No Arriba Initial Pest (To BE ## NEW MEXICO OIL CONSERVATION COMMISSION GAS WELL TEST DATA SHEET - - SAN JUAN BASIN (TO BE USED FOR FRUITLAND, PICTURED CLIFFS, MESAVERDE, & ALL DAKOTA EXCEPT BARKER DOME STORAGE AREA) | | | | 74 | | 200 | • | | | | 15-29 | | |--|---|--------|------------------------------------|---|---|--|---|--|--------------|----------------------------|-----------------------| | Operator Pass | Tite marin | | Aer ree | Lease_ | Rga | | | 8160 | Well No | - | | | Jnit 📕 | Sec | | Twp | Rge. | 7 | _Pay Zone | : From | 2400 | To | | | | Casing: OD | | 11.5 | Set | At | 113 | Tubing: Ol | 2 3/ | <u> WT.</u> | 407 | _T. Perf | W) | | Produced Through | ah: Casina^ | | Τι | ıbing | t | .Gas Gravit | y: Measur | ed | | _Estimated_ | 650 | | Date of Flow Te | | _ | | | _ | | | | | | | | Meter Run Size _ | | | | | | | | | | Type Tons | | | weter run 512e - | · · · · · · · · · · · · · · · · · · · | | | | • | | _ 1 / pc Oi | | | Type Tups | | | | | | | OBS | ERVED | DATA | | | | | | | Flowing cosing pre | | | | | | | | | | | (a | | lowing tubing pre | essure (Dwt) | • | | | | | psig + l | 2 = | | psia | (b | | Flowing meter pres | ssure (Dwt) | | | | | | psig + l | 2 = | | psia | (0 | | Flowing meter pres | | | en Dwt. m | | | | | _ | | | | | Normal chart re
Square root cha | eading | | 2 | | - | | psig + l | | | psia | (d | | | |) | "x spring | g constant . | • | | | | | psia | (d | | Meter error (c) - (d) | | | | | ± | | | = | | psi | (e | | Friction loss, Flow
(b) - (c) Flow the | | | low throu | iah casina | | | | = | | psi | (f | | Seven day average | | | | | | • | | | | | \ | | Normal chart a | verage reading | · | | | | | psig + l | 2 = | | psia | (g | | Square root cha | ırt average rea | ding (|) 2 | x sp. cons | st | | | <u> </u> | 7 | psia | (g | | Corrected sever | | | | | | | | = | | psia | (h | | $P_{\dagger} = (h) + (f)$ | | | · | | | | | =4 | 7 | psia | (i | | | | | | | | | | | | | | | Wellhead casing st | hut-in pressure | (Dwt) | | | <u>.</u> | | psig + l | | | psia | (j | | _ | • | | 111 | | · | | psig + l
psig + l | 2 = 11 | 5 | bsia | (j
(k | | Wellhead casing st
Wellhead tubing sh
P _C = (j) or (k) whic | nut-in pressure | (Dwt) | 1971
igh | , | | | | 2 = 11 | 5 | | | | Wellhead tubing sh
$P_C = (j)$ or (k) which
Flowing Temp. (Me | nut-in pressure
chever well flo
eter Run) | (Dwt) | 1971
igh | , | F + 460 | | | 2 = 11 | 5 | psia
psia
•Abs | (k
(1
: (n | | Wellhead tubing sh | nut-in pressure
chever well flo
eter Run) | (Dwt) | 1971
igh | , | F + 460 | | | 2 = 11 | 5 | bsia | (k | | Wellhead tubing sh
$P_C = (j)$ or (k) which
Flowing Temp. (Me | nut-in pressure
chever well flo
eter Run) | (Dwt) | 111 | D • r | | | | 2 = 11 | 5 | psia
psia
•Abs | (k
(1
: (n | | Wellhead tubing sh
$P_C = (j)$ or (k) which
Flowing Temp. (Me | nut-in pressure
chever well flo
eter Run) | (Dwt) | 111 | , | | | | 2 = 11 | 5 | psia
psia
•Abs | (k
(1
: (n | | Wellhead tubing sh
$P_C = (j)$ or (k) which
Flowing Temp. (Me
$P_d = \frac{1}{2} P_C = \frac{1}{2} (1)$ | nut-in pressure
chever well flo
eter Run) | (Dwt) | jii) | SI • F | | | | 2 = 11 | 5 | psia
psia
Abs | (k
(1
(n
(r | | Wellhead tubing sh
$P_{c} = (j)$ or (k) whice
Flowing Temp. (Me
$P_{d} = \frac{1}{2} P_{c} = \frac{1}{2} (1)$ | nut-in pressure
chever well flo
eter Run) | (Dwt) | 111 | SI • F | | | | 2 = 11 | 5 | psia
psia
Abs | (k
(1
: (n | | Wellhead tubing sh
$P_C = (j)$ or (k) which
Flowing Temp. (Me
$P_d = \frac{1}{2} P_C = \frac{1}{2} (1)$ | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC | OW RATE | | | | 2 = 11 | 5 | psia
psia
Abs | (k
(1
(n
(r | | Wellhead tubing sh
$P_{c} = (j)$ or (k) whice
Flowing Temp. (Me
$P_{d} = \frac{1}{2} P_{c} = \frac{1}{2} (1)$ | nut-in pressure
chever well flo
eter Run) | (Dwt) | jii) | OW RATE | | | | 2 = 11 | 5 | psia
psia
Abs | (k
(1
(n
(r | | Wellhead tubing sh
$P_{c} = (j)$ or (k) whice
Flowing Temp. (Me
$P_{d} = \frac{1}{2} P_{c} = \frac{1}{2} (1)$ | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | OW RATE | CALCU | | psig + l | 2 = 11 | 5 | psia
psia
Abs | (k
(1
(n
(r | | Wellhead tubing sh
$P_{c} = (j)$ or (k) whice
Flowing Temp. (Me
$P_{d} = \frac{1}{2} P_{c} = \frac{1}{2} (1)$ | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | OW RATE | CALCU | JLATION
= -
CALCULAT | psig + 1 | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
Abs | (k
(1
(n
(r | | Wellhead tubing sh P _C = (j) or (k) whice Flowing Temp. (Me P _d = ½ P _C = ½ (1) Q = (integrated) | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | OW RATE | CALCU | JLATION
= -
CALCULAT | psig + 1 | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
psia
MC | (k
(1
(n
(r | | Wellhead tubing sh P _C = (j) or (k) whice Flowing Temp. (Me P _d = ½ P _C = ½ (1) Q = (integrated) | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | OW RATE | CALCU | JLATION
= -
CALCULAT | psig + l | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
Abs | (k
(1
(n
(r | | Wellhead tubing sh P _C = (j) or (k) whice Flowing Temp. (Me P _d = ½ P _C = ½ (1) Q = (integrated) | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | OW RATE | CALCU | JLATION
= -
CALCULAT | psig + 1 | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
psia
MC | (k
(1
(n
(r | | Wellhead tubing sh Pc = (j) or (k) whice Flowing Temp. (Me Pd = ½ Pc = ½ (1) Q = (integrated) | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | OW RATE | CALCU | JLATION
= -
CALCULAT | psig + 1 | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
psia
MC | (k
(1
(n
(r | | Wellhead tubing sh Pc = (j) or (k) whice Flowing Temp. (Me Pd = ½ Pc = ½ (1) Q = (integrated) | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | OW RATE | CALCU | JLATION | psig + 1 | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
psia
MC | (k
(1
(n
(r | | Wellhead tubing sh $P_c = (j)$ or (k) whice $P_d = \frac{1}{2} P_c = \frac{1}{2} (1)$ $Q | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | OW RATE | CALCU | Company_ | psig + 1 | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
psia
MC | (k
(1
(n
(r | | Wellhead tubing sh Pc = (j) or (k) which Flowing Temp. (Me Pd = ½ Pc = ½ (1) Q = (integrated) SUMMARY Pc = 1123 | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | OW RATE = LIVERAB psia Mcf/do | CALCU | COMPANY_By | psig + 1 | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
psia
MC | (k
(1
(n
(r | | Wellhead tubing sh Pc = (j) or (k) which Flowing Temp. (Me Pd = ½ Pc = ½ (1) Q = (integrated) SUMMARY Cc = 1123 D = 493 | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | DW RATE = LIVERAB psia Mcf/da psia | CALCU | CALCULAT Company By Title | TION Page 1 | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
psia
MC | (k
(1
(n
(r | | Wellhead tubing sh Pc = (j) or (k) which Flowing Temp. (Me Pd = ½ Pc = ½ (1) Q = | nut-in pressure
chever well flo
eter Run) | (Dwt) | FLC V(c) | PSIG Mcf/do | CALCU | CALCULAT Company By Title Witnessed I | TION Page 1 | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
psia
MC | (k
(1
(n
(r | | Wellhead tubing sh Pc = (j) or (k) which Flowing Temp. (Me Pd = ½ Pc = ½ (1) Q = | nut-in pressure
chever well flo
eter Run) | Y PC-P | FLC V(c) | DW RATE = LIVERAB psia Mcf/da psia | CALCU | CALCULAT Company By Title | TION Page 1 | 2 = 112
2 = 113
= 113
= 5 | 5 | psia
psia
psia
MC | (k
(1
(n
(r | | Wellhead tubing sh Pc = (j) or (k) which Flowing Temp. (Me Pd = ½ Pc = ½ (1) Q = (integrated) SUMMARY Pd = 1123 Pd = 1123 Pd = 1123 This is date of co | nut-in pressure chever well flo eter Run) Y completion test | Y PC-P | FLC V(c) | PSIG Mcf/do | CALCU | CALCULAT Company By Title Witnessed I | TION Page 1 | 2 = 112
2 = 113
= 113
= 5 | | psia psia Psia MCI | (k
(1
(n
(r. | | Wellhead tubing sh Pc = (j) or (k) which Flowing Temp. (Me Pd = ½ Pc = ½ (1) Q = (integrated) SUMMARY Pd = 1123 Pd = 1123 Pd = 1123 This is date of co | nut-in pressure chever well flo eter Run) Y completion test | Y PC-P | FLC V(c) V(d) DEI | psia psia psia psia psia | ILITY C | CALCULAT Company By Title Witnessed I | TION Parising to the state of | 2 = 112
2 = 113
= 113
= 5 | | psia
psia
psia
MC | (k
(1
(n
(r. | | Wellhead tubing sh P_c = (j) or (k) which Flowing Temp. (Me P_d = ½ P_c = ½ (1) Q = (integrated) O = Q SUMMARY P_c = 1123 | y completion test. | Y PC-P | FLC V(c) V(d) DEI | psia psia psia psia psia psia psia | CALCU ILITY C ILITY C IN | Company By Title Witnessed I Company | TION Parising to the state of | 2 = 111
2 = 111
= 3
= 5 | | psia psia Psia MCI | (k
(1
(n
(r. | | Wellhead tubing sh Pc = (j) or (k) which Flowing Temp. (Me Pd = ½ Pc = ½ (1) Q = (integrated) SUMMARY Pd = 1123 Pd = 1123 Pd = 1123 This is date of co | nut-in pressure chever well flo eter Run) Y completion test | (Dwt) | FLC V(c) V(d) DEI | psia psia psia psia psia psia psia | CALCU ILITY C III II II II II II II II II | Company By Title Witnessed I Company I CALCULA (1-e-s) | TION Parising to the state of | 2 = 11 | | psia psia Psia MCI | (k
(1
(n
(r. | | Wellhead tubing sh Pc = (j) or (k) which Flowing Temp. (Me Pd = ½ Pc = ½ (1) Q = (integrated) SUMMARY Cc = 1123 Q = 493 Cd = 493 This is date of complete the correct correct to the correct correct correct to the correct correc | y completion test. | (Dwt) | FL(C) V(d) DEI 2 2 2 2 2 2 4 REMA | psia psia psia psia psia psia psia | CALCU ILITY C III II II II II II II II II | Company By Title Witnessed I Company | TION Parising to the state of | 2 = 111
2 = 111
= 3
= 5 | | psia psia Psia MCI | (k
(1
(n
(r. | 3-M.M.G.C.C.—A stee 2-lo Go Tradif 3-Mle