

RECEIVED By JKeyes at 1:54 pm, May 11, 2016

Reference No. 088210-22

Samples must be taken at 26' bgs and 31' bgs to complete vertical delineation.

May 9, 2016

Mr. Zane Kurtz Sr. Safety and Environmental Representative 5509 Champions Dr. Midland, TX 79706 VIA E-Mail: zane_kurtz@eogresources.com

Dear Mr. Kurtz:

Re: Assessment Summary Report Fox State #3 and #4 1RP-3460 EOG Resources, Inc. Site Location: Unit H, Sec. 30, T 25-S, R 34-E (Lat 32.1029°, Long -103.5027°) Lea County, New Mexico

On behalf of EOG Resources Inc. (EOG), GHD Services, Inc. (GHD, formerly Conestoga-Rovers & Associates) is pleased to present this report for the above referenced site. Assessment activities were performed at the Fox State #3 and #4 (hereafter referred to as the "Site"). Field work and data collected for the Site was performed by CH2M Hill staff. The Site is located within Unit H, Section 30, Township 25 South, Range 34 East, in Lea County, New Mexico (Figure 1). According to the New Mexico State Land Office Interactive Oil and Gas Map, the State of New Mexico is the surface and subsurface estate owner.

The Site is located approximately 18 miles west of Jal, New Mexico. The release occurred from a leaking 4-inch diameter flow line located adjacent to the access road to the well. According to EOG personnel, a release of approximately 50 barrels (bbls) of produced water was released from a split in the line. Approximately 40 bbls of produced water was recovered. The release occurred on November 21, 2014. A C-141 Form was submitted to the New Mexico Oil Conservation Division (NMOCD) and remediation permit (RP) number 1RP-3832-0 was assigned.

1. Recommended Remediation Action Limits

There are relatively few groundwater wells in the area of the Site with which to obtain a depth to groundwater. Based on information available from the NMOCD GIS Oil and Gas Map, the depth to groundwater in well C-02317 located approximately 0.68 miles southeast of the Site is 50 feet (ft) below ground surface (bgs). Based on the information provided, it appears the well was installed in 1880 and the current depth to groundwater is most likely deeper than this.

In order to obtain more current depth to groundwater data, the United States Geologic Survey (USGS) National Water Information Service (NWIS) was checked. The USGS NWIS database indicated the presence of two wells that were screened within the alluvial aquifer in the vicinity of the Site. Well USGS 320059103333501 26S.33E.27.21112 is located approximately 6.3 miles to the southwest of the Site (Figure 3). The depth to groundwater in this well was 76.60 ft bgs in 2001. Well USGS 320918103211701 25S.35E.03.233244 is located approximately 9.7 miles to the northeast of the Site. The depth to groundwater in this well was 107.77 ft bgs in 1996. Extrapolating the distances and depths of these wells in relation to the Site, the depth to groundwater in the vicinity of the Site should be approximately 90 ft bgs. Based on this, the depth to groundwater appears to be between 50 and 100 ft bgs.

There do not appear to be any well head protection areas and no surface water bodies within 200 to 1000 ft of the Site. Therefore, the preliminary total ranking score for the Site is 10 (see table below).

Based on this score, the applicable NMOCD Site-specific Recommended Remediation Action Limits (RRALs) are 10 milligrams per kilogram (mg/kg) for benzene, 50 mg/kg for total benzene, toluene, ethylbenzene, and xylenes (BTEX), 1000 mg/kg for total petroleum hydrocarbons (TPH), and 500 mg/kg for chlorides.

New Mexico Oil Conservation Division Site Assessment	
Ranking Criteria	Score
Depth to Ground Water (> 50 ft bgs, <100 ft bgs)	10
Wellhead Protection Area (> 1000 ft from water source, > 200 ft from domestic source)	0
Distance to Surface Body Water (200-1000 ft)	0
Ranking Criteria Total Score	10*
*The ranking criteria total score of 10 equates to NMOCD established RRALs of	10 mg/kg for

benzene, 50 mg/kg for total BTEX, 1,000 mg/kg for TPH¹, and 500 mg/kg for chlorides.

1. NMOCD Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993

2. Assessment Activities

On November 25, 2014, EOG contracted CH2M HILL to assess the extent of the release. Watson Construction was contracted to excavate impacted soils and assist with the assessment. CH2M HILL provided contractor oversight and field screening activities. Initial assessment activities were performed using field screening methods.

On December 4, 2014 CH2M HILL returned to the site to perform further excavation and site assessment activities. Soil samples were collected for laboratory analysis of benzene, toluene, ethylbenzene and xylene by EPA Method 8015, total petroleum hydrocarbon (TPH) diesel range organics (DRO) and gasoline range organics (GRO) by EPA Method 8015, and chloride by EPA Method 300. Additional hand auger borings were advanced to assess the horizontal extent of concentrations (Figure 2).

On May 19, 2015, CH2M HILL returned to the site to further assess the vertical extent of chloride concentrations at the Site. Soil samples were collected at 7, 9, and 11 feet (ft) below ground surface (bgs). Chloride concentrations observed from this assessment were above the RRAL at a depth of 11 ft bgs. Due to this, CH2M HILL and Watson mobilized a track hoe to the site. Additional samples were collected at 11 ft bgs, 16 ft bgs, and 21 ft bgs. Chloride concentrations were observed to decrease with depth (Table 1). The concentration at 21 ft bgs was 304 mg/kg, almost below the RRAL.

Based on this, it appears that the vertical extent of petroleum hydrocarbons and chloride has been assessed. The horizontal extent of chlorides has been assessed in the northern, southern, and western directions of the release (Figure 2). Additional assessment will be required in the eastern direction of the release.

A total of approximately 630 yards have been excavated and stockpiled on site. Impacted soil will be removed from the site and disposed of at a regulated facility.

3. Summary and Recommendations

Based on the assessment of the petroleum hydrocarbon and chloride concentrations, GHD recommends the following:

- Complete the excavation of the eastern extent of the release to a depth of 4 ft bgs.
- Removal of impacted soil on the northern and southern walls of the excavation until chloride concentrations are below the RRAL.
- Placement of a 20 mil polyethylene liner in the bottom of the excavation at a depth of 4 ft bgs.
- Backfilling of the excavation with clean fill material and wheel compacting to grade.
- Fertilizing and reseeding of the disturbed area with a New Mexico State Land Office-approved seed mix.

GHD will also submit a Revegetation and Noxious Weed Management Plan (Revegetation Plan) to the NMSLO for approval. The plan will include a plan to periodically monitor the site for vegetative growth and monitoring for noxious weeds. Earth work will not take place until the Revegetation Plan is approved.

Following completion of the above activities EOG will request that no further action be required for the Site. Should you have any questions, or require additional information regarding this submittal, please feel free to contact Bernie Bockisch at (505) 884-0672 or Bernard.Bockisch@ghd.com.

Sincerely,

GHD

Bernard Bockisch Senior Project Manager

BB/mc/02

J-11 Walter

Jeff Walker, Project Manager

Figures

SOURCE: USGS 7.5 MINUTE QUAD "PADUCA BREAKS EAST AND ANDREWS PLACE, NEW MEXICO"

LAT/LONG: 32.10255° NORTH, 103.50457° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO EAST

Figure 1

SITE LOCATION MAP FOX 30 STATE #3 AND #4 (1RP3460) LEA COUNTY, NEW MEXICO EOG Resources

088210-22(000)GN-DL001 MAY 5/2016

088210-22(000)GN-DL001 MAY 5/2016

	LEGEND	
\oplus	Well Location	

088210-22(000)GN-DL001 MAY 5/2016

WELL LOCATION MAP FOX 30 STATE #3 AND #4 (1RP3460) LEA COUNTY, NEW MEXICO *EOG Resources*

Tables

Table 1 Fox State 30 #3 and #4 Summary of Analytical Data

					Analyte and Re	ecommend	ed Remed	diation Ac	tion Level	1	
			Benzene 10	Toluene 	Ethylbenzene	Xylenes 	BTEX 50	TPH (GRO) 	TPH (DRO) 	TPH2 1000	Chloride 250
Sample ID	Depth (ft. bgs)	Date									
Fox 30-SW-W	4	12/4/2014	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<4.00	<50.0	<4.00	<25.0
Fox 30-SW-N	4	12/4/2014	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<4.00	<50.0	<4.00	1460
Fox 30-SW-N-1	4	12/4/2014	<0.0200	<0.0200	<0.0200	<0.0200	< 0.0200	<4.00	<50.0	<4.00	117
Fox 30-SW-N-2	4	12/4/2014	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<4.00	<50.0	<4.00	63.2
Fox 30-SW-E	4	12/4/2014	<0.0200	<0.0200	<0.0200	<0.0200	< 0.0200	<4.00	<50.0	<4.00	<25.0
Fox 30-SW-S	4	12/4/2014	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<4.00	<50.0	<4.00	5450
Fox 30-SW-S-1	4	12/4/2014	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<4.00	<50.0	<4.00	<25.0
Fox 30-SW-S-2	4	12/4/2014	<0.0200	<0.0200	<0.0200	<0.0200	< 0.0200	<4.00	<50.0	<4.00	<25.0
Fox 30-BH-1-5.75	5.75	12/4/2014	<0.0200	<0.0200	<0.0200	< 0.0200	< 0.0200	<4.00	<50.0	<4.00	8260
FX30-3.5-4.0-NW-05192015	3.5-4.0	5/19/2015	NA	NA	NA	NA	NA	NA	NA	NA	<21.7
FX30-3.5-4.0-SW-05192015	3.5-4.0	5/19/2015	NA	NA	NA	NA	NA	NA	NA	NA	<22.0
FX30-6.5-7.0-FL-05192015	6.5-7.0	5/19/2015	NA	NA	NA	NA	NA	NA	NA	NA	1040
FX30-8.5-9.0-FL-05192015	8.5-9.0	5/19/2015	NA	NA	NA	NA	NA	NA	NA	NA	966
FX30-10.5-11.0-FL-05192015	10.5-11.0	5/19/2015	NA	NA	NA	NA	NA	NA	NA	NA	1410
SSFX30-11-FL-09032015	11	9/3/2015	NA	NA	NA	NA	NA	NA	NA	NA	1730
SSFX30-16-FL-09032015	16	9/3/2015	NA	NA	NA	NA	NA	NA	NA	NA	1430
SSFX30-21-FL-09032015	21	9/3/2015	NA	NA	NA	NA	NA	NA	NA	NA	304

Notes:

All samples were collected by CH2M Hill personnel.

BTEX indicates benzene, toluene, ethylbenzene, and xylene.

< indicates less than the laboratory reporting limit.

TPH indicates total petroleum hydrocarbons

All concentrations in milligrams per kilogram

Attachments

Attachment A

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:	Geographic Area:		
Groundwater	United States	ĬL-	GO

Click to hideNews Bulletins

- Effective May 5, 2016, we are experiencing a network outage in North Carolina which is impacting the real-time data display for that Water Science Center. Thank you for your patience as we work to resolve the issue.
- Try our new Mobile-friendly water data site from your mobile device!
- New improved user interface.
- Full News States

Groundwater levels for the Nation

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 320059103333501

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320059103333501 26S.33E.27.21112

Lea County, New Mexico

Latitude 32°01'16.0", Longitude 103°33'33.9" NAD83 Land-surface elevation 3,252.00 feet above NGVD29 The depth of the well is 200 feet below land surface. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer. **Output formats**

able of data
ab-separated data
Sraph of data
Reselect period

Date	Time	? Water- level date- time accuracy	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Water- level accuracy	? Status	? Method of measurement	? Measuring agency	? Source of measurem
1954-07-26		D	79.71			2		U		
1976-01-08		D	76.52			2		U		
1986-03-04		D	77.14			2		U		
1990-11-27		D	76.54			2		U		
1996-03-05		D	77.39			2		S		
2001-02-27		D	76.60			2		S		
2013-01-16	11:30 MST	m					0	S	USGS	
2013-02-14	09:50 MDT	m					Р	S	USGS	

Explanation							
Section	Code	Description					
Water-level date-time accuracy	D	Date is accurate to the Day					
Water-level date-time accuracy	m	Date is accurate to the Minute					
Water-level accuracy		Not determined					
Water-level accuracy	2	Water level accuracy to nearest hundredth of a foot					
Status		The reported water-level measurement represents a static level					
Status	0	Obstruction was encountered in the well (no water level was recorded).					

Section	Code	Description
Status	Р	Site was being pumped.
Method of measurement	S	Steel-tape measurement.
Method of measurement	U	Unknown
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement	А	Reported by another government agency (do not use "A" if reported by owner, use "O").
Source of measurement	R	Reported by person other than the owner, driller, or another government agency.
Source of measurement	S	Measured by personnel of reporting agency.
Source of measurement	U	Source is unknown.
Water-level approval status	А	Approved for publication Processing and review completed.
Water-level approval status	Р	Provisional data subject to revision.

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility Plug-Ins FOIA Privacy Policies and Notices <u>U.S. Department of the Interior</u> | <u>U.S. Geological Survey</u> **Title: Groundwater for USA: Water Levels URL: http://nwis.waterdata.usgs.gov/nwis/gwlevels?**

Page Contact Information: USGS Water Data Support Team Page Last Modified: 2016-05-05 12:51:15 EDT 0.53 0.4 nadww02 USA.gov

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:	Geographic Area:	
Groundwater	United States	GO

Click to hideNews Bulletins

- Effective May 5, 2016, we are experiencing a network outage in North Carolina which is impacting the real-time data display for that Water Science Center. Thank you for your patience as we work to resolve the issue.
- Try our new Mobile-friendly water data site from your mobile device!
- New improved user interface.
- Full News States

Groundwater levels for the Nation

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 320918103211701

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320918103211701 25S.35E.03.233244

Lea County, New Mexico

Latitude 32°09'36", Longitude 103°21'14" NAD27 Land-surface elevation 3,219.20 feet above NGVD29 The depth of the well is 122 feet below land surface. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer. **Output formats**

able of data
ab-separated data
Sraph of data
Reselect period

Date	Time	? Water- level date- time accuracy	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Water- level accuracy	? Status	? Method of measurement	? Measuring agency	? Source of measureme
1965-10-21		D	100.35			2		U		
1968-06-12		D	107.96			2	R	U		
1970-12-09		D	107.99			2		U		
1976-01-09		D	107.90			2		U		
1981-03-27		D	108.04			2		U		
1986-03-18		D	107.77			2		U		
1991-06-12		D	107.65			2		U		
1996-03-06		D	107.77			2		S		

Explanation							
Section	Code	Description					
Water-level date-time accuracy	D	Date is accurate to the Day					
Water-level accuracy	2	Water level accuracy to nearest hundredth of a foot					
Status		The reported water-level measurement represents a static level					
Status	R	Site had been pumped recently.					
Method of measurement	S	Steel-tape measurement.					
Method of measurement	U	Unknown					

Section	Code	Description				
Measuring agency		Not determined				
Source of measurement	U	Source is unknown.				
Water-level approval status	А	Approved for publication Processing and review completed.				

Questions about sites/data?	
Feedback on this web site	
Automated retrievals	
Data Tips	
Explanation of terms	
Subscribe for system changes	
News	
Accessibility Plug-Ins FOIA Privacy Policies and Notices	
U.S. Department of the Interior U.S. Geological Survey	TISA OOV
Title: Groundwater for USA: Water Levels	Bourney Madeliery
URL: http://nwis.waterdata.usgs.gov/nwis/gwlevels?	

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2016-05-05 12:45:48 EDT 0.66 0.53 nadww02

Attachment B Laboratory Analytical Reports

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703 Carroliton. Texas 75006 E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

FAX 915 . 585 . 4944 915-585-3443 432-689-6301 FAX 432.689.6313 972-242 -7750

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

(Corrected Report)

Leslie Voss CH2M Hill 700 Main St. Suite 400 Baton Rouge, LA, 70802

Report Date: May 4, 2015

Work Order:	14120801

Project Location: Lea County, NM Project Name: Fox 30 # 3 and # 4Fox 30 #3 and #4Project Number:

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

381458 Fox 30-SW-W soil 2014-12-04 15:40 2 381459 Fox 30-SW-N soil 2014-12-04 16:00 2 381460 Fox 30-SW-E soil 2014-12-04 16:00 2 381461 Fox 30-SW-E soil 2014-12-04 16:50 2 381462 Fox 30-SW-S soil 2014-12-04 16:50 2 381463 Fox 30-SW-V-S soil 2014-12-04 15:45 2 381463 Fox 30-SW-W-1 soil 2014-12-04 15:45 2 381464 Fox 30-SW-W-1 soil 2014-12-04 15:50 2 381465 Fox 30-SW-N-1 soil 2014-12-04 15:50 2 381465 Fox 30-SW-N-2 soil 2014-12-04 16:05 2 381466 Fox 30-SW-N-1 soil 2014-12-04 16:05 2 381466 Fox 30-SW-N-2 soil 2014-12-04 16:05 2	Received
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01110.05
381460 Fox 30-SW-E soil 2014-12-04 16:25 2 381461 Fox 30-SW-S soil 2014-12-04 16:50 2 381462 Fox 30-BH-1-5.75 soil 2014-12-04 16:50 2 381463 Fox 30-SW-W-1 soil 2014-12-04 17:20 2 381463 Fox 30-SW-W-1 soil 2014-12-04 15:45 2 381464 Fox 30-SW-W-2 soil 2014-12-04 15:50 2 381465 Fox 30-SW-N-1 soil 2014-12-04 16:05 2 381466 Fox 30-SW-N-2 soil 2014-12-04 16:05 2	014 - 12 - 05
381461 Fox 30-SW-S soil 2014-12-04 16:50 2 381462 Fox 30-BH-1-5.75 soil 2014-12-04 17:20 2 381463 Fox 30-SW-W-1 soil 2014-12-04 15:45 2 381464 Fox 30-SW-W-2 soil 2014-12-04 15:50 2 381465 Fox 30-SW-N-1 soil 2014-12-04 16:05 2 381466 Fox 30-SW-N-2 soil 2014-12-04 16:05 2	014-12-05
381462 Fox 30-BH-1-5.75 soil 2014-12-04 17:20 2 381463 Fox 30-SW-W-1 soil 2014-12-04 15:45 2 381464 Fox 30-SW-W-2 soil 2014-12-04 15:50 2 381465 Fox 30-SW-N-1 soil 2014-12-04 15:50 2 381465 Fox 30-SW-N-1 soil 2014-12-04 16:05 2 381466 Fox 30-SW-N-2 soil 2014-12-04 16:10 2	014-12-05
381463Fox 30-SW-W-1soil2014-12-0415:452381464Fox 30-SW-W-2soil2014-12-0415:502381465Fox 30-SW-N-1soil2014-12-0416:052381466Fox 30-SW-N-2soil2014-12-0416:102	014-12-05
381464Fox 30-SW-W-2soil2014-12-0415:502381465Fox 30-SW-N-1soil2014-12-0416:052381466Fox 30-SW-N-2soil2014-12-0416:102	014-12-05
381465 Fox 30-SW-N-1 soil 2014-12-04 16:05 22 381466 Fox 30-SW-N-2 soil 2014-12-04 16:10 22	014-12-05
381466 Fox 30-SW-N-2 soil 2014-12-04 16:10 2	014-12-05
	014-12-05
	014-12-05
381467 Fox 30-SW-E-1 soil 2014-12-04 16:30 2	014-12-05
381468 Fox 30-SW-E-2 soil 2014-12-04 16:35 2	014-12-05
381469 Fox 30-SW-S-1 soil 2014-12-04 16:55 2	014-12-05
<u>381470 Fox 30-SW-S-2 soil 2014-12-04 17:00 2</u>	014-12-05

Report Corrections (Work Order 14120801)

- 1/9/15: Added BTEX and TPH DRO/GRO to samples 381465, 381466, 381469, and 381470.
- 1/16/15: Added Chlorides to samples 381465, 381466, 381469, and 381470.
- 5/4/15: Dilution corrected for sample 381461

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 40 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Lefturch

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Report Contents

Case Narrative	5
Analytical Report	6
Sample 381458 (Fox 30-SW-W)	6
Sample 381459 (Fox 30-SW-N)	7
Sample 381460 (Fox 30-SW-E)	8
Sample 381461 (Fox 30-SW-S)	10
I ()	11
	13
	13
	13
I ()	15
1 ()	16
···· I · · · · · · · · · · · · · · · ·	16
I ()	16
Sample 381470 (Fox 30-SW-S-2)	18
Method Blanks	21
	21
•	21
	21
	22
	22
	$\frac{22}{22}$
	$\frac{22}{23}$
	23
	20
Laboratory Control Spikes	24
QC Batch 117866 - LCS (1)	24
QC Batch 117867 - LCS (1)	24
	25
QC Batch 117983 - LCS (1)	25
QC Batch 118409 - LCS (1)	26
QC Batch 118545 - LCS (1)	26
QC Batch 118546 - LCS (1)	27
QC Batch 118679 - LCS (1)	27
Matrix Spikes	29
-	29
	29 29
•	$\frac{29}{30}$
•	30
	31
QC Batch 118409 - $xMS(1)$	31
$\mathbb{Q} \subseteq Dauch = II = $	91

Page 3 of 40

QC Batch 118545 - MS (1)

QC Batch 118546 - MS (1)

QC Batch 118679 - MS (1)	33
Calibration Standards	34
QC Batch 117866 - CCV (1)	34
QC Batch 117866 - CCV (2)	34
QC Batch 117867 - CCV (1)	34
QC Batch 117867 - CCV (2)	34
QC Batch 117872 - CCV (1)	35
QC Batch 117872 - CCV (2)	35
QC Batch 117983 - CCV (1)	35
QC Batch 117983 - CCV (2)	35
QC Batch 117983 - CCV (3)	36
QC Batch 118409 - CCV (1)	36
QC Batch 118409 - CCV (2)	36
QC Batch 118545 - CCV (1)	36
QC Batch 118545 - CCV (2)	37
QC Batch 118546 - CCV (1)	37
QC Batch 118546 - CCV (2)	37
QC Batch 118679 - CCV (1)	37
QC Batch 118679 - CCV (2)	38
Appendix	39
	39
-	39
	39
	39
Attachments	40

Case Narrative

Samples for project Fox 30 #3 and #4 were received by TraceAnalysis, Inc. on 2014-12-05 and assigned to work order 14120801. Samples for work order 14120801 were received intact at a temperature of 8.5 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	99649	2014-12-08 at 16:00	117866	2014-12-09 at 16:00
BTEX	S 8021B	100163	2015-01-07 at $11:20$	118545	2015-01-09 at $12:40$
Chloride (IC)	E 300.0	99742	2014-12-12 at $08:30$	117983	2014-12-12 at $08:55$
Chloride (IC)	E 300.0	100349	2015-01-15 at $13:00$	118679	2015-01-15 at $14:21$
TPH DRO - NEW	S 8015 D	99656	2014-12-09 at $10:13$	117872	2014-12-10 at $10:24$
TPH DRO - NEW	S 8015 D	100120	2015-01-05 at $18:55$	118409	2015-01-06 at $08:24$
TPH GRO	S 8015 D	99649	2014-12-08 at $16:00$	117867	2014-12-09 at $16:30$
TPH GRO	S 8015 D	100163	2015-01-07 at $11:20$	118546	2015-01-09 at $12:46$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 14120801 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 381458 - Fox 30-SW-W

Laboratory: Midland								
Analysis: BTEX		Analytica	al Method:	S 8021E	3		Prep Method	: S 5035
QC Batch: 117866		Date Ana	alyzed:	2014-12	-09		Analyzed By	AK
Prep Batch: 99649		Sample Preparation:		2014-12	-08		Prepared By:	AK
				RL				
Parameter	Flag	Cert]	Result	Units	3	Dilution	RL
Benzene	$_{\rm Qs,U}$	3	<(0.0200	mg/Kg	r S	1	0.0200
Toluene	$_{\rm Qs,U}$	3	<(0.0200	m mg/Kg	5	1	0.0200
Ethylbenzene	$_{\rm Qs,U}$	3	<(0.0200	$\mathrm{mg/Kg}$	g	1	0.0200
Xylene	$_{\rm Qs,U}$	3	<	0.0200	mg/Kg	5	1	0.0200
						Spike	Percent	Recovery
Surrogate	Fla	ng Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.75	mg/Kg	1	2.00	88	70 - 130
4-Bromofluorobenzene (4-BFB)			2.09	$\mathrm{mg/Kg}$	1	2.00	104	70 - 130

Sample: 381458 - Fox 30-SW-W

Laboratory: Analysis: QC Batch: Prep Batch:	Chloride (IC)An117983Da		Analytical Date Anal Sample Pr	yzed:	E 300.0 2014-12-12	Analyz	Method: N/A ed By: RL ed By: RL
				RL	i		
Parameter		Flag	Cert	Result	Uni	ts Dilution	RL
Chloride		Qs	1,2,4	<25.0) mg/k	Kg 1	25.0

Sample: 381458 - Fox 30-SW-W

Laboratory:	Midland						
Analysis:	TPH DRO - NEW		Analytical N	Method:	S 8015 D	Prep Method:	N/A
QC Batch:	117872		Date Analy	zed:	2014-12-10	Analyzed By:	\mathbf{SC}
Prep Batch:	99656		Sample Pre	paration:		Prepared By:	\mathbf{SC}
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
DRO		U	3	$<\!50.0$	mg/Kg	1	50.0

Report Date: May 4, 2015 Fox 30 $\#3$ and $\#4$			v	Vork Order: 1 Fox 30 #3 a	Page Number: 7 of 40 Lea County, NM			
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			116	mg/Kg	1	100	116	70 - 130

Sample: 381458 - Fox 30-SW-W

Laboratory:MidlandAnalysis:TPH GROQC Batch:117867Prep Batch:99649		Γ	Date Ana	l Method lyzed: reparation	2014-12	2-09		Prep Metho Analyzed B Prepared B	y: AK
					RL				
Parameter	Flag		Cert	I	Result	Unit	s	Dilution	RL
GRO	U		3		<4.00	mg/K	g	1	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)				1.79	mg/Kg	1	2.00	90	70 - 130
4-Bromofluorobenzene (4-BFB)	Qsr	Qsr		1.32	mg/Kg	1	2.00	66	70 - 130

Sample: 381459 - Fox 30-SW-N

Laboratory:MidlandAnalysis:BTEXQC Batch:117866Prep Batch:99649		Date Ana	al Method: alyzed: Preparation:	S 8021E 2014-12 : 2014-12	-09		Prep Method Analyzed By Prepared By:	: AK
				RL				
Parameter	Flag	Cert		Result	Unit	3	Dilution	RL
Benzene	$_{\rm Qs,U}$	3	<	0.0200	mg/Kg	r S	1	0.0200
Toluene	Qs,U	3	<	0.0200	mg/Kg	g	1	0.0200
Ethylbenzene	$_{\mathrm{Qs,U}}$	3	<	0.0200	mg/Kg	r S	1	0.0200
Xylene	$_{\rm Qs,U}$	3	<	0.0200	mg/Kg	5	1	0.0200
Surrogate	Fla	ag Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)			1.80	mg/Kg	1	2.00	90	70 - 130
4-Bromofluorobenzene (4-BFB)			2.34	mg/Kg	1	2.00	117	70 - 130

Report Date: May 4, 2015	Work Order: 14120801	Page Number: 8 of 40
Fox 30 $\#3$ and $\#4$	Fox 30 $\#3$ and $\#4$	Lea County, NM

Sample: 381459 - Fox 30-SW-N

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 117983 99742		Analytical Date Anal Sample Pr	yzed:	E 300.0 2014-12-12		Prep Method: Analyzed By: Prepared By:	,
				RL	L			
Parameter		Flag	Cert	Result	t 1	Units	Dilution	RL
Chloride		Qs	1,2,4	1460) m	g/Kg	5	25.0

Sample: 381459 - Fox 30-SW-N

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NE 117872 99656	DRO - NEW Analytical Method:				5 D 12-10	Prep Me Analyzec Prepared	l By: SC
]	RL			
Parameter		Flag	Cert	Res	ult	Units	Dilution	RL
DRO		U	3	<5	0.0	mg/Kg	1	50.0
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
	Tiag	Oert			1		v	
n-Tricosane			114	m mg/Kg	1	100	114	70 - 130

Sample: 381459 - Fox 30-SW-N

Laboratory: Midland Analysis: TPH GRO QC Batch: 117867 Prep Batch: 99649			Date An	al Methoo alyzed: Preparatic	2014-1	2-09		Prep Metho Analyzed By Prepared By	y: AK
					RL				
Parameter	Flag		Cert		Result	Uni	ts	Dilution	RL
GRO	U		3		<4.00	mg/K	g	1	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0		1.82	mg/Kg	1	2.00	91	70 - 130
4-Bromofluorobenzene (4-BFB)				1.47	mg/Kg	1	2.00	74	70 - 130

Report Date: May 4, 2015	Work Order: 14120801	Page Number: 9 of 40
Fox 30 $\#3$ and $\#4$	Fox 30 $\#3$ and $\#4$	Lea County, NM

Sample: 381460 - Fox 30-SW-E

Laboratory: Midland Analysis: BTEX		Analytica	l Method:	S 8021E	3		Prep Method	: S 5035
QC Batch: 117866		Date Ana	lyzed:	2014-12	-09		Analyzed By:	AK
Prep Batch: 99649		Sample P	reparation:	2014-12	-08		Prepared By:	AK
				RL				
Parameter	Flag	Cert]	Result	Units	3	Dilution	RL
Benzene	$_{\rm Qs,U}$	3	<	0.0200	mg/Kg	S	1	0.0200
Toluene	$_{\rm Qs,U}$	3	<	0.0200	m mg/Kg	5	1	0.0200
Ethylbenzene	$_{\rm Qs,U}$	3	<	0.0200	m mg/Kg	5	1	0.0200
Xylene	$_{\rm Qs,U}$	3	<	0.0200	mg/Kg	S	1	0.0200
						Spike	Percent	Recovery
Surrogate	Fla	g Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.78	mg/Kg	1	2.00	89	70 - 130
4-Bromofluorobenzene (4-BFB)			2.31	$\mathrm{mg/Kg}$	1	2.00	116	70 - 130

Sample: 381460 - Fox 30-SW-E

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 117983 99742		Analytical Date Anal Sample Pr	yzed:	E 300.0 2014-12-12	Prep Metho Analyzed B Prepared B	y: RL			
		RL								
Parameter		Flag	Cert	Result	Units	5 Dilution	RL			
Chloride		Qs	1,2,4	<25.0) mg/Kg	g 1	25.0			

Sample: 381460 - Fox 30-SW-E

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NE 117872 99656	Date	lytical Metho e Analyzed: ple Preparat	2014-1	-	0 Prep M 0 Analyze Prepare		
]	RL			
Parameter		Flag	Cert	Res	ult	Units	Dilution	RL
DRO		U	3	<5	0.0	m mg/Kg	1	50.0
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			112	m mg/Kg	1	100	112	70 - 130

Report Date: May 4, 2015	Work Order: 14120801	Page Number: 10 of 40
Fox 30 $\#3$ and $\#4$	Fox 30 $\#3$ and $\#4$	Lea County, NM

Sample: 381460 - Fox 30-SW-E

Laboratory: Midland Analysis: TPH GRO QC Batch: 117867 Prep Batch: 99649			Date An	al Methoo alyzed: Preparatio	2014-1	2-09		Prep Metho Analyzed B Prepared B	y: AK
					RL				
Parameter	Flag		Cert		Result	Uni	ts	Dilution	RL
GRO	U		3		<4.00	mg/K	g	1	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)				1.83	mg/Kg	1	2.00	92	70 - 130
4-Bromofluorobenzene (4-BFB)				1.43	mg/Kg	1	2.00	72	70 - 130

Sample: 381461 - Fox 30-SW-S

Laboratory: Midland Analysis: BTEX QC Batch: 117866 Prep Batch: 99649		Date Ana	l Method: lyzed: reparation:	S 8021E 2014-12 2014-12	-09		Prep Method Analyzed By Prepared By	: AK
				RL				
Parameter	Flag	Cert		Result	Unit	s	Dilution	RL
Benzene	Qs,U	3	<	0.0200	mg/K	g	1	0.0200
Toluene	$_{\rm Qs,U}$	3	<	0.0200	mg/K	g	1	0.0200
Ethylbenzene	$_{\rm Qs,U}$	3	<	0.0200	mg/K	g	1	0.0200
Xylene	Qs,U	3	<	0.0200	mg/K	g	1	0.0200
						Spike	Percent	Recovery
Surrogate	Flag	g Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.75	mg/Kg	1	2.00	88	70 - 130
4-Bromofluorobenzene (4-BFB)			2.29	$\mathrm{mg/Kg}$	1	2.00	114	70 - 130

Sample: 381461 - Fox 30-SW-S

Laboratory:	Lubbock				
Analysis:	Chloride (IC)	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	117983	Date Analyzed:	2014 - 12 - 12	Analyzed By:	RL
Prep Batch:	99742	Sample Preparation:		Prepared By:	RL
				 1	

 $continued \dots$

Report Date Fox 30 #3 a	:: May 4, 2015 nd #4		V	Vork Order: Fox 30 #3			Page Number: 11 of 40 Lea County, NM		
sample 38140	61 continued								
Parameter		Flag	Cert	Ι	RL Result	Uni	ts	Dilution	RL
Parameter		Flag	Cert				Dilution	RL	
Chloride		Qs	1,2,4		5450	mg/K	g	50	25.0
Sample: 381461 - Fox 30-SW-SLaboratory:MidlandAnalysis:TPH DRO - NEWQC Batch:117872Prep Batch:99656Sample Preparation:							Prep Method: N/A Analyzed By: SC Prepared By: SC		
Parameter		Flag	Cert	Т	RL Result	Unit	-	Dilution	RL
DRO		U	3		<50.0	mg/K		1	50.0
Surrogate n-Tricosane	Flag	Cert	Result 110	Units mg/Kg	Dilu 1	tion Ar	pike nount 100	Percent Recovery 110	Recovery Limits 70 - 130
Sample: 38 Laboratory: Analysis: QC Batch: Prep Batch:	1461 - Fox 30-SV Midland TPH GRO 117867 99649	w-s	Date A	cal Method nalyzed: Preparation	2014-1	12-09		Prep Metho Analyzed B Prepared B	y: AK
Parameter		Flag	Cert	Ι	RL Result	Unit	ts	Dilution	RL
GRO		U	3		<4.00	mg/K	g	1	4.00
Surrogate Trifluorotoluo 4-Bromofluor	ene (TFT) robenzene (4-BFB)		'lag Cert	Result 1.84 1.43	Units mg/Kg mg/Kg	Dilution 1 1	Spike Amount 2.00 2.00	Percent Recovery 92 72	Recovery Limits 70 - 130 70 - 130

Report Date: May 4, 2015	Work Order: 14120801	Page Number: 12 of 40
Fox 30 $\#3$ and $\#4$	Fox 30 $\#3$ and $\#4$	Lea County, NM

Sample: 381462 - Fox 30-BH-1-5.75

Laboratory: Midland Analysis: BTEX QC Batch: 117866 Prep Batch: 99649		Date Ana	l Method: lyzed: reparation:	S 8021F 2014-12 2014-12	-09		Prep Method Analyzed By Prepared By:	AK
1		Ĩ	Ĩ	RL			i v	
Parameter	Flag	Cert		Result	Unit	5	Dilution	RL
Benzene	Qs,U	3	<	0.0200	mg/Kg	r	1	0.0200
Toluene	$_{\rm Qs,U}$	3	<	0.0200	mg/Kg	r 5	1	0.0200
Ethylbenzene	$_{\rm Qs,U}$	3	<	0.0200	mg/Kg		1	0.0200
Xylene	$_{\rm Qs,U}$	3	<	0.0200	mg/Kg	5	1	0.0200
Surrogate	Fla	ag Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)			1.74	mg/Kg	1	2.00	87	70 - 130
4-Bromofluorobenzene (4-BFB)			2.28	mg/Kg	1	2.00	114	70 - 130

Sample: 381462 - Fox 30-BH-1-5.75

Laboratory: Analysis: QC Batch: Prep Batch:	Chloride (IC) 117983		Analytical Date Analy Sample Pr	yzed:	E 300.0 2014-12-12	Prep Method: Analyzed By: Prepared By:	$ {RL}$
				RL	I.		
Parameter		Flag	Cert	Result	Units	Dilution	RL
Chloride		Qs	1,2,4	8260	mg/Kg	100	25.0

Sample: 381462 - Fox 30-BH-1-5.75

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NE 117872 99656	ĊW	Date	lytical Metho e Analyzed: ple Preparat	2014-1	_	Prep Me Analyzec Prepared	l By: SC
]	RL			
Parameter		Flag	Cert	Res	ult	Units	Dilution	RL
DRO		U	3	<5	0.0	mg/Kg	1	50.0
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			114	m mg/Kg	1	100	114	70 - 130

Report Date: May 4, 2015	Work Order: 14120801	Page Number: 13 of 40
Fox 30 $\#3$ and $\#4$	Fox 30 $\#3$ and $\#4$	Lea County, NM

Sample: 381462 - Fox 30-BH-1-5.75

Laboratory: Midland Analysis: TPH GRO QC Batch: 117867 Prep Batch: 99649			Date An	al Methoo alyzed: Preparatio	2014-1	2-09		Prep Metho Analyzed B Prepared B	y: AK
					RL				
Parameter	Flag		Cert		Result	Unit	ts	Dilution	RL
GRO	U		3		<4.00	mg/K	g	1	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)				1.83	mg/Kg	1	2.00	92	70 - 130
4-Bromofluorobenzene (4-BFB)				1.42	$\mathrm{mg/Kg}$	1	2.00	71	70 - 130

Sample: 381465 - Fox 30-SW-N-1

Laboratory:	Midland				
Analysis:	BTEX	Analytical Method:	S 8021B	Prep Method:	S 5035
QC Batch:	118545	Date Analyzed:	2015-01-09	Analyzed By:	AK
Prep Batch:	100163	Sample Preparation:	2015-01-07	Prepared By:	AK
~ ~ ~					

Comment: Client added 12/31/2014.

				RL				
Parameter	Flag	Cert		Result	Unit	S	Dilution	RL
Benzene ¹	$_{\rm Qs,U}$	3	< 0.0200		mg/Kg		1	0.0200
Toluene	U	3	< 0.0200		mg/Kg		1	0.0200
Ethylbenzene	U	3	< 0.0200		mg/Kg		1	0.0200
Xylene	U	3	< 0.0200		m mg/Kg		1	0.0200
C		C (TT •/		Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.75	m mg/Kg	1	2.00	88	70 - 130
4-Bromofluorobenzene (4-BFB)			1.97	mg/Kg	1	2.00	98	70 - 130

Report Date: May 4, 2015 Fox 30 $\#3$ and $\#4$			Order: 14120 30 #3 and #	Page Number: 14 of 40 Lea County, NM		
Sample: 381465 - Fox 30-	SW-N-1					
Laboratory: Lubbock Analysis: Chloride (IC) QC Batch: 118679 Prep Batch: 100349 Comment: Client added 12/3	31/2014.	Analytical Date Anal Sample Pr	yzed: 2	E 300.0 2015-01-15	Prep Method: Analyzed By: Prepared By:	N/A RL RL
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride		1,2,4	117	m mg/Kg	1	25.0
Sample: 381465 - Fox 30-SW-N-1 Laboratory: Midland Analysis: TPH DRO - NEW QC Batch: 118409 Prep Batch: 100120 Comment: Client added 12/31/2014.		Date An	cal Method: 1alyzed: Preparation:	S 8015 D 2015-01-06 2015-01-05	Prep Method: Analyzed By: Prepared By:	m N/A SC SC
Parameter	Flag	Cert	RL Result	Units	Dilution	RL

1 aranneter		1 mg	0010	100	bull	Omb	Difution	1012
DRO	H,Qs,U 3		<	50.0	mg/Kg	1	50.0	
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			91.9	m mg/Kg	1	100	92	70 - 130

Sample: 381465 - Fox 30-SW-N-1

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 118546 100163		Analytical M Date Analyze Sample Prepa	ed: 201	015 D 5-01-09 5-01-07	Prep Method Analyzed By: Prepared By:	AK
Comment: C	lient added $12/3$	1/2014.					
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
GRO	2	Qs,U	3	<4.00	m mg/Kg	1	4.00

Fox 30 $\#3$ and $\#4$		Fox 30 #3	3 and #4	Lea County, NM				
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)	~		1.80	mg/Kg	1	2.00	90	70 - 130
4-Bromofluorobenzene (4-BFB)			1.88	$\mathrm{mg/Kg}$	1	2.00	94	70 - 130

Work Order: 14120801

Page Number: 15 of 40 $\,$

Sample: 381466 - Fox 30-SW-N-2

Report Date: May 4, 2015

Laboratory:	Midland				
Analysis:	BTEX	Analytical Method:	S 8021B	Prep Method:	S 5035
QC Batch:	118545	Date Analyzed:	2015-01-09	Analyzed By:	AK
Prep Batch:	100163	Sample Preparation:	2015-01-07	Prepared By:	AK
Commont. C	light added 19/21/2014				

Comment: Client added 12/31/2014.

				RL				
Parameter	Flag	Cert		Result	Unit	S	Dilution	RL
Benzene ³	$_{\rm Qs,U}$	3	~	< 0.0200	mg/K	g	1	0.0200
Toluene	U	3	~	< 0.0200	mg/K	g	1	0.0200
Ethylbenzene	U	3	~	< 0.0200	$\mathrm{mg/K}$	g	1	0.0200
Xylene	U	3	~	< 0.0200	mg/K	g	1	0.0200
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.74	mg/Kg	1	2.00	87	70 - 130
4-Bromofluorobenzene (4-BFB)			1.92	m mg/Kg	1	2.00	96	70 - 130

Sample: 381466 - Fox 30-SW-N-2

Laboratory:	Lubbock				
Analysis:	Chloride (IC)	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	118679	Date Analyzed:	2015-01-15	Analyzed By:	RL
Prep Batch:	100349	Sample Preparation:		Prepared By:	RL
Comment: C	lient added $12/31/2014$.				

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride		1,2,4	63.2	m mg/Kg	1	25.0

Report Date Fox 30 #3 a	e: May 4, 2015 and $\#4$				ork Order Fox 30 #3	: 14120801 3 and $#4$			Page Number: 16 of 4 Lea County, NM	
Sample: 38	31466 - Fox 30	-SW-N-2								
Laboratory: Analysis: QC Batch: Prep Batch: Comment: C	Midland TPH DRO - N 118409 100120 Zlient added 12/			Date	lytical M e Analyze ple Prepa	ed: 2	8015 D 015-01-06 015-01-05		Prep Met Analyzed Prepared	By: SC
				<i>c</i>		RL				
Parameter		Flag		Cert		Result	Un		Dilution	RL
DRO		$_{\rm H,Qs,U}$		3		<50.0	mg/l	хg	1	50.0
Surrogate	Flag	g Cert	5	Result	Units	Dilu		Spike mount	Percent Recovery	Recovery Limits
n-Tricosane		,		96.4	mg/Kg	ç 1		100	96	70 - 130
Laboratory: Analysis: QC Batch: Prep Batch:	31466 - Fox 30 Midland TPH GRO 118546 100163 Zlient added 12/			Analytica Date Ana Sample F	alyzed:	2015-0	1-09		Prep Metho Analyzed B Prepared B	y: AK
Danamatan		Flow		Cert		RL Result	Um	:+-	Dilution	DI
$\frac{\text{Parameter}}{\text{GRO}}$	4	Flag				<4.00	Un mg/l		Dilution 1	RL 4.00
GNU		Qs,U		3		<4.00	ing/	ng	1	4.00
Surrogate			Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolu	()				1.74	$\mathrm{mg/Kg}$	1	2.00	87	70 - 130
4-Bromofluor	robenzene (4-BI	FB)			1.86	m mg/Kg	1	2.00	93	70 - 130

Report Date: May 4, 201 Fox 30 $\#3$ and $\#4$		Work Order: 14120801 Fox 30 #3 and #4			Page Number: 17 of 40 Lea County, NM		
Sample: 381469 - Fox	30-SW-S-1						
Laboratory: Midland Analysis: BTEX QC Batch: 118545 Prep Batch: 100163 Comment: Client added 1	2/31/2014.	Analytical M Date Analyze Sample Prepa	ed: 2015-01-	.09	Prep Metho Analyzed B Prepared B	y: AK	
			RL				
Parameter	Flag	Cert	Result	Units	Dilution	RL	
Benzene ⁵	Qs,U	3	< 0.0200	mg/Kg	1	0.0200	
Toluene	U	3	< 0.0200	mg/Kg	1	0.0200	
		3	< 0.0200	mg/Kg	1	0.0200	
Ethylbenzene	U	5					

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.73	mg/Kg	1	2.00	86	70 - 130
4-Bromofluorobenzene (4-BFB)			1.98	$\mathrm{mg/Kg}$	1	2.00	99	70 - 130

Sample: 381469 - Fox 30-SW-S-1

Laboratory: Analysis: QC Batch: Prep Batch:	Chloride (IC) 118679	Analytical Method: Date Analyzed: Sample Preparation:	E 300.0 2015-01-15	Prep Method: Analyzed By: Prepared By:	$ {RL}$
Comment: C	lient added $12/31/2014$.				

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride		1,2,4	<25.0	mg/Kg	1	25.0

Sample: 381469 - Fox 30-SW-S-1

Laboratory:	Midland				
Analysis:	TPH DRO - NEW	Analytical Method:	S 8015 D	Prep Method:	N/A
QC Batch:	118409	Date Analyzed:	2015-01-06	Analyzed By:	\mathbf{SC}
Prep Batch:	100120	Sample Preparation:	2015-01-05	Prepared By:	\mathbf{SC}
Comment: C	lient added $12/31/2014$.				

 $continued \dots$

sample 381469 continu Parameter Parameter DRO Surrogate	ed Flag Flag _{H,Qs,U}		Cert		RL				
Parameter DRO	Flag		Cert	· ·					
DRO	-				Result	Un	its	Dilution	RI
DRO	-				RL				
	$_{\rm H,Qs,U}$		Cert	Cert Result		Un	its	Dilution	RI
Surrogate			3		$<\!50.0$	mg/l	Kg	1	50.0
Surrogate		П	14	TT •/	D.1		Spike	Percent	Recovery
n-Tricosane	Flag Cert	t R	esult 91.9	Units mg/Kg	Dilut		$\frac{\text{mount}}{100}$	Recovery 92	Limits 70 - 130
Laboratory: Midland Analysis: TPH GF QC Batch: 118546 Prep Batch: 100163 Comment: Client adde		Ι	Date Ana	al Method alyzed: Preparatio	2015-0 on: 2015-0	1-09		Prep Method Analyzed By Prepared By	v: AK
Parameter	Flag		Cert		RL Result	Un	ite	Dilution	RI
GRO ⁶	Qs,U		3		<4.00	mg/1		1	4.00
Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene		Flag	Cert	Result 1.81 1.88	Units mg/Kg mg/Kg	Dilution 1 1	Spike Amount 2.00 2.00	Percent Recovery 90 94	Recovery Limits 70 - 130 70 - 130

Analysis:	BIEA	Analytical Method:	5 8021B	Prep Metnoa:	5 5035
QC Batch:	118545	Date Analyzed:	2015-01-09	Analyzed By:	AK
Prep Batch:	100163	Sample Preparation:	2015-01-07	Prepared By:	AK
Comment: C	lient added $12/31/2014$.				

				RL					
Parameter		Flag	Cert	Result	Units	Dilution	RL		
Benzene	7	Qs,U	3	< 0.0200	m mg/Kg	1	0.0200		
					continued				

For $30 \# 3$ and $\# 4$	Proof Date: May 4, 2015 Work Order: 14120801 x 30 #3 and #4 Fox 30 #3 and #4						Page Number: 19 of 40 Lea County, NM		
sample 381470 continued									
				RL					
Parameter	Flag	Cert		Result	Unit		Dilution	RL	
Toluene	U	3		< 0.0200	mg/K		1	0.0200	
Ethylbenzene	U	3	< 0.0200 mg/Kg		•	1	0.0200		
Xylene	U	3		< 0.0200	m mg/Kg		1	0.0200	
						Spike	Percent	Recovery	
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits	
Trifluorotoluene (TFT)			1.68	mg/Kg	1	2.00	84	70 - 130	
4-Bromofluorobenzene (4-BFB)			1.87	m mg/Kg	1	2.00	94	70 - 130	
Sample: 381470 - Fox 30-SV	V-S-2								
Sample: 381470 - Fox 30-SV Laboratory: Lubbock Analysis: Chloride (IC) QC Batch: 118679 Prep Batch: 100349 Comment: Client added 12/31/2		Date A	tical Met Analyzed: e Prepara	2015	00.0 5-01-15		Prep Met Analyzed Prepared	By: RL	
Laboratory: Lubbock Analysis: Chloride (IC) QC Batch: 118679 Prep Batch: 100349		Date A	Analyzed:	ation:			Analyzed	By: RL	
Laboratory: Lubbock Analysis: Chloride (IC) QC Batch: 118679 Prep Batch: 100349 Comment: Client added 12/31/2	2014.	Date A Sampl	Analyzed:	2015 ation: RL	5-01-15	s	Analyzed Prepared	By: RL By: RL	
Laboratory: Lubbock Analysis: Chloride (IC) QC Batch: 118679 Prep Batch: 100349		Date A	Analyzed:	ation:			Analyzed	By: RL	
Laboratory: Lubbock Analysis: Chloride (IC) QC Batch: 118679 Prep Batch: 100349 Comment: Client added 12/31/2 Parameter	2014. Flag	Date A Sampl	Analyzed:	2015 ation: RL Result	5-01-15 Unit		Analyzed Prepared Dilution	By: RL By: RL RL	
Laboratory: Lubbock Analysis: Chloride (IC) QC Batch: 118679 Prep Batch: 100349 Comment: Client added 12/31/3 Parameter Chloride Sample: 381470 - Fox 30-SV	2014. Flag V-S-2	Date A Sampl Cert 1,2,4	Analyzed: e Prepara	$\begin{array}{c} & 2018 \\ \hline \text{ation:} \\ \\ \hline \text{RL} \\ \hline \text{Result} \\ \hline \\ $	5-01-15 Unit		Analyzed Prepared Dilution 1 Prep Met	By: RL By: RL RL 25.0 hod: N/A	
Laboratory: Lubbock Analysis: Chloride (IC) QC Batch: 118679 Prep Batch: 100349 Comment: Client added 12/31/3 Parameter Chloride Sample: 381470 - Fox 30-SV Laboratory: Midland	2014. Flag V-S-2	Date A Sampl Cert 1,2,4	Analyzed: e Prepara	$\begin{array}{c} & 2018 \\ ation: \\ \hline \\ RL \\ \hline \\ $	5-01-15 Unit mg/K		Analyzed Prepared Dilution 1	By: RL By: RL RL 25.0 hod: N/A By: SC	

Comment: Client added 12/31/2014.

					RL			
Parameter		Flag	Cert Result		Units	Dilution	RL	
DRO	H,Qs,U		3	<50.0		mg/Kg	1	50.0
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane	0		92.9	$\mathrm{mg/Kg}$	1	100	93	70 - 130
Fox $30 \# 3$ and	#4		Fox	$30 \ \#3 \ \text{and} \ \#4$	Lea County, NM			
----------------------------	---	---------------	--	-------------------------------	----------------	-------	---	---------------------
Sample: 3814	70 - Fox 30-	SW-S-2						
Analysis: T QC Batch: 1	/idland TPH GRO 18546 00163 nt added 12/3	1/2014.	Analytical M Date Analyz Sample Prep	ed: 2015-01-	09		Prep Method Analyzed By Prepared By	: AK
Parameter		Flag	Cert	RL Result	Units		Dilution	RL
GRO	8	$_{\rm Qs,U}$	3	<4.00	m mg/Kg		1	4.00
						Spike	Percent	Recovery

Work Order: 14120801

Page Number: 20 of 40

Report Date: May 4, 2015

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.71	mg/Kg	1	2.00	86	70 - 130
4-Bromofluorobenzene (4-BFB)			1.79	$\mathrm{mg/Kg}$	1	2.00	90	70 - 130

Method Blanks

Method Blank (1)	QC Batch: 117866							
QC Batch: 117866		Date A	Analyzed:	2014-12-	09		Analyzed	l By: AK
Prep Batch: 99649		QC Pr	reparation:	2014-12-	08		Prepared	By: AK
					MDL			
Parameter	Flag		Cert		Result		Units	RL
Benzene			3		< 0.00533	1	ng/Kg	0.02
Toluene			3		$<\!0.00645$	1	m mg/Kg	0.02
Ethylbenzene			3		< 0.0116	1	m mg/Kg	0.02
Xylene			3		< 0.00874	1	mg/Kg	0.02
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.81	mg/Kg	1	2.00	90	70 - 130
4-Bromofluorobenzene (4	4-BFB)		2.32	$\mathrm{mg/Kg}$	1	2.00	116	70 - 130

Method Blank (1) QC Batch: 117867

QC Batch: 117867 Prep Batch: 99649			Analyzed: 2014-12-09 Preparation: 2014-12-08				By: AK By: AK	
					MDL			
Parameter	Flag		Cert		Result		Units	RL
GRO			3		<2.32		mg/Kg	4
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.83	mg/Kg	1	2.00	92	70 - 130
4-Bromofluorobenzene (4-BFB)			1.43	$\mathrm{mg/Kg}$	1	2.00	72	70 - 130

Method Bla	nk (1)	QC Batch: 117872			
QC Batch: Prep Batch:			Date Analyzed: QC Preparation:	Analyzed By: Prepared By:	

Report Date: May 4, Fox 30 $\#3$ and $\#4$	2015		V	Vork Order: Fox 30 #3	Page Number: 22 o Lea County,			
Parameter		Flag		Cert	R	MDL esult	Units	RL
DRO				3	<	<7.41	m mg/Kg	50
a		C .	D L	TT 1		Spike	Percent	Recovery
Surrogate n-Tricosane	Flag	Cert	Result 98.6	Units mg/Kg	Dilution 1	Amount 100	Recovery 99	Limits 70 - 130
				0, 0				
Method Blank (1)	QC B	Batch: 117983						
QC Batch: 117983				Analyzed:	2014-12-12		Analyz	•
Prep Batch: 99742			QC Pi	reparation:	2014-12-12		Prepare	ed By: RL
					1	MDL		
Parameter		Flag		Cert		esult	Units	RL
Chloride				1,2,4	<	<2.66	m mg/Kg	25
Method Blank (1)	QC B	Batch: 118409	I					
QC Batch: 118409 Prep Batch: 100120	QC B		Date .	Analyzed: reparation:		MDL	Analyz Prepare Units	ed By: SC
QC Batch: 118409 Prep Batch: 100120 Parameter	QC B	Batch: 118409 Flag	Date .	•	2015-01-05 I R	MDL esult <7.41	Prepare	ed By: SC
QC Batch: 118409 Prep Batch: 100120 Parameter	QC B		Date .	reparation: Cert	2015-01-05 I R	esult <7.41	Prepare Units mg/Kg	ed By: SC RL 50
QC Batch: 118409 Prep Batch: 100120 Parameter DRO		Flag	Date . QC Pr	Cert 3	2015-01-05 I R <	esult <7.41 Spike	Prepare Units mg/Kg Percent	ed By: SC RL 50 Recovery
QC Batch: 118409 Prep Batch: 100120 Parameter DRO Surrogate	QC B		Date .	reparation: Cert	2015-01-05 I R	esult <7.41	Prepare Units mg/Kg	ed By: SC RL 50
Prep Batch: 100120 Parameter DRO Surrogate n-Tricosane Method Blank (1) QC Batch: 118545	Flag	Flag	Date A	Cert 3 Units mg/Kg	2015-01-05	esult <7.41 Spike Amount	Prepare Units mg/Kg Percent Recovery 90	ed By: SC RL 50 Recovery Limits 70 - 130
QC Batch: 118409 Prep Batch: 100120 Parameter DRO Surrogate n-Tricosane Method Blank (1) QC Batch: 118545	Flag	Flag Cert	Date A	Cert 3 Units mg/Kg	2015-01-05	esult <7.41 Spike Amount	Prepare Units mg/Kg Percent Recovery 90	ed By: SC <u>RL</u> 50 Recovery Limits 70 - 130 ed By: AK
QC Batch: 118409 Prep Batch: 100120 Parameter DRO Surrogate n-Tricosane Method Blank (1) QC Batch: 118545 Prep Batch: 100163	Flag	Flag Cert Batch: 118545	Date A QC P: Result 89.8	Cert 3 Units mg/Kg Analyzed: reparation:	2015-01-05	esult <7.41 Spike Amount 100 MDL	Prepare Units mg/Kg Percent Recovery 90 Analyze Prepare	ed By: SC RL 50 Recovery Limits 70 - 130
QC Batch: 118409 Prep Batch: 100120 Parameter DRO Surrogate n-Tricosane Method Blank (1) QC Batch: 118545	Flag	Flag Cert	Date A QC P: Result 89.8	Cert 3 Units mg/Kg	2015-01-05	esult <7.41 Spike Amount 100	Prepare Units mg/Kg Percent Recovery 90	ed By: SC RL 50 Recovery Limits 70 - 130

Cert 3 3 3		MDL Result <0.00645 <0.0116 <0.00874	1	Units ng/Kg ng/Kg	RL
3 3 3		Result <0.00645 <0.0116	1	ng/Kg	
3 3 3		< 0.00645 < 0.0116	1	ng/Kg	
3		< 0.0116	1		
3				ng/Kg	0.02
		< 0.00874	1		0.02
~				ng/Kg	0.02
~			Spike	Percent	Recovery
Cert Result	Units	Dilution	Amount	Recovery	Limits
1.74	mg/Kg	1	2.00	87	70 - 130
2.00		1	2.00	100	70 - 130
ate Analyzed: C Preparation:	2015-01-0 2015-01-0			Analyzed	By: AK
				Prepared	•
C . I		MDL		-	By: AK
Cert		MDL Result		Units	By: AK RL
Cert 3		MDL	1	-	By: AK
		MDL Result	Spike	Units	By: AK RL
	Units	MDL Result		Units mg/Kg	By: AK RL 4
3		MDL Result <2.32	Spike	Units mg/Kg Percent	By: AK RL 4 Recovery
	2.00 ate Analyzed:	2.00 mg/Kg ate Analyzed: 2015-01-0	2.00 mg/Kg 1 ate Analyzed: 2015-01-09	2.00 mg/Kg 1 2.00 ate Analyzed: 2015-01-09	2.00 mg/Kg 1 2.00 100

		- v	
OC Batch	118670		Date Analyzed:

QC Batch: Prep Batch:	$\frac{118679}{100349}$		Date Analyzed: QC Preparation:		Analyzed By: Prepared By:	
				MDL		
Parameter		Flag	Cert	Result	Units	RL
Chloride			1,2,4	<2.66	m mg/Kg	25

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch:	117866	Date Analyzed:	2014-12-09	Analyzed By:	AK
Prep Batch:	99649	QC Preparation:	2014-12-08	Prepared By:	AK

			LCS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene		3	1.98	mg/Kg	1	2.00	< 0.00533	99	70 - 130
Toluene		3	1.98	m mg/Kg	1	2.00	$<\!0.00645$	99	70 - 130
Ethylbenzene		3	1.94	$\mathrm{mg/Kg}$	1	2.00	< 0.0116	97	70 - 130
Xylene		3	5.90	mg/Kg	1	6.00	< 0.00874	98	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		3	1.94	mg/Kg	1	2.00	< 0.00533	97	70 - 130	2	20
Toluene		3	2.00	$\mathrm{mg/Kg}$	1	2.00	$<\!0.00645$	100	70 - 130	1	20
Ethylbenzene		3	2.06	$\mathrm{mg/Kg}$	1	2.00	< 0.0116	103	70 - 130	6	20
Xylene		3	6.30	$\mathrm{mg/Kg}$	1	6.00	< 0.00874	105	70 - 130	7	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.77	1.68	mg/Kg	1	2.00	88	84	70 - 130
4-Bromofluorobenzene (4-BFB)	2.25	2.51	$\mathrm{mg/Kg}$	1	2.00	112	126	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	$\frac{117867}{99649}$		•	By: AK By: AK						
				LCS			Spike	Matrix		Rec.
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO			3	18.3	m mg/Kg	1	20.0	<2.32	92	70 - 130
D (• 1 1 .	1 •1	1		.1 .1	1	.1 1 1	1.		

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: May 4, 2015 Fox 30 $\#3$ and $\#4$				Work Fox		Pag		r: 25 of 40 ounty, NM				
control spikes continued												
Param	F	С	LCSE Result		its Di	Spi l. Amo		Matrix Result	Rec.	Ree Lim		RPD D Limit
	Г	0	nesui	<u> </u>			un	Itesuit	nec.	1.111	110 101	
D	Б	LCSD Spike Matrix F C Result Units Dil. Amount Result Result 3 21.0 mg/Kg 1 20.0 <2.32									c.	RPD
Param GRO	F										$\frac{1}{130} \qquad RP$	
	•1										130 14	20
Percent recovery is based on the	spike	resu	lt. RPL	\mathcal{I} is base	ed on the	e spike ai	nd spi	ke duplica	ate resi	ılt.		
			\mathbf{L}	\mathbf{CS}	LCSD			Spil	ke	LCS	LCSD	Rec.
Surrogate			Re	sult	Result	Units	Di	l. Amo	unt	Rec.	Rec.	Limit
Trifluorotoluene (TFT)				.70	1.72	mg/Kg	1	2.0		85	86	70 - 130
4-Bromofluorobenzene (4-BFB)			1	.47	1.57	$\mathrm{mg/Kg}$	1	2.0	0	74	78	70 - 130
Prep Batch: 99656 Param DRO Percent recovery is based on the	spike	F	C 3		Uni mg/	Kg	il. 1 nd spi	Spike Amount 250 ke duplica Matrix	Re <'	atrix esult 7.41	Prepared Rec. 102	By: SC Rec. Limit 70 - 130 RPD
Param	F	\mathbf{C}	Result		its Di			Result	Rec.	Lim		
DRO		3	266	mg/				<7.41	106	70 - 2		20
Percent recovery is based on the	spike	resu	lt. RPI) is base	ed on the	e spike ai	nd spi	ke duplica	ate resi	ılt.		
U U	-					1	1	-			- 00-	
Sumorata	LC Res		LC: Res		Units	Dil.	,	Spike Amount	LCS		LCSD	Rec. Limit
Surrogate n-Tricosane			97		mg/Kg		F	$\frac{100}{100}$	Rec 96		Rec. 98	70 - 130
Laboratory Control Spike (L QC Batch: 117983 Prep Batch: 99742	CS-1	.)		te Anal; Prepar		2014-12-1 2014-12-1					Analyzed Prepared	
				LCS				Spike	\mathbf{M}	a trix		Rec.
Param Chloride		F	С	LCS Result 239		$\frac{1}{M}$	Dil.	Spike Amount 250	Re	atrix esult 2.66	Rec. 96	Rec. Limit 90 - 110

Report Date: May 4, 2015	Work Order: 14120801	Page Number: 26 of 40
Fox 30 $\#3$ and $\#4$	Fox 30 $\#3$ and $\#4$	Lea County, NM

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	240	$\mathrm{mg/Kg}$	1	250	$<\!2.66$	96	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	118409			Γ	Date Analyz	zed: 2015-	01-06			Analyzed	By: SC
Prep Batch:	100120			G	QC Prepara	tion: 2015-	-01-05			Prepared	By: SC
					LCS			Spike	Matrix		Rec.
Param			\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO				3	210	m mg/Kg	1	250	<7.41	84	70 - 130
	• 1	1 /1	•1		ו ויתר	.1 .1	1	•1 1 1• /	1.		

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

91.0

90.5

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO		3	210	$\mathrm{mg/Kg}$	1	250	<7.41	84	70 - 130	0	20
Percent recovery is based on the	e spike	resu	lt. RPD i	is based or	n the s	pike and sp	oike duplic	ate resi	ult.		
	LO	CS	LCSI)			Spike	LC	S LCS	D	Rec.
Surrogate	Res	sult	Resul	t Un	$_{ m its}$	Dil.	Amount	Rec	e. Rec		Limit

mg/Kg

1

100

90

91

70 - 130

Laboratory Control Spike (LCS-1)

n-Tricosane

QC Batch: 118545 Prep Batch: 100163		Date Analyzed:2015-01-09AnalyzQC Preparation:2015-01-07Prepare							
			LCS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene		3	1.71	mg/Kg	1	2.00	< 0.00533	86	70 - 130
Toluene		3	1.79	$\mathrm{mg/Kg}$	1	2.00	< 0.00645	90	70 - 130
Ethylbenzene		3	1.88	$\mathrm{mg/Kg}$	1	2.00	< 0.0116	94	70 - 130
Xylene		3	5.67	mg/Kg	1	6.00	< 0.00874	94	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

continued ...

Report Date: May 4, 2015 Fox 30 $\#3$ and $\#4$						14120801 nd #4				Pa	-	ımber: ea Cou	27 of 40 inty, NM
control spikes continued						~				_			
D	Б	a	LCSD	TT •,	D.1	Spike		atrix	Б		ec.	DDD	RPD
Param	F	С	Result	Units	Dil.	Amount	Re	esult	Rec.	. L1	mit	RPD	Limit
			LCSD			Spike	Ma	atrix		R	ec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Re	esult	Rec.	Li	mit	RPD	Limit
Benzene		3	1.55	mg/Kg	1	2.00	<0.	00533	78	70 -	- 130	10	20
Toluene		3	1.64	mg/Kg	1	2.00	< 0.	00645	82	70 -	- 130	9	20
Ethylbenzene		3	1.74	mg/Kg	1	2.00	< 0.	.0116	87	70 -	- 130	8	20
Xylene		3	5.29	mg/Kg	1	6.00	< 0.	00874	88	70 -	- 130	7	20
Percent recovery is based on the sp	pike	resu	ılt. RPD	is based	on the	e spike and	spike	duplica	ate res	sult.			
a			LC		CSD	TT 1 .	D.1	Spi		LCS	LC		Rec.
Surrogate			Res		esult	Units	Dil.	Amo		Rec.	Re		Limit
Trifluorotoluene (TFT)			1.7		.66	mg/Kg	1	2.0		86	8		70 - 130
4-Bromofluorobenzene (4-BFB)			2.0)2 1	.89	mg/Kg	1	2.0	00	101	9	4	70 - 130
QC Batch: 118546	CS-1	.)		e Analyz Preparat		2015-01-09 2015-01-07						vzed By ared By	
QC Batch: 118546 Prep Batch: 100163	CS-1		QC	Preparat LCS	ion: 2	2015-01-07		Spike		fatrix	Prepa	ared By	7: AK Rec.
QC Batch: 118546 Prep Batch: 100163 Param	CS-1	-) F	QC	Preparat	ion: ź Uni	2015-01-07 ts Dil.	A	mount	R	fatrix Result	Prepa Re	ared By ec.	7: AK Rec. Limit
QC Batch: 118546 Prep Batch: 100163 Param GRO		F	QC C	Preparat LCS Result 14.3	ion: 2 Uni mg/1	$\begin{array}{c c} 2015 - 01 - 07 \\ \hline ts & Dil. \\ \hline Kg & 1 \end{array}$	A	mount 20.0	R <	fatrix Result <2.32	Prepa	ared By ec.	7: AK Rec.
QC Batch: 118546 Prep Batch: 100163 Param GRO		F	QC C	Preparat LCS Result 14.3	ion: 2 Uni mg/1	$\begin{array}{c c} 2015 - 01 - 07 \\ \hline ts & Dil. \\ \hline Kg & 1 \end{array}$	A spike	mount 20.0	R <	fatrix Result <2.32	Prepa Re 7	ared By ec.	7: AK Rec. Limit
QC Batch: 118546 Prep Batch: 100163 Param GRO Percent recovery is based on the sp		F	$\frac{C}{3}$	Preparat LCS Result 14.3	ion: 2 Uni mg/1 on the	$\begin{array}{c c} \text{ts} & \text{Dil.} \\ \hline \text{Kg} & 1 \\ \hline \text{e spike and} \\ \hline \text{Spike} \end{array}$	A spike M	mount 20.0 duplica	R <	fatrix tesult <2.32 sult. Re	Prepa Re 7	ared By ec.	7: AK Rec. Limit 70 - 130
QC Batch: 118546 Prep Batch: 100163 Param GRO Percent recovery is based on the sp Param	pike	F	QC <u>3</u> ilt. RPD LCSD	Preparat LCS Result 14.3 is based	ion: $\frac{1}{2}$ Uni mg/l on the Dif	ts Dil. Kg 1 e spike and Spike l. Amoun	A spike M t R	mount 20.0 duplica atrix	R < ate res	fatrix tesult <2.32 sult. Ra Lin	Prepa Re 72	ared By ec. 2	7: AK Rec. Limit 70 - 130 RPD
QC Batch: 118546 Prep Batch: 100163 Param GRO Percent recovery is based on the sp Param GRO	pike F	F resu C 3	QC 3 ilt. RPD LCSD Result 16.3	Preparat LCS Result 14.3 is based Units mg/K	ion: $\frac{1}{2}$ uni mg/1 on the Dil g 1	ts Dil. Kg 1 e spike and Spike l. Amoun 20.0	A spike M t R <	mount 20.0 duplica atrix esult 2.32	R ate res Rec. 82	Iatrix Cesult C2.32 Sult. Ra Lin 70 -	Prepa $\frac{R\epsilon}{7!}$ ec.	ec. 2 RPD	7: AK Rec. Limit 70 - 130 RPD Limit
QC Batch: 118546 Prep Batch: 100163 Param GRO Percent recovery is based on the sp Param GRO Percent recovery is based on the sp	pike F	F resu C 3	QC 3 ilt. RPD LCSD Result 16.3	Preparat LCS Result 14.3 is based Units mg/K is based CS L0	ion: 2 Uni mg/l on the Dil g 1 on the CSD	ts Dil. Kg 1 e spike and Spike l. Amoun 20.0	A spike M t Ra spike	mount 20.0 duplica atrix esult 2.32 duplica Spi	R <pre></pre>	Iatrix Cesult C2.32 Sult. Ra Lin 70 -	Prepa $\frac{R\epsilon}{7!}$ ec.	ec. 2 RPD 13	7: AK Rec. Limit 70 - 130 RPD Limit 20 Rec.
QC Batch: 118546 Prep Batch: 100163 Param GRO Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate	pike F	F resu C 3	QC 3 Ilt. RPD LCSD Result 16.3 Ilt. RPD LC Res	Preparat LCS Result 14.3 is based Units mg/K is based CS L0 nult Ro	ion: 2 Uni mg/J on the Dif g 1 on the CSD ssult	$\begin{array}{c c} \text{ts} & \text{Dil.} \\ \hline \text{Kg} & 1 \\ \text{e spike and} \\ \text{Spike} \\ \text{l.} & \text{Amoun} \\ \hline & 20.0 \\ \hline \text{e spike and} \\ \hline & \text{Units} \end{array}$	A spike M t R <	mount 20.0 duplica atrix esult 2.32 duplica Spi Amo	R ate res Rec. 82 ate res ke punt	fatrix tesult <2.32 sult. tin 70 - sult. LCS Rec.	Prepa Re 7: ec. mit 130 LC Re	ec. 2 RPD 13 SD ec.	7: AK Rec. Limit 70 - 130 RPD Limit 20 Rec. Limit
QC Batch: 118546 Prep Batch: 100163 Param GRO Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT)	pike F	F resu C 3	QC C 3 lt. RPD LCSD Result 16.3 lt. RPD LC Res 1.6 Res 1.6	Preparat LCS Result 14.3 is based Units mg/K is based CS L0 cult Re 52 1	ion: 2 Uni mg/l on the Dil g 1 on the CSD csult .77	ts Dil. Kg 1 e spike and Spike l. Amoun 20.0 e spike and Units mg/Kg	A spike M t Ra spike	mount 20.0 duplica atrix esult 2.32 duplica Spi Amo 2.0	Rec. Rec. 82 ate res ke unt 00	Iatrix tesult <2.32 sult. Re Lin 70 - sult. LCS Rec. 81	Prepa Re 7: ec. mit 130 LC Re 8	ec. 2 RPD 13 SD ec. 8	7: AK Rec. Limit 70 - 130 RPD Limit 20 Rec. Limit 70 - 130
Prep Batch: 100163 Param GRO Percent recovery is based on the sp	pike	F	QC <u>3</u> ilt. RPD LCSD	Preparat LCS Result 14.3 is based	ion: 2 Uni mg/1 on the	$\frac{\text{ts} \text{Dil.}}{\text{Kg} 1}$ e spike and Spike	A spike M	mount 20.0 duplica atrix	R < ate res	fatrix tesult <2.32 sult. Re	Prepa Re 72	ared By ec. 2	
QC Batch: 118546 Prep Batch: 100163 Param GRO Percent recovery is based on the sp Param GRO Percent recovery is based on the sp	pike F	F resu C 3	QC 3 ilt. RPD LCSD Result 16.3 ilt. RPD LC	Preparat LCS Result 14.3 is based Units mg/K is based CS L0	ion: 2 Uni mg/l on the Dil g 1 on the CSD	$\begin{array}{c c} \text{ts} & \text{Dil.} \\ \hline \text{Kg} & 1 \\ \text{e spike and} \\ & \text{Spike} \\ \text{l.} & \text{Amoun} \\ \hline & 20.0 \\ \text{e spike and} \\ \end{array}$	A spike M t Ra spike	mount 20.0 duplica atrix esult 2.32 duplica Spi	R <pre></pre>	fatrix cesult c2.32 sult. Ra Lin 70 - sult. LCS	Prepa Re 7: ec. mit 130 LC	ec. 2 RPD 13 SD	7: A Rec <u>Lim</u> 70 - 1 RH Lir 2 Rec
QC Batch: 118546 Prep Batch: 100163 Param GRO Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT)	pike F	F resu C 3	QC C 3 lt. RPD LCSD Result 16.3 lt. RPD LC Res 1.6 Res 1.6	Preparat LCS Result 14.3 is based Units mg/K is based CS L0 cult Re 52 1	ion: 2 Uni mg/l on the Dil g 1 on the CSD csult .77	ts Dil. Kg 1 e spike and Spike l. Amoun 20.0 e spike and Units mg/Kg	A spike M t R spike Spike	mount 20.0 duplica atrix esult 2.32 duplica Spi Amo 2.0	Rec. Rec. 82 ate res ke unt 00	Iatrix tesult <2.32 sult. Re Lin 70 - sult. LCS Rec. 81	Prepa Re 7: ec. mit 130 LC Re 8	ec. 2 RPD 13 SD ec. 8	7: Ak Rec. Limit 70 - 13 RPI Lim 20 Rec. Limit 70 - 13
QC Batch: 118546 Prep Batch: 100163 Param GRO	pike F	F resu C 3	QC 3 Ilt. RPD LCSD Result 16.3 Ilt. RPD LC Res	Preparat LCS Result 14.3 is based Units mg/K is based CS L0 cult Re 52 1	ion: 2 Uni mg/J on the Dif g 1 on the CSD ssult	$\begin{array}{c c} \text{ts} & \text{Dil.} \\ \hline \text{Kg} & 1 \\ \text{e spike and} \\ \text{Spike} \\ \text{l.} & \text{Amoun} \\ \hline & 20.0 \\ \hline \text{e spike and} \\ \hline & \text{Units} \end{array}$	A spike M t R spike Spike	mount 20.0 duplica atrix esult 2.32 duplica Spi Amo	Rec. Rec. 82 ate res ke unt 00	fatrix tesult <2.32 sult. tin 70 - sult. LCS Rec.	Prepa Re 7: ec. mit 130 LC Re	ec. 2 RPD 13 SD ec. 8	7: AK Rec. Limit 70 - 130 RPD Limit 20 Rec. Limit

Report Date: May 4, 2015 Fox 30 $\#3$ and $\#4$	Work Order: 14120801 Fox 30 #3 and #4								Page Number: 28 of 40 Lea County, NM			
Param		\mathbf{F}		LCS Result	Units	Dil.	Spike Amount		atrix esult	Rec.	Rec. Limit	
Chloride			1,2,4	235	mg/Kg	1	250	<	2.66	94	90 - 110	
Percent recovery is based on the s	pike	resul	t. RPD is	s based o	n the sp	ike and spi	ike duplica	ate resi	ılt.			
			LCSD			Spike	Matrix		Rec.		RPD	
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPI) Limit	
Chloride		1,2,4	234	mg/Kg	1	250	$<\!2.66$	94	90 - 110) 0	20	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

Matrix Spike (MS-1) Spiked Sample: 380974

QC Batch:	117866	Date Analyzed:	2014-12-09	Analyzed By:	AK
Prep Batch:	99649	QC Preparation:	2014-12-08	Prepared By:	AK

				MS			Spike	Matrix		Rec.
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	9 Qs	$_{\rm Qs}$	3	< 0.00533	mg/Kg	1	2.00	< 0.00533	0	70 - 130
Toluene	$_{\rm Qs}$	$_{\rm Qs}$	3	$<\!0.00645$	m mg/Kg	1	2.00	$<\!0.00645$	0	70 - 130
Ethylbenzene	$_{\rm Qs}$	$_{\rm Qs}$	3	< 0.0116	$\mathrm{mg/Kg}$	1	2.00	< 0.0116	0	70 - 130
Xylene	Qs	$_{\rm Qs}$	3	< 0.00874	$\mathrm{mg/Kg}$	1	6.00	< 0.00874	0	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

				MSD			Spike	Matrix		Rec.		RPD
Param		\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	10_{Qs}	$_{\rm Qs}$	3	< 0.00533	mg/Kg	1	2.00	< 0.00533	0	70 - 130	0	20
Toluene	$_{\rm Qs}$	$_{\rm Qs}$	3	$<\!0.00645$	$\mathrm{mg/Kg}$	1	2.00	$<\!0.00645$	0	70 - 130	0	20
Ethylbenzene	$_{\rm Qs}$	$_{\rm Qs}$	3	< 0.0116	mg/Kg	1	2.00	< 0.0116	0	70 - 130	0	20
Xylene	$_{\rm Qs}$	$_{\rm Qs}$	3	< 0.00874	$\mathrm{mg/Kg}$	1	6.00	< 0.00874	0	70 - 130	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.77	1.74	mg/Kg	1	2	89	87	70 - 130
4-Bromofluorobenzene (4-BFB)	2.28	2.33	$\mathrm{mg/Kg}$	1	2	114	116	70 - 130

Matrix Spike (MS-1) Spiked Sample: 381449

QC Batch: Prep Batch:												
					MS			Spike	Matrix		Rec.	
Param			\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	
GRO				3	18.7	m mg/Kg	1	20.0	$<\!2.32$	94	70 - 130	
	• 1 1	.1	•1	1, DI	1 · 1		1	•1 1 1• /	1.			

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. *continued*...

Report Date: May 4, 2015 Fox 30 $\#3$ and $\#4$					Page	e Number: Lea Cou	30 of 40 inty, NM				
matrix spikes continued			MCD			a .1	2.5		Ð		
Param	F	С	MSD Result	Units	Dil.	Spike Amount	Matriz Resul		Rec. Limi		RPD Limit
	-	Ũ		0 11105	2						
Danara	F	C	MSD Result	TI:::+a	D:1	Spike	Matri		Rec. Limi		RPD Limit
Param GRO	Г	C 3	19.4	Units mg/Kg		Amount 20.0	$\frac{1}{2.32}$		70 - 13		$\frac{\text{Limit}}{20}$
Percent recovery is based on th	e spike			0/ 0	<u> </u>						
	o opine	1000				spine and i	opino dup				
Sumorata			MS Pogr		ASD ocult	Unita		Spike	MS Poo	MSD Bog	Rec.
Surrogate Trifluorotoluene (TFT)			Rest 1.6		esult 1.70	Units mg/Kg		$\frac{1}{2}$	Rec. 84	Rec. 85	Limit 70 - 130
4-Bromofluorobenzene (4-BFB)			1.0 1.5			mg/Kg mg/Kg	$\frac{1}{1}$	$\frac{2}{2}$	$\frac{84}{78}$	85 78	70 - 130 70 - 130
	1.0	1	001440								
Matrix Spike (MS-1) Spik	ked Sa	mple:	381449								
QC Batch: 117872			Date	Analyz	ed: 20	014-12-10			A	analyzed E	By: SC
Prep Batch: 99656			QC I	Preparat	tion: 20	014-12-09			F	repared B	y: SC
				MS			Spik	e M	atrix		Rec.
Param		F		lesult	Units		Amou		esult	Rec.	Limit
DRO				591	mg/K_{z}	-	250		372	88	70 - 130
Percent recovery is based on the	e spike	resu	lt. RPD i	is based	on the s	spike and s	spike dup	licate res	ult.		
			MSD			Spike	Matri	x	Rec.		RPD
Param	F	С	Result	Units	Dil.	Amount			Limi		Limit
DRO		3	590	mg/Kg	g 1	250	372	87	70 - 13	30 0	20
Percent recovery is based on the	e spike	resu	lt. RPD i	is based	on the s	spike and s	spike dup	licate res	ult.		
		MS	MS	SD			Spik	e N	ЛS	MSD	Rec.
Surrogate		Resul	t Res	sult	Units	Dil.	Amou	int R	lec.	Rec.	Limit
n -Tricosane Q_{sr} Q_{sr}		133	13	37	$\mathrm{mg/Kg}$	1	100) 1	.33	137	70 - 130
Matrix Spike (MS-1) Spil QC Batch: 117983 Prep Batch: 99742	ked Sa	mple:		Analyza Preparat)14-12-12)14-12-12				nalyzed B repared B	•
Damage		F	C 1	MS	TT:**	۱:۲	Spil		[atrix	Dec	Rec.
Param Chloride		F		Result 233	Unit		Amo		esult 21.7	Rec.	Limit 80 - 120
Unionue			1,2,4	∠ວວ	mg/K	lg 1	250	J	41.1	84	00 - 120

Report Date: May 4, 2015	Work Order: 14120801	Page Number: 31 of 40
Fox 30 $\#3$ and $\#4$	Fox 30 $\#3$ and $\#4$	Lea County, NM

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	231	$\mathrm{mg/Kg}$	1	250	21.7	84	80 - 120	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-2) Spiked Sample: 381462

QC Batch:	117983	Date Analyzed:	2014-12-12	Analyzed By:	RL
Prep Batch:	99742	QC Preparation:	2014-12-12	Prepared By:	RL

				MS			Spike	Matrix		Rec.
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	Qs	$_{\rm Qs}$	1,2,4	11200	m mg/Kg	100	250	8260	1176	80 - 120

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

				MSD			Spike	Matrix		Rec.		RPD
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	$_{\rm Qs}$	$_{\rm Qs}$	1,2,4	11200	$\mathrm{mg/Kg}$	100	250	8260	1176	80 - 120	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (xMS-1) Spiked Sample: 383619

QC Batch:	118409	Date Analyzed:	2015-01-06	Analyzed By:	\mathbf{SC}
Prep Batch:	100120	QC Preparation:	2015-01-05	Prepared By:	\mathbf{SC}

				MS			Spike	Matrix		Rec.
Param		\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	$_{\rm Qs}$	Qs	3	2240	mg/Kg	2	250	2460	-88	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	Qs Qs	3	2150	$\mathrm{mg/Kg}$	2	250	2460	-124	70 - 130	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			${ m MS}$	MSD			Spike	MS	MSD	Rec.
Surrogate			Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Tricosane	Qsr	Qsr	156	159	mg/Kg	2	100	156	159	70 - 130

Report Date: May 4, 2015	Work Order: 14120801	Page Number: 32 of 40
Fox 30 $\#3$ and $\#4$	Fox 30 $\#3$ and $\#4$	Lea County, NM

Matrix Spike (MS-1) Spiked Sample: 383642

QC Batch: 11854	Date Analyzed:	2015-01-09	Analyzed By:	AK
Prep Batch: 10016	QC Preparation:	2015-01-07	Prepared By:	AK

				MS			Spike	Matrix		Rec.
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	$_{\rm Qs}$	$_{\rm Qs}$	3	1.37	mg/Kg	1	2.00	< 0.00533	68	70 - 130
Toluene			3	1.48	m mg/Kg	1	2.00	$<\!0.00645$	74	70 - 130
Ethylbenzene			3	1.59	$\mathrm{mg/Kg}$	1	2.00	< 0.0116	80	70 - 130
Xylene			3	4.81	mg/Kg	1	6.00	< 0.00874	80	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

				MSD			Spike	Matrix		Rec.		RPD
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	$_{\rm Qs}$	$_{\rm Qs}$	3	1.34	mg/Kg	1	2.00	< 0.00533	67	70 - 130	2	20
Toluene			3	1.43	$\mathrm{mg/Kg}$	1	2.00	$<\!0.00645$	72	70 - 130	3	20
Ethylbenzene			3	1.52	$\mathrm{mg/Kg}$	1	2.00	< 0.0116	76	70 - 130	4	20
Xylene			3	4.65	$\mathrm{mg/Kg}$	1	6.00	< 0.00874	78	70 - 130	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.62	1.69	mg/Kg	1	2	81	84	70 - 130
4-Bromofluorobenzene (4-BFB)	1.84	1.90	m mg/Kg	1	2	92	95	70 - 130

Matrix Spike (MS-1) Spiked Sample: 383703

QC Batch:	118546	Date Analyzed:	2015-01-09	Analyzed By:	AK
Prep Batch:	100163	QC Preparation:	2015-01-07	Prepared By:	AK

D		Б	C	MS	TT •/	D.1	Spike		atrix		Rec.	
Param		F	С	Result	Units	Dil.	Amount	; R	esult I	Rec.	Limit	
GRO	$_{\rm Qs}$	$_{\rm Qs}$	3	13.0	mg/Kg	g 1	20.0	<	2.32	65	70 - 130	
Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.												
			MGD			Spile	Motnin		Doo		DDD	
			MSD			Spike	Matrix		Rec.		RPD	
Param	\mathbf{F}	С	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit	
Param GRO	F	С 3		Units mg/Kg	Dil.	. 1		Rec. 78		RPD 18	-	

continued ...

Report Date: May 4, 2015 Fox 30 $\#3$ and $\#4$				x Order: x 30 #3 a	Pa	Page Number: 33 of 40 Lea County, NM				
matrix spikes continued										
			MS	MSD			Spike	MS	MSD	Rec.
Surrogate		F	lesult	Result	Units	Dil.	Amount	t Rec.	Rec.	Limit
			MS	MSD			Spike	MS	MSD	Rec.
Surrogate			lesult	Result	Units	Dil.	Amount			Limit
Trifluorotoluene (TFT)			1.65	1.72	mg/Kg	1	2	82	86	70 - 130
4-Bromofluorobenzene (4-BFB)		1.81	1.82	mg/Kg	1	2	90	91	70 - 130	
Matrix Spike (MS-1) Spiked	l Sample	e: 38375	5							
QC Batch: 118679		$\mathbf{D}_{\mathbf{z}}$	ate Ana	lyzed:	2015-01-1	5			Analyzed	By: RL
Prep Batch: 100349			C Prepa	•	2015-01-1	5			Prepared	•
			MS				Spike	Matrix		Rec.
Param	\mathbf{F}	С	Resu		nits D	l. 4	Amount	Result	Rec.	Limit
Chloride		1,2,4	428		/Kg 5		250	194	94	80 - 120
Percent recovery is based on the s	pike res	ult. RP	D is bas			l spike	duplicate i	result.		
		MS	D		Spil	e N	Aatrix	B	ec.	RPD

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	434	$\mathrm{mg/Kg}$	5	250	194	96	80 - 120	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Calibration Standards

Standard (CCV-1)

QC Batch: 117866			Date An	alyzed: 20	Analyzed By: AK			
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		3	mg/kg	0.100	0.0932	93	80 - 120	2014-12-09
Toluene		3	m mg/kg	0.100	0.0956	96	80 - 120	2014-12-09
Ethylbenzene		3	m mg/kg	0.100	0.0947	95	80 - 120	2014-12-09
Xylene		3	m mg/kg	0.300	0.284	95	80 - 120	2014-12-09

Standard (CCV-2)

QC Batch: 117866			Date An	alyzed: 20	Analyzed By: AK			
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		3	mg/kg	0.100	0.0962	96	80 - 120	2014-12-09
Toluene		3	m mg/kg	0.100	0.0968	97	80 - 120	2014-12-09
Ethylbenzene		3	m mg/kg	0.100	0.0960	96	80 - 120	2014-12-09
Xylene		3	mg/kg	0.300	0.292	97	80 - 120	2014-12-09

Standard (CCV-1)

QC Batch:	117867		Date	Analyzed:	2014-12-09		Analy	zed By: AK
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		3	m mg/Kg	1.00	0.913	91	80 - 120	2014-12-09

Standard (CCV-2)

QC Batch: 117867

Date Analyzed: 2014-12-09

Analyzed By: AK

Report Date Fox 30 #3 au					•	umber: 35 of 40 Lea County, NM		
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
GRO		3	m mg/Kg	1.00	0.861	86	80 - 120	2014-12-09
Standard (C	CV-1)							
QC Batch: 1	17872		Date	Analyzed:	2014-12-10		Analy	vzed By: SC
D			Units	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
			Linite	Conc.	Conc.	Recovery	Limits	Analyzed
Param DRO Standard (C	Flag CV-2)	Cert 3	mg/Kg	250	276	110	80 - 120	2014-12-10
DRO Standard (C	CV-2)		mg/Kg	250	276 2014-12-10	110		2014-12-10 vzed By: SC
	CV-2)		mg/Kg	250 Analyzed: CCVs	2014-12-10 CCVs	$\rm CCVs$	Analy Percent	vzed By: SC
DRO Standard (C QC Batch: 1	CV-2)		mg/Kg	250 Analyzed:	2014-12-10		Analy	
DRO Standard (C QC Batch: 1 Param	CV-2) 17872	3	mg/Kg Date	250 Analyzed: CCVs True	2014-12-10 CCVs Found	CCVs Percent	Analy Percent Recovery	vzed By: SC Date
DRO Standard (C QC Batch: 1 Param DRO	CV-2) 17872 Flag	3 Cert	mg/Kg Date Units	250 Analyzed: CCVs True Conc.	2014-12-10 CCVs Found Conc.	CCVs Percent Recovery	Analy Percent Recovery Limits	vzed By: SC Date Analyzed
DRO Standard (C	CV-2) 17872 Flag CV-1)	3 Cert	mg/Kg Date Units mg/Kg	250 Analyzed: CCVs True Conc. 250	2014-12-10 CCVs Found Conc.	CCVs Percent Recovery	Analy Percent Recovery Limits 80 - 120	vzed By: SC Date Analyzed
DRO Standard (C QC Batch: 1 Param DRO Standard (C	CV-2) 17872 Flag CV-1)	3 Cert	mg/Kg Date Units mg/Kg	250 Analyzed: CCVs True Conc. 250 Analyzed: CCVs	2014-12-10 CCVs Found Conc. 295 2014-12-12 CCVs	CCVs Percent Recovery 118 CCVs	Analy Percent Recovery Limits 80 - 120 Analy Percent	vzed By: SC Date <u>Analyzed</u> 2014-12-10 vzed By: RL
DRO Standard (C QC Batch: 1 Param DRO Standard (C	CV-2) 17872 Flag CV-1)	3 Cert	mg/Kg Date Units mg/Kg	250 Analyzed: CCVs True Conc. 250 Analyzed:	2014-12-10 CCVs Found Conc. 295 2014-12-12	CCVs Percent Recovery 118	Analy Percent Recovery Limits 80 - 120 Analy	vzed By: SC Date Analyzed 2014-12-10

Standard (CCV-2)

QC Batch: 117983

Date Analyzed: 2014-12-12

Analyzed By: RL

Fox 30 #3 an	May 4, 2015 ad $\#4$		V		Page Number: 36 of Lea County, I				
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed	
Chloride	0	1,2,4	mg/Kg	25.0	24.0	96	90 - 110	2014-12-12	
Standard (C	CCV-3)								
QC Batch: 1	17983		Date	Analyzed:	2014-12-12		Analy	vzed By: RL	
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed	
	Flag		mg/Kg	25.0	24.2	97	90 - 110	2014-12-12	
	CCV-1)	1,2,4	ing/itg						
Standard (C		1,2,4			2015-01-06			yzed By: SC	
QC Batch: 1	18409		Date	Analyzed: CCVs True	CCVs Found	CCVs Percent	Analy Percent Recovery	yzed By: SC Date	
Standard (C QC Batch: 1 Param		L,2,4	Date	Analyzed: CCVs True Conc.	CCVs Found Conc.	Percent Recovery	Analy Percent Recovery Limits	Date Analyzed	
Chloride Standard (C QC Batch: 1 Param DRO	18409		Date	Analyzed: CCVs True	CCVs Found	Percent	Analy Percent Recovery	Date	
Standard (C QC Batch: 1 Param DRO	Flag	Cert	Date	Analyzed: CCVs True Conc.	CCVs Found Conc.	Percent Recovery	Analy Percent Recovery Limits	Date Analyzed	
Standard (C QC Batch: 1 Param DRO Standard (C	Flag	Cert	Date Units mg/Kg	Analyzed: CCVs True Conc. 250	CCVs Found Conc.	Percent Recovery	Analy Percent Recovery Limits 80 - 120	Date Analyzed	
Standard (C QC Batch: 1 Param DRO Standard (C	Flag CCV-2)	Cert	Date Units mg/Kg	Analyzed: CCVs True Conc. 250	CCVs Found Conc. 211	Percent Recovery	Analy Percent Recovery Limits 80 - 120	Date Analyzed 2015-01-06	
Standard (C QC Batch: 1 Param DRO Standard (C	Flag CCV-2)	Cert	Date Units mg/Kg	Analyzed: CCVs True Conc. 250 Analyzed: CCVs	CCVs Found Conc. 211 2015-01-06 CCVs	Percent Recovery 84 CCVs	Analy Percent Recovery Limits 80 - 120 Analy Percent	Date Analyzed 2015-01-06	

Standard (CCV-1)

QC Batch: 118545

Date Analyzed: 2015-01-09

Analyzed By: AK

Report Date: May 4 Fox 30 $\#3$ and $\#4$	4, 2015			rk Order: 1 ox 30 #3 ar		0	mber: 37 of 40 a County, NM	
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		3	mg/kg	0.100	0.0930	93	80 - 120	2015-01-09
Toluene		3	mg/kg	0.100	0.0940	94	80 - 120	2015-01-09
Ethylbenzene		3	mg/kg	0.100	0.0928	93	80 - 120	2015-01-09
Xylene		3	mg/kg	0.300	0.280	93	80 - 120	2015-01-09

Standard (CCV-2)

QC Batch: 118545			Date An	Analyz	zed By: AK			
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		3	mg/kg	0.100	0.0945	94	80 - 120	2015-01-09
Toluene		3	m mg/kg	0.100	0.0941	94	80 - 120	2015-01-09
Ethylbenzene		3	m mg/kg	0.100	0.0932	93	80 - 120	2015-01-09
Xylene		3	mg/kg	0.300	0.279	93	80 - 120	2015-01-09

Standard (CCV-1)

QC Batch:	118546		Date	Analyzed:	2015-01-09		Analy	zed By: AK
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		3	mg/Kg	1.00	1.03	103	80 - 120	2015-01-09

Standard (CCV-2)

QC Batch:	118546		Date	Analyzed:	2015-01-09		Analy	zed By: AK
				CCVs True	$\begin{array}{c} \mathrm{CCVs} \\ \mathrm{Found} \end{array}$	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		3	m mg/Kg	1.00	0.928	93	80 - 120	2015-01-09

Report Date: M Fox $30 \#3$ and	• ·		V	Vork Order: Fox 30 #3		0	mber: 38 of 40 ea County, NM	
Standard (CC	V-1)							
QC Batch: 118	8679		Date .	Analyzed:	2015-01-15		Analy	zed By: RL
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		1,2,4	mg/Kg	25.0	23.4	94	90 - 110	2015-01-15

Standard (CCV-2)

QC Batch:	118679			Date A	Analyzed:	2015-01-15		Analy	zed By: RL
					CCVs	CCVs	CCVs	Percent	_
					True	Found	Percent	Recovery	Date
Param	Fl	\log	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			1,2,4	m mg/Kg	25.0	23.6	94	90 - 110	2015-01-15

Work Order: 14120801 Fox 30 #3 and #4 Page Number: 39 of 40 Lea County, NM

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	LELAP	LELAP-02003	Lubbock
2	NELAP	T104704219-15-11	Lubbock
3	NELAP	T104704392-14-8	Midland
4		2014-018	Lubbock

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Page Number: 40 of 40 Lea County, NM

Result Comments

- 1 Sample added out of hold.
- 2 Sample added after hold expired.
- 3 Sample added out of hold.
- 4 Sample added after hold expired.
- 5 Sample added out of hold.
- 6 Sample added after hold expired.
- 7 Sample added out of hold.
- 8 Sample added after hold expired.
- 9 Analyst prep error; LCS/LCSD shows recovery for batch.
- 10 Analyst prep error; LCS/LCSD shows recovery for batch.

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

LAB Order ID # 14 2080	C.	6	701 A Lul F	berde bbocl fel (80 ax (8 1 (80	. Te	yas 7	942	uite 1 4	9	5	Mie	Basin Si Iland, T o el (432) ax (432)	exas 689-6	79703 6301	A1	200	El Pa Tel Fax	(915 (915)	nset F Texa 5) 585 5) 585	s 79 5-34 5-49	922 43 44	e E			250 Car	1 Ma rollt	ayes ton,	tic T Rd. Tex 242	estir ., St	e 10 7500	0		340 Ho Tel	3 Ind bbs, (575	on & C ustria NM 8) 392-	Blvd 8240 7561)
email: lab@traceanalysis.com				1 (80) 37		_	4.		4		8 3			-	-	1 ((888)) 588-	-344	3												Fax	(575) 392	4508	3
CH2M HI	LL					Ph	one	#:																						UE							1
Address: (Street, City, Zip)	ط:	110	7	W	i.	Fax	(#:	,1								1	F F	ī		((זו <i>ג</i>		e I	or	3	pe		TY	IV		56		No).)	7		
ontact, Person:	ine			-		E-n	nail:			ò			A .	a		1				2.00											41-11	Alkalinity				ard	
voice to: EOL N	ine	KUI	M.	2	1	.251	ië,	VC	<u>ss</u>	Ø	CH	211.	. ((SW	1			Ext(C35)		Cr Pb Se Ha 6010/200.7	e Hg	2			54						VIIV	AIKa		-		tanda	A 14 18
f different from above) EO'G Rest	DUN	ces				Zo	in	e.	_	10	vt	zlig	120	yre	sources.	0	in	Ext(Ha 6(Pb Se	6					1.				0	PO4 -P,				S mo	< 110 T
roject #:						Pro	ject	: Na	me:	Fo	DX	30) =	#3 a	nd#4	/ 62	624	TX1005	VHC	b Se	L L						625					1				nt fre	
roject Location (including state):	1.	TH	LM	M	M	Sar	nple	er S	igna	ature	a: 1	7	11	IM	arres. Ind#44	8260	260 /	S 10 1	DROATVHC							4	12		8			NO ₂ -N,	2	=		ffere	
pen Cov.	TY I		and 1	14 10-7 0H			Г	P	RE	SER	/~ VAT	IVE				02 /	2 / 82	105/	×/	Ba Cd	As Ba		les			/ 62	. 82		608		A P	TDIS F	2	<u>a</u> (if di	
	ERS	Amount		MA	RIX		-	1	M	ETI	HOD			SAMI		1 / 602	BTEX 8021 / 602 /	TX1005/	GRO	AsE		es	TCLP Semi Volatiles	Pesticides		GC/MS Vol. 8260 / 624	i. Vol.	/ 608	Pesticides 8081 / 608	I	Moisture Content	к C С	2			Turn Around Time if different from standard	
LAB # FIELD CODE	CONTAINERS	-			Ц	L										8021	3021	TN	PAH 8270 / 625	Total Metals Ad As	P Metals /	TCLP Volatiles	emi	estic		Vol.	GC/MS Semi.	082	es 8(TSS, pH	Cor	Ca Mo K	ίĥ.			pund	nin
AB USE)	LNO:	Volume	WATER				_	ő	H.SO.	NaOH		NONE		Щ	ш	Ш	Å	Ē	PAH 8270	Meta	PN	P V	PS	P P		WS.	MS.	PCB's 8082	ticide	0, TS	sture	N C			1	Aro	
ONLY)	#	Vol	WA	SOIL			HCH	HNO	E T	Na(U U U U	2 2		DATE	TIME	MTBE	E	I		Tota	TCL	1CI	TCL	12	RC	00	00	PCE	Pes	BOD,	No.		λα,			Lun L	
81458Fox30-SW-W	ł			X								X	12,	/4	1546		X	X)													X					
459 Fox 30 - SW - N	1			X								x			1600		F	#	1										c		3	X					
410 For 2G-SW-E				X				1				X			1625				\square						\square			1				X					1
461 FOX30 - SW- S		2		X			<u></u>					X		1	1650				\vdash							1					-	X					-
467 BHA Fox30-BH-1-5.8				x	1	1		1				X			1720				\parallel	1												1	-			+	
4625W Fox30-SW-W-1				X	+	+	+			1	+		-	\square	1545				\square			-			-		-		-		L	4	+			+	X
11110 01						-	-	-	+	-		X			Sec. 19		$\left \right $		_	-	\square	-		-		\vdash	-					H					-
HOTOX30-SW-W-2				X		-	-	-	-	-	-		-		1550				-		-	-			-	-			_		-+	2	-		_	-)
4655 Fox 30-SW-N-1				X	-	-	-	-	-	-	-	X		-	ICOS							-		-	\vdash		-				ł		+			-)
HapFox 30 - SW-N-2				X		-	-	-	-			X			1610			-	4												F	1	_		_	-	X
46 Fox 30 - SW - E-1	1			X		_						X			1630																-	H					
HOBFOX 30-5W-E-2.	×	_		X	1							X	-	<u> </u>	1635	_	×.		V												+	4			2		×
elinquished by: Company: Date:	Tin			eive	d by	1:	C	om	pan	y:	I	Date:	-	Time:	OBS	FR	KI 6	c	LAI			E		R	EMA	ARM	(S:	_						1			
Jurren Maurer HILL 12/5	160			in	UT	A	12)	H	4	-	16		54	COR	E			0	NI	-Y			1	1	-	-1	T	20	\mathbf{C}	-	_]	1	it	D	Xt	6
elinquished by: Company: Date:	Tin		Rec	eive	d by	r:	C	om	pan	y:	1	Date:	15	Time:	INST OBS			cIn	tact) N	L			-			(-	-	/							
um TA 12-8-14 (31		_			_	-							COR		0	CH	eadsp	ace _	YN	INA		10-		oict	+ De	oic F	20~	uired							
elinquished by: Company: Date:	Tin	ne:	B	ieive	d by	":	C	om	pan 1	y:		Date:		Time:	0.00		Ro	3					E		RRP	Rep	ort I	Requ	uired	d							
		- 21	1	11		1	1	14	Too.	~ 1		ra 8/0	d	513	O COR	1	. <u>.</u>	Lo	og-in-F	tevie	w	1.2		Ch	eck	If S	peci	al R	epoi	rting							

TraceAnalysis, In email: lab@traceanalysis.com	C. ⁶	701 Aberdeen A Lubbock, Te Tel (806) 7 Fax (806) 7 1 (800) 37	¥as 79424	Midland, 1 Tel (432)	Street, Suite A1 Fexas 79703) 689-6301) 689-6313	200 East Sunset El Paso, Tex Tel (915) 58 Fax (915) 58 1 (888) 588	as 79922 5-3443 35-4944	BioAquatic Test 2501 Mayes Rd., S Carrollton, Texas Tel (972) 242-77	Ste 100 3403 Indust 75006 Hobbs, NN	trial Blvd. W 88240 92-7561
Company Name: CH2M HIL	L	£.1.24	Phone #:					ANALYSIS REQ		
Address: (Street, City, Zip)		-u).	Fax #:		West States		(Circle	or Specify N		
Contact Person:			E-mail:	and a second			3		Alkalinity	ard
Invoice to: (If different from above) FOG Resou	ries					1 1 24 Ext(C35)	Se Hg 6010/200.7 Cr Pb Se Hg		PO4 -P, Alk	om standard
Project #:			Project Name	Fox 30	·#3and#44	60 / 624 0 / 624 X1005 E TVHC	Cd Cr Pb	625	DO T	nt fro
Project Location (including state):			Sampler Sign	ature: RF	H3and#4 WM	02 / 8260 / 62 2 / 8260 / 624 005 / TX1005 DROY TVHC	3a d	24		me if different
	ERS	MATRI		SERVATIVE	SAMPLING		g As Ba C g As Ba C s Ag As F es Volatiles	ides ides 8260 / 624 i. Vol. 8270 / 608 381 / 608	pH ontent NO ₃ -N, NO ₂ -N, , K, TDS, EC	Time if o
LAB # FIELD CODE	# CONTAINERS	WATER SOIL AIR	HCI HNO ₃	NaOH ICE NONE	DATE	MTBE 8021/602 BTEX 8021 602/ TPH 8015 GRO / D	Total Metals Ag As Ba (Total Metals Ag As As TCLP Volatiles TCL P Semi Volatiles	TCLP Pesticides RCI GC/MS Vol. 8260 / 624 GC/MS Semi. Vol. 8270 PCB's 8082 / 608 Pesticides 8081 / 608	BOD, TSS, pH Moisture Content CI, F, SO ₄ , NO ₃ -N Na, Ca, Mg, K, TD	Turn Around Time if different from standard
469 Fox 30-SW-S-1	1	X		XX	12/4 1655	INY				
469 Fox 30-SW-S-1 470 Fox 30-SW-S-2	1	X		XX	12/4 1700				X	X
Relinquished by: Company: Date: CH2M L2/5 Warren Marrer HILL 12/5	Time:	Received by	1: Compar	ny: Date:	- 2/ OBS	5 9 LOC -	B USE	REMARKS:		
Relinquished by: Company: Date:	Time:	Received by	· · · · · · · ·	<u>)-,-(((</u> ny: Date:	<u>e</u> [∠] ⊃ (COF Time: INST OBS COF		0			
Relinquished by: Company: Date:	Time:	Received by		· 12/1.	Time: INST OBS 4 5/30 COF	4.0°c	Review	Dry Weight Basis Reg TRRP Report Require Check If Special Report Limits Are Needed	ed	

Summary Report

(Corrected Report)

Leslie Voss CH2M Hill 700 Main St. Suite 400 Baton Rouge, LA 70802

Project Location:Lea County, NMProject Name:Fox 30 #3 and #4

Time Date Date Sample Description Matrix Taken Taken Received 381458 Fox 30-SW-W 2014-12-04 15:402014-12-05 soil Fox 30-SW-N 381459 2014-12-05 soil 2014-12-04 16:00381460 Fox 30-SW-E soil 2014-12-04 16:252014-12-05 Fox 30-SW-S 381461 soil 2014-12-04 16:502014-12-05 2014-12-04 Fox 30-BH-1-5.75 381462 soil 17:202014-12-05 Fox 30-SW-W-1 2014-12-04 2014-12-05 381463 soil 15:45381464 Fox 30-SW-W-2 soil 2014-12-04 15:502014-12-05 Fox 30-SW-N-1 381465 soil 2014-12-04 16:052014-12-05 Fox 30-SW-N-2 3814662014-12-04 2014-12-05 soil 16:10381467 Fox 30-SW-E-1 soil 2014-12-04 16:302014-12-05 381468 Fox 30-SW-E-2 soil 2014-12-04 16:352014-12-05 381469Fox 30-SW-S-1 soil 2014-12-04 16:552014-12-05 2014-12-04 Fox 30-SW-S-2 17:002014 - 12 - 05381470 soil

		BTEX				TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
381458 - Fox 30-SW-W	$< 0.0200 _{\rm Qs}$	< 0.0200 Qs	$< 0.0200 _{\rm Qs}$	$< 0.0200 \mathrm{Qs}$	<50.0	<4.00
381459 - Fox 30-SW-N	$< 0.0200 _{\rm Qs}$	$< 0.0200 {\rm Qs}$	$< 0.0200 _{\rm Qs}$	${<}0.0200~{\scriptscriptstyle\rm Qs}$	$<\!50.0$	<4.00
381460 - Fox 30-SW-E	$< 0.0200 _{\rm Qs}$	$< 0.0200 {\rm Qs}$	$< 0.0200 _{\rm Qs}$	${<}0.0200~{\scriptscriptstyle\rm Qs}$	$<\!50.0$	<4.00
381461 - Fox 30-SW-S	< 0.0200 Qs	$< 0.0200 {\rm Qs}$	$< 0.0200 _{\rm Qs}$	${<}0.0200~{\scriptscriptstyle\rm Qs}$	$<\!50.0$	<4.00
381462 - Fox 30-BH-1-5.75	< 0.0200 Qs	$< 0.0200 {}_{\mathrm{Qs}}$	< 0.0200 Qs	$< 0.0200 {\rm Qs}$	$<\!50.0$	<4.00
381465 - Fox 30-SW-N-1	$< 0.0200^{-1}$ Qs	< 0.0200	< 0.0200	< 0.0200	${<}50.0$ H,Qs	$<\!4.00^{-2}$ Qs

continued ...

¹Sample added out of hold.

²Sample added after hold expired.

Report Date: May 4, 2015

Work Order: 14120801

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

 \dots continued

	BTEX				TPH DRO - NEW	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
381466 - Fox 30-SW-N-2	$< 0.0200^{-3}$ Qs	< 0.0200	< 0.0200	< 0.0200	${<}50.0$ H,Qs	$< 4.00^{-4} Q_{s}$
381469 - Fox 30-SW-S-1	$< 0.0200^{-5}$ Qs	< 0.0200	< 0.0200	< 0.0200	${<}50.0$ H,Qs	$< 4.00^{-6} Q_{s}$
381470 - Fox 30-SW-S-2	< 0.0200 ⁷ _{Qs}	< 0.0200	< 0.0200	< 0.0200	${<}50.0$ H,Qs	$< 4.00^{-8}$ Qs

Sample: 381458 - Fox 30-SW-W

Param	Flag	Result	Units	RL
Chloride	Qs	$<\!25.0$	m mg/Kg	25

Sample: 381459 - Fox 30-SW-N

Param	Flag	Result	Units	RL
Chloride	Qs	1460	m mg/Kg	25

Sample: 381460 - Fox 30-SW-E

Param	Flag	Result	Units	RL
Chloride	Qs	<25.0	m mg/Kg	25

Sample: 381461 - Fox 30-SW-S

Param	Flag	Result	Units	RL
Chloride	Qs	5450	m mg/Kg	25

Sample: 381462 - Fox 30-BH-1-5.75

Param	Flag	Result	Units	RL
Chloride	Qs	8260	m mg/Kg	25

Sample: 381463 - Fox 30-SW-W-1 Sample: 381464 - Fox 30-SW-W-2 Sample: 381465 - Fox 30-SW-N-1

³Sample added out of hold.

⁴Sample added after hold expired.

⁵Sample added out of hold.

 $^6\mathrm{Sample}$ added after hold expired.

⁷Sample added out of hold.

⁸Sample added after hold expired.

Report Date: May 4	l, 2015	Work Order: 14120801	Page	Number: 3 of 3
Param	Flag	Result	Units	RL
Chloride		117	m mg/Kg	25
Sample: 381466 -	Fox 30-SW-N-2			
Param	Flag	Result	Units	RL
Chloride		63.2	mg/Kg	25

Sample: 381467 - Fox 30-SW-E-1 Sample: 381468 - Fox 30-SW-E-2 Sample: 381469 - Fox 30-SW-S-1

Param	Flag	Result	Units	RL
Chloride		$<\!25.0$	m mg/Kg	25

Sample: 381470 - Fox 30-SW-S-2

Param	Flag	Result	Units	RL
Chloride		$<\!25.0$	m mg/Kg	25

Texas 79424 800-378-1296 6701 Aberdeen Avenue, Suite 9 Lubbock, 806-794-1296 FAX 806 • 794 • 1298 200 East Sunset Road, Suite E El Paso, Texas 79922 915-585-3443 FAX 915 • 585 • 4944 5002 Basin Street, Suite A1 Midland, Texas 79703 432-689-6301 FAX 432 . 689 . 6313 (BioAquatic) 2501 Mayes Rd., Suite 100 Carroliton, Texas 75006 972-242-7750 E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Leslie Voss CH2M Hill 700 Main St. Suite 400 Baton Rouge, LA, 70802

Report Date: June 5, 2015

Work Order: 15052706

Project Location:Lea Co, NMProject Name:FOX 30 #3 & #4Project Number:653209.TM.18

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
393982	FX30-3.5-4.0-NW-05192015	soil	2015-05-19	12:35	2015-05-26
393983	FX30-3.5-4.0-SW-05192015	soil	2015-05-19	12:25	2015 - 05 - 26
393984	FX30-6.5-7.0-FL-05192015	soil	2015 - 05 - 19	10:50	2015 - 05 - 26
393985	FX30-8.5-9.0-FL-05192015	soil	2015 - 05 - 19	11:30	2015 - 05 - 26
393986	FX30-10.5-11.0-FL-05192015	soil	2015-05-19	12:00	2015-05-26

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

TraceAnalysis, Inc. uses the attached chain of custody (COC) as the laboratory check-in documentation which includes sample receipt, temperature, sample preservation method and condition, collection date and time, testing requested, company, sampler, contacts and any special remarks.

This report consists of a total of 14 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Notes:

All sample results are reported on a dry weight basis.

 $\label{eq:Formula} For \ inorganic \ analyses, \ the \ term \ MQL \ should \ actually \ read \ PQL.$

Blain Lepturch

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Report Contents

Case Narrative	4
Analytical Report Sample 393982 (FX30-3.5-4.0-NW-05192015) Sample 393983 (FX30-3.5-4.0-SW-05192015) Sample 393984 (FX30-6.5-7.0-FL-05192015) Sample 393985 (FX30-8.5-9.0-FL-05192015) Sample 393986 (FX30-10.5-11.0-FL-05192015)	5 6 6
Method Blanks QC Batch 121840 - Method Blank (1)	8 8
Duplicates QC Batch 122014 - Duplicate (1)	9 9
Laboratory Control Spikes QC Batch 121840 - LCS (1)	10 10
Matrix Spikes QC Batch 121840 - MS (1)	11 11
QC Batch 121840 - ICV (1)	
Limits of Detection (LOD)	13
Appendix Report Definitions Laboratory Certifications Standard Flags Attachments	14 14

Case Narrative

Samples for project FOX 30 #3 & #4 were received by TraceAnalysis, Inc. on 2015-05-26 and assigned to work order 15052706. Samples for work order 15052706 were received intact at a temperature of 2.3 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (Titration)	SM 4500-Cl B	103095	2015-05-29 at 08:58	121840	2015-05-29 at 08:58
Moisture Content	ASTM D 2216-05	103206	2015-06-03 at $16:17$	122014	2015-06-04 at $14:03$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15052706 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Note: All sample results are reported on a dry weight basis.

Sample: 393982 - FX30-3.5-4.0-NW-05192015

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride 121840 103095	(Titr	ation)	Ι	Analytical M Date Analyz Sample Prep	ed:	SM 4500-Cl 2015-05-29 2015-05-29	В	Prep Method: N/A Analyzed By: AK Prepared By: AK	
			SDL	MQL	Method					
			Based	Based	Blank				MQL	MDL
Parameter	\mathbf{F}	С	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Chloride	Qs, U		<21.7	$<\!22.5$	<21.7	mg/Kg	5	21.7	4	3.85

Sample: 393982 - FX30-3.5-4.0-NW-05192015

Laboratory: Analysis: QC Batch: Prep Batch:	Moisture Content 122014		Analytical Date Anal Sample Pr	yzed:	ASTM D 2216-0 2015-06-04 2015-06-03	05 Prep Method Analyzed By Prepared By:	AK
				RL	1		
Parameter		F	\mathbf{C}	Result	Units	s Dilution	RL
Moisture			1	11.2	%	1	0

Sample: 393983 - FX30-3.5-4.0-SW-05192015

Laboratory:	Midland									
Analysis:	Chloride	(Titr	ation)		Analytical N	fethod:	SM 4500-Cl	В	Prep M	ethod: N/A
QC Batch:	121840				Date Analyz	ed:	2015-05-29		Analyze	ed By: AK
Prep Batch:	103095				Sample Prep	paration:	2015-05-29		Prepare	ed By: AK
			SDL	MQL	Method					
			Based	Based	Blank				MQL	MDL
Parameter	\mathbf{F}	С	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Chloride	Qs, U		<22.0	$<\!22.9$	<22.0	mg/Kg	5	22.0	4	3.85

Sample: 393983 - FX30-3.5-4.0-SW-05192015

Laboratory:	Midland				
Analysis:	Moisture Content	Analytical Method:	ASTM D 2216-05	Prep Method:	N/A

Report Date: June 5, 2015 653209.TM.18			k Order: 15052706 OX 30 #3 & #4	Page Number: 6 of 14 Lea Co, NM		
QC Batch: 122014 Prep Batch: 103206		Date Anal Sample Pr	•		Analyzed By Prepared By	
Parameter	\mathbf{F}	\mathbf{C}	Result	Units	Dilution	RL
Moisture		1	12.6	%	1	0

Sample: 393984 - FX30-6.5-7.0-FL-05192015

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride 121840 103095		ration)		Analytical I Date Analy Sample Pre	zed:	SM 4500-C 2015-05-29 2015-05-29	ΙB	Prep Method: N/A Analyzed By: AK Prepared By: AK	
			SDL	MQL	Method					
			Based	Based	Blank				MQL	MDL
Parameter	\mathbf{F}	\mathbf{C}	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Chloride	$_{\rm Qs}$		1040	1040	<23.0	mg/Kg	5	23.0	4	3.85

Sample: 393984 - FX30-6.5-7.0-FL-05192015

Laboratory: Analysis: QC Batch: Prep Batch:	Moisture Content 122014		Analytical Date Anal Sample Pr	yzed:	ASTM D 22 2015-06-04 2015-06-03	16-05	Prep Method: Analyzed By: Prepared By:	ÁK
				RI				
Parameter		F	\mathbf{C}	Resul	t U	nits	Dilution	RL
Moisture			1	16.2	2	%	1	0

Sample: 393985 - FX30-8.5-9.0-FL-05192015

Laboratory:	Midland	l								
Analysis:	Chloride	e (Tit	ration)		Analytical I	Method:	SM 4500-Cl	l B	Prep M	ethod: N/A
QC Batch:	121840				Date Analyzed:		2015-05-29		Analyze	ed By: AK
Prep Batch:					Sample Pre	paration:	2015-05-29		Prepare	ed By: AK
			SDL	MQL	Method					
			Based	Based	Blank				MQL	MDL
Parameter	\mathbf{F}	\mathbf{C}	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Chloride	Qs		966	966	<21.4	mg/Kg	5	21.4	4	3.85

Report Date: June 5, 2015	Work Order: 15052706	Page Number: 7 of 14
653209.TM.18	FOX 30 #3 & #4	Lea Co, NM

Sample: 393985 - FX30-8.5-9.0-FL-05192015

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Moisture Content 122014 103206		Analytical Date Analy Sample Pre	zed:	ASTM D 22 2015-06-04 2015-06-03	216-05	Prep Method: Analyzed By: Prepared By:	ÁK
Parameter Moisture		F		RI Result 9.93	- J	Units %	Dilution 1	$\frac{\mathrm{RL}}{0}$

Sample: 393986 - FX30-10.5-11.0-FL-05192015

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 121840 103095			Analytical I Date Analy Sample Pre	zed:	SM 4500-Cl 2015-05-29 2015-05-29	ΙB	Prep Method: N/A Analyzed By: AK Prepared By: AK		
			SDL	MQL	Method					
			Based	Based	Blank				MQL	MDL
Parameter	\mathbf{F}	\mathbf{C}	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Chloride	$_{\rm Qs}$		1410	1410	$<\!\!21.5$	mg/Kg	5	21.5	4	3.85

Sample: 393986 - FX30-10.5-11.0-FL-05192015

Laboratory:	Midland							
Analysis:	Moisture Content		Analytical	Method:	ASTM D 22	16-05	Prep Method:	N/A
QC Batch:	122014		Date Anal	yzed:	2015-06-04		Analyzed By:	AK
Prep Batch:	103206		Sample Pr	reparation:	2015-06-03		Prepared By:	AK
				RI				
Parameter		F	\mathbf{C}	Resul	t (Jnits	Dilution	RL
Moisture			1	10.4	1	%	1	0

Method Blanks

Method Blank (1)

QC Batch: Prep Batch:	$\frac{121840}{103095}$		Date Analyzed: QC Preparation:	2015-05-29 2015-05-29		d By: AK d By: AK
Parameter		F	С	Result	Units	Reporting Limits
Chloride				<3.85	m mg/Kg	3.85

Duplicates

Duplicate (1) Duplicated Sample: 393995

QC Batch: Prep Batch:	$\begin{array}{c} 122014 \\ 103206 \end{array}$			Date Ana QC Prepa	v	·06-04 ·06-03	Analyzed E Prepared E	v	
				Duplicate	Sample				RPD
Param		\mathbf{F}	\mathbf{C}	Result	Result	Units	Dilution	RPD	Limit
Moisture			1	8.52	9.53	%	1	11	20

Param

Chloride

 RPD

8

Limit

20

Laboratory Control Spikes

 $\mathbf{F} \quad \mathbf{C}$

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	$\frac{121840}{103095}$		Date Analyzed:2015-05-29Analyzed IQC Preparation:2015-05-29Prepared I						v	
				I CC			C 11	M - +		Dee
				LCS			Spike	Matrix		Rec.
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride				2420	mg/Kg	5	2500	<19.2	97	85 - 115
Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.										
			LCS	D		Spike	Matrix	Rec	с.	RPD

Dil.

5

Amount

2500

Result

 $<\!19.2$

Rec.

104

Limit

85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Result

2610

Units

 $\mathrm{mg/Kg}$
Matrix Spikes

Matrix Spike (MS-1) Spiked Sample: 394173

QC Batch: Prep Batch:	$\frac{121840}{103095}$			ate Analyz C Prepara		5-05-29 5-05-29			v	d By: AK d By: AK
Param		\mathbf{F}	С	MS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Chloride		$_{\rm Qs}$		16800	mg/Kg	5	2500	13300	140	78.9 - 121
Percent reco	very is based on the	ne spike re	sult. l	RPD is bas	sed on the	spike an	d spike dup	licate resu	lt.	

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	$_{\rm Qs}$		16800	$\mathrm{mg/Kg}$	5	2500	13300	140	78.9 - 121	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Calibration Standards

Standard (ICV-1)

QC Batch:	121840				Date Analyzed:	2015-05-29		Analy	zed By: AK
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param		F	С	Units		Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	g 100	100	100	85 - 115	2015-05-29

Standard (CCV-1)

QC Batch:	121840				Date Analyzed:	2015-05-29		Analyz	zed By: AK
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param		\mathbf{F}	С	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	g 100	100	100	85 - 115	2015-05-29

Limits of Detection (LOD)

					Spike	
Test	Method	Matrix	Instrument	Analyte	Amount	Pass
Chloride (Titration)	SM 4500-Cl B $$	soil	N/A	Chloride	10.0	Pass

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	NELAP	T104704392-14-8	Midland

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- $\label{eq:Qsr_surrogate} \mbox{ Qsr } \mbox{ Surrogate recovery outside of laboratory limits.}$
- U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

	Trace email:		lysis eanalysis	5, I .com	nc.		6	Fax (ordes ctc,Te 908) 7 905) 7 905) 7	nas 1 794-1 794-1	70424 296 298	9		5	002 Basin Street, Midland, Texas Tel (432) 689- Fax (432) 689-	79783		20	El Pi Tel	aso, 1 (915)	set Flo exas) 585-3) 585-4	79922 1443			X 02	2501 I Carrol	oAqua Mayas Alton,	age tic Tes a Rd., S Texas) 242-7	Ning Ste 100 78000	0 5	10	ſ	
Company Name:			MHILL		in a Marana	F	hone	#:	ada <u>nışı</u>		Le	slie	Vos	ss: 4(69-352-5022	2	Τ					AN	ALY	SIS	RF	QU	ES.	7	-				
Address:	306 V	Vest Wall : Midland	Street, Sui TX, 79701	ite 11()7	F	ax #:		10220-02		20111	mer	Dus	ssor:	520-954-22	74	┥.		.(Cir								d N	٩o.)			
Contact Person(s):		Lesli	e Voss r Dussor			E	mait	**************************************			Les	lie.	Vos	s@cl	n2m.com	and an other states of	-			6010B / 200.7											1		
Involce to:				lenet F			-					iter.	Uus	SON	ch2m.com		+	TANK I		3010B									Ą	2		E	
Project #:		65220	9.TM.18		BIII EO			tes, a	-	e Ki	urtz				ente des ange		-	Cau	ŝ		Se Hg								Alkall			standa	
Project Location:	and the second sec	90320	3.1M.18	-			C. C		F.	h#a.		12 a at 10	FO	X 30	#3 & #4	Markan States	624	624		Pb Se	Pb S	Second Second							d-"C			Lon	
Include state)	L	a County,	New Mex	ico			ample Ignati										2608	2808/		10 PO	CqC				3	C/82			N. P.			erent	
		C	33/27/15	NERS	nount		MAT	RUX	Ţ		PRES N	SER	VATI	IVE	SAMP	LING	1602/8	602 / 8. M1005 /	\$25	As Ba	g As Ba	atites			608/62	08 82/1	IA / 608		N, NO	TDS, EC		ne if diff	
LAB # LAB USE ONLY	FIE	LD CODE 3.5-0	1.0	# CONTAINERS	Volume/Amount	WATER	AIR	SLUDGE		HCL .	H-SO.	NaOH	ICE	NONE	DATE	TME	MTBE 8021B/802/8260B/624	BTEX 80218/502/82808/624 TPH 4181/TX1005 80150 CBC DBC 71410	PAH 8270C / 625	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Metals Ag As	TCLP Semi Volatiles	TCLP Pesticides		GC/MS Vol. 8260B / 624	GU/MS Semi. Vol. 6270C/825 PCB's 8062 / 608	Pesticides 8081A / 508	800, TSS, pH	Moisture Content Cl. F. SO., NON. NON. POP. Alkalinity	Ca, Mg, K,	Chloride	Turn Around Time if different from standard	
	FX302.5-3.0N			1	40Z	X	and the second		Ť	<u>+</u>			≚ X	2	5/19/15	F 1235	121			2	21	박	12	ß	86	PCB's	Pes	B 0	in in	Na Na	ŝ	Tur	
	X30 2.5-3.0 SI		A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O		40Z-	X			1			1	X		5/19/15	1235		• • • • • • • • • • • • • • • • • • •	十							=		¥	X		<u>×</u>	4	\downarrow
20001	X30-6.5-7.0-FL	State of Concession of State o	Statement of the second statement of the second statement of the second statement of the second statement of the	1	40Z	X		\square		Ι			x		5/19/15	1050	\dagger	+	╈		╋	╋	╋┥		╉	+-	Η	X	*	1-+	×	–	╞
NAME	X30-8.5-9.0-FL	Contraction of the local division of the loc	A REAL PROPERTY AND A REAL	1	40Z	<u> </u>	4	Щ					X		5/19/15	1130	\mathbf{T}	\uparrow	\uparrow	\square	+	+	\top		+	+	Η	X	*	1 1	X X	<u> </u>	╀
0.00	X30-10.5-11.0-	FL-051920	015	1	40Z	X	Ļ_	\downarrow	\downarrow	\bot			X		5/19/15	1200	\square	T	\uparrow	\square	\uparrow	┢	+		-	Ŧ	Ħ	0	ð	- and	x	┢	F
			**************************************				┝	┢╍╇	4	4	+	<u> </u>	ĻЦ	4	1								Π		\uparrow	\uparrow	H		Ť	†ť	╧	┢──	+
~						+-	┝─	╋╋	+	╋	╇	\vdash					┡┼	1				Ļ	Ц		T	L			Ţ		土		T
		······································					\vdash	╞┼	+	+	+-	\square			-		┢┼┼	┿	+	\square			Н		_	+	\vdash		\downarrow	$\downarrow\downarrow$	\perp		Ļ
									T	Ť	T	\square		+			┢┼	╋	+	┝┥	╋	┿	┢┥	+	╇	╇	\vdash	+	╇	╇╇	+		Ļ
Inguished by:	Company:	Date:	Time:	Recen	ad hu					T					1			╈	\square	H	+	+	H	╉	+	+-	H		╋	┢╍╋	┯	\vdash	F
Uwm	CH2M.	5/26	1645	NC	2110	4	2.7	pany: L(C		Dat SI.	e: 26		me:)! _{4	S OI		ē		AB			R	EMA	RKS	3:					<u> </u>		11 Vo	0	4
linquished by:	Company:	Date:	and the second se	Receiv	ed by:	9-	A	pany:		Dat	1000		ne:	IN OI	ST°	c c	Intect	(VLY Qr	I		X] Dıy	Weig	ht Ba	sis Rec	, benuj	k	-l	W	で	1	
linquished by:	Company:	Date:	Time:	Receiv	ed by:	1999 (C. 1997)	Comp	pany:		Date	0;	Tir	ne:		ST	с с	Head:	space	<u>Y/</u>	N THE] TRF	RP Re	iport F	lequire	d		(لل	MMOC)	-	

ORIGINAL COPY

10 1

Summary Report

Leslie Voss CH2M Hill 700 Main St. Suite 400 Baton Rouge, LA 70802

Report Date: June 5, 2015

Work Order: 15052706

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
393982	FX30-3.5-4.0-NW-05192015	soil	2015-05-19	12:35	2015-05-26
393983	FX30-3.5-4.0-SW-05192015	soil	2015-05-19	12:25	2015 - 05 - 26
393984	FX30-6.5-7.0-FL-05192015	soil	2015-05-19	10:50	2015 - 05 - 26
393985	FX30-8.5-9.0-FL-05192015	soil	2015-05-19	11:30	2015 - 05 - 26
393986	FX30-10.5-11.0-FL-05192015	soil	2015-05-19	12:00	2015-05-26

Sample: 393982 - FX30-3.5-4.0-NW-05192015

		SDL	MQL	
Param	Flag	Result	Result	Units
Chloride	Qs,U	<21.7	$<\!\!22.5$	mg/Kg
Moisture		11.2	11.2	%

Sample: 393983 - FX30-3.5-4.0-SW-05192015

		SDL	MQL	
Param	Flag	Result	Result	Units
Chloride	Qs,U	<22.0	<22.9	mg/Kg
Moisture		12.6	12.6	%

Sample: 393984 - FX30-6.5-7.0-FL-05192015

Report Date: June	5, 2015	Work Order: 15052706	Work Order: 15052706			
		SDL	MQL			
Param	Flag	Result	Result	Units		
Chloride	Qs	1040	1040	mg/Kg		
Moisture		16.2	16.2	%		

Sample: 393985 - FX30-8.5-9.0-FL-05192015

		SDL	MQL	
Param	Flag	Result	Result	Units
Chloride	Qs	966	966	mg/Kg
Moisture		9.93	9.93	%

Sample: 393986 - FX30-10.5-11.0-FL-05192015

		SDL	MQL	
Param	Flag	Result	Result	Units
Chloride	Qs	1410	1410	mg/Kg
Moisture		10.4	10.4	%

Texas 79424 Lubbock, 800-378-1296 806 • 794 • 1296 6701 Aberdeen Avenue, Suite 9 FAX 806 • 794 • 1298 200 East Sunset Road, Suite E El Paso, Texas 79922 915-585-3443 FAX 915 • 585 • 4944 Texas 79703 432-689-6301 5002 Basin Street, Suite A1 Midland FAX 432 . 689 . 6313 (BioAquatic) 2501 Mayes Rd., Suite 100 Carroliton, Texas 75006 972-242 -7750 E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Leslie Voss CH2M Hill 12750 Merit Dr. Ste. 1100 Dallas, Tx, 75251

Report Date: September 11, 2015

Work Order: 15090334

Project Location:Lea Co, NMProject Name:FOX 30 #3Project Number:653209.TM.18

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
403891	SSFX30-11-FL-09032015	soil	2015-09-03	10:15	2015-09-03
403892	SSFX30-16-FL-09032015	soil	2015-09-03	10:30	2015-09-03
403893	SSFX30-21-FL-09032015	soil	2015-09-03	10:55	2015-09-03

Notes

• Work Order 15090334: Dry Weight Basis Required. Check if special Reporting Limits are needed These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

TraceAnalysis, Inc. uses the attached chain of custody (COC) as the laboratory check-in documentation which includes sample receipt, temperature, sample preservation method and condition, collection date and time, testing requested, company, sampler, contacts and any special remarks.

This report consists of a total of 14 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Notes:

All sample results are reported on a dry weight basis.

 $\label{eq:Formula} For \ inorganic \ analyses, \ the \ term \ MQL \ should \ actually \ read \ PQL.$

Blain Lepturch

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Report Contents

Case Narrative	4
Analytical Report Sample 403891 (SSFX30-11-FL-09032015) Sample 403892 (SSFX30-16-FL-09032015) Sample 403893 (SSFX30-21-FL-09032015)	5
Method Blanks QC Batch 124791 - Method Blank (1)	7 7
Duplicates QC Batch 124681 - Duplicate (1)	8 8
Laboratory Control Spikes QC Batch 124791 - LCS (1)	9 9
Matrix Spikes QC Batch 124791 - MS (1)	10 10
Calibration Standards QC Batch 124791 - CCV (1) QC Batch 124791 - CCV (2)	
Limits of Detection (LOD)	12
Appendix Report Definitions Laboratory Certifications Standard Flags Attachments	$\begin{array}{c} 13 \\ 13 \end{array}$

Case Narrative

Samples for project FOX 30 #3 were received by TraceAnalysis, Inc. on 2015-09-03 and assigned to work order 15090334. Samples for work order 15090334 were received intact at a temperature of 33.4 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (IC)	E 300.0	105533	2015-09-10 at 15:00	124791	2015-09-10 at 16:23
Moisture Content	ASTM D 2216-05	105436	2015-09-04 at $11:13$	124681	2015-09-05 at $10:04$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15090334 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Note: All sample results are reported on a dry weight basis.

Sample: 403891 - SSFX30-11-FL-09032015

Laboratory: Analysis: QC Batch: Prep Batch:	Lubboc Chlorid 124791 105533			Analytical Method:E 300.0Date Analyzed:2015-09-10Sample Preparation:						Prep Method: N/A Analyzed By: RL Prepared By: RL			
			SDL	MQL	Method								
			Based	Based	Blank				MQL	MDL			
Parameter	\mathbf{F}	\mathbf{C}	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)			
Chloride		1,2,4	1730	1730	<27.8	mg/Kg	5	27.8	25	4.69			

Sample: 403891 - SSFX30-11-FL-09032015

Laboratory: Analysis: QC Batch: Prep Batch:	Moisture Content 124681		Date Anal	Analytical Method: Date Analyzed: Sample Preparation:		6-05	Prep Method: Analyzed By: Prepared By:	ÁM
				RI	L			
Parameter		F	\mathbf{C}	Result	t Ur	nits	Dilution	RL
Moisture			3	15.5	5	76	1	0

Sample: 403892 - SSFX30-16-FL-09032015

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbocl Chloride 124791 105533		Analytica Date Ana Sample Pr			d:	E 300.0 2015-09-10		Prep M Analyze Prepare	•
Parameter	F	С	SDL Based Result	MQL Based Result	Method Blank Result	Units	Dilution	SDL	MQL (Unadjusted)	MDL (Unadjusted)
Chloride		1,2,4	1430	1430	<26.4	mg/Kg	5	26.4	25	4.69

Sample: 403892 - SSFX30-16-FL-09032015

Laboratory:	Midland				
Analysis:	Moisture Content	Analytical Method:	ASTM D 2216-05	Prep Method:	N/A

Report Date: September 11, 2015 653209.TM.18	,	Work Order: 1509 FOX 30 #3	Page Number: 6 of 14 Lea Co, NM		
QC Batch: 124681 Prep Batch: 105436	Date Ana Sample Pr	lyzed: 2015- reparation:	Analyzed By: AM Prepared By: AM		
		RL			
Parameter F	\mathbf{C}	Result	Units	Dilution	RL
Moisture	3	11.1	%	1	0

Sample: 403893 - SSFX30-21-FL-09032015

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbocl Chloride 124791 105533			Dε	aalytical Me ate Analyze mple Prepa	d: 2	E 300.0 2015-09-10		Prep M Analyze Prepare	v
			SDL	MQL	Method					
			Based	Based	Blank				MQL	MDL
Parameter	\mathbf{F}	\mathbf{C}	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Chloride		1,2,4	304	304	<4.91	mg/Kg	1	4.91	25	4.69

Sample: 403893 - SSFX30-21-FL-09032015

Laboratory: Analysis: QC Batch: Prep Batch:	Moisture Content 124681		Analytical Date Anal Sample Pr	yzed:	ASTM D 2216 2015-09-05	Anal	Method: N/A yzed By: AM ared By: AM
				RJ	_		
Parameter		F	\mathbf{C}	Resul	t Uni	ts Dilutio	n RL
Moisture			3	4.4	7 %	1	0

Method Blanks

Method Blank (1)

QC Batch: Prep Batch:	$\frac{124791}{105533}$		Date Analyzed: QC Preparation:	2015-09-10 2015-09-10		yzed By: RL ared By: RL
Parameter		F	C	Result	Units	Reporting Limits
rarameter		Г	U	nesuit	Units	Linnts
Chloride			1,2,4	<4.69	mg/Kg	4.69

Duplicates

Duplicate (1) Duplicated Sample: 403891

QC Batch: Prep Batch:	$\frac{124681}{105436}$			Date Anal QC Prepa	v			Analyzed B Prepared B	•
				Duplicate	Sample				RPD
				Duplicate	Sample				-
Param		\mathbf{F}	\mathbf{C}	Result	Result	Units	Dilution	RPD	Limit
Moisture			3	15.2	15.5	%	1	2	20

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch:	124791	Dε	te Analyze	ed: 2015-	09-10		A	nalyzed	By: RL
Prep Batch:	105533	QO	C Preparat	ion: 2015-	09-10		F	repared	By: RL
			LCS			Spike	Matrix		Rec.
Param	F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride		1,2,4	258	mg/Kg	1	250	<4.69	103	90 - 110
Percent recov	very is based on the spike :	esult. R	PD is base	ed on the sp	oike and	spike duplie	cate result.		

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	258	$\mathrm{mg/Kg}$	1	250	$<\!\!4.69$	103	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

Matrix Spike (MS-1) Spiked Sample: 403958

QC Batch: Prep Batch:	$\frac{124791}{105533}$	Date Analyzed: 2015-09-10 QC Preparation: 2015-09-10							Analyzed By: RL Prepared By: RL		
Param		F	С	MS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	
Chloride			1,2,4	1380	$\mathrm{mg/Kg}$	5	1250	65.2	105	80 - 120	
Percent recov	very is based on the	spike re	sult. R	PD is base	d on the sp	ike and	spike duplie	cate result.			

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	1350	mg/Kg	5	1250	65.2	103	80 - 120	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Calibration Standards

Standard (CCV-1)

QC Batch:	124791			Date	e Analyzed:	2015-09-10		Analy	zed By: RL
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
-		-	~					v	
Param		F,	С	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			1,2,4	mg/Kg	25.0	24.1	96	90 - 110	2015-09-10

Standard (CCV-2)

QC Batch:	124791			Date	e Analyzed:	2015-09-10		Analy	zed By: RL
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param		F	\mathbf{C}	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			1,2,4	m mg/Kg	25.0	25.9	104	90 - 110	2015-09-10

Limits of Detection (LOD)

					Spike	
Test	Method	Matrix	Instrument	Analyte	Amount	Pass
Chloride (IC)	E 300.0	soil	Dionex IC	Chloride	10.0	Pass

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	LELAP	LELAP-02003	Lubbock
2	NELAP	T104704219-15-11	Lubbock
3	NELAP	T104704392-14-8	Midland
4		2014-018	Lubbock

Standard Flags

F Description

- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Attachments

Report Date: September 11, 2015 $653209.\mathrm{TM.18}$

Work Order: 15090334 FOX 30 #3

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

LAB Order ID #				Page_/	of
TraceAnalysis, Inc. email: lab@traceanalysis.com	Lubbock, Texas 79424 Mi	Basin Street, Suite A1 2 land, Texas 79703 el (432) 689-6301 ix (432) 689-6313	200 East Sunset Rd., Suite E El Paso, Texas 79922 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443	BioAquatic Testing 2501 Mayes Rd., Ste 100 Carroliton, Texas 75006 Tel (972) 242-7750	Brandon & Clark 3403 Industrial Blvd. Hobbs, NM 88240 Tel (575) 392-7561 Fax (575) 392-4508
Company Name: CH ZM Hill	Phone #: Leslie Vo T Dussac	5 469-352-5022 520-954-2274		NALYSIS REQUEST	
Addresses (Street City Zin)	Fay #	360 751 6671	(Circle o	or Specify Method	
Contact Person: Leslie voss Jennifer Dussor	E-mail: Leslie Nos	SOCH 2M. com	35) 10/200.7 Hg	cides 8260 / 624 mi. Vol. 8270 / 625 2 / 608 8081 / 608 pH ontent NO ₃ -N, NO ₂ -N, PO ₄ -P, Alkalinity	ndard
Invoice to: (If different from above) Direct Bill EOG Res Project #:			g 60 Kt(C	4-P, A	m star
Project #: 6532.09 TM 18	Project Name: FO)	30	8260 / 624 TX1005 Ex 7 / TVHC 7 / TVHC C Pb Se Hg a Cd Cr Pb	625 N, PO	ant fro
Project #: 653209.TM.18 Project Location (including state): Lea County, NM	Sampler Signature:	wet	/ 8260 / / 8260 / / 171(3 / 1	324 270 / 8 NO ₂ -I	, EC
	MATRIX PRESERVA	IVE SAMPLING	8021 / 602 / 8260 / 624 8021 / 602 / 8260 / 624 18.1 / TX1005 / TX1005 E 015 GRO / DRO / TVHC 270 / 625 270 / 625 atals Ag As Ba Cd Cr Pb Se H wetals Ag As Ba Cd Cr Pb Wetals Ag As Ba Cd Cr Pb Wetaltes	les 260 / 62 Vol. 82 608 31 / 608 4 4 ent 33 - N, Ni	, TDS, TDS,
LAB # FIELD CODE			8021 / 8021 / T 8.1 / T 15 GR 70 / 62 70 / 62 als Ag , letals , olatile: emi V(esticic Vol. 8 Semi. 082 / es 806 es 806 es 806 ot, NO	T Mg, K
(LAB USE) ONLY #	VOILLE XOILE VOILLE VOILU VOILU VOILLE VOILLE VOILLE VOILLE VOILLE VOILLE VOILLE VOILU	NONE DATE TIME	MTBE 8021 / 602 / 8260 / 62 BTEX 8021 / 602 / 8260 / 624 TPH 418.1 / TX1005 / TX1005 TPH 8015 GRO / DRO / TVHC PAH 8270 / 625 Total Metals Ag As Ba Cd Cr Pb Se 7CLP Wetals Ag As Ba Cd Cr F TCLP Volatiles 7CLP Semi Volatiles	TCLP Pesticides RCI GC/MS Vol. 8260 / 624 GC/MS Semi. Vol. 8270 GC/MS Semi. Vol. 8270 PCB's 8082 / 608 Pesticides 8081 / 608 BOD, TSS, pH Moisture Content Moisture Content CI, F, SO4, NO3-N, NO2	Na, Ca, Mg, K, TDS, EC C A lo C i deS Turn Around Time if different from standard Hold
402891 SSFX3D-11-FL-09032015 1 4 40289255FX3D-16-FL-09032015 1 4	07 7	X 9/3 1015			X 48h3
40359255FX30-16-FL-09032015 1 4	07 X	X 9/3 1030			X 4Ren 5
40389355FX30-21-FL-09032015 1 41	27 X	X 913 1055			X 42nds
		16			
	h h				
Relinquished by: Company: Date: Time	e: Received by: Company:	Date: Time: INST	LAB USE	REMARKS:	
Amanda West CH2M 9/3/15 170		3-15 17100 OBS		andar Artista (1995) Artista (1995)	
Relinquished by: Company: Date: Time		Date: Time: INST OBS			
Relinquished by: Company: Date: Tim	29 e: Received by: Company:	COR Date: Time: INST	X	Cry Weight Basis Required	
		OBS	Sc	TRRP Report Required Check If Special Reporting Limits Are Needed	moc
Submittal of samples constitutes agreement to Terms and	Conditions listed on reverse side of C. (· · · · · · · · · · · · · · · · · · ·	Carrier # COLYNY	M	

ORIGINAL CODV

LAB Or	der ID #	500	2033	4																							2010			Pa	ge_	1		_of	1	1	
er	nail: lab@	Itraceanal	sis, In lysis.com	IC.	6	L	Aberde J bboc Tel (8 Fax (8 1 (80	k Te	yas 7	9424	ite 9		5002 M	2 Bas i dlan Tel (4 Fax (4	in Str d, Te 32) 6 432) 6	reet, Suite xas 7970 389-6301 689-6313	A1 3	200	FI Pa	t Sun Iso, T (915) (915 888)	eras	799	22	E		2501 Carr	1 Ma	iyes on. 1	Rd., exas	sting Ste 1 s 750 7750	100)06	1	34 H Te	03 Inc obbs, el (575	on & C lustrial NM 8 5) 392- 5) 392-	Bivd. 8240 7561	
Company	Name:	HZM	Hill	i					Pho	one #	t: Le	Slie	e Vo	55	46	09-350 -954 -	-5022	2													EST						
Address:	(Stree	et, City, Zip)	A Contractor	() in ()	TX =	20	20	1	Fax	(#:	1.1	005	301	36	:0*	- 757-	6679			-		(C	irc	le	or	S	pe	ci	fy	Me	th	od	N	o.)	×.		
Contact Pe	erson:	eslie v	107 Midle Per Dus				10	1	E-n	nail:	les	lie	NOS	55 (्रित	h 2m. c Ch2m	on				ŀ	2.00							1			Alkalinity	-			ard	
Invoice to:		Jenni	ter DUS	507	Par				,	J	enn	, ter	<u>.Du</u>	801	(0)	chem	. com			(C35)	r.	Cr Pb Se Hg 6010/200.7	Se Hg									, Alka				standard	
(If differen Project #:	t from abov	ve) DICCC	+ Bill EC	Xq	reso	Ur	265	<u>, 1</u>	Pro	1 f ject	Nam		+2					324	4	5 Ext	,	e Hg (PP	-								PO4 -P,	1			rom	
	100	5/119	1111 02			-	_			nple		ł	-0)	< ?	30	0		/ 8260 / 624	0 / 624	X100		- Pb S	5 Cd Cd					/ 625				Ϋ́, Ρ		1		rent f	
		lea C	ounty, N	M		-	1			1	4	A	K	2	h	bot			8260	12 T		2	Ba	0	2		624	8270	0	2 2		NO2	L L L			diffe	
					ount	MATRIX						ERVATIVE ETHOD		SAMPLING		8021 / 602	602 /	X100	625	As Ba Ag As	s olatile	les	es	260 /	Vol.	608		ent	7-N,		5		ime if				
LAB # (LAB USE ONLY		FIELD CO	DE	# CONTAINERS	Volume / Amount	WATER	SOIL	AIK SI LINGE	OLUDOE	HCI	HNO ₃	H ₂ SO ₄	NaOH	NONE		DATE	TIME		BTEX 8021/	TPH 8015 GRO / DRO / TVHC	PAH 8270 / 62	Total Metals Ag As Ba Cd	TCLP Metals Ag As	TCLP Sami Volatilas	TCLP Pesticides	RCI	GC/MS Vol. 8260 / 624		PCB's 8082 / 1	BOD. TSS. pH	Moisture Cont	CI, F, SO4, NO3 -N, NO2 -N, Na Ca Ma K TDS EC	Na, ca, Mg, K, IUS,	101		Turn Around Time if different from	Hold
402891	SSFX3	0-11-FL	L-09032015	1	402		7							X		9/3	1015							Ť								-	X	-		48	
			-09032015	I	402		X							X		9/3	1030												+	T			X			484	5
			-09032015	1	402		X				-			X		913	1055															1	X			49h	
					<u> </u>			_		-	_	-	_	-	-							_	_		-		_	_	-	-		unperato ett.6					
												_					A			_	_	-		And and And And												_	
								+	+		_	/		1	1	10	-	_		-			_		-							_					
							_	+	-		A	the	4	-	-	[_	-			_	-	-			-		-	\square	_	-				
								+		1	Y								-			-		-	+		_		-	-		_			_		
								4	1		+	-	_						-		$\left \right $	+			-		-	_	-	-	\square	-	-				$\left - \right $
						\square		-			-		-	-								-		-			-	+		+	$\left \right $	+	+	+			
Relinquist	l ned by:	Company:	Date:	Ti	me:	Re	ceive	d þy	<i>/</i> :	Co	mpa	any:		Date	:	Time:	INST	IE	2		AB		SE	+	RE	MA	RK	S:				1					
Amanda	West	CH2M	9/3/15	17	700	Ň	DE	A	1		14	ł	9-	3-1	5	17:20	OBS COR	33	y		OI																
Relinquist	ned by:	Company:	Date: 9-4-15		me:	Re	ceive	d by		Co	mpa	any:		Date	•	Time:					e y	N	1	4													
Relinquish		Company:	Date:	TI	me:	A		nd	(), /	K	mpa A UB	BI	K	Date	::	Time: <i>9.0</i> 0		Th 3	40	C Hea	-in-Re		M		TR	RP F	Repo	ort R	equir			IM	oc)			
Submittal 0	n samples (constitutes a	greement to Ter		ORIGI					erse	side	of (J. O.	U.				Ca	rrier #	<u> </u>	C	CX	N	_	ch	1			11.2	2.002						2014	_

Summary Report

Leslie Voss CH2M Hill 12750 Merit Dr. Ste. 1100 Dallas, Tx 75251

Report Date: September 11, 2015

Work Order: 15090334

Project Location:Lea Co, NMProject Name:FOX 30 #3Project Number:653209.TM.18

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
403891	SSFX30-11-FL-09032015	soil	2015-09-03	10:15	2015-09-03
403892	SSFX30-16-FL-09032015	soil	2015-09-03	10:30	2015-09-03
403893	SSFX30-21-FL-09032015	soil	2015-09-03	10:55	2015-09-03

Sample: 403891 - SSFX30-11-FL-09032015

		SDL	MQL	
Param	Flag	Result	Result	Units
Chloride		1730	1730	mg/Kg
Moisture		15.5	15.5	%

Sample: 403892 - SSFX30-16-FL-09032015

		SDL	MQL	
Param	Flag	Result	Result	Units
Chloride		1430	1430	mg/Kg
Moisture		11.1	11.1	%

Sample: 403893 - SSFX30-21-FL-09032015

		SDL	MQL	
Param	Flag	Result	Result	Units
Chloride		304	304	mg/Kg
Moisture		4.47	4.47	%

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.