1		4500				The state of	
Gasoline Range Organics (C6-C10)	66.9	20.0	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8015D	
Diesel Range Organics (C10-C28)	419	25.0	mg/kg	1	1547001	11/16/15	11/16/15	EPA 8015D	
Surrogate: n-Nonane		93.4 %	50-200		1547001	11/16/15	11/16/15	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID	A	110 %	50-150		1547002	11/16/15	11/17/15	EPA 8015D	721
Total Metals by 6010		45		100		-			200
Arsenic	5.67	0.95	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Barium	5840	9.52	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Cadmium	ND	0.95	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Chromium	27.8	4.76	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Copper	21.3	1.90	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Lead	17.0	0.95	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Mercury	ND	0.95	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Nickel	12.5	0.95	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Selenium	ND	4.76	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Silver	ND	0.95	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Zinc	207	1.90	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

laboratory@envirotech-inc.com

Bridgecreek Resources, LLC 405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 John Thompson Reported: 24-Nov-15 12:22

3 P511030-03 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Cation/Anion Analysis	0.01	16		187					
pH @25°C	9.16		pH Units	1	1547026	11/19/15	11/20/15	EPA 9045D	
Electrical Conductivity	1430		umhos/cm	1	1547026	11/19/15	11/20/15	EPA 120.1	
Sodium Absorption Ratio	2.00		N/A	1	1547012	11/17/15	11/20/15	[CALC]	
Chloride	75.0	20.0	mg/kg	1	1547030	11/20/15	11/20/15	EPA 300.0	
Calcium	42.8	0.50	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Magnesium	4.05	0.20	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Sodium	51.0	2.00	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Boron-Hot Water Soluble by EPA 6010	No.			Sec.	1		7	49.6	
Boron	ND	0.50	mg/L	1	1547005	11/16/15	11/17/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 John Thompson Reported:

24-Nov-15 12:22

4 P511030-04 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021				1 4				FIRST	
Benzene	1.08	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Toluene	2.42	0.10	mg/kg	-1	1547002	11/16/15	11/17/15	EPA 8021B	
Ethylbenzene	0.97	0.10	mg/kg	1 .	1547002	11/16/15	11/17/15	EPA 8021B	
p,m-Xylene	1.98	0.20	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
o-Xylene	0.95	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Total Xylenes	2.94	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Total BTEX	7.41	0.10	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		101 %	50	-150	1547002	11/16/15	11/17/15	EPA 8021B	
Nonhalogenated Organics by 8015		304			w 40		5 0 25 2		1 67
Gasoline Range Organics (C6-C10)	102	20.0	mg/kg	1	1547002	11/16/15	11/17/15	EPA 8015D	
Diesel Range Organics (C10-C28)	189	25.0	mg/kg	1	1547001	11/16/15	11/16/15	EPA 8015D	
Surrogate: n-Nonane		91.0%	50	-200	1547001	11/16/15	11/16/15	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID	The will be	113 %	50	-150	1547002	11/16/15	11/17/15	EPA 8015D	240
Total Metals by 6010		2 1 10				to the test		Mary and the	B
Arsenic	5.79	0.98	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Barium	176	9.77	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Cadmium	ND	0.98	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Chromium	50.7	4.88	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Copper	2.46	1.95	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Lead	23.6	0.98	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Mercury	ND	0.98	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Nickel	19.9	0.98	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Selenium	ND	4.88	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Silver	ND	0.98	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	
Zinc	85.4	1.95	mg/kg	1	1547006	11/17/15	11/17/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

laboratory@envirotech-inc.com

Bridgecreek Resources, LLC 405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 John Thompson Reported: 24-Nov-15 12:22

P511030-04 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Cation/Anion Analysis				1 - 1			W ART	and the same	Alex T
pH @25°C	9.06		pH Units	1	1547026	11/19/15	11/20/15	EPA 9045D	
Electrical Conductivity	1020		umhos/cm	1	1547026	11/19/15	11/20/15	EPA 120.1	
Sodium Absorption Ratio	1.54		N/A	1	1547012	11/17/15	11/20/15	[CALC]	
Chloride	92.1	20.0	mg/kg	1	1547030	11/20/15	11/20/15	EPA 300.0	
Calcium	49.2	0.50	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Magnesium	4.72	0.20	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Sodium	42.2	2.00	mg/L	1	1547009	11/17/15	11/19/15	EPA 6010C	
Boron-Hot Water Soluble by EPA 6010	7 Sales				1 300	P. Are		40	Skill
Boron	ND	0.49	mg/L	1	1547005	11/16/15	11/17/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Bridgecreek Resources, LLC

405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 John Thompson Reported:

24-Nov-15 12:22

Volatile Organics by EPA 8021 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1547002 - Purge and Trap EPA 5030/					WEL:			LIVE I		
Blank (1547002-BLK1)		1		Prepared &	Analyzed:	16-Nov-1	5			135
Benzene	ND	0.10	mg/kg							
Toluene	ND	0.10	**							
Ethylbenzene	ND	0.10								
p,m-Xylene	ND	0.20								
o-Xylene	ND	0.10								
Total Xylenes	ND	0.10								
Total BTEX	ND	0.10								
Surrogate: 4-Bromochlorobenzene-PID	0.315	Tues		0.320		98.4	50-150			
LCS (1547002-BS1)			na i	Prepared &	Analyzed:	16-Nov-1	5		H	
Benzene	9.64	0.10	mg/kg	10.0		96.0	70-130			
Toluene	9.45	0.10		10.0		94.1	70-130			
Ethylbenzene	9.48	0.10		10.0		94.4	70-130			
p,m-Xylene	19.1	0.20		20.1		95.1	70-130			
o-Xylene	9.19	0.10		10.0		91.5	70-130			
Surrogate: 4-Bromochlorobenzene-PID	0.320		"	0.322	f be	99.5	50-150	-11/2		1.3
Matrix Spike (1547002-MS1)	Sou	rce: P511026-	01	Prepared &	Analyzed:	16-Nov-1	5			
Benzene	10.8	0.10	mg/kg	9.93	ND	109	54.3-133		38.774	
Toluene	10.6	0.10		9.93	ND	106	61.4-130			
Ethylbenzene	10.6	0.10		9.93	ND	107	61.4-133			
p,m-Xylene	21.3	0.20		19.9	ND	107	63.3-131			
o-Xylene	10.2	0.10		9.93	ND	103	63.3-131			
Surrogate: 4-Bromochlorobenzene-PID	0.317	W. C. Brown		0.318	1-1-	99.7	50-150			
Matrix Spike Dup (1547002-MSD1)	Sou	rce: P511026-	01	Prepared &	Analyzed:	16-Nov-1	5	146		
Benzene	10.6	0.10	mg/kg	10.0	ND	106	54.3-133	1.86	20	
Toluene	10.3	0.10	"	10.0	ND	103	61.4-130	2.09	20	
Ethylbenzene	10.3	0.10		10.0	ND	103	61.4-133	2.42	20	
p,m-Xylene	20.8	0.20		20.1	ND	104	63.3-131	2.18	20	
o-Xylene	10.0	0.10		10.0	ND	99.5	63.3-131	1.94	20	
Surrogate: 4-Bromochlorobenzene-PID	0.323		"	0.321		101	50-150		LUST	HILL

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

laboratory@envirotech-inc.com

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 John Thompson Reported: 24-Nov-15 12:22

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Lîmit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1547001 - DRO Extraction EPA 3550N	1					844			£ 7/10	No. To
Blank (1547001-BLK1)		Survey	×	Prepared &	k Analyzed:	16-Nov-15	5		of the fire	-
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg							
Surrogate: n-Nonane	47.4		*	50.0	4	94.8	50-200	643		
LCS (1547001-BS1)		1		Prepared &	Analyzed:	16-Nov-15	5			
Diesel Range Organics (C10-C28)	447	25.0	mg/kg	500		89.5	38-132	1511		
Surrogate: n-Nonane	47.5		*	50.0	3 1	95.0	50-200		-11	TO YE
Matrix Spike (1547001-MS1)	Sou	rce: P511028-	01	Prepared &	Analyzed:	16-Nov-15	5	Yes	A STATE	
Diesel Range Organics (C10-C28)	464	25.0	mg/kg	500	ND	92.9	38-132			
Surrogate: n-Nonane	42.7			50.0		85.4	50-200	- Y	1.44	
Matrix Spike Dup (1547001-MSD1)	Sou	rce: P511028-	01	Prepared &	k Analyzed:	16-Nov-15	5	4	- 1Y	
Diesel Range Organics (C10-C28)	458	25.0	mg/kg	500	ND	91.7	38-132	1.28	20	
Surrogate: n-Nonane	42.8	7-3-	W	50.0	- 316 7	85.7	50-200		1517	100

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

envirotech-inc.com laboratory@envirotech-inc.com

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 John Thompson Reported: 24-Nov-15 12:22

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1547002 - Purge and Trap EPA 5030A		1	201		19.16	Ass.		A Marie	Here	1
Blank (1547002-BLK1)	-40	4 / 1/20		Prepared &	k Analyzed:	16-Nov-15			Sec. 1	42.5
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg							
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.356	No. of the last	"	0.320	-10	111	50-150		9370	*
LCS (1547002-BS1)		THE REAL PROPERTY.		Prepared &	Analyzed:	16-Nov-15			PIG. IV	
Gasoline Range Organics (C6-C10)	117	20.1	mg/kg	113		103	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.363		, *	0.322	2	113	50-150	0-10		April 1
Matrix Spike (1547002-MS1)	Sou	rce: P511026-	01	Prepared &	Analyzed:	16-Nov-15				
Gasoline Range Organics (C6-C10)	128	19.9	mg/kg	112	ND	114	70-130		100	
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.352		"	0.318	3	111	50-150		1/4	
Matrix Spike Dup (1547002-MSD1)	Sou	rce: P511026-	01	Prepared &	Analyzed:	16-Nov-15		100	110 4 6	
Gasoline Range Organics (C6-C10)	123	20.1	mg/kg	113	ND	109	70-130	3.54	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.351		"	0.321		109	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 John Thompson Reported:

24-Nov-15 12:22

Total Metals by 6010 - Quality Control Envirotech Analytical Laboratory

		Reporting		Spike	Source	a/DEC	%REC	DDD	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1547006 - Metal Solid Digestio	on EPA 3051A	a Tokur		8000	0.128		No.	- 1 1 2 2	Finas	
Blank (1547006-BLK1)				Prepared:	16-Nov-15	Analyzed:	17-Nov-15		PAT !	- TA
Arsenic	ND	1.00	mg/kg		4710	Se 17 1				
Barium	ND	10.0								
Cadmium	ND	1.00	*							
Chromium	ND	5.00								
Copper	ND	2.00	**				-			
ead	ND	1.00	**							
Mercury	ND	1.00	**							
Nickel	ND	1.00	*							
Selenium	ND	5.00								
Silver	ND	1.00	**							
Zinc	ND	2.00	*							
LCS (1547006-BS1)				Prepared:	16-Nov-15	Analyzed:	17-Nov-15			
Arsenic	26.5	1.00	mg/kg	25.0		106	80-120		100	100
Barium	570	10.0		500		114	80-120			
Cadmium	26.8	1.00		25.0		107	80-120			
Chromium	52.3	5.00	**	50.0		105	80-120			
Copper	53.4	2.00	**	50.0		107	80-120			
ead	53.8	1.00		50.0		108	80-120			
Mercury	11.0	1.00		10.0		110	80-120			
Vickel	52.9	1.00	**	50.0		106	80-120			
Selenium	9.96	5.00	*	10.0		99.6	80-120			
silver	10.8	1.00		10.0		108	80-120			
Zinc	52.7	2.00		50.0		105	80-120			
Matrix Spike (1547006-MS1)	Sour	ce: P511016-	01	Prepared:	16-Nov-15	Analyzed:	17-Nov-15			
Arsenic	25.1	0.97	mg/kg	24.2	2.20	94.8	75-125	1 191		No.
Barium	546	9.68		484	60.2	100	75-125			
Cadmium	24.1	0.97		24.2	ND	99.7	75-125			
Chromium	50.0	4.84		48.4	ND	103	75-125			
Copper	45.4	1.94		48.4	ND	93.8	75-125			
ead	52.2	0.97		48.4	4.16	99.3	75-125			
Mercury	9.95	0.97		9.68	ND	103	75-125			
lickel	49.1	0.97		48.4	1.59	98.2	75-125			
Selenium	8.82	4.84		9.68	ND	91.1	75-125			
ilver	9.21	0.97		9.68	ND	95.2	75-125			
Zinc	56.2	1.94		48.4	8.76	98.1	75-125			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs • 65 Mercado Street, Sulte 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

aboratory envirotech-inc.com

Bridgecreek Resources, LLC

405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Kingsnake 34-6

Project Number: Project Manager:

Reporting

15090-0001 John Thompson

Spike

Source

Reported:

RPD

%REC

24-Nov-15 12:22

Total Metals by 6010 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1547006 - Metal Solid Digestion E	PA 3051A	Kert.	Page 1	o Attinia	District of	is dien	called the	10		
Matrix Spike Dup (1547006-MSD1)	Source	e: P511016-	01	Prepared:	16-Nov-15	Analyzed:	17-Nov-15		A Line	W. Carlo
Arsenic	25.6	0.97	mg/kg	24.3	2.20	96.3	75-125	1.69	20	7. 71
Barium	539	9.71		485	60.2	98.5	75-125	1.46	20	
Cadmium	24.0	0.97	"	24.3	ND	98.7	75-125	0.698	20	
Chromium	49.5	4.85		48.5	ND	102	75-125	1.09	20	
Copper	45.2	1.94		48.5	ND	93.0	75-125	0.482	20	
Lead	51.4	0.97	п	48.5	4.16	97.3	75-125	1.60	20	
Mercury	9.69	0.97		9.71	ND	99.8	75-125	2.65	20	
Nickel	49.0	0.97		48.5	1.59	97.8	75-125	0.184	20	
Selenium	9.44	4.85		9.71	ND	97.2	75-125	6.79	20	
Silver	8.88	0.97	"	9.71	ND	91.5	75-125	3.65	20	
7:	56.1	1.04	**	40 5	0 76	07.5	75 125	0.100	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

laboratory@envirotech-inc.com

Project Name:

Kingsnake 34-6

Project Number: Project Manager:

Reporting

15090-0001 John Thompson

Spike

Source

Reported:

RPD

%REC

24-Nov-15 12:22

Cation/Anion Analysis - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1547009 - Metal Water/TCLP (EF	A 1311) Digestion	EPA 3015	A		1					
Blank (1547009-BLK1)				Prepared: 1	17-Nov-15	Analyzed:	19-Nov-15			
Calcium	ND	0.50	mg/L	2.00%	7 7 8		15		F 145651	
Magnesium	ND	0.20								
Sodium	ND	2.00								
LCS (1547009-BS1)				Prepared: 1	17-Nov-15	Analyzed:	20-Nov-15			
Calcium	45.9	0.90	mg/L	50.0		91.7	80-120			ACT IN CASE
Magnesium	46.0	0.36		50.0		92.0	80-120			
Sodium	42.4	3.60	*	50.0		84.9	80-120			
Matrix Spike (1547009-MS1)	Source	e: P511025-	01	Prepared: 1	17-Nov-15	Analyzed:	20-Nov-15			
Calcium	80.9	the state	mg/L	45.0	41.4	87.8	75-125			1 12 72 5
Magnesium	45.3		*	45.0	1.33	97.7	75-125			
Sodium	121		*	45.0	67.6	118	75-125			
Matrix Spike Dup (1547009-MSD1)	Source	e: P511025-	01	Prepared: 1	17-Nov-15	Analyzed:	20-Nov-15			
Calcium	82.6		mg/L	45.0	41.4	91.6	75-125	2.10	20	
Magnesium	46.4		*	45.0	1.33	100	75-125	2.53	20	
Sodium	122		*	45.0	67.6	122	75-125	1.48	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

laboratory@envirotech-inc.com

Project Name:

Kingsnake 34-6

Project Number: Project Manager: 15090-0001 John Thompson Reported:

24-Nov-15 12:22

Boron-Hot Water Soluble by EPA 6010 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1547005 - Boron HW Soluble Digestion	1	Trade		in oi		1				
Blank (1547005-BLK1)				Prepared:	16-Nov-15	Analyzed:	17-Nov-15		1.6	F14.
Boron	ND	0.50	mg/L			7 13				
LCS (1547005-BS1)				Prepared:	16-Nov-15	Analyzed:	20-Nov-15			
Boron	0.50		mg/L	0.500	91-1616	99.6	80-120		1.63	
Duplicate (1547005-DUP1)	Sou	rce: P511011-	01	Prepared:	16-Nov-15	Analyzed:	17-Nov-15			
Boron	0.63	0.50	mg/L		0.63			0.542	20	100
Matrix Spike (1547005-MS1)	Sou	rce: P511011-	01	Prepared:	16-Nov-15	Analyzed:	17-Nov-15			
Boron	1.17	- 134	mg/L	0.500	0.59	116	75-125	1-1-5	- 1201	4 85

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Bridgecreek Resources, LLC 405 Urban St Suite 400 Project Name:

Kingsnake 34-6

Lakewood CO, 80228

Project Number: Project Manager: 15090-0001 John Thompson Reported: 24-Nov-15 12:22

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

laboratory envirotech-inc com

Client: Bridge Creek		RUSH?	La	b Use Only			An	alysis	and t	Metho	bd	19	lab (Only	
Client: Bridgristck Project: Kingsnake 34-6 Sampler: John Thompson			1d 3d	P511	030					910	Table				Correct Cont/Prsrv (s) Y/N
Phone: 505-320 · 1748				The Second Property of the Control o	b Number	3015			0.0	1				mbe	Prsn
Email(s): John @ Walshing, ne Project Manager: John Thompson	+		Pag	COLUMN TO SERVICE STATE OF THE PARTY OF THE	190-0001	NO by 8	8021	418.1	s by 30	ector				Lab Number	Cont/
Sample ID	Sample Date	Sample Time	Matrix	Co	ntainers YPE/Preservation	GRO/DRO by 8015	BTEX by 8021	TPH by 418.1	Chloride by 300.0	Bridge					Correct
King snake 34-6	11/13/15	1401	5	4-4AL	9 1855					X		-		1	Y
				e saltele							-				
								SA STATE OF THE SAME							
				3-											
Relinquished by: (Signature) Date	Time Received	by: (Signa	ture)	Date 11/13/15	Time 1545	**Rece	ived	on lo			e Onl	У			
Relinquished by: (Signature) Date Time Received by: (Signat				Date	Time	T1_ \]. 3 AVG Te			T2_	11.4	ł		T3_	10.	4
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O -					Container Ty		_	_	_	stic, a	g - am	ber gl	ass, v	- VOA	
**Samples requiring thermal preservation must be received on ice the day they are sampled or received pack						n 6 °C on su	bsequ	ent da	iys.	-			PA.		
Sample(s) dropped off after hours to a secure drop off ar		Citalii	f Custody	indicas similar											
Canvirotec	h	F 19		4000			26		art de la constant de				Marin .		

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Client: Bridge creek	ject: Kinsnake 34-6							An	alysis	and I	Method		lab	Only
Project: Kingsnake 39-6 Sampler: John Thompson Phone: 505-320-1748 Email(s): John @ Walshens, net			1d 3d	15	Lab WO# 1030 ob Number 190-000	by 8015	1021			C100 H 910	Table		Lab Number	Correct Cont/Prsrv (s) Y/N
Project Manager: John Thompson Sample ID	Sample Date	Sample Time	Pag	C	ontainers TYPE/Preservati	GRO/DRO by	BTEX by 8021	TPH by 418.1	Chloride by 300.0	Bridge			La	Correct C
King Grake 24-6 1 5	11/13/15	1401	5	4-4pz	9 (455					×			I	Y
Z	1413/15	1401	9							*				
20km /15	11/13/15	1401	5							×				
7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/13/18	140(5							X				
							704.0							
				2 11.0			- No.							
Relinquished by: (Signature) Date Time	Danishta	by: (Signa		Date	Time					-				
Relinquished by: (Signature) Date Time	1	d by: (Signa		11/13/15 Date	1545 Time	**Rece T1_ <u> .3</u> AVG Te			T2_		e Only	ТЗ	10.	4
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other_					Container Ty		_			tic, a	g - ambe	r glass, v	- VOA	1
**Samples requiring thermal preservation must be received on ice the Sample(s) dropped off after hours to a secure drop off area.	day they are sampled o		f Custody			n 6 °C on su	bsequ	ent da	lys.					
Renvirotech	5796 US 8	Fighway 64, Farmi	ington, NM 87401		Ph 150	5) 632-0615 Fz	(505) 632	2-1865	1 H -				eavintect-	inc com

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

ANALYTICAL REPORT

EnviroTech- NM

Sample Delivery Group:

L801817

Samples Received:

11/18/2015

Project Number:

15090-001

Description:

King Snake 34-6

Site:

P511030

Report To:

Tim Cain and Lynn Cook

5796 US. Highway 64

Farmington, NM 87401

Entire Report Reviewed By: Chu, foph June

Chris McCord

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304. Page 21 of 35 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.esclabsciences.com

Cp:	Cover Page	1
Tc: T	Table of Contents	2
Ss: S	Sample Summary	3
Cn:	Case Narrative	4
Sr: S	Sample Results	5
1	L801817-01	5
2	L801817-02	6
3	L801817-03	7
4	L801817-04	8
Qc:	Quality Control Summary	9
To	otal Solids by Method 2540 G-2011	9
Se	emi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	10
GI: G	Glossary of Terms	13
AI: A	Accreditations & Locations	14
Sc: (Chain of Custody	15

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

1 L801817-01 Solid			Collected by John Thompson	Collected date/time 11/13/15 14:01	Received date/time 11/18/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG830121	1	11/19/15 13:44	11/20/15 08:14	KMP
Total Solids by Method 2540 G-2011	WG830377	1	11/19/15 17:00	11/20/15 10:29	KDW
2 L801817-02 Solid			Collected by John Thompson	Collected date/time 11/13/15 14:01	Received date/time 11/18/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG830121	1	11/19/15 13:44	11/20/15 08:35	KMP
Total Solids by Method 2540 G-2011	WG830377	1	11/19/15 17:00	11/20/15 10:30	KDW
3 L801817-03 Solid			Collected by John Thompson	Collected date/time 11/13/15 14:01	Received date/time 11/18/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG830121	1	11/19/15 13:44	11/20/15 08:57	KMP
Total Solids by Method 2540 G-2011	WG830377	1	11/19/15 17:00	11/20/15 10:30	KDW
4 L801817-04 Solid			Collected by John Thompson	Collected date/time 11/13/15 14:01	Received date/time 11/18/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG830121	1	11/19/15 13:44	11/20/15 09:18	KMP
Total Solids by Method 2540 G-2011	WG830377	1	11/19/15 17:00	11/20/15 10:30	KDW

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ss

Sr

⁷GI

Chris McCord

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 11/13/15 14:01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		THE STATE OF THE S	
Analyte	%			date / time				
Total Solids	78.1		1	11/20/2015 10:29	WG830377	-	1000	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
Anthracene	ND	0.00768	1	11/20/2015 08:14	WG830121
Acenaphthene	0.00883	0.00768	1	11/20/2015 08:14	WG830121
Acenaphthylene	ND .	0.00768	1	11/20/2015 08:14	WG830121
Benzo(a)anthracene	ND	0.00768	1	11/20/2015 08:14	WG830121
Benzo(a)pyrene	ND	0.00768	1	11/20/2015 08:14	WG830121
Benzo(b)fluoranthene	ND	0.00768		11/20/2015 08:14	WG830121
Benzo(g,h,i)perylene	ND	0.00768	1	11/20/2015 08:14	WG830121
Benzo(k)fluoranthene	ND	0.00768	1	11/20/2015 08:14	WG830121
Chrysene	ND	0.00768	1	11/20/2015 08:14	WG830121
Dibenz(a,h)anthracene	ND	0.00768	1	11/20/2015 08:14	WG830121
Fluoranthene	ND	0.00768	1	11/20/2015 08:14	WG830121
Fluorene	0.0269	0.00768	1	11/20/2015 08:14	WG830121
Indeno(1,2,3-cd)pyrene	ND	0.00768	1	11/20/2015 08:14	WG830121
Naphthalene	0.217	0.0256	1	11/20/2015 08:14	WG830121
Phenanthrene	0.0465	0.00768	1	11/20/2015 08:14	WG830121
Pyrene	ND	0.00768	1	11/20/2015 08:14	WG830121
1-Methylnaphthalene	0.232	0.0256	1	11/20/2015 08:14	WG830121
2-Methylnaphthalene	0.278	0.0256	1	11/20/2015 08:14	WG830121
2-Chloronaphthalene	ND	0.0256	1	11/20/2015 08:14	WG830121
(S) Nitrobenzene-d5	92.4	22.1-146		11/20/2015 08:14	WG830121
(S) 2-Fluorobiphenyl	90.2	40.6-122		11/20/2015 08:14	WG830121
(SI p-Terphenyl-d14	77.4	32.2-131		11/20/2015 08:14	WG830121

ONE LAB. NATIONWIDE.

Collected date/time: 11/13/15 14:01

Total Solids by Method 2540 G-2011

THE PROPERTY.	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	71.8		1	11/20/2015 10:30	WG830377

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
Anthracene	ND	0.00835	1	11/20/2015 08:35	WG830121
Acenaphthene	ND	0.00835	1	11/20/2015 08:35	WG830121
Acenaphthylene	ND	0.00835	1	11/20/2015 08:35	WG830121
Benzo(a)anthracene	ND	0.00835	1	11/20/2015 08:35	WG830121
Benzo(a)pyrene	ND	0.00835	1	11/20/2015 08:35	WG830121
Benzo(b)fluoranthene	ND	0.00835	1	11/20/2015 08:35	WG830121
Benzo(g,h,i)perylene	ND	0.00835	1	11/20/2015 08:35	WG830121
Benzo(k)fluoranthene	ND	0.00835	1	11/20/2015 08:35	WG830121
Chrysene	ND	0.00835	1	11/20/2015 08:35	WG830121
Dibenz(a,h)anthracene	ND	0.00835	1	11/20/2015 08:35	WG830121
Fluoranthene	ND	0.00835	1	11/20/2015 08:35	WG830121
Fluorene	0.0136	0.00835	1	11/20/2015 08:35	WG830121
Indeno(1,2,3-cd)pyrene	ND	0.00835	1	11/20/2015 08:35	WG830121
Naphthalene	0.181	0.0278	1	11/20/2015 08:35	WG830121
Phenanthrene	0.0205	0.00835	1	11/20/2015 08:35	WG830121
Pyrene	ND	0.00835	1	11/20/2015 08:35	WG830121
1-Methylnaphthalene	0.162	0.0278	1	11/20/2015 08:35	WG830121
2-Methylnaphthalene	0.196	0.0278	1	11/20/2015 08:35	WG830121
2-Chloronaphthalene	ND	0.0278	1	11/20/2015 08:35	WG830121
(S) Nitrobenzene-d5	80.4	22.1-146		11/20/2015 08:35	WG830121
(S) 2-Fluorobiphenyl	78.4	40.6-122		11/20/2015 08:35	WG830121
(S) p-Terphenyl-d14	60.7	32.2-131		11/20/2015 08:35	WG830121

ONE LAB. NATIONWIDE.

Collected date/time: 11/13/15 14:01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	76.6		1	11/20/2015 10:30	WG830377

Ср

Tc

APPENDENCE OF THE PERSON OF	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
Anthracene	ND	0.00783	1	11/20/2015 08:57	WG830121
Acenaphthene	ND	0.00783	1	11/20/2015 08:57	WG830121
Acenaphthylene	ND	0.00783	1	11/20/2015 08:57	WG830121
Benzo(a)anthracene	ND	0.00783	1	11/20/2015 08:57	WG830121
Benzo(a)pyrene	ND	0.00783	1	11/20/2015 08:57	WG830121
Benzo(b)fluoranthene	ND	0.00783	1	11/20/2015 08:57	WG830121
Benzo(g,h,i)perylene	ND	0.00783	1	11/20/2015 08:57	WG830121
Benzo(k)fluoranthene	ND	0.00783	1	11/20/2015 08:57	WG830121
Chrysene	ND	0.00783	1	11/20/2015 08:57	WG830121
Dibenz(a,h)anthracene	ND	0.00783	1	11/20/2015 08:57	WG830121
Fluoranthene	ND	0.00783	1	11/20/2015 08:57	WG830121
Fluorene	0.0154	0.00783	1	11/20/2015 08:57	WG830121
Indeno(1,2,3-cd)pyrene	ND	0.00783	1	11/20/2015 08:57	WG830121
Naphthalene	0.199	0.0261	1	11/20/2015 08:57	WG830121
Phenanthrene	0.0210	0.00783	1	11/20/2015 08:57	WG830121
Pyrene	ND	0.00783	1	11/20/2015 08:57	WG830121
1-Methylnaphthalene	0.189	0.0261	1	11/20/2015 08:57	WG830121
2-Methylnaphthalene	0.233	0.0261	1	11/20/2015 08:57	WG830121
2-Chloronaphthalene	ND	0.0261	1	11/20/2015 08:57	WG830121
(S) Nitrobenzene-d5	95.5	22.1-146		11/20/2015 08:57	WG830121
(S) 2-Fluorobiphenyl	84.8	40.6-122		11/20/2015 08:57	WG830121
(S) p-Terphenyl-d14	69.8	32.2-131		11/20/2015 08:57	WG830121

ONE LAB. NATIONWIDE.

Collected date/time: 11/13/15 14:01

Total Solids by Method 2540 G-2011

TO THE YEAR OF THE	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.3	<u>J3</u>	1	11/20/2015 10:30	WG830377

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND	The second	0.00672	1	11/20/2015 09:18	WG830121
Acenaphthene	ND		0.00672	1	11/20/2015 09:18	WG830121
Acenaphthylene	ND		0.00672	1	11/20/2015 09:18	WG830121
Benzo(a)anthracene	ND		0.00672	1	11/20/2015 09:18	WG830121
Benzo(a)pyrene	ND		0.00672	1	11/20/2015 09:18	WG830121
Benzo(b)fluoranthene	ND		0.00672	1	11/20/2015 09:18	WG830121
Benzo(g,h,i)perylene	ND		0.00672	1	11/20/2015 09:18	WG830121
Benzo(k)fluoranthene	ND		0.00672	1	11/20/2015 09:18	WG830121
Chrysene	ND		0.00672	1	11/20/2015 09:18	WG830121
Dibenz(a,h)anthracene	ND		0.00672	1	11/20/2015 09:18	WG830121
Fluoranthene	ND		0.00672	1	11/20/2015 09:18	WG830121
Fluorene	0.00768		0.00672	1	11/20/2015 09:18	WG830121
Indeno(1,2,3-cd)pyrene	ND		0.00672	1	11/20/2015 09:18	WG830121
Naphthalene	0.149		0.0224	1	11/20/2015 09:18	WG830121
Phenanthrene	0.0129		0.00672	1	11/20/2015 09:18	WG830121
Pyrene	ND		0.00672	1	11/20/2015 09:18	WG830121
1-Methylnaphthalene	0.0777		0.0224	1	11/20/2015 09:18	WG830121
2-Methylnaphthalene	0.115		0.0224	1	11/20/2015 09:18	WG830121
2-Chloronaphthalene	ND		0.0224	1	11/20/2015 09:18	WG830121
(S) Nitrobenzene-d5	97.6		22.1-146		11/20/2015 09:18	WG830121
(S) 2-Fluorobiphenyl	92.3		40.6-122		11/20/2015 09:18	WG830121
(S) p-Terphenyl-d14	78.1		32.2-131		11/20/2015 09:18	WG830121

WG830377

QUALITY CONTROL SUMMARY L801817-01,02,03,04

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) 11/20/15 10:21

Analyte

MB Result MB RDL MB Qualifier

0.000700 **Total Solids**

L801817-04 Original Sample (OS) • Duplicate (DUP)

(OS) 11/20/15 10:30 • (DUP) 11/20/15 10:30

	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	%	%		%		%			
Total Solids	89.3	84.2	1	5.80	<u>J3</u>	5	-11-		- L Mg

Laboratory Control Sample (LCS)

(LCS) 11/20/15 10:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
nalyte	%	%	%	%
al Solids	50.0	50.0	100	85.0-115

WG830121

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

L801817-01,02,03,04

Method Blank (MB)

(MB) 11/20/15 00:48		为自然的"自然"的"自然"的"自然"的"自然"的"自然"的"自然"的"自然"的"自
	MB Result MB Qualifier	MB RDL
Analyte	mg/kg	mg/kg
Anthracene	ND	0.00600
Acenaphthene	ND	0.00600
Acenaphthylene	ND	0.00600
Benzo(a)anthracene	ND	0.00600
Benzo(a)pyrene	ND	0.00600
Benzo(b)fluoranthene	ND	0.00600
Benzo(g,h,i)perylene	ND	0.00600
Benzo(k)fluoranthene	ND	0.00600
Chrysene	ND	0.00600
Dibenz(a,h)anthracene	ND	0.00600
Fluoranthene	ND	0.00600
Fluorene	ND	0.00600
Indeno(1,2,3-cd)pyrene	ND	0.00600
Naphthalene	ND	0.0200
Phenanthrene	ND	0.00600
Pyrene	ND	0.00600
1-Methylnaphthalene	ND	0.0200
2-Methylnaphthalene	ND	0.0200
2-Chloronaphthalene	ND	0.0200
(S) p-Terphenyl-d14	71.7	32.2-131
(S) Nitrobenzene-d5	100	22.1-146
(S) 2-Fluorobiphenyl	94.6	40.6-122

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/19/15 23:41 • (LCSD) 1	1/20/15 00:02	0368	EASTERN HE	OF THE	No.		ALC: YOU	41 8 7 5		A STATE OF STREET	Company of the last of the las
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Anthracene	0.0800	0.0733	0.0730	91.7	91.2	50.3-130			0.500	20	
Acenaphthene	0.0800	0.0735	0.0733	91.9	91.7	52.4-120			0.210	20	
Acenaphthylene	0.0800	0.0726	0.0722	90.7	90.3	49.6-120			0.500	20	
Benzo(a)anthracene	0.0800	0.0622	0.0628	77.7	78.5	46.7-125			1.02	20	
Benzo(a)pyrene	0.0800	0.0596	0.0633	74.5	79.1	42.3-119			5.98	20	
Benzo(b)fluoranthene	0.0800	0.0597	0.0613	74.6	76.6	43.6-124			2.60	20	
Benzo(g,h,i)perylene	0.0800	0.0593	0.0632	74.2	79.0	45.1-132			6.39	20	
Benzo(k)fluoranthene	0.0800	0.0581	0.0646	72.6	80.8	46.1-131			10.7	20	

²Tc

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

L801817-01,02,03,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/19/15 23:41 ·	(LCSD) 11/20/15 00:02
------------------------	-----------------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%	Arrive S		%	%
Chrysene	0.0800	0.0677	0.0679	84.7	84.9	49.5-131	D. Paragles		0.250	20
Dibenz(a,h)anthracene	0.0800	0.0610	0.0650	76.3	81.2	44.8-133			6.22	20
Fluoranthene	0.0800	0.0683	0.0680	85.3	85.0	49.3-128			0.360	20
Fluorene	0.0800	0.0712	0.0709	89.0	88.6	50.6-121			0.430	20
Indeno(1,2,3-cd)pyrene	0.0800	0.0618	0.0657	77.2	82.2	46.1-135			6.16	20
Naphthalene	0.0800	0.0698	0.0695	87.2	86.8	49.6-115			0.430	20
Phenanthrene	0.0800	0.0682	0.0680	85.2	85.0	48.8-121			0.310	20
Pyrene	0.0800	0.0649	0.0649	81.1	81.1	44.7-130			0.0100	20
1-Methylnaphthalene	0.0800	0.0717	0.0729	89.7	91.1	50.6-122			1.65	20
2-Methylnaphthalene	0.0800	0.0718	0.0726	89.7	90.8	50.4-120			1.20	20
2-Chloronaphthalene	0.0800	0.0728	0.0726	91.0	90.7	53.9-121			0.330	20
(S) p-Terphenyl-d14				75.6	76.3	32.2-131				
(S) Nitrobenzene-d5				101	94.8	22.1-146				
(S) 2-Fluorobiphenyl				95.5	93.5	40.6-122				

L801752-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

IOCI	11/20/1E	05:02	MACH	11/20 ME	OE-24	MACON	11/20ME DEVAE	П
(02)	11/20/15	05.03 •	(MID)	11/20/15	05.24	(MOD)	11/20/15 05:45	

	Spike Amou	int Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		No by a P	%	%
Anthracene	0.0800	0.00110	0.0693	0.0624	85.2	76.6	1	26.5-141	ne de la companya de	CALL LAST	10.5	21.2
Acenaphthene	0.0800	ND	0.0710	0.0641	88.8	80.2	1	31.9-130			10.2	20
Acenaphthylene	0.0800	ND	0.0706	0.0651	88.2	81.3	1	33.7-129			8.12	20
Benzo(a)anthracene	0.0800	0.0132	0.0603	0.0538	58.9	50.7	1	18.3-136			11.4	24.6
Benzo(a)pyrene	0.0800	0.0136	0.0631	0.0563	61.8	53.4	1	16.9-135			11.4	25.2
Benzo(b)fluoranthene	0.0800	0.0178	0.0599	0.0538	52.6	45.1	1	10.0-134			10.7	30.9
Benzo(g,h,i)perylene	0.0800	0.00920	0.0629	0.0551	67.1	57.4	1	14.1-140			13.2	25.5
Benzo(k)fluoranthene	0.0800	0.00633	0.0652	0.0567	73.6	63.0	1	18.2-138			14.0	25.6
Chrysene	0.0800	0.0136	0.0637	0.0589	62.7	56.6	1	17.1-145			7.90	24.2
Dibenz(a,h)anthracene	0.0800	0.00200	0.0661	0.0589	80.1	71.2	1	18.5-138			11.4	24.3
Fluoranthene	0.0800	0.0278	0.0664	0.0576	48.2	37.3	1	15.4-144			14.1	27.1
Fluorene	0.0800	ND	0.0680	0.0618	85.0	77.2	1	23.5-136			9.56	20
Indeno(1,2,3-cd)pyrene	0.0800	0.00856	0.0657	0.0578	71.4	61.6	1	14.5-142			12.8	25.8
Naphthalene	0.0800	0.000623	0.0685	0.0625	84.8	77.4	1	29.2-128			9.06	20
Phenanthrene	0.0800	0.00338	0.0646	0.0577	76.6	67.9	1	20.1-134			11.4	23.6
Pyrene	0.0800	0.0236	0.0619	0.0551	47.8	39.3	1	11.0-148			11.7	26.1

11 of 15

QUALITY CONTROL SUMMARY L801817-01,02,03,04

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

L801752-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

105) 11/20/15	05:03 . IMS	11/20/15 05:2	4 . (MSD)	11/20/15 05:45

	Spike Amou	int Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		Supple Village	%	%
1-Methylnaphthalene	0.0800	ND	0.0709	0.0647	88.6	80.8	1	28,4-137	Tel.	This County	9.16	20
2-Methylnaphthalene	0.0800	ND	0.0708	0.0642	88.5	80.3	1	26.6-137			9.77	20
2-Chloronaphthalene	0.0800	ND	0.0711	0.0649	88.9	81.2	1	38.6-126			9.09	20
(S) p-Terphenyl-d14					75.3	71.7		32.2-131				
(S) Nitrobenzene-d5					98.3	95.0		22.1-146				
(S) 2-Fluorobiphenyl					94.7	88.9		40.6-122				

Abbreviations and Definitions

Description

Qualifier

J3

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadi, MQL	Unadjusted Method Quantitation Limit.

The associated batch QC was outside the established quality control range for precision.

GI

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE**.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina 1	DW21704
Florida	E87487	North Carolina 2	41
Georgia	NELAP	North Dakota	R-140
Georgia 1	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
ndiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky 1	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERTO086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789	
A2LA - ISO 170255	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
EPA-Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶⁹ Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/Address:	200	J. 7. 7. 4	POSICION AND AND AND AND AND AND AND AND AND AN	Envirotech Inc -NIM Accounts Payable								er / Pre	servati	ve		Tier.	Chain of Custody	Pageof
Envirotech IncNN 5796 US Highway 64 Farmington, NM 87401	ſ		5796 US	nts Payable IS Highway 64 gton, NM 87401													LAS SIG	SC
Report to:	20 7 8		Email To:														12065 Lebanon Rd Mount Juliet, TN 371	
Lynn Cook & Tim	Cain			Lynn Cook & Tim Cain City/State						-0							Phone: 615-758-5851 Phone: 800-767-5851 Fax: 615-758-5859	
Description: King Snake	34-6			Collected:			gla										L# 801	617
Phone: Fax:	Client Project	0-000	l	Lab Project #			1 tozglass			2.4							JO	Marie Company of the
Collected by (print): John Thompson	Site/Facility ID	1030		P.O.# 142	142780 Date Results Needed Email?NoYes FAX? X_NoYes		8270									Espid	Acctnum: Template:	
Collected by (signature): Immediately Packed on Ice N Y X	Next D	ab MUST Be Day	200%	Email?			Sim by										Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Of	PAH										Shipped Via: Rem/Contaminant	Sample # (lab only)
King Snake 34 61	5140.16	5	F 764	11-13-15	14:01	1	X	7	ME	75					医院		E CYTE	-01
2	1. 19	9	March 1	11-13-15	1401	1	X	1079				22.5				97.00		-02
3	Same and	5	100	11-13-15	1401	1	X	C. W.						9-5				-03
4		Ś		11-13-15	1401	t	X	Feb (S)				學場				DE TRE		-04
		- 4																234
			1/2/1											73.3	200			
en september 2007 /2 1975																		
* Matrix: SS - Soil GW - Groundwater			West of the same							pH _			P		310	Tall Con	93737	7880
Remarks: While Min. In Relinquished by: (Signature) All Books	iv. Ket	Oate: 17-	TL	10:53 R	eceived by: (Sign	ature)	能			Sample	es returne	ed via:	UPS	SA	Cor	ld#	(RI)	ise only) to
Relinquished by : (Signature)		Date:			eceived by: (Sign.		No.			Temp:		C Bot	- 4	oeived:	co	C Seal		N _NA
Relinquished by : (Signature)				coved to his b	r. (Sign	ature		are.	3.7	3.2 4-402 11.1015 Time: 96				THE RESERVE	C Seal Checke			

Form 3160-5 (August 2007)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED OMB NO. 1004-0135 Expires: July 31, 2010

5. Lease Serial No. 751141038

SUNDRY NOTICES AND REPORTS ON WELLS Do not use this form for proposals to drill or to re-enter an abandoned well. Use form 3160-3 (APD) for such proposals.

6. If Indian, Allottee or Tribe Name UTE MOUNTAIN UTE

SUBMIT IN TRIPLICATE - Other instructions on reverse side.					7. If Unit or CA/Agreement, Name and/or No.	
Type of Well Gas Well □ Other					8. Well Name and No. KINGSNAKE 34-6	
Name of Operator					9. API Well No. 30-045-35735-00-X1	
3a. Address 405 URBAN STREET, SUITE LAKEWOOD, CO 80228	3b. Phone No. (include area code) Ph: 303-945-2642			10. Field and Pool, or Exploratory VERDE GALLUP		
4. Location of Well (Footage, Sec., T., R., M., or Survey Description)			11. County or Parish, and State			
Sec 34 T31N R15W SENW 2: 36.858868 N Lat, 108.406705					SAN JUAN CO	UNTY, NM
12. CHECK APPI	ROPRIATE BOX(ES) TO	O INDICATE	NATURE OF	NOTICE, R	EPORT, OR OTHE	R DATA
TYPE OF SUBMISSION	TYPE OF ACTION					
□ Notice of Intent	☐ Acidize ☐ D		pen	☐ Production (Start/Resume)		☐ Water Shut-Off
	☐ Alter Casing	☐ Frac	ture Treat	Reclamation		■ Well Integrity
Subsequent Report	☐ Casing Repair	□ New	New Construction	Recomplete		☑ Other
☐ Final Abandonment Notice	☐ Change Plans		ig and Abandon	□ Temporarily Abandon		Emergency Pits or Cl osure
	Convert to Injection	☐ Plug	Back	■ Water Disposal		
	true and correct. Electronic Submission # For BRIDGECREEK nitted to AFMSS for proces	RESOURCES	CÓLO LLC, ser ARA TELECKY	nt to the Dura	ngo (16BDT0029SE)	
Signature (Electronic S	Submission)		Date 01/04/2	2016		
	THIS SPACE FO	OR FEDERA	L OR STATE	OFFICE U	SE	
Approved By ACCEPT	ED			BINOWITZ MINERALS S	STAFF CHIEF	Date 01/07/2016
Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.			Office Durango			
Fitle 18 U.S.C. Section 1001 and Title 43 States any false, fictitious or fraudulent	U.S.C. Section 1212, make it a statements or representations as	crime for any pe to any matter wi	rson knowingly an thin its jurisdiction	d willfully to m	ake to any department or	agency of the United

December 30, 2015

Mr. Ryan Joyner
Bureau of Land Management
Tres Rios Field Office
Land and Minerals
15 Burnett Court
Durango, CO 81301

RE: Cutting Trench Closure Report. Bridgecreek Resources. Kingsnake 34-6. Sec. 34, T31N.R15W. Lease #751-14-1038.

Mr. Joyner:

On the behalf of Bridgecreek Resources (Bridgecreek), Adkins Consulting Inc. (ACI) is pleased to submit this closure plan report. Closure occurred from December 16 through December 22, 2015. Photographs of the closure are located in Appendix A. Exhibit 1 shows the location of the cuttings trench in relation to the Kingsnake 34-6 wellhead.

Arriving on location (December 16th) and prior to commencement of cuttings trench excavation, Weeminuche Construction, Walsh Engeering, and Adkins Consulting determined that the approved cuttings trench was not sized to accommodate a 3 (clean):1 (cuttings) mixing ratio. Mr. Ryan Joyner was immeditately notified via voicemail that a change in cuttings trench size is required. Verbal confirmation to proceed with the excavation was received later in the day, prior to excavation of the cuttings trench.

The dimensions of the cuttings trench changed from the original size as presented in the APD and SUPO. The northwest corner of the cuttings trench is 211 feet bearing 110 deg. magnetic north (MN) [101 deg. true north (TN)] from the Kingsnake 34-6 wellhead. The cuttings trench measures 61 ft (L) \times 35 ft (W) \times 12 ft (D). Including the 4-foot topsoil cap, the total depth of the trench is 16 ft.

The drill cuttings were mixed in the steel bins in a ratio of 3 (clean): 1 (cuttings). Stablization occurred at a ratio of 1:1.

A confirmation sample of the mixed drill cuttings was obtained after the mixed drill cuttings were placed in the cuttings trench. The confirmation sample was obtained from a six point composite representating the buried drill cuttings matrix. The matrix of the buried cuttings was approximately 1/3 rock, 1/3 fines, and 1/3 stablized drill cuttings.

The confirmation sample was delivered to Envirotech Environmental Laboratory for the analysis of constituents listed in the UMU Table and chloride. Analytical results are pending. Bridgecreek will submit analytical results via Sundry when the results become available.

If you have any questions or comments please contact me at 970-570-9535.

Andrew Parker
Adkins Consulting, Inc
Durango, CO
970-570-9535
andrew@adkinsenvironmental.com

Cc: Christine Campbell, Bridgecreek Resources

Exhibits

Appendix A

Figure 1: Excavating the cuttings trench.

Figure 2: Mixing the drill cuttings with clean soil from trench excavation. Stablization was achieved at a ratio of 1 (clean): 1 (cuttings).

Figure 3: Placing the 3(clean):1(cuttings) mixed drill cuttings into the cuttings trench. The trench is lined with a 20-mil string reinforced LLDPE liner.

Figure 4: Spreading the mixed cuttings in the burial trench.

Figure 5: Mixed (3:1) drill cuttings. The soil matrix is approximately 1/3 rock, 1/3 fines, and 1/3 stablized cuttings.

Figure 6: Bedrock from the excavation spoils that make up a portion of the buried cuttings matrix.

Bridgecreek Resources (Colorado) LLC

Kingsnake 34-6 API: 30-045-35735

NMOCD Pit Permit: 13257

Enclosures

OIL CONS. DIV DIST. 3

FEB 16 2016

1. C-144 Closure Form

- 2. Temporary Pit Closure Report
 - a. Disposal Facility
 - b. Revegetation Rates and Technique-BIA Seed Mix for UMU Indian Reservation
 - c. Reclamation Plan
 - d. Well Sign photo

Exhibits:

Plot Plan

Tables:

Summary of Pre-burial Sample Analytical

Appendix A: Pre-burial sampling Analytical Results

Confirmation Sampling Analytical Results, Surface Owner Closure notification via Form 3160-5,

Accepted 1/22/16 (Site Photos Attached)

