District I

State of New Mexico

P.O. Box 1980 Hobbs, NM Energy. Minerals and Natural Resources Department APPROPRIATE
District DI
P.O. Drawer DD, Arlesia, NW 88211
AND 1 COPY

Districe FUTY OIL & GAS INSPECTOR OIL CONSERVATION DIVISION

SUBMIT 1 COPY TO DESTRICT OFFICE AND 1 COPY TO SANTA FE OFFICE

1000 Rio Brazos Rd, Aztec, NM 87410 OCT 0 1 1997

P.O. Box 2088 Santa Fe, New Mexico 87504-2088

(Revised 3/9/94)

PIT REMEDIATION AND CLOSURE REPORT

Operator: _Conoco, _Inc.	Telephone: 915-686-5453
Address: 10 Destra Drive, Sui	te 100W, Midland, TX 79705-4500
Facility Or: 28-7 # 170 Pit #1 Well Name	
Location: Unit or Qtr/Qtr 0 S	ec <u>10 T27N R7W</u> County <u>San Juan</u>
Pit Type: Separator X Dehydrator	Other
Land Type: BLM X . State, Fee	Other
(Attach diagram) Reference: wellhea Footage from refere	rence: <u>36</u> Degrees <u>X</u> East North
	of West South <u>X</u> _
Depth To Ground Water: (Vertical distance from contaminants to seasonal high water elevation of ground water)	Less than 50 feet (20 points) 50 feet to 99 feet (10 points) Greater than 100 feet (0 points)
Wellhead Protection Area: (Less than 200 feet from a private domestic water source. or; less than 1000 feet from all other water sources	Yes (20 points) No (0 points)
Distance To Surface Water: (Horizontal distance to perennial lakes, ponds, rivers, streams, creeks, irrigation canals and ditches)	Less than 200 feet (20 points) 200 feet to 1000 feet (10 points) Greater than 1000 feet (0 points)

Date Remediation Start	ced: 7- 16 - 1996 Date Completed:
Remediation Method: E	Excavation Approx. cubic yards
	ndfarmed Insitu Bioreediation
C	other Natural attenuation
Remediation Location: (ie. landfarmed onsite, name and location of offsite facility)	Onsite X Offsite
	Remedial Action: Pit sampled by Conoco on 7-16-9.
	intered bedrock at six inches below bottom of the pit.
	ng using PID = 14.57 ppm, Lab results of sample for TPH
	were 44.4 ppm. Contamination is below NMOCD soil
	tile Organics of 100 ppm and TPH of 1000 ppm. Pit
closed by backfilling	during P&A and site rehabilitation.
Ground Water Encounter	red: No X Yes Depth
Final Pit:	Sample location: Samples take at center and NW corner of pit
Closure Sampling: (if multiple samples.	
attach sample results and diagram of sample locations and depths)	Sample depth <u>Six inches below bottom of the pit at bedrock</u>
recurrence and depone,	Sample date <u>7-16-1996</u> Sample time <u>1430 hours</u>
	Sample Results
	Benzene (ppm)
	Total BTEX (ppm)
	Field headspace (ppm) <u>14.57</u>
	TPH 44.4
Ground Water Sample:	Yes No <u>X</u> (If yes, attach sample results)
I HEREBY CERTIFY THAT OF MY KNOWLEDGE AND BE	THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST
DATE	
SIGNATURE CALL	PRINTED NAME AND TITLE FIRLD SHEAR SPEC
	t

PIT LOCATION AND COMPOSITE SAMPLE PROFILE MAP

WELL LOCATION: San Juan 28-7 170 s 9 t 27 r 7 UNIT O DATE STARTED: 7/16/96 DATE COMPLETED:	
Pir 1 to Dopth	
METER PLA Well O 6" Depth	
METER RUN	
The state of the s	
#1 Vis	

- 0 SOIL SAMPLE LOCATION
- A BACKGROUND SAMPLE LOCATION

2506 W. Main Street Farmington, New Mexico 87401

TOTAL PETROLEUM HYDROCARBONS **EPA METHOD 418.1**

Client: Project: Conoco, Not Given

Matrix: Condition:

Soil Intact/Cool Date Reported:

07/26/96

Date Sampled: Date Received: 07/17/96 07/17/96

Date Extracted: Date Analyzed:

07/19/96 07/19/96

	Sample ID	LabID	Result mg/kg	Detection Limit mg/kg	
<u>ب</u>	28-7 #170 Pit 1	0396G01358	44.4	20.0	
	28-7 #170 Pit 2	0396G01359	952	39.8	
	28-7 #122 Pit 1	0396G01360	324	20.0	
	28-7 #173 Pit 1	0396G01361	146	19.9	
	28-7 #173 Pit 2	0396G01362	ND	20.0	
	28-7 #173 Pit 3	0396G01363	ND	20.0	
	28-7 #196 Pit 1	0396G01364	ND	20.0	
	28-7 #196 Pit 2	0396G01365	ND	19.7	

ND - Analyte not detected at stated detection level.

References: Method 418.1: Petroleum Hydrocarbons, Total Recoverable, USEPA Chemical Analysis of

Water and Waste, 1978.

Method 3550: Ultrasonic Extraction of Non-Volatile and Semi-Volatile Organic Compounds

from Solids, USEPA SW-846, Rev. 1, July 1992.

PIT CLOSURE DOCUMENTATION - SAMPLING RESULTS NOTES

. (

SAMPLE SAMPLE SAMPLE 10 12 14 14 14 14 14 14 14 14 14	L'OCATION OF PIT	18.7	#	0/1		TYPE OF PIT:	TYPE OF PIT: TH # 1	H	
NATE 7/16/76 NATE COMPSTRECENT COMPSTRECENT (C') THIS 2/ POW STOR 14.57 Again THIS 4/4.1 SCALL K.	N CIF SAMPLE	- 1	SAMPLE EVENT #	SAMPLE EVENT #	SAMPLE EVENT #	SAMPLE EVENT #	SAMPLE EVENT #	SAMPLE EVENT #	SAMPLE EVENT #
OF SAMPLE STATE CONTOSTED	DATE OF SAMPLE	06/01/2	,	3					
SAMPLES Composite Co	LOCATION OF SAMPLE	七井七				-			
FRAMPLES 14° THOF BANKE 74° THOF WITES 21° POWN SEFACTOR 4/7 THOF BOLD 4/4° THOF BOLD 4/4° SELBENCENE 4/4 SELBENCE	MP.E. (3RAB/COMPOSITE)	Composte-Cont							
### 140 14	DEPTH OF SAMPLE(S)	(0,							
UIV UNITS 31 pp.M 47 WOD BOIS 14.57 pg.M TPH 4/8.1 DELECK	YER LTURE OF SAMPLE	240							
BENZENE 47 BENZENE 14.57 pan MOD BOIS 4/4.1 THY 56.50.4X	OD RESULTS (PPMS)								
SE FACTOR . 47 IBENZENE 14.57 pgm AUD BOISS 47.8.1 TPH 44 Saberak	APC) RB (EQUIV UNITS)	- 1							
MOD 80159 WOD 80159 WAY TPH Scale CK	E R : SPONSE FACTOR	Cḥ.							
MOD 8016)	UST ED FOR BENZENE EQUIV UNITS	14.57 ppm							
E	S IN PPM: 0(4 IB.1 OR MOD B015)	1.8.17							
		44							
	40í ES	Baberck							