NEW MEXICO OIL CONSERVATION COMMISSION Form C-122 | MULTI-POINT | BACK | PRESSURE | TEST | FOR | GAS | WELLS | |-------------|------|----------|------|-----|-----|-------| |-------------|------|----------|------|-----|-----|-------| No. | | | | MU | LTI-POIN | IT BAC | CK PRES | SSURE TE | ST FOR GAS | S WELLS | | Revised 12-1 | | |----------------|--------------------|-----------------|-------------------------------|-------------------|-----------------|--|------------------|----------------------|---------------------|------------------|------------------------|--| | Pool | Blanco ! | 'esaverd | | Format | ion_ | Messy | erde | | County_ | San Ju | n | | | Initi | ial X _ | | _Annual_ | | | Spec | ial | | Date of | Test_1 | -15-58 | | | Compa | any Black | avood & | <u> Hichols</u> | Company | Le | ease n | . B. Bla | neo Unit | We: | ll No | 43-11 | | | | | | | | | | | | | | Gas Company | | | | ıg_ 5_1/2 * | | | | | | | | | | _ | | | | ng 2-3/8" | | | | | | | • | | - | | | | | | | | | | | | | | | ess. 11.5 | | | | | | | | | | | | | | | | | Date | of Comple | tion: | 1-7-58 | Pa | -
cker | <u> </u> | Sir | gle-Brade
Reserve | enhead-G. | G. or (| .O. Dual | | | | • | | | | - | | ED DATA | | , 10mp | | | | | roat o | d Thansalah | Arrestan | ## /aii | . \ Awarws | | VALCEO | ED DATA | | _ | | | | | . = 3 0 = | d Through | | | | | | | | Type Tar | | | | | . T | (Prover) | (Chok | ow Data
e) Pre | | ff. | Temp. | Tubing
Press. | Data
Temp. | Casing I | | Duratio | | | No. | (Line)
Size | (Orifi
Siz | | sig h | w | o _F . | psig | o _F . | psig | ⊃ _F . | of Flo | | | SI
L. | | 3/4 | | | | | 1.094 | | 1094 | | | | | 2. | | | | | | | 220 | | 558 | | 3 hre. | | | 3. | | | | | | | | | | | | | | 5. | | <u> </u> | | | | | | L | | | | | | | Coeffic | ient | | Pressu | FL
re | OW CAL | CULATION | S
Gravity | Compre | | Rate of Flow | | | io. | (24-Hoi | | h _w p _f | Fa | | Fac: | tor Factor | | Compress.
Factor | | Q-MCFPD | | | | 12.3650 | | wpi. | 231.5 | | F. | t | F _g | Fpv | | @ 15.025 psi | | | c | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | PRES | SURF C | ALCU ATI | ONS | | | | | | s Lia | quid Hydro | oe rhon l | Ratio | | | f/bbl. | ALOU-MIL | | <i>e:</i> - C | . | | | | | y of Liqui | | | sv | | deg. | | Speci | fic Gravi | ty Flow | rator Gas
ing Fluid | | | | | | (T=6 | | | | | P _c | 1205.5 | _Pc | 1222 | | | | P _w | 2 | | | . 2 | T | - 1 | | 2 2 | | | | | 0.
I | Pt (psia) | Pt ² | F _c Q | (F _c C | () ² | (F ₀ | $(Q)^2$ | P _w 2 | $P_c^2 - P_w^2$ | Ca
P | Pw Pc | | | | | | | | | | | 324 | 898 | | 0.466 | | | • | | | | | | | | | | | | | | : | | | | | | | | | | <u> </u> | | | | bsolı
OMPAN | ite Potent | ial: | 3604 | Camen | <u> </u> | MCFPD; | n0.7 | 25 | | | | | | DDRES | and TITLE | 0. Box 1 | 237. Au | rango, C | olare | | nian B | | | | | | | lTNES | SSED | <u> </u> | Fu | رسطا | 7. | a. 13 | neces, re | troloum I | marinesi. | /ro | | | | OMPAN | NY | | | | . . | DEW | DVC | | | 'RIL | | | | | | 3/ 4 - | , | - } 1 | 1.ioh | [| 100b | 1 | |----------------------------|---|--|---|---------------------------------|---|---------------------------------------|-------------------------------|-------------------------------| | | | | | | 220 | | | 3 hre. | | | | | | | | | | | | - | | | | | | | | | | <u>-</u> | | | | | | | | | | | | - | | | | | | | | | | | | I | FLOW CALCULATIO | NS | | | | | Coefficient | | Pressure | Flow Temp. | Gravity | Rate of Flow | | | | (0) | | | | Factor | Factor | Factor | Q-MCFPD | | | - | (24-Hour |) 7/ | $^{/}$ ${ ext{h}_{ ext{W}}}{ ext{p}_{ extbf{f}}}$ | psia | Ft | $\mathbf{F}_{\mathbf{g}}$ | F _{pv} | @ 15.025 ps | | | 12.3650 | | | 231.5 | | | F | 3842 | | | | | | | | | | | | | | | | | | | | | | 4 | · — · — · · · · · · · · · · · · · · · · | | | | | | | | | Т. | | | | | | | | | | | | | | मन | SSURE CALCULAT | TONS | | | | | | | | 1111 | | 10110 | | | | Li | iquid Hydroc | arbon F | Ratio | | cf/bbl. | Specif | ic Gravity S | Separator Gas | | vit | y of Liquid | FLOW CALCULATIONS efficient Pressure Flow Temp. Gravity Factor Factor Q-MCYPD Pressure Flow Temp. Factor Factor Factor Q-MCYPD Pressure Flow Temp. Factor Factor Q-MCYPD Pressure Flow Temp. Factor Factor Q-MCYPD Pressure CALCULATIONS PRESSURE CALCULATIONS Hydrocarbon Ratio cf/bbl. Specific Gravity Separator Gas Specific Gravity Flowing Fluid Proceeding Gravity Flowing Fluid Procedular F | | | | | | | | | | | (1-e | -s) | | P. 1 | 105.5 P2 | 1222 | | | | | | | | Ü—— | | | | | D | | | | | · · · · · · · · · · · · · · · · · · · | | | | 1 | | | | | | | | | | | $P_{\mathbf{w}}$ | _P 2 | FO | (F 0)2 | (F 0)2 | D 2 | p ² p ² | Cal | | • | | $P_{\mathbf{t}}^{2}$ | F _c Q | $(F_cQ)^2$ | $(F_cQ)^2$ | P _w 2 | $P_c^2 - P_w^2$ | | | • | Pt (psia) | Pt | F _c Q | $(F_cQ)^2$ | (F _c Q) ² (1-e ^{-s}) | | | P _w P _c | | | | Pt Pt | F _c Q | (F _c Q) ² | (F _c Q) ² (1-e ^{-s}) | | | P _w P _c | | | | Pt Pt | F _c Q | (F _c Q) ² | (F _c Q) ²
(1-e ^{-s}) | | | P _w P _c | | · • | | Pt | F _c Q | (F _c Q) ² | (F _c Q) ²
(1-e-s) | | | P _w P _c | | • | | Pt ² | F _c Q | (F _c Q) ² | (F _c Q) ² (1-e ^{-s}) | | | P _w P _c | | | Pt (psia) | | | (F _c Q) ² | | 324 | | P _w P _c | | esol | Pt (psia) | al: | 3604 | | | 324 | | P _w P _c | | sol | Pt (psia) ute Potentia | al: | 3604
Nichol | 8 Company | MCFPD; n_ 0. | 324 | | P _w P _c | | sol
MPA | Pt (psia) ute Potentia NY #120 | al: | 3604
Nichol
237. Au | s Company
range, Colo | MCFPD; n 0. | 324 | 898 | P _w P _c | | osol
MPA
DRE | Pt (psia) ute Potentia NY #120 | al:
Swood & | 3604
Nichol
237. Pu | s Company
range, Colo | MCFPD; n 0. | 324 | 898 | P _w P _c | | osol
MPA
DDRE
ENT | Pt (psia) ute Potentia NY #12al CSS F. 0 | al:
Swood & | 3604
Nichol
237. Pu | s Company
range, Colo | MCFPD; n 0. | 324 | 898 | P _w | | osol
MPA
DDRE | Pt (psia) ute Potentia NY #12al CSS F. 0 | al:
Swood & | 3604
Nichol
237. Pu | s Company
range, Colo | MCFPD; n 0. | 324 | 898 | P _w | | osol
MPA
DDRE
ENT | Pt (psia) ute Potentia NY #12al CSS F. 0 | al:
Swood & | 3604
Nichol
237. Pu | s Company
range, Colo | MCFPD; n 0. | 324 | 898 | P _w | | sol
MPA
DRE
ENT | Pt (psia) ute Potentia NY #12al CSS F. 0 | al:
Swood & | 3604
Nichol
237. Pu | s Company
range, Colo | MCFPD; n 0. | 324 | 898 | P _w | | osol
MPA
DDRE
ENT | Pt (psia) ute Potentia NY #12al CSS F. 0 | al:
Swood & | 3604
Nichol
237. Pu | s Company
range, Colo | MCFPD; n 0. | 324 | 898 | P _w | | sol
MPA
DRE
ENT | Pt (psia) ute Potentia NY #12al CSS F. 0 | al:
Swood & | 3604
Nichol
237. Pu | s Company
range, Colo | MCFPD; n 0. | 324 | 898 | P _w | | sol
MPA
DRE
ENT | Pt (psia) ute Potentia NY #12al CSS F. 0 | al:
Swood & | 3604
Nichol
237. Pu | s Company
range, Colo | MCFPD; n 0. | 324 | 898 | P _w P _c | ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q \equiv Actual rate of flow at end of flow period at W. H. working pressure (P_W). MCF/da. @ 15.025 psia and 60° F. - P_c 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - PwT Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - P_t Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - P_{f} Meter pressure, psia. - $h_{\mathbf{W}}^{-}$ Differential meter pressure, inches water. - Fg Gravity correction factor. - F_t Flowing temperature correction factor. - Fpv Supercompressability factor. - n I Slope of back pressure curve. Note: If $P_{\mathbf{w}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{w}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$. | OIL CONSERVATION COMMISSION AZTEC DISTRICT OFFICE | | | | | | |---|---------------------------------------|---|--|--|--| | No. Copies R | | 2 | | | | | 77.177.27 25.77 | roju | | | | | | Coerator | + + + + + + + + + + + + + + + + + + + | | | | | | anta Fe | | | | | | | Surance Con- | | | | | | | take Land Of | | | | | | | 3 G. 5 | | | | | | | | | 1 | | | |