E.O.T.T. Energy Pipeline

Work Plan Supplement, Investigation, and Revised Closure Proposal

for the

Texaco Buckeye Site

Reference: #LF-2000-34 and #2001-11040 UNIT LETTER N SEW of the SWW of Section 34, T17S, R34E Lea County, New Mexico

September 2001

Prepared by

Environmental Plus, Inc. 2100 Avenue O P.O. Box 1558 Eunice, New Mexico 88231 Tele 505•394•3481 FAX 505•394•2601

laino - 34053 - EPACOGO2450890 - ePACOGO2451182 ent - nPACO602451217 pplication - pPACOGOa4S1373

TABLE OF CONTENTS

Table of Contents	i
1.0 Texaco Buckeye Work Plan Supplement	1
1.1 Introduction	1
1.2 Project Organization and Responsibility	1
1.3 Environmental Media Characterization	1
1.3.1 Delineation Strategy	2
1.3.2 Site Description	2
1.3.3 Historical Use	2
1.3.4 Photographic documentation	2
1.3.5 Ecological Description	2
1.3.6 Area Ground Water Levels	2
1.3.7 Depth to Ground Water Calculation	2
1.3.8 Ground Water Gradient	3
1.3.9 Wellhead Protection Area	3
1.3.10 Distance to Nearest Surface Water Body	3
1.4 Analytical Results	3
1.4.1 Borehole #1 (BH1) was not advanced	3
1.4.2 Borehole #2 (BH2)	3
1.4.5 Borehole #3 (BH3)	3
1.4.4 Borenole #4 (BH4)	3
1.4.7 DOTENDIE # $(D\Pi)$	3
1.4.0 DOTENDIE #0 ($D\Pi 0$)	3
1.5 Discussion of Data	4
1.6 Remediation Construction and Closure Proposal	4
1.6.1 Risk/Exposure Assessment	5
1.6.1.1 Simulation 1: with Barrier Evaporation and Bio-decay	5
1.6.1.2 Simulation 2: with no Barrier Evaporation, or Bio-decay	5
1.7 Conclusions	0
Attachment L - Site Information and Metrics FORM	···· / 8
Attachment II – Site Mans	0
Attachment III - Photographs	19
Attachment IV. Analytical Reports and Summary	17
Attachment V. Environmental Plus. Inc. Quality Assurance Plan (EPIOAP)	27
1 Environmental Plus. Inc. Quality Assurance Plan	
1.8 Project Safety	28
1.9 Data Quality Objectives	
1.10 Methodology	
1.10.1 Borehole Drilling, Lithologic Sampling, Logging, and Abandonr	ment
29	
1.10.1.1 General Drilling or Hand Augering Procedures	29
1.10.1.2 Borehole Abandonment	29
1.10.2 Sample Handling	29
1.10.3 Sample Identification	29
1.10.4 Sampling protocols	30
1.10.5 Sample Containers	30
1.10.6 Sample Custody	30

i

1.10.7 Quality Control Samples	
1.10.7.1 Field Blank	
1.10.7.2 Equipment Blank	
1.10.7.3 Field Duplicate or Co-located Samples	
1.10.7.4 Trip Blank	
1.10.8 Field Measurements	
1.10.8.1 Equipment Calibration and Quality Control	
1.10.8.2 Equipment Maintenance and Decontamination	
1.10.9 Analyses	
1.11 Data Evaluation and Usability	

1.0 TEXACO BUCKEYE WORK PLAN SUPPLEMENT

This Work Plan Supplement is developed to be consistent with the site characterization and remediation/abatement goals and objectives set forth in the "General Work Plan for Remediation of E.O.T.T. Pipeline Spills, Leaks and Releases in New Mexico, July 2000."

1.1 INTRODUCTION

The most recent leak, i.e. July 2001, at the Texaco Buckeye site was due to the pipe pulling out of a slip type transition coupler and was repaired upon discovery. The pooled oil was reintroduced to the system and the saturated soil placed on a plastic barrier. This plan collected information necessary to determine vertical and horizontal extent of crude oil contamination at this site and provides a reasonable and conservative assessment of risk/exposure using the VADSAT computer model developed by the American Petroleum Institute (API) to simulate transport of hydrocarbon through the vadose zone.

1.2 PROJECT ORGANIZATION AND RESPONSIBILITY

Environmental Plus, Inc., Eunice, New Mexico (EPI) conducted the subsurface investigation with operational support and coordination by EOTT personnel. The Environmental Lab of Texas, Inc., of Odessa, Texas and AnalySys, Inc. of Austin, Texas performed the laboratory analyses and provided reports.

1.3 ENVIRONMENTAL MEDIA CHARACTERIZATION

Chemical parameters of the soil were characterized consistent with the New Mexico Oil Conservation Division (NMOCD) guidelines published in the following documents;

- Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)
- Unlined Surface Impoundment Closure Guidelines (February 1993)

Ground water was not encountered during the investigation, nevertheless, research of reliable sources, i.e., New Mexico Bureau of Mines and Minerals and New Mexico State Engineer databases, indicate the saturated zone occurring in the area at -93 feet below ground surface ('bgs). According to the NMOCD ranking criteria, the site has a ranking of 10, based on the delineation of the Constituents of Concern (CoCs), i.e., TPH and BTEX and the following site characteristics;

- Depth to Ground water, i.e., distance from the lower most acceptable concentration to the ground water.
- Wellhead Protection Area, i.e., distance from fresh water supply wells.
- Distance to Surface Water Body, i.e., horizontal distance to all down gradient surface water bodies.

1.3.1 Delineation Strategy

The site maps included in Attachment II, shows the sampling borehole locations. Boreholes 2, 3, 4, and 6 were located to verify the affected area horizontal perimeter, while boreholes 5 and MBH were located to delineate the vertical extent of contamination.

1.3.2 Site Description

The remediation site is adjacent and south of the Texaco E & P, Inc. West Vacuum Unit Battery. The area is congested with production flow lines and is situated in open grazing land Unit Letter – N in the SEU SWU of Section 34, T17S, R34E, approximately 3 miles west of Buckeye in Lea County, New Mexico. The site information and metrics form is included as Attachment I.

1.3.3 Historical Use

The area has been used historically for livestock grazing and access to oil and gas production facilities.

1.3.4 Photographic documentation

Photographs of the sites are included as Attachment III.

1.3.5 Ecological Description

The area is in the transition zone between the Upper Chihuahuan Desert and Great Plains/Great Basin Biomes. This area consists primarily of dark to gray sandy clay loam overlaying an indurated caliche bed that pervades the general area. Vegetation consists primarily of typical desert grasses and weeds with interspersions of Honey Mesquite (Prosopis glandulosa). Mammals represented, include Orrd's and Merriam's Kangaroo Rat, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Pronghorn Antelope, and the Mule Deer. Reptiles, Amphibians, and Birds are numerous and typical of area. A survey of Listed, Threatened, or Endangered species was not conducted.

1.3.6 Area Ground Water Levels

According to the database information provided by the New Mexico State Engineers Office and the New Mexico Bureau of Mines and Mineral Resources(NMBMMR), the uppermost unconfined aquifer occurs in the area at -93' bgs as the Ogallala Formation.

1.3.7 Depth to Ground Water Calculation

The NMOCD requires the site be ranked to determine which soil CoC thresholds will apply and defines depth to ground water as, "the vertical distance from the lowermost contaminants to the seasonal high water elevation of the ground water." The uppermost occurrence of ground water is conservatively estimated to be 93' bgs. The lower most contamination above the CoC thresholds occurs at 20'bgs.

1.3.8 Ground Water Gradient

Using water level and altitude information provided by the NMBMMR the calculated ground water gradient is at a bearing of 96.0°, i.e., generally to the northeast. Water level documentation is included in Attachment I.

1.3.9 Wellhead Protection Area

The listed water wells are greater than 1,000 feet from the site.

1.3.10 Distance to Nearest Surface Water Body

There are no naturally occurring surface water bodies located within a 1,000 foot radius of the site.

1.4 ANALYTICAL RESULTS

The original analytical results are included as Attachment IV along with a summary and illustrations. Boreholes 2, 3, 4, 5, and 6 were advanced and sampled in February 2001. The area was inundated by another leak in July 2001. A central borehole, MBH, was advanced in August 2001 following mitigation to determine if the July leak had migrated beyond the previously delineated vertical interval.

1.4.1 Borehole #1 (BH1) was not advanced

1.4.2 Borehole #2 (BH2)

This boring is located west of the leak origin and is a perimeter boring. TPH^{8015m}, Benzene, and BTEX are nominal and well below the NMOCD remedial goals.

1.4.3 Borehole #3 (BH3)

This boring is located east of the leak origin and is a perimeter boring. TPH^{8015m}, Benzene, and BTEX are nominal and well below the NMOCD remedial goals.

1.4.4 Borehole #4 (BH4)

This perimeter boring identified CoC contamination approaching the NMOCD remedial goals in the near surface, i.e. <5'bgs. Contamination is surficial and will be removed.

1.4.5 Borehole #5 (BH5)

This interior soil boring was advanced in the center of pooling area with the longest residence time and deepest contamination. The NMOCD remedial goals were exceeded down to the 20'bgs interval.

1.4.6 Borehole #6 (BH6)

This perimeter boring identified CoC contamination approaching the NMOCD remedial goals in the near surface, i.e. <5'bgs. Contamination is surficial and will be removed.

1.4.7 Median Borehole (MBH)

Following immediate mitigation of the July 2001 spill, this borehole was advanced to determine if the release had impacted soil below the previously identified vertical interval of 20'bgs. The data indicate that the second leak had not penetrated to a depth >20'bgs.

1.5 DISCUSSION OF DATA

The analytical results meet the quality standards set forth in the Quality Assurance Plan included as Attachment V. Analytical results from the perimeter boreholes indicate that the soil in the non pooling flow path areas is contaminated generally to the top of the caliche rock interbed underlying the site, i.e. 2-3'bgs. The interior BH5 delineates contamination of the CoCs to -20'bgs and the MBH determined that the vertical impact from the July 2001 occurrence did not extend >20'bgs.

1.6 REMEDIATION, CONSTRUCTION, AND CLOSURE PROPOSAL

It is proposed to excavate soil contaminated above the NMOCD remedial guidelines down to 15'bgs mechanically shred and aerate and treated with bio-nutrients. The total expanded volume of soil to be excavated and remediated is -3372yd³. The remaining contaminated soil >15'bgs will be isolated from the surface environment with the installation of an impermeable clay barrier. The treated and shredded soil will be placed on top of the barrier and sampled quarterly until the NMOCD remedial goals for the CoCs are achieved. The bio-cell will be divided into east and west sections and sampled at 6'bgs and 11'bgs at least quarterly to monitor attenuation. A quarterly report will be submitted to the NMOCD Hobbs office. The barrier will also mechanically eliminate the vertical transport mechanism required to impact the ground water resource. The following risk/exposure assessment is included as justification and support for approval of the proposed increase in the NMOCD remedial goals for the CoCs.

1.6.1 Risk/Exposure Assessment

Results from a conservative VADSAT transport and fate simulation justifies leaving contaminated soil in the subsurface that is above the NMOCD guideline remedial action goals. Confidence in these results relies on the conservative nature of the input variables, i.e., artificially high concentrations of CoCs and exaggerated subsurface porosity. The actual hydraulic infiltration rate for southeast New Mexico is a negative number, however a value of 6.0⁻⁵ is being used. Similarly, the evaporation and bio-decay rates are not being increased even though bio-nutrients and microbes will be added. The installation of an impermeable barrier (clay) will essentially eliminate transport and supports the conservative nature of the risk/exposure assessment. The following model variables are used for the simulations and are considered conservative.

	D 1.1 17 1
Parameter	Description or Value
Unsaturated Zone Waste zone thickness	10' bgs
Depth to Ground water	93' bgs
Total Petroleum Hydrocarbon	51 886 mg/Kg
(Highest measured TPH ^{8015m} value = 10,273 mg/Kg)	91,880 mg/kg
Benzene	
Ethyl Benzene	
Toluene	·
Total Xylene	
BTEX (used as the inputted Benzene source term)	538.9 mg/Kg
Lithology	Sand (conservative)
Hudzageology	Sand and Gravel
liyalogeology	(conservative)
Bgs=below ground surface	

1.6.1.1 SIMULATION 1: WITH BARRIER, EVAPORATION, AND BIO-DECAY

The chart below illustrates that the unsaturated zone Benzene source term will not impact ground water using the conservative input parameters. This simulation takes credit for the installation of an impermeable clay barrier, evaporation, and bio-decay.

1.6.1.2 SIMULATION 2: WITH NO BARRIER, EVAPORATION, OR BIO-DECAY

This simulation eliminated the clay barrier, source term evaporation, and biodecay. The resulting illustration supports the proposed remedial goals for the CoCs as being acceptable for the site, i.e., TPH @ 51,886 mg/Kg and Benzene @ 538.9 mg/Kg.

1.7 CONCLUSIONS

The information and data collected during this investigation are of adequate quality to provide a basis for viable environmental management decisions, in particular, whether the NMOCD should allow CoC contamination to remain in the subsurface that is above the NMOCD guideline remedial goals and allow the development of a monitored bio-attenuation cell at the site. The proposed process will utilize aeration, treatment, isolation, and an engineered barrier to obviate risk of ground water contamination. The conservative risk/exposure assessment illustrates the adequacy and effectiveness of the coupling of these remediation strategies. It is therefore concluded that the remediation/closure proposal, when implemented, will be protective of the ground water resource and restore the near surface to agricultural productivity. Following implementation, the process will be documented and a request for "no further action required" submitted to the NMOCD.

ATTACHMENT I - SITE INFORMATION AND METRICS FORM

E.O.T.T. ENERGY PIPELINE

Site Information and Metrics											
SITE: Texaco Buckeye Assigned Site Reference #: LF-2000-34 and 2001-11040											
Company: E.O.T.T. Energy Pipeline											
Company Street Address:5805 E. Highway 80, Midland, Texas 79701											
Company Mailing Address: P.O. Box 1660											
Company City, State, Zip: Midland, Texas 79702											
Company Representative: Frank Hernandez											
Company Representative Telephone: 915.438.3799											
Company Telephone: 915.684.3479 Fax: 915.684.3456											
Fluid volume released (bbls) = ?											
>25 bbls : Notify NMOCD verbally within 24 hrs and submit form C-141 within 15 days. (Also applies to unauthorized releases >500 mcf Natural Gas)											
5-25 bbls: Submit form C-141 within 15 days (Also applies to unauthorized releases of 50-500 mcf Natural Gas)											
Leak, Spill, or Pit (LSP) Name: Texaco Buckeye											
Source of contamination: Pipeline											
Land Owner, i.e., BLM, ST, Fee, Other: State of New Mexico											
LSP Dimensions: affected area leak origin pooling area = 75' x 100' Flow path = - 325 ft											
$LSP Area = - 7224 \text{ ft}^2$											
Location of Reference Point (RP):											
Location distance and direction from RP:											
Latitude: 32° 47' 14"N											
Longitude: 103° 33' 10"W											
Elevation above mean sea level: ~ 4,039 amsl											
Feet from South Section Line											
Feet from West Section Line											
Location- Unit or $\frac{14}{4}$ = SE4 of WW4											
Location - Section = 34											
1000000000000000000000000000000000000											
Location- Kange = 54E Surface water body within 1000's redius of sites None											
Domostic water body within 1000 radius of site: None											
Agricultural water wells within 1000' radius of site: None											
Public water supply wells within 1000' radius of site: None											
rubite water supply wents within 1000 radius of site. None											
Depth from land surface to ground water (DG): -93'bgs											
Depth of contamination (DC): 20'bgs											
Depth to ground water (DG - DC = DtGW) 73 'bgs											
1 Cround Wroten 2 Wallback Protection Arrow 3. Distance to Surface											
1. Ground water 2. weinhead Protection Area Water Body											
If Depth to GW <50 If <1000' from water course or <200 horizontal feet: 20											
feet: 20 points c200' from private domestic water points											
If Depth to GW 50 to source: 20 paints 200-100 horizontal feet: 10											
99 feet: 10 points points points											
If Depth to GW >100 If >1000' from water source, or; >200' >1000 horizontal facts 0											
feet: 0 points from private domestic water source: 0 points											
points Points											
Ground water Score = 10 Wellhead Protection Area Score = 0 Surface Water Score = 0											
Site Kank $(1+2+3) = 10$ points											
Total Site Ranking Score and Acceptable Concentrations											
Parameter >19 10-19 0-9											
Benzene ¹ 10 ppm 10 ppm 10 ppm											
BTEX' 50 ppm 50 ppm 50 ppm											
TPH 100 ppm 1000 ppm 5000 ppm											
100 ppm field VOC headspace measurement may be substituted for lab analysis											

NM IMS

Page 1 of 2

http://geoinfo.nmt.edu/.esrimap?Cache=VADITO1131200184105057765&File=print.htm

8/4/2001

Identify Results

Shape	Point	Shape	Point	Shape	Point	Shape	Point
Area	0.000	Area	0.000	Area	0.000	Агеа	0.000
Perimeter	0.000	Perimeter	0.000	Perimeter	0.000	Perimeter	0.000
Water_wells#	7693	Water_wells#	7755	Water_wells#	7862	Water_wells#	7946
Water_wells-id	7693	Water_wells-id	7755	Water_wells-id	7862	Water_wells-id	7946
Index_no	7693	Index_no	7755	Index_no	7862	Index_no	7946
Siteid	324711103333801	Siteid	324735103320001	Siteid	324805103334501	Siteid	32482510333260
Latitude	324711	Latitude	324735	Latitude	324805	Latitude	324825
Longitud	1033338	Longitud	1033200	Longitud	1033345	Longitud	1033326
Lociname	11324	Lociname	10213	Lociname	10211	Lociname	No Data
Altitude	4060	Altitude	4021	Altitude	4073	Altitude	4058
Use	Ū	Use	U	Use	U	Use	No Data
Depth	0.00	Depth	132.00	Depth	240.00	Depth	0.00
Geo-unit	No Data	Geo-unit	No Data	Geo-unit	No Data	Geo-unit	No Data
Waterlev	127.25	Waterlev	125.02	Waterlev	125.80	Waterley	148.91
WI-date	19710216	WI-date	19800103	WI-date	19610117	WI-date	19760303
Wlingwsi	3	Wlingwsi	No Data	Wlingwsi	31	Wlingwsi	4
Sitestat	No Data	Sitestat	No Data	Sitestat	No Data	Sitestat	No Data
Discharg	0.00	Discharg	0.00	Discharg	0.00	Discharg	0.00
Spc	0	Spc	0	Spc	0	Spc	0
Spc-date	No Data	Spe-date	No Data	Spc-date	No Data	Spc-date	No Data
Qwyear	1961	Qwycar	1940	Qwyear	1951	Qwycar	1961
Temp	0.0	Тетр	0.0	Temp	0.0	Temp	0.0
Tempdate	No Data	Tempdate	No Data	Tempdate	No Data	Tempdate	No Data
Obs-well	No Data	Obe-mell	No Data	Obs-well	No Data	Ohs-well	No Data

http://geoinfo.nmt.edu/.esrimap?nameX=nm-poolmaps232e465c&Cmd=Id&VName=NM+IMS&sz=514%2C372&sc=931131&ll... 8/4/2001

Page 1 of 1

...

Identify Results

Page 1 of 1

Shape	Point	Shape	Point	Shape	Point
Area	0.000	Area	0.000	Area	0.000
Perimeter	0.000	Perimeter	0.000	Perimeter	0.000
Water_wells#	7618	Water wells#	7627	Water_wells#	7634
Water_wells-id	7618	Water wells-id	7627	Water_wells-id	7634
Index_no	7618	Index_no	7627	Index_no	7634
Siteid	324653103321001	Siteld	324655103323201	Siteid	324656103321001
Latitude	324653	Latitude	324655	Latitude	324656
Longitud	1033210	Longitud	1033232	Longitud	1033210
Lociname	No Data	Lociname	05065	Lociname	11325
Altitude	4021	Altitude	4031	Altitude	4013
Usc	No Data	Use	ប	Use	Ū
Depth	0.00	Depth	0.00	Depth	0.00
Geo-unit	No Data	Geo-unit	No Data	Geo-unit	No Data
Waterlev	88.30	Waterley	150.39	Waterlev	88.42
WI-date	19610306	WI-date	19860408	WI-date	19610306
Wlingwsi	1	Wiingwsi		Wlingwsi	{
Sitestat	No Data	Sitestat	No Data	Sitestat	P
Discharg	0.00	Discharg	0.00	Discharg	0.00
Spc	0	Spe	0	Spc	0
Spc-date	No Data	Spc-date	No Data	Spc-date	No Data
Qwyear	1961	Qwyear	No Data	Qwyear	1961
Temp	0.0	Тетр	0.0	Temp	0.0
Tempdate	No Data	Tempdate	No Data	Tempdate	No Data
Obs-well	Νο Data	Obs-well	No Data	Obs-well	No Data

http://geoinfo.nmt.edu/.esrimap?nameX=nm-poolmaps232e465c&Cmd=ld&VName=NM+IMS&sz=514%2C372&sc=50902.3&1... 8/4/2001

New Mexico Office of the State	Engineer	Page 1 of 1
	New Mexico Office of the State Engineer Well Reports and Downloads	
Texaeship 178	Ranger 34E Sections 34,26,27,28,33.35	
NAD27 X:	Y: Zone Search Radius	
County 🖉 A.	sin: 🔄 Number: Saffa	(
Owner Name: (First)	(Last) C Nan-Danesstic Ø All	C Damestic
Weil/Surfa	ce Dista Report Avg Depth to Water Report	
	Weer Column Report Clear Form WATERS Monu Hop	
AVERAGE MEPTH OF	WATER REFORT 10/01/2001	
Ban Tres Rog Soc Sons J. 1173 717 76 L. 1153 847, 29 L. 1173 147, 34 L. 1173 147, 34	(Depth Mater in Fust) X I Wells Him Max Avg 6. 20 107. 30 0. 135 109. 1.75 2. 0. 901 2 4. 05 102. 0	
Township [185	Kange: 34E Sexands 23,4	
NAD27 N:	Y Zone 🖃 Search Radius 🦷	
County: 🖉 B	sin 🔄 Number Suffi	s [
Owner Name" (Potst)	(Last) C Non-Devacation F All	r (honesic
Well / Suth	ce Data Report Avg Depth to Water Report	
	Weter Cokann Report	
مریکی میرون میرون میرون در اور در این میرون می	Clear Form WATEAS Menu Hab	
AVERAGE DEPTH OF	- MÁTER ØSFORT 10/01/2001	
Ban Two Rng Sec Soce L 185 308 CC L 165 308 CT Resord Count: 2	HDepert Master in Press N T Hells Min Max Avg - 2 100 102 100 - 3 60 100 69	:
hitp://www.sec.state.nm.us/aw	dProd/awd.html?email_address=enviplizs1@adl.com&tw	v s =t 10/1/2001

ŧ

ł

ATTACHMENT II – SITE MAPS

E.O.T.T. TEXACO BUCKEYE REVISED WORK PLAN SUPPLEMENT

,

Original Site Map prior to discovery of east portion contamination.

E.O.T.T. ENERGY PIPELINE

E.O.T.T. ENERGY PIPELINE

Proposed location of clay barrier installations.

ATTACHMENT III - PHOTOGRAPHS

ATTACHMENT IV: ANALYTICAL REPORTS AND SUMMARY

E.O.T.T. ENERGY PIPELINE

TEXACO BUCKEYE ANALYTICAL RESULT SUMMARY														
SAMPLE ID#	Date	BOREHOLE	SAMPLING INTERVAL (FT. BGS)	LITHOLOGY	HEADSPACE VOC (PPM)	GRO' MG/KG	DRO ² MG/KG	GRO+DRO TPH ⁷ - MG/KG	BTEX ³ MG/KG	BENZENE MG/KG	TOLUENE MG/KG	Ehtyl Benzene mg/Kg	M,P-XYLENE MG/KG	0-XYLENE MG/KG
ETBS22301BH2-2	2/23/2001		2	Oily Brown Soil & Rock	1025.0	1203	2408	3611	27.115	0.025	1.940	4.220	12.600	8.330
ETBS22301BH2-5	2/23/2001	BUD	5	Light Brown, Oily Soil	291.0	216	904	1120	3.580	0.025	1.070	0.488	1.190	0.807
ETBS22301BH2-10	2/23/2001	BHZ	10	Beige Sand & Rock	67.4	60	527	587	0.911	0.025	0.118	0.226	0.372	0.170
ETBS22301BH2-15	2/23/2001		15	Beige Sand	25.4	15	326	341	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH3-2	2/23/2001		2	Brown, Oily Soil	1.2	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH3-5	2/23/2001	0122	5	Light Brown Sand & Rock	0.6	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH3-10	2/23/2001	Brts	10	Beige Sand	0.4	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH3-15	2/23/2001		15	Beige Sand	0.1	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH4-2	2/23/2001		2	Brown, Oily Soil	650.0	550	432	982	31.416	0.386	5.330	3.660	15.200	6.840
ETBS22301BH4-5	2/23/2001	DUA	5	Light Brown Sand	58.8	10	68	78	0.136	0.025	0.025	0.025	0.036	0.025
ETBS22301BH4-10	2/23/2001	D114	10	Light Brown Sand	28.1	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH4-15	2/23/2001		15	Beige Sand	15.9	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH5-2	2/23/2001		2	Black Oily Dirt	627.0	9305	42581	51886	356.700	22.600	111.000	87,800	96.800	38.500
ETBS22301BH5-5	2/23/2001		5	Gray Sand	1391.0	4382	4573	8955	374.200	11.200	108.000	109.000	109.000	37.000
ETBS22301BH5-10	2/23/2001		10	Grayish Brown Sand	1360.0	2591	2075	4666	220.650	8.650	64.000	63.700	63.800	20.500
ETBS22301BH5-15	2/23/2001	BH5	15	Light Brown Sand & Rock	950	4428	4713	9141	538.900	16.400	179.000	150.000	139.000	54.500
ETBS22301BH5-20	2/23/2001		20	Light Brown Sand	260	92	327	419	2.292	0.025	0.236	0.655	0.858	0.518
ETBS22301BH5-25	2/23/2001		25	Light Brown Sand	80.4	63	385	448	0.440	0.025	0.025	0.074	0.227	0.089
ETBS22301BH5-30	2/23/2001		30	Beige Sand	23.7	111	242	353	0.446	0.025	0.025	0.078	0.238	0.080
ETBS22301BH6-2	2/23/2001		2	Light Brown Sand	1362	1391	1938	3329	82.625	0.025	15.600	25.900	29.600	11.500
ETBS22301BH6-5	2/23/2001	BUG	5	Light Brown Sand & Rock	250.0	22	92	114	0.234	0.025	0.025	0.040	0.088	0.056
ETBS22301BH6-10	2/23/2001	BIIO	· 10	Beige Sand	82.2	33	155	188	0.549	0.025	0.037	0.133	0.223	0.131
ETBS22301BH6-15	2/23/2001		15	Beige Sand	40.1	42	206	248	0.332	0.025	0.025	0.061	0.147	0.074
TWVU8601MBH-2	8/6/2001		2	Light Brown Sand & Rock	200.0	1500	302.1	1802.1	2.1968	0.0200	0.0848	0.6970	0.8540	0.5410
TWVU8601MBH-5	8/6/2001		5	Light Brown Sand & Rock	187.4	76.2	243	319.2	1.0000	0.0200	0.1640	0.3270	0.3350	0.1540
TWVU8601MBH-10	8/6/2001	MDU	10	Light Brown Sand & Rock	47.9	164	28.7	192.7	0.1000	0.0200	0.0200	0.0200	0.0200	0.0200
TWVU8601MBH-15	8/6/2001	IVII II	15	Light Brown Sand & Rock	15.4	6.8	88.4	95.2	0.1000	0.0200	0.0200	0.0200	0.0200	0.0200
TWVU8601MBH-20	8/6/2001		20	Light Brown Sand & Rock	9.7	5	23.7	28.7	0.1000	0.0200	0.0200	0.0200	0.0200	0.0200
TWVU8601MBH-25	8/6/2001		25	Light Brown Sand & Rock	7.9	5	64	69	0.1000	0.0200	0.0200	0.0200	0.0200	0.0200
IGRO - GASOLINE RA	NGE ORGAN	ICS C ₆ -C ₁₀												
² DRO - DIESEL RANG	E ORGANICS	C10 ⁻ C28												
³ BTEX - THE SUM OF	BENZENE,	TOLUENE, ETI	HYL BENZEN	, AND M.P. &O XYLENE										
4NA - NOT ANALYZED														
BOLDED VALUES AR	E IN EXCESS	OF THE NEW	MEXICO OII	CONSERVATION DIVISION G	IDELINE THRE	SHOLD FOR T	HE PARAMET	FR						ł
6 ITALICIZED VALUES	ARE < THE	INSTRUMENT I	DETECTION / I	MIT.										1
GROLDRO (TPH) -	TOTAL PETE													1
	TUTAL		JUARBUN EFA											

E.O.T.T. ENERGY PIPELINE

E.O.T.T. TEXACO BUCKEYE Revised Work Plan Supplement

E.O.T.T. TEXACO BUCKEYE BTEX DELINEATION

E.O.T.T. TEXACO BUCKEYE BENZENE DELINEATION

Client: EOTT Energy Corp. Attn: Frank Hermandez Address: 5805 East Hwy 80 Midland Phone: 915 638-3799 FAX: 91	Гх 79701 5 684-3456					Report#/Lab II Project ID: 200 Sample Name: Sample Matrix: Date Received: Date Sampled:	D#: 117853 11-11040-4"We FWVU8601MI soil 08/10/2001 08/06/2001	Report st Vacuur 3H-10 Time: Time:	Date: 09/ m 17:24 14:45	04/01	
REPORT OF ANALYSIS QUALITY ASSURANCE DATA ¹											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	164	mg/Kg	10	<10	08/30/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540		-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	28.7	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX					08/17/01	8260b	••••				
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		4.3	81.5	86.4	85.7
Ethylbenzene	<20	µg/Kg	20	<20	08/17/01	8260b		4.4	93.3	96.7	96.6
m,p-Xylenes	<20	μg/Kg	20	<20	08/17/01	8260b	J .	4.3	95.5	99.8	99.3
o-Xylene	<20	μg/Kg	20	<20	08/17/01	8260b		4.2	95.8	98.2	100.6
Toluene	<20	µg/Kg	20	<20	08/17/01	8260b	J	4.3	87.1	93.2	93.6
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. \textcircled{O} Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, \mathring{R} and \mathring{L} associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS)									te value of analyte ults are mits pers quired ected in DS) bioher		

Richard Laster

than advisory limit. M =Matrix interference.

. .

EOTT Energy Corp. **Client:**

Frank Hernandez Attn:

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-10

Report#/Lab ID#:117853 Sample Matrix: soil

FAX (512) 447-4766

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	none/diluted	diluted @ 1X	D
Chlorobenzene-d5(Sur)	8015 mod.	87.5	50 - 150	
1,2-Dichloroethane-d4	8260b	99.1	65-115	
Toluene-d8	8260Ь	94.1	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates cutside advisory recovery limits.

(512) 444-5896 •

ŀ

Exceptions Report:

Report #/Lab ID#:117853 Matrix: soil Client: EOTT Energy Corp. Project ID: 2001-11940-4"West Vacuum Sample Name: TW/U8601MBH-10

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

.

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
Volatile organics-8260b/BTEX	Н	Hold time for this parameter exceeded by 3* days.
m,p-Xylenes	J	See J-flag discussion above.
Toluene	1	See J-flag discussion above.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Comments pertaining to Data Qualifiers and QC data:

Notes:

CINCLYSYS						4221 Fr 2209 N. (512) 44	reidrich Lane, Padre Island 14-5896 •	Suite 190 Dr., Cor FAX), Austin, ' pus Christi (512) 447	FX 7874 i, TX 78 4766	14 & 8408
Client: EOTT Energy Corp. Attn: Frank Hergandez						Report#/Lab II Project ID: 200)#: 117854 1-11040-4"We	Report st Vacuur	Date: 09/	04/01	
Address: 5805 East Hwy 80	Tw 70701					Sample Name:	FWVU8601ME	3H-2			
Phone: 915 638-3799 FAX: 915 6	84-3456					Date Received: Date Sampled:	08/10/2001 08/06/2001	Time: Time:	17:24 14:00		
REPORT OF ANALYSIS											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	1500	mg/Kg	100	<100	08/30/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540		-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	302.1	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX					08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		4.3	81.5	86.4	85.7
Ethylbenzene	697	µg/Kg	20	<20	08/17/01	8260b		4.4	93.3	96.7	96.6
m,p-Xylenes	854	µg/Kg	20	<20	08/17/01	8260b		4.3	95.5	99.8	99.3
o-Xylene	541	µg/Kg	20	<20	08/17/01	8260b		4.2	95.8	98.2	100.6
Toluene	84.8	µg/Kg	20	<20	08/17/01	8260b		4.3	87.1	93.2	93.6
This analytical report is respectfully submitted by Ana have been carefully reviewed and, to the best of my kno are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All righ publication may be reproduced or transmitted in any for	lySys, Inc. The overledge, the anale (Quality Contro off reserved. No form or by any me	s 1. Qual of the r recover express e (RQL)	lity assurance d elative percent red from a spike sed as the perce , typically at on	ata is for the sa (%) difference ed sample. nt (%) recovery r above the Pra	ample batch which incluse between duplicate measu 4. Calibration Verification y of analyte from a know ctical Quantitation Limi	ded this sample. arements. 3. Reco on (CCV) and Lab on standard or mature t (PQL) of the ana	2. Precisio overy (Rec poratory Co rix. 5. Re alytical met	on (PREC) is ov.) is the per ontrol Sample porting Quar hod. 6. Me	the absolu icent (%) o (LCS) res ititation Li ethod numt	te value f analyte ults are mits pers	

Respectfully Submitted, Richard Laster

express written consent of AnalySys, Inc.

. . .

00/04/01

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

Client:EOTT Energy Corp.Attn:Frank Hernangez

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-2 Report#/Lab ID#: 117854 Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	none/diluted	diluted @ 2X	D
Chlorobenzene-d5(Sur)	8015 mod.	84.4	50 - 150	
1,2-Dichloroethane-d4	8260b	74.7	65-115	
Toluene-d8	8260b	92.2	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

é p

Exceptions Report:

Report #/Lab ID#:117854 Matrix: soil Client: EOTT Energy Corp. Project ID: 2001-11040-4"West Vacuum Sample Name: TW U8601MBH-2

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

4

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for -background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
Volatile organics-8260b/BTEX	Н	Hold time for this parameter exceeded by 3* days.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Comments pertaining to Data Qualifiers and QC data:

Notes:

CI nal YS YS		· ·				4221 Fr 2209 N. (512) 44	eidrich Lane, Padre Island 4-5896 •	Suite 190 Dr., Cor FAX), Austin, pus Christ (512) 447-	TX 7874 i, TX 75 4766	44 & 8408
Client: EOTT Energy Corp. Attn: Frank Hernandez Address: 5805 East Hwy 80 Midland Phone: 915 638-3799 FAX: 915 6	Tx 79701 84-3456					Report#/Lab ID Project ID: 200 Sample Name: 7 Sample Matrix: Date Received: Date Sampled:	9#: 117855 1-11040-4"We FWVU8601ME soil 08/10/2001 08/06/2001	Report st Vacuur 3H-5 Time: Time:	Date: 09/ n 17:24 14:20	04/01	
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	243	mg/Kg	10	<10	08/30/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540		-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	76.2	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX					08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		4.3	81.5	86.4	85.7
Ethylbenzene	327	µg/Kg	20	<20	08/17/01	8260b		4.4	93.3	96.7	96.6
m,p-Xylenes	335	µg/Kg	20	<20	08/17/01	8260b	'	4.3	95.5	99.8	99.3
o-Xylene	154	µg/Kg	20	<20	08/17/01	8260b		4.2	95.8	98.2	100.6
Toluene	164	µg/Kg	20	<20	08/17/01	8260b		4.3	87.1	93.2 ⁻	93.6
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Description of AnalySys, Inc. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required											

Respectfully Submitted,

Richard Laster **Richard Laster**

n .

n

ш

typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

		70		5
	_) inc	

Client: EOTT Energy Corp.

Attn: Frank Hernandez

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-5 Report#/Lab ID#: 117855 Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	none/diluted	diluted @ 1X	D
Chlorobenzene-d5(Sur)	8015 mod.	86.9	50 - 150	
1,2-Dichloroethane-d4	8260b	90.8	65-115	
Toluene-d8	8260b	97.9	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

2209 N. Padre Island Dr., Corpus Christi, TX 7840408

(512) 444-5896 • FAX (512) 447-4766

ų,

Exceptions Report:

Report #/Lab ID#:117855 Matrix:soil Client: EOTT Energy Corp. Project ID: 2001-11940-4"West Vacuum Sample Name: TWY U8601MBH-5

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

 \dot{e}_{i}

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
Volatile organics-8260b/BTEX	н	Hold time for this parameter exceeded by 3* days.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Comments pertaining to Data Qualifiers and QC data:

Notes:

C haly S YS						4221 Fr 2209 N. (512) 44	eidrich Lane, Padre Island 14-5896 •	Suite 190 Dr., Cor FAX), Austin, pus Christ (512) 447-	TX 787- i, TX 7 4766	44 & 8408
Client: EOTT Energy Corp. Attn: Frank Heinandez Address: 5805 EastHwy 80 Midland Phone: 915 638-3799 FAX: 915 6	Tx 79701 84-3456					Report#/Lab ID Project ID: 200 Sample Name: 7 Sample Matrix: Date Received: Date Sampled:	D#: 117856 1-11040-4"We FWVU8601MF soil 08/10/2001 08/06/2001	Report st Vacuur 3H-15 Time: Time:	Date: 09/ m 17:24 15:15	04/01	
<u>REPORT OF ANALYSIS</u>							QUALITY	ASSUR	ANCE DA	<u>\TA</u> 1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	88.4	mg/Kg	10	<10	08/30/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540		-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	6.8	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX				• •-•	08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		. 5	87	94.8	101.8
Ethylbenzene	<20	µg/Kg	20	<20	08/17/01	8260b		6.4	104.8	105.6	106.3
m,p-Xylenes	<20	µg/Kg	20	<20	08/17/01	8260b		7.6	106.4	109.1	109.5
o-Xylene	<20	µg/Kg	20	<20	08/17/01	8260b		7	107.5	108	108.3
Toluene	<20	μg/Kg	20	<20	08/17/01	8260b		4.6	91.3	94.3	106.5
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.1. Quality assurance data is for the sample batch which included this sam of the relative percent (%) difference between duplicate measurements. 3 recovered from a spiked sample.4. Calibration Verification (CCV) an expressed as the percent (%) recovery of analyte from a known standard or (RQL), typically at or above the Practical Quantitation Limit (PQL) of the typically denote USEPA procedures. Less than ("<") values reflect nomin dilutions.7. Data Qualifiers are J = analyte potentially present between associated method blank(s). S1 =MS and/or MSD and PDS recovering than advisory limit. M =Matrix interference.						ded this sample. irements. 3. Reconn (CCV) and Lab in standard or math t (PQL) of the ana- effect nominal qua- ent between the PC ixceed advisory lind DS recoveries excession of the ana- the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the p	2. Precisio overy (Rec oratory Co rix. 5. Re llytical met untitation li QL and the nits. S2 =1 eed advisor	on (PREC) is ov.) is the per- ontrol Sample porting Quar thod. 6. Me mits adjusted MDL. B = A Post digestion ry limits. P =	the absolu rcent (%) o ; (LCS) res ntitation Li ethod numt l for any rea Analyte det n spike (PE =Precision	te value of analyte ults are mits pers quired ected in DS) higher	

Daga#. 1 Donant Datas 00/04/01

.

) inc.

EOTT Energy Corp. **Client:**

Frank Hernandez Attn:

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-15

Report#/Lab 1D#: 117856 Sample Matrix: soil

84040

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	none/diluted	diluted @ 1X	D
Chlorobenzene-d5(Sur)	8015 mod.	84.4	50 - 150	
1,2-Dichloroethane-d4	8260b	98.2	65-115	
Toluene-d8	8260b	90.8	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Report #/Lab ID#:117856 Matrix: soil Client: EOTT Energy Corp. Project ID: 2001-11040-4"West Vacuum Sample Name: TW/U8601MBH-15

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

1.

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Comments pertaining to Data Qualifiers and QC data:

Notes:

Charysys						4221 Fr 2209 N. (512) 44	eidrich Lane, Padre Island 14-5896 •	Suite 190 Dr., Cor FAX	, Austin, pus Christ (512) 447-	TX 7874 I, TX 71 4766	14 & B408
Client: EOTT Energy Corp. Attn: Frank Hernandez Address: 5805 East Hwy 80 Midland	Tx 79701					Report#/Lab II Project ID: 200 Sample Name: Sample Matrix: Date Received:	0#: 117857 1-11040-4"We FWVU8601ME soil 08/10/2001	Report st Vacuur 3H-20 Time:	Date: 09/ n 17:24	04/01	
Phone: 915 638-3799 FAX: 915 6	84-3456					Date Sampled:	08/06/2001	Time:	15:40		
REPORT OF ANALYSIS	Result	Units	ROL ⁵	Blank	Date	Method 6	UALITY Data Qual ⁷	ASSURA Prec 2	Recov ³	$\frac{\mathbf{TA}^{I}}{\mathbf{CC}\mathbf{V}^{I}}$	ICS4
TPH by GC (as diese)	23.7	mg/Kg	1	<1	08/24/01	8015 mod	S.M.P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540		-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX					08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		5	87	94.8	101.8
Ethylbenzene	<20	µg/Kg	20	<20	08/17/01	8260b		6.4	104.8	105.6	106.3
m,p-Xylenes	<20	μg/Kg	20	<20	08/17/01	8260b	'	7.6	106.4	109.1	109.5
o-Xylene	<20	µg/Kg	20	<20	08/17/01	8260b		7	107.5	108	108.3
Toluene	<20	μg/Kg	20	<20	08/17/01	8260b		4.6	91.3	94.3	106.5
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Richard Laster Richard Laster											

Report Date: 00/04/01 Page#.

	5	

Client:	EOTT Energy, Corp
Attn:	Frank Hernandez

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-20

Report#/Lab ID#: 117857 Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	75.4	50-150	
Chlorobenzene-d5(Sur)	8015 mod.	79.9	50 - 150	
1,2-Dichloroethane-d4	8260b	98.5	65-115	
Toluene-d8	8260b	94.4	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

4331 Freidnich Lans Spite 100 Austing TX 787 2209 N. Padre Island Dr., Corpus Christi, TX (512) 444-5896 • FAX (512) 447-4766 7840408

ĵ.

Exceptions Report:

Report #/Lab ID#:117857 Matrix: soil Client: EOTT Energy Corp. Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-20

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

.,,

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
Notes:	X	

CINCLYSYS			· - · · · · · ·			4221 F 2209 N (512) 4	reidrich Lane, . Padre Island 44-5896 •	Suite 190 Dr., Cor FAX	0, Austin, pus Christ (512) 447-	TX 787 i, TX 7 4766	44 & 8408
Client:EOTT Energy Corp.Attn:Frank HermandezAddress:5805 East Hwy 80MidlandTx 79701Phone:915 638-3799FAX:915 684-3456											
REPORT OF ANALYSIS QUALITY ASSURANCE DATA ¹											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	64	mg/Kg	10	<10	08/27/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540		-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	<5	mg/Kg	5 -	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX					08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		5	87	94.8	101.8
Ethylbenzene	<20	µg/Kg	20	<20	08/17/01	8260b		6.4	104.8	105.6	106.3
m,p-Xylenes	<20	µg/Kg	20	<20	08/17/01	8260b		7.6	106.4	109.1	109.5
o-Xylene	<20	µg/Kg	20	<20	08/17/01	8260b		7	107.5	108	108.3
Toluene	<20	µg/Kg	20	<20	08/17/01	8260b		4.6	91.3	94.3	106.5
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Nichard Laster Richard Laster								ite value of analyte sults are imits bers quired ected in DS) higher			

.

7	Γ1	C	T	T	5
			- -		С.

Frank Hernandez Attn:

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-25

Report#/Lab ID#: 117858 Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	none/diluted	diluted @ 1X	D
Chlorobenzene-d5(Sur)	8015 mod.	87.3	50 - 150	
1,2-Dichloroethane-d4	8260b	87	65-115	
Toluene-d8	8260b	85.3	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

(512) 444-5896 6

Exceptions Report:

Report #/Lab ID#:117858 Matrix:soil Client: EOTT Energy Corp. Project ID: 2001-11040-4"West Vacuum Sample Name: TWY U8601MBH-25

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

÷.

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Comments pertaining to Data Qualifiers and QC data:

Notes:

CHAIN-OI	F-CUSTOD	Y								- 		_,		ſ			מניפ	CY	S
Send Reports	Го:			Bill (to (if	difte	cnt):					,	i.	L				IN	С.
Company Name	e EOTT			Com	Company Name <u>Sam</u>						4221 Freidrich Lane, Suite 190, Austin, TX 78744					X 7874 4			
Address 580) East It	ghuran	· 80_	Addr	Address									,	()	12) 444-3890			
City Midly	State	TX Zip_	7419	City	City State Zip														
ATTN: Fra	nK Herr	ader		ATT	'N:								Analyses Requested (1)				1)		
Phone <u>96.638.3749</u> Fax <u>915.684.3456</u>				Phon	1e			Fax						Ple	ase at	tach ex	xplanatory info	rmation as	required
Rush Status (m	ust be confirme	d with lat	b mgr.):														///		
Project Name/F	PO#: <u>2001 - /</u>	1040	_ Samp	ler:	1/L	2/2	/				15		9						
4" We	st Vacui	m		_, <i>, , ,</i> ,		\square		_				Y				/			
Client San Description/Id	nple No. lentification	Date Sampled S	Time Sampled	No. of Containers	-Soil-	Water	Waste	Lab I.D. # (Lab only)		X	Ľ		\angle	\angle		\square		mment	S
TWVU 8601	MBH-10	31.01	1445	1	V			117853	~	レ									
TWVU860	IMBH-2	8.6.01	1400		\checkmark			117854	V										
TWVU8601	MBH-5	8.6.01	14/20	1	-			117855	\checkmark	v									
TWVU8601	MBH-15	8.601	1515	1	4	-		117856	V	<									
TWV4860	BMBH-2	8.6.01	1540	1	~			117857	1	~							· · · · · · · · · · · · · · · · · · ·		
TWVU860	MMBH-25	8.6.01	1600	1	L			117858	2	>									
																		",	
(1)Unless specifically re- limits (MDL/PQL). For ASI's HSL list at ASI's o	quested otherwise on th GC/MS volatiles and ex option. Specific compound Temp. 1.7	is Chain-of-cu ktractables, un und lists must l	stody and/o less specific be supplied i	r attached doc analytical par for all GC pro	umental rameter cedures	ion, all a lists are	analyses specified	will be conducted d on this chain-of $Or(q) r \sim p$	using custor	ASI's dy or a √r ≠ g	metho ttached	d of ci I to thi $-P_{ab}$	hoice i is chai	and all n-of-cu	data w istody,	vill be , ASI v E	reported to AS will default to P P P June 14	I's normal Priority Po ゴイノ	reporting Ilutants or کر کر
Sample Relinquished By				,		Ţ	T	10			Sa	mpl	e Re	ceiv	ed	By	FAX SUX	- 394-	2101
Name	Affiliati	on	I	Date	Т	ime	1	Name		Affiliation						Date	Tir	ne	
hopfler	ERF		84	101	13	20			F	ed	2	<	r						
				•			E	.4.72	\$	A	sź	_				8	10-01	17;	24

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

Environmental LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat McCasland)

Sample Type: Soil Sample Condition: Intact/Iced/ -1 deg C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye

· · 라.

Sampling Date: 02/23/01 Receiving Date: 02/27/01 Analysis Date: 02/27/01

ELT# FIELD CODE mg/kg mg/kg 37702 ETBS22301BH2-2 1203 2408 37703 ETBS22301BH2-5 216 904 37704 ETBS22301BH2-15 15 326 37705 ETBS22301BH2-15 15 326 37706 ETBS22301BH3-2 <10 <10 37707 ETBS22301BH3-5 <10 <10 37708 ETBS22301BH3-10 <10 <10 37709 ETBS22301BH3-15 <10 <10 37710 ETBS22301BH3-15 <10 <10 37710 ETBS22301BH3-15 <10 <10 37711 ETBS22301BH4-2 550 432 37712 ETBS22301BH4-15 <10 <10 37713 ETBS22301BH5-5 4382 4573 37716 ETBS22301BH5-15 4428 4713 37717 ETBS22301BH5-15 9305 42581 37718 ETBS22301BH5-25 63 385 37720 ETBS22301BH5-	ē.,	· · · · · ·	GRO	DRO	
ELT# FIELD CODE mg/kg mg/kg 37702 ETBS22301BH2-2 1203 2408 37703 ETBS22301BH2-5 216 904 37704 ETBS22301BH2-10 60 527 37705 ETBS22301BH2-15 15 326 37706 ETBS22301BH3-2 <10 <10 37707 ETBS22301BH3-5 <10 <10 37708 ETBS22301BH3-15 <10 <10 37709 ETBS22301BH3-15 <10 <10 37710 ETBS22301BH4-2 550 432 37711 ETBS22301BH4-5 <10 68 37712 ETBS22301BH4-15 <10 <10 37714 ETBS22301BH5-5 4382 4573 37715 ETBS22301BH5-15 4428 4713 37718 ETBS22301BH5-25 63 385 37718 ETBS22301BH5-25 63 385 37720 ETBS22301BH5-25 63 385 37720 ETBS22301BH5-25	C1 7 4		L6-L10	>C10-C28	
37702ETBS22301BH2-21203240837703ETBS22301BH2-521690437704ETBS22301BH2-106052737705ETBS22301BH2-151532637706ETBS22301BH3-2<10<1037707ETBS22301BH3-5<10<1037708ETBS22301BH3-10<10<1037709ETBS22301BH3-15<10<1037709ETBS22301BH3-15<10<1037710ETBS22301BH4-255043237711ETBS22301BH4-15<10<1037712ETBS22301BH4-15<10<1037713ETBS22301BH4-15<10<1037714ETBS22301BH5-54382457337716ETBS22301BH5-102591207537717ETBS22301BH5-209232737718ETBS22301BH5-209232737719ETBS22301BH5-256338537720ETBS22301BH5-3011124237721ETBS22301BH5-3011124237721ETBS22301BH5-30111242	<u>EL1#</u>	FIELD CODE	mg/kg	mg/kg	 _
37703 ETBS22301BH2-5 216 904 37704 ETBS22301BH2-10 60 527 37705 ETBS22301BH2-15 15 326 37706 ETBS22301BH3-2 <10	37702	ETBS22301BH2-2	1203	2408	
37704ETBS22301BH2-106052737705ETBS22301BH2-151532637706ETBS22301BH3-2<10	37703	ETBS22301BH2-5	216	904	
37705ETBS22301BH2-151532637706ETBS22301BH3-2<10	37704	ETBS22301BH2-10	60	527	
37706ETBS22301BH3-2<10<1037707ETBS22301BH3-5<10	37705	ETBS22301BH2-15	15	326	
37707ETBS22301BH3-5<10<1037708ETBS22301BH3-10<10	37706	ETBS22301BH3-2	<10	<10	
37708ETBS22301BH3-10<10<1037709ETBS22301BH3-15<10	37707	ETBS22301BH3-5	<10	<10	
37709ETBS22301BH3-15<10<1037710ETBS22301BH4-255043237711ETBS22301BH4-5<10	37708	ETBS22301BH3-10	<10	<10	
37710ETBS22301BH4-255043237711ETBS22301BH4-5<10	37709	ETBS22301BH3-15	<10	<10	
37711ETBS22301BH4-5<106837712ETBS22301BH4-10<10	37710	ETBS22301BH4-2	550	432	
37712ETBS22301BH4-10<10<1037713ETBS22301BH4-15<10	37711	ETBS22301BH4-5	<10	68	
37713ETBS22301BH4-15<10<1037714ETBS22301BH5-293054258137715ETBS22301BH5-54382457337716ETBS22301BH5-102591207537717ETBS22301BH5-154428471337718ETBS22301BH5-209232737719ETBS22301BH5-256338537720ETBS22301BH5-3011124237721ETBS22301BH6-213911938	37712	ETBS22301BH4-10	<10	<10	
37714ETBS22301BH5-293054258137715ETBS22301BH5-54382457337716ETBS22301BH5-102591207537717ETBS22301BH5-154428471337718ETBS22301BH5-209232737719ETBS22301BH5-256338537720ETBS22301BH5-3011124237721ETBS22301BH6-213911938	37713	ETBS22301BH4-15	<10	<10	
37715ETBS22301BH5-54382457337716ETBS22301BH5-102591207537717ETBS22301BH5-154428471337718ETBS22301BH5-209232737719ETBS22301BH5-256338537720ETBS22301BH5-3011124237721ETBS22301BH6-213911938	37714	ETBS22301BH5-2	9305	42581	
37716ETBS22301BH5-102591207537717ETBS22301BH5-154428471337718ETBS22301BH5-209232737719ETBS22301BH5-256338537720ETBS22301BH5-3011124237721ETBS22301BH6-213911938	37715	ETBS22301BH5-5	4382	4573	
37717ETBS22301BH5-154428471337718ETBS22301BH5-209232737719ETBS22301BH5-256338537720ETBS22301BH5-3011124237721ETBS22301BH6-213911938	37716	ETBS22301BH5-10	2591	2075	
37718ETBS22301BH5-209232737719ETBS22301BH5-256338537720ETBS22301BH5-3011124237721ETBS22301BH6-213911938	37717	ETBS22301BH5-15	4428	4713	
37719ETBS22301BH5-256338537720ETBS22301BH5-3011124237721ETBS22301BH6-213911938	37718	ETBS22301BH5-20	. 92	327	
37720 ETBS22301BH5-30 111 242 37721 ETBS22301BH6-2 1391 1938	37719	ETBS22301BH5-25	63	385	
37721 ETBS22301BH6-2 1391 1938	37720	ETBS22301BH5-30	111	242	
	37721	ETBS22301BH6-2	1 3 9 1	1938	
			1		
		0/ TA		107	
		% IA	113	103	
		%EA		08	
BLANK <10 <10		BLANK	<10	<10	

Methods: EPA SW 846-8015M GRO/DRO

Rala

'-0

Environmental LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat McCasland)

Sample Type: Soil

taga in

Sampling Date: 02/23/01 Receiving Date: 02/27/01 Analysis Date: 02/28/01

Sample Condition: Intact/Iced/ -1 deg C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye

GRO DRO C6-C10 >C10-C28 ELT# FIELD CODE mg/kg mg/kg 37722 ETBS22301BH6-5 92 22 37723 ETBS22301BH6-10 33 155 37724 ETBS22301BH6-15 42 206

%	IA
%	EA
BL	ANK

109 118 105 115 <10 <10

Methods: EPA SW 846-8015M GRO/DRO

dk hin

-1-0/

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat Mc Casland) Sampling Date: 02/23/01

Sample Type: Soil Sample Condition: Intact/ Iced/ -1 deg. C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye,

. .

ELT#	FIELD CODE	BENZENE mg/kg	TOLUENE mg/kg	ETHYLBENZENE mg/kg	m,p-XYLENE mg/kg	o-XYLENE mg/kg
		0.005		4.22		
37702	E182223018H2-2	<0.025	1.94	4.22	12.6	8,33
37703	ETBS22301BH2-5	<0.025	1.07	0.488	1.19	0.807
37704	ETBS22301BH2-10	<0.025	0.118	0.226	0.372	0.170
37705	ETBS22301BH2-15	<0.025	<0.025	<0.025	<0.025	<0.025
37706	ETBS22301BH3-2	<0.025	<0.025	<0.025	<0.025	<0.025
37707	ETBS22301BH3-5	< 0.025	<0.025	<0.025	<0.025	<0.025
37708	ETBS22301BH3-10	<0.025	<0.025	<0.025	<0.025	<0.025
3770 9	ETBS22301BH3-15	<0.025	<0.025	<0.025	<0.025	<0.025
37710	ETBS22301BH4-2	0.386	5.33	3.66	15.2	6.84
37711	ETBS22301BH4-5	<0.025	<0.025	<0.025	0.036	<0.025
37712	ETBS22301BH4-10	<0.025	<0.025	<0.025	<0.025	<0.025
37713	ETBS22301BH4-15	< 0.025	<0.025	<0.025	<0.025	<0.025
37714	ETBS22301BH5-2	22.6	111	87.8	9 6.8	38.5

%IA		88	88	90	87	89
%EA		94	95	98	98	103
BLANK	,	<0.025	<0.025	<0.025	<0.025	<0.025

METHODS: EPA SW 846-8021B ,5030

Raland K. Tuttle

<u>3-1-0/</u> Date

Receiving Date: 02/27/01

Analysis Date: 02/27/01

112 TELE

ENVIRONMENTAL LAB OF 📿 , Inc.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat Mc Casland) Sampling Date: 02/23/01

Sample Type: Soil Sample Condition: Intact/ Iced/ -1 deg. C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye

ELT#	FIELD CODE	BENZENE mg/kg	TOLUENE mg/kg	ETHYLBENZENE mg/kg	m,p-XYLENE mg/kg	o-XYLENE mg/kg	
37715	ETBS22301BH5-5	11.2	108	109	109	37.0	
37716	ETBS22301BH5-10	8.65	64.0	63.7	63.8	20.5	

%IA	88	94	98	97	101
%EA	91	89	94	91	95
BLANK	<0.025	<0.025	<0.025	<0.025	<0.025

METHODS: EPA SW 846-8021B ,5030

l. dk pour

Raland K. Tuttle

3-01-0/ Date

Receiving Date: 02/27/01

Analysis Date: 02/28/01

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat Mc Casland) Sampling Date: 02/23/01

Sample Type: Soil Sample Condition: Intact/ Iced/ -1 deg. C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye

TOLUENE **ETHYLBENZENE** BENZENE m,p-XYLENE o-XYLENE ELT# FIELD CODE mg/kg mg/kg mg/kg mg/kg mg/kg 37717 16.4 179 150 ETBS22301BH5-15 139 54.5

%IA	1	100	106	111	106	111
%ЕА		90	95	100	107	104
BLANK		<0.025	<0.025	<0.025	<0.025	<0.025

METHODS: EPA SW 846-8021B ,5030

ck Tue

Raland K. Tuttle

<u>3-0/-0/</u> Date

Receiving Date: 02/27/01

Analysis Date: 02/28/01

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat Mc Casland) Sampling Date: 02/23/01

Sample Type: Soil Sample Condition: Intact/ Iced/ -1 deg. C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye

ELT#	FIELD CODE	BENZENE mg/kg	TOLUENE mg/kg	ETHYLBENZENE mg/kg	m,p-XYLENE mg/kg	o-XYLENE mg/kg
27719	ETRS22301845-20	<0.025	0.236	0.655	0.858	0.519
37719	FTBS22301BH5-25	<0.025	<0.025	0.033	0.227	0.518
37720	ETBS22301BH5-30	< 0.025	<0.025	0.078	0.238	0.080
37721	ETBS22301BH6-2	<0.050	15. 6	25.9 ·	29.6	11.5
37722	ETBS22301BH6-5	<0.025	<0.025	0.040	0.088	0.056
37723	ETBS22301BH6-10	<0.025	0.037	0.133	0.223	0.131
37724	ETBS22301BH6-15	<0.025	<0.025	0.061	0.147	0.074

%IA	99	103	106	114	106
%EA	97	98	109	108	105
BLANK	<0.025	<0.025	<0.025	<0.025	<0.025

METHODS: EPA SW 846-8021B ,5030

ak Raland K.

3-01-01

Receiving Date: 02/27/01

Analysis Date: 02/27/01

LIN OF CUSTODY RECORD LIND ANALYSIS KEQUENT	ANALYSIS REQUEST		•8 0	Вн q	C(b V				ision Vuisi	1101 1101 1101 1101 1101 1101 1101 110													. 1. to W Brunettet P. MCarland	EPT.	(the E-mil to W. Brunette	+ P. McCasland 344.2601	Lec - "/C.
915) 563-1800 FAX (915) 563-1713	Para 1: 915 556 . 0190	7020.219, C/h	•	Project Name :	EoTT Texaca Buck Cye	Sempler Remarker	Stadley Sleiter	NATAIT PRESERVATIVE SLATELING		711ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME	X 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	10/ 52-11 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			X 33.00 (3.50)	<u> </u>	X X X X X X X X X X X X X X X X X X X				X X X X X X X X X X X X X X X X X X X		Time: Received by: REMAR	3:30 Dan 11 July Ung	There is Received by f	1202 Recievan	That: Received by Land wort
international and the subscript of the s	Project Manarger:	(UAYNE BRUNIEITE EDII	Compay Name & Addition		15200-34	Project location	Ett Todara Buckeye	SU SU				1 S MAIDSPOST LZ KOLLS	(37703) ETB S223301 BHA- 5	37704 ETBS22301 BHQ-10 1	37705 ETBS2233016HO 1)	37706 ETBS 223301 BH3-2 1	37707 ETBS 22301 BH3-5 1	37759 ETB522301 BH3-10 1	37709 ETBS223301 BH3-15 1	37110 ETB5223 01844-2 1	37711 ETBS223018H4-5 11	37712 5785223301 849-10 11	Relinquished by: Date	Findle Flame 2-2401	Relinquished by AAA SAA	10-22-2 vally 1/1 wall	Relloquished by: Dute:

Project Manager:					PЪ	ene f:	91	5	5 50	. • 0	140		T			,	AN	LYS	as e	LEQU	EST						
1UAYNE BRI	INETTE EDTI				FA	χ <i>ι</i> :	915	5 ' 6	6.14	:.3	456								1				- -		rr-		
ompany Name & Add Ferr	_																										
E.O.T.T. / TO	2xocG												_		8												
roject #:	~		~		Er (oject N: 	ame :	Ð							T q	Ê											
	<u> </u>		_كر	TT	//0	10	00	<u></u>	יכו	he	te-			5	5	5											
c 4	\cdot					\sim		1		,	-			5	D D	3											
Cott/le	Acto Bickeye			7	<u>Ø</u>	na		RESE	<u>K</u> RYA	TIVE	ns/		13	8	V B								· ·				
		รม:เ	Ę		7.70	⊥ ŕ──t─		ME	ТНС	D			120	-	V		Vola										
-1:13 #		NIV.	1Amo				<u> </u>						HI I	Ĩ	Mola	Vola	Seru									_	
LA3 USE)		100	- Internet	JIE DI	_	bun	1	6			Ale	ME	TEX	Ē	CIP	C l	C I D		5								
CNLY		3	<u> </u>	3 ŭ V	<u>₹</u>	3	: =	1=	$\frac{2}{\sqrt{2}}$	= -	1=	=		$\left \frac{1}{\sqrt{2}} \right $		+-	Ē	F	=		╉	+-	\vdash		+	$\left \cdot \right $	F
7713 ETBS 20	<u>1301 BH4-15</u>	1		+	$\left \cdot \right $	-+-		$\left - \right $	쉬		21	0.46		신		+					+-		$\left - \right $	-+	+	$\left - \right $	\vdash
THETBSZ	BOIBHS-2			X				 - <u> </u> /	$\frac{1}{2}$	+	01	1.50	X	X		+-			-+	_	+-	+	┝╼┥	4			-
TIS ETBS 22	30LBHS-S			ΙK			1	 _	XI.		01	3.15	X	X					-	-	+-		\vdash	-+			
TILG ETBSDD	301 KH5-10			ĻΧ	\square		┦		ХĮ-	·	2 01	3:04	K	X				\rightarrow	-			\square	\vdash				
TIT ETBS 223	01 BHS-15	<u> </u>		LΧ	\square				X L		01	3:36	X	X				\downarrow						_		4	
2222 21 816L	01845-20								X		01	3:48	X	X							\bot		$ \rightarrow $	_			1
7719 ET 15 5223	201845-25			X					XL		8-23	9.00	K	X								\square	<u>;</u>]		\square		
7120 ET B.522	301 BHS-30			X					$\langle $		2-23 01	4:10	X	X									<u> </u>				
1721 ETB5223	018/16-2			Х				$ \rangle$	$\langle $		2.23 01	4:6	X	X													
1722 ETBS22	BOIBH6-5	1		χ			\square		X		2-23 01	4:20	X	X									1				
M23 ETBS223	01 BH6 - 10	1		X					$\langle $	Π	2-23 01	4.38	X	X	T		T								\Box		
oquished by:	Date	τ	læc:			<u> </u>	Rece	ctred b	η:			REMA	RKS							•••			 			,	
radly Blaims	2.2601		3	· 30			Be	m V	Nel	ler		Or	igi-	يا ه	. to	L	ν.	15.	4 m	u [†]	tes	17	?n	14	a; l	4 m	d
quibled by:	Dute:	Т	læcı:				Rece	tred b	<u>т</u> .			_		ک			_		ί,				_				
••••••••••••••••••••••••••••••••••••••	2-27-01		1	'305	-		R	al	·~	K	()	FA	X	+			E-	m	n	+		W.	ß	ru i	ne1	74	
multiple by:	Date:	r	lmes:			•	Reve	tved b	y Lob	Hor vior	,		+	7.	(n)	14		5/4	-	/ 3	94	1.2	160	71			

Project Man	AYNE BRU	NETVE EDTT	-			1	Phene FAX I	s: t:	91 <u>9</u> 115	5	53 68	56 · 4 .	01 34	40 156	<u> </u>					AN	ALY	1 515	REC)0E2	r					
Company Na	me & Addam:								•				-																	Γ
Project #:						1	Projec	* Nar	De :							1		010	Hg B											
 Project Locat	- <u>F Jaco - 3</u>	34.		_2	07	\mathbb{Z}	70	<u>Ko</u>	<u>C</u>		<u>Rc</u>	<u>cl</u>	<u>-</u> 9	ye	,	-	3	J J	2											
Eo	TT TOXOC	- Bickeye			,	Ā	フレクシ	d	Por		<i>7</i>]	bis	u	•			2061	Ba Co	Ba Cd											,
		y	RS	=	N	ut	REC		P	RES	ERV	ATT	Æ	su	PLINC	150121		Ag Ai												:
LLE#	Fiel	D CODE	INIV LINO: 1	'olume/Amou	VATER		TUDBE	FTHER	101.	11103	CE	IOIIE	DILER	alv	IIME	UTEX 8020	[PII + 6-	TCI.P Melals	Total Metals	TCLP Send V	[()S	ç		* j 						-
31724	ETRSZZ	301RH6-15	1					Ē	-	-	χ	-		2.23	4:35	X	X	1	Ŧ	+	ŕ	-			╋	+	$\left \right $		╉	╡
		:					T				-			<u>v I</u>												\top			T	1
																											П	\square	T]
						\downarrow						\rightarrow	\downarrow		<u> </u>	\square		_	_			$\left \right $		_	-	<u> </u>	\square	+	+	\downarrow
						-	-					-+	+			$\left \cdot \right $		+	╋	\vdash	-	$\left \cdot \right $				$\left - \right $	$\left + \right $	+	- -	╀
			$\left - \right $			╀	+	$\left - \right $		-		+	╉			$\left \cdot \right $	-+	+	╋			$\left \right $	-	+	╉		-+	+	╀	$\frac{1}{1}$
			$\left - \right $	-+		┼╌	+	$\left - \right $		-+	-+	+	╉			╞┤	+	╈	╋			┟╌╢	+	╉	╋	F	+	╋	╆	ł
							╀─		-			-+-	╁				-+	+	+			┟╴┼	-	+	+	┟╶┨	+	+	\uparrow	t
						╞				-†		+	╈					1	\uparrow		_	┠╶┨	╈	+	\uparrow		\uparrow	\uparrow		t
						T																			T					Γ
equitabled by:	Blevis	Date:	r	îlmes:	3:3	80)	1	Reve	₩~1 > DeM	זיי איז	LÉ.	ln		REMAR Orig	225 9	يا م	*	>_	N.	ß	r Yı	~e "	tte	4	P.1	ทร		Í4	*
resself. Ben	Males	Dute: 2.27-0/	, I	læc:	130	-5	-	ľ	Recet	end 1	by: C.,	ſĸ	-/-	9	FA	X	ح ۲		L. >r	E-		Wi			v	B	; ru	ine	Ħ	7
quibbed by:		Dute:	[т	lmes:					lecet		by La	bor 1	s Iory:			+	P.	1	ng	C •	s 	• ~	\checkmark	34	4:	26	21			

ATTACHMENT V: ENVIRONMENTAL PLUS, INC. QUALITY ASSURANCE PLAN (EPIQAP)

E.O.T.T. TEXACO BUCKEYE REVISED WORK PLAN SUPPLEMENT

1 ENVIRONMENTAL PLUS, INC. QUALITY ASSURANCE PLAN

This Quality Assurance Plan (QAP) ensures the quality and usability of information and data used to support a successful site investigation and subsequent environmental management decisions.

1.8 PROJECT SAFETY

Occupational and Environmental Safety are key to the efficacy of this QAP. Hazards encountered at remediation sites include the following;

Moving equipment Buried pipelines Rotary Equipment Highway ingress/egress Excavation Potential Hydrogen Sulfide Gas

Employees and subcontractors are required to confirm current training in these hazards. Standard personal protective equipment included;

Personal H₂S Monitor Hard-hat Steel Toed Boots/Shoes Safety Glasses

1.9 DATA QUALITY OBJECTIVES

For analytical information derived from samples, the following quality controls are documented and verified. Data within these specifications are deemed quantitative and acceptable for use in making environmental management decisions.

- Laboratory data must have extraction recovery for TPH, BTEX and general chemistry parameters •30.0%. Or a "%Extraction Accuracy" between 70 and 130%.
- Laboratory data must have <30% Relative Percent Difference or a "%Instrument Accuracy" between 70 and 130%.
- Field headspace analyses must be supported with instrument calibration data and calibration gas certification.

1.10 METHODOLOGY

Collecting representative site samples and information require that the sampling and observational processes and procedures be implemented within strict bounds. These control procedures further ensure the quality of site data and information. Likewise, line personnel implement standard occupational and environmental safety protocols.

1.10.1 Borehole Drilling, Lithologic Sampling, Logging, and Abandonment

Boreholes are located strategically to best determine vertical and horizontal extent of contamination in the vadose zone. Borelogs are developed for each boring noting site lithology. Laboratory samples may be collected to determine more detailed lithologic characteristics, i.e., porosity, transmissivity, etc. Each borehole is plugged with Sodium Bentonite in accordance with the NMOCD guidelines.

1.10.1.1 GENERAL DRILLING OR HAND AUGERING PROCEDURES

The investigation employs either the Environmental Plus, Inc. drill rig with hollow stem auger and "thin-wall probe" method of discrete sampling or the 2.5" stainless steel hand auger.

1.10.1.1.1 Soil Sampling with Hollow Stem Auger and Probe

Upon advancing to the desired sampling interval the probe is extended through the end of the hollow stem auger and pushed into the soil matrix to collect the sample. As the 1.5" X 48" stainless steel probe with a vinyl sampling sleeve was detached from the sampling bar, it is immediately placed on the rack and logged. A 4 oz. sample is then taken from the bottom end of the sleeve sample and decanted into the sample jar for refrigeration and preparation with the remainder (~1 Kg) placed in a 1 gallon Ziploc® bag, warmed to ambient ~ 70-80 °F and the VOC Headspace concentration measured and recorded. All pertinent information is recorded on the field borelog data sheet.

1.10.1.1.2 SOIL SAMPLING WITH THE HAND AUGER

The auger is rotated into the ground to the desired sampling interval, removed from the subsurface, and the sample decanted into the appropriate container.

1.10.1.2 BOREHOLE ABANDONMENT

The boreholes are filled with a mixture of distilled or drinking water and Sodium Bentonite and a wooden marker denoting the borehole number driven into the center of each backfilled hole.

1.10.2 Sample Handling

Soil samples are collected and prepared in accordance with accepted ASTM and EPA SW846 methods.

1.10.3 Sample Identification

Sample identification numbers are designated as follows;

Site: Evron Dan Wall	Soil/Ground Water	Date	Borehole #	Interval feet bgs
EDW	S/GW	4-5-01	BH1	e.g., 20'

Example: EDWS4501BH1-20

1.10.4 Sampling protocols

- Decontaminate sampling equipment and area with Alconox distilled water after each sample.
- Prepare samples and refrigerate as soon as practicable.

Duplicates or blanks may be submitted to the laboratory, if deemed appropriate.

1.10.5 Sample Containers

Laboratory and field analyses of soil and water require specific containers and are listed in the matrix below.

Media	ТРН	BTEX	VOC Headspace	Metals	РАН	General Chemistry
Soil	4 oz. Jars with Teflon seal	4 oz. Jars with Teflon seal	1-gallon Ziploc® bags			
Water	1 liter amber glass w/HCL	2-40 ml VOA vials w/ HCL		16 oz. Plastic w/1ml HNO ₃	1 liter Amber Glass	1 liter Plastic

1.10.6 Sample Custody

All analytical request forms are completed and signatured by EPI as sampler. EPI personnel ascension the samples to the contracting laboratory samplereceiving personnel under chain-of-custody signature.

1.10.7 Quality Control Samples

Quality control samples are collected, prepared, and analyzed as deemed appropriate.

1.10.7.1 FIELD BLANK

A field blank for soil or water will identify contamination of the sample.

1.10.7.2 EQUIPMENT BLANK

An equipment blank will document that the sampling equipment used during the sampling event was clean.

1.10.7.3 FIELD DUPLICATE OR CO-LOCATED SAMPLES

Duplicates or Co-located samples will support data quality by establishing laboratory reproducibility.

1.10.7.4 TRIP BLANK

A laboratory prepared trip blank accompanies only water samples and will identify sample perturbations during transit.

1.10.8 Field Measurements

The VOC Headspace concentration for each soil sample is measured using the Ultra-Rae PID manufactured by Rae Systems and calibrated with 100.0 ppm isobutylene standard gas from Scott Specialty Gases, Freemont, Colorado.

1.10.8.1 EQUIPMENT CALIBRATION AND QUALITY CONTROL

The PID is calibrated at least 3 times daily and checked with the calibration gas hourly. When a check with the calibration gas indicates the instrument reading is 10 ppm too high or low it is calibrated. Variation in the daytime ambient temperature causes the variation. Care is taken to ensure the calibration gas and the instrument are at the same temperature.

1.10.8.2 EQUIPMENT MAINTENANCE AND DECONTAMINATION

All sampling and survey equipment is routinely decontaminated between samples. Nitrile gloves are worn and changed with each sampling iteration.

1.10.9 Analyses

Soil and ground water are analyzed in accordance with the following EPA Methods.

The analytical suite for soil samples includes;

- TPH (EPA method 8015M)
- BTEX (EPA method 8020 or equivalent)
- Chloride (EPA method 4500 Cl⁻B)
- SPLP for selected samples

The analytical suite for water samples include:

- TPH (EPA method 8015B)
- Metals (EPA method 600/4-79-020) New Mexico WQCC and EPA RCRA as listed
- BTEX (EPA method 8021B)
- Total Dissolved Solids (EPA method 150.1)
- PAH (EPA method 8270)

1.11 DATA EVALUATION AND USABILITY

All data is reviewed based on the Data Quality Objectives in the section 1.2. The contracting laboratory provides Quality Assurance/Quality Control (QA/QC) information to support the quality of each batch of sample data. TPH and BTEX results are deemed adequate and usable if the "% extraction accuracy" (%EA) is \pm 30% and "% instrument accuracy" (%IA) is \pm 30%. QA/QC data is reported for each sample batch at the bottom of each analytical report and were all deemed acceptable.