MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS

Poo]	ol <u>Besin-Dakota</u>				FormationDemota				County San Juan			
nit	tial 🗶		Annual_			Spec	ial		_Date of	Test	12-27-60	
omp	pany Sunrey	Md-Cor	stinent	<u>a1</u>	Ce. L	ease_#.	H, Fede	ral "N"	Wel	1 No	6	
Init	t <u>M</u> s	ec6	Twp	30	Rge	. 12N	Purc	haser_ So	athern Uni	lon ins	Co.	
asi	ing 🙀 W	t. 11.6	I.D.	4.0	00 Set	at 689	2 Pe	rf. <u>6660</u>		To_ 67 14	ś	
'ubi	ing 2-3/8 W	t. 4.6	I.D.	1.9	95 Set	at 665	O Pe	rf. open		To_end		
											ss. 12.00	
	ducing Thru:											
							Sin	gle-Brade	nhead-G.	G. or G	.O. Dual	
aue	e or combree	1011	-20-00		acker			116361 46	c.mb.			
		****	•			OBSERVI	ED DATA		_			
'e s t	ted Through				Meter)				Type Tap	s		
	(Prover)	F1 (Chok	ow Data		Diff	Temp.		Data Temp.	Casing D		Duration	
lo .	(Prover) (Line) Size	(0) 430 1034	()		- 1	_		o _F .			of Flow	
Ι	24	·		org	W ¹¹		8097		2098	1	111 •	
	- 2*	<i>y</i> 4		25)		50	264		7140		3 hrs.	
•								 		 		
								<u></u>	<u> </u>	<u></u>	<u></u>	
	0 - 00: -:			_			CULATION				Data of Flore	
0.						Factor Fa			vity Compress. Rate of Flow ctor Factor Q-MCFPD			
	(24-Hou	r)	$\sqrt{h_{w}p_{\mathbf{f}}}$		osia	F	t	${\tt F_g}$			@ 15.025 psia	
•	12.3650			27	5	0.9613	0	.8944	1.039		3088	
2.				┼								
c				†								
										I		
					PRE	SSURE CA	ALCU ATI	ons	ı			
s I	Liquid Hydro	carbon	Ratio			cf/bbl.		Speci	fic Gravi	ty Sepa	rator Gas	
avi	ity of Liquid	d Hydro	carbons					Speci	fic Gravi	ty Flow	ring Fluid	
	•		(1-e	-3/_				P. 444	LO	_Pc)K•T	
								- C				
		· · · · · · · · · · · · · · · · · · ·	T					- c	<u> </u>			
<u> </u>	P _w	P _t ²	F _c Q		$(F_cQ)^2$	(F.	cQ) ²	P _w 2	$P_c^2 - P_w^2$		Pw Pa	
0.		· · · · · · · · · · · · · · · · · · ·	F _c Q		(F _c Q) ²	(F ₁	cQ) ² -e-s)	P _w 2	P _c ² -P _w ²		Pw Pc	
0.	P _w	· · · · · · · · · · · · · · · · · · ·	F _c Q		(F _c Q) ²	(F (1	c ^{Q)²} -e ^{-s})		<u> </u>		R	
0.	P _w	· · · · · · · · · · · · · · · · · · ·	F _c Q		(F _c Q) ²	(F,	cQ) ² -e-s)	P _w 2	P _c ² -P _w ²		R	
0.	P _w	· · · · · · · · · · · · · · · · · · ·	F _c Q		(F _c Q) ²	(F)	cQ) ² -e-s)	P _w 2	P _c ² -P _w ²		R	
	P _w Pt (psia)	Pt ²			(F _c Q) ²			P _w 2	P _c ² -P _w ²			
bso	Pw Pt (psia) 752	Pt ²	1425	0311			cQ) ² -e-s)	P _w 2	P _c ² -P _w ²			
bsc COMF	Pw Pt (psia) 752 Dlute Potent PANY Surrey RESS 166 P	Pt ial: ial:	bi25 timent	7 54	Company ilding,	MCFPD;	n_ 0.75	P _w 2	P _c ² -P _w ²			
lo.	Pw Pt (psia) 752 Polute Potent PANY Survey RESS 166 P	Pt ial: ial:	bi25 timent	7 54	Company ilding,	MCFPD;	n_ 0.75	P _w 2	P _c ² -P _w ²		n	
Lbsc COMP LDDF	Pw Pt (psia) 752 Dlute Potent PANY Surrey RESS 166 P	Pt ial: ial:	bi25 timent	7 54	Company ilding,	MCFPD;	n_ 0.75	P _w 2	P _c ² -P _w ²			

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q \equiv Actual rate of flow at end of flow period at W. H. working pressure (P_w). MCF/da. @ 15.025 psia and 60° F.
- P_c 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- Pw. Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- P_{f} Meter pressure, psia.
- $h_{\mbox{w}}$ Differential meter pressure, inches water.
- F_g Gravity correction factor.
- F_t Flowing temperature correction factor.
- F_{DV} Supercompressability factor.
- n I Slope of back pressure curve.

Note: If $P_{\rm W}$ cannot be taken because of manner of completion or condition of well, then $P_{\rm W}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\rm t}$.

grand state of the