DISTRICT I

P.O. Box 1980, Hobbs, NM 88241-1980

DISTRICT II

811 South First St., Artesia, NM 88210-2835

DISTRICT III

1000 Rio Brazos Rd, Aztec, NM 87410-1693

Burlington Resources Oil & Gas Company

TYPE OR PRINT NAME: Kenneth Collins

State of New Mexico Energy, Minerals and Natural Resources Department

OIL CONSERVATION DIVISION

2040 S. Pacheco Santa Fe, New Mexico 87505-6429

APPLICATION FOR DOWNHOLE COMMINGLING

PO Box 4289, Farmington, NM 87499

Form C-107-A New 3-12-96

APPROVAL PROCESS:

X Administrative ___Hearing

EXISTING WELLBORE
__YES __x_NO

Operator **Allison Unit** 34M J 11-32N-07W San Juan Unit Ltr. - Sec - Twp - Rge Spacing Unit Lease Types: (check 1 or more) . State _ Property Code ___6784_ API NO. __30-XXX Federal , (and/or) Fee _x 14538 Intermediate Zone The following facts are submitted in support of downhole commingling: Upper Zone Pool Name and Pool Code Blanco Mesaverde - 72319 Basin Dakota - 71599 2. Top and Bottom of Pay Section (Perforations) will be supplied upon completion will be supplied upon completion 3. Type of production (Oil or Gas) gas gas - 5 4. Method of Production (Flowing or Artificial Lift) 113 flowing flowing (Current) 668 psi (see attachment) 5. Bottomhole Pressure a. 1223 psi (see attachment) Oil Zones - Artificial Lift: Estimated Current Gas & Oil - Flowing: Measured Current (Original) b. 1333 psi (see attachment) b. 2917 psi (see attachment) b. All Gas Zones Estimated or Measured Original BTU 952 BTU 985 6. Oil Gravity (API) or Gas BTU Content 7. Producing or Shut-In? shut in shut in yes Production Marginal? (yes or no) Date: n/a Date: n/a Date: If Shut-In and oil/gas/water rates of last production Rates Rates: Rates If Producing, give data and oil/gas/water water of recent test (within 60 days) Date: n/a Date: Date: n/a Gas: % 8. Fixed Percentage Allocation Formula -% for each zone (total of %'s to equal 100%) Oil: Gas: will be supplied upon completion will be supplied upon completion If allocation formula is based upon something other than current or past production, or is based upon some other method, submit attachments with supporting data and/or explaining method and providing rate projections or other required data. 10. Are all working, overriding, and royalty interests identical in all commingled zones? If not, have all working, overriding, and royalty interests been notified by certified mail? Yes _x_No Have all offset operators been given written notice of the proposed downhole commingling? Yes _x_No _x_No _x_Yes _x_No Will cross-flow occur? _x_ Yes _ No If yes, are fluids compatible, will the formations not be damaged, will any cross-flowed production be recovered, and will the allocation formula be reliable. _x_ Yes ____No (If No, attach explanation) 11. Will cross-flow occur? 12. Are all produced fluids from all commingled zones compatible with each other? _x_Yes ___ No (If Yes, attach explanation) 13. Will the value of production be decreased by commingling? ____ Yes _X_ No 14. If this well is on, or communitized with, state or federal lands, either the Commissioner of Public Lands or the United States Bureau of Land Management has been notified in writing of this application. _X__Yes ___ No 15. NMOCD Reference Cases for Rule 303(D) Exceptions: ORDER NO(S). ___Reference Order ____R-9918_ 16. ATTACHMENTS: * C-102 for each zone to be commingled showing its spacing unit and acreage dedication. * Production curve for each zone for at least one year. (If not available, attach explanation.) * For zones with no production history, estimated production rates and supporting data. * Data to support allocation method or formula. * Notification list of all offset operators. * Notification list of working, overriding, and royalty interests for uncommon interest cases. * Any additional statements, data, or documents required to support commingling. I hereby certify that the information above is true and complete to the best of my knowledge and belief. SIGNATURE: forth the Cols TITLE: Production Engineer **DATE: 1-18-99**

TELEPHONE NO.:

(505) 326-9700

District I PO Box 1980, Hobbs, NM 88241-1980

PO Drawer OD, Artesia, NM 88211-0719

District III 1000 Rio Brazos Rd., Aztec. NM 87410

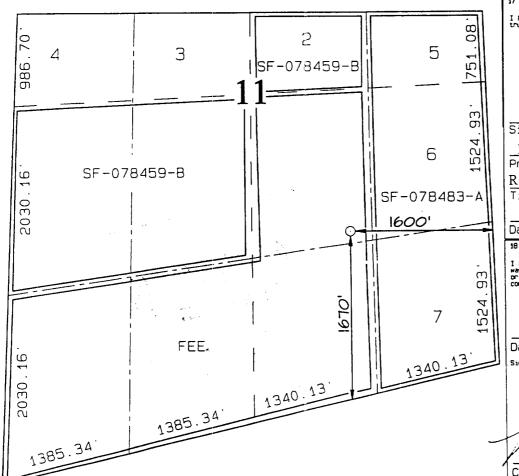
District IV PO Box 2088, Santa Fe, NM 87504-2088

State of New Mexico Energy, Minerals & Natural Resources Department

OIL CONSERVATION DIVISION PO Box 2088 Santa Fe. NM 87504-2088

Form C-10 Revised February 21, 199 Instructions on bac

Submit to Appropriate District Offic


State Lease - 4 Copic Fee Lease - 3 Copic

AMENDED REPOR

WELL LOCATION AND ACREAGE DEDICATION PLAT

'API Number				Pool Code		'Pool Name				
30-045-			71	71599/72319		Basin Dakota/Blanco Mesaverde				
'Property Code 6783			³Property Name ALLISON UNIT					*Well Number 34M		
OGRID No.		Operator Name BURLINGTON RESOURCES OIL & GAS COMPANY							Elevation 6594	
L				1	¹⁰ Surface	Location				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
J	11	32N	7W		1670	SOUTH	1600	EAST	SAN JUA	
¹¹ Bottom Hole Location If Different From Surface										
UL or lot no.	Section	Township	Range	Lat Idn	Feet from the	North/South line	Feet from the	East/West line	County	
DK: W/3	77.66 77.66	¹³ Joint or In	fill ¹⁴ Cons	solidation Code	¹⁵ Order No.					

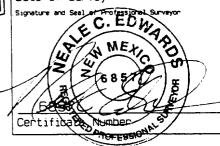
NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

17 OPERATOR CERTIFICATION I hereby centify that the information contained herein ${\bf i}'$ true and complete to the best of my knowledge and belief

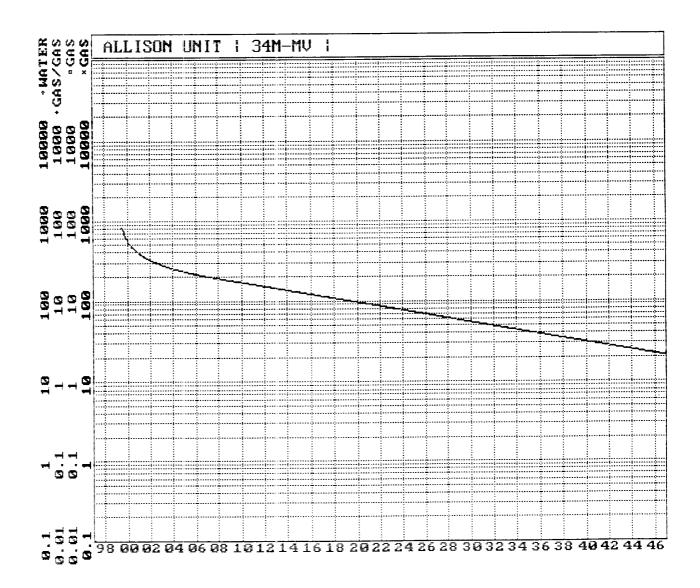
Signature Peggy Bradfield

Printed Name

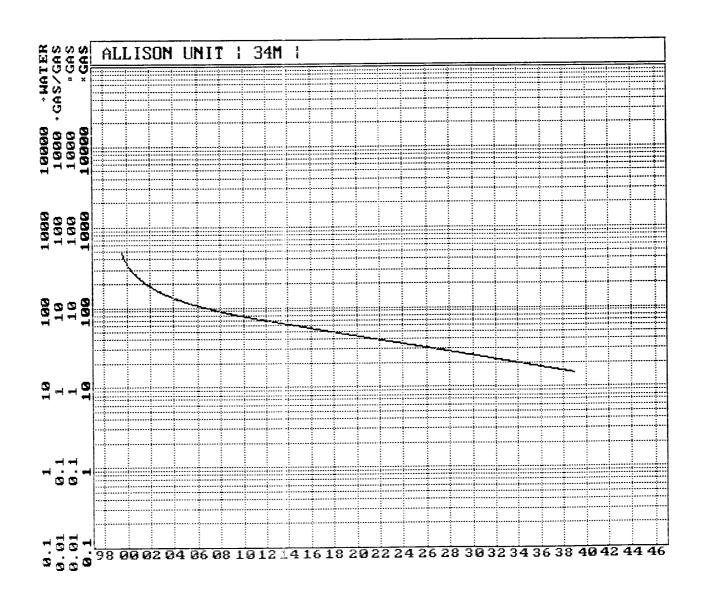
Regulatory Administrato


Title

Date


18 SURVEYOR CERTIFICATION I hereby certify that the well location shown on this places plotted from field notes of actual surveys made by r on under my supervision and that the same is true and correct to the best of my belief.

JANUARY 4, 1999


Date of Survey

Allison Unit #34M Expected Production Mesaverde Formation

Allison Unit #34M Expected Production Dakota Formation

Allison Unit #34M

Bottom Hole Pressures Flowing and Static BHP Cullender and Smith Method Version 1.0 3/13/94

Dakota			
DK-Current			
GAS GRAVITY COND. OR MISC. (C/M) %N2 0.11 %CO2 4.5 %H2S 0 DIAMETER (IN) 2 DEPTH (FT) SURFACE TEMPERATURE (DEG F) BOTTOMHOLE TEMPERATURE (DEG F) FLOWRATE (MCFPD) SURFACE PRESSURE (PSIA) BOTTOMHOLE PRESSURE (PSIA) 1027			
<u>DK-Original</u>			
GAS GRAVITY 0.599 COND. OR MISC. (C/M) C %N2 0.11 %CO2 4.5 %H2S 0 DIAMETER (IN) 2 DEPTH (FT) 8170 SURFACE TEMPERATURE (DEG F) 60 BOTTOMHOLE TEMPERATURE (DEG F) 198 FLOWRATE (MCFPD) 0 SURFACE PRESSURE (PSIA) 2427 BOTTOMHOLE PRESSURE (PSIA) 2916.9			

Page No.: 1
Print Time: Thu Jan 07 07:25:55 1999
Property ID: 52
Property Name: ALLISON UNIT | 55 | 44555A-1
Table Name: Q:\PUBLIC\GENTITY\GDPNOS\TEST.DBF

DATE	CUM_GAS	
11/13/79	0	1152.0
03/11/80	34428	662.0
06/02/81	94131	587.0
05/18/82	135158	482.0
11/02/84	215334	674.0
11/03/86	264075	610.0
09/31/89	376162	582.0
09/31/89	376162	582.0
09/31/89	376162	582.0
02/18/91	423806	453.0
07/15/91	443456	465.0
07/05/93	507709	583.0

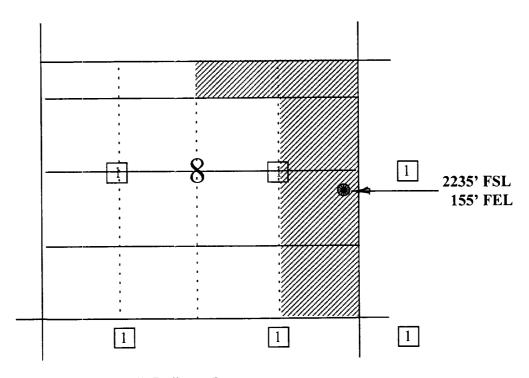
Page No.: 1 Print Time: Thu Jan 07 07:36:57 1999

Property ID: 57

Property Name: ALLISON UNIT | 7 | 49037A-1
Table Name: Q:\PUBLIC\GENTITY\GDPNOS\TEST.DBF

DATE	CUM_GAS	M SIWHP ₩Psi
10/21/54	0	0.0
07/29/59	1189000	2427.0
07/29/60	1385000	775.0
07/28/61	1586000	2000.0
04/18/62		1905.0
04/29/63	1751000	1825.0
04/22/64	1849000	1523.0
10/18/65	2055000	1585.0
02/23/66	2092000	2099.0
03/06/67		
03/08/68	2529000	1810.0
04/16/69		1715.0
06/02/70		1614.0
07/19/71		
08/10/72		1449.0
06/18/73		
04/29/75		1337.0
08/08/77		1292.0
06/05/79		1232.0
06/02/81		1212.0
09/02/83		
05/02/85		
08/15/88		
04/22/90	5249188	1027.0

Allison Unit #34M Mesaverde / Dakota 32N-7W-11


⊗ ⁴¹ 7 ∞ 55 ∞ % % % % % % % % % %	35A 8 ∰	₩ 6 ₩	10 \$6.55	34 11 SSI 11	12
® ²⁸ 8 8 8 18 18 18 18 18 18 18 18 18 18 18	7/A-M \$16 \$6-0 \$3 \$1 \$17 \$7-0 \$37-0 \$37-0	15 SA	15 \$\otimes^6\$	12 28 w 14 31 5 10. 6314	13 79 47
19	20 N PA'98	43 33 33 34 34 34 34 34 34 34 34 34 34 34 34	22 44 FS 12 PA 98	⊕ ³⁵⁰ A 11X 11 11 11 11 11 11 11 11 11 11 11 11	24 mm
30	29 M-PAS	83 14 ⊠ 89 Ω8	27 \$\frac{1}{2} \text{ \ \text{ \ \text{ \ \eti} \text{ \text{ \text{ \text{ \text{ \text{ \text{ \	26 ⊗² ⊗° ²	22A \$\frac{18}{22}\$ \$\frac{1}{3}\$ 25 1 \$\begin{pmatrix} \pm\{ \qm\{ \pm\{ \q \pm\{
31	32 19 ₈₈	33	P ⁴⁶ ⊕ 34	⊕ ^{28A}	® ^{27A} ⊗ ²⁵ 36 67 ₂₈₂ ⊗ ²⁷

BURLINGTON RESOURCES OIL AND GAS COMPANY

Allison Unit Com #64 OFFSET OPERATOR \ OWNER PLAT Nonstandard Location

Mesaverde / Dakota Formations Well

Township 32 North, Range 6 West

1) Burlington Resources

STATE OF NEW MEXICO ENERGY, MINERALS. AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 10743 Order No. R-9918

APPLICATION OF MERIDIAN OIL INC. FOR DOWNHOLE COMMINGLING AND FOR AN ADMINISTRATIVE DOWNHOLE COMMINGLING PROCEDURE WITHIN THE ALLISON UNIT AREA, SAN JUAN COUNTY, NEW MEXICO.

ORDER OF THE DIVISION

BY THE DIVISION:

This cause came on for hearing at 8:15 a.m. on June 17, 1993, at Santa Fe, New Mexico, before Examiner David R. Catanach.

NOW, on this 6th day of July, 1993, the Division Director, having considered the testimony, the record, and the recommendations of the Examiner, and being fully advised in the premises,

FINDS THAT:

- (1) Due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.
- (2) The applicant, Meridian Oil Inc., seeks approval to commingle gas production from the Blanco-Mesaverde and Basin-Dakota Pools within the Allison Unit Well No. 9R located 1720 feet from the North line and 1655 feet from the East line (Unit G) of Section 13, Township 32 North, Range 7 West, NMPM, San Juan County, New Mexico.
- (3) The applicant further seeks the adoption of an administrative procedure for authorizing the downhole commingling of Blanco-Mesaverde and Basin-Dakota Pool production within certain existing and subsequently drilled wells in its Allison Unit Area, San Juan County, New Mexico, without additional notice to each affected interest owner within the Unit Area.

- (4) The Allison Unit Well No. 9R is to be drilled as a replacement well for the Allison Unit Well No. 9 which is located 1765 feet from the North line and 1500 feet from the East line (Unit G) of Section 13 and which is currently completed in and producing from the Basin-Dakota Pool.
- (5) The Allison Unit Well No. 9 was drilled in 1955 and has cumulatively recovered some 4.4 BCF of gas from the Basin-Dakota Pool.
- (6) Due to the age and mechanical condition of the Allison Unit Well No. 9, the applicant has estimated that it will not recover some 1.7 BCF of gas in the Basin-Dakota Pool underlying the E/2 of Section 13.
- (7) Applicant's testimony indicates that due to economics, the Allison Unit Well No. 9R cannot be drilled solely to recover gas reserves in the Basin-Dakota Pool.
- (8) The applicant expects to encounter marginal production only from the Blanco-Mesaverde Pool.
- (9) The proposed downhole commingling is necessary in order for the applicant to economically recover Basin-Dakota and Blanco-Mesaverde Pool reserves underlying the E/2 of Section 13.
- (10) The Allison Unit is a Federal exploratory unit initially comprising some 11,705 acres in New Mexico and some 2,069 acres in Colorado. Within New Mexico, the unit comprises portions of Township 32 North, Ranges 6 and 7 West, NMPM, San Juan County. The unit was formed in 1950 and is currently operated by Meridian Oil Inc.
- (11) The evidence and testimony presented indicates that the Basin-Dakota and Blanco-Mesaverde Pools have both been substantially developed within the Allison Unit.
- (12) The applicant has identified numerous Mesaverde and Dakota weil locations within the Allison Unit which by virtue of marginal gas reserves and resulting poor economics cannot be economically drilled and produced as stand alone units.
- (13) The current well economics and projected Dakota and Mcsaverde gas reserves underlying these respective tracts virtually assure that these wells must be downhole commingled in order to meet the economic criteria for drilling.
- (14) The applicant expects initial producing rates from both the Mesaverde and Dakota formations to be fairly marginal in nature.

- (15) The applicant further demonstrated through its evidence and testimony that within the weils it proposes or will propose to commingie within the Unit Area:
 - a) there will be no crossflow between the two commingled pools;
 - b) neither commingled zone exposes the other to damage by produced liquids;
 - c) the fluids from each zone are compatible with the other;
 - d) the bottomhole pressure of the lower pressure zone should not be less than 50 percent of the bottomhole pressure of the higher pressure zone adjusted to a common datum; and,
 - e) the value of the commingled production is not less than the sum of the values of the individual production.
- (16) The Dakota and Mesaverde Participating Areas within the Allison Unit are not common.
- (17) By virtue of different Participating Areas, the interest ownership between the Dakota and Mesaverde formations within any given wellbore is not common.
- (18) Applicant's Exhibit No. 2 in this case is a list of three hundred and fifty four (354) interest owners in the Dakota and Mesaverde Participating Areas within the Allison Unit. All such interest owners were notified of the application in this case.
- (19) Rule No. 303(C) of the Division Rules and Regulations provides that administrative approval for downhole commingling may be granted provided that the interest ownership, including working, royalty and overriding royalty interest, is common among the commingled zones.
- (20) Applicant's proposed administrative procedure would provide for Division approval to downhole commingle wells in the Allison Unit Area without hearing, and without the requirement that each interest owner in the Dakota and Mesaverde Participating Areas be notified of such commingling.
- (21) The downhole commingling of wells within the Allison Unit Area will benefit working, royalty and overriding royalty interest owners. In addition, the downhole commingling of wells within the Allison Unit Area should not violate the correlative rights of any interest owner.

- (22) evidence in this case indicates that. to each interest owner within the Dakota an Alesaverde Participating Areas of subsequent downhole comminglings within the Allison Unit is unnecessary and is an excessive burden on the applicant.
- (23) No interest owner and/or offset operator appeared at the hearing in opposition to the application.
- (24) An administrative procedure should be established within the Allison Unit for obtaining approval for subsequently downhole commingled wells without notice to Unit interest owners and hearing, provided however that, all provisions contained within Rule No. 303(C) of the Division Rules and Regulations, with the exception of Part 1 (b)(v), are fully complied with.
- (25) The proposed administrative procedure for obtaining approval for downhole commingling will allow the applicant the opportunity to recover additional gas reserves from the Allison Unit Area which may otherwise not be recovered, thereby preventing waste, and will not violate correlative rights.
- (26) In the interest of prevention of waste and protection of correlative rights, the proposed downhole commungling within the Allison Unit Well No. 9R should be approved.
- (27) The applicant should consult with the supervisor of the Aztec District Office of the Division subsequent to the completion of the subject well in order to determine a proper allocation of production.
- (28) The operator should immediately notify the supervisor of the Aztec district office of the Division any time the subject well has been shut-in for seven consecutive days and shall concurrently present, to the Division, a plan for remedial action.

IT IS THEREFORE ORDERED THAT:

- (1) The applicant, Meridian Oil Inc., is hereby authorized to commingle gas production from the Blanco-Mesaverde and Basin-Dakota Pools within the Allison Unit Well No. 9R located 1720 feet from the North line and 1655 feet from the East line (Unit G) of Section 13, Township 32 North, Range 7 West, NMPM, San Juan County, New Mexico.
- (2) The applicant shall consult with the supervisor of the Aztec district office of the Division subsequent to the completion of the subject well in order to determine a proper allocation of production.

- (3) The operator shall immediately notify the supervisor of the Aztec district office of the Division any time the subject well has been shut-in for seven consecutive days and shall concurrently present, to the Division, a plan for remedial action.
- (4) An administrative procedure for obtaining approval to downhole commingle wells within the Allison Unit, located in portions of Township 32 North, Ranges 6 and 7 West, NMPM, San Juan County, New Mexico, is hereby established.
- (5) In order to obtain Division authorization to downhole commingle wells within the Allison Unit, the applicant shall file an application with the Santa Fe and Aztec Offices of the Division. Such application shall contain all of the information required under Rule No. 303(C) of the Division Rules and Regulations, provided however that the applicant shall not be required to provide notice to all interest owners within the Dakota and Mesaverde Participating Areas in the Allison Unit of such proposed commingling. In addition, the application shall contain evidence that all offset operators and the United States Bureau of Land Management (BLM) have been notified of the proposed commingling.
- (6) Jurisdiction is hereby retained for the entry of such further orders as the Division may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO
OIL CONSERVATION DIVISION

WILLIAM J. LEMAY

Director

SEAL