| | - e- | | 5 NMOCO | C | | | | | | | | |--|---|--|---|---|--|--|--|--|---|--|---| | NUMBER OF COR | PIES RECEIVED | · · · | 1 | ern & Her | rd | | | | | | | | SANTA FE | | | 1 Chris | | a. | | | | | | _ | | U.S.G.S. | | | I F111er | NEW MEX | ICO UI | L Cu | NSER | MOITAY | COMMIS | SION | FORM C-103
(Rev 3-55) | | LAND OFFICE
TRANSPORTER | ou, | - | | MISCE | LANE | FOUS | REP | ባይተና በ | N WELI | · c | (Kev 3-33) | | PRORATION OF | FICE | - | | | | | | | | _ | | | OPERATOR | | | (Subm | if to approp | priate D | istrict | Office | as per Co | mmission | Rule 110 | 6) } | | Name of Com | | | · · · · · · · · · · · · · · · · · · · | | A | Addres | s | | | | | | | n and He | rd, Ir | ac. | · | | | | | idland, | Texas | | | Lease
Farmi r | | | | Well No. | Unit L | | Section | Township | | Ran | | | Date Work Per | | | Pool | 1 | P | | 111 | <u></u> | 29N | | 13W | | July 1 | 1962 | | | in - Dako | ota | | ľ | County | San Juan | n. | | | | · · · · · · · · · · · · · · · · · · · | | THIS IS | A REPORT | OF: (C | beck a | ppropria | | | | | | Beginnin | g Drilling O | perations | | asing Test as | | | | | Explain): | rac In | formation | | Plugging | · · · · · · · · · · · · · · · · · · · | | ☐ Re | emedial Work | : | | | | - 400 | | TOTAL STOR | | Detailed acco | unt of work d | one. nat | ure and quantity | | | d resu | lea abtai | 1 | - | ···· | | | | | | | | | | | | | | super dyna | | fricti
B.D. 3 | on reduc
1000 psi. | ing ag
Ave T | ft 5850-587
i hole and t
gent per 100
i.P. 2700 ps | breakdown
00 gal, 5
si. Max r | 1, 49,8
5250 ge | 896 g
al wi
3100 | gal wt:
tr to : | r to fra
flush, t
Min nred | ic treat
total fl | ted w/7
tuid 55 | # J+2
,196 gal, | | | T. 37.0. | TIMEGO | l stor press | sure 1350 |) nai. | 10 n | nin st | do presi | mire IM | M net. | Set | | NAM T | Lebule 27 in | e D.Y. | at Selu. | Perf u/2 | erines S | r dvr | m iet | a nor fo | ant 5766 | _5772 | QUE har | | Baker | , no* 2 b | umps. | 30.000# 20- | -40 sd. 8 | 340 ga) | Lytr | r to le | oed and | breakde | Man. 33 | -054 mal | | Baker
Wester | | | | | | | | | | | · | | Baker
Wester
wtr to | ILEC CL | BB. TBC | W/7# J-2 II | metion i | reduci | ng ac | zent po | er 1000 | gal. 42 | 200 pal | to flush, | | Baker
Wester
wtr to
total | fluid us | ed 38, | W/7# J-2 II
094 gal. B. | D. 3300 | reduci:
psi. / | ng ag
Ive 1 | gent po | er 1000
050. Mas | gal, 42
z 3300 z | 200 gal | n 2800 nat. | | Baker
Wester
wtr to
total
overal | fluid us
1 ave I. | ed 38,
R. 31. | 094 gal, B.
2 B.P.M. I | D. 3300
Immed st | reduci:
psi. / | ng ag
Ive 1 | gent po | er 1000
050. Mas | gal, 42
z 3300 z | 200 gal | n 2800 nat. | | Baker
Wester
wtr to
total
overal | fluid us
1 ave I. | ed 38,
R. 31. | W/7# J-2 II
094 gal. B. | D. 3300
Immed st | reduci:
psi. / | ng ag
Ive 1 | gent po | er 1000
050. Mas | gal, 42
z 3300 z | 200 gal | n 2800 nat. | | Baker
Wester
wtr to
total
overal | fluid us
1 ave I. | ed 38,
R. 31. | 094 gal, B.
2 B.P.M. I | D. 3300
Immed st | reduci:
psi. / | ng ag
Ive 1 | gent po | er 1000
050. Mas | gal, 42
z 3300 z | 200 gal | n 2800 nat. | | Baker Wester wtr to total overal drille | fluid us
1 ave I. | ed 38,
R. 31. | 094 gal, B.
2 B.P.M. I | metion r.D. 3300
Immed sta | reduci:
psi. / | ng ag
Ive 1 | gent po
1.P. 30
1700, | er 1000
050, Maz
, 10 min | gal, 42
z 3300 z | 200 gal | n 2800 nat. | | Baker
Wester
wtr to
total
overal | fluid us
1 ave I. | ed 38,
R. 31. | W/# J=2 II
,094 gal, B.
,2 B.P.M. I
ad out to 59 | Position | pei, A | ng ag
Ave I
ssure | gent po
1.P. 30
1700, | er 1000
050, Mas
, 10 min | gal, 42
c 3300 p | 200 gal
osi, Mi
oressur | n 2800 psi,
e 1100 psi, | | Baker Wester wtr to total overal drille | fluid us
1 ave I. | ed 38,
R. 31. | W/# J=2 II
,094 gal, B.
,2 B.P.M. I
sd out to 59 | Position E | reducii
psi, A
ig pres | ng ag
ive I
saure | rent por 1.P. 30 1700, | er 1000
050, Mas
, 10 min | gal, 42
c 3300 p
n stdg p | 200 gal
osi, Mi
oressur | n 2800 psi,
e 1100 psi, | | Baker Wester Wtr to total overal drille | fluid us
1 ave I. | ed 38,
R. 31.
cleane | W/# J=2 II
,094 gal, B.
,2 B.P.M. I
ad out to 59 | Position E | reducii
psi, A
ig pres | er | rent por port por port port port port port | er 1000
050, Mas
, 10 min | gal, 42
c 3300 p
n stdg p | 200 gal
osi, Mi
oressur | n 2800 psi,
e 1100 psi, | | Baker Wester Wester wtr to total overal drille Witnessed by | fluid us
1 ave I.
d B.P., | ed 38,
R. 31. | M/# J=2 II
,094 gal, B.
,2 B.P.M. I
sd out to 59 | Position E | enginee | er
AL WO | rent por port por port port port port port | er 1000
050, Mas
, 10 min | gal, 42
c 3300 p
n stdg p | 200 gal
si, Mi
pressur | n 2800 psi,
e 1100 psi, | | Baker Wester Wester wtr to total overal drille Witnessed by D F Elev. 5330 G | fluid us
1 ave I.
d B.P., | Duga | W/# J=2 II
094 gal, B.
52 B.P.M. II
sd out to 59 | Position E | Enginee | er
AL WC | P. 30
1700, | or 1000
050, Man
, 10 min
Company
Rec
PORTS Of | gal, 42
2 3300 p
1 stdg p
lifern ar | 200 gal | n 2800 psi,
e 1100 psi, | | Baker Wester Wester wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet | fluid us
1 ave I.
d B.P., | Duga | My 7 J=2 II
094 gal, B.
2 B.P.M. I
sd out to 59
In FILL IN BEL
5995! | Position E LOW FOR R ORIGI | Enginee | er
AL WC | rent por port por port port port port port | or 1000
050, Man
, 10 min
Company
Rec
PORTS Of | gal, 42
c 3300 p
n stdg p | 200 gal | n 2800 psi,
e 1100 psi,
, Inc. | | Baker Wester Wester wtr to total overal drille Witnessed by D F Elev. 5330 G | fluid us
1 ave I.
d B.P., | Duga | W/# J=2 II
094 gal, B.
52 B.P.M. II
sd out to 59 | Position E LOW FOR R ORIGI | Enginee | er
AL WC | P. 30
1700, | or 1000
050, Man
, 10 min
Company
Rec
PORTS Of | gal, 42
2 3300 p
1 stdg p
lifern ar | 200 gal | n 2800 psi,
e 1100 psi,
, Inc. | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4# Perforated Inte | fluid us
1 ave I.
d B.P., | Duga | FILL IN BEL 5995! Tubing Depth 5869 | Position E LOW FOR R ORIGI | Enginee | er
AL WC | P. 30
1700, | or 1000
050, Man
, 10 min
Company
Rec
PORTS Of | gal, 42
2 3300 p
1 stdg p
lifern ar | 200 gal | n 2800 psi,
e 1100 psi,
, Inc. | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4# Perforated Inte | fluid us 1 ave I. d B.P., T. A T. A | Duga | FILL IN BEL 5995! Tubing Depth 5869 | Position E LOW FOR R ORIGI | Engineer EMEDIA | er
AL WC | P. 30
1700, | company Rec PORTS Of | gal, 42
2 3300 p
1 stdg p
lifern ar | 200 gal | n 2800 psi,
e 1100 psi,
, Inc. | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4* Perforated Inte | fluid us 1 ave I. d B.P., T. A T. A | Duga | FILL IN BEL 5995! Tubing Depth 5869 | Position E LOW FOR R ORIGI PBTE | Engineer Pro | Br AL WC | PRK REATA g Diamete | company Rec PORTS Of | gal, 42
2 3300 p
1 stdg p
lifern ar | 200 gal | n 2800 psi,
e 1100 psi,
, Inc. | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4* Perforated Inte | fluid us 1 ave I. d B.P., T. A T. A | Duga | FILL IN BEL 5995! Tubing Depth 5869 | Position E LOW FOR R ORIGI PBTE | Engineer EMEDIA | Br AL WC | PRK REATA g Diamete | company Rec PORTS Of | gal, 42
2 3300 p
1 stdg p
lifern ar | 200 gal | n 2800 psi,
e 1100 psi,
, Inc. | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4* Perforated Inte | fluid us l ave I. d B.P., T. A T. A Prival Date of | Duga T D | on FILL IN BEL 5995! Tubing Depth 5869 | Position E Position E ON FOR R ORIGI PBTE | Engineer Production | BSUTE AL WC LL DA I String | PRK RE ATA B Diamete g Formati kota OVER Water Pre | company Rec PORTS Of Producing er ion(s) | gal, 42 2 3300 p 1 stdg p 2 Stdg p 2 Stdg p 3 Stdg p 3 Stdg p 3 Stdg p 4 | Strips Pel | n 2800 psi,
e 1100 psi,
, Inc. | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4* Perforated Inte | fluid us 1 ave I. d B.P., T. A T. A Exercises 1 214, 5766 Erval(s) | Duga T D | on FILL IN BEL 5995! Tubing Depth 5869 | Position E Position E ON FOR R ORIGI PBTE | Engineer Pro | BSUTE AL WC LL DA I String | PRK RE ATA g Diamete g Formati | company Rec PORTS Of Producing er ion(s) | gal, 42 2 3300 p a stdg p affern ar NLY Interval | Strips Pel | n 2800 psi,
e 1100 psi,
. Inc. | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4# Perforated Inte 5904-5 Open Hole Inte | fluid us l ave I. d B.P., T. A T. A Prival Date of | Duga T D | on FILL IN BEL 5995! Tubing Depth 5869 | Position E Position E ON FOR R ORIGI PBTE | Engineer Production | BSUTE AL WC LL DA I String | PRK RE ATA B Diamete g Formati kota OVER Water Pre | company Rec PORTS Of | gal, 42 2 3300 p 1 stdg p 2 Stdg p 2 Stdg p 3 Stdg p 3 Stdg p 3 Stdg p 4 | Strips Pel | m 2800 psi, e 1100 psi, e 1100 psi, June 1100 psi, June 1100 psi, June 1100 psi, June 1100 psi, Gas Well Potential | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4# Perforated Inte 5904-5 Open Hole Inte Test Before Workover After | fluid us l ave I. d B.P., T. A T. A Prival Date of | Duga T D | on FILL IN BEL 5995! Tubing Depth 5869 | Position E Position E ON FOR R ORIGI PBTE | Engineer Production | BSUTE AL WC LL DA I String | PRK RE ATA B Diamete g Formati kota OVER Water Pre | company Rec PORTS Of | gal, 42 2 3300 p 1 stdg p 2 Stdg p 2 Stdg p 3 Stdg p 3 Stdg p 3 Stdg p 4 | Strips Pel | m 2800 psi, e 1100 psi, e 1100 psi, June 1100 psi, June 1100 psi, June 1100 psi, June 1100 psi, Gas Well Potential | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4* Perforated Inte 5904-5 Open Hole Inte Test Before Workover | fluid us l ave I. d B.P., T. A T. A Prival Date of | Duga T D | on FILL IN BEL 5995! Tubing Depth 5869 | Position E Position E ON FOR R ORIGI PBTE | Engineer Engineer EMEDIA INAL WE OFFICE OIL Production CFPD | Brand Market Mar | P. 30 1700 P. 30 1700 P. 30 | Producing or 1000 of Man or 10 min o | gal, 42 2 3300 g a stdg g lifern ar NLY Interval Oil S Cubic fe | oci, Mi
oressur | m 2800 psi, e 1100 psi, e 1100 psi, mpletion Date 8-6-62 h 1262 Gas Well Potential MCFPD | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4# Perforated Inte 5904-5 Open Hole Inte Test Before Workover After | fluid us l ave I. d B.P., T. A T. A Date of Test | Duga TD | on FILL IN BEL 5995! Tubing Depth 5869 | Position E LOW FOR R ORIGI PBTE | Engineer September 1 Production CFPD | Brand String | P. 30 1700 P. 30 1700 P. 30 | Producing Producing oduction D that the in | gal, 42 2 3300 g 1 stdg g lifern ar NLY Interval Oil S Cubic fe | oci, Mi
oressur | m 2800 psi, e 1100 psi, e 1100 psi, June 1100 psi, June 1100 psi, June 1100 psi, June 1100 psi, Gas Well Potential | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4# Perforated Inte 5904-5 Open Hole Inte Test Before Workover After | fluid us l ave I. d B.P., T. A T. A Date of Test | Duga TD | on FILL IN BEL 5995! Tubing Depth 5869 | Position E LOW FOR R ORIGI PBTE | Engineer September 1 Production CFPD | Brand String | P. 30 1700 P. 30 1700 P. 30 | Producing or 1000 of Man or 10 min o | gal, 42 2 3300 g 1 stdg g lifern ar NLY Interval Oil S Cubic fe | oci, Mi
oressur | m 2800 psi, e 1100 psi, e 1100 psi, mpletion Date 8-6-62 h 1262 Gas Well Potential MCFPD | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4* Perforated Inte 5904-5 Open Hole Inte Test Before Workover After Workover | fluid us l ave I. d B.P., T. A T. A Date of Test OIL CONS | Duga T D T D T D T D T D T D T D T D T D T D | Oil Production BPD | Position ELOW FOR R ORIGI PBTE Gas P MC | Engineer REMEDIA INAL WE DO SP501 Pro TS OF W | Brand String | P. 30 1700, DRK RE ATA Branch Branch Branch Control | company Rec PORTS Of Producing er ion(s) that the in y knowledge | gal, 42 3300 g 1 stdg g lifern ar NLY Interval Oil S Go Cubic fe | oressur Contribute of the con | m 2800 psi, e 1100 psi, e 1100 psi, months and psi, months and psi, psi, psi, psi, psi, psi, psi, psi, | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4* Perforated Inte 5904-5 Open Hole Inte Test Before Workover After Workover Approved by Ori | fluid us l ave I. d B.P., T. A T. A Date of Test OIL CONS | Duga T D T D T D T D T D T D T D T D T D T D | on FILL IN BEL 5995! Tubing Depth 5869 | Position ELOW FOR R ORIGI PBTE Gas P MC | Engineer REMEDIA INAL WE DO SP501 Pro TS OF W | BSUTE AL WC LL DA String Oducing Da ORK n | P. 30 1700, DRK RE ATA Branch Branch Branch Control | company Rec PORTS Of Producing er ion(s) that the in y knowledge | gal, 42 2 3300 g 1 stdg g lifern ar NLY Interval Oil S Cubic fe | oressur Contribute of the con | m 2800 psi, e 1100 psi, e 1100 psi, months and psi, months and psi, psi, psi, psi, psi, psi, psi, psi, | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4* Perforated Inte 5904-5 Open Hole Inte Test Before Workover After Workover Approved by Ori Title | fluid us 1 ave I. 1 ave I. 2 d B.P., 2 d B.P., 3 d B.P., 3 d B.P., 4 d B.P., 5760 Constitution of Test Oil Constitution of Test | Duga T D T D T D T D T D T D T D T D T D T D | Oil Production BPD Oil Production BPD Oil Production BPD | Position E Position E LOW FOR R ORIGI PBTI Gas P MC | Engineer Sements of West Production CFPD | BSUTE AL WC LL DA String Oducing Da ORK n | PRK RE ORK RE TA B Diameter B Formati Rota Over B F | company Rec PORTS Of Producing er ion(s) that the in y knowledge | gal, 42 3300 g 1 stdg g lifern ar NLY Interval Oil S Cubic fe | oressur Contribute of the con | m 2800 psi, e 1100 psi, e 1100 psi, months and psi, months and psi, psi, psi, psi, psi, psi, psi, psi, | | Baker Wester Wester Wtr to total overal drille Witnessed by D F Elev. 5330 G Tubing Diamet 1 1/4* Perforated Inte 5904-5 Open Hole Inte Test Before Workover After Workover Approved by Ori Title | fluid us 1 ave I. 1 ave I. 2 d B.P., 2 d B.P., 3 d B.P., 3 d B.P., 4 d B.P., 5760 Constitution of Test Oil Constitution of Test | Duga T D T D T D T D T D T D T D T D T D T D | Oil Production BPD | Position E Position E LOW FOR R ORIGI PBTI Gas P MC | Engineer Production CFPD | BSUTE BSUTE AL WC LL DA String Oducing DRKC n hereby o the b ame | PRK RE ATA B Diameter B Formati Con Original Con | Producing Producing oduction D that the in y knowledge | gal, 42 3300 g 1 stdg g lifern ar NLY Interval Oil S Cubic fe | oressur Contribute Relatives above A. Duc | m 2800 psi, e 1100 psi, e 1100 psi, months and psi, months and psi, psi, psi, psi, psi, psi, psi, psi, |