CORE ANALYSIS FOR

TESORO PETROLEUM CORPORATION

NO. 17 SANTA FE RAILROAD

SOUTH HOSPAH FIELD

MCKINLEY COUNTY, NEW MEXICO

CORE LABORATORIES, INC.

	111		1	
		ļ	1	AA
V	N	川	U	

Petroleum Reservoir Engineering

COMPANY .	Tesoro Petroleum Corporation	DATE ON 5-3-69	FILE NO	RP-3-2349
WELL	Santa Fe RR # 17	DATE OFF 5-4-69	ENGRS	Mohl
FIELD	South Hospah	FORMATION Dakota 2nd	bencheLEV.	6989 KB
COUNTY	McKinley STATEN. Mex.	DRLG FLD. Gel 8% 011	CORES	Dia. Conv. 4"
	SE NW Sec 7 - T 17N - R 8W			

COREGRAPH

CONGLOMERATE O .: 35 CHERT SAND | LIMESTONE DOLOMITE 7 SHALE

VERTICAL SCALE: 5" = 100"

- TOTAL WATER PERCENT PORE SP 20 0 100 80 DIL SATURATION PERMEABILITY ---- POROSITY 6 20 60 80 10 28 20 PROD LITH 2580 2590 2600

CORE SUMMARY AND CALCULATED RECOVERABLE OIL

FORMATION NAME AND DEPTH INTERVAL: Dakota 2nd Bench - 2580.0 to 2595.0 feet				
FEET OF CORE RECOVERED FROM ABOVE INTERVAL	15	AVERAGE TOTAL WATER BATURATION! PER CENT OF PORE BPAGE	71.4	
FEET OF CORE Included in Averages	15 .	AVERAGE CONNATE WATER SATURATION: PER CENT OF PORE SPACE		
AVERAGE PERMEABILITY! MILLIDARCYB	2.5	DIL BRAVITY: ⁹ API		
PRODUCTVE CAPACITY: MILLIDARCY-FEET	37.42	ORIGINAL SOLUTION DAS-DIL RATIO: Cubic feet per Barrel		
AVERAGE POROSITY: PER DENT	19.9	DRIGINAL FORMATION VOLUME FACTOR: BARRELS BATURATED DIL PER BARREL STOCK-TANK DIL		
AVERAGE RESIDUAL OIL SATURATION: PER CENT OF PORE SPACE	2.0	CALCULATED ORIGINAL STOCK-TANK OIL IN PLACE: BARRELB PER ACRE-FOOT		
	1			

barrels per acre-foot, assuming production could be Calculated maximum solution gas drive recovery is continued until reservoir pressure declined to zero psig. Calculated maximum water drive recovery is barrels per acre-foot, assuming full maintenance of original reservoir pressure, 100% areal and vertical coverage, and continuation of production to 100% water cut. (Please refer to footnotes for further discussion of recovery estimates.)

(*) Refer to attached letter. (e) Estimated (m) Measured (c) Calculated INTERPRETATION OF DATA

2580.0 to 2595.0 feet - Believed to be primarily water productive. Characterized by lower than normal permeability and higher than normal water saturation. Initially some very small volumes of oil might be produced with increasing volumes of water.

These recovery estimates represent theoretical maximum values for solution gas and water drive. They assume that production is started at original reservoir pressure; i.e., no account is taken of production to date or of prior drainage to other areas. The effects of factors tending to reduce actual ultimate recovery, such as economic limits on oil production rates, gas-oil ratios, or water-oil ratios, have not been taken into occount. Neither have factors been considered which may result in actual recovery intermediate between solution gas and complete water drive recoveries, such as gas cap expansion, gravity drainage, or partial water drive. Detailed predictions of ultimate oil recovery to specific abandonment conditions may be made in an engineering study in which consideration is given to overall reservoir characteristics and economic factors.

These analyses opinions or interpretations are based on observations and materials supplied by the elient to whom, and for whose exclusive and confidential into the relative of weaks. The interpretations or opinions represent approach the best independ of Confidential, he full errors and occurrence excepted by the horizontal by and the observation of the productivity independently, or profitablemes of the productivity independently with which such report is used to relied upon

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering DALLAS, TEXAS

Page	No	1	

CORE ANALYSIS RESULTS

Company Tesoro Petroleum Corporation	Formation Dakota 2nd bench	File RP-3-2349
Well Santa Fe RR # 17	Core Type Dia. Conv. 4"	Date Report 5-4-69
	Drilling Fluid Fresh water gel 8%	
County McKinley State N. Mex. Elev.	5989 KB Location SE NW Sec 7- T	17N- R 8W

			Lith	ologic	al Abbrevia	tions				
BAND-SD SHALE-SH LIME-LM	DOLOMITE - DOL CHERT - CH GYPSUM - GYP	ANHYDRITE - ANHY CONGLOMERATE - CONG FOESILIFEROUS - FOES	SANDY-SE SHALY-SH LIMY-LMY	44	FINE - PN MEDIUM - MED COARSE - CSE	GRYSTALLINI GRAIN - GRN GRANULAR - G		BROWN-BRN FRACTURED-FRAC SLIGHTLY-GRAY-GY LAMINATION-LAM VERY-V/VUQQY-VQY STYLOLITIC-STY WITH-W/		
SAMPLE	DEPTH	PERMEABILITY	POROSITY		UAL BATURATION			SAMPLE DESCRIPTION		
NUMBER	PEET	MILLIDARCYS KA	PER CENT	OIL	TOTAL WATER	Gas Sat		AND REMARKS		
1	2580-81	0.8	21.5	0.0	77.1	22.9	Ss,	gry, fn-med, shly		
2	2581-82	11.	20.0	0.0	66.5	33.5		gry, fn-med, shly, vert fra		
3	2582-83	2.6	23.0	2.6	64 . 8	32.6		gry, fn-med, shly, vert frac		
4	2583-84	0.6	17.1	1.2	74.3	24.5		gry, fn-med, shly		
5	2584-85	0.41	19.1	1.1	75.9	23.0		gry, fn-med, shly		
6	2585 – 86	0.35	21.2	1.0	76.4	22.6		gry, fn-med, shly		
7	2586-87	0.6	20.7	1.1	74.3	24.6	Ss,	gry, fn-med, shly		
8	2587 –88	1.0	22.4	1.8	71.0	27.2	Ss,	gry, fn-med, shly		
9	2588-89	0.3	19.1	2.8	73.2	24.0	Ss,	gry, fn-med, shly		
10	2589 –90	0.14	17.8	2.8	77.0	20.2	Ss,	gry, fn-med, shly		
11	2590-91	0.14	18.0	1.1	76.1	22.8	-	gry, vfn-fn, shly		
12	2591-92	0.08	16.9	1.3	78.6	20.1	Ss,	gry, vfn-fn, shly		
13	2592-93	12.	23.5	2.5	63.9	33.6	Ss,	wh, vfn-fn, shly, sl calc		
14	2593-94	2.1	17.0	6.5	61.1	32.4	-	wh, vfn-fn, sl calc		
15	2594-95	5.3	20.9	4.3	61.7	34.0	-	wh, vfn-fn, sl calc		
16	2599-00	0.05	12.9	4.0	80.5	15.5	Ss,	gry, vfn-fn, shly		
17	2600-01	0.11	18.0	0.0	76.0	24.0	Ss,	wh, vfn-fn, shly		

These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or prefitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.