INFORMATION ONLY

GROUNDWATER INVESTIGATION REPORT

LMPSU Trash Pit Lea County, New Mexico 1RP-3360

LAI Project No. 14-0107-01

November 2, 2015

Prepared for:

Legacy Reserves, L.P. 30 West Wall Street, Suite 1400 Midland, Texas 79701

Prepared by:

Larson & Associates, Inc. 507 North Marienfeld, Suite 205 Midland, Texas 79701

Kimberly M. Huckaba Staff Geologist

Mark J. Larson, PG

Mark J. Larson, PG Certified Professional Geologist #10490 President/Sr. project Manager

Table of Contents EXECUTIVE SUMMARY......1 1.0 2.0 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.5 2.2.6 Historical Aerial Photographs5 3.0 4.0 5.1 5.2 6.0 AQUIFER (SLUG) TESTS8 7.0 8.0

List of Tables

Table 1	Monitor Well Completion and Gauging Summary
Table 2	Borehole Soil Analytical Data Summary
Table 3	Groundwater Analytical Data Summary
Table 4	Horizontal Hydraulic Conductivity Summary

List of Figures

Figure 1	Topographic Map
Figure 2	Aerial Photograph
Figure 3	Site Map
Figure 3a	Site map with Soil Boring Locations
Figure 3b	Site Map with Soil Sample Locations
Figure 4a	West to East Cross Section A to A'
Figure 4b	North to South Cross Section B to B'
Figure 5a	Groundwater Potentiometric Map, June 1, 2015
Figure 5b	Groundwater Potentiometric Map, August 18, 2015
Figure 5c	Groundwater Potentiometric Map, September 11, 2015
Figure 6	EM-34 Survey Grid
Figure 6a	EM-34 to 10 Meter HD Conductivity Map (0 to 24.6 feet)
Figure 6b	EM-34 to 10 Meter VD Conductivity Map (0 to 49.21 feet)
Figure 6c	EM-34 to 20 Meter HD Conductivity Map (0 to 49.21 feet)
Figure 6d	EM-34 to 20 Meter VD Conductivity Map (0 to 98.41 feet)
Figure 7a	Chloride Concentration in Groundwater, June 1, 2015
Figure 7b	Chloride Concentration in Groundwater, August 18, 2015
Figure 8a	Total Dissolved Solids Concentration in Groundwater, June 1, 2015
Figure 8b	Total Dissolved Solids Concentration in Groundwater, August 18, 2015

List of Appendices

Appendix A	OCD Correspondence
Appendix B	Boring Logs and Monitoring Well Completion Records
Appendix C	Historical Aerial Photographs
Appendix D	EM-34 Survey Field Sheets
Appendix E	NMOSE Well Permit
Appendix F	Laboratory Analytical Reports and Chain of Custody Documentation
Appendix G	Horizontal Hydraulic Conductivity (Slug Test) Data

1.0 EXECUTIVE SUMMARY

This report is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Legacy Reserves, L.P. (Legacy) by Larson & Associates, Inc. (LAI) to present the groundwater investigation for the Langlie Mattix Penrose Sand Unit (LMPSU) Trash Pit (Site) in Unit O (SW/4, SE/4), Section 27, Township 22 South, Range 37 East, Lea County, New Mexico. The geodetic position is north 32° 21' 28.40" and west 103° 8' 50.07". The trash pit excavation was closed in August 2014 under approval from the OCD (Appendix A). Legacy is the owner of a 40 acre tract of land that includes the Site.

The following is concluded from the groundwater investigation:

- Four (4) monitoring wells, including an existing well (MW-1), were installed at the Site for delineating groundwater impacted from chloride and total dissolved solids (TDS);
- The source for the groundwater impact is two (2) unlined pits that were used by a previous owner/operator for disposal of produced water and hydrocarbons;
- The pits were observed on a historical aerial photograph from February 4, 1968, before Legacy operated the lease;
- Groundwater occurs in the Ogallala formation between about 40 and 42 feet below ground surface (bgs);
- The groundwater flow direction is from northwest to southeast at a gradient of about 0.0009 feet per foot (September 11, 2015) and is consistent with the regional flow direction;
- A water well used for livestock watering in located about 3,700 feet southwest (cross gradient) of the Site and outside the groundwater flow path;
- Laboratory results of groundwater samples from well MW-1 (January 28, 2015) reported chloride at 3,230 milligrams per liter (mg/L) and TDS at 6,260 mg/L;
- The chloride and TDS concentrations in well MW-1 exceed the New Mexico Water Quality Control Commission (WQCC) domestic water quality standards of 250 mg/L and 1,000 mg/L, respectively;
- The average horizontal hydraulic conductivity calculated from slug tests is 3.2553 feet per day (ft/day).

Legacy proposes to monitor groundwater quality on a quarterly (four times per year) schedule for the remainder of 2015 and during 2016. Notice will be given to the OCD at least 48-hours prior to each sampling event. Laboratory results and depth to groundwater will be reported to the OCD in semiannual (twice annual) reports to be submitted to the OCD within 45 days following receipt of the laboratory report. Any significant changes in groundwater quality will be reported to the OCD as soon as possible.

2.0 INTRODUCTON

This report is submitted to the New Mexico Oil Conservation Division (NMOCD) on behalf of Legacy Reserves, L.P. (Legacy) by Larson & Associates, Inc. (LAI) to present the groundwater investigation at a former trash pit (Site) located at the Langlie Mattix Penrose Sand Unit (LMPSU) in Lea County, New Mexico. The Site was used by a previous operator for unauthorized disposal of oilfield refuse including, but not limited to, used drums, concrete, equipment, pipe and miscellaneous refuse. The material was buried in several pits that were excavated near the east side of the Site. Two (2) unlined pits were excavated near the west side of the Site that previously used for disposal of produced water and hydrocarbons. The unlined pits were identified on a historic aerial photograph. On July 1, 2014, Legacy purchased an approximate 40 acre tract of land that includes the Site. The Site is located in Unit O (SW4/SE4), Section 27, Township 22 South, Range 37 East, in Lea County, New Mexico. The geodetic position is north 32° 21' 28.40" and west 103° 8' 50.07". Figure 1 presents a topographic map. Figure 2 presents an aerial map. Figure 3 presents a Site drawing.

2.1 Background

On May 16, 2011, NMOCD issued a letter to Legacy and past operators that referenced a landowner complaint that burial of miscellaneous refuse and debris occurred at the Site in the early 2000's. Appendix A presents the NMOCD correspondence.

Legacy, as current operator, began excavating the Site, including 3 trash pits near the east side of the Site and 2 unlined disposal pits near the west side of the Site. Legacy later retained Etech Environmental & Safety Solutions, Inc. (Etech) to install a monitoring well and collect soil samples. A metal detector was used to identify buried metallic waste. Five (5) locations, including the 2 disposal pits, were excavated to a maximum depth of about 20 feet below ground surface (bgs). Waste and debris was segregated from the soil and disposed at a permitted facility. About 7,500 to 9,000 cubic yards of soil was retained on the Site in 3 piles (west, north and south).

In 2013, a monitoring well (MW-1) was installed near the west side of the Site about 50 feet south of the west excavation. The monitoring well was drilled to about 64 feet bgs. Groundwater was gauged at about 42 feet bgs. No construction documentation is available monitoring well MW-1.

In March 2014, Legacy retained LAI to investigate and close the excavations. On April 9, 2014, LAI personnel collected soil samples from the excavations. The samples were analyzed to determine the insitu concentrations of total petroleum hydrocarbons (TPH) and chloride. The laboratory reported TPH above the OCD recommended remediation action level (RRAL) of 100 parts per million (ppm) and chloride above 250 mg/Kg. LAI supervised drilling and sample collection from fifteen (15) borings to delineate vertical and lateral extent of TPH and chloride. Chloride and TPH were delineated vertically in samples from nine (9) borings. Figure 3a presents the soil boring locations. Figure 3b presents the soil sample locations.

On August 1, 2014, the OCD District 1 approved closing the excavations by placing a 20 mil thickness liner in the bottom of the excavations at least 4 feet bgs and backfilling with soil. The OCD approved using soil from the north and south piles to fill the excavations based on laboratory analysis of soil samples by synthetic precipitation leaching procedure (SPLP) according to EPA SW-846 method 1312. Soil from west soil pile failed the SPLP test and was disposed at Sundance Services (Parabo) landfill located east of Eunice, New Mexico. Approximately 1,630 cubic yards of soil from the west stockpile was disposed at the landfill. Excavation closure was completed on August 30, 2014. Figure 3 presents the location of the lined excavation. The excavation closure was documented in a report titled, ""Excavation Closure Report and Groundwater Investigation Plan", September 22, 2014".

On April 11, 2014, LAI personnel collected a groundwater sample from well MW-1 located near the southwest corner of the Site. The sample was analyzed for BTEX, cations (calcium, magnesium, sodium and potassium), anions (alkalinity, sulfate and chloride), nitrate and total dissolved solids (TDS). The BTEX concentrations were below the reporting limits (RL) and New Mexico Water Quality Control Commission (WQCC) human health standards. Chloride and TDS were 1,480 milligrams per liter (mg/L) and 3,510 mg/L, respectively. On June 12, 2014, LAI supervised installing monitoring well MW-2 about 275 feet north (up gradient) of the Site. On June 13, 2014, groundwater samples were collected from wells MW-1 and MW-2. Chloride and TDS in well MW-2 was 58.8 mg/L and 1,000 mg/L, respectively. Chloride and TDS in well MW-1 was 2,720 mg/L and 6,700 mg/L, respectively. The suspected source for the groundwater impact is 2 unlined disposal pits that were located near the west side of the Site. On July 1, 2014, Legacy purchased an approximate 40 acre tract of land that includes the Site. The OCD issued the remediation project number 1RP-3360. Appendix A presents the OCD approval for closing the excavation.

2.2 Setting

2.2.1 Topography and Surface Water

The Site is located about 5.5 miles southeast of Eunice, in rural Lea County, New Mexico. The surface elevation is approximately 3,315 feet above mean sea level (MSL) and slopes gently to the southeast. The nearest surface water is the ephemeral Monument Draw, which is located about 1.5 miles east of the Site. There are no apparent surface connection for runoff between the Site and Monument Draw.

2.2.2 Water Wells

A well was identified on the New Mexico State Engineer (NMOSE) database in Unit O, Section 27, Township 22 south and Range 37 east. The well is located about 3,700 feet southwest of the Site and is used for livestock watering. Depth to groundwater is reported at approximately 46 feet bgs. Figure 1 and Figure 2 present the approximate water well location.

2.2.3 Soils

Surface soils are gently undulating and well drained. The Natural Resource Conservation Service Soil Survey for Lea County identifies the surface soil as Pyote-Maljamar-Kermit association. The soil is used for range and wildlife habitat.

2.2.4 Geology

Fifteen (15) borings (SB-1 through SB-15) and three (3) monitoring wells (MW-2, MW-3 and MW-4) were drilled at the Site. The stratigraphy consists of recent-age eolian to Pleistocene-age alluvium derived mostly from reworking the underlying Tertiary-aged Blackwater Draw and Ogallala formations, in descending order. The Blackwater Draw formation is comprised mainly of fine grained wind-blown sand derived from the underlying Ogallala formation. The Ogallala formation consists of fluvial sand, silt, clay and localized gravel, with indistinct to massive cross beds. The Ogallala sand is generally fine- to medium-grained quartz. The lithology consists of unconsolidated eolian sand over a unit of carbonate-indurated sand commonly referred to as "caliche". The caliche ranges in thickness between about 5 and 25 feet, depending on location. Beneath the caliche is a unit of fine-grained pink quartz sand. Locally the sand is lithified into sandstone with clayey sand. The Ogallala formation is underlain by the Triassic-age Chinle formation of the Dockum group which is comprised of interbedded sand, clay and mudstone. The Dockum Group is locally referred to as "redbed". Figure 3 and Figure 3a present the soil boring and monitoring well locations and lines of geological cross section. Figures 4a and 4b present west to east (A to A') and north to south (B to B') geologic cross-sections Appendix B presents the boring logs and monitoring well completion diagrams.

2.2.5 Groundwater

Groundwater occurs in the Ogallala formation at approximately 42 feet bgs. The Dockum Group is the lower confining unit and occurs at about 60 feet bgs. The saturated thickness of the Ogallala formation (aquifer) is approximately 20 feet. Depth to groundwater measurements were used to prepare groundwater potentiometric maps for June 1, 2015, August 18, 2015 and September 11, 2015 presented in Figures 4a, 4b and 4c, respectively.

Referring to Figure 4a, on June 1, 2015, the groundwater elevation ranged from 3,280.40 feet above mean sea level (ASML) in MW-1 to 3,275.30 feet AMSL in MW-2. The groundwater flow direction was from south to north at a gradient of approximately 0.01 feet per foot. The groundwater flow direction on June 1, 2015, is not consistent with the regional groundwater flow direction which is generally from northwest to southeast. On August 18, 2015 (Figure 4b), the groundwater elevation ranged from 3,280.43 feet AMSL in MW-2 to 3,277.49 feet AMSL in MW-1. The groundwater flow direction was from north to south and consistent with the regional groundwater flow direction. On September 11, 2015 (Figure 4c) the groundwater elevation ranged from 3,280.68 feet AMSL at MW-2 to 3,280.16 feet AMSL at MW-4. Groundwater flow was to the southeast at a gradient of about 0.0009 feet per foot.

2.2.6 Historical Aerial Photographs

Historical aerial photographs were ordered from GeoSearch located in Austin, Texas. The historical aerial photographs cover several decades and go back to April 28, 1954. A review of the photographs is presented in chronological order from most recent to oldest. Appendix C presents the aerial photographs.

2.2.6.1 2011 US Geological Survey Color Photograph

This 2011 color photograph has a scale of 1" to 700'. The photograph depicts the Site condition following closure of the trash pits by the previous operator. The photograph shows evidence of surface scarring from prior operations at the Site.

2.2.6.2 1997 US Geological Survey Black and White Photograph

This black and white photograph was taken in 1997, and has a scale of 1" to 700'. This photograph shows evidence of scarring from previous operations at the Site. Adjoining properties to the north, south, west and east are in similar configuration observed during the current investigation and remediation.

2.2.6.3 1983 US Geological Survey Color Photograph

This color photograph was taken on June 3, 1983, and has a scale of 1" to 700'. The photograph shows evidence of scarring from previous operations or releases and shows the Site similar to the condition observed in the previous photograph (1997). The adjoining properties to the north, south, east, and west are in similar configuration observed during the current investigation and remediation. The disposal pits observed in an earlier photograph are not visible in this photograph and appear covered.

2.2.6.4 1968 USGS Black and White Photograph

This black and white photograph was taken on February 4, 1968, and has a scale of 1" to 700'. The photograph shows two (2) darkened objects at the Site. The darkened objects are the disposal pits located near the west side of the Site. The disposal pits would have received produced water and hydrocarbons from the lease tank battery located about 500 feet southwest of the Site.

2.2.6.5 1954 USGS Black and White Photograph

This black and white photograph was taken on April 28, 1954, and has a scale of 1" to 700'. This photograph shows a rectangular object that resembles a pit in close proximity to the Site.

3.0 ELECTROMAGNETIC TERRAIN CONDUCTIVITY SURVEY

During September and October 2014 and February 2015, LAI personnel conducted electromagnetic ("EM") terrain conductivity surveys to qualitatively assess the chloride and TDS impact to groundwater. The EM method measures the electrical conductivity of soil, rock and groundwater by imparting an alternating electric current into the subsurface from a surface transmitter. An EM-34 terrain conductivity meter, manufactured by Geonics, Ltd., in Toronto, Ontario, Canada, was used for the survey. The EM-34 has exploration capabilities ranging from approximately 0 to 196.9 feet bgs,

depending the separation of the transmitter and receiver coils (i.e., 10, 20 or 40 meters) and orientation of the transmitter and receiver coils (i.e., horizontal dipole ("HD") mode or vertical dipole ("VD") mode). The EM 34 survey was performed in the 10 and 20 meter HD and VD modes. The EM-34-10 meter HD and VD have exploration depth from approximately 0 to 24.6 and 0 to 49.2 feet bgs, respectively. The EM-34-20 HD and VD have exploration depths from approximately 0 to 49.2 and 0 to 98.4 feet bgs, respectively. The conductivity response is greater near ground surface in the HD mode. The conductivity response is null near the surface and increases rapidly to a depth equal to about 0.4 times the coil spacing in the VD mode. The EM measurements were collected using sample grids measuring about 100 x 100 feet.

The EM-34 data were compared to background values to identify areas of elevated conductivity. The background station is located near well MW-2, which is free of groundwater impacts, cultural or metallic interferences (i.e., pipelines, overhead power lines, etc.). EM-34 survey results are compiled on contour drawings showing areas of elevated conductivity relative to background.

The EM survey was performed over an area measuring approximately 800 x 1,200 square feet or about 22 acres. Figure 6 presents the EM-34 survey grid layout. Figures 6a through 6d presents the EM-34-10 and 20 meter HD and VD conductivity maps. Appendix D presents the EM-34 survey field sheets.

Referring to Figure 6a, the EM-34- 10 meter HD background value was 39.5 millimhos per meter (mmhos/m). The maximum EM-34-10 meter HD conductivity readings (82.3 to 88.4 mmhos/m) occur in the vicinity of well MW-1 and extend south about 200 feet. The area of elevated EM-34-10 meter HD readings is greater than 2.5 times background and represents a near surface impact.

Referring to Figure 6b, the EM-34-10 meter VD background value was 44.1 mmhos/m. The maximum EM-34-10 meter VD reading (102.7 mmhos/m) occurs in the vicinity of well MW-1 and is 3 times background. The anomaly reflects the elevated chloride in groundwater. Three (3) anomalies with EM-34-10 meter VD reading exceeding 3 times background were observed west of the Site and appear to be caused by interference.

Referring to Figure 6c, the EM-34-20 meter HD background value was 56.2 mmhos/m. An area of elevated EM-34-20 meter HD readings was observed about 200 feet southwest of the Site. The elevated EM-34-20 meter HD readings are greater than 2.5 times background. The area appears to correspond with a historic spill. The anomaly represents a near surface impact that is not connected with the Site.

Referring to Figure 6d, the EM-34-20 meter VD background value was 82.5 mmhos/m. An area of EM-34-20 meter VD readings greater than 2.5 times background was observed in the vicinity of well MW-1. The anomaly shows slight migration southward and extends west toward a tank battery located about 400 feet west. The results of the EM-34 survey suggest groundwater and contaminant migration east of the Site.

4.0 MONITORING WELLS

On June 12, 2014 and April 15, 2015, LAI supervised installing monitoring wells MW-2, MW-3 and MW-4. Permit applications were submitted to the NMSE and wells were installed by Scarborough Drilling Company, Inc. (SDC), Lamesa, Texas. The borings were drilled with an air rotary rig and were advanced near the base of the Ogallala formation about 60 feet bgs. Drill cuttings were collected every 5 feet to about 60 feet for chloride analysis by laboratory methods and lithology according to the Unified Soil Classification System (USCS). The wells were completed with 2-inch schedule 40 PVC casing and screen. Approximately 20 feet of screw-threaded 0.010 inch factory slotted screen was placed in each well, with about 15 feet of screen in groundwater and about 5 feet of screen above groundwater, depending on subsurface conditions. The screens are surrounded with graded (12 - 16) silica that extends about 2 feet above the screen. The remainder of the annulus above the screen was filled with bentonite chips and hydrated with potable water. Each well was secured with a locking steel above-grade cover anchored in concrete. West Company, Midland, Texas, a New Mexico licensed professional land surveyor (NMPLS), surveyed the wells for location and elevation including top of casing and ground referenced to a USGS datum. The monitoring wells were developed by pumping with an electric submersible environmental pump equipped with backflow preventer and dedicated tubing. The water was contained in 55 gallon drum and retained at the Site until disposal is arranged. Table 1 presents the monitoring well drilling and completion summary. Table 2 presents the soil chloride analytical data summary. Appendix B presents the boring logs and well completion diagrams. Appendix E presents the MW-2 NMOSE well permit. Appendix F presents the laboratory reports.

Referring to Table 2, chloride in soil samples from borings MW-2 and MW-3 decreases below 250 milligrams per kilogram (mg/Kg) at about 25 and 15 feet bgs, respectively. The highest chloride concentration in soil samples from MW-4 was 52.4 mg/Kg at 20 feet bgs.

5.0 GROUNDWATER SAMPLES

Groundwater samples were collected from monitoring wells MW-1 and MW-2 on January 28, 2015 and from wells MW-1 through MW-4 on June 1, 2015 and August 18, 2015. The groundwater samples were collected after removing approximately three (3) well volumes of groundwater by purging dry with dedicated disposable polyethylene bailers or pumping with an electric submersible pump and dedicated tubing. The samples were carefully transferred to laboratory containers that were labeled, sealed with custody labels, packed in an ice filled chest and delivered under chain of custody control to DHL Analytical, Inc. (DHL), a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory, located in Round Rock, Texas. DHL analyzed the samples for benzene, toluene, ethylbenzene, xylene (BTEX), cations (calcium, magnesium, sodium and potassium), anions (alkalinity, sulfate and chloride), nitrate and total dissolved solids (TDS). Purge water was contained in 55 gallon drums for disposal in a permitted Class II injection well. Table 3 presents the groundwater analytical data summary. Appendix F presents the laboratory reports.

5.1 BTEX Analytical Results

Samples were analyzed for BTEX using EPA SW-846 method S8021B. All BTEX values except xylene were below the RL. Xylene was 0.0015 milligrams per liter (mg/L) in the sample from MW-4 on August 18, 2015. The xylenes concentration is below the New Mexico Water Quality Control Commission (WQCC) human health standards of 0.62 mg/L.

5.2 General Chemistry Analytical Results

Cations (calcium, magnesium, sodium and potassium) were analyzed using EPA SW-846 method S-6010C. The cations were within acceptable tolerances and are not regulated by the WQCC.

Anions (alkalinity, chloride and sulfate), nitrate and TDS were analyzed by Standard Methods 2320B, E300 and 2540C. Nitrate was below the WQCC human health standard (10 mg/L) in wells MW-1 through MW-4. Sulfate exceeded the WQCC domestic water quality standard (600 mg/L) in MW-1 on January 28, 2015 (947 mg/L). Chloride (3,230 mg/L) and TDS (6,260 mg/L) were highest in well MW-1 on January 28, 2015, and exceeded the WQCC domestic water quality standards of 250 mg/L and 1,000 mg/L, respectively. Chloride and TDS also exceeded the WQCC domestic water quality standards in well MW-3 located west of the Site. Figures 7a and 7b present isopleths maps for chloride in groundwater on June 1, 2015 and August 18, 2015, respectively. Figures 8a and 8b present isopleths maps for TDS in groundwater on June 1, 2015 and August 18, 2015, respectively.

6.0 AQUIFER (SLUG) TESTS

On September 11, 2015, LAI personnel performed horizontal hydraulic conductivity (slug) tests, including falling and rising head, in wells MW-2, MW-3, and MW-4. The slug test data was used to calculate the average horizontal hydraulic conductivity for the aquifer. Well MW-1 was not slug tested since no well completion data was available. The falling and rising head slug tests were performed by lowering (falling head) and raising (rising head) a weighted PVC tube (slug). An In-Situ Troll®700 pressure transducer was installed near the bottom of the well to measure changes in head, which was recorded with an electronic data logger. The Bouwer-Rice (1976) solution was used to evaluate the response data.

Table 4 presents the horizontal hydraulic (slug) test conductivity summary. Appendix G presents the horizontal hydraulic conductivity (slug test) data.

Referring to Table 4, the falling head conductivity extremes were 2.214 ft/day (MW-2, Test 2) and 5.115 ft/day (MW-3, Test 2). The rising head conductivity extremes were 1.42 ft/day (MW-2, Test 2) and 4.3 ft/day (MW-2, Test 1). Three (3) tests had insufficient data to produce confident results. The overall mean hydraulic conductivity for the aquifer was calculated at 3.2553 feet per day (ft/day).

7.0 CONCLUSIONS

The following conclusions are documented in this report:

- On July 1, 2014, Legacy purchased the tract of land (approximately 40 acres) that includes the Site;
- A historical aerial photograph (February 4, 1968) revealed two (2) unlined disposal pits near the west side of the Site. The pits received produced water and hydrocarbons from a tank battery located about 500 feet southwest of the Site and are suspected of being the source for elevated chloride and TDS in groundwater;
- EM-34-10 and 20 meter conductivity surveys identified an anomaly near the southwest corner of the Site, in the vicinity of well MW-1, that appears to migrate to the east;
- Laboratory results of groundwater samples from four (4) monitoring wells (MW-1 through MW-4) reported chloride and TDS above the WQCC domestic water quality standards in wells MW-1 (down gradient) and MW-3 (cross gradient);
- The apparent groundwater flow direction (September 11, 2015) is to the southeast at a gradient of about 0.0009 ft/ft;
- The overall horizontal hydraulic conductivity for the aquifer based on slug tests from 3 wells (September 11, 2015) is 3.2553 ft/day;

A well used for livestock watering is located about 3,700 feet southwest of the Site and is not located within the groundwater flow path.

8.0 **RECOMMENDATIONS**

Legacy proposes to monitor groundwater quality on a quarterly (four times per year) schedule for the remainder of 2015 and during 2016. The groundwater samples will be analyzed for BETX, chloride and TDS. Depth to groundwater will be gauged in the wells during each event for preparing a groundwater potentiometric surface map. The samples results and potentiometric map will be submitted to the OCD semi-annual (twice yearly) reports. Notice will be given to the OCD at least 48-hours prior to each sampling event. Any significant changes in groundwater quality will be reported to the OCD as soon as possible.

TABLES

Table 1 Monitoring Well Drilling and Completion Summary Legacy Reserves, L.P., LMPSU Trash Pit Unit) (SW/4, SE/4), Section 27, Township 22 South, Range 37 East Lea County, New Mexico

Well Information										Groundwater Data				
Well	Date Installed	Drilled Depth (bgs)	Well Depth from TOC	Well Diameter (inches)	Surface Elevation	Screen Interval (bgs)	Casing Stickup	TOC Elevation	Date Gauged	Depth to Water (TOC)	Depth to Water (BGS)	Groundwater Elevation (Feet)		
MW-1			63.69	2	3,321.1		2.86	3324.09	04/02/2014	44.35	41.49	3,279.74		
		ļ							06/13/2014	43.38	40.52	3,280.71		
		ļ							1/28/2015	43.79	40.93	3,280.30		
		ļ							6/1/2015	43.69	40.83	3,280.40		
		ļ							8/18/2015	46.6	43.74	3,277.49		
									9/11/2015	43.6	40.74	3,280.49		
MW-2	6/12/2014	58.00	60.50	2	3322.9	38.17 - 57.77	2.16	3,325.18	06/12/2014	45.30	43.14	3,279.88		
		ļ							06/13/2014	45.27	43.11	3,279.91		
		ļ							1/28/2015	43.79	41.63	3,281.39		
		ļ							6/1/2015	49.88	47.72	3,275.30		
		ļ							8/18/2015	44.75	42.59	3,280.43		
									9/11/2015	44.50	42.34	3,280.68		
N 4\\A/ 2	4/15/2015	EE 00	E7 92	2	2222.0	24.60 54.75	2 02	2 225 97	4/15/2015	46.00	42.17	2 270 97		
10100-5	4/15/2015	55.00	57.85	2	5522.5	54.09 - 54.75	2.05	5,525.67	4/15/2015 6/1/2015	40.00	43.17	3,279.87		
									8/18/2015	45.33	42.70	3 280 45		
									0/11/2015	45.42	42.55	3 280 47		
									5/11/2015	45.40	42.57	5,200.47		
MW-4	4/15/2015	58.00	60.00	2	3320.1	38.31 - 57.77	2.00	3,322.16	4/15/2015	42.08	40.08	3,280.08		
		ļ							6/1/2015	42.35	40.35	3,279.81		
									8/18/2015	42.20	40.20	3,279.96		
									9/11/2015	42.00	40.00	3,280.16		
					i									

Note: Drilling and completion details for MW-1 are unknown. Wells MW-2, MW-3, and MW-4 drilled and installed by Scarborough Drilling, Inc., Lamesa, Texas.

Table 2 Borehole Soil Analytical Data Summary Legacy Reserves, L.P., LMPSU Trash Pit Lea County, New Mexico 1RP-3360

Boring	Date	Depth (Feet BGS)	Chloride (mg/Kg)
MW-2	6/12/2014	5	131
		10	692
		15	381
		20	315
		25	562
		30	81.2
		35	
		40	
		45	
		50	
		55	
		60	
MW-3	04/15/2015	0	<1.11
		10	550
		20	166
		30	195
		40	66.5
		*50	11.6
		*60	46.6
MW-4	04/15/2015	0	<1.09
		10	<1.19
		20	52.4
		30	28.1
		40	5.53
		*50	17.5
		*60	126

Notes: Samples analyzed by Permian Basin Environmental Lab, LP, Midland, Texas, using EPA method 300

Depth measurements are in feet below ground surface (bgs).

All concentrations are in milligrams per kilogram (mg/Kg) equivalent to parts per million (ppm).

--: No data available

* Denotes sample collected below groundwater surface

Table 3 Groundwater Analytical Data Summary Leagacy Reserves, L.P., LMPSU Trash Pit Lea County, New Mexico 1RP-3360

		BTEX				Cations				Anions				
Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Sodium	Magnesium	Potassium	Calcium	Sulfate	Chloride	Alkalinity	Nitrate	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
WQCC Standard:		0.01	0.75	0.75	0.62					600	250		10	1,000
MW-1	04/10/2014	<0.0008	<0.002	< 0.002	<0.003	840	195	20.9	168	509	1,480	673	<0.1	3,510
	06/13/2014					1,420	384	29.5	447	896	2,720	394	<0.1	6,700
	12/11/2014					913	242	22.3	186	543	1,600	888	<0.100	5,330
	1/28/2015					1,430	437	32.5	610	947	3,230	417	<0.100	6,260
	6/1/2015	< 0.001	< 0.001	< 0.001	< 0.001	950	270	27.6	201	446	1,560	653	<0.2	3,920
	8/18/2015	<0.0008	< 0.002	< 0.002	<0.003	820	224	21.5	152	433	1,600	723	<0.10	3,830
MW-2	06/13/2014					114	30.6	7.86	48.2	121	58.8	227	1.54	564
	12/11/2014					116	34.9	8.29	64.5	119	71.8	361	1.42	619
	1/28/2015					126	36.6	7.30	91.1	112	71.3	288	1.36	573
	6/1/2015	< 0.001	< 0.001	< 0.001	< 0.001	117	34.6	<10	54.9	112	57.8	281	1.63	578
	8/18/2015	<0.0008	< 0.002	< 0.002	< 0.003	104	32.6	6.01	118.0	114	73.9	274	1.35	583
MW-3	6/1/2015	< 0.001	< 0.001	< 0.001	< 0.001	324	60.5	10.70	57.6	234	399.0	290	2.19	1,180
	8/18/2015	<0.0008	< 0.002	<0.002	< 0.003	284	51.5	8.22	147.0	239	405.0	230	1.50	1,380
MW-4	6/1/2015	< 0.001	< 0.001	< 0.001	0.0015	186	58.6	10.10	83.0	251	190.0	236	2.34	918
	8/18/2015	<0.0008	< 0.002	< 0.002	<0.003	160	52.8	8.28	70.6	251	213.0	256	1.54	974

Notes: Analysis performed by DHL Analytical, Inc., Round, Rock, Texas

Samples analyzed by EPA method SW-8021B (BTEX), SW-8015M (TPH) and E-300 (chloride)

mg/L: milligrams per liter - equivalent to parts per million (ppm)

Bold denotes analyte detected

Bold and highlighted denotes concentration exceed New Mexico Water Quality Control Commission (WQCC) domestic water quality standard

Table 4 Horizontal Hydraulic Conductivity Summary LMPSU Trash Pit Lea County, New Mexico 1RP-3360

Well	Falling Head K	Rising Head K					
	(Ft/Day)	(Ft/Day)					
MW-2 Test 1	2.354	4.30					
MW-2 Test 2	2.214	1.42					
Average:	2.284	2.86					
MW-3 Test 1	*	4.093					
MW-3 Test 2	5.115	*					
Average	*	*					
MW-4 Test 1	*	2.706					
MW-4 Test 2	3.689	3.319					
Average	*	3.0125					
Range	2.214 - 5.115	1.42 - 4.30					
Overall Average: 3.2553 ft/day							

Notes: data analyzed by Bouwer and Rice method (1976)

All results are reported in feet per day (ft/day).

*-Insufficient data to produce confident results

FIGURES

Figure 1 - Topographic Map

Figure 2 - Aerial Map

Figure 4b - Geological Cross Section B-B'

Figure 6a - EM- 34 to 10 Meter HD Conductivity Map (0 to 24.6 Feet), September 29 through October 2, 2014 and February 2-3, 2015

Figure 6b - EM- 34 to 10 Meter VD Conductivity Map (0 to 49.21 Feet), September 29 through October 2, 2014 and February 2-3, 2015

Figure 6c - EM- 34 to 20 Meter HD Conductivity Map (0 to 49.21 Feet), September 29 through October 2, 2014 and February 2-3, 2015

Figure 6d - EM- 34 to 20 Meter VD Conductivity Map (0 to 98.41 Feet), September 29 through October 2, 2014 and February 2-3, 2015

APPENDIX A

OCD Correspondence

nergy, Minerals and Natural Resources Department New Mexico [

.

Susana Martinez Governor

John H. Bemis Cabinet Secretary-Designate

Brett F. Woods, Ph.D. Deputy Cabinet Secretary

May 16, 2011

Legacy Reserves Operating LP Attn: Paul T. Horne P.O. Box 10848 Midland, TX 79702

Email: phorne@legacylp.com

Legacy Reserves Operating LP 303 W. Wall Suite 1400 Midland, TX 79701

Moriah Resources, Inc. P.O. Box 5562 Midland, TX 79704

Moriah Resources, Inc. 303 W. Wall Suite 1500 Midland, TX 79701

Moriah Resources, Inc. Attn: Alan J. Brown 300 North Marienfeld Suite 700 Midland, TX 79701

Moriah Resources, Inc. C/O James Bruce P.O. Box 1056 Santa Fe, NM 87504-1056

Email: jamesbruc@aol.com

Jami Balley **Division Director Oil Conservation Division**

Behaved Plant ! (100 yos - E. J. Plant !) Whole 158 stern 475' E. J. 201 E hole additional 50' E. J. 201

Oil Conservation Division 1220 South St. Francis Drive - Santa Fe, New Mexico 87505 Phone (505) 476-3440 • Fax (505) 476-3462 • www.emnrd.state.nm.us/OCD

May 16, 2011 Page 2

Pecos Production Company 400 W. Illinois Suite 1070 Midland, TX 79701

Pecos Production Company 400 W. Illinois Suite 1210 Midland, TX 79701

Re: Buried Oilfield Waste Location: 0-27-22S-37E, Lea County, New Mexico Lease Operators: Legacy Reserves Operating LP, OGRID 240974 Moriah Resources, Inc., OGRID 224376 Pecos Production Company, OGRID 215758 Anadarko Petroleum Corporation, OGRID 817

Dear Operators of the Above Lease Location:

The Oil Conservation Division (OCD) is investigating a complaint by a landowner that oilfield waste is buried at the above lease location. The OCD is contacting the operator of the lease, identified in OCD records as Legacy Reserves Operating LP (Legacy), and all prior operators of the lease, identified in OCD records as Moriah Resources Inc. (Moriah), Pecos Production Company (Pecos), and Anadarko Petroleum Corporation (Anadarko), to discuss the matter. Barrels, PVC pipes, metal pipes, buckets, rags, and other oilfield wastes were unearthed during a recent excavation of the site. Pictures of the site are enclosed in the attached letter that was sent to Anadarko early on in the OCD's investigation of this matter.

<u>Please contact me</u> at (505) 476-3493 or daniel.sanchez@state.nm.us <u>within 10 days</u> of receipt of this letter so that I can set up a meeting where we can discuss the matter further.

Your prompt attention to this matter would be greatly appreciated.

Sincerely yours,

C. C. Parana and

Daniel Sanchez OCD Enforcement & Compliance Manager

cc: Jami Bailey, OCD Director
 Geoff Leking, Environmental Specialist, OCD District 1
 Larry "Buddy" Hill, Supervisor, OCD District 1
 E.L. Gonzales, OCD District 1
 Glenn von Gonten, Acting OCD Environmental Bureau Chief
 Bill Sims, Landowner
 Linda S. Kuhn, Anadarko Petroleum Corporation
 Sonny Swazo, OCD Assistant General Counsel

New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

John H. Bemis Cabinet Secretary-Designate

Brett F. Woods, Ph.D. Deputy Cabinet Secretary Daniel Sanchez Acting Division Director Oll Conservation Division

March 29, 2011

Linda S. Kuhn, Sr. Counsel Anadarko Petroleum Corporation 1201 Lake Robbins Drive The Woodlands, TX 77380

Certified Mail: 7008 3230 0000 2318 8588

Anadarko Petroleum Corporation P.O. Box 2497 Midland, Texas 79702

Certified Mail: 7008 3230 0000 2318 8595

Anadarko Petroleum Corporation P.O. Box 1330 Houston, TX 77251

Certified Mail: 7008 3230 0000 2318 8601

Anadarko Petroleum Corporation c/o CT Corporation System 123 E. Marcy St. Santa Fe, NM 87501

Certified Mail: 7008 3230 0000 2318 8618

Anadarko Petroleum Corporation 1209 Orange Street Wilmington, DE 19801

Certified Mail: 7008 3230 0000 2318 8625

Re: Buried Oilfield Waste Operator: Anadarko Petroleum Corporation, OGRID 817 Location: O-27-22S-37E, Lea County, New Mexico

> Oil Conservation Division 1220 South St. Francis Drive • Santa Fe, New Mexico 87505 Phone (505) 476-3440 • Fax (505) 476-3462 • <u>www.emmrd.state.nm.us/OCD</u>

March 29, 2011 Page 2

Dear Operator:

The Oil Conservation Division (OCD) is investigating a complaint by landowner Bill Sims that Anadarko Petroleum Corporation (Anadarko) buried oilfield waste in a trench at the above location while Anadarko was the lease operator.

Mr. Sims unearthed barrels, PVC pipes, metal pipes, buckets, rags, and other oilfield wastes when he recently excavated a portion of the trench. Pictures of the site are enclosed.

Mr. Sims and his family have lived and ranched in the area for generations. According to Mr. Sims, Anadarko had a service yard at the location which it used to service its surrounding wells. Anadarko stockpiled barrels, junk and other items at the service yard. Around 1993, Mr. Sims saw a bulldozer dig a big trench immediately adjacent to the stockpiled barrels and other items at the service yard. A day or two later, Mr. Sims noticed that the stockpiled barrels, junk and other items were gone and the trench had been filed in. OCD records show Anadarko as the lease operator around the time of the incident.

Mr. Sims never saw any excavation or other activity at the location either before or after the incident. According to Mr. Sims, Anadarko had leased the location for decades prior to the incident and continued to lease the location for years after the incident. OCD records show that Anadarko operated the lease as late as 2003.

Section 70-2-12(B)(21) NMSA 1978, gives the OCD the authority to regulate the disposition of nondomestic wastes resulting from the exploration, development, production or storage of crude oil or natural gas to protect public health and the environment.

Section 70-2-12(B) (22) NMSA 1978, gives the OCD the authority to regulate the disposition of nondomestic wastes resulting from the oil field service industry, the transportation of crude oil or natural gas, the treatment of natural gas or the refinement of crude oil to protect public health and the environment, including administering the Water Quality Act [74-6-1 NMSA 1978] as provided in Subsection E of Section 74-6-4 NMSA 1978.

OCD Rule 19.15.34.11 NMAC prohibits the disposal of oilfield waste on or below the surface of the ground, or in another place or in a manner that may constitute a hazard to fresh water, public health, safety or the environment.

Oil field waste is "waste generated in conjunction with the exploration for, drilling for, production of, refining of, processing of, gathering of or transportation of oil, gas or carbon dioxide; waste generated from oil field service company operations; and waste generated from oil field remediation or abatement activity regardless of the date of release." OCD Rule 19.15.2.7.O(3) NMAC.

The buried items are oilfield waste and may constitute a hazard to fresh water, public health, safety or the environment, especially since many of the buried items were items that contained chemicals (such as barrels, buckets, and rags), or transported or could have transported chemicals (such as pipes). The location must be investigated to determine if there has been any unauthorized release to the environment that has contaminated soil and/or ground water.

March 29, 2011 Page 3

OCD Rule 19.15.29.11 NMAC requires the responsible person to complete OCD approved corrective action for releases that endanger public health or the environment. OCD Rule 19.15.29.11 NMAC requires the responsible person to address releases in accordance with a remediation plan submitted to and approved by the OCD.

Anadarko must submit a remediation plan pursuant to 19.15.29 NMAC to the OCD. Based on the results of the investigation, OCD will determine what remediation Anadarko must implement if any.

OCD Rule 19.15.34.13 NMAC requires persons to dispose of oilfield wastes that is not produced water by transferring the wastes to an appropriate permitted or registered surface waste management facility.

Anadarko must excavate the oilfield waste and properly dispose of it at an appropriate permitted or registered surface waste management facility.

Please contact me at (505) 476-3493 or <u>daniel.sanchez@state.nm.us</u> within 10 days of receipt of this letter to schedule a compliance conference with me at the OCD's Santa Fe Office. OCD legal counsel may be present at the conference. You may have counsel participate in the conference if you wish.

Section 70-2-12(A), NMSA 1978, gives the OCD the power to collect data; make investigations and inspections; and to examine properties, leases, papers, books and records.

Anadarko must bring the following to the conference:

- the approximate date of the service yard's operation from beginning to end;
- a list of all items and chemicals that passed through the service yard during its operation;

• copies of any permit or other document that purportedly gave Anadarko the authority to bury items at the site;

- a remediation plan to delineate and remediate the site;
- a written explanation and records of what Anadarko did with the oilfield waste at the service yard;

• a written explanation and records of what Anadarko did with the items at the service yard;

any other information pertinent to this case.

Anadarko's prompt attention to this matter would be greatly appreciated.

Sincerely,

'are

Daniel Sanchez Acting Division Director Division Enforcement & Compliance Manager

cc: John H. Bemis, EMNRD Cabinet Secretary-Designate

March 29, 2011 Page 4

> Bill Brancard, EMNRD General Counsel Sonny Swazo, OCD Assistant General Counsel Geoff Leking, Environmental Specialist, OCD District 1 Larry "Buddy" Hill, Supervisor, OCD District 1 Glenn von Gonten, Acting OCD Environmental Bureau Chief Bill Sims, Landowner Auralie Ashley-Marx, NMED Solid Waste Bureau Chief

-

Berry Johnson

From:Paul HorneSent:Wednesday, May 18, 2011 11:22 AMTo:Cary Brown; Steve Pruett; Kyle McGraw; Bill MorrisCc:Ernie Hanson; Berry JohnsonSubject:FW: Anadarko Petroleum Corporation Buried Oilfield Waste

Attachments:

2011 5-16 Letter.pdf

Letter.pdf (10 MB)

Please read attached letter from NMOCD. This is on the LMPSU. We were aware that the landowner, Bill Simms, was out doing some digging and taking pictures. We believe that someone else had a leak and while digging it up, encountered a bunch of junk and Bill wouldn't let them cover it up. He has not contacted us or asked us to do anything. He has told the NMOCD that Anadarko did this and the NMOCD is investigating. We need to discuss next steps. They are asking us to contact them to setup a meeting. I suggest we might want legal present...Alan Brown?

Paul T. Horne Legacy Reserves EVP - Operations Office(432)-689-5200 Cell(432)559-8473 Fax(432)686-8318

-----Original Message-----From: Duran-Saenz, Theresa, EMNRD [mailto:Theresa.Duran-Saenz@state.nm.us] Sent: Monday, May 16, 2011 12:30 PM To: Paul Horne; jamesbruc@aol.com Cc: Bailey, Jami, EMNRD; Leking, Geoffrey R, EMNRD; Hill, Larry, EMNRD; Gonzales, Elidio L, EMNRD; VonGonten, Glenn, EMNRD; Linda.Kuhn@anadarko.com; Swazo, Sonny, EMNRD; Sanchez, Daniel J., EMNRD Subject: Anadarko Petroleum Corporation Buried Oilfield Waste

Dear Operators,

The original letter with attachments is to follow via U.S. Mail.

The message is ready to be sent with the following file or link attachments:

2011 5-16 Letter

Note: To protect against computer viruses, e-mail programs may prevent sending or receiving certain types of file attachments. Check your e-mail security settings to determine how attachments are handled.

Adrian Jackson

From:Mark LarsonSent:Friday, August 01, 2014 8:53 AMTo:Heath LoftinCc:Adrian JacksonSubject:FW: Legacy Reserves, L.P., LMPSU Trash Pit Remediation

Heath,

Approved! Here's OCD's approval to proceed with lining and filling the trash pit excavations at LMPSU. We will get this on the schedule. The work will involve grading the bottoms of the excavations, installing the 20 mil liners and filling with soil from the soil piles. We will compact the soil while filling the excavations to minimize settling. As I stated earlier it may be necessary to acquire additional soil to complete filling the excavations to replace soil hauled to disposal and debris removed from the pits. It may be beneficial to acquire the extra soil from the adjoining landowner to the south (Sims?) since it will require landowner approval to access the adjoining property for delineating the groundwater including installing monitoring wells. I will let you know when we are ready to begin. Please contact me if you have questions. Mark

From: Oberding, Tomas, EMNRD [mailto:Tomas.Oberding@state.nm.us]
Sent: Friday, August 01, 2014 8:35 AM
To: Mark Larson
Subject: RE: Legacy Reserves, L.P., LMPSU Trash Pit Remediation

Aloha and good morning Mark,

Thank you again for coming into the office yesterday. I appreciate the summary of our discussion.

Please consider this the official notice of receipt of these files.

The OCD has no problems with the proposed work plan for this site.

Please also consider this the official notice of clearance (stamp of approval) from OCD to continue along this path in the cleanup of this site.

Please let me know if you have any questions, also please keep me informed as the situation warrants. Hope you and the entire crew have a wonderful Friday and weekend (enjoy the cooler temps a bit!) Mahalo -Doc

Tomáš 'Doc' Oberding, PhD Environmental Specialist – New Mexico Oil Conservation Division Energy, Minerals and Natural Resources Department 1625 N. French Dr. Hobbs, NM 88240 (O): (575) 393-6161 ext 111 (C): 575-370-3180 (F): (575) 393-0720 E-Mail: tomas.oberding@state.nm.us Website: MailScanner has detected a possible fraud attempt from "webmail.state.nm.us" claiming to be http://www.emnrd.state.nm.us/ocd/

From: Mark Larson [mailto:Mark@laenvironmental.com] Sent: Thursday, July 31, 2014 4:11 PM To: Oberding, Tomas, EMNRD

Cc: Heath Loftin **Subject:** Re: Legacy Reserves, L.P., LMPSU Trash Pit Remediation

Hello Tomáš,

This email summarizes our meeting yesterday and requests approval to proceed with the remediation approach discussed during the meeting.

- 1. The LMPSU trash pit is the location of two historic unlined oil and gas disposal pits and area where a former operator disposed of miscellaneous oilfield material including empty drums, pipe, etc.
- 2. Groundwater occurs at approximately 42 feet below ground surface (bgs);
- 3. Legacy excavated between about 7,500 and 12,000 cubic yards of soil during removal of buried debris and disposal pits;
- 4. Soil was retained on location in 4 piles (west, north, south and center);
- 5. The center pile was hauled to Sundance due to elevated TPH;
- 6. LAI personnel collected composite and discrete samples from the excavation and soil piles and from 15 borings drilled in and around the excavations (west and east);
- 7. The analytical results of borehole samples showed the highest TPH and chloride in boring SB-3, located near south end of west pit;
- 8. TPH in boring SB-3 decreased below 100 mg/Kg at approximately 25 feet bgs;
- Chloride in boring SB-3 suggests migration to groundwater as the concentration reported at 3,530 mg/Kg at 35 feet bgs;
- 10. Groundwater samples from monitoring well (MW-1) located about 50 feet south (down gradient) of the west excavation reported chloride at 2,720 mg/L;
- 11. The background chloride concentration (MW-2) is 58.8 mg/L;
- 12. Analysis by synthetic precipitation leaching procedure (TCLP) reported no benzene (<-0.001 mg/L), BTEX (<0.005 mg/L) or TPH (<3.0 mg/L) in composite samples from the soil piles (west, north and south);
- 13. SPLP chloride results from the soil piles were 7.96 mg/L 9north and south piles) and 36 mg/L (west pile (refer to attached analytical summary);
- 14. Legacy is the owner of the approximate 40-acre tract encompassing the site.

Per the meeting on July 30, 2014, Legacy proposes the following:

Excavation Closure Plan

- 1. Remove remaining debris from Site for disposal at Sundance Services, located east of Eunice, New Mexico;
- 2. Grade bottom of west and east excavations to a level depth of at least 4 feet bgs;
- **<u>3.</u>** Install 20ml liner in bottom of both excavations (refer to attached drawing showing proposed locations for liners);
- 4. Fill excavations with soil from west, north and south piles and top off with clean topsoil and seed;
- 5. Submit report to OCD District I and Santa Fe following closure of the excavation;

Groundwater Delineation Plan

- 6. Submit plan to OCD in Santa Fe and Hobbs for delineate elevated chloride in groundwater south of the site;
- 7. Delineation to include electromagnetic terrain (EM) conductivity survey and monitoring wells.

You approval of the excavation closure plan is requested . Please contact me if you have questions. Sincerely,

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 200 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

From: Oberding, Tomas, EMNRD [mailto:Tomas.Oberding@state.nm.us] Sent: Wednesday, July 30, 2014 11:25 AM To: Mark Larson; Adrian Jackson Subject: 7-30 meeting

Aloha Mark and Adrian,

Was nice getting to see you (and meet you Adrian) in the office this morning. I'll await the summary mail for the official confirmation of approval, but based on the discussions, all looks ok to finish these sites with liners and backfill. One note- the C-141 for the Gas plant site 1RP-3190 is online and can be found at:

http://ocdimage.emnrd.state.nm.us/imaging/AEOrderCriteria.aspx

enter 3190 and it is the first link (you can search all the files by RP that way, as well as by API)-

http://ocdimage.emnrd.state.nm.us/Imaging/FileStore/santafeadmin/ao/256870/pto1419947681 1 ao.pdf

I look forward to working with you. Wishing you both a wonderful afternoon and please let me know if I can help.

Mahalo

-Doc

PS- spent 9 years from 2002-2011 in Hawaii before heading to VietNam and Japan for the past 3 years, so it's been a while since I lived on the mainland. Cheers!

Tomáš 'Doc' Oberding, PhD Environmental Specialist – New Mexico Oil Conservation Division Energy, Minerals and Natural Resources Department 1625 N. French Dr. Hobbs, NM 88240 (O): (575) 393-6161 ext 111 (C): 575-370-3180 (F): (575) 393-0720 E-Mail: tomas.oberding@state.nm.us Website: MailScanner has detected a possible fraud attempt from "webmail.state.nm.us" claiming to be http://www.emnrd.state.nm.us/ocd/

This message has been scanned for viruses and dangerous content by **MailScanner**, and is believed to be clean.

This message has been scanned for viruses and dangerous content by **MailScanner**, and is believed to be clean.

1RP-3360 State of New Mexico Energy Minerals and Natural Resources

HOBBS OCD

Form C-141 Revised August 8, 2011

SEP 2 9 2014 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

RECEIVED

API No.

Release Notification and Corrective Action

	OPERATOR	Initial Report	Final Report
Name of Company: Legacy Reserves, L.P.	Contact: Heath Loftin, Production	on Superintendent	
Address: 303 West Wall St., Ste. 1800, Midland, TX 79701	Telephone No.: (432) 689-5200		
Facility Name: LMPSU Trash Pit	Facility Type: Unauthorized Sol	id Waste Disposal Pit	

Surface Owner: Legacy Reserves, L.P. Mineral Owner

LOCATION OF RELEASE

Unit Letter O	Section 27	Township 22S	Range 37E	Fcet from the 640	North/South Line South	Feet from the 2,080	East/West Line East	County: Lea

Latitude 32° 21' 28.40" Longitude 103° 8' 50.07"

NATURE OF RELEASE

Type of Release: Produced water (historic)	Volume of Release: Unknown	Volume Recovered: N/A							
Source of Release: Unlined disposal pit (historic)	Date and Hour of Occurrence Unknown	Date and Hour of Discovery: May 5, 2014							
Was Immediate Notice Given?	If YES, To Whom?								
🗌 Yes 🖾 No 🗌 Not Required									
By Whom?	Date and Hour								
Was a Watercourse Reached?	If YES, Volume Impacting the Wat	ercourse.							
If a Watercourse was Impacted, Describe Fully.*									
Describe Cause of Problem and Remedial Action Taken.* A complia unauthorized trash pit that was used by a previous operator and buried in informed of the trash pit in a letter from OCD in May 2011. Legacy of contractor uncovered tow (2) historic unlined disposal pits that received p in a historic aerial photograph dated February 4, 1968. The pits appeared Describe Area Affected and Cleanup Action Taken.* The trash and historic di- excavated soil, trash and debris between about 4 and 20 feet below gro disposal facility. Approximately 7,000 to as much as 9,000 cubic yards center). The center pile, approximately 1,640 cubic yards, contained clew hauled to Sundance Services, east of Eunice, New Mexico. Upon delin potential (SPLP) OCD approved closing the excavations by installing a The disposal pits are located near the west side of the site. Two (2) mo pits, respectively. Laboratory results of groundwater samples from well respectively. Legacy will delineate the groundwater impact. I hereby certify that the information given above is true and complete to the best o are required to report and/or file certain release notifications and perform correctiva acceptance of a C-141 report by the NMOCD marked as "Final Report" does not re and remediate contamination that pose a threat to ground water, surface water, hur	ant from an adjoining landowner id- the early 2000's. Legacy Reserves, I ontract with Etech to excavate the tr produced water and hydrocarbons from covered in a later photograph (June 3 sposal pits are located about 500 feet und surface. The waste was segrega of soil was excavated and retained our vated concentrations of total petroleur eating the chloride and TPH in the v 20 mil thickness liner in the bottom an intoring wells (MW-1 and MW-2) w MW-2 reported chloride and total dis fmy knowledge and understand that pursue elieve the operator of liability should their nan health or the environment. In addition	entified the LMPSU as the location of an L.P., as current operator of the LMPSU, was rash pit. While excavating the trash pit the n the lease tank battery. The pits are visible , 1983). northeast of the LMPSU tank battery. Etech ted from the soil and hauled to a permitted on location in 4 piles (west, north, south and n hydrocarbons (YPH) and chloride and was radose zone and a determination of leaching and covering with soil from the onsite piles. rere installed south and north of the disposal ssolved solids at 2720 mg/L and 6700 mg/L, mant to NMOCD rules and regulations all operators r public health or the environment. The operations have failed to adequately investigate n, NMOCD acceptance of a C-141 report does not							
relieve the operator of responsibility for compliance with any other federal, state, of	OIL CONSERVATION DI	VISION							
1 - Alt	1PP-3360								
Signature: Healtatte	IN -5500								
Printed Name: Heath Loftin	Approved by Environmental Special	ist:							
Title: Production Superintendent	Approval Date: 7-29-19	Expiration Date:							
E-mail Address: hloftin@legacylp.com Conditions of Approval: Attached									
Date: September 29, 2014 Phone: (432) 689-5200		Descin 240974							

* Attach Additional Sheets If Necessary

APPENDIX B

Boring Logs and Monitoring Well Completion Records

				BORING	RECORD)										
				N	g	F	PID	REA	DIN	G	S	AM	PLE	F	REMARK	S
				PTI(CLC	DDN	A X					\square		BAG	CKGRO	JND
	DEPTH	DESC	CRIPTION LITHOLOGIC	USC I) Hc					4040				PIC) READ	ING
ONIT				ES.	RAI				2 14	16 18				SOIL:		PPM
			9:10		<u> </u>		++		$\left \right $			\vdash				PPM
	1	7.5YR5/4 Bro	wn organic smell, organic rich sandy													
		301, 110131														
	5														9:12 0.0 ppm	
				sw												
	10	7.5YR6/4 ligh	t brown sand v. fine - fine orains												9:13 0.0 ppm	
		moist														
		moloc														
	—															_
															0.44	
	15				////										9:14 0.0 ppm	
		10YR7/3 v. pa grains, moist	le brown, sandy clay v. fine to med <5% chert													
					\././././.											
	20														9:17	
	20	7.5YR8/5 pink	caliche v. fine - fine sand grains friable	9											0.0 ppm	
				SW												
		10YI	R7/4 v. pale brown, sand	300												_
		v. fir	ne - fine grains, <2% chert													
	_															
	25														9:19 0.0 ppm	
															0.0 ppm	
	NE CONTINU	JOUS AUGER S	SAMPLER WATER TA	ABLE (TIME	OF BORING) JOE	3 NU	JMB	ER :		1	<u>4 - (</u>	0107	- 01		
s s	FANDARD PI	ENETRATION T		ORY TEST L	OCATION	μоι	LEC	JIAN	/IETE	=R :_	5'	<u> </u>				
1U	NDISTURBE	D SAMPLE	+ PENETRO	METER (TO	NS/ SQ. FT)	LOC	САТ	ION	:	Wes	st of	We	st Exe	<u>cavation</u>		
— w	ATER TABLE	E(24 HRS)	NR NO RECO	VERY		LAI	GE	OLC	GIS	Т:			AJ			
Aarson &			DRILL DATE :	BORING	NUMBER :	DRI	ILLIN	NG (CON	TRA	СТС	ЗR	: <u>s</u>	PC		
	nc.		6 - 13 - 2014		SB - 1	DRI		NG I	ИЕТ	HOD	:	A	R		Page	e 1 of 2

				E	BORING	RECORD											
					N	g		PI) RE	EAD	DINC	÷	s	AM	PL	E	REMARKS
					DTC S				v								BACKGROUND
GEOLOGIC	DEPTH	DES	CRIPTION LITI	HOLOGIC		H	PF		^								PID READING
UNIT					ESC	RAF		6	8 10	12	14 1	<u>6 18</u>					SOIL:PPM
						U ,	+		++	_	_	$\left \right $	_				SOIL:PPM
	26		<2% chert														
					E/M												
					300												
	30																9:21 0.0 ppm
			SAA														
																	9:21
	35																
			SAA														
		5YR5/6 ye	ellowish red sand, ri	ver bed material													
																	0.22
	40		TD : 40'			F											0.0 ppm
		G	Groundwater Not Ob	served													
																	_
	45																
												. –					
	50																
			SAMPLER -	WATER TAE	BLE (TIME	OF BORING)]C	DB N	NUM	IBE	R:		1	4 -	010	7 -	
sī	ANDARD PE	ENETRATION T	EST	LABORATO	RY TEST L	OCATION	нс	OLE	DIA	M	ETE	R :_	5	"			
	IDISTURBE	O SAMPLE	-	+ PENETROM	ETER (TO	NS/ SQ. FT)	LC	DCA	TIO	N :		We	st of	We	<u>st E</u>	xca	avation
w.	ATER TABLE	E (24 HRS)	1	NR NO RECOVE	ERY		LA	Al Gl	EOL	.00	GIS	Г:			AJ		
Agrson &			DRILL DATE :		BORING	NUMBER :		RILL	.ING	S C	ON.	TRA	СТ	ЭR	:	SF	<u></u>
Sociates, I	nc.		6 - 13 -	2014	s	SB - 1	DF	RILL	.ING	S M	ETH	HOD) <u>:</u>	Α	R_		Page 2 of 2

					BORING	RECORD											
					NO	OG		Ρ	ID F	REA	DIN	G	Ś	SAN	ΛPL	.E	REMARKS
GEOLOGIC	DEPTH	DESC		OGIC	RIPTI CCS		Ρ	PM	Х.								BACKGROUND
UNIT					SCF	APH	2	4 6	8	<u>10 12</u>	2 14	<u>16 18</u>					
			9:31		DE	GR											SOIL :PPM
	1	7.5YR6/3 light	sandy soil organic fine g	rain and small													
		<2% amount of	f clay damp														
																	_
							,										_
	5				SW												9:36
	3																0.0 ppm
																	—
	-																
							,										_
	10																9:40
																	0.0 ppm
			clayey sand odor, damp)													
	_																_
					SM												
	-																—
	15																9:41
			10YR//1 light gray														0.0 ppm
			strong oder meist														
			strong odor moist														—
																	_
					SW												
	20																9:43 2.6 ppm
	_																_
			SAA <5% chert damp														
																	_
															0.51		
	25																2.6 ppm
		JOUS AUGER S		WATER TAE	BLE (TIME	OF BORING) J	ОВ	NU	MB	ER :			14 -	01(. 70	01
s s	ANDARD P	ENETRATION T	est L	LABORATO	RY TEST L	OCATION	ŀ	IOLI	E D	IAN	1ETE	ER :_		5"			
	NDISTURBE	D SAMPLE	+	PENETRON	IETER (TOP	NS/ SQ. FT)		.0C			:	Sou	<u>uth '</u>	Wes	t of	We	st Excavation
w	ATER TABLI	E(24 HRS)	NR	NO RECOV	ERY			AI (EC:		GIS	: TD /			<u>A</u>	J	
DRILL DATE : BORING NUMBER : DRILLING CONTRA												тка НОГ		OF	κ :_ ΔR	SF	Page 1 of 2

				E	BORING	RECORD)							_				
					N	g		F	PID	RE	AD	ING	ì	s	١MF	٢LE	REMARKS	
	DEDTU	550			PTIC	CLC	F		1	<							BACKGROUN	١D
	DEPTH	DESC	CRIPTION LITHOLOG	ыс	CRI USC	HI	, ,	4	~ .	`	10	14 16	2 19				PID READIN	G
onn					DES	RAI								1			SOIL :	PPM PPM
						<u> </u>			+	$\left \right $	+	-		+	+			
	26	7.5 YR8/3 Pi	nk Sand v. fine - fine damp -	no odor				Ĭ.									9:51 2.6 ppm	
																		_
		7.5YR	2/4 pink															
	30																	
					sw												9:53 2.6 ppm	
								•										
	35							/									9:55	
			SAA														2.6 ppm	
			damp															
		inor	accing in charty gravela															
		Inci	easing in cherty gravers															
		7.5YR6/2 pink	ish gray sand, odor, moist, cl	hert gravel														
																	9:56	
	40		TD : 40'														0.0 ppm	
		G	Groundwater Not Observed															
	45																	
											_							
															_			
0	NE CONTINU	JOUS AUGER S	SAMPLER v	VATER TAF	BLE (TIMF		$\overline{)}$	JOE	3 N	UM	BEI	R :_		. 14	1 - 0'	107 -	01	
	ANDARD PI	ENETRATION 1	TEST I I	ABORATO			′ I	HOL	_E	DIA	ME	TE	R :	5"				
	NDISTURBEI	D SAMPLE		PENETROM	ETER (TO	NS/ SQ. FT)		LOC		rior	_: N		Sout	h W	<u>est c</u>	of We	st Excavation	
w	ATER TABLE	E(24 HRS)	NR N	IO RECOVE	ERY			LAI	GE	OL	OG	IST	· :			۹J		
A groop			DRILL DATE :		BORING	NUMBER :	\dashv_{I}	DRI	LLI	NG	СС	DNT	RA	СТС)R :	S	PC	
Harson & Har	arson & ssociates, Inc. BORING NUMBER : Environmental Consultants 6 - 13 - 2014									NG	ME	ET⊦	IOD		AF	2	Page 2	2 of 2

				BC	ORING	RECORD											
					NOI	00		PIE	D RE	EAD	DIN	G	5	SAN	1PL	E	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLOGIC		RIPT SCS		F	PM 2	x	25			.				BACKGROUND PID READING
UNIT					C SCI	SAPI	2	4 6	8 10	12	14	<u>16 18</u>	_				SOIL:PPM
			11 : 37		B	С Ч Ч											SOIL:PPM
	1																
			Soll Excavated to 10'														
	5																
	J																
	10	10YR7/3 v. p	ale brown, caliche friable damp														
					Caliche												
										?							
	15	10YR7/1	light gray caliche, friable							′							11:40 2.76 ppm
		strong o	dor														_
		damp															
	20																11:42 1.28 ppm
		10YR7/1	light gray sand v. fine - fine,														—
		strong o	dor														
					SW			/									
			SAA				V										
	25																11:44 11.5 ppm
						OF BORING) J	IOB N	IUM	BE	R :			14 -	010)7 -	<u></u>
S1	andard pe	RATORY	Y TEST LO	OCATION	⊦	IOLE	DIA	MI	ЕТЕ	ER :_	ţ	5"					
10	NDISTURBE	TROME	TER (TON	IS/ SQ. FT)	L	OCA	TIO	N :		Sou	uth I	Botto	om c	of V	lest Excavation		
w	ATER TABLE	E(24 HRS)	ECOVER	RY		L	.AI GE	EOL	.00	GIS	т:_			AJ	J		
🗛 arson 🎄 🛌		~	DRILL DATE :	E	BORING N	NUMBER :	70	RILL	ING	i C	ON	TRA	СТ	OR	:	SF	<u></u>
Associates, Environmental Consult	nc.		6 - 13 - 2014		S	B - 3	C	RILL	ING	i M	EΤ	HOE) <u>:</u>		٩R		Page 1 of 2

				BORING	RECORD												
				Z	g		PID	RE	AC	DIN	G		s	٩M	PLE	Ξ	REMARKS
				STIC S	LO L										Т		
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLOGIC	SC	H H	PF	PM >	x				_					PID READING
UNIT					AP	2 4	6	8 10	12	14	16 1	18	$\left \right $				SOIL : PPM
				DE	GF GF												SOIL : PPM
	26																
			SAA														_
																	_
			damp, odor														
						•											_
	20	10YR6/2 ligh	nt brownish gray, sand v. fine to fine														11:45
	30			SW													2.6 ppm
																	_
																	-
		damp - mois	st odor 10% chert														_
		damp mole															
																	_
	35					↓											11:49
		G	TD : 35' Groundwater Not Observed														7.9 ppm
																	—
																	_
																	_
																	_
	40																
																	_
																	_
																	_
																	_
	45																
																	_
																	_
										_							
	50	50															
0	NE CONTINU	JOUS AUGER S	SAMPLER — WATER TA	ABLE (TIME	OF BORING) JC)B N	UM	BE	R			14	4 - 0	0107	7 _ (01
ST ST	ANDARD PE	ENETRATION T		ORY TEST L	OCATION	НС	DLE	DIA	M	ETE	ER	:	5"				
	NDISTURBE	D SAMPLE	+ PENETRO	METER (TO	NS/ SQ. FT)	LC	DCA ⁻	IOI	N :		S	out	n Bo	ottor	n of	fW	est Excavation
— w	ATER TABLE	E(24 HRS)	NR NO RECO	VERY		LA	I GE	EOL	00	GIS	Т:				AJ		
Agrson &			DRILL DATE :	BORING	NUMBER :		RILL	ING	С	ON	ITR	RAC	тс	R	::	SP	°C
Hassociates,	nc.	\sim	6 - 13 - 2014		SB - 3	DF	RILLI	ING	М	ΕT	НΟ	D :		Α	R		Page 2 of 2

					BORING	RECORD)						_					
					N	g		PI	D RE	ΞΑΙ	DINC	3	SA	١MF	٢E	R	EMARK	S
	DEDTU				SPTIC	C LC	PI		x							BAC	KGROI	JND
	DEPTH	DESC	SRIPTION LI	THOLOGIC	USCRI	H	2 4		×	12	14 1	6 18				PID	READ	NG
or the					DES	RA		ÍŤ	ĪĪ				1			SOIL :		PPM
			8 : 48								_	+	+	+				
	1																	
		51	YR5/6 yellowish r	ed sand moist														_
							•											_
	5				SW											;	8:50	
	3																3.0 ppm	
																		_
	10					12243244											3:52 0.0 ppm	
		10YR8/2	2 v. pale brown c	aliche, damp														_
					Caliche													
		50% che	ert, harder more o	onsolidated layer														
							•											
	15					100.000 AC										1	8:54 0.0 ppm	
		10YR8/3 v.	pale brown sand	, moist 10% chert													J.0 ppm	
																		_
																		_
					SW		,										8.55	
	20	10\	/R7/4 v. pale brov	wn sand													3.0 ppm	
			<10% chert															
			damp															_
													0.50					
	25	5	יז אסיסא זי yellowish ו	red													3:58 0.0 ppm	_
			SAMPLER				J			1BE	ER :	1	14	- 0 ⁻	107 -	.01		
		ENETRATION T	EST		RY TEST I		′ н	OLE	DI/	٩M	ЕТЕ	R :_	5"					
		D SAMPLE			IETER (TO	NS/ SQ. FT)		CA		N :		Sout	th of	Wes	st Exc	<u>cavation</u>		
	ATER TABLE	E (24 HRS)		NR NO RECOV	ERY			۹I G	EOL	_0	GIS	г:			۹J			
A groop &		,	DRILL DATE :		BORING	NUMBER :	ᅴᇚ	RILL	ING	ЭC	ON	TRA	сто	R:	s	PC		
Harson &	nc.		6 - 1	3 - 2014		SB - 4		RILL		ΞN	IETI	HOD		AF	2		Page	e 1 of 2

				E	BORING	RECORD)											
					N	ဗျ		Ρ	DI	RE	AD	ING	i	s	SAN	1PL	E	REMARKS
					SS				ιx									BACKGROUND
	DEPTH	DES	CRIPTION LITHOLOGIC		USC USC	Ĕ	ا	1 101		10	10 1	4 40	- 10					PID READING
ONT					ES	RAI	1	4 6			12 1	4 16	18	1				SOIL:PPM
						0	+	+		_	+	-		+	+			
	26																	12:35 0.0 ppm
			sand															
							,											_
																		9.50
	30																	0.0 ppm
			SAA															
		mo	re hard, chert modules, 50% more	;														
							'											
	35																	9:01
																		0.0 ppm
			SAA															
		less chert abo	out 10% not as much river bed mat	terial														_
		as SB - 13																
							,											9:03
	40		TD : 40'			· . · · · · ·												0.0 ppm
			Groundwater Not Observed															
																		_
	45																	
																		_
																		_
	50																	
																		1
0	NE CONTINU	JOUS AUGER	SAMPLER WATE	R TAB	BLE (TIME	OF BORING)	JOB		JME	BEF	₹:_ 			<u>14 -</u>	010	- 70	01
	ANDARD PI	ENETRATION ⁻		RATOF	RY TEST L	OCATION	ŀ	HOL	ΕC	JIAI	ME	ΓE	к:_	5	5"			
10	NDISTURBEI	D SAMPLE	+ PENET	TROM	ETER (TOI	NS/ SQ. FT)	l	_OC	AT	101	1:_		Sou	<u>th c</u>	of We	<u>est</u>	Exc	avation
w		E(24 HRS)	NR NO RE		ERY				GΕ	OL	ЭG	IST	-			Α.	J	
Aarson &	200	\sim	DRILL DATE :		BORING	NUMBER :	ין	DRIL	_LII	١G	CC	DNT	RA	СТ	OR	:	SF	<u>۲۵ کې</u>
Environmental Consult	ants		6 - 13 - 2014		5	SB - 4	0	DRIL	_LII	١G	ME	ΞTΗ	IOD	:	A	١R		Page 2 of 2

				E	BORING	RECORD)										
					NO	DG		PI	D F	REA	DIN	IG		SA	MF	۷LE	REMARKS
		550			PTIC SS	O L O			x								BACKGROUND
		DESC	CRIPTION LITHOLC	OGIC	USC USC	HH	2	4 6	۸- «	10 12	2 14	16	8				PID READING
- Criti					DES	RAI						10					SOIL :PPM
			11 : 55			0				+	\square			$\left \right $	+		
	1																
			Soil Excavated to 5'														
																	_
	5																
																	_
																	_
																	_
	10							?									12:02
	10		7.5YR7/4 pink														2.6 ppm
					SW												
			sand		500												_
			odor														
																	_
																	12:03
	15																0.0 ppm
			SAA														
																	_
																	-
			odor														_
	20																12:05 0.0 ppm
	-		5YR5/6 yellowish red														–
	_																
			SAA														_
	moist odor													12:07			
	25	sar	d fine to v. fine moist, odo	r													2.6 ppm —
0	NE CONTINU	JOUS AUGER S	SAMPLER	WATER TAE	BLE (TIME	OF BORING	, ,	JOB	NU	MB	ER	-		14	- 0	107 -	- 01
sī	ANDARD PE	ENETRATION T	EST L	LABORATO	RY TEST L	OCATION		HOLE	ΕD	IAN	1ET	ER	:	5"			
10	NDISTURBED	O SAMPLE	+	PENETROM	ETER (TOP	NS/ SQ. FT)			ATI(ON	:	S	outł	n Eas	st C	orne	r of West Excavation
— w	ATER TABLE	E(24 HRS)	NR	NO RECOVE	ERY			_AI G	EC	DLO	GIS	ST :				۹J	
\Lambda arson . & 💻			DRILL DATE :		BORING	NUMBER :		DRILI	LIN	IG (100	NTR	AC	то	R:	S	PC
	nc.		6 - 13 - 2014		5	SB - 5		DRILL	LIN	IG N	٨E	ГНС	D:		AF	2	Page 1 of 2
				E	BORING	RECORD)										
---	------------	--------------	--------------------------------------	-----------	--------	--------------	--------	------	-------------	--------------	------	--------------	-------	------	------	------	------------------
					NO	og		Ρ	ID F	REA	DIN	G	S	SAN	1PL	.E	REMARKS
GEOLOGIC	DEPTH	DES			CS		Р	PM	Х_				_				BACKGROUND
UNIT		DLO		0010	US	HA	2	4 6	8	10 12	2 14	<u>16 18</u>					PID READING
					DE	GR/											SOIL:PPM
	26		SAA				f	'		\mathbf{H}			+	+			12:07
			0														2.6 ppm
																	-
					SW												
			<15% chert														
																	-
	30																12:09 2.6 ppm
		G	TD : 30' Groundwater Not Observed	t													
																	-
																	-
																	-
	35																
																	-
																	-
																	-
	40																
																	-
																	-
																	-
	45																
																	-
																	-
																	-
																	-
	50																-
							∕ 1	OB	NU	MBI	ER :			14 -	010)7 -	01
	ANDARD PE	ENETRATION 1	EST				' н	IOLE	ΞD	IAM	IETE	ER :_	5	5"			
	NDISTURBED	O SAMPLE	ц +	PENETROM		NS/ SQ. FT)	L	OC/	ΑΤΙΟ	ЛС	:	So	uth E	East	of V	Nes	st Excavation
w	ATER TABLE	E (24 HRS)	NR	NO RECOVI	ERY	,	L	AI C	GEC	LO	GIS	т:_			AL	J	
∆arson &			DRILL DATE :		BORING	NUMBER :	d L	RIL	LIN	GC	CON	ITRA	νСΤ	OR	:	SF	<u></u>
Arson & Sociates, Inc. Environmental Consultants 6 - 13 - 2014 SB - 5 DRILLING METHOD : AR									Page 2 of 2								

					BORING	RECORD)											
					NO	g		F	۶ID	RE.	AC	NIN	3	s	AM	PLE	Ξ	REMARKS
					PTIC			DDM	<u> </u>	(BACKGROUND
	DEPTH	DESC	JRIPTION LI	THOLOGIC	CRI USC	HH	2	4 I IV	6 S	`	12	14 1	6 18					PID READING
					DES	BRA					Ţ							SOIL : PPM SOIL : PPM
	1		12:25	4.01							+			_	$\left \right $			
			Soll Excavated to	o 10 [.]														
																		_
																		_
																		_
	5																	
																		_
																		_
																		_
																		_
	10	5YR5/6 vellov	wish red moist sa	ndy clay y fine - fine			•											12:29 0.8 ppm
		o more your		nay olay v. inter inte														_
					CL													
																		_
																		-
																		_
	15	10YR7/1 light	gray clayey / sna	ady fine v. fine moist														12:30 0.8 ppm
		-																_
					SM													_
						$\langle \rangle \rangle \rangle$												-
						$\langle \rangle \rangle \rangle$												_
						$\langle \rangle \rangle$												
	20	7.5YR8/5 pink	caliche v. fine - fi	ne sand grains friable														12:31 0.0 ppm
																		-
																		_
					Caliche													
																		_
																		_
	25.					┝╌┱╾┸╌												
	25																	
	NE CONTINU	JOUS AUGER S	SAMPLER		BLE (TIME	OF BORING)	JOB	5 N		BE	R :		1	<u>4 - (</u>	0107	<u>' - 0</u>	<u>1</u>
s s	andard Pi	ENETRATION T	EST		RY TEST L	OCATION		HOL	.⊏ 、∧ ¬		IVIE N -	= E	:к:_ -	<u> </u>		<u>، ۲</u>		
		D SAMPLE		+ PENETROM		NS/ SQ. FT)			AI CE	101 	N :_ 000	210-	as ⊤.	<u>t of V</u>	vest	<u>t Exc</u>	cava	ation
w	AIERIABLE	= (24 HKS)		INK NU RECOV				יואם	90 			יאט. פור	' TD^	<u></u>	םר	<u>AJ</u>	201	
Harson &	nc.	\sim	6-1	3 - 2014	SOKING	SB-6		DRI	∟∟∣ ∟∟∣	NG	M	ETH			אכ A	. <u> </u>	<u>37(</u>	Page 1 of 2

				E	BORING	RECORD)											
					NC	ŋ		ΡI	D R	EA	DIN	G	S	AM	PLE	REM	ARKS	
					DIC S	CLC			v							BACKG	ROUN	
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLC	OGIC		UH I	Р	PIVI	×_							PID RE	EADIN	G
UNIT					L ESC	AF	2	4 6	8 1	0 12	14	16 18	-			SOIL :		PPM
						Ū										SOIL:		PPM
	26		7.5 YR7/4 Pink Sand													12:35 0.0 p	5 Ipm	
																	•	
					SW													
																		_
	30	7.5YR	6/4 light brown sand v.fine	- fine												12:38 0.0 p	3 ipm	
		C	TD : 30' Groundwater Not Observed															
																		_
	35																	
																		_
	40																	
	40																	
	45																	
																		_
	50 ———																	
				14/4						⊥ ∕/RI	 =R ·		1	цці 4 - С)107 -	<u>ا</u> - 01		
		NETRATION		WATER TAE	BLE (TIME	OF BORING) <mark>1</mark>		וח	AM	-'`` ETF	R ·	5"					
			L	LABORATO	RY TEST L	OCATION		000		יייי אר		Fac	t of V	Nect	Fro	avation		
			+	PENETROM	ETER (TON	NS/ SQ. FT)					 כופ	<u>as</u> т.	<u></u>	1031	<u>. слос</u>			
w	AIER IABLE	- (24 MKS)		NU RECUVE				ט וה ייים			505	יי <u>-</u> דרסי	<u>от</u>		. ~			
Aarson &	nc.	\sim	6 - 13 - 2014					RIL	אוו_ 101	3 U 2 N		ика чор		אר יי	. <u> </u>	FU	Bogo C	
Environmental Consult	s, Inc. 6-13-2014 SB-6 DRILLING METHOD : AR										aye_							

					BORING	RECORD)											
					NO	g		F	PID	RE	EAI	DIN	G	S	SAN	/IPL	-E	REMARKS
					IPTI CS	C L(PPN	<i>\</i>	x								BACKGROUND
UNIT		DES		JGIC	USCR	HL	2	4	6	8 10	12	14	16 18	-				PID READING
			10 - 40		DEG	GRA												SOIL :PPM SOIL :PPM
	1		10:40									-		+	+			
		7.5YR5/8, str	ong brown sand, fine v. fin	ie <2% chert														
																		_
																		_
																		_
	5																	10:44
																		0.0 ppm
																	_	
																		_
																		_
																		_
	10																	10:46
	10		SAA															0.0 ppm
					SW													_
					000													_
																		_
																		_
																		10:48
	15		7.5YR7/4 pink															0.0 ppm
			Increased chert															-
																		_
																		_
																		_
	20		7.5YR5/8 strong brown															10:49 0.0 ppm
																		_
																		_
																		_
																		_
			SAA															
	25																	
0	NE CONTINU	JOUS AUGER :	SAMPLER	WATER TAE	BLE (TIME	OF BORING	,	JOE	3 N	UM	IBE	R :			14 -	010	07 -	01
	ANDARD PI	ENETRATION 1	rest	LABORATO	RY TEST I	OCATION	′	HOL	.E	DIA	M	ЕТЕ	R :_	5	5"			
1U	NDISTURBEI	D SAMPLE	+	PENETROM	ETER (TO	NS/ SQ. FT)		LOC	CA	τιο	N :		Ce	nter	of V	Vest	t Ex	cavation
— w	ATER TABLE	E(24 HRS)	NR	NO RECOVI	ERY	,		LAI	GE	EOL	.00	GIS	T :			A	NJ	
Agrson &			DRILL DATE :		BORING	NUMBER :	\neg	DRI	LL	ING	6 C	ON	TRA	СТ	OR	k :_	S	<u> </u>
Arson & Sociates, Inc. Environmental Consultants 6 - 13 - 2014 S								DRI	LL	ING	ν	IETI	-100) <u>:</u>		AR		Page 1 of 2

				E	BORING	RECORD)											
					NO	Ŋ		F	PID	RE	A	DIN	G		SAN	٨Ы	LE	REMARKS
					S)TIC					~				+				BACKGROUND
	DEPTH	DES	CRIPTION LITHOLO	GIC		HIC	_		vi 2	<u>^</u>				-				PID READING
						RAF	2	4	6	8 10	12	14	16 18					SOIL:PPM
						U Seconda		_		$\left \right $	-	_	+	_		_		SOIL:PPM
	26	5YR5/6 Yellov	vish Red, moist sand clay v	. fine - fine														
																		-
																		_
	30		SAA															10:55 0.0 ppm
			<5% chert															_
																		-
																		_
					SW													—
	35																	
			SAA															10:56 0.0 ppm
																		-
																		-
		Riverbed	gravel SAA chert agate cha	alcedony														
	40																	10:58
		G	TD : 40' Groundwater Not Observed															0.0 ppm
																		_
																		_
																		_
	45																	11:00
																		0.0 ppm
															_			
	50.																	
	50																	
0	NE CONTINU	JOUS AUGER S	SAMPLER	WATER TAE	BLE (TIME	OF BORING)	JOE	3 N	UM	BE	R :			14 -	01	07 -	
S	ANDARD PI	ENETRATION 1	EST L	LABORATO	RY TEST L	OCATION		HOI	LE	DIA	MI	ETE	R :		5"			
10	NDISTURBEI	D SAMPLE	+	PENETROM	ETER (TOP	NS/ SQ. FT)		LOC	CAT	τιοι	N :		Ce	nter	of V	Ves	t Ex	cavation
— w	ATER TABLE	E(24 HRS)	NR	NO RECOVE	ERY			LAI	GE	EOL	00	GIS	T :_			A	NJ	
🛕 arsoņ 🎄 🚃			DRILL DATE :		BORING	NUMBER :		DRI	LL	ING	С	ON	TR/		OF	? :_	S	<u>۲۲ کر</u>
The sociates, Environmental Consult	ates, Inc. 6 - 13 - 2014 SB - 7 DRILLING METHOD : AR Page 2 o									Page 2 of 2								

				I	BORING	RECORD)											
					NC	ЭG		P	٥I	RE	EAD	DIN	G		SAN	ИРI	LE	REMARKS
		DEO			DTIC	CLC		PPM	1 >	<								BACKGROUND
UNIT	DEPIN	DES	SRIPTIONL	ITHOLOGIC	US(HA	2	4 E	 5 8	3 10	12	14	16 18	-				PID READING
			10 . 47		DES	GRA												SOIL : PPM SOIL : PPM
	1		12:47				+	-								╈		
																		—
																		_
	5																	
																		_
	Soil Excavated to 20'																	
													_					
																		-
																		_
	10																	
	10																	
																		-
																		_
																		-
	15																	
																		_
																		_
																		_
	20	7.5YR 8/2 pi	nkish white calic	che v. fine - sand, moist			•											12:50
																		0.0 ppm
		7.5YR8/4 pir	ık caliche with m	nore consolidated sand		┝╌┎╌┸╌┥												_
		(25 Ft.) moi	st		Caliche	┝┸╌┰┥												
						┝┰╌┖┥												-
																		_
												12:51						
	20						\rightarrow											0.0 ppm
	NE CONTINU	JOUS AUGER	SAMPLER		BLE (TIME	of Boring)	JOB	N	UM חוח	BE	:R : = ד ר			<u>14 -</u> 5"	01	<u>07 -</u>	
			EST		RY TEST LO	OCATION			.⊏ ב∆ר		NI 1		_F3	ato	<u>5</u> f \//~	et F		wation
	NDISTURBE	J SAMPLE			IETER (TON FRY	NS/ SQ. FT)			GE	:01	00	- JIS	a	51 0	<u>, ,,,</u>	<u>.σι</u> Ε	<u>a</u> N.1	vaton
		- (24 11(0)	DRILL DATE :		BORING	NUMBER :	\dashv		_[]	NG	: C	ON	TRA		TOF	<u>.</u>		
Arson & DRILLING CONTRACTOR: SPC										Page 1 of 2								

				E	BORING	RECORD)										
					NO	OG		PIC	D RE	EAD	DINC	3	s	AM	PLE	Ξ	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLOGIC	C	SCS	IIC L	PP	M	x_								
UNIT					USCF USCF	APF	2 4	6	8 10	12	14 1	<u>6 18</u>					
					Ш	GR											SOIL:PPM
	26						`										
					Caliche												_
																	_
							•										_
	30																12:52
			5YR5/6 Yellowish Red														0.0 ppm
			Sand														-
			Moist														—
																	_
					SW)										_
	35		SAA														12:53 0.0 ppm
																	_
																	_
																	_
																	_
	40		SAA				•										12:54
		G	TD : 40' Groundwater Not Observed														_
																	_
																	-
	45																
	_																
																	_
																	_
	$- $																_
														_			
	50																
	50																
0	NE CONTINU	JOUS AUGER S	SAMPLER wa	TER TAE	BLE (TIME	OF BORING		BN		IBE	R :			<u>4 - 1</u>	0107	7 <u>- C</u>)1
	ANDARD PE	ENETRATION 1	EST LAB	ORATO	RY TEST L	OCATION			ער ריד	λIVII NL≁		ר : א ב-י	<u>5</u>	N	+ =		
	NDISTURBE) SAMPLE			ETER (TO) -RY	NS/ SQ. FT)				ы ОО		<u>∟as</u> Γ·		ives		<u>cav</u> .l	
		- \ 27 1 11\0 /	DRILL DATE :		BORING	NUMBER :			-95	. с.	ON.	 TRA	СТО	 DR	: :	SP	
Harson & ssociates, I	Aarson & DRILLING CONTRACTOR Page Britemental Consultants 6 - 13 - 2014 SB - 8 DRILLING METHOD : AR Page										Page 2 of 2						

					BORING	RECORD													
					NO	00		Ρ	DIQ	RE/	٩D	ING	6	S,	AM	PLE	Ξ	REMARKS	
GEOLOGIC	DEPTH	DES	CRIPTION LITH	IOLOGIC	RIPT	HIC	F	PPM	1 X	<								BACKGROUND PID READING	
UNII					L ESC	RAP	2	4 6	8	10	12	14 10	<u>3 18</u>	-				SOIL : PPN	м
			1 : 20			Ū												SOIL : PPN	м
	1																	_	
		7.5 YR 6/6 re	eddish yellow SAA SI	B - 11															
																			_
																			_
	5						ę											1:22	
																		0.8	
					S/M														_
					300														
																			_
							9												
	10YR v. pale bro																		_
	10 10YR v. pale brow unconsildated dan			ie sand														1:24	
		unconsildate	a damp															2.0	
																			_
																			_
	15	7 EVD9/2 m	inkich white collighe	dama														1:25	
		7.51 Korz p	inkish white caliche (uamp		┝┸╌┰┥												0.0	_
																			_
					Caliche														
						┝┸╌┰┥													_
						┝╌┎╌┛┙	•												
	20	7.5YR 7/4 pi	nk sandy caliche 10%	% chert modules														1:29 — 0.8	
		damp																	
					SW														
																			_
	25		SAA damp															1:32	
			e, vr damp															2.0	
10	NE CONTINU	JOUS AUGER S	SAMPLER -	WATER TA	BLE (TIME	OF BORING)	JOB	N	UME	3E	R :.		1	4 - (0107	' - ()1	_
S 1	ANDARD PE	ENETRATION T	EST	_ LABORATO	RY TEST L	OCATION	ŀ	HOL	.E [DIAI	ME	TE	R :_		5"				—
	NDISTURBE	O SAMPLE	F	- PENETROM	IETER (TOI	NS/ SQ. FT)	l	-0C	AT	ION	1:_			E	ast	of W	/es	t Excavation	—
w.	ATER TABLE	E(24 HRS)	Ν	R NO RECOV	ERY		l	_AI (GE	OLC	CG	IST	-:			AJ			_
🔥 arson & 🚃			DRILL DATE :		BORING	NUMBER :	1	DRIL	_LI	NG	СС	DNT	FRA	СТС	DR	:		Scarborough	_
7 ssociates, I	nc.		6 - 12 - 3	2014	5	SB - 9	l r	DRIL	11	NG	ME	ΞТŀ	IOD	:	AF	2		Page 1 of	2

					BORING	RECORD									_		
					N	8		PIC	REA	ADIN	١G	S	SAM	PLE		REMAR	RKS
GEOLOGIC	DEPTH	DES			CS		PF	M 2	x			_			BA	ACKGR	DUND
UNIT		DES		HOLOGIC	NSCR	Hd	2 4	6	<u>8 10 -</u>	<u>12 14</u>	16 1	8			P	ID REA	DING
					DE	GR/									SOIL:		PPM PPM
	26						?										
																	_
																	_
																	_
																4.05	
	30	5YR 4/6 yell sand uncons	lowish red sand fin solidated moist	e to v. fine grained												1:35 2.6	
																	_
																	_
	—																_
																	_
					SW												
	35															1:42 2.6	
																	_
			SAA														_
																	_
		5YR 4/6 yello	owish red course to	o fine grain river													_
	40	channel depo	osit sand grains an	d chert v. moist agate			•									1:45	
			TD : 40'													2.6	
		G	Groundwater Not O	bserved													_
																	_
																	_
																	_
	45																
																	_
																	_
																	_
																	_
																	_
	50																_
10		JOUS AUGER S	SAMPLER)B N	IUME	BER	:		14 - () 107	- 01		
	ANDARD PI	ENETRATION 1	TEST	L LABORATO	RY TEST L	OCATION	′ нс	DLE	DIAN	ИEТ	ER	•	5"				
	NDISTURBEI	O SAMPLE		+ PENETRON	IETER (TOI	NS/ SQ. FT)	LC	CA-	TION	l :			East	of W	est Exc	cavation	
—— w.	ATER TABLE	E(24 HRS)		NR NO RECOV	ERY		LA	l GE	EOLC	DGI	ST :_			AJ			
Aarson &	200	\sim	DRILL DATE :		BORING	NUMBER :		RILL	ING	COI	NTR	ACT	OR	:	Sca	rborough	
 Instantial Consult 	Sissociates, Inc. 6 - 12 - 2014 SB - 9 Environmental Consultants 6 - 12 - 2014 SB - 9								ING	ME.	тно	D :	AF	२		F	Page 2 of 2

	·			BORING	RECORD)										
				N	g		PIE) RE	EAD	DINC	3	s	AM	IPLE	Ξ	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLOGIC	RIPTIC		F	PM	x_							T	BACKGROUND PID READING
UNIT				C SCI	API	2	4 6	8 10	12	14 1	6 18					SOIL:PPM
			12 : 40	DE	GR GR											SOIL : PPM
	1	7.5 YR 6/6 re	eddish yellow													
																_
																—
																_
	5	Clayey sand rounded con	with colored slight odor fine to red well solidated medium stiff clay	CI		٩										12:47 0.8
			·	UL UL		N										
						`										
							NL									_
							N									
							`									-
	10															12:52
		10YR 8/3 v. consolidated	pale brown sandy clay moist semi 90% fine medium grains													0.1
			Ũ					1								_
																_
				CL												_
							/									_
						X										
	15	7.5Y	R 8/2 pinkish white caliche													12:56
																_
																_
																_
	20		7.5YR 8/4 pink		┝┸╌┰┥	•										1:00 0.8
				Caliche												_
					┝┸╌┰┥											
																_
																_
					┝╌┎╌┛											
																—
	25															_
						<u> </u>						1			7	
		JOUS AUGER S	SAMPLER — WATER TAE	BLE (TIME	OF BORING) J	יטשוע או שטי	אום אום		: K = T E	R ·	1 	<u> 4 - </u> 5"	010/	- 1	
		ENETRATION T	EST LABORATO	RY TEST L	OCATION				11VII NI +		· ` ·_	 		of M		
		D SAMPLE		ETER (TO	NS/ SQ. FT)		AUO.	-10 -01	או: מי	210-	- .	E	ast		<u>ves</u> 1	<u>st ⊏xcavation</u>
	AIEKIABLE	= (24 HKS)				_	י יוסר.		200	ייזט. פור		~ т /	<u></u>	<u>AN</u>	J	
Harson &	nc.	\sim	6 - 12 - 2014		SB - 10			ING	с З М	ETH		:	710	 AR	,	Page 1 of 2

GEOLOGIC DEPTH DESCRIPTION LITHOLOGIC PDR ADDING SAMPLE REMAINS UNIT DESCRIPTION LITHOLOGIC B000 PPM X						BORING	RECORD)						_				
GEOLOGIC UNIT DEPTH DESCRIPTION LITHOLOGIC E 2 3 b 0 0 0 E 2 3 0 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>NOI</td><td>00</td><td></td><td>PI</td><td>) RE</td><td>AD</td><td>ING</td><td>i</td><td>SA</td><td>MP</td><td>LE</td><td>REMARKS</td><td></td></th<>						NOI	00		PI) RE	AD	ING	i	SA	MP	LE	REMARKS	
UNIT 03 5 6 0 </td <td>GEOLOGIC</td> <td>DEPTH</td> <td>DES</td> <td>CRIPTION LITHOL</td> <td>OGIC</td> <td>RIPT</td> <td></td> <td>F</td> <td>PM</td> <td>x_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BACKGROUND</td> <td></td>	GEOLOGIC	DEPTH	DES	CRIPTION LITHOL	OGIC	RIPT		F	PM	x_							BACKGROUND	
B G G Image: Control of the wey fire games, well rounded etc. Image: Control of the wey fire games, well rounded etc. Image: Control of the wey fire games, well rounded etc. Image: Control of the wey fire games, well rounded etc. Image: Control of the wey fire games, well rounded etc. Image: Control of the wey fire games, well rounded etc. Image: Control of the rounded etc. Image: Control of thecc. Image: Control of the rounded	UNIT					C SCI	API	2	4 6	8 10	12	14 16	18				SOIL:PPM	А
32 379 48 gm send- Bry very The guilted, well recorded etc. 300 100 30 578 42 gm send, calche, teable - - - 30 578 42 gm send, calche, teable - - - 30 578 42 gm send, calche, teable - - - 30 578 42 gm send, calche, teable - - - 30 578 43 gm send, calche, teable - - - 30 578 43 gm send, calche, teable - - - 31 584 597 - - - 31 598 43 gm send, calche, teable - - - - 31 598 43 gm send, calche, teable - - - - 31 598 43 gm send, calche, teable - - - - - 31 598 43 gm send, calche, teable, te						B	GR										SOIL:PPM	1
Image area, will caused de. SW 33 5YR 852 pristella, catche, stable 34 5YR 852 pristella, catche, stable 35 S&A 36 S&A 37 S&A 500 SW 37 S&A 500 SW 38 SW 39 SWA 500 SWA 501 SWA 502 SWA 503 SWA 504 SWA 505 SWA 506 SWA 507 SWA 508 SWA 509 SWA 500 SWA 501 SWA 502 SWA 503 SWA 504 SWA 505 SWA 506 SWA 507 SWA 508 SWA 509 SWA 500 SWA <td< td=""><td></td><td>26</td><td>5YR 8</td><td>3/3 pink sand -</td><td></td><td></td><td></td><td>P</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1:02</td><td></td></td<>		26	5YR 8	3/3 pink sand -				P									1:02	
30 5/7 62 pintels.cslicte: Fielde			tine v	ery fine grained, well rour	nded etc.												0.0	
37 577 82 prilide, callue, blace																	-	
30 5YR 82 prickst, talete, frable 30 31 Catale 30 32 SAA 5W 33 SAA 5W 34 SW 30 35 SAA 5W 36 SW 30 37 SAA 5W 36 SW 30 37 To at any day with the termodum uncontables with the Sterved 30 39 To at any Goundwater Not Observed 30 39 To at any Goundwater Not Observed 30 39 To at any Goundwater Not Observed 30 30 To at any Goundwater Not Observed 30 30 To at any Goundwater Not Observed 30 30 To at any Goundwater Not Observed 30 310 To at any Goundwater Not Observed 30 311 To at any Goundwater Not Observed 30 311 To at any dat at						SW												_
SVR 82 pinkish, calche, fisible To SVR 84 pinkish, red candy day v. fire to motion CL Groundbater V. motion CL Groundbater Not Observed To Groundbater Not Observed To Stransap Penetration Test L UADORATIVEET LOCATION Location WATER TABLE (1ME OF BORING) DOB NUMBER : WATER TABLE (24 MR3) MR WATER TABLE (24 MR3) MR MATER TABLE (24 MR3) MR Stransap Contractor Trice Saturdocontin Stransap Contractor Trice Saturdocontin DOBLING CONTRACTOR Saturdocontin DRUB MATHOD Saturdocontin DRUB MAREK Saturdocontin DRUB MAREK Saturdocontin																		
33 5YR 82 ginker, caldole, ftable																		
Or it or planking calcula, indexity Calche -		30	EX	P 9/2 pinkish solishs fri	abla												1:06 0.8	
Calibre Ca			51	R 6/2 pinkish, caliche, ma	able		┝┸╌┰─┸											
Callone Callon																		
Cance C						Caliaba												
35 SAA 36 SW 37 SW 38 SW 39 SYR 46 yellowish red samdy clay v. fire to medium unconsidered v. most CL 40 T0 : 49' Groundwater Not Observed						Calicne												
35 SAA 5W 9VFR.446 yullowish nd sandy clay v. fine to medium unconsultand v. molt 0.1 110 40 TD.40' Groundwater Not Observed																		
36 SAA 5W 108 5YR 4/8 yellowish not sandy clay v. fine to medium unconsidiated v. most CL 103 103 40 TD : 40' Graundwater Not Observed 0.3 - - - 45 Graundwater Not Observed - - - - - 46 - - - - - - - 46 - - - - - - - 46 - - - - - - - 00 ONE CONTINUOUS AUGER SAMPLER WATER TABLE (TIME OF BORING) JOB NUMBER : 141:0107 - 01 - - 00 ONE CONTINUOUS AUGER SAMPLE WATER TABLE (TIME OF BORING) JOB NUMBER : 141:0107 - 01 - 00 - - - - - - 00 - - - - - - - 00 - - - - - - - -																		
SXA SW		35						Ĭ.									1:08	
SW SW SW SW SW SW SW SW SW SW				SAA													0.8	
SYR 4/6 yellowish met sandy day v. fine to medium Uuconstituted v. molet SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium CL SYR 4/6 yellowish met sandy day v. fine to medium System day						SW												
SYR 4/6 yellowish red sandy clay v. fine to medium unconsidered v. moist CL SyR 4/6 yellowish red sandy clay v. fine to medium unconsidered v. moist CL SyR 4/6 yellowish red sandy clay v. fine to medium unconsidered v. moist CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium CL SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy clay v. fine to medium SyR 4/6 yellowish red sandy cla																		
SVR 4/6 yellowish red sandy day v. fine to medium unconsidiated v. moist cl 11.10 40 TD : 40'																		
40 TD : 40' Groundwater Not Observed - 45 - 45 - 46 - 47 - 48 - 49 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 40 - 40 - 41 - 42 - 43 - 44 - 45 -<			5YR 4/6 yell	owish red sandy clay v. fi	ne to medium												1:10 0.8	_
40 TD: 40' Groundwater Not Observed			unconsildate	d v. moist		CL												_
Image: Construction of the system of the		40																
Groundwater Not Observed			-	TD : 40'														
45 - 45 - 45 - 50 - 51 - 52 - 53 - 54 - 55 - 1000 - 10100 - 10100 - 101000 - 1010000 - 1010000000000000000000000000000000000			G	roundwater Not Observe	d													
45 - 45 - 45 - 50 - 51 - 52 - 53 - 54 - 55 - 56 - 57 - 10 - 10 - 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
45 45 45 - 45 - 50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
45 45 45 - 45 - 45 - 50 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
45																		_
So		45																
50		40																
50																		_
50 50 50 50 50 S0 50 S0 50 S0 50 S0 50 S0 S0 S0 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S2 S1 S2 S1 S2 S2 S2																		
50 50 50 0 NE CONTINUOUS AUGER SAMPLER Standard PENETRATION TEST L L LABORATORY TEST LOCATION UNDISTURBED SAMPLE + PENETROMETER (TONS/ SQ. FT) WATER TABLE (24 HRS) NR NO RECOVERY DRILL DATE: BORING NUMBER: 0 0																		_
50		-																
ONE CONTINUOUS AUGER SAMPLER WATER TABLE (TIME OF BORING) ONE CONTINUOUS AUGER SAMPLER WATER TABLE (TIME OF BORING) STANDARD PENETRATION TEST L UNDISTURBED SAMPLE + PENETROMETER (TONS/ SQ. FT) LOCATION WATER TABLE (24 HRS) NR NR NO RECOVERY DRILL DATE: BORING NUMBER: 0 DRILL DATE: 0 6 - 12 - 2014		50																
ONE CONTINUOUS AUGER SAMPLER WATER TABLE (TIME OF BORING) STANDARD PENETRATION TEST L UNDISTURBED SAMPLE + PENETROMETER (TONS/ SQ. FT) LOCATION : WATER TABLE (24 HRS) NR NO RECOVERY LAI GEOLOGIST : Arrson & 6-12-2014 SB-10 DRILL INIG METHOD :																		
STANDARD PENETRATION TEST L LABORATORY TEST LOCATION HOLE DIAMETER : 5" UNDISTURBED SAMPLE + PENETROMETER (TONS/ SQ. FT) LOCATION : East of West Excavation WATER TABLE (24 HRS) NR NO RECOVERY LAI GEOLOGIST : ANJ Agrson & ssociates, Inc. DRILL DATE : BORING NUMBER : DRILLING CONTRACTOR : Scarborough BORING NUMBER : SB - 10 DRILLING METHOD : AR Page 2 of 2	OI	NE CONTINU	JOUS AUGER S	SAMPLER	WATER TAE	BLE (TIME	OF BORING) J			BE	R :_ ·тг		14	- 01	07 -	01	—
UNDISTURBED SAMPLE + PENETROMETER (TONS/ SQ. FT) LOCATION : East of West Excavation WATER TABLE (24 HRS) NR NO RECOVERY LAI GEOLOGIST : ANJ Agrson & ssociates, Inc. 0 6-12-2014 SB-10 DRILL INIG METHOD : AR Page 2 of 2		ANDARD PE	ENETRATION 1	EST	LABORATO	RY TEST L	OCATION			יער: ריד		:IE	к:_	<u> </u>	- 4		-1 E	-
WATER TABLE (24 HRS) NR NO RECOVERY LAI GEOLOGIST : ANJ Agrson & ssociates, Inc. DRILL DATE : BORING NUMBER : DRILLING CONTRACTOR : Scarborough 6 - 12 - 2014 SB - 10 DRILL ING METHOD : AR Page 2 of 2			D SAMPLE	+	PENETROM	IETER (TOI	NS/ SQ. FT)				IN :_			Ea	st of	<u>. We</u>	st Excavation	—
DRILL DATE: BORING NUMBER: DRILLING CONTRACTOR: Scarborough Associates, Inc. 6-12-2014 SB-10 DRILLING METHOD: AR Page 2 of 2	w	ATER TABLE	(24 HRS)	NR	NO RECOVI	ERY			AIG		UG	ן צוי -יייר	:		<u> </u>	NJ		—
	Aarson &	nc.	\sim	6 - 12 - 2014	L	BURING	NUMBER : SB - 10		NRILL NRILL		і СС ; МІ	ЛИ I =т∟	кА(100	טול י	к:_	ΔR	Scarborough	— ,

				E	BORING	RECORD										
					NO	90		ΡI	d re	EAC	DINC	3	SÆ	١MF	PLE	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LITH	HOLOGIC	RIPT	IC	F	РРМ	x_							
UNIT					N SCF	APF	2	4 6	8 10	12	14 1	6 18	4			
			10 - 53		B	B R										SOIL:PPM
	1	7 5 YR 6/6 r	eddish vellow clavev	sand multicame			╈									
		out as core,	eduisii yellow clayey	sand, multi came												
																_
																_
																_
	5															10:56
		slight odor d	amp fine to med. we medium stiff clay 10	II rounded grains												0.8
		brown friable	,	finte, e tery paie												_
																_
					sw											-
							•									_
	10	20% course unconsolidat	grains fine - medium ed damp slight odor	n sand grains chart molecules												11:00 0.8
		<5% SAA														_
																_
	15															11.04
																0.8
																-
																_
																-
																_
	20	7.5YR8/3 pir	nk sand with fires													11:12 <u>—</u> 0.8
																_
																-
																–
		5YR6/6 reddis	sh yellow <10% ches	st modules fine med												_
	25——	grained sand odor	rounded unconsolid	ated damp, slight												11:18 <u> </u>
						<u>1999/001</u>	۳	IOB I			R ·		 14	1 - 0	107 ·	<u> </u>
				WATER TAE)	HOLE	E DIA	\MF	ETE	R :				
					RY TEST L		ĺ	.OCA		N			E	astr	of We	est Excavation
		= (24 HRS)	-		EIER (IO) RY	NS/ SQ. FT)		AIG	ιΕΟΙ	0	318	г·				
		_ (27 1 1 (0)	DRILL DATE ·		BORING		┥╴				ом.		СТС	R ·		
Arson & Brite Brit									Page 1 of 2							

				BORING	RECORD											
				NO	00	Ρ	ID RI	EAI	DIN	G		SA	١MF	٩LE	REMARKS	
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLOGIC	RIPTI CS		PPM	1 X_								BACKGROUND	
UNIT		2201		SCF	HAA	246	8 10) 12	14	<u>16</u> 1	18					264
				DE	GR										SOIL:PPI	²M
	26				3765	,									_	
																_
						,										_
															11:20	
	30		SAA												0.8	
				SW												
			very moist													
	35		5YR 4/6 yellowish red												11.21	
			SAA												0.8	
																_
			moist													_
			< 20% clay													_
		5YR6/6 yellow	ish brown fin - ned grains cementatio	n												
		of calcite friab	e with consolidated													_
	40					`									11:27 — 0.8	
		Gro	bundwater Not Observed													
																_
	45															
	40															
																_
	50															_
						, JOB		<u>і </u>	 ER			14 14	 - 0	107	- 01	_
	ANDARD PE	ENETRATION T	EST LABORAT			HOL	E DI/	٩M	ET	ER	:					_
1U	NDISTURBEI	D SAMPLE		METER (TC	NS/ SQ. FT)	LOC	ATIC	N	:			Le	egac	y Tr	ash Pit	
— w	ATER TABLE	E (24 HRS)	NR NO RECC	VERY			GEOI	LO	GIS	эт <u>:</u>				ANJ		_
∆arson &		~	DRILL DATE :	BORING	NUMBER :		LINC	GΟ	NO:	ITR	RAC	то	R :		SPI	
Arson & DRILLING CONTRACTOR SPI Associates, Inc. Fouring notified ansultants 6 - 12 - 2014 SB - 11 DRILLING METHOD : AR Page										Page 2 of	f 2					

					BORING	RECORD)										
					N	g		PI	D RE	EAD	DINC	3	s	AM	PLE	Ξ	REMARKS
					IPTI CS	CLG		РРМ	х								BACKGROUND
UNIT		DES		ITHOLOGIC	USCR	H4	2	4 6	8 10	12	14 1	6 18					PID READING
			1 . 55		DE	GR/											SOIL:PPM
	1		Soil Excavated t	o 3'													
																	_
																	_
			7.5 YR 8/2 pinki	sh white													_
																	2.03
	5																0.8
		Calich	e friable, caliche	e cement, damp													-
																	_
																	_
	10																
			SAA		Caliche												2:05
																	0.8 —
																	—
																	_
							•										_
	15	5YR8/3 j consolida	pink, caliche mor ated damp	e sand v. fine less													2:10 0.8
			-														_
																	_
	20																
		5YR6/6 redd fine to fine g	ish yellow sand, rains sand	<10% chart modules v													0.8
		into to into g															—
					S/W/												_
					5.0												_
																	_
	25																—
0	NE CONTINU	OUS AUGER S	SAMPLER	WATER TA	BLE (TIME	OF BORING) '	JOB	NUM	BE	R :.	<u> </u>	1	4 - (0107	7 - (01
S1	ANDARD PE	NETRATION 1	TEST		ORY TEST L	OCATION	Ì	HOLE	E DIA	MI	ETE	R :_	5	5"			
10	NDISTURBED) SAMPLE			METER (TOI	NS/ SQ. FT)	I			N :			<u> </u>	lorth	ı We	st	of East Excavation
w	ATER TABLE	(24 HRS)		NR NO RECO	/ERY		I	_AI G	EOL	.00	GIS	Г:			AJ		
Aarson &	nc.	\sim	DRILL DATE :	12 - 2014	BORING	NUMBER : SB - 12	l I	JRILL	ING_ ING	iС iМ	ON. IETr	IRA) 100	СТ(JR	: AR		SPI Page 1 of 2

				E	BORING	RECORD)											
					NOI	OG		F	PID	RE	AD	INC	3	(SAN	ΛPL	LE	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLC	OGIC	RIPT SCS	HICL		PPN	/ X	<				-				BACKGROUND PID READING
UNIT						SAP	2	4 0	68	10	12	14 1	6 18	_				SOIL :PPM
					B	ВЪ												SOIL:PPM
	26	5YR7/4 pink	caliche v. fine - coarse gra	ins			•											2:20 0.8
		unconsolida	leu															
																		_
					Caliche													_
																		_
	30						•											2.23
		5YR6/6 redd fine grain sa	ish yellow sand <10% chert าd	v. fine to														0.8
																		-
																		_
																		—
	35																	2:25
					SW													0.8
																		_
		5YR4/6 yello chalcedony	wish red over bed sands ch	iert, agate,														_
	40																	2.28
	40		TD : 40'															0.8
		Gr	oundwater Not Observed															—
																		—
	45																	
																		_
																		_
																		_
																		—
	50																	
	00																	
0	NE CONTINU	JOUS AUGER	SAMPLER	WATER TAE	BLE (TIME	OF BORING)	JOB	3 NI	UME	BE	R :.			14 -	010	07 -	01
s s	ANDARD PE	ENETRATION	TEST L	LABORATO	RY TEST LO	OCATION		HOL	Ē I	DIAI	ME	TE	R :_	5"				
10	IDISTURBEI	O SAMPLE	+	PENETROM	ETER (TON	NS/ SQ. FT)		LOC	CAT	ION	_: ۱				Nor	th V	Vest	t of Excavation
w	ATER TABLE	E(24 HRS)	NR	NO RECOVE	ERY			LAI	GE	OLO	ЭG	SIST	「 :		Δ	J		
🛕 arson & 💻			DRILL DATE :		BORING	NUMBER :		DRI	LLI	NG	С	DN.	ΓRA	۲С	OF	? :_	S	PI
The second secon	nc.		6 - 12 - 2014		s	B - 12		DRI	LLI	NG	M	ETH	100):_	AF	२		Page 2 of 2

					BORING	RECORD											
					NOI	0 O		PIE	D RE	EAE	DINC	G	s	SAM	PLE	Ξ	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LI	THOLOGIC	RIPT SCS	I I I	PF	PM	x_								BACKGROUND PID READING
UNIT						API	2 4	6	8 10	12	14 1	6 18					SOIL:PPM
			8:20		DE	U BR											SOIL : PPM
	1	5YR5/6 ve	lowish red sandy	clay v, fine to fine													
		grains	iomon rou curray														
																	_
																	_
						·/·/·/·/·											—
	5		Caliche SA Bet	fore													8:24 0.0
																	_
																	_
																	—
	10																8:26
		10Y	R8/2 very pale bro	own, caliche		┝┸╌┰┥											0.0
																	_
						┝┸╌┲┥											_
			30% chert modu	ules		┝┰╌┸┥											
																	—
						┝┰╌┸╺											_
						┝┸╌┰┥											
	15	Caliche mo	ore fine grains no	chert very friable		┝┰╌┸┥											8:27
																	_
					Caliche												_
																	_
	20		Caliche														8:28 0.0
																	_
																	-
																	_
						┝╌╍╌┙╡											_
	25				S\//												—
					300				 	l IBF	R ·		,	 14 - 1) 107	7 _ 1	01
			SAMPLER	WATER TAI	BLE (TIME	OF BORING		OLE	DIA	M	ETE	R :		5"			<u> </u>
			101		RY TEST L					N۰			9	Sout	h of	Ea	ast Excavation
		(24 HRS)		T PENEIRON	IETER (TOP ERY	NS/ SQ. FT)			EOI	0		г·		[A.I		
		_ , ,	DRILL DATE :		BORING	NUMBER :	<u>-</u>		ING		ON.	TRA	СТ	OR			Scarborough
Harson &	nc.	\sim	6 - 12	2 - 2014	s	SB - 13			ING	с Э М	ETI	HOD		AR			Page 1 of 2

					BORING	RECORD)										
					NO	g		PI	D RE	ADIN	IG		SAN	/IPL	Е	REMARKS	
	БЕВТЦ	DESC			IPTI SS	CLC	PF	м	х							BACKGROU	ND
UNIT		DESC		JGIC	US.	Hd	2 4	6	8 10	12 14	16 18	в				PID READIN	IG
					DÊ	GR/										SOIL :	PPM PPM
	26	10YR7/3 v. p	ale brown sand, <2% che	ert									+			8:31 0.0	
					sw												
																	_
	30	10YR8	/2 v. pale brown, caliche.	friable												8:34 0.0	
						┝┸╌┰╼╋	,										_
	35															8:35	
		5Y v.	R5/6 yellowish red sand fine - fine													0.0	
																	_
			SAA														
		River	ped chert agate chalced	עתכ			•										
	40			Jily												8:36 0.0	
			TD : 40' Groundwater Not Observ	ved													_
																	_
	45																
																	_
	50																
)B N	IUMI		-		14 -	010	7 -	01	
		ENETRATION T	AWIPLER		BLE (TIME			DLE	DIA	MET	ER			5"	·		
	NDISTURBE	D SAMPLE	L +	PENETROM	IETER (TO	NS/ SQ. FT)	LC	CA	TIOI	: ا			Soι	ith of	f Ea	ist Excavation	
w	ATER TABLE	E (24 HRS)	NR	NO RECOV	ERY		LA	I GI	EOL	OGI	ST :_			AJ			
∆arson &			DRILL DATE :		BORING	NUMBER :		RILL	ING	COI	NTR.	AC	TOF	R :		SPI	
These consult	A grson & Dritteline Constants										Page	2 of 2					

					BORING	RECORE)											
					NO	90		F	PID	RE	AD	INC	3	5	SAN	1PL	.E	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION L	ITHOLOGIC	RIPTI			PPN	1 X	۲								
UNIT					LISCE	APF	2	4 6	<u> </u>	10	12	14 1	6 18	4				
			2 : 40		B	GR												SOIL : PPM
	1																	
																		_
																		_
																		-
			5YR 8/2 pinkish	white														-
	F																	2:45
	5		Caliche SA Befo	bre		┝┸╌┰╴	١Ť											0.8
																		-
																		-
						├ ┓ <u></u>												
					Caliche													-
																		-
	10		Caliaba															2:48
			Caliche															0.8
																		-
																		-
																		-
																		-
	15																	2:53
			SAA															-
		But ha	rder and more co	onsolidated chert														
																		-
																		-
																		-
	20		SAA															
					SW													0.8 -
																		-
																		-
																		-
	25		SAA <10% chert mod	dels														3:01 _
																		0.8
		IOUS AUGER	SAMPLER		BLE (TIME	OF BORING	;)	10B	E L	אוע יעור	3E MF	к:. :т⊨	R۰		<u>14 -</u> 5"	<u>010</u>	<u>)/ -</u>	<u>U1</u>
			EST		RY TEST L				. – I :АТ	-10N	J •	_ [J Fact	of	Fac	st Excavation
	ATER TARI F	(24 HRS)		+ PENETROM	IETER (TOI FRY	NS/ SQ. FT)			GF		ייי כר	315-	٢·		_031	<u>д.</u>	<u>_as</u>]	
			DRILL DATE :		BORING	NUMBER :		DRII	LLII	NG	C	JN.	 TRA	ст	OR			Scarborough
Harson &	nc.	\sim	6 - 1	12 - 2014	5	SB - 14		DRII	LLI	NG	M	ETH	HOD		AR			Page 1 of 2

				BORING	RECORD									
				NO	ŊC	Р	ID RE	ADI	NG		SA	MP	LΕ	REMARKS
	ПЕРТН	DES		CS		PPM	X							BACKGROUND
UNIT		DLO		SCR	Hd	246	8 10	12 1	4 16	18				
				DE	GR/									SOIL :PPM
	26											╈	╈	
														-
														_
			Really Hard											_
			quartz stringer			•								
	30		5YR5/6 yellowish red											3:05 0.8
														_
														_
				E)M										
				300										-
	-													
	35													
			SAA											0.8
														-
														_
														_
			544											_
	40		SAA											3:11
			TD : 40' Groundwater Not Observed											
														_
														-
														_
	45													
	-													
														_
														-
	-													-
	50													_
									<u> </u>		11		107	- 01
				TABLE (TIME	OF BORING		E DIA	ME.		<u>:</u>		5"		
						LOC		N :			Ea	ist o	<u>f Ea</u>	st Excavation
	ATER TABLE	E (24 HRS)	NR NO RECO	DVERY			SEOL	og	IST	<u>. </u>		Ā	۰ ا	
Aarson &			DRILL DATE :	BORING	NUMBER :		LING	СС	NT	RAC	то	R :		SPI
Hssociates, I Environmental Consult	nc. ants	\sim	6 - 12 - 2014		SB - 14	DRIL	LING	ME	тно	DD :	A	R		Page 2 of 2

				BORING	RECORD											
				N	g		PI	D F	REA	DI	١G		SA	١M	PLE	REMARKS
				PTI(D		v								BACKGROUND
	DEPTH	DES	CRIPTION LITHOLOGIC		H H	F F		^-								PID READING
				ES.	RAI	2 4		8		2 14	16	18	1			SOIL:PPM
			10 : 15		U			_	_	\vdash	_	+	+	\dashv	_	SOIL:PPM
	1															
			Soil Excavated to 2'													_
																-
		7 5YR7/4 nin	k sandy clay, friable, y, fine - fine grians													_
	5			CL												10:17 0.0 ppm
																_
																_
																-
	10				$\langle \rangle \rangle \rangle \rangle$											10:18
																0.0 ppm
		5YR5/6 yellov odor	wish red sand v. fine - fine, moist, no													-
																_
				SW												
																_
																_
	15															10:20 0.0 ppm
		5YR8/2 pinki	sh white, caliche, friable													_
				Caliche												_
				Gallerie												_
					┝╌╸┠╺	,										
																_
	20															
		5YR7/4 pink	sand v. fine - fine moist, no odor													10:22 0.0 ppm
																_
																_
				SW												
																_
			SAA													–
																10:26 0.0 ppm
	20															
OI	NE CONTINU	JOUS AUGER	SAMPLER WATER TA	BLE (TIME	OF BORING) JC	DB N	١U	MB	ER	:		14	l - C	107	- 01
s s	ANDARD PI	ENETRATION		ORY TEST L	OCATION	Н	OLE	D	IAN	1E7	ΈF	₹:_	5"			
10	NDISTURBEI	O SAMPLE		IETER (TOI	NS/ SQ. FT)	LC	CA	TI	ON	:		Wes	t of V	Ves	t Exc	avation
— w	ATER TABLE	E(24 HRS)	NR NO RECOV	/ERY		LA	Al G	EC	DLC	G	ST	:			AJ	
🔥 arson & 🚃		~	DRILL DATE :	BORING	NUMBER :	-ddi	RILL	_IN	G	co	NTI	RAC	сто	R	: <u>s</u>	PI
Tssociates, Environmental Consult	nc. ants		6 - 13 - 2014	5	SB - 15	D	RILL	_IN	G	ME	тно	DC	:	А	R	Page 1 of 2

				BORING	RECORD)								_				
				N	Ŋ		F	PID	RE	: A	DIN	G		s	٩MI	PLE	Ξ	REMARKS
				STIC	LC												+	BACKGROUND
GEOLOGIC	DEPTH	DESC	CRIPTION LITHOLOGIC	ISC I	U H		PPN	/)	×				_					PID READING
UNIT				L ESC	AF	2	4	6 8	8 10	12	14	16	18	1				SOIL : PPM
					5													SOIL :PPM
	26																	
																		_
						1												_
	30																	10:29
			7.5YR6/4 light brown SAA.															0.0 ppm
			increased moister															
			causing darker pink															_
																	—	
																	_	
																		10.20
	35																	0.0 ppm
																		_
																		_
																		_
		SAA with the ad	ddition of river bed gravels chert,															
		agate, chalcedo	ony															_
	40																	10:32
			TD : 40'															0.0 ppm
		G	Froundwater Not Observed															_
																		_
																		—
	45																	
																		_
																		_
																		_
																		-
	50	50														_		
0	NE CONTINU	JOUS AUGER S	SAMPLER WATER	TABLE (TIM	E OF BORING)	JOE	3 N	UM	BE	ER	:		1.	<u>4 - C</u>	107	′ - (<u>)1</u>
ST ST	ANDARD PI	ENETRATION T		TORY TEST	LOCATION		HOL	-E	DIA	M	EΤ	ER	:	5"				
10	NDISTURBEI	D SAMPLE	+ PENETR	OMETER (TO	DNS/ SQ. FT)		LOC	CAT	ГЮ	N :		Ν	lorth	n Ce	enter	of V	Nе	st Excavation
— w	ATER TABLE	E(24 HRS)	NR NO REC	OVERY			LAI	GE	EOL	00	GIS	эт :				AN	J	
🔥 arson & 🚃			DRILL DATE :	BORING	NUMBER :		DRI	LLI	ING	i C	ON	ITR	RAC	тс	DR	<u>: </u>	Sca	arborough
7 \ssociates, Environmental Consult	Arson & Statistic Consultants										Page 2 of 2							

					BORING	RECORD)										
					NO	g		Ρ	DI	RE.	AC	DINC	3	SA	١M	PLE	REMARKS
	ПЕРТЦ	DES			IPTI CS	CLC		PPM	1 >	<							BACKGROUND
UNIT		DLS	SINF HON L	INNOLOGIC	SCR US	APHI	2	4 6	6 8	3 10	12	14 1	<u>6 18</u>				
						GR/											SOIL : PPM
	1																
		7.5YR5/6 Str	ong brown, sanc	ly clay, fine-med grain													
																	_
																	-
																	_
					CL												9.40
	5																0.8 ppm
																	-
																	_
																	-
																	-
	10																
		10YR8/2 very fine sand gra	[,] pale caliche fria ins, caliche conc	ble, dry chert modules entration													9:46 0.8 ppm
		-															
																	_
																	_
																	-
	15																
		5YR7/6 Calic less than 10%	he, reddish yello 6 chert modules.	w very grained sand slightly moist													9:51 0.8 ppm
			,														
					Caliche												_
																	-
																	_
	20																9:56
																	0.8 ppm
		SAA mor	e chert modules	and larger size													_
																	_
	—	Caliche 7.5V	R8/2 ninkieh whi	te friable verv fine													-
	25	grains, dry ca	aliche concentrat	ion consolidated 50%		┝┰╼┸┥											9:58 0.8 ppm
<u> </u>		sector grant				┝━╨━┓━						<u> </u>				107	
		JOUS AUGER	SAMPLER		BLE (TIME	OF BORING)	HUI 10r	N F		MF DF	:к: =т=	R ·	<u>14</u> 5"	<u>+ - C</u>	0107	- 01
	ANDARD PI		IEST		RY TEST L				.– ;д1		۰. N		Nor	h of F	Exc	avati	on
	ATER TABLE	E (24 HRS)		NR NO RECOV	IETER (TOP	NS/ SQ. FT)		LAI	GE		00	SIS	Γ:			AJ	
		(<u> </u>	DRILL DATE :		BORING	NUMBER :		DRIL	_LI	NG	С	ON.	TRA	сто	R	:s	carborough
Harson &	nc.		6-	12 - 2014	м	/W-2		DRII		NG	м	ЕТН			Δ	 R	Page 1 of 3

				E	BORING	RECORD												
					NO	DG		PI	D RE	ΞΑΙ	DIN	G	S	AM	PLE		REMAR	(S
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLO	DGIC	RIPTI	HIC L(PF	РΜ	X_							B	ACKGRO PID READ	UND ING
UNIT						RAP	2 4	6	8 10	12	14	16 18	-			SOIL		PPM
										\dashv	+		_	$\left \right $	_	SOIL		PPW
	26																	
																		_
					Caliche													_
																	10:00 0.8 ppm	
	30																	
		5YR6/6 reddis	h yellow very fine to med g	rained sand														
		chert, Pink 5Y	R8/4, damp															
																	10:02	_
																	0.8 ppm	
	35																	
			more moist SAA															_
																		_
																		_
					SW													
	40																10:06 0.8 ppm	
						X												
		. <	2% chert very moist SAA															
	45																	
																		_
																		_
	—																	_
	50																10:15	_
						<u>BEEAN</u>				 186	_ =R ·		1	<u> </u> 4 - ()107	- 01	U.8 ppm	
	NE CONTINU	ENETRATION 1	SAMPLER		BLE (TIME			OLE	DIA	١D٢	ETE	R :_	5	. (
	NDISTURBEI	D SAMPLE	· · · · ·	PENETROM	ETER (TOP	NS/ SQ. FT)		CA	TIO	N :	<u> </u>	Nor	th of	Exc	avat	on		
w	ATER TABLE	E(24 HRS)	NR	NO RECOVE	ERY	,	LA	٩IG	EOL	-00	GIS	Т:			AJ			
🛆 arson . & 💻		~	DRILL DATE :		BORING	NUMBER :	D	RILL	.ING	G C	ON	TRA	сто	DR	:	SPC		
	A arson & Divide Note: Divide N										Pac	ie 2 of 3						

				BORING	RECORD)											
				NO	g		PI) R	ΞAI	DIN	G		SA	٩M	PLE	E	REMARKS
				PTIC		DI		x									BACKGROUND
	DEPTH	DES	CRIPTION LITHOLOGIC	CRI				^	. 10		10						PID READING
CIAIT				DES	RAI		Î			14		10	1				SOIL:PPM
					0						+		$\left \right $				10:15
	51	5YR4/6 SA	A, yellowish reddish fine med grained,														0.8 ppm
		very moist v	well rounded, sand grains														_
43.27																	
-				sw													_
																	_
	55																
																	—
	5YR4/6 vellowish reddish med grains sand sandy																
	SYR4/6 yellowish reddish med grains sand sandy clay (no ribbon)														_		
			balled up very moist														10.24
	60																0.8 ppm
		C	Groundwater Not Observed														_
																	_
																	_
																	_
	65																
																	_
																	—
																	_
																	_
	70																
	10																
																	-
																	_
																	_
																	_
	75——																_
0	NE CONTINU	JOUS AUGER	SAMPLER WATER TA	BLE (TIME	OF BORING)]](NUM	1BE	ER	:		. 14	4 - (0107	7 -	01
s1	ANDARD PE	ENETRATION 1			OCATION	́ н	OLE	DI/	٩M	ΕT	ER	:	5"				
1U	NDISTURBEI	D SAMPLE	+ PENETRON	/ETER (TO	NS/ SQ. FT)		CA		N	:	Ν	lorth	n of I	Exc	ava	tio	<u>1</u>
— w	ATER TABLE	E(24 HRS)	NR NO RECOV	'ERY	,	LA	AI G	EOI	_0	GIS	эт :				AJ		
Aarson &			DRILL DATE :	BORING	NUMBER :	Чы	RILL	ING	G C	NO	ITF	RAC	стс	R	:	SF	۲C
	Arson & DRILL DATE: BORING NUMBER: DRILLING CONTRACTOR: SPC sociates, Inc. Environmental Consultants 6 - 13 - 2014 MW-2 DRILLING METHOD: AR									Page 3 of 3							

APPENDIX C

Historical Aerial Photographs

Historical Aerial Photographs

http://www.geo-search.net/QuickMap/index.htm?DataID=Standard0000075032 Click on link above to access the map and satellite view of current property

> Target Property: Legacy Reserves, L.P., LMPSU Trash Pit Site SW/4, SE/4, Section 27, Township 22 South, Range 37 East Lea County, New Mexico 88231

> > Prepared For:

Larson & Associates

Order #: 33762 Job #: 75032 Project #: 14-0107-01 Date: 03/17/2014

phone: 888-396-0042 · fax: 512-472-9967 · www.geo-search.com

TARGET PROPERTY SUMMARY

Legacy Reserves, L.P., LMPSU Trash Pit Site SW/4, SE/4, Section 27, Township 22 South, Range 37 East Lea County, New Mexico 88231

USGS Quadrangle: Rattlesnake Canyon, NM Target Property Geometry: Point

Target Property Longitude(s)/Latitude(s): (-103.149394, 32.359258)

County/Parish Covered: Lea (NM)

Zipcode(s) Covered: Eunice NM: 88231

State(s) Covered:

*Target property is located in Radon Zone 2. Zone 2 areas have a predicted average indoor radon screening level between 2 and 4 pCi/L (picocuries per liter).

Disclaimer - The information provided in this report was obtained from a variety of public sources. GeoSearch cannot ensure and makes no warranty or representation as to the accuracy, reliability, quality, errors occurring from data conversion or the customer's interpretation of this report. This report was made by GeoSearch for exclusive use by its clients only. Therefore, this report may not contain sufficient information for other purposes or parties. GeoSearch and its partners, employees, officers and independent contractors cannot be held liable for actual, incidental, consequential, special or exemplary damages suffered by a customer resulting directly or indirectly from any information provided by GeoSearch.

SITE: LEGACY RESERVES, L.P., LMPSU TRASH PIT SITE SOURCE: USDA DATE: 2011 COUNTY: LEA, NM SCALE: 1" = 700'

JOB #: 75032 - 3/17/2014

W S
JOB #: 75032 - 3/17/2014

SITE: LEGACY RESERVES, L.P., LMPSU TRASH PIT SITE SOURCE: USGS DATE: 11-01-97 COUNTY: LEA, NM SCALE: 1" = 700'

SITE: LEGACY RESERVES, L.P., LMPSU TRASH PIT SITE SOURCE: USGS DATE: 06-03-83 COUNTY: LEA, NM SCALE: 1" = 1320'

JOB #: 75032 - 3/17/2014

Е

SITE: LEGACY RESERVES, L.P., LMPSU TRASH PIT SITE SOURCE: USGS DATE: 02-04-68 COUNTY: LEA, NM SCALE: 1" = 1320'

JOB #: 75032 - 3/18/2014

W - E	
Ť	
0	

SITE:	LEGACY RESERVES, L.P., L	MPSU TRASH PIT SITE
SOURCE:	USGS	
DATE:	02-04-68	CasCaarah
COUNTY:	LEA, NM	Gegsearch
SCALE:	1'' = 700'	

w - E	
S	

SITE: LEGACY RESERVES, L.P., LMPSU TRASH PIT SITE SOURCE: AMS DATE: 04-28-54 COUNTY: LEA, NM SCALE: 1" = 700'
APPENDIX D

EM-34 Survey Field Sheets

Legacy Reserves, L.P. LMPSU Trash Pit					
Profile	9000 - 9800	EIVI-34 I	errain Cond	uctivity Surv	ey Data: 10/6/2014
Spacing.	100 ft				
Direction	NLS				
Direction.	N-0				Operator: ML/AJ/SS
	10 HD	10 VD	20 HD	20 VD	
STATION	(mmhos/m)	(mmhos/m)	(mmhos/m)	(mmhos/m)	Comments
E000 S000	56.1	6.2	56.2	27.5	
E100	40.8	47.6	45.2	59.9	
E200	45.2	41.0	46.7	48.6	
E300	30.6	46.3	36.1	45.2	
E400	37.6	17.4	49.3	31.0	
E000 S100	39.1	43.4	48.6	47.7	
E100	54.8	75.4	51.0	66.7	
E200	52.0	50.3	59.5	57.0	
E300	42.3	30.2	42.3	54.7	
E400	38.7	35.9	43.8	44.3	
E500	22.4	39.4	33.6	42.2	
E000 S200	45.8	25.7	59.2	51.8	
E100	73.6	30.0	62.6	40.3	
E200	62.5	56.5	55.5	72.1	
E300	42.3	30.2	42.3	54.7	
E400	36.8	25.2	44.9	36.1	
E500	28.4	23.4	30.7	38.3	
E600	14.4	22.7	24.3	35.7	
E700	19.5	16.3	25.8	34.7	
E800	33.7	16.2	25.8	34.7	
E000 S300					interference
E100	82.3	102.7	64.3	147.7	East - West
E200	88.4	98.5	79.1	92	
E300	66.8	43.2	70.3	68.4	East - West
E400	53.8	34.1	58.4	64.5	East - West
E500	23.8	31	25.5	70.3	
E600	19.6	22.6	28.3	37.9	
E700	18.9	26.8	28.7	52.5	
E800	56.1	32.6	49.9	123.3	
E000 S400	71.7	63.3	89.0	162.0	
E100	77.1	52.7	79.9	77.5	
E200	57.4	57.8	63.5	56.2	
E300	34.1	42.8	46.2	60.2	
E400	26.6	35.7	37.8	52.9	
E500	24.4	35.9	31.0	42.2	
E600	64.3	24.2	58.5	8.4	East - West
E700	36.5	24.6	37.8	25.0	
E000 S500	74.2	50.7	87.5	51.7	
E100	85.0	49.2	85.5	7.6	Offset by 15 ft to west due to pipeline

Legacy Reserves, L.P. LMPSU Trash Pit						
		EM-34 1	Ferrain Cond	uctivity Surv	ey	
Profile:	S000 - S800				Date:	10/6/2014
Spacing:	100 ft					
Direction:	N-S				•	
	40.115		20.11D	20.1/D	Operator:	ML/AJ/SS
STATION	(mmhos/m)	(mmhos/m)	20 HD (mmhos/m)	20 VD (mmhos/m)		Comments
E200 S500	73.8	43.5	71.3	49.1	East - West	
E300	36.2	28.2	43.7	41.5		
E400	24.1	31.5	34.1	49.5		
E500	27.7	21.5	34.9	36.2		
E000 S600	53.4	54.3	52.5	53.4	East - West	
E100	38.6	42.4	50.4	75.8		
E200	57.3	45.9	66.5	40.6		
E300	26.2	27.5	36.9	48.4		
E400	24.1	51.1	32.6	15.2	East - West	
E500	29.6	38.8	36.6	36.3		
E000 S700	47.6	47.0	53.4	112.1		
E100	36.3	40.1	46.1	69.9	East - West	
E200	39.1	11.5	47.2	45.1	East - West	
E300	34.9	34.8	44.6	38.4		
E400	35.9	53.8	44.4	62.8		
E500	35.0	39.6	45.4	34.2		
E600	46.1	78.6	50.7	41.0		
E000 S800	36.6	57.0	46.4	46.5	East - West	
E100	33.4	34.8	44.9	33.1		
E200	26.1	39.0	24.6	57.1		
E300	29.9	34.3	40.7	51.7		
E400	40.7	56.7	51.2	68.5		
E500	46.7	46.5	57.1	42.5		
E600	39.1	41.5	52.2	46.6		
					<u> </u>	

Legacy Reserves, L.P. LMPSU Trash Pit						
Profile: Spacing: Direction:	S000 - S800 100 ft N-S	EM-34 I	errain Cond	uctivity Surv	Date:	2/2/2015 - 2/3/2015 ML/KH/SS
STATION	10 HD (mmhos/m)	10 VD (mmbos/m)	20 HD (mmbos/m)	20 VD (mmbos/m)	Operator.	
W-100 S-000	40.0	48.9	35.7			Comments
W-200	19.0	26.8	29.2	58.1		
W-300	22.3	31.0	28.0	51.2	East- West	
W-400	18.7	17.2	29.4	34.4		
W-100 S-100	35.7	45.6	42.2	56.7		
W-200	27.0	31.6	37.6	49.3		
W-300	24.9	60.9	26.8	133.2		
W-400	19.2	17.9	24.6	40.2		
W-100 S-200	37.2	I	46.6	I		
W-200	22.5	I	31.5	I	East- West	
W-300	35.2	I	85.4	I		
W-400	25.0	124.7	37.6	5.5		
W-100 S-300	66.7	I	81.2	I		
W-200	I	I	42.6	I		
W-300	39.1	46.5	46.2	6.2		
W-400	47.7	34.8	59.1	60.0		
W-100 S-400	51.7	I	71.1	I		
W-200	52.8	I	67.9	175.5		
W-300	54.8	I	31.1	127.2		
W-400	156.3	I	108.3	197.9		
W-100 S-500	74.4	65.3	87.7	57.1		
W-200	49.7	192.5	56.7	198.8		
W-300	77.3	I	49.7	I		
W-400	20.6	I	31.9	I		
W-100 S-600	53.8	51.4	65.9	57.6		
W-200	73.1	I	64.0	38.8		
W-300	55.9	135.1	52.6	I		
W-400	22.1	I	40.6	26.1		
W-100 S-700	55.9	35.4	59.9	42.3		
W-200	44.8	28.8	55.7	I		
W-300	42.3	I	45.5	I		
W-400	30.2	I	42.3	27.3		
W-100 S-800	52.0	30.2	62.8	46.4		
W-200	41.5	44.2	59.7	49.5	East- West	
W-300	34.5	I	22.5	I	Northeast -	Southwest
W-400	35.7	25.2	48.8	57.5		

APPENDIX E

NMOSE Well Permits

Scott A. Verhines, P.E. State Engineer

Roswell Office
 1900 WEST SECOND STREET
 ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 553903 File Nbr: CP 01410

Sep. 03, 2014

MARK J LARSON LEGACY RESERVES LP PO BOX 50685 MIDLAND, TX 79710-0685

Greetings:

Enclosed is your copy of the above numbered permit that has been approved subject to the conditions set forth on the approval page. In accordance with the conditions of approval, the well can only be tested for 10 cumulative days, and the well is to be plugged on or before 09/15/2015, unless a permit to use the water is acquired from this office.

A Well Record & Log (OSE Form wr-20) shall be filed in this office within twenty (20) days after completion of drilling, but no later than 09/15/2015.

Appropriate forms can be downloaded from the OSE website www.ose.state.nm.us or will be mailed upon request.

Sincerely,

Deborah Dunaway (575) 622-6521

Enclosure

explore

		File No.	P 1410)
Interstate Stream Examplication	NEW MEXICO OFFICE OF APPLICATION FOR PERI WITH NO CONSUMPTI (check applic	THE STATE ENGINEE	R	S HER BALL
	For fees, see State Engineer websi	ite: http://www.ose.state.nm.us/	2-345	39
Purpose:	Pollution Control And / Or Recovery	Geo-Thermal		
Exploratory	Construction Site De-Watering	Other (Describe):		4 E 6
Monitoring A separate permit will be	Mineral De-Watering required to apply water to beneficial use.		,P	a ki Ora a
Temporary Request -	Requested Start Date:	Requested End Date:	 	2011 2017 2017 2017
Plugging Plan of Operati	ons Submitted? 🗌 Yes 🛛 No		00	

1. APPLICANT(S)

	Name:	
check here if Agent 🛛 letter from Legacy)	Contact or Agent:	check here if Agent
85	Mailing Address:	
	City:	
Zip Code: 79710-0685	State:	Zip Code:
🗌 Home 🛛 Cell	Phone: Phone (Work):	Home Cell
ronmental.com	E-mail (optional):	
	check here if Agent 🛛 letter from Legacy) 85 Zip Code: 79710-0685 🗌 Home 🖾 Cell ronmental.com	Name: check here if Agent ⊠ letter from Legacy) 85 Mailing Address: City: Zip Code: 79710-0685 State: □ Home ⊠ Cell Phone: Phone (Work): ronmental.com

FOR OSE INTERNAL USE		Application for P	ermit, For	m wr-07, Rev 4/12/12
File Number: CP	1410	Trn Number:	55	3903
Trans Description (optional):	EXPL	P	DDI	monitor
Sub-Basin: NA				
PCW/LOG Due Date:	9-15	-15		
				Page 1 of 4

2. WELL(S) Describe the well(s) applicable to this application.

Location Required: Coordi (Lat/Long - WGS84). District II (Roswell) and Dis	nate location must I strict VII (Cimarron)) (Feet)	be reported in NM St customers, provide UTM (NAD83) (Meter	ate Plane (NAD 83), UTM (NAD 83), <u>or</u> Latitudes a PLSS location in addition to above. (s)	de/Longiti	ude est	
NM East Zone			1/10" of second)			
Well Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (Quarters or Halves , Section, Township, I - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name	Range) Of	२	
MW-2	103 8 52.3	32 21 31.9	SW/4, SE/4, S 27, T22S, R37E			
				a.		
				ê		
	1				đ	
in la contra de la c	· · · · · · · · · · · · · · · · · · ·	1				
				1	107	
					00	
				1.7		
NOTE: If more well location Additional well descriptions	s need to be describ are attached:	bed, complete form \ Yes int No	NR-08 (Attachment 1 – POD Descriptions) If yes, how many			
Other description relating well Legacy Reserves LMPSU W	to common landmarl ell No. 201 with API	ks, streets, or other: V #30-025-10471	Vell will be located approximately 585 feet no	ortheast o	f	
Well is on land owned by: Leg	acy Reserves, L.P.				_	
Well Information: NOTE: If m If yes, how many	nore than one (1) we	ell needs to be descr	ibed, provide attachment. Attached?	es 🛛 N	0	
Approximate depth of well (fee	et): 60.00	Out	Outside diameter of well casing (inches): 2.00			
Driller Name: Layne Scarborough			Driller License Number: WD-1188			

3. ADDITIONAL STATEMENTS OR EXPLANATIONS

The purpose of the monitoring well is to determine the background (up gradient) concentrations of constituents to determine if a release to groundwater has occurred. The expected duration of monitoring will be approximately 2 years.

FOR OSE INTERNAL USE

(

File Number:

D

410

Application for Permit, Form wr-07

Trn Number: 55,3

Page 2 of 4

4. SPECIFIC REQUIREMENTS: The applicant must include the following, as applicable to each well type. Please check the appropriate boxes, to indicate the information has been included and/or attached to this application:

Exploratory: Include a description of any proposed pump test, if applicable.	Pollution Control and/or Recovery: Include a plan for pollution control/recovery, that includes the following: A description of the need for the pollution control or recovery operation. The estimated maximum period of time for completion of the operation. The annual diversion amount. The annual consumptive use amount. The maximum amount of water to be diverted and injected for the duration of the operation.	Construction De-Watering: Include a description of the proposed dewatering operation, The estimated duration of the operation, The maximum amount of water to be diverted, A description of the need for the dewatering operation, and, A description of how the diverted water will be disposed	Mine De-Watering: Include a plan for pollution control/recovery, that includes the following: A description of the need for mine dewatering. The estimated maximum period of time for completion of the operation. The source(s) of the water to be diverted. The geohydrologic characteristics of the aquifer(s). The maximum amount of water to be diverted per annum. The maximum amount of water to be diverted for the duration of the operation.
Monitoring: Include the reason for the monitoring well, and, The duration of the planned monitoring.	 The method and place of discharge. The method of measurement of water produced and discharged. The source of water to be injected. The method of measurement of water injected. The characteristics of the aquifer. The method of determining the resulting annual consumptive use of water and depletion from any related stream system. Proof of any permit required from the New Mexico Environment Department. An access agreement if the applicant is not the owner of the land on which the pollution plume control or recovery well is to be located. 	of. Geo-Thermal: Include a description of the geothermal heat exchange project, The amount of water to be diverted and re-injected for the project, The time frame for constructing the geothermal heat exchange project, and, The duration of the project. Preliminary surveys, design data, and additional information shall be included to provide all essential facts relating to the request.	 The quality of the water. The method of measurement of water diverted. The recharge of water to the aquifer. Description of the estimated area of hydrologic effect of the project. The method and place of discharge. An estimation of the effects on surface water rights and underground water rights from the mine dewatering project. A description of the methods employed to estimate effects on surface water rights. Information on existing wells, rivers, springs, and wetlands within the area of hydrologic effect.

ACKNOWLEDGEMENT

I, We (name of applicant(s)), Mark J. Larson

Drint Manua (a)

	Print N	ame(s)				194
affirm that the foregoing statements are true to t	the best of (my, o	our) knowled	ge and belief.		22.	-11
TA						(altro
Applicant Signature		Ap	plicant Signat	ure	int.	(1) (11)
	ACTION OF T	HE STATE E	NGINEER		21	
	This	application i	S:		5	E
	approved	partially	approved	🗌 denied	1.1	1
Mexico nor detrimental to the public welfare ar Witness my hand and seal thisday Scott A. Verlines, P.E. By:	nd further subjec of <u>Septemt</u>	t to the <u>attact</u>	<u>ned</u> conditions 20 <u>14</u> ngineer Juan He	s of approval. , for the State Enginee rnandez	L. 7.7	al set firms
Title: District II Staff Manager	FOR OSE INT	FRNAL USE	nn	Applicatio	on for Permit, F	orm wr-07
	File Number:	CP	140	Trn Number	5539	103
					P	aye SUI 4

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

•

1

SPECIFIC CONDITIONS OF APPROVAL

- 1A Depth of the well shall not exceed the thickness of the valley fill.
- 4 No water shall be appropriated and beneficially used under this permit.
- 7 The Permittee shall utilize the highest and best technology available to ensure conservation of water to the maximum extent practical.
- B The well shall be drilled by a driller licensed in the State of New Mexico in accordance with Section 72-12-12 New Mexico Statutes Annotated.
- C Driller's well record must be filed with the State Engineer within 20 days after the well is drilled or driven. Well record forms will be provided by the State Engineer upon request.
- C2 No water shall be diverted from this well except for testing purposes which shall not exceed ten (10) cumulative days, and well shall be plugged or capped on or before, unless a permit to use water from this well is acquired from the Office of the State Engineer.
- P The well shall be constructed, maintained, and operated to prevent inter-aquifer exchange of water and to prevent loss of hydraulic head between geologic zones.
- LOG The Point of Diversion CP 01410 POD1 must be completed and the Well Log filed on or before 09/15/2015.

Trn Desc: CP 01410 POD1

File Number: CP 01410 Trn Number: 553903

Locator Tool Report

General Information:

Application ID:29 Date: 08-28-2014 Time: 10:36:53

WR File Number: CP Purpose: POINT OF DIVERSION

Applicant First Name: LEGACY RESERVES Applicant Last Name: LP

> GW Basin: CAPITAN County: LEA

Critical Management Area Name(s): NONE Special Condition Area Name(s): NONE Land Grant Name: NON GRANT

PLSS Description (New Mexico Principal Meridian):

PLSS description is not available for this location.

Coordinate System Details:

Geographic Coordinates:

Latitude:	32 Degrees	21 Minutes	31.9 Seconds	Ν
Longitude:	103 Degrees	8 Minutes	52.3 Seconds	W

Universal Transverse Mercator Zone: 13N

NAD 1983(92) (Meters)	N: 3,581,722	E: 674,273
NAD 1983(92) (Survey Feet)	N: 11,751,032	E: 2,212,176
NAD 1927 (Meters)	N: 3,581,520	E: 674,320
NAD 1927 (Survey Feet)	N: 11,750,371	E: 2,212,333

State Plane Coordinate System Zone: New Mexico East

NAD 1983(92) (Meters)	N: 151,276	E: 276,574
NAD 1983(92) (Survey Feet)	N: 496,312	E: 907,392
NAD 1927 (Meters)	N: 151,258	E: 264,020
NAD 1927 (Survey Feet)	N: 496,254	E: 866,207

August 24, 2014

VIA FAX: (575) 623-8559

Ms. Catherine Goetz New Mexico State Engineer District 2 4505 W. 2nd Street Roswell, New Mexico 88201

RE: Agent for Legacy Reserves, L.P.

Dear Ms. Goetz,

to the Office of the State Engineer for monitoring wells. Please contact me at (432) 689-5200, if you have questions. This letter authorizes Mark J. Larson to act as agent for Legacy Reserves, L.P., for the purpose of submitting applications

Sincerely,

Heath Loftin

Production Superintendent

cc: Mark Larson

Legacy Reserves 303 West Wall, Suite 1400 • Midland, Texas 79701 • P.O. Box 10848 • Midland, Texas 79702 OFFICE 432-689-5200 • FAX 432-689-5297

Goetz, Catherine, OSE

From:
Sent:
To:
Subject:

Mark Larson [Mark@laenvironmental.com] Thursday, August 21, 2014 3:48 PM Goetz, Catherine, OSE RE: email correction to MW request

Dear Ms. Goetz,

This message is to confirm that the request is for a permanent well rather than temporary. Thanks, Mark

From: Goetz, Catherine, OSE [<u>mailto:Catherine.Goetz@state.nm.us</u>] Sent: Wednesday, August 20, 2014 8:40 AM To: Mark Larson Subject: email correction to MW request

email correction to MW request duration before we can process

Catherine Goetz

--

This message has been scanned for viruses and dangerous content by <u>MailScanner</u>, and is believed to be clean.

JUIN VILE 51 BH 2: 39

STATE ENGINEER OFFICE

.....

August 10, 2014

Ms. Catherine Goetz Water Resource Specialist Office of the State Engineer District II 19000 West Second Street Roswell, NM 88201-1712

Re: Monitoring Well Permit Application, Legacy Reserves, L.P., LMPSU Site, Unit O (SW/4, SE/4), Section 27, Township 22 South, Range 37 East, Lea County, New Mexico

Dear Ms. Goetz,

Per our recent telephone conversation, Legacy Reserves, L.P. (Legacy) is now the owners of a 40-acres tract (SW/4, SE/4) where the referenced monitoring well will be drilled. The property was previously owned by "Graham" in Section 27, Township 22 South, Range 37 East, in Lea County, New Mexico. Larson & Associates, Inc. (LAI), as agent to Legacy, resubmits the enclosed application (Form WR-07) in triplet for a monitoring well (MW-2) at the referenced location. As we discussed another well is located on the property that was drilled under the direction of a previous consultant. During our telephone conversation you were unable to locate a record for the monitoring well on the NMOSE database. No information except that the well is constructed with 2 inch schedule 40 PVC is available. Please let me know how we should proceed with registering the well, if necessary. Please contact me at (432) 687-0901 (office) or (432) 556-8656 (cell) should you have questions.

Sincerely,

Larson & Associates, Inc.

	29:0	STA
Mark J. Larson		171
mark@laenvironmental.com	2.5	
		. GR
cc: Heath Loftin, Legacy Reserves, L.P.		1.1.1.2 1.1.1.2
	ξ.	Ų٣́
	بر. م	<u> </u>

OFFICE OF THE STATE ENGINEER/INTERSTATE STREAM COMMISSION – ROSWELL OFFICE

INSTRUCTIONS: Indicate the number of actions to the left of the appropriate type of filing. Complete the receipt information. Original to payor; pink copy to Program Support/ASD; yellow copy remains in district office, and goldenrod copy to accompany application being filed. If you make an error, void original and all copies and submit to Program Support/ASD along with other valid receipts.

A. Ground Water Rights Filing Fees

1. 2	Declaration of Water Right Application to Appropriate or Supple-	\$	1.00	
	ment Domestic 72-12-1 Well	\$	125.00	
3.	Application for Stock Well	\$	5.00	
4.	Application to Repair or Deepen			
	72-12-1 Well	\$	75.00	
5.	Application for Replacement			
	72-12-1 Well	\$	75.00	
6.	Application to Change Purpose of Use 72-12-1 Well	\$	75.00	
7.	Application to Appropriate Irrig., Mun.,			
	or Comm. Use	\$	25.00	
8.	Application for Supplemental			
	Non 72-12-1 Well	\$	25.00	
9.	Application to Change Location			
	of Non 72-12-1 Well	\$	25.00	
10.	Application to Change Place or			
	Purpose of Use Non 72-12-1 Well	\$	25.00	
11.	Application to Change Location of			
	Well and Place and/or Purpose of Use	\$	50.00	
12.	Application for Extension of Time	\$	25.00	
13.	Proof of Application to Beneficial Use	\$	25.00	
14.	Application to Change Point of Diversion and Place and/or Purpose of Use from			
	Surface Water to Ground Water	\$	50.00	
15.	Application for Test, Expl. Observ. Well	\$	5.00	
16.	Change of Ownership of Water Right	\$	2.00	
17.	Application to Repair or Deepen	6		
	Non 72-12-1 Well	\$	5.00	

B. Surface Water Rights Filing Fees

1.	Declaration of Water Right	\$ 10.00
2.	Amended Declaration	\$ 25.00
3.	Declaration of Livestock Water	
	Impoundment	\$ 10.00
4.	Application for Livestock Water	
	Impoundment	\$ 10.00
5.	Application to Appropriate	\$ 25.00
6.	Notice of Intent to Appropriate	\$ 25.00
7.	Application to Change Point of	
	Diversion	\$100.00
8.	Application to Change Place and/or	
	Purpose of Use	\$100.00
9.	Application to Change Point of	
	Diversion and Place and/or Purpose	
	of Use	\$200.00
10.	Application to Change Point of	
	Diversion and Place and/or Purpose of	
	Use from Ground Water to Surface	
	Water	\$200.00
11.	Application for Extension of Time	\$ 50.00
12.	Supplemental Well to a Surface Right	\$100.00
13.	Return Flow Credit	\$100.00
14.	Proof of Completion of Works	\$ 25.00
15.	Proof of Application of Water to	
	Beneficial Use	\$ 25.00
16.	Water Development Plan	\$100.00
17.	Change of Ownership of Water Right	\$ 5.00

C. Miscellaneous Fees

1.	Application for Well Driller's License	\$50.00	
2.	Application for Renewal of Well		
	Driller's License	\$50.00	
3.	Application to Amend Well Driller's		
	License	\$50.00	

D. Reproduction of Documents

E. Other	\$_
G. Comments:	
Mail	

101930 8332001933(015

Aarson &	P.O. BOX 50685 MIDLAND, TX 79710-0685 432-687-0901	WELLS FARGO BANK, NA MIDLAND, TX 79705 37-65/1119	11260 <u>6/1/2014</u>
PAY TO THE NEW	Mercico State No/100	Engineer	\$ 5.00
	A TAMPER RESIS		DOLLANG
Legacy 12		0612947291"	MP

V G

LARSON & ASSOCIATES, INC.

11260

2014 JUN - 3 MI 10: 37

LARSON & ASSOCIATES, INC.

		File No	
Interstate Stream Commissio	NEW MEXICO OFFICE OF APPLICATION FOR PERI WITH NO CONSUMPTI	THE STATE ENO	GINEER
	(check applic	able box):	
	For fees, see State Engineer websi	te: http://www.ose.state.nm.us	4
^D urpose:	Pollution Control And / Or Recovery	Geo-Thermal	
Exploratory	Construction Site De-Watering	Other (Describe):	EILE CODV
Monitoring	Mineral De-Watering		FILE CUPT
A separate permit wil	I be required to apply water to beneficial use.		
🛛 Temporary Reque	est - Requested Start Date: June 9, 2014	Requested E	nd Date: June 30, 2014

. APPLICANT(S)		
Name: Legacy Reserves, L.P.	Name:	
Contact or Agent: check here if Agent 🖂 Mark J. Larson	Contact or Agent:	check here if Agent
Mailing Address: P.O. Box 50685	Mailing Address:	5
City: Midland	City:	21
State: TX Zip Code: 79710-0685	State:	Zip Code:
Phone: (432) 556-8656 ☐ Home ⊠ Cell Phone (Work): (432) 687-0901 ☐	Phone: Phone (Work):	Home CqII
E-mail (optional): mark@laenvironmental.com	E-mail (optional):	0. VM
		37

FOR OSE INTERNAL USE	Application for Permit, Form wr-07, Rev 4/12/12
File Number:	Trn Number:
Trans Description (optional):	
Sub-Basin:	
PCW/LOG Due Date:	

2. WELL(S) Describe the well(s) applicable to this application.

NM State Plane (NAD83)	(Feet)	UTM (NAD83) (Meters]Zone 12N	s)
NM Central Zone			
Well Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (<i>Quarters or Halves , Section, Township, Range</i>) OR - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name
MW-2	-103.147870	32.358867	SW/4, SE/4, S 27, T22S, R37E
			2131
NOTE: If more well location Additional well description	s are attached:	<mark>bed, complete form</mark> Yes ⊠ No	WR-08 (Attachment 1 – POD Descriptions)
Other description relating wel Reserves LMPSU Well No. 3	I to common landmar 201 with API #30-025	ks, streets, or other: V 5-10471	Well is located approximately 950 feet northwest of Legacy
н	L	62	w ^{c1} ;
Well is on land owned by: Gr	aham Legacy	herenver L.P	
Well Information: NOTE: If I If yes, how many	more than one (1) w	ell needs to be desc	ribed, provide attachment. Attached? 🗌 Yes 🛛 No
Approximate depth of well (fe	et): 60.00	Ou	utside diameter of well casing (inches): 2.00
	ALC: NOT A REAL PROVIDENCE OF		

3. ADDITIONAL STATEMENTS OR EXPLANATIONS

The purpose of the monitoring well is to determine background (up gradient) concentrations of constituents to determine if a release to groundwater has occurred. The expected duration of monitoring will be approximately 2 years.

FOR OSE INTERNAL USE

Application for Permit, Form wr-07

File Number:

Trn Number:

4. SPECIFIC REQUIREMENTS: The applicant must include the following, as applicable to each well type. Please check the appropriate boxes, to indicate the information has been included and/or attached to this application:

Exploratory: Include a description of any proposed pump test, if applicable.	Pollution Control and/or Recovery: Include a plan for pollution control/recovery, that includes the following: A description of the need for the pollution control or recovery operation. The estimated maximum period of time for completion of the operation. The annual diversion amount. The annual consumptive use amount. The maximum amount of water to be diverted and injected for the duration of the operation.	Construction De-Watering: Include a description of the proposed dewatering operation, The estimated duration of the operation, The maximum amount of water to be diverted, A description of the need for the dewatering operation, and, A description of how the diverted water will be disposed of	Mine De-Watering: Include a plan for pollution control/recovery, that includes the following: A description of the need for mine dewatering. The estimated maximum period of time for completion of the operation. The source(s) of the water to be diverted. The geohydrologic characteristics of the aquifer(s). The maximum amount of water to be diverted per annum. The maximum amount of water to be diverted for the duration of the operation.
Monitoring: Include the reason for the monitoring well, and, The duration of the planned monitoring.	 The method and place of discharge. The method of measurement of water produced and discharged. The source of water to be injected. The method of measurement of water injected. The characteristics of the aquifer. The method of determining the resulting annual consumptive use of water and depletion from any related stream system. Proof of any permit required from the New Mexico Environment Department. An access agreement if the applicant is not the owner of the land on which the pollution plume control or recovery well is to be located. 	Geo-Thermal: Include a description of the geothermal heat exchange project, The amount of water to be diverted and re-injected for the project, The time frame for constructing the geothermal heat exchange project, and, The duration of the project. Preliminary surveys, design data, and additional information shall be included to provide all essential facts relating to the request.	 The quality of the water. The method of measurement of water diverted. The recharge of water to the aquifer. Description of the estimated area of hydrologic effect of the project. The method and place of discharge. An estimation of the effects on surface water rights and underground water rights from the mine dewatering project. A description of the methods employed to estimate effects on surface water rights. Information on existing wells, rivers, springs, and wetlands within the area of hydrologic effect.

ACKNOWLEDGEMENT

I, We (name of applicant(s)), Mark J. Larson

Print Name(s)

affirm that the foregoing statements a	are true to the best of (m	ny, our) knowledge and belief	E.	2014	
The				JUN	
Applicant Signature	1	Applicant Signa	ature	ι.	
	ACTION O	F THE STATE ENGINEER			
	ī	This application is:		ö	
	approved	partially approved	🗌 denied	w w	
Witness my hand and seal this	day of	20	_ , for the State Engineer,	5	2 E
Bv		, State Engineer		, Č	3 A.S. C.
Signature		Print			0
Title:	FOR OSE	INTERNAL USE	Application	ریں بری for Permit, Form w	r-07
	File Numb	er:	Trn Number:		
				Dogo 3	of A

APPENDIX F

Laboratory Analytical Reports and Chain of Custody Documentation

Coty Woolf Larson & Associates 507 N. Marienfeld #200 Midland, TX 79701 TEL: (432) 687-0901 FAX (432) 687-0456 RE: Legacy Trash Pit

Order No.: 1501283

Dear Coty Woolf:

DHL Analytical, Inc. received 2 sample(s) on 1/29/2015 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-14-13

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 1501283	6
WorkOrderSampleSummary 1501283	7
PrepDatesReport 1501283	
AnalyticalDatesReport 1501283	9
Analytical Report 1501283	
AnalyticalQCSummaryReport 1501283	

ANALYTICAL	2300 Double Creek Dr. ■ Round F Phone (512) 388-8222 ■ FAX (Web: <i>www.dh</i> E-Mail: <i>login@dh</i>	Rock, TX 78664 512) 388-8229 <i>lanalytical.com</i> <i>lanalytical.com</i>	helap	CHAI	№ 66476 N-OF-CUSTODY
CLIENT: Larson and 1500 cight ADDRESS: 50? N. Manenteld & PHONE: (432) 687 - 0901 FAX/E-1 DATA REPORTED TO: Mark Larson ADDITIONAL REPORT COPIES TO: Caty L	Ste. 205 Midlard, TX 7970, MAIL: Nolf	DATE: _ 28 PO #: PROJECT LOCA CLENT PROJEC	TION OR NAM	DHL WORK ORDER # E: Legacy Tras	PAGE OF 1501233 h p.7- FOR: Surah Shissler
Authorize 5% surcharge for TRRP Report? Yes No Field DH	PRESERVATION				
Sample I.D. Lab # Date Time	Matrix Type [™] H H H H H H		\$ \$}\$ \$}\$ \$ \$ \$ \$ \$ \$	\$]\$]\$]\$]\$]\$]\$]\$]\$]\$] \$	FIELD NOTES
MW-Z 01 1/28/15 2:00	W Poly I X			<u> </u>	
		,			
		,			
					· · ·
<u>├</u> ─────					
				╺╋╼┽┥╎╎┥┥┥	
RELINQUISHED BY: (Aignature) DATE/T	ME RECEIVED BY: (Signature) ME RECEIVED BY: (Signature) ME RECEIVED BY: (Signature)	TURN AI	ROUND TIME CALL FIRST	 LABORATORY USE ONLY: RECEIVING TEMP: ۲۰۰۰ کو	
RELINQUISHED BY: (Signature)	ME RECEIVED RV. (Signature)		CALL FIRST		KEN 🔲 INTACT 🔩 NOT USED
DHL DISPOSAL @ \$.00 each	-3 NORMAL			

	Sample	Receipt Chec	klist		
Client Name Larson & Associates			Date Recei	ved: 1/29/20	015
Work Order Number 1501283			Received by	/ JB	
	1/29/201 Date	5	Reviewed b	y <u>S</u>	1/29/2015 Date
	Carrier name	<u>FedEx 1day</u>			
Shipping container/cooler in good condition?		Yes 🔽	Νο	Not Present	
Custody seals intact on shippping container/coo	oler?	Yes 🗌	No 🗌	Not Present 🔽	
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present 🗹	
Chain of custody present?		Yes 🗹	Νο		
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🗹	No 🗌		
Container/Temp Blank temperature in complian	ce?	Yes 🗹	No 🗌	0.6 ° C ∉	
Water - VOA vials have zero headspace?		Yes 🗌	Νο	No VOA vials submit	ed 🗹
Water - pH<2 acceptable upon receipt?		Yes 🗹	No 🗌	NA LOT #	8086
		Adjusted?	<i>5</i> 7	Checked by	
Water - ph>9 (S) or ph>12 (CN) acceptable upo	n receipt?	Yes 🗌	No 🗌	NA 🗹 LOT #	
		Adjusted?		Checked by	
Any No response must be detailed in the comm	ents section below.	·			
Client contacted	Date contacted:		Per	son contacted	
Contacted by:	Regarding			\$	
Comments:					
		.			
Corrective Action					
·····					
				······	
			· · · · · ·		

CLIENT:Larson & AssociatesProject:Legacy Trash PitLab Order:1501283

CASE NARRATIVE

Sample was analyzed using the methods outlined in the following references:

Method SW6020A - Metals Analysis Method E300 - Anions Analysis Method M2320 B - Alkalinity Analysis Method M2540C - TDS Analysis

LOG IN

The samples were received and log-in performed on 1/29/15. A total of 2 samples were received. The Time of Collection was Mountain Standard Time. The samples arrived in good condition and were properly packaged.

METALS ANALYSIS

For Metals analysis performed on 2/1/15 the matrix spike and matrix spike duplicate recoveries were below control limits for three analytes. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 2/2/15 LCVL8-150202 was above control limits for Sodium. This is flagged accordingly. The associated CCV8-150202 was within control limits for this analyte. No further corrective actions were taken.

ANIONS ANALYSIS

For Anions analysis performed on 1/29/15 the matrix spike recovery was slightly below control limits for Nitrate-N. This is flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for this analyte. No further corrective actions were taken.

Lab Smp ID (Client Sample ID	Tag Number	Date Collected	Date Recved
Project: Lab Order:	Legacy Trash Pit 1501283		Work Order Sampl	e Summary
CLIENT:	Larson & Associates			

Lab Smp ID Client Sample ID

1501283-01 MW-2 1501283-02 MW-1

Date Collected	Date Recved
01/28/15 02:00 PM	1/29/2015
01/28/15 02:15 PM	1/29/2015

Lab Order: 1501283 **Client:** Larson & Associates

Project:

Legacy Trash Pit

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1501283-01A	MW-2	01/28/15 02:00 PM	Aqueous	M2320 B	Alkalinity Preparation	02/02/15 09:34 AM	68041
	MW-2	01/28/15 02:00 PM	Aqueous	E300	Anion Preparation	01/29/15 12:45 PM	67992
	MW-2	01/28/15 02:00 PM	Aqueous	E300	Anion Preparation	01/29/15 12:45 PM	67992
	MW-2	01/28/15 02:00 PM	Aqueous	M2540C	TDS Preparation	01/29/15 09:44 AM	67984
1501283-01B	MW-2	01/28/15 02:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	01/30/15 08:42 AM	67999
	MW-2	01/28/15 02:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	01/30/15 08:42 AM	67999
1501283-02A	MW-1	01/28/15 02:15 PM	Aqueous	M2320 B	Alkalinity Preparation	02/02/15 09:34 AM	68041
	MW-1	01/28/15 02:15 PM	Aqueous	E300	Anion Preparation	01/29/15 12:45 PM	67992
	MW-1	01/28/15 02:15 PM	Aqueous	E300	Anion Preparation	01/29/15 12:45 PM	67992
	MW-1	01/28/15 02:15 PM	Aqueous	M2540C	TDS Preparation	01/29/15 09:44 AM	67984
1501283-02B	MW-1	01/28/15 02:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	01/30/15 08:42 AM	67999
	MW-1	01/28/15 02:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	01/30/15 08:42 AM	67999

Lab Order: 1501283

Client: Larson & Associates

Project: Legacy Trash Pit

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1501283-01A	MW-2	Aqueous	M2320 B	Alkalinity	68041	1	02/02/15 10:46 AM	TITRATOR_150202B
	MW-2	Aqueous	E300	Anions by IC method - Water	67992	10	01/29/15 04:48 PM	IC_150129A
	MW-2	Aqueous	E300	Anions by IC method - Water	67992	1	01/29/15 02:55 PM	IC_150129A
	MW-2	Aqueous	M2540C	Total Dissolved Solids	67984	1	01/30/15 08:30 AM	WC_150129A
1501283-01B	MW-2	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	67999	1	02/02/15 05:07 PM	ICP-MS4_150202E
	MW-2	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	67999	100	02/01/15 05:52 PM	ICP-MS4_150201C
1501283-02A	MW-1	Aqueous	M2320 B	Alkalinity	68041	1	02/02/15 11:03 AM	TITRATOR_150202B
	MW-1	Aqueous	E300	Anions by IC method - Water	67992	100	01/29/15 05:02 PM	IC_150129A
	MW-1	Aqueous	E300	Anions by IC method - Water	67992	1	01/29/15 03:09 PM	IC_150129A
	MW-1	Aqueous	M2540C	Total Dissolved Solids	67984	1	01/30/15 08:30 AM	WC_150129A
1501283-02B	MW-1	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	67999	100	02/02/15 05:09 PM	ICP-MS4_150202E
	MW-1	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	67999	10	02/01/15 05:54 PM	ICP-MS4_150201C

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: MW-2					
Project:	Legacy Trash Pit				L	ab ID: 1501283	-01				
Project No:	14-0107-01		Collection Date: 01/28/15 02:00 PM								
Lab Order:	1501283				N	fatrix: AQUEO	US				
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed			
TRACE METAL	S: ICP-MS - WATER		SW602	20A				Analyst: RO			
Calcium		91.1	10.0	30.0		mg/L	100	02/01/15 05:52 PM			
Magnesium		36.6	10.0	30.0		mg/L	100	02/01/15 05:52 PM			
Potassium		7.30	0.100	0.300		mg/L	1	02/02/15 05:07 PM			
Sodium		126	10.0	30.0		mg/L	100	02/01/15 05:52 PM			
ANIONS BY IC	METHOD - WATER		E300				Analyst: AV				
Chloride		71.3	3.00	10.0		mg/L	10	01/29/15 04:48 PM			
Nitrate-N		1.36	0.100	0.500		mg/L	1	01/29/15 02:55 PM			
Sulfate		112	1.00	3.00		mg/L	1	01/29/15 02:55 PM			
ALKALINITY			M2320) В				Analyst: LM			
Alkalinity, Bicar	bonate (As CaCO3)	288	10.0	20.0		mg/L @ pH 4.52	1	02/02/15 10:46 AM			
Alkalinity, Carbo	onate (As CaCO3)	ND	10.0	20.0		mg/L @ pH 4.52	1	02/02/15 10:46 AM			
Alkalinity, Hydro	oxide (As CaCO3)	ND	10.0	20.0		mg/L @ pH 4.52	1	02/02/15 10:46 AM			
Alkalinity, Total	(As CaCO3)	288	20.0	20.0		mg/L @ pH 4.52	1	02/02/15 10:46 AM			
TOTAL DISSO	LVED SOLIDS		M254	0C				Analyst: PT			
Total Dissolved Filterable)	Solids (Residue,	573	10.0	10.0		mg/L	1	01/30/15 08:30 AM			

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: MW-1				
Project:	Legacy Trash Pit				L	ab ID: 1501283	-02			
Project No:	14-0107-01			C	ollectior	Date: 01/28/15	02:15	PM		
Lab Order:	1501283				N	fatrix: AQUEO	US			
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed		
TRACE METAL	LS: ICP-MS - WATER		SW602	20A				Analyst: RO		
Calcium		610	10.0	30.0		mg/L	100	02/02/15 05:09 PM		
Magnesium		437	10.0	30.0		mg/L	100	02/02/15 05:09 PM		
Potassium		32.5	1.00	3.00		mg/L	10	02/01/15 05:54 PM		
Sodium		1430	10.0	30.0	mg/L		100	02/02/15 05:09 PM		
ANIONS BY IC	METHOD - WATER		E30				Analyst: AV			
Chloride		3230	30.0	100		mg/L	100	01/29/15 05:02 PM		
Nitrate-N		ND	0.100	0.500		mg/L	1	01/29/15 03:09 PM		
Sulfate		947	100	300		mg/L	100	01/29/15 05:02 PM		
ALKALINITY			M232	0 B			Analyst: LM			
Alkalinity, Bicar	bonate (As CaCO3)	417	10.0	20.0		mg/L @ pH 4.54	1	02/02/15 11:03 AM		
Alkalinity, Carb	onate (As CaCO3)	ND	10.0	20.0		mg/L @ pH 4.54	1	02/02/15 11:03 AM		
Alkalinity, Hydro	oxide (As CaCO3)	ND	10.0	20.0		mg/L @ pH 4.54	1	02/02/15 11:03 AM		
Alkalinity, Total	(As CaCO3)	417	20.0	20.0		mg/L @ pH 4.54	1	02/02/15 11:03 AM		
TOTAL DISSO	LVED SOLIDS		M254	0C				Analyst: PT		
Total Dissolved Filterable)	I Solids (Residue,	6260	50.0	50.0		mg/L	1	01/30/15 08:30 AM		

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

CLIENT:	La	son & Associate	s		ΔN		ICAL	C SI	IMMAI	V RI	EPORT
Work Ore	der: 150	01283									
Project:	Leg	gacy Trash Pit					RunII): I	CP-MS4_	150201	C
The QC dat	a in batch 67	999 applies to the	following s	amples: 1501	283-01B, 15012	283-02B					
Sample ID	MB-67999	Batch ID	67999		TestNo	SW	6020A		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-M	S4_150201C	Analysi	s Date: 2/1/ 2	2015 5:20:0	0 PM	Prep Date:	1/30/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Calcium			ND	0.300							
Magnesium			ND	0.300							
Potassium			ND	0.300							
Sodium			ND	0.300							
Sample ID	LCS-67999	Batch ID	: 67999		TestNo	SW	6020A		Units:	mg/L	
SampType:	LCS	Run ID:	ICP-M	S4_150201C	Analysi	s Date: 2/1/ 2	2015 5:31:0	0 PM	Prep Date:	1/30/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RI	PDLimit Qual
Calcium			5.09	0.300	5.00	0	102	80	120		
Magnesium			5.04	0.300	5.00	0	101	80	120		
Potassium			4.97	0.300	5.00	0	99.5	80	120		
Sodium			5.08	0.300	5.00	0	102	80	120		
Sample ID	LCSD-6799	9 Batch ID	67999		TestNo	SW	6020A		Units:	mg/L	
SampType:	LCSD	Run ID:	ICP-M	S4_150201C	Analysi	s Date: 2/1/ 2	2015 5:38:0	0 PM	Prep Date:	1/30/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Calcium			5.14	0.300	5.00	0	103	80	120	0.978	15
Magnesium			5.09	0.300	5.00	0	102	80	120	0.996	15
Potassium			4.98	0.300	5.00	0	99.5	80	120	0.059	15
Sodium			5.14	0.300	5.00	0	103	80	120	1.15	15
Sample ID	1501203-02	C SD Batch ID	: 67999		TestNo	SW	6020A		Units:	mg/L	
SampType:	SD	Run ID:	ICP-M	S4_150201C	Analysi	s Date: 2/1/ 2	2015 5:44:0	0 PM	Prep Date:	1/30/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Potassium			2.19	1.50	0	2.23				1.53	10
Sample ID	1501203-02	C PDS Batch ID	67999		TestNo	SW	6020A		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-M	S4_150201C	Analysi	s Date: 2/1/ 2	2015 6:04:0	0 PM	Prep Date:	1/30/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Potassium			7.66	0.300	5.00	2.23	109	80	120		
Sample ID	1501203-02	CMS Batch ID	: 67999		TestNo	SW	6020A		Units:	mg/L	
SampType:	MS	Run ID:	ICP-M	S4_150201C	Analysi	s Date: 2/1/ 2	2015 6:06:0	0 PM	Prep Date:	1/30/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Qualifiers:	B An	alvte detected in the	associated	Method Blank	DF	Dilution Facto	or				

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit

Page 1 of 13

R RPD outside accepted control limits S Spike Recovery outside control limits

Ν Parameter not NELAC certified

CLIENT: Larson & Associates Work Order: 1501283

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Trash Pit

RunID: ICP-MS4_150201C

Sample ID	1501203-02C MS	Batch ID:	67999		TestNo	SW	6020A		Units:	mg/L		
SampType:	MS	Run ID:	ICP-MS4	_150201C	Analysi	s Date: 2/1/ 2	2015 6:06:0	0 PM	Prep Date	: 1/30/	2015	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium			175	0.300	5.00	173	54.0	80	120			S
Magnesium			43.1	0.300	5.00	39.4	74.1	80	120			S
Potassium			7.11	0.300	5.00	2.23	97.6	80	120			
Sodium			61.7	0.300	5.00	57.9	76.1	80	120			S
Sample ID	1501203-02C MSD	Batch ID:	67999		TestNo	SW	6020A		Units:	mg/L		
Sample ID SampType:	1501203-02C MSD MSD	Batch ID: Run ID:	67999 ICP-MS4	_150201C	TestNo Analysi	s Date: 2/1/2	6020A 2015 6:08:0	0 PM	Units: Prep Date	mg/L : 1/30/	2015	
Sample ID SampType: Analyte	1501203-02C MSD MSD	Batch ID: Run ID:	67999 ICP-MS4 Result	_ 150201C RL	TestNo Analysi SPK value	s Date: 2/1/ Ref Val	6020A 2015 6:08:0 %REC	0 PM LowLimit	Units: Prep Date HighLimit	mg/L : 1/30/ %RPD	2015 RPDLimit	Qual
Sample ID SampType: Analyte Calcium	1501203-02C MSD MSD	Batch ID: Run ID:	67999 ICP-MS4 Result 175	_ 150201C RL 0.300	TestNo Analysi SPK value 5.00	: SW (s Date: 2/1/ Ref Val 173	6020A 2015 6:08:00 %REC 56.4	D PM LowLimit 80	Units: Prep Date HighLimit 120	mg/L : 1/30/ %RPD 0.069	2 015 RPDLimit 15	Qual
Sample ID SampType: Analyte Calcium Magnesium	1501203-02C MSD MSD	Batch ID: Run ID:	67999 ICP-MS4 Result 175 42.9	_ 150201C RL 0.300 0.300	TestNo Analysi SPK value 5.00 5.00	s Date: 2/1/ Ref Val 173 39.4	6020A 2015 6:08:00 %REC 56.4 70.0	D PM LowLimit 80 80	Units: Prep Date HighLimit 120 120	mg/L : 1/30/ %RPD 0.069 0.475	2015 RPDLimit 15 15	Qual S S
Sample ID SampType: Analyte Calcium Magnesium Potassium	1501203-02C MSD MSD	Batch ID: Run ID:	67999 ICP-MS4 Result 175 42.9 7.13	_ 150201C RL 0.300 0.300 0.300	TestNo Analysi SPK value 5.00 5.00 5.00	s Date: 2/1/ Ref Val 173 39.4 2.23	6020A 2015 6:08:00 %REC 56.4 70.0 98.1	D PM LowLimit 80 80 80	Units: Prep Date HighLimit 120 120 120	mg/L : 1/30/ %RPD 0.069 0.475 0.309	2015 RPDLimit 15 15 15	Qual S S

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

D Not Detected at the Method Detection Elinit

RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor

MDL Method Detection Limit

Page 2 of 13

- R RPD outside accepted control limits
- S Spike Recovery outside control limits

N Parameter not NELAC certified

CLIENT: Larson & Associates Work Order: 1501283

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS4_150201C

Project: Legacy Trash Pit

Sample ID	ICV-150201	Batch ID:	R77824		TestNo	SW	6020A		Units:	mg/L
SampType:	ICV	Run ID: ICP-MS4_150201C			Analysis Date: 2/1/2015 3:32:00 PM				Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Calcium			2.49	0.300	2.50	0	99.6	90	110	
Magnesium			2.64	0.300	2.50	0	106	90	110	
Potassium			2.62	0.300	2.50	0	105	90	110	
Sodium			2.64	0.300	2.50	0	106	90	110	
Sample ID	LCVL-150201	Batch ID:	R77824		TestNo	: SW	6020A		Units:	mg/L
SampType:	LCVL	Run ID:	ICP-MS4	_150201C	Analys	is Date: 2/1/	2015 3:37:0	0 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Calcium			0.0974	0.300	0.100	0	97.4	70	130	
Magnesium			0.102	0.300	0.100	0	102	70	130	
Potassium			0.111	0.300	0.100	0	111	70	130	
Sodium			0.107	0.300	0.100	0	107	70	130	
Sample ID	CCV2-150201	Batch ID:	R77824		TestNo	: SW	6020A		Units:	mg/L
SampType:	CCV	Run ID:	ICP-MS4	_150201C	Analys	is Date: 2/1/	2015 5:09:0	0 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Calcium			5.12	0.300	5.00	0	102	90	110	
Magnesium			5.19	0.300	5.00	0	104	90	110	
Potassium			5.16	0.300	5.00	0	103	90	110	
Sodium			5.26	0.300	5.00	0	105	90	110	
Sample ID	LCVL2-150201	Batch ID:	R77824		TestNo	: SW	6020A		Units:	mg/L
SampType:	LCVL	Run ID:	ICP-MS4	_150201C	Analys	is Date: 2/1/	2015 5:15:0	0 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Calcium			0.113	0.300	0.100	0	113	70	130	
Magnesium			0.101	0.300	0.100	0	101	70	130	
Potassium			0.104	0.300	0.100	0	104	70	130	
Sodium			0.114	0.300	0.100	0	114	70	130	
Sample ID	CCV3-150201	Batch ID:	R77824		TestNo	: SW	6020A		Units:	mg/L
SampType:	CCV	Run ID:	ICP-MS4	_150201C	Analys	is Date: 2/1/	2015 6:10:0	0 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Calcium			5.10	0.300	5.00	0	102	90	110	
Magnesium			5.19	0.300	5.00	0	104	90	110	
Potassium			5.15	0.300	5.00	0	103	90	110	
Sodium			5.24	0.300	5.00	0	105	90	110	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

Detection at the Method Detection Linn

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 3 of 13

CLIENT:Larson & AssociatesWork Order:1501283Project:Legacy Trash Pit

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-

ICP-MS4_150201C

Sample ID LCVL3-150201	Batch ID:	R77824	4	TestNo	o: S	W6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-M	S4_150201C	Analys	sis Date: 2	/1/2015 6:14:0	0 PM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Va	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Calcium		0.100	0.300	0.100	0	100	70	130	
Magnesium		0.102	0.300	0.100	0	102	70	130	
Potassium	(0.0946	0.300	0.100	0	94.6	70	130	
Sodium		0.122	0.300	0.100	0	122	70	130	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit

Page 4 of 13

- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

Work Orde	er: 1501283		ANALI HCAL QU SUMMARI K									
Project:	Legacy Tr	Legacy Trash Pit						RunID: IC		CP-MS4_150202F		
The QC data	in batch 67999 app	olies to the fo	ollowing sa	mples: 1501	283-01B, 15012	283-02B						
Sample ID 1	501203-02C SD	Batch ID:	67999		TestNo:	SW	6020A		Units:	mg/L		
SampType: SD		Run ID:	ICP-MS4	_150202E	Analysis Date: 2/2/2015 4			57:00 PM Prep Date: 1/3			0/2015	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual	
Calcium			168	15.0	0	168				0.453	10	
Magnesium			40.0	15.0	0	39.8				0.432	10	
Sodium			58.0	15.0	0	57.6				0.686	10	
Sample ID 1	501203-02C PDS	Batch ID:	67999		TestNo:	SW	6020A		Units:	mg/L	-	
SampType: F	PDS	Run ID:	ICP-MS4	_150202E	Analysis	2015 4:59:0	Prep Date: 1/30/2015					
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual	
Calcium			219	3.00	50.0	168	102	80	120			
Magnesium			95.3	3.00	50.0	39.8	111	80	120			
Sodium			114	3.00	50.0	57.6	112	80	120			

Qualifiers:

CLIENT:

Larson & Associates

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- D Not Detected at the Method Detection Elimit
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
- R RPD outside accepted control limits

Page 5 of 13

- S Spike Recovery outside control limits
- N Parameter not NELAC certified

ANALYTICAL QC SUMMARY REPORT
CLIENT: Larson & Associates

Project:

Work Order: 1501283 Legacy Trash Pit

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS4_150202E

Sample ID	ICV-150202	Batch ID:	R77850		TestN	lo: SV	V6020A		Units:	mg/L	
SampType:	ICV	Run ID:	ICP-MS	4_150202E	Analy	vsis Date: 2/2	2/2015 10:45:	00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	DLimit Qual
Calcium			2.48	0.300	2.50	0	99.1	90	110		
Magnesium			2.64	0.300	2.50	0	106	90	110		
Sodium			2.62	0.300	2.50	0	105	90	110		
Sample ID	LCVL-150202	2 Batch ID:	R77850	I	TestN	lo: SV	V6020A		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS	4_150202E	Analy	vsis Date: 2/2	2/2015 10:49:	00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	DLimit Qual
Calcium			0.0923	0.300	0.100	0	92.3	70	130		
Magnesium			0.101	0.300	0.100	0	101	70	130		
Sodium			0.100	0.300	0.100	0	100	70	130		
Sample ID	CCV7-150202	2 Batch ID:	R77850		TestN	lo: SV	V6020A		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS	4_150202E	Analy	vsis Date: 2/2	2/2015 4:34:0	0 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	PDLimit Qual
Calcium			4.81	0.300	5.00	0	96.2	90	110		
Magnesium			5.00	0.300	5.00	0	99.9	90	110		
Sodium			4.96	0.300	5.00	0	99.3	90	110		
Sample ID	LCVL7-15020	Batch ID:	R77850		TestN	lo: SV	V6020A		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS	4_150202E	Analy	vsis Date: 2/2	2/2015 4:38:0	0 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	DLimit Qual
Calcium			0.0991	0.300	0.100	0	99.1	70	130		
Magnesium			0.0997	0.300	0.100	0	99.7	70	130		
Sodium			0.101	0.300	0.100	0	101	70	130		
Sample ID	CCV8-150202	2 Batch ID:	R77850		TestN	lo: SV	V6020A		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS	4_150202E	Analy	vsis Date: 2/2	2/2015 5:20:0	0 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	DLimit Qual
Calcium			4.78	0.300	5.00	0	95.5	90	110		
Magnesium			4.93	0.300	5.00	0	98.6	90	110		
Sodium			4.97	0.300	5.00	0	99.3	90	110		
Sample ID	LCVL8-15020	Batch ID:	R77850		TestN	lo: SV	V6020A		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS	4_150202E	Analy	vsis Date: 2/2	2/2015 5:31:0	0 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	DLimit Qual
Calcium			0.103	0.300	0.100	0	103	70	130		
Qualifiers:	B Anal	yte detected in the a	associated N	Iethod Blank	DF	Dilution Fac	ctor				
	J Anal	yte detected betwee	n MDL and	I RL	MDL	Method Dete	ection Limit			Pa	ge 6 of 13
	ND Not 1	Detected at the Met	ed at the Method Detection Limit			RPD outside	e accepted con	trol limits			

RL Reporting Limit

J Analyte detected between SDL and RL Ν Parameter not NELAC certified

S Spike Recovery outside control limits

CLIENT: Larson & Associates Work Order: 1501283 **Project:** Legacy Trash Pit

ANALYTICAL QC SUMMARY REPORT

ICP-MS4_150202E **RunID:**

Sample ID LCVL8-150202 SampType: LCVL	Batch ID: Run ID:	R77850 ICP-MS4_	150202E	TestNo: Analysis	S Date: 2	SW6020A 2/2/2015 5:31:00	РМ	Units: Prep Date	mg/L	
Analyte		Result	RL	SPK value	Ref Va	I %REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Magnesium Sodium		0.0985 0.148	0.300 0.300	0.100 0.100	0 0	98.5 148	70 70	130 130		S

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

- Not Detected at the Method Detection Limit
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits

Page 7 of 13

- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

Work Ore	der: 1	501283				2 1 1						
Project:	L	egacy Tra	ash Pit					RunII): I	C_150129	DA	
The QC dat	a in batch 6	67992 appl	ies to the f	ollowing sa	mples: 1501	283-01A, 1501	283-02A					
Sample ID	MB-67992	1	Batch ID:	67992		TestNo	E30	0		Units:	mg/L	
SampType:	MBLK		Run ID:	IC_1501	29A	Analysi	is Date: 1/29	/2015 1:55:	22 PM	Prep Date:	1/29/2	015
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Chloride				ND	1.00							
Nitrate-N				ND	0.500							
Sulfate				ND	3.00							
Sample ID	LCS-6799	2	Batch ID:	67992		TestNo	: E30	0		Units:	mg/L	
SampType:	LCS		Run ID:	IC_1501	29A	Analysi	is Date: 1/29	/2015 2:09:	58 PM	Prep Date:	1/29/2	015
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Chloride				9.78	1.00	10.00	0	97.8	90	110		
Nitrate-N				4.90	0.500	5.000	0	97.9	90	110		
Sulfate				29.4	3.00	30.00	0	98.0	90	110		
Sample ID	LCSD-679	92	Batch ID:	67992		TestNo	: E30	0		Units:	mg/L	
SampType:	LCSD		Run ID:	IC_1501	29A	Analysi	s Date: 1/29	/2015 2:24:	35 PM	Prep Date:	1/29/2	015
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Chloride				10.4	1.00	10.00	0	104	90	110	5.72	20
Nitrate-N				4.87	0.500	5.000	0	97.4	90	110	0.549	20
Sulfate				29.1	3.00	30.00	0	97.1	90	110	0.922	20
Sample ID	1501283-0	1AMS	Batch ID:	67992		TestNo	: E30	0		Units:	mg/L	
SampType:	MS		Run ID:	IC_1501	29A	Analysi	s Date: 1/29	/2015 3:35:	19 PM	Prep Date:	1/29/2	015
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Nitrate-N				5.30	0.500	4.516	1.357	87.3	90	110		S
Sulfate				134	3.00	20.00	111.8	109	90	110		
Sample ID	1501283-0	1AMSD	Batch ID:	67992		TestNo	: E30	0		Units:	mg/L	
SampType:	MSD		Run ID:	IC_1501	29A	Analysi	is Date: 1/29	/2015 3:49:	55 PM	Prep Date:	1/29/2	015
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Nitrate-N				5.57	0.500	4.516	1.357	93.2	90	110	4.91	20
Sulfate				133	3.00	20.00	111.8	109	90	110	0.122	20
Sample ID	1501283-0	1AMS	Batch ID:	67992		TestNo	: E30	0		Units:	mg/L	
SampType:	MS		Run ID:	IC_1501	29A	Analysi	is Date: 1/29	/2015 4:04:	31 PM	Prep Date:	1/29/2	015
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Chloride				272	10.0	200.0	71.32	101	90	110		

Qualifiers:

CLIENT:

Larson & Associates

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

D Not Detected at the Method Detection Li

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 8 of 13

N Parameter not NELAC certified

ANALYTICAL QC SUMMARY REPORT

CLIENT:Larson & AssociatesWork Order:1501283Project:Legacy Trash Pit

ANALYTICAL QC SUMMARY REPORT

RunID: IC_150129A

Sample ID 1501283-01AMSD	Batch ID:	67992		TestNo:	E	E300		Units:	mg/l	-
Analyte	Run ID:	Result	RL	SPK value	Ref Va	al %REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Chloride		271	10.0	200.0	71.32	99.9	90	110	0.462	20

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit

Page 9 of 13

- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

CLIENT: Larson & Associates Work Order: 1501283

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Trash Pit

IC_150129A **RunID:**

Sample ID	ICV-150129	Batch ID:	R77813		TestNo:	E30	D		Units:	mg/L
SampType:	ICV	Run ID:	IC_15012	29A	Analysis	s Date: 1/29	/2015 12:55	:17 PM	Prep Date	e:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Chloride			24.8	1.00	25.00	0	99.3	90	110	
Nitrate-N			12.5	0.500	12.50	0	99.8	90	110	
Sulfate			74.0	3.00	75.00	0	98.7	90	110	
Sample ID	CCV1-150129	Batch ID:	R77813		TestNo:	E30	D		Units:	mg/L
Sample ID SampType:	CCV1-150129 CCV	Batch ID: Run ID:	R77813 IC_15012	29A	TestNo: Analysis	E300 S Date: 1/29) /2015 5:19:	15 PM	Units: Prep Date	mg/L
Sample ID SampType: Analyte	CCV1-150129 CCV	Batch ID: Run ID:	R77813 IC_15012 Result	2 9A RL	TestNo: Analysis SPK value	E300 5 Date: 1/29 Ref Val	0 /2015 5:19: %REC	1 5 PM LowLimit	Units: Prep Date HighLimit	mg/L e: %RPD RPDLimit Qual
Sample ID SampType: Analyte Chloride	CCV1-150129 CCV	Batch ID: Run ID:	R77813 IC_15012 Result 9.86	2 9A RL 1.00	TestNo: Analysis SPK value 10.00	E300 s Date: 1/29 Ref Val 0	0 /2015 5:19: %REC 98.6	15 PM LowLimit 90	Units: Prep Date HighLimit 110	mg/L e: %RPD RPDLimit Qual
Sample ID SampType: Analyte Chloride Nitrate-N	CCV1-150129 CCV	Batch ID: Run ID:	R77813 IC_15012 Result 9.86 4.91	29A RL 1.00 0.500	TestNo: Analysis SPK value 10.00 5.000	E300 s Date: 1/29 Ref Val 0 0	0 /2015 5:19: %REC 98.6 98.2	15 PM LowLimit 90 90	Units: Prep Date HighLimit 110 110	mg/L e: %RPD RPDLimit Qual

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits

Page 10 of 13

- S Spike Recovery outside control limits
- Ν
- Parameter not NELAC certified

CLIENT:	Larson &	Associates	8		ΔΝ	ALYT	ICAL	C SI	IMMAT	V R	EPORT
Work Order:	1501283				111						
Project:	Legacy Tr	ash Pit					RunII): [TITRATO	R_150	202B
The QC data in ba	atch 68041 app	lies to the f	ollowing sa	amples: 15012	283-01A, 15012	283-02A					
Sample ID MB-6	8041	Batch ID:	68041		TestNo	: M23	320 B		Units:	mg/L	@ pH 4.49
SampType: MBL	K	Run ID:	TITRAT	OR_150202B	Analysi	s Date: 2/2/	2015 10:19:	00 AM	Prep Date:	2/2/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD F	RPDLimit Qual
Alkalinity, Bicarbo	nate (As CaCC)3)	ND	20.0							
Alkalinity, Carbona	ate (As CaCO3	6)	ND	20.0							
Alkalinity, Hydroxid	de (As CaCO3))	ND	20.0							
Alkalinity, Total (A	s CaCO3)		ND	20.0							
Sample ID LCS-	68041	Batch ID:	68041		TestNo	: M23	320 B		Units:	mg/L	@ pH 4.52
SampType: LCS		Run ID:	TITRAT	OR_150202B	Analysi	s Date: 2/2/	2015 10:24:	00 AM	Prep Date:	2/2/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD F	RPDLimit Qual
Alkalinity, Total (A	s CaCO3)		53.0	20.0	50.00	0	106	74	129		
Sample ID 15012	296-06E DUP	Batch ID:	68041		TestNo	: M23	320 B		Units:	mg/L	@ pH 4.54
SampType: DUP		Run ID:	TITRAT	OR_150202B	Analysi	s Date: 2/2/	2015 11:54:	00 AM	Prep Date:	2/2/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD F	RPDLimit Qual
Alkalinity, Bicarbo	nate (As CaCC)3)	41.5	20.0	0	42.40				2.15	20
Alkalinity, Carbona	ate (As CaCO3	5)	0	20.0	0	0				0	20
Alkalinity, Hydroxid	de (As CaCO3))	0	20.0	0	0				0	20
Alkalinity, Total (A	s CaCO3)		41.5	20.0	0	42.40				2.15	20
Sample ID 15020	001-05E DUP	Batch ID:	68041		TestNo	M23	320 B		Units:	mg/L	@ pH 4.53
SampType: DUP		Run ID:	TITRAT	OR_150202B	Analysi	s Date: 2/2/	2015 3:16:0	0 PM	Prep Date:	2/2/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD F	RPDLimit Qual
Alkalinity, Bicarbo	nate (As CaCC	03)	241	20.0	0	241.1				0.221	20
Alkalinity, Carbona	ate (As CaCO3	5)	0	20.0	0	0				0	20
Alkalinity, Hydroxid	de (As CaCO3))	0	20.0	0	0				0	20
Alkalinity, Total (A	s CaCO3)		241	20.0	0	241.1				0.221	20

Qualifiers:

CLIENT:

Larson & Associates

В Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND

Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 11 of 13

S Spike Recovery outside control limits

Ν Parameter not NELAC certified

CLIENT:		AN	ALYT	ICAL (QC SU	U MMAR	Y REPORT			
Work Order: Project:	1501283 Legacy Tr	ash Pit					RunII): []	FITRATO	R_150202B
Sample ID ICV-1	50202	Batch ID:	R77870		TestNo:	M23	20 B		Units:	mg/L @ pH 4.51
SampType: ICV		Run ID:	TITRATOR	_150202B	Analysis	Date: 2/2/2	2015 10:17:	00 AM	Prep Date:	2/2/2015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	GRPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCC)3)	6.96	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	93.3	20.0	0					
Alkalinity, Hydroxid	e (As CaCO3))	0	20.0	0					
Alkalinity, Total (As	s CaCO3)		100	20.0	100.0	0	100	98	102	
Sample ID CCV1	-150202	Batch ID:	R77870		TestNo:	M23	20 B		Units:	mg/L @ pH 4.52
SampType: CCV		Run ID:	TITRATOR	_150202B	Analysis	Date: 2/2/2	2015 12:01:	00 PM	Prep Date:	2/2/2015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCC	03)	19.0	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	81.6	20.0	0					
Alkalinity, Hydroxid	e (As CaCO3))	0	20.0	0					
Alkalinity, Total (As	s CaCO3)		101	20.0	100.0	0	101	90	110	
Sample ID CCV2	-150202	Batch ID:	R77870		TestNo:	M23	20 B		Units:	mg/L @ pH 4.51
SampType: CCV		Run ID:	TITRATOR	_150202B	Analysis	Date: 2/2/2	2015 3:07:0	0 PM	Prep Date:	2/2/2015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCC)3)	8.64	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	91.8	20.0	0					
Alkalinity, Hydroxid	e (As CaCO3))	0	20.0	0					
Alkalinity, Total (As	s CaCO3)		100	20.0	100.0	0	100	90	110	
Sample ID CCV3	-150202	Batch ID:	R77870		TestNo:	M23	20 B		Units:	mg/L @ pH 4.51
SampType: CCV		Run ID:	TITRATOR	_150202B	Analysis	Date: 2/2/2	2015 3:33:0	0 PM	Prep Date:	2/2/2015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCC	03)	13.3	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	86.1	20.0	0					
Alkalinity, Hydroxid	e (As CaCO3))	0	20.0	0					
Alkalinity, Total (As CaCO3)			99.4	20.0	100.0	0	99.4	90	110	

Qualifiers:

В Analyte detected in the associated Method Blank

- Analyte detected between MDL and RL J ND
 - Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 12 of 13

- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

CLIENT:	Larson &	Associates			AN	λι ντι				VPI	TROPT
Work Order:	1501283										
Project:	Legacy Tr	ash Pit					RunII): V	WC_15012	9A	
The QC data in ba	atch 67984 app	lies to the fo	ollowing samp	les: 1501	283-01A, 15012	83-02A					
Sample ID MB-6	7984	Batch ID:	67984		TestNo:	M254	40C		Units:	mg/L	
SampType: MBL I	к	Run ID:	WC_15012	θA	Analysis	a Date: 1/30/	2015 8:30:	00 AM	Prep Date:	1/29/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD R	PDLimit Qual
Total Dissolved Se	olids (Residue,	Filtera	ND	10.0							
Sample ID LCS-	67984	Batch ID:	67984		TestNo:	M254	40C		Units:	mg/L	
SampType: LCS		Run ID:	WC_15012	9A	Analysis	a Date: 1/30/	2015 8:30:	00 AM	Prep Date:	1/29/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD R	PDLimit Qual
Total Dissolved Se	olids (Residue,	Filtera	783	10.0	745.6	0	105	90	113		
Sample ID 1501	246-01D-DUP	Batch ID:	67984		TestNo:	M254	40C		Units:	mg/L	
SampType: DUP		Run ID:	WC_15012	θA	Analysis	a Date: 1/30/	2015 8:30:	00 AM	Prep Date:	1/29/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD R	PDLimit Qual
Total Dissolved Se	olids (Residue,	Filtera	263	10.0	0	268.0				1.88	5
Sample ID 1501	246-02D-DUP	Batch ID:	67984		TestNo:	M254	40C		Units:	mg/L	
SampType: DUP		Run ID:	WC_15012	θA	Analysis	a Date: 1/30/	2015 8:30:	00 AM	Prep Date:	1/29/20	015
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD R	PDLimit Qual
Total Dissolved So	olids (Residue,	Filtera	206	10.0	0	207.0				0.484	5

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 13 of 13
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	U
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 El Paso, Texas 79922 Midland. Texas 79703 Texas 75006 Carroliton. E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

915-585-3443 432-689-6301 972-242 -7750

806 • 794 • 1296 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Oklahoma ISO 17025 Kansas

Analytical and Quality Control Report

(Corrected Report)

Sarah Shissler Larson and Associates, Inc.

P. O. Box 50685 Midland, TX, 79710 Report Date: June 17, 2015

Work	Order	: 15060221	

Legacy LMPSU Trash Pit **Project Name:** Project Number: 14-0107-01

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
394442	MW-4	water	2015-06-01	13:30	2015-06-02
394443	MW-3	water	2015-06-01	14:00	2015-06-02
394444	MW-1	water	2015-06-01	14:30	2015-06-02
394445	MW-2	water	2015-06-01	15:00	2015-06-02

Report Corrections (Work Order 15060221)

• 6-17-15:Corrected Field Codes for Samples 394442 & 394443

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

TraceAnalysis, Inc. uses the attached chain of custody (COC) as the laboratory check-in documentation which includes sample receipt, temperature, sample preservation method and condition, collection date and time, testing requested, company, sampler, contacts and any special remarks.

This report consists of a total of 34 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Leptinich

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Report Contents

Case Narrative	5
Analytical Report Sample 394442 (MW-4) 1 Sample 394443 (MW-3) 1 Sample 394444 (MW-1) 1 Sample 394445 (MW-2) 1	6 8 .0 3
Method Blanks 1 QC Batch 121991 - Method Blank (1) 1 QC Batch 121995 - Method Blank (1) 1 QC Batch 121999 - Method Blank (1) 1 QC Batch 121999 - Method Blank (1) 1 QC Batch 121999 - Method Blank (1) 1 QC Batch 122002 - Method Blank (1) 1 QC Batch 122004 - Method Blank (1) 1 QC Batch 122119 - Method Blank (1) 1 QC Batch 122119 - Method Blank (1) 1 QC Batch 122142 - Method Blank (1) 1	6 .6 .6 .7 .7 .7 .7 .8 .8
Duplicates 1 QC Batch 121953 - Duplicate (1) 1 QC Batch 121991 - Duplicate (1) 1 QC Batch 122119 - Duplicate (1) 1 QC Batch 122119 - Duplicate (1) 1 QC Batch 122142 - Duplicate (1) 1	9 9 9 9
Laboratory Control Spikes 2 QC Batch 121991 - LCS (1) 2 QC Batch 121995 - LCS (1) 2 QC Batch 121999 - LCS (1) 2 QC Batch 122002 - LCS (1) 2 QC Batch 122004 - LCS (1) 2	1 21 22 23 23 23
Matrix Spikes 2 QC Batch 121995 - MS (1) 2 QC Batch 121999 - MS (1) 2 QC Batch 121999 - MS (1) 2 QC Batch 121999 - MS (1) 2 QC Batch 122002 - MS (1) 2 QC Batch 122007 - MS (1) 2 QC Batch 122047 - MS (1) 2	5 25 26 26 27 27
Calibration Standards 2 QC Batch 121953 - CCV (1) 2 QC Batch 121995 - CCV (1) 2 QC Batch 121995 - CCV (2) 2 QC Batch 121995 - CCV (2) 2 QC Batch 121999 - CCV (1) 2 Page 3 of 34 2	8 28 28 28 28

QC Batch 121999 - CCV (1)	29
QC Batch 121999 - CCV (2)	29
QC Batch 121999 - CCV (2)	29
QC Batch 122002 - CCV (1)	29
QC Batch 122002 - CCV (1)	30
QC Batch 122002 - CCV (2)	30
QC Batch 122002 - CCV (2)	30
QC Batch 122047 - ICV (1)	30
QC Batch 122047 - CCV (1)	31
QC Batch 122119 - ICV (1)	31
QC Batch 122119 - CCV (1)	31
QC Batch 122142 - ICV (1)	31
QC Batch 122142 - CCV (1) 3	32
Appendix 3	33
Report Definitions	33
Laboratory Certifications	33

Attachments

33

34

Case Narrative

Samples for project Legacy LMPSU Trash Pit were received by TraceAnalysis, Inc. on 2015-06-02 and assigned to work order 15060221. Samples for work order 15060221 were received intact at a temperature of 2.6 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
Alkalinity	SM 2320B	103334	2015-06-09 at 18:29	122142	2015-06-09 at 18:33
BTEX	S $8021B$	103216	2015-06-03 at $14:19$	121995	2015-06-03 at $14:19$
Ca, Dissolved	S $6010C$	103232	2015-06-04 at $14:09$	122047	2015-06-05 at $13:17$
Chloride (IC)	E 300.0	103219	2015-06-03 at $12:00$	121999	2015-06-03 at $15:08$
Chloride (IC)	E 300.0	103221	2015-06-03 at $13:00$	122002	2015-06-03 at $15:08$
Conductivity	SM 2510B	103313	2015-06-08 at $17:30$	122119	2015-06-09 at $09:05$
Fluoride (IC)	E 300.0	103219	2015-06-03 at $12:00$	121999	2015-06-03 at $15:08$
Fluoride (IC)	E 300.0	103221	2015-06-03 at $13:00$	122002	2015-06-03 at $15:08$
K, Dissolved	S $6010C$	103232	2015-06-04 at $14:09$	122047	2015-06-05 at $13:17$
Mg, Dissolved	S $6010C$	103232	2015-06-04 at $14:09$	122047	2015-06-05 at $13:17$
Na, Dissolved	S $6010C$	103232	2015-06-04 at $14:09$	122047	2015-06-05 at $13:17$
NO3 (IC)	E 300.0	103219	2015-06-03 at $12:00$	121999	2015-06-03 at $15:08$
NO3 (IC)	E 300.0	103221	2015-06-03 at $13:00$	122002	2015-06-03 at $15:08$
pH	SM 4500-H+ $$	103185	2015-06-02 at $17:24$	121953	2015-06-02 at $17:25$
SO4 (IC)	E 300.0	103219	2015-06-03 at $12:00$	121999	2015-06-03 at $15:08$
SO4 (IC)	E 300.0	103221	2015-06-03 at $13:00$	122002	2015-06-03 at $15:08$
TDS	$\rm SM~2540C$	103212	2015-06-03 at $19:28$	121991	2015-06-03 at 19:29

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15060221 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 394442 - MW-4

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Alkalinity 122142 103334		Analytical Mo Date Analyze Sample Prepa	ethod: SM d: 2015 uration:	Prep Method: Analyzed By: Prepared By:	N/A HJ HJ	
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Hydroxide Al	kalinity	U	2,3,5,7,8	<20.0	mg/L as CaCo3	1	20.0
Carbonate Al	kalinity	U	2,3,5,7,8	$<\!20.0$	mg/L as CaCo3	1	20.0
Bicarbonate A	Alkalinity		2,3,5,7,8	236	mg/L as CaCo3	1	20.0
Total Alkalin	ity		2,3,5,7,8	236	mg/L as $CaCo3$	1	20.0

Sample: 394442 - MW-4

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock BTEX 121995 103216		A L S	analytical Date Analy ample Pre	Method: vzed: eparation	S 80211 2015-06 : 2015-06	B 5-03 5-03		Prep Method: Analyzed By: Prepared By:	S 5030B MT MT
						RL				
Parameter		Flag		Cert		Result	Uni	ts	Dilution	RL
Benzene		U		2,3,5,7,8		< 0.00100	mg/	'L	1	0.00100
Toluene		U		2,3,5,7,8		< 0.00100	mg	$^{\prime}\mathrm{L}$	1	0.00100
Ethylbenzene	;			2,3,5,7,8		< 0.00100	mg	$^{\prime}\mathrm{L}$	1	0.00100
Xylene				2,3,5,7,8		0.00150	mg/	′L	1	0.00100
								Spike	Percent	Recovery
Surrogate			Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ene (TFT)			8	0.0887	$\mathrm{mg/L}$	1	0.100	89	74.6 - 120
4-Bromofluor	obenzene (4-BFB)			8	0.0854	$\mathrm{mg/L}$	1	0.100	85	72.9 - 120

Sample: 394442 - MW-4

Laboratory:	Lubbock				
Analysis:	Cations	Analytical Method:	S 6010C	Prep Method:	S $3005A$
QC Batch:	122047	Date Analyzed:	2015-06-05	Analyzed By:	\mathbf{RR}
Prep Batch:	103232	Sample Preparation:	2015-06-04	Prepared By:	\mathbf{RR}

Report Date: June 17, 2015 14-0107-01		Work Orde Legacy LMP	Page Number: 7 of 34			
Parameter	Flag	Cert	Units	Dilution RL		
Dissolved Calcium	0	3,5,7,8	83.0	mg/L	10	1.00
Dissolved Potassium		3,5,7,8	10.1	mg/L	10	1.00
Dissolved Magnesium		3,5,7,8	58.6	mg/L	10	1.00
Dissolved Sodium		3,5,7,8	186	mg/L	10	1.00

Sample: 394442 - MW-4

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Conductivity 122119 103313		Analytical Me Date Analyzed Sample Prepa	ethod: SM 24 d: 2015-0 ration:	510B 06-09	Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Specific Cond	uctance		2,3,5,7,8	1450	uMHOS/cm	1	0.00

Sample: 394442 - MW-4

Laboratory: Analysis: QC Batch: Prep Batch:	vratory: Lubbock ysis: Ion Chromatography Batch: 121999 Batch: 103219			lytical Method: e Analyzed: ple Preparation:	E 300.0 2015-06-03	Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Fluoride			2,3,5,7,8	3.74	mg/L	2	0.500
Chloride			2,3,5,7,8	190	mg/L	10	2.50
Sulfate			2,3,5,7,8	251	mg/L	10	2.50

Sample: 394442 - MW-4

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock NO3 (IC) 121999 103219		Analytical M Date Analyz Sample Prep	fethod: E 30 ed: 2015 paration:	00.0 i-06-03	Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Nitrate-N			2,3,5,7,8	2.34	$\mathrm{mg/L}$	2	0.0400

Report Date: June 17, 2015 14-0107-01		Work Order Legacy LMPS		Page Number: 8 of 34		
Sample: 394442 - MW-4						
Laboratory: Lubbock Analysis: pH QC Batch: 121953 Prep Batch: 103185	Ar Da Sa	alytical Method: te Analyzed: mple Preparation:	SM 4500-H+ 2015-06-02		Prep Method: Analyzed By: Prepared By:	N/A HJ HJ
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
pH	0	2,3,7,8	7.69	s.u.	1	2.00
Sample: 394442 - MW-4						
Laboratory: Lubbock Analysis: TDS QC Batch: 121991 Prep Batch: 103212	A D S	nalytical Method: ate Analyzed: ample Preparation	SM 2540C 2015-06-03		Prep Method: Analyzed By: Prepared By:	N/A HJ HJ
		_	RL			
Parameter Total Dissolved Solids	Flag	2,3,5,7,8	Result 918	Units mg/L	Dilution 20	RL 2.50
Sample: 394443 - MW-3						
Laboratory: Lubbock Analysis: Alkalinity QC Batch: 122142 Prep Batch: 103334	I S	Analytical Method Date Analyzed: Cample Preparatio	: SM 2320B 2015-06-09 n:		Prep Method: Analyzed By: Prepared By:	N/A HJ HJ
Parameter	Flag	Cert	RL Result	Units	Dilution	\mathbf{RL}
Hydroxide Alkalinity	U	2,3,5,7,8	<20.0 n	ng/L as CaCo3	1	20.0
Carbonate Alkalinity	Ŭ	2,3,5,7,8	<20.0 n	ng/L as CaCo3	- 1	20.0
Bicarbonate Alkalinity			200 10	$m/T \sim C \sim C \sim 2$	1	20.0
•		2,3,5,7,8	290 II	ig/L as CaCos	1	20.0

Sample: 394443 - MW-3

Laboratory:	Lubbock				
Analysis:	BTEX	Analytical Method:	S 8021B	Prep Method:	S 5030B
QC Batch:	121995	Date Analyzed:	2015-06-03	Analyzed By:	MT
Prep Batch:	103216	Sample Preparation:	2015-06-03	Prepared By:	MT

Report Date: June 17, 2015 14-0107-01	Work Order: 15060221 Legacy LMPSU Trash Pit						Page Number: 9 of 34		
RL									
Parameter	Flag		Cert		Result	Uni	ts	Dilution	RL
Benzene	U		2,3,5,7,8	<	< 0.00100	mg/	L	1	0.00100
Toluene	U		2, 3, 5, 7, 8	<	< 0.00100	mg/	L	1	0.00100
Ethylbenzene	U		2, 3, 5, 7, 8	<	< 0.00100	mg/	L	1	0.00100
Xylene	U		2,3,5,7,8	<	< 0.00100	mg/	L	1	0.00100
							Spike	Percent	Recovery
Surrogate		Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			8	0.0895	mg/L	1	0.100	90	74.6 - 120
4-Bromofluorobenzene (4-BFB)			8	0.0840	mg/L	1	0.100	84	72.9 - 120

Sample: 394443 - MW-3

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Cations 122047 103232	Analy Date Samp	tical Method: Analyzed: le Preparation:	S 6010C 2015-06-05 2015-06-04		Prep Method: Analyzed By: Prepared By:	S 3005A RR RR
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Dissolved Cal	lcium		3,5,7,8	57.6	mg/L	10	1.00
Dissolved Pot	assium		3, 5, 7, 8	10.7	$\mathrm{mg/L}$	10	1.00
Dissolved Ma	gnesium		3, 5, 7, 8	60.5	$\mathrm{mg/L}$	10	1.00
Dissolved Soc	lium		3, 5, 7, 8	324	$\mathrm{mg/L}$	10	1.00

Sample: 394443 - MW-3

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Conductivity 122119 103313		Analytical M Date Analyze Sample Prep	Tethod: SI ed: 20 aration:	M 2510B 015-06-09	Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL			
Parameter		Flag	Cert	Result	Units	5 Dilution	RL
Specific Cond	luctance		2,3,5,7,8	1900	uMHOS/cm	ı 1	0.00

Sample: 394443 - MW-3

Laboratory.	Lubbock				
Analysis:	Ion Chromatography	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	121999	Date Analyzed:	2015-06-03	Analyzed By:	$ {RL}$
Prep Batch:	103219	Sample Preparation:		Prepared By:	RL

Report Date: June 17, 2015 14-0107-01		Work Legacy	Page Number: 10 of 34			
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Fluoride		2,3,5,7,8	3.88	mg/L	2	0.500
Chloride		2,3,5,7,8	399	mg/L	50	2.50
Sulfate		2,3,5,7,8	234	mg/L	50	2.50

Sample: 394443 - MW-3

Laboratory: Analysis: QC Batch:	Lubbock NO3 (IC) 121999		Analytical M Date Analyz	Iethod: E 300.0 zed: 2015-00) 6-03	Prep Method: Analyzed By:	N/A RL
Prep Batch:	103219		Sample Pret	paration:		Prepared By:	RL
Parameter		Flog	Cont	RL Pogult	Unita	Dilution	DI
Parameter		Flag	Cert	Result	Units	Dilution	RL
Nitrate-N			2,3,5,7,8	2.19	mg/L	2	$0.04\overline{00}$

Sample: 394443 - MW-3

pH			2,3,7,8	7.77	s.u.	1	2.00
Parameter		Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	103185		Sample Prepar	ation:		Prepared By:	HJ
QC Batch:	121953		Date Analyzed	: 2015-06	5-02	Analyzed By:	HJ
Analysis:	pН		Analytical Met	hod: SM 450	00-H+	Prep Method:	N/A
Laboratory:	Lubbock						

Sample: 394443 - MW-3

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TDS 121991 103212	Anal Date Samp	ytical Method Analyzed: le Preparatio	: SM 2540C 2015-06-03 n:		Prep Method: Analyzed By: Prepared By:	N/A HJ HJ
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Total Dissolv	ed Solids		2,3,5,7,8	1180	$\mathrm{mg/L}$	20	2.50

Report Date: June 17, 2015	Work Order: 15060221	Page Number: 11 of 34
14-0107-01	Legacy LMPSU Trash Pit	

Sample: 394444 - MW-1

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Alkalinity 122142 103334		Analytical Me Date Analyze Sample Prepa	ethod: SM d: 201 uration:	I 2320B 15-06-09	Prep Method: Analyzed By: Prepared By:	N/A HJ HJ
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Hydroxide Al	kalinity	U	2,3,5,7,8	<20.0	mg/L as CaCo3	1	20.0
Carbonate Al	kalinity	U	2,3,5,7,8	$<\!20.0$	mg/L as CaCo3	1	20.0
Bicarbonate A	Alkalinity		2,3,5,7,8	653	mg/L as $CaCo3$	1	20.0
Total Alkalini	ity		2,3,5,7,8	653	mg/L as CaCo3	1	20.0

Sample: 394444 - MW-1

Laboratory:LubbockAnalysis:BTEXQC Batch:121995Prep Batch:103216		A D Sa	nalytical ate Analy ample Pre	Method: yzed: eparation:	S 80211 2015-06 2015-06	B 5-03 3-03		Prep Method: Analyzed By: Prepared By:	S 5030B MT MT
					RL				
Parameter	Flag		Cert		Result	Unit	S	Dilution	RL
Benzene	U		2,3,5,7,8	<	(0.00100	mg/	L	1	0.00100
Toluene	U		2,3,5,7,8	<	(0.00100	mg/	L	1	0.00100
Ethylbenzene	U		2,3,5,7,8	<	(0.00100	mg/	L	1	0.00100
Xylene	U		2,3,5,7,8	<	< 0.00100	mg/	L	1	0.00100
							Spike	Percent	Recovery
Surrogate		Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			8	0.0887	mg/L	1	0.100	89	74.6 - 120
4-Bromofluorobenzene (4-BFB)			8	0.0843	mg/L	1	0.100	84	72.9 - 120

Sample: 394444 - MW-1

Laboratory:	Lubbock						
Analysis:	Cations	Analyt	ical Method:	S 6010C		Prep Method:	S $3005A$
QC Batch:	122047	Date A	nalyzed:	2015-06-05		Analyzed By:	\mathbf{RR}
Prep Batch: 103232		Sample	Preparation:	2015-06-04		Prepared By:	RR
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Dissolved Ca	lcium		3,5,7,8	201	mg/L	10	1.00
Dissolved Pot	tassium		3, 5, 7, 8	27.6	$\mathrm{mg/L}$	10	1.00
Dissolved Ma	Ignesium		3,5,7,8	270	$\mathrm{mg/L}$	10	1.00

continued ...

: June 17, 2015		Work Or Legacy LM	der: 150602 IPSU Trash	21 Pit	Page Number: 12 of 34		
$14 \ continued \ \dots$							
lium	Flag	Cert] Res	RL ult Units	Dilution	RL	
num		3,5,7,8	3	50 IIIg/L	10	1.00	
4444 - MW-1							
Laboratory: Lubbock Analysis: Conductivity QC Batch: 122119 Prep Batch: 103313			Analytical Method:SM 2510BDate Analyzed:2015-06-09Sample Preparation:			N/A RL RL	
	Flag	Cert	RL Result	Units	Dilution	RL	
luctance	0	2,3,5,7,8	6250	uMHOS/cm	1	0.00	
4444 - MW-1							
Lubbock Ion Chromatography 122002 103221		Analytica Date Ana Sample Pr	l Method: lyzed: reparation:	E 300.0 2015-06-03	Prep Method: Analyzed By: Prepared By:	N/A RL RL	
			RL				
Flag		Cert	Result	Units	Dilution	RL	
		2,3,5,7,8	4.25 1560	mg/L mg/I	5 100	0.500	
		2,3,5,7,8	446	mg/L	100	$2.50 \\ 2.50$	
	: June 17, 2015 4 continued lium 4444 - MW-1 Lubbock Conductivity 122119 103313 luctance 4444 - MW-1 Lubbock Ion Chromatography 122002 103221 Flag	E June 17, 2015 4 continued Flag lium 4444 - MW-1 Lubbock Conductivity 122119 103313 Flag luctance 4444 - MW-1 Lubbock Ion Chromatography 122002 103221 Flag	E June 17, 2015 Work Or Legacy LM 4 continued Flag Cert 100 103 103 103 103 103 103 103	A continued Flag Cert Ress 4 continued Flag Cert Ress 1000 100	: June 17, 2015 Work Order: 15060221 Legacy LMPSU Trash Pit 4 continued 4 continued	: June 17, 2015 Work Order: 15060221 Page Number: 1 Legacy LMPSU Trash Pit 4 continued Flag Cert Result Units Dilution Itium $3.6.7.8$ 950 mg/L 10 1444 - MW-1 Lubbock Conductivity Analytical Method: SM 2510B Prep Method: 122119 Date Analyzed: 2015-06-09 Analyzed By: 103313 Sample Preparation: Prepared By: Flag Cert Result Units Dilution Iuctance $2.3.5.7.8$ 6250 uMHOS/cm 1 1444 - MW-1 Lubbock Cord dructivity Analytical Method: E 300.0 Prep Method: 122002 Date Analyzed: 2015-06-03 Analyzed By: 103221 Sample Preparation: Prepared By: MHOS/cm 1 1444 - MW-1 Lubbock Lubb	

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock NO3 (IC) 122002 103221		Analytical M Date Analyz Sample Prep	fethod: E 3 æd: 201 paration:	00.0 5-06-03	Prep Metho Analyzed B Prepared B	d: N/A y: RL y: RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Nitrate-N		U	2,3,5,7,8	< 0.200	$\mathrm{mg/L}$	5	0.0400

Report Date: June 17, 2015 14-0107-01		Work Order: Legacy LMPS		Page Number: 13 of 34		
Sample: 394444 - MW-1						
Laboratory: Lubbock Analysis: pH QC Batch: 121953 Prep Batch: 103185	An Da Sa	nalytical Method: ate Analyzed: mple Preparation:	SM 4500-H- 2015-06-02	+	Prep Method: Analyzed By: Prepared By:	N/A HJ HJ
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
pH	0	2,3,7,8	7.09	s.u.	1	2.00
Sample: 394444 - MW-1						
Laboratory: Lubbock Analysis: TDS QC Batch: 121991 Prep Batch: 103212	A L S	nalytical Method: ate Analyzed: ample Preparation	SM 2540C 2015-06-03 1:	3	Prep Method: Analyzed By: Prepared By:	N/A HJ HJ
			RL			
Parameter Total Dissolved Solids	Flag	2,3,5,7,8	Result 3920	Units mg/L	Dilution 50	RL 2.50
Sample: 394445 - MW-2						
Laboratory: Lubbock Analysis: Alkalinity QC Batch: 122142 Prep Batch: 103334	I S	Analytical Method Date Analyzed: Sample Preparation	: SM 2320E 2015-06-09 n:	3 9	Prep Method: Analyzed By: Prepared By:	N/A HJ HJ
D		Cert	RL Result	Units	Dilution	BL
Parameter	Flag	0010				1011
Parameter Hydroxide Alkalinity	Flag U	2,3,5,7,8	<20.0	mg/L as CaCo3	1	20.0
Parameter Hydroxide Alkalinity Carbonate Alkalinity	Flag U U	2,3,5,7,8	<20.0 <20.0	mg/L as CaCo3 mg/L as CaCo3	1	$\frac{100}{20.0}$
Parameter Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity	Flag U U	2,3,5,7,8 2,3,5,7,8 2,3,5,7,8 2,3,5,7,8	<20.0 <20.0 281	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3	1 1 1	$ \begin{array}{r} 20.0 \\ 20.0 \\ 20.0 \end{array} $

Sample: 394445 - MW-2

Laboratory:	Lubbock				
Analysis:	BTEX	Analytical Method:	S 8021B	Prep Method:	S 5030B
QC Batch:	121995	Date Analyzed:	2015-06-03	Analyzed By:	MT
Prep Batch:	103216	Sample Preparation:	2015-06-03	Prepared By:	MT

Report Date: June 17, 2015 14-0107-01		Work Order: 15060221 Legacy LMPSU Trash Pit						Page Num	ber: 14 of 34
					RL				
Parameter	Flag		Cert		Result	Uni	ts	Dilution	RL
Benzene	U		2,3,5,7,8	<	< 0.00100	mg/	L	1	0.00100
Toluene	U		2,3,5,7,8	<	< 0.00100	mg/	L	1	0.00100
Ethylbenzene	U		2, 3, 5, 7, 8	<	< 0.00100	mg/	L	1	0.00100
Xylene	U		2,3,5,7,8	<	< 0.00100	mg/	L	1	0.00100
							Spike	Percent	Recovery
Surrogate		Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			8	0.0897	mg/L	1	0.100	90	74.6 - 120
4-Bromofluorobenzene (4-BFB)			8	0.0841	mg/L	1	0.100	84	72.9 - 120

Sample: 394445 - MW-2

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Cations 122047 103232	Analyti Date A Sample	ical Method: nalyzed: Preparation:	S 6010C 2015-06-05 2015-06-04		Prep Method: Analyzed By: Prepared By:	S 3005A RR RR
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Dissolved Ca	lcium		3,5,7,8	54.9	mg/L	10	1.00
Dissolved Pot	tassium		3,5,7,8	<10.0	mg/L	10	1.00
Dissolved Ma	agnesium		3, 5, 7, 8	34.6	mg/L	10	1.00
Dissolved Soc	dium		3,5,7,8	117	mg/L	10	1.00

Sample: 394445 - MW-2

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Conductivity 122119 103313		Analytical Me Date Analyze Sample Prepa	ethod: SM d: 2015 ration:	2510B 5-06-09	Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Specific Cond	luctance		2,3,5,7,8	865	uMHOS/cm	1	0.00

Sample: 394445 - MW-2

Laboratory:	Lubbock				
Analysis:	Ion Chromatography	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	122002	Date Analyzed:	2015-06-03	Analyzed By:	$ {RL}$
Prep Batch:	103221	Sample Preparation:		Prepared By:	RL

Report Date: June 17, 2015 14-0107-01		Work Legacy	Page Number: 15 of 34			
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Fluoride		2,3,5,7,8	3.37	mg/L	1	0.500
Chloride		2,3,5,7,8	57.8	mg/L	5	2.50
Sulfate		2,3,5,7,8	112	$\mathrm{mg/L}$	5	2.50

Sample: 394445 - MW-2

Laboratory:	Lubbock						
Analysis:	NO3 (IC)		Analytical N	Method: E 300.	.0	Prep Method:	N/A
QC Batch:	122002		Date Analyz	zed: 2015-0	6-03	Analyzed By:	\mathbf{RL}
Prep Batch:	103221		Sample Prep	paration:		Prepared By:	RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Nitrate-N			2,3,5,7,8	1.63	mg/L	1	0.0400

Sample: 394445 - MW-2

pH			2,3,7,8	7.67	s.u.	1	2.00
Parameter		Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	103185		Sample Prepara	ation:		Prepared By:	HJ
QC Batch:	121953		Date Analyzed	2015-0	6-02	Analyzed By:	HJ
Analysis:	pН		Analytical Met	hod: $SM 450$	00-H+	Prep Method	: N/A
Laboratory:	Lubbock						

Sample: 394445 - MW-2

QC Batch: 12 Prep Batch: 10	21991 33212	Date Samp	Analyzed: ple Preparation	2015-06-03 1: RL		Analyzed By: Prepared By:	HJ HJ
Parameter		Flag	Cert	Result	Units	Dilution	RL
Total Dissolved	Solids		2,3,5,7,8	578	mg/L	10	2.50

Method Blanks

Method Blank (1)	QC Batch: 121991					
QC Batch: 121991 Prep Batch: 103212		Date Analyzed: QC Preparation:	2015-06-03 2015-06-03		Analyzed By: Prepared By:	HJ HJ
				MDL		
Parameter		Flag	Cert	Result	Units	\mathbf{RL}
Total Dissolved Solids			2,3,5,7,8	<25.0	m mg/L	2.5

Method Blank (1)	QC Batch:	121995
------------------	-----------	--------

QC Batch:	121995	Date Analyzed:	2015-06-03	Analyzed By:	\mathbf{MT}
Prep Batch:	103216	QC Preparation:	2015-06-03	Prepared By:	\mathbf{MT}

					MDL			
Parameter	Flag		Cert		Result		Units	RL
Benzene			2,3,5,7,8		< 0.000352		mg/L	0.001
Toluene			2,3,5,7,8		$<\!0.000371$		$\mathrm{mg/L}$	0.001
Ethylbenzene			2,3,5,7,8		< 0.000352		$\mathrm{mg/L}$	0.001
Xylene			2,3,5,7,8		< 0.000379		$\mathrm{mg/L}$	0.001
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		8	0.0877	$\mathrm{mg/L}$	1	0.100	88	74.6 - 120
4-Bromofluorobenzene (4-BFB)		8	0.0829	$\mathrm{mg/L}$	1	0.100	83	72.9 - 120

Method Blank (1) QC Batch: 121999

QC Batch: Prep Batch:	121999 103219		Date Analyzed: QC Preparation:	2015-06-03 2015-06-03	Analyzed By: Prepared By:	$_{ m RL}^{ m RL}$
				MDL		
Parameter		Flag	Cert	Result	Units	RL
Nitrate-N			2,3,5,7,8	< 0.0136	m mg/L	0.04

Report Date: June 17, 14-0107-01	2015	Work Order Legacy LMPS	: 15060221 U Trash Pit	Page Number: 17	Page Number: 17 of 34		
Method Blank (1)	QC Batch: 121999						
QC Batch: 121999 Prep Batch: 103219		Date Analyzed: QC Preparation:	2015-06-03 2015-06-03	Analyzed By: Prepared By:	RL RL		
Parameter	Flag	Cert	MDL Result	Units	RL		
Fluoride Chloride Sulfate		2,3,5,7,8 2,3,5,7,8 2,3,5,7,8	$< 0.134 \\ 0.626 \\ < 0.363$	m mg/L $ m mg/L$ $ m mg/L$	$0.5 \\ 2.5 \\ 2.5$		
Method Blank (1)	QC Batch: 122002						
QC Batch: 122002 Prep Batch: 103221		Date Analyzed: QC Preparation:	2015-06-03 2015-06-03	Analyzed By: Prepared By:	RL RL		
Parameter	Flag	Cert	MDL Result	Units	RL		
Nitrate-N		2,3,5,7,8	< 0.0136	mg/L	0.04		
Method Blank (1)	QC Batch: 122002						
QC Batch: 122002 Prep Batch: 103221		Date Analyzed: QC Preparation:	2015-06-03 2015-06-03	Analyzed By: Prepared By:	RL RL		
Parameter	Flag	Cert	MDL Result	Units	RL		
Fluoride Chloride Sulfate		2,3,5,7,8 $2,3,5,7,8$ $2,3,5,7,8$	$< 0.134 \\ 0.550 \\ < 0.363$	$rac{\mathrm{mg/L}}{\mathrm{mg/L}}$	$0.5 \\ 2.5 \\ 2.5$		
		2,0,0,1,0	(0.000	m5/ 1	2.0		

QC Batch:	122047	Date Analyzed:	2015-06-05	Analyzed By:	$\mathbf{R}\mathbf{R}$
Prep Batch:	103232	QC Preparation:	2015-06-04	Prepared By:	PM

Method Blank (1) QC Batch: 122047

Report Date: June 17, 2015 14-0107-01	Worl Legacy	Page Number: 18 of 34			
Parameter	Flag	Cert	MDL Result	Units	RL
Dissolved Calcium		3,5,7,8	< 0.0106	mg/L	1
Dissolved Potassium		3,5,7,8	< 0.0464	mg/L	1
Dissolved Magnesium		3,5,7,8	< 0.0224	mg/L	1
Dissolved Sodium		3,5,7,8	< 0.0197	mg/L	1

Method Blank (1) QC Batch: 122119

QC Batch: Prep Batch:	$\frac{122119}{103313}$	Date Analyzed: QC Preparation	2015-06-09 : 2015-06-08) 3	Analyzed By: Prepared By:	RL RL
				MDL		
Parameter		Flag C	ert	Result	Units	RL
Specific Cond	luctance	2,3	5,7,8	1.93	uMHOS/cm	

Method Blank (1) QC Batch: 122142

QC Batch: 122142	Date A	Analyzed: 201	5-06-09	Analyzed By:	HJ
Prep Batch: 103334	QC Pr	eparation: 201	.5-06-09	Prepared By:	HJ
			MDL		
Parameter	Flag	Cert	Result	Units	RL
Hydroxide Alkalinity		2,3,5,7,8	<20.0	mg/L as CaCo3	20
Carbonate Alkalinity		2,3,5,7,8	<20.0	mg/L as CaCo3	20
Bicarbonate Alkalinity		2,3,5,7,8	<20.0	mg/L as CaCo3	20
Total Alkalinity		2,3,5,7,8	<20.0	mg/L as CaCo3	20

Duplicates

Duplicates	(1) Duplica	ted Sample: 3	394459					
QC Batch: Prep Batch:	$\frac{121953}{103185}$		Date Ana QC Prep	alyzed: 2015- aration: 2015-	06-02 06-02		Analyzed Prepared	By: HJ By: HJ
Param			Duplicate Result	Sample Result	Units	Dilution	RPD	RPD Limit
pH		2,3,7,8	8.76	8.78	s.u.	1	0	20

Duplicates (1) Duplicated Sample: 394553

QC Batch:	121991	Date Analyzed:	2015-06-03	Analyzed By:	HJ
Prep Batch:	103212	QC Preparation:	2015-06-03	Prepared By:	HJ
		Duplicate	Sample		RÞD

		Duplicate	Sample				RPD
Param		Result	Result	Units	Dilution	RPD	Limit
Total Dissolved Solids	2,3,5,7,8	13300	13300	$\mathrm{mg/L}$	200	0	10

Duplicates (1) Duplicated Sample: 394601

QC Batch: Prep Batch:	$\frac{122119}{103313}$		Date Analyzed QC Preparatio	d: 2015-06 on: 2015-06	-09 -08	A F	Analyzed By Prepared By	y: RL v: RL
			Duplicate	Sample				RPD
Param			Result	Result	Units	Dilution	RPD	Limit
Specific Cond	ductance	2,3,5,7,8	775	772	uMHOS/cm	1	0	20

Duplicates (1) Duplicated Sample: 394724

QC Batch:	122142	Date Analyzed:	2015-06-09	Analyzed By:	НJ
Prep Batch:	103334	QC Preparation:	2015-06-09	Prepared By:	HJ

Report Date: June 17, 2015 14-0107-01		Work C Legacy L	Order: 15060 MPSU Tras	Page Number: 20 of 34			
Param		Duplicate Result	Sample Result	Units	Dilution	RPD	RPD Limit
Hydroxide Alkalinity	2,3,5,7,8	<20.0	<20.0	mg/L as CaCo3	1	0	20
Carbonate Alkalinity	2,3,5,7,8	$<\!20.0$	$<\!20.0$	mg/L as CaCo3	1	0	20
Bicarbonate Alkalinity	2,3,5,7,8	295	290	mg/L as CaCo3	1	2	20
Total Alkalinity	2,3,5,7,8	295	290	mg/L as CaCo3	1	2	20

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch:	121991			Date A	nalyzed:	2015	5-06-03			Ar	alyzed E	By: HJ
Prep Batch:	103212			QC Pre	paration	: 2013	5-06-03			Pr	epared B	y: HJ
					LCS			Spike	Ma	atrix		Rec.
Param		F	י י	C I	Result	Units	Dil.	Amount	Re	esult	Rec.	Limit
Total Dissolve	ed Solids		2,3,	,5,7,8	968	$\mathrm{mg/L}$	10	1000	<	25.0	97	90 - 110
Percent recove	ery is based on the sp	oike 1	result.]	RPD is l	pased on	the spi	ike and spi	ke duplica	te resu	ılt.		
				LCSD			Spike	Matrix		Rec.		RPD
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Total Dissolve	ed Solids		2,3,5,7,8	958	$\mathrm{mg/L}$	10	1000	$<\!25.0$	96	90 - 11	0 1	10

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	121995	Date Analyzed:	2015-06-03	Analyzed By:	MT
Prep Batch:	103216	QC Preparation:	2015-06-03	Prepared By:	\mathbf{MT}

			LCS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene		2,3,5,7,8	0.0891	mg/L	1	0.100	< 0.000352	89	76 - 120
Toluene		2,3,5,7,8	0.0920	$\mathrm{mg/L}$	1	0.100	< 0.000371	92	77.4 - 120
Ethylbenzene		2,3,5,7,8	0.0917	$\mathrm{mg/L}$	1	0.100	< 0.000352	92	76.6 - 120
Xylene		2,3,5,7,8	0.278	$\mathrm{mg/L}$	1	0.300	< 0.000379	93	77.2 - 121

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		2,3,5,7,8	0.0896	mg/L	1	0.100	< 0.000352	90	76 - 120	1	20
Toluene		2,3,5,7,8	0.0912	mg/L	1	0.100	< 0.000371	91	77.4 - 120	1	20
Ethylbenzene		2,3,5,7,8	0.0910	mg/L	1	0.100	< 0.000352	91	76.6 - 120	1	20
Xylene		2,3,5,7,8	0.276	$\mathrm{mg/L}$	1	0.300	< 0.000379	92	77.2 - 121	1	20
	/1 ·1	14	<u>החת</u> .	1 1	.1	•1 1	.1 1 1.		14		

Report Date: June 17, 2015 14-0107-01		Wo Lega	ork Order: cy LMPS	1506022 U Trash I	Page Number: 22 of 34				
control spikes continued									
		LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate		Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
		LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate		Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	8	0.0869	0.0895	mg/L	1	0.100	87	90	74.6 - 120
4-Bromofluorobenzene (4-BFB)	8	0.0943	0.0917	$\mathrm{mg/L}$	1	0.100	94	92	75 - 120

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	121999 103219		Date QC	e Analyzed Preparatio	: 2015- n: 2015-	06-03 06-03		/ F	Analyzed Prepared	By: RL By: RL	
Param		F	С	LCS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	
Nitrate-N			2,3,5,7,8	5.08	mg/L	1	5.00	< 0.0136	102	90 - 110	
Percent recov	Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.										

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Nitrate-N		2,3,5,7,8	5.06	$\mathrm{mg/L}$	1	5.00	< 0.0136	101	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	121999	Date Analyzed:	2015-06-03	Analyzed By:	RL
Prep Batch:	103219	QC Preparation:	2015-06-03	Prepared By:	RL

			LCS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Fluoride		2,3,5,7,8	5.12	mg/L	1	5.00	< 0.134	102	90 - 110
Chloride		2,3,5,7,8	24.4	$\mathrm{mg/L}$	1	25.0	0.626	95	90 - 110
Sulfate		2,3,5,7,8	25.6	$\mathrm{mg/L}$	1	25.0	$<\!0.363$	102	90 - 110

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Fluoride		2,3,5,7,8	5.18	mg/L	1	5.00	< 0.134	104	90 - 110	1	20
Chloride		2,3,5,7,8	24.4	mg/L	1	25.0	0.626	95	90 - 110	0	20
Sulfate		2,3,5,7,8	25.3	$\mathrm{mg/L}$	1	25.0	$<\!0.363$	101	90 - 110	1	20

Report Date: June 17, 2015	Work Order: 15060221	Page Number: 23 of 34
14-0107-01	Legacy LMPSU Trash Pit	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	122002 103221	Date Analyzed: QC Preparation:	2015-06-03 2015-06-03			Analyzed By: Prepared By:	RL RL
		I CS		Spile	Motrix	1	Pog

_	 -									
Nitrate-N			2,3,5,7,8	5.15	$\mathrm{mg/L}$	1	5.00	< 0.0136	103	90 - 110
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
				LCS			Spike	Matrix		Rec.

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Nitrate-N		2,3,5,7,8	5.07	$\mathrm{mg/L}$	1	5.00	< 0.0136	101	90 - 110	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 122002			Date	Analyzed	A	Analyzed By: RL				
Prep Batch: 103221 QC Preparation: 2015-06-03									Prepared	By: RL
				LCS			Spike	Matrix		Rec.
Param		\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
Fluoride			2,3,5,7,8	5.25	mg/L	1	5.00	< 0.134	105	90 - 110
Chloride			2,3,5,7,8	24.8	$\mathrm{mg/L}$	1	25.0	0.55	97	90 - 110
Sulfate			2,3,5,7,8	25.4	mg/L	1	25.0	< 0.363	102	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Fluoride		2,3,5,7,8	5.25	mg/L	1	5.00	< 0.134	105	90 - 110	0	20
Chloride		2,3,5,7,8	25.5	$\mathrm{mg/L}$	1	25.0	0.55	100	90 - 110	3	20
Sulfate		2,3,5,7,8	25.1	$\mathrm{mg/L}$	1	25.0	< 0.363	100	90 - 110	1	20

Report Date: June 17, 2015	Work Order: 15060221	Page Number: 24 of 34
14-0107-01	Legacy LMPSU Trash Pit	

Laboratory Control Spike (LCS-1)

QC Batch: 122047 Prep Batch: 103232		Dat QC	e Analyzed Preparatio	d: 2015- on: 2015-		Analyzed By: RR Prepared By: PM			
			LCS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Dissolved Calcium		3, 5, 7, 8	55.2	mg/L	1	52.5	< 0.0106	105	85 - 115
Dissolved Potassium		3, 5, 7, 8	54.0	$\mathrm{mg/L}$	1	52.5	< 0.0464	103	85 - 115
Dissolved Magnesium		3, 5, 7, 8	56.1	$\mathrm{mg/L}$	1	52.5	< 0.0224	107	85 - 115
Dissolved Sodium		3, 5, 7, 8	56.8	$\mathrm{mg/L}$	1	52.5	< 0.0197	108	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Calcium		3, 5, 7, 8	55.4	mg/L	1	52.5	< 0.0106	106	85 - 115	0	20
Dissolved Potassium		3, 5, 7, 8	54.4	$\mathrm{mg/L}$	1	52.5	< 0.0464	104	85 - 115	1	20
Dissolved Magnesium		3, 5, 7, 8	56.5	$\mathrm{mg/L}$	1	52.5	< 0.0224	108	85 - 115	1	20
Dissolved Sodium		3, 5, 7, 8	54.4	$\mathrm{mg/L}$	1	52.5	$<\!0.0197$	104	85 - 115	4	20

Matrix Spikes

Matrix Spike ()	MS-1)	Spiked	Sample:	394423
-----------------	---------------	--------	---------	--------

QC Batch:	121995	Date Analyzed:	2015-06-03	Analyzed By:	\mathbf{MT}
Prep Batch:	103216	QC Preparation:	2015-06-03	Prepared By:	\mathbf{MT}

			MS			Spike	Matrix		Rec.	
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	
Benzene		2,3,5,7,8	0.0885	$\mathrm{mg/L}$	1	0.100	< 0.000352	88	12.8 - 158	
Toluene		2,3,5,7,8	0.0894	$\mathrm{mg/L}$	1	0.100	0.002	87	16.9 - 157	
Ethylbenzene		2,3,5,7,8	0.0915	$\mathrm{mg/L}$	1	0.100	0.0007	91	10 - 158	
Xylene		2,3,5,7,8	0.274	mg/L	1	0.300	0.0043	90	10 - 159	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		2,3,5,7,8	0.0876	$\mathrm{mg/L}$	1	0.100	< 0.000352	88	12.8 - 158	1	20
Toluene		2,3,5,7,8	0.0912	$\mathrm{mg/L}$	1	0.100	0.002	89	16.9 - 157	2	20
Ethylbenzene		2,3,5,7,8	0.0933	$\mathrm{mg/L}$	1	0.100	0.0007	93	10 - 158	2	20
Xylene		2,3,5,7,8	0.278	mg/L	1	0.300	0.0043	91	10 - 159	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MS	MSD			Spike	MS	MSD	Rec.
Surrogate		Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	8	0.102	0.101	mg/L	1	0.1	102	101	74.6 - 120
4-Bromofluorobenzene (4-BFB)	8	0.0921	0.0919	$\mathrm{mg/L}$	1	0.1	92	92	75 - 120

Matrix Spike (MS-1) Spiked Sample: 394430

QC Batch: Prep Batch:	n:121999Date Analyzed:2015-06-03ch:103219QC Preparation:2015-06-03									By: RL By: RL
				MS			Spike	Matrix		Rec.
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Nitrate-N			2,3,5,7,8	28.8	$\mathrm{mg/L}$	5	25.0	2.01	107	80 - 120
	. 1 1 4	•1		· 1 1	.1 .1	1	•1 1 1• /	1,		

Report Date: June 17, 2015 14-0107-01		Work Order: 15060221Page NumbeLegacy LMPSU Trash Pit						umber:	26 of 34		
matrix spikes continued						a			Ð		
Param	\mathbf{F}	\mathbf{C}	MSD Resul	t Units	Dil.	Spike Amount	Matrıx Result	Rec.	Rec. Limit	RPD	RPD Limit
			MSD			Spile	Motrix		Pog		חסס
Param	\mathbf{F}	С	Resul	t Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Nitrate-N		2,3,5,7,8	28.5	mg/L	5	25.0	2.01	106	80 - 120	1	20
Percent recovery is based on th	e spike	e result	. RPD is	based on	the spi	ke and spi	ke duplica	te resi	ılt.		
Matrix Spike (MS-1) Spi	ked Sa	mple: 3	394430								
QC Batch: 121999			Date A	Analyzed:	2015	5-06-03			Ana	lyzed By	y: RL
Prep Batch: 103219			QC Pi	reparation	n: 2015	5-06-03			Prep	pared By	r: RL
				MS			Spike	Μ	atrix		Rec.
Param		F	С	Result	Units	Dil.	Amount	R	esult R	lec.	Limit
Fluoride		2	,3,5,7,8	35.1	mg/L	5	25.0	(5.97 1	.12 8	80 - 120
Chloride		2	,3,5,7,8	184	$\mathrm{mg/L}$	5	125	4	47.6 1	.09 8	80 - 120
Sulfate		2	,3,5,7,8	213	mg/L	5	125		74.2 1	.11 8	80 - 120
Percent recovery is based on th	e spike	e result	. RPD is	based on	the spi	ke and spi	ke duplica	te resi	ılt.		
			MSD			Spiko	Motrix		Roc		BDD
Param	\mathbf{F}	С	Result	t Units	Dil	Amount	Result	Rec	Limit	RPD	Limit
Fluoride	1	0.2576	34.6	$m\sigma/L$	5	25.0	6.97	110	80 - 120	1	20
Chloride		2,3,3,7,0	5 04.0 184	$m\sigma/L$	5	125	47.6	109	80 - 120	0	$\frac{20}{20}$
Sulfate		2,3,5,7,8	211	mg/L	5	$125 \\ 125$	74.2	109	80 - 120	1	20 20
Percent recovery is based on th	e spike	e result	. RPD is	based on	the spi	ke and spi	ke duplica	te resi	ılt.		
Matrix Spike (MS-1) Spi	ked Sa	mple: 3	394445								
OC D-+-h 199009			Data	A	001	C 0 C 0 P			A	11 D-	DI
QC Batch: 122002 Prep Batch: 103221			QC Pi	analyzed: reparation	2013 n: 2015	5-06-03 5-06-03			Ana Prep	ared By	y: RL 7: RL
				MS			Spike	М	atrix		Rec.
Param		F	С	Result	Units	Dil.	Amount	R	esult R	lec.	Limit
Nitrate-N		2	,3,5,7,8	28.1	mg/L	5	25.0	1	1.84 1	.05 8	80 - 120
Percent recovery is based on th	e spike	e result	. RPD is	based on	the spi	ke and spi	ke duplica	te resi	ılt.		
			MGD			Spile	Motriv		Roa		BDD
Param	\mathbf{F}	\mathbf{C}	Result	t Units	Dil	Amount	Result	Rec	Limit	RPD	Limit
**	-	\sim		~ ~			- 000 MIO			D	

28.1

2,3,5,7,8

 $\mathrm{mg/L}$

5

25.0

1.84

105

80 - 120

0

20

Nitrate-N

Report Date: June 17, 2015	Work Order: 15060221	Page Number: 27 of 34
14-0107-01	Legacy LMPSU Trash Pit	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 394445

QC Batch:	122002	Date Analyzed:	2015-06-03	Analyzed By:	RL
Prep Batch:	103221	QC Preparation:	2015-06-03	Prepared By:	RL

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Fluoride		2,3,5,7,8	32.2	mg/L	5	25.0	4.97	109	80 - 120
Chloride		2,3,5,7,8	195	mg/L	5	125	57.8	110	80 - 120
Sulfate		2,3,5,7,8	255	$\mathrm{mg/L}$	5	125	112	114	80 - 120

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Fluoride		2,3,5,7,8	31.6	mg/L	5	25.0	4.97	106	80 - 120	2	20
Chloride		2,3,5,7,8	195	$\mathrm{mg/L}$	5	125	57.8	110	80 - 120	0	20
Sulfate		2,3,5,7,8	255	$\mathrm{mg/L}$	5	125	112	114	80 - 120	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 394405

QC Batch:	122047	Date Analyzed:	2015-06-05	Analyzed By:	$\mathbf{R}\mathbf{R}$
Prep Batch:	103232	QC Preparation:	2015-06-04	Prepared By:	\mathbf{PM}

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Dissolved Calcium		3, 5, 7, 8	608	mg/L	1	525	67	103	75 - 125
Dissolved Potassium		3, 5, 7, 8	553	mg/L	1	525	19.1	102	75 - 125
Dissolved Magnesium		3, 5, 7, 8	652	mg/L	1	525	102	105	75 - 125
Dissolved Sodium		3, 5, 7, 8	703	$\mathrm{mg/L}$	1	525	143	107	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Calcium		3, 5, 7, 8	596	mg/L	1	525	67	101	75 - 125	2	20
Dissolved Potassium		3, 5, 7, 8	545	$\mathrm{mg/L}$	1	525	19.1	100	75 - 125	1	20
Dissolved Magnesium		3, 5, 7, 8	641	mg/L	1	525	102	103	75 - 125	2	20
Dissolved Sodium		3, 5, 7, 8	688	$\mathrm{mg/L}$	1	525	143	104	75 - 125	2	20

Calibration Standards

Standard (CCV-1)

QC Batch:	121953		Da	te Analyzed:	2015-06-02	2	Analy	Analyzed By: HJ		
				CCVs	CCVs	CCVs	Percent			
				True	Found	Percent	Recovery	Date		
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
pH		2,3,7,8	s.u.	7.00	7.06	101	98.6 - 101.4	2015-06-02		

Standard (CCV-1)

QC Batch:	121995	Date Analyzed: 2015-06-03						Analyzed By: MT	
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene			2,3,5,7,8	$\mathrm{mg/L}$	0.100	0.0914	91	80 - 120	2015-06-03
Toluene			2,3,5,7,8	$\mathrm{mg/L}$	0.100	0.0919	92	80 - 120	2015-06-03
Ethylbenzene			2,3,5,7,8	$\mathrm{mg/L}$	0.100	0.0917	92	80 - 120	2015-06-03
Xylene			2,3,5,7,8	$\mathrm{mg/L}$	0.300	0.278	93	80 - 120	2015-06-03

Standard (CCV-2)

QC Batch:	121995	Date Analyzed: 2015-06-03						Analyzed By: MT	
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene			2,3,5,7,8	mg/L	0.100	0.0901	90	80 - 120	2015-06-03
Toluene			2,3,5,7,8	$\mathrm{mg/L}$	0.100	0.0912	91	80 - 120	2015-06-03
Ethylbenzen	e		2,3,5,7,8	$\mathrm{mg/L}$	0.100	0.0906	91	80 - 120	2015-06-03
Xylene			2,3,5,7,8	$\mathrm{mg/L}$	0.300	0.274	92	80 - 120	2015-06-03

Standard (CCV-1)

QC Batch: 121999

Date Analyzed: 2015-06-03

Analyzed By: RL
Report Date: 14-0107-01	June 17, 2015		Le	Page Nu	Page Number: 29 of 34			
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Nitrate-N		2,3,5,7,8	mg/L	5.00	5.08	102	90 - 110	2015-06-03
Standard (C	CV-1)							
QC Batch: 1	21999		Date A	Analyzed:	2015-06-03		Analy	vzed By: RL
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Fluoride		2,3,5,7,8	$\mathrm{mg/L}$	5.00	5.31	106	90 - 110	2015-06-03
Chloride		2,3,5,7,8	$\mathrm{mg/L}$	25.0	25.0	100	90 - 110	2015-06-03
Sulfate		2,3,5,7,8	mg/L	25.0	25.5	102	90 - 110	2015-06-03
Standard (C	CV-2)							
QC Batch: 1	21999		Date A	Analyzed:	2015-06-03		Analy	zed By: RL
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Nitrate-N		2,3,5,7,8	$\mathrm{mg/L}$	5.00	5.14	103	90 - 110	2015-06-03

Standard (CCV-2)

QC Batch:	121999			Date A	Analyzed:	2015-06-03		Analy	vzed By: RL
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Fluoride			2,3,5,7,8	mg/L	5.00	5.26	105	90 - 110	2015-06-03
Chloride			2,3,5,7,8	$\mathrm{mg/L}$	25.0	24.9	100	90 - 110	2015-06-03
Sulfate			2,3,5,7,8	$\mathrm{mg/L}$	25.0	25.8	103	90 - 110	2015-06-03

Standard (CCV-1)

QC Batch: 122002

Date Analyzed: 2015-06-03

Analyzed By: RL

Report Date: June 17, 2015 14-0107-01			Le	Work Order: gacy LMPS	Page Number: 30 of 34			
Param Nitrate-N	Flag	Cert 2,3,5,7,8	Units mg/L	CCVs True Conc. 5.00	CCVs Found Conc. 5.14	CCVs Percent Recovery 103	Percent Recovery Limits 90 - 110	Date Analyzed 2015-06-03
			0,					
Standard ((CCV-1)							
QC Batch:	122002		Date A	Analyzed: 2	2015-06-03		Analy	zed By: RL
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Fluoride		2,3,5,7,8	mg/L	5.00	5.26	105	90 - 110	2015-06-03
Chloride		2,3,5,7,8	$\mathrm{mg/L}$	25.0	24.9	100	90 - 110	2015-06-03
Sulfate		2,3,5,7,8	mg/L	25.0	25.8	103	90 - 110	2015-06-03
Standard ((CCV-2)							
QC Batch:	122002		Date A	Analyzed: 2	2015-06-03		Analy	zed By: RL
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed

Standard (CCV-2)

2,3,5,7,8

 $\mathrm{mg/L}$

Nitrate-N

QC Batch:	122002		Date A	Analyzed:	2015-06-03		Analy	vzed By: RL
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Fluoride		2,3,5,7,8	$\mathrm{mg/L}$	5.00	5.38	108	90 - 110	2015-06-03
Chloride		2,3,5,7,8	$\mathrm{mg/L}$	25.0	26.4	106	90 - 110	2015-06-03
Sulfate		2,3,5,7,8	$\mathrm{mg/L}$	25.0	26.8	107	90 - 110	2015-06-03

5.00

5.33

107

90 - 110

Standard (ICV-1)

QC Batch: 122047

Date Analyzed: 2015-06-05

Analyzed By: RR

2015-06-03

Report Date: June 17, 2015 14-0107-01			Work Legacy	Order: 150 LMPSU Tr	Page Number: 31 of 34			
Param	Flag	Cert	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recoverv	Percent Recovery Limits	Date Analvzed
Dissolved Calcium	-0	3,5,7,8	mg/L	51.0	51.1	100	90 - 110	2015-06-05
Dissolved Potassium		3,5,7,8	mg/L	55.0	54.8	100	90 - 110	2015-06-05
Dissolved Magnesium		3, 5, 7, 8	mg/L	51.0	51.8	102	90 - 110	2015-06-05
Dissolved Sodium		3,5,7,8	$\mathrm{mg/L}$	51.0	52.5	103	90 - 110	2015-06-05

Standard (CCV-1)

QC Batch: 122047		D	ate Analyz	Analyz	Analyzed By: RR			
				CCVs	CCVs	$\rm CCVs$	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Calcium		3, 5, 7, 8	$\mathrm{mg/L}$	51.0	50.7	99	90 - 110	2015-06-05
Dissolved Potassium		3, 5, 7, 8	$\mathrm{mg/L}$	55.0	54.3	99	90 - 110	2015-06-05
Dissolved Magnesium		3, 5, 7, 8	$\mathrm{mg/L}$	51.0	51.7	101	90 - 110	2015-06-05
Dissolved Sodium		3, 5, 7, 8	$\mathrm{mg/L}$	51.0	50.5	99	90 - 110	2015-06-05

Standard (ICV-1)

QC Batch:	122119			Date Analyzed:	2015-06-	-09		Analyz	ed By: RL
					ICVs True	ICVs Found	ICVs Percent	Percent	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Specific Cor	ductance		2,3,5,7,8	uMHOS/cm	1410	1400	99	90 - 110	2015-06-09

Standard (CCV-1)

QC Batch:	122119			Date Analyzed:	2015-06-	-09		Analyz	ed By: RL
					CCVs	CCVs	CCVs	Percent	D. I
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Specific Con	ductance		2,3,5,7,8	uMHOS/cm	1410	1390	98	90 - 110	2015-06-09

Report Date: June 17, 2015	Work Order: 15060221	Page Number: 32 of 34
14-0107-01	Legacy LMPSU Trash Pit	

Standard (ICV-1)

QC Batch: 122142			Date Analyzed:	2015-06-09	9		Analyz	ed By: HJ
				ICVs	ICVs	ICVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Hydroxide Alkalinity		2,3,5,7,8	mg/L as CaCo3	0.00	<20.0		-	2015-06-09
Carbonate Alkalinity		2,3,5,7,8	mg/L as CaCo3	0.00	228		-	2015-06-09
Bicarbonate Alkalinity		2,3,5,7,8	mg/L as CaCo3	0.00	$<\!20.0$		-	2015-06-09
Total Alkalinity		2,3,5,7,8	mg/L as CaCo3	250	240	96	90 - 110	2015-06-09

Standard (CCV-1)

QC Batch: 122142			Date Analyzed:	2015-06-09	9		Analyz	ed By: HJ
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Hydroxide Alkalinity		2,3,5,7,8	mg/L as CaCo3	0.00	<20.0		-	2015-06-09
Carbonate Alkalinity		$2,\!3,\!5,\!7,\!8$	mg/L as CaCo3	0.00	226		-	2015-06-09
Bicarbonate Alkalinity		$2,\!3,\!5,\!7,\!8$	mg/L as CaCo3	0.00	$<\!20.0$		-	2015-06-09
Total Alkalinity		2,3,5,7,8	mg/L as CaCo3 $$	250	243	97	90 - 110	2015-06-09

Work Order: 15060221 Legacy LMPSU Trash Pit Page Number: 33 of 34

Appendix

Report Definitions

NameDefinitionMDLMethod Detection LimitMQLMinimum Quantitation LimitSDLSample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
\mathbf{C}	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	L-A-B	L2418.01	El Paso
2	L-A-B	L2418	Lubbock
3	Kansas	Kansas E-10317	Lubbock
4	LELAP	LELAP-02002	El Paso
5	LELAP	LELAP-02003	Lubbock
6	NELAP	T104704221-15-6	El Paso
7	NELAP	T104704219-15-11	Lubbock
8		2014-018	Lubbock

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.

Report Date: June 17, 2015 14-0107-01

Work Order: 15060221 Legacy LMPSU Trash Pit Page Number: 34 of 34

F Description

Qr RPD outside of laboratory limits

Qs Spike recovery outside of laboratory limits.

Qsr Surrogate recovery outside of laboratory limits.

U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

CHAIN-OF-CUSTOL	rienfeld, Ste. 200 d, TX 79701 -687-0901 LAI PROJECT LOCATION OR NAME: Lency CM PS/A Thash P. P. LAI PROJECT #: 14-0/07-09 COLLECTOR: Surch Surch	ESERVATION		BY: (Signature) TURN AROUND TIME LABORATORY USE ONLY: BY: (Signature) TURN AROUND TIME LABORATORY USE ONLY:
	feld, Ste. 200 DATE: <u>6</u> X 79701 PO #: 7-0901 LAI PROJECT	ХАДІОN ХАДІОN С. С. Ф. 400 Ф. С. 400 Ф.		Signature) 1 1 Signature) 10 10 Signature) 2 2
	507 N. Marien Midland, T 432-687	Matrix # of Containers # HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI	X	RECEIVED BY: (
1201		P=PAINT SL=SLUDGE 0T=OTHER ate Time	00:2 02:20 00:2 00:2	DATE/TIME
150600	& hes, Inc.	S=SOIL W=WATER Afaint Lab # D	000 000	(Signature)
	A CITSON SSOCICI Environmen	TRRP report?	MW-3 MW-1-MW MW-5	TOTAL RELINGUISHED BY

i.

Cation-Anion Balance Sheet

Anion Sum meq/L 0-3.0 3.0-10.0 10.0-800 * EC µMHOs/cm 1900 1450 6250 865 TDS 918 3920 1180 578 Bromide bpm Fluoride mdd 4.25 3.88 3.74 3.37 Nitrate-N mdd 1.63 2.34 2.19 0 Chloride mdd 1560 57.8 399 190 Sulfate mdd 234 251 446 112 Magnesium Sodium Potassium Alkalinity 290.00 236.00 653.00 281.00 bpm 10.7 10.1 27.6 6.57 bpm mdd 324 186 950 117 bpm 60.5 58.6 270 34.6 6/10/2015 Calcium mdd 57.6 83 201 54.9 DATE: Sample # 394443 394442 394444 394445

	%	Difference*	0.15	4.98	5.47	4.67			-
Total	Anions	in meq/L	22.29	15.67	66.58	9.88			
Total	Cations	in meq/L	22.22	17.31	74.28	10.84			
	Bromide	in meq/L	0.00	00.00	0.00	0.00			
	Fluoride	in meq/L	0.20	0.20	0.22	0.18			
	Nitrate-N	in meq/L	0.16	0.17	0.00	0.12			
	Chloride	in meq/L	11.26	5.36	44.01	1.63			
	Sulfate	in meq/L	4,87	5.23	9.29	2.33			
	Alkalinity	in meq/L	5.80	4.72	13.06	5.62			
	Potassium	in meq/L	0.27	0.26	0.71	0.17			
	Sodium	in meq/L	14.09	8.09	41.33	5.09			
	Magnesium	in meq/L	4.98	4.82	22.22	2.85			
	Calcium	in meq/L	2.87	4.14	10.03	2.74			
	Sample #		394443	394442	394444	394445			

9	ţ	to	9	
1710	1305	5625	778.5	
-	-	-	-	

2090 1595 6875 951.5

	needs to be 0.55-0.77						
TDS/Anion	0.53	0.59	0.59	0.59		1	
TDS/Cat	0.53	0.53	0.53	0.53			
TDS/EC	0.62	0,63	0.63	0.67			1

Acceptable Difference +/- 0.2 meq/L +/- 2% 5%

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Legacy Trash Pit Project Number: 14-0107-01 Location: None Given

Lab Order Number: 4F13007

NELAP/TCEQ # T104704156-13-3

Report Date: 06/26/14

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW2 5	4F13007-01	Soil	06/12/14 09:40	06-13-2014 10:00
MW2 10	4F13007-02	Soil	06/12/14 09:46	06-13-2014 10:00
MW2 15	4F13007-03	Soil	06/12/14 09:51	06-13-2014 10:00
MW2 20	4F13007-04	Soil	06/12/14 09:56	06-13-2014 10:00
MW2 25	4F13007-05	Soil	06/12/14 09:50	06-13-2014 10:00
MW2 30	4F13007-06	Soil	06/12/14 10:00	06-13-2014 10:00
SB-9 5	4F13007-11	Soil	06/12/14 13:22	06-13-2014 10:00
SB-9 10	4F13007-12	Soil	06/12/14 13:24	06-13-2014 10:00
SB-9 15	4F13007-13	Soil	06/12/14 13:25	06-13-2014 10:00
SB-9 20	4F13007-14	Soil	06/12/14 13:29	06-13-2014 10:00
SB-9 25	4F13007-15	Soil	06/12/14 13:32	06-13-2014 10:00
SB-9 30	4F13007-16	Soil	06/12/14 13:35	06-13-2014 10:00
SB-9 35	4F13007-17	Soil	06/12/14 13:42	06-13-2014 10:00
SB-10 5	4F13007-19	Soil	06/12/14 12:47	06-13-2014 10:00
SB-10 10	4F13007-20	Soil	06/12/14 12:52	06-13-2014 10:00
SB-10 15	4F13007-21	Soil	06/12/14 12:56	06-13-2014 10:00
SB-10 20	4F13007-22	Soil	06/12/14 13:00	06-13-2014 10:00
SB-10 25	4F13007-23	Soil	06/12/14 13:02	06-13-2014 10:00
SB-10 30	4F13007-24	Soil	06/12/14 13:06	06-13-2014 10:00
SB-11 5	4F13007-27	Soil	06/12/14 10:56	06-13-2014 10:00
SB-11 10	4F13007-28	Soil	06/12/14 11:00	06-13-2014 10:00
SB-11 15	4F13007-29	Soil	06/12/14 11:04	06-13-2014 10:00
SB-12 5	4F13007-35	Soil	06/12/14 14:03	06-13-2014 10:00
SB-12 10	4F13007-36	Soil	06/12/14 14:05	06-13-2014 10:00
SB-12 15	4F13007-37	Soil	06/12/14 14:10	06-13-2014 10:00
SB-12 20	4F13007-38	Soil	06/12/14 14:15	06-13-2014 10:00
SB-12 25	4F13007-39	Soil	06/12/14 14:20	06-13-2014 10:00
SB-12 30	4F13007-40	Soil	06/12/14 14:23	06-13-2014 10:00
SB-12 35	4F13007-41	Soil	06/12/14 14:25	06-13-2014 10:00
SB-14 5	4F13007-43	Soil	06/12/14 14:45	06-13-2014 10:00
SB-14 10	4F13007-44	Soil	06/12/14 14:48	06-13-2014 10:00
SB-14 15	4F13007-45	Soil	06/12/14 14:53	06-13-2014 10:00

Chloride analysis was requested on additonal samples on 06/20/14. This report includes orginal data and added analyses.

MW2 5

		4F13	007-01 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permiar	n Basin F	Environme	ntal Lab, I	L .P.				
General Chemistry Parameter	rs by EPA / Standard Methods								
Chloride	131	5.32	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	6.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	

MW2 10

4F13007-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Eı	nvironmen	ıtal Lab, I	P.				
General Chemistry Parameters by I	EPA / Standard Methods								
Chloride	692	5.32	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	6.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	

MW2 15

4F13007-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Er	nvironmen	ıtal Lab, I	 P.				
General Chemistry Parameters by E	PA / Standard Methods								
Chloride	381	10.6	mg/kg dry	10	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	6.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	

MW2 20

4F13007-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Eı	nvironmen	ıtal Lab, I	L.P.				
General Chemistry Parameters by H	EPA / Standard Methods								
Chloride	315	5.32	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	6.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	

MW2 25

4F13007-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Eı	nvironmen	ıtal Lab, I	L.P.				
General Chemistry Parameters by	EPA / Standard Methods								
Chloride	562	5.49	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	9.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	

MW2 30

4F13007-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin Er	nvironmen	ıtal Lab, I	 P.				
General Chemistry Parameters by E	PA / Standard Methods								
Chloride	81.2	5.21	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	4.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	

SB-9 5

4F13007-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	ital Lab, I	L.P.				
General Chemistry Parameters by EP	A / Standard Method	s							
Chloride	378	5.43	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P4F1810	06/16/14	06/16/14	TPH 8015M	
>C12-C28	490	27.2	mg/kg dry	1	P4F1810	06/16/14	06/16/14	TPH 8015M	
>C28-C35	267	27.2	mg/kg dry	1	P4F1810	06/16/14	06/16/14	TPH 8015M	
Surrogate: 1-Chlorooctane		74.4 %	70-1	30	P4F1810	06/16/14	06/16/14	TPH 8015M	
Surrogate: o-Terphenyl		81.2 %	70-1	30	P4F1810	06/16/14	06/16/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	757	81.5	mg/kg dry	1	[CALC]	06/16/14	06/16/14	calc	

SB-9 10

4F13007-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmei	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA	Standard Method	s							
Chloride	316	1.04	mg/kg dry	1	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	4.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	26.0	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		96.3 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	78.1	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-9 15

4F13007-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	ital Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	S							
Chloride	1320	5.68	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	12.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 h	oy EPA Method 80	15M							
C6-C12	ND	28.4	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	28.4	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	28.4	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		92.6 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		95.8 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	85.2	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-9 20

4F13007-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Er	nvironmen	ıtal Lab, I	P .				
General Chemistry Parameters by	EPA / Standard Methods								
Chloride	344	5.43	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

SB-9 25

4F13007-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	an Basin Ei	nvironmen	ıtal Lab, I					
General Chemistry Parameters by	EPA / Standard Methods								
Chloride	178	5.43	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

SB-9 30

4F13007-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Eı	nvironmen	ıtal Lab, I	Ъ. Р.				
General Chemistry Parameters by	EPA / Standard Methods								
Chloride	297	5.75	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	13.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

SB-9 35

4F13007-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Eı	nvironmer	ıtal Lab, I	 .				
General Chemistry Parameters by	v EPA / Standard Methods								
Chloride	500	5.62	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	11.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

SB-10 5

4F13007-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	ital Lab, I	L.P.				
General Chemistry Parameters by EPA	Standard Method	5							
Chloride	227	5.43	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	81.5	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-10 10

4F13007-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	tal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	s							
Chloride	1010	5.75	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	13.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 h	oy EPA Method 80	15M							
C6-C12	ND	28.7	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	28.7	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	28.7	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		98.7 %	70-1.	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		104 %	70-1.	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	86.2	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-10 15

4F13007-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	tal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Methods	5							
Chloride	328	5.56	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	10.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 h	oy EPA Method 80	15M							
C6-C12	ND	27.8	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		103 %	70-1.	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-1.	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	83.3	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

Larson & Associates, Inc.Project:Legacy Trash PitFP.O. Box 50685Project Number:14-0107-01Midland TX, 79710Project Manager:Mark Larson											
		SE 4F130	-10 20 07-22 (Se	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	Perm	iian Basin Ei	vironme	ental Lab, L	P.						
General Chemistry Parameters by l	EPA / Standard Method	ls									

5.49 mg/kg dry

%

0.1

572

9.0

P4F2308

P4F2402

06/23/14

06/24/14

06/23/14

06/24/14

EPA 300.0

% calculation

5

1

Chloride

% Moisture

Fax: (432) 687-0456

SB-10 25

4F13007-23 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Er	nvironmen	ıtal Lab, L	P .				
General Chemistry Parameters by E	PA / Standard Methods								
Chloride	621	5.43	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

SB-10 30

4F13007-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permian Basin Environmental Lab, L.P. eral Chemistry Parameters by EPA / Standard Methods								
General Chemistry Parameters by E	EPA / Standard Methods								
Chloride	422	5.38	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	7.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

SB-11 5

4F13007-27 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Environmer	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	s							
Chloride	79.2	5.56	mg/kg dry	5	P4F2002	06/18/14	06/20/14	EPA 300.0	
% Moisture	10.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 80	15M							
C6-C12	ND	27.8	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		94.0 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		104 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	83.3	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-11 10

4F13007-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	ntal Lab,	L.P.				
General Chemistry Parameters by EPA /	Standard Method	S							
Chloride	428	1.08	mg/kg dry	1	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	7.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 h	oy EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		97.3 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	80.6	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-11 15

4F13007-29 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	tal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	S							
Chloride	187	5.43	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 h	oy EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		91.2 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		96.8 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	81.5	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-12 5

4F13007-35 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environme	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	s							
Chloride	286	5.26	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		103 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	78.9	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

SB-12 10

4F13007-36 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	tal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	S							
Chloride	700	5.49	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	9.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 h	oy EPA Method 80	15M							
C6-C12	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		92.7 %	70-1.	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		99.9 %	70-1.	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	82.4	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

SB-12 15

4F13007-37 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin F	Environme	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA	Standard Method	ls							
Chloride	581	5.49	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	9.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8()15M							
C6-C12	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		93.3 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	82.4	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

Fax: (432) 687-0456

SB-12 20

4F13007-38 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Er	nvironmer	ıtal Lab, I					
General Chemistry Parameters by I	EPA / Standard Methods								
Chloride	136	10.8	mg/kg dry	10	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	7.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	
SB-12 25

4F13007-39 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	an Basin Ei	nvironmen	ıtal Lab, I	L.P.				
General Chemistry Parameters by	EPA / Standard Methods								
Chloride	1220	5.81	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	14.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

SB-12 30

4F13007-40 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Er	nvironmen	ıtal Lab, I	P.				
General Chemistry Parameters by l	EPA / Standard Methods								
Chloride	102	1.10	mg/kg dry	1	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	9.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

Larson & Associates, Inc.	ciates, Inc. Project: Legacy Trash Pit										
P.O. Box 50685		Project Numb	er: 14-010	07-01							
Midland TX, 79710	Project Manager: Mark Larson										
		SE 4F130	8-12 35 07-41 (Se	oil)							
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note		
	Perm	ian Basin Er	ivironme	ental Lab, L	P.						
General Chemistry Parameters by EP	A / Standard Method	S									

General Chemistry Furumeters by Errey Standa	u memous							
Chloride	67.7	1.16	mg/kg dry	1	P4F2308	06/23/14	06/23/14	EPA 300.0
% Moisture	14.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation

SB-14 5

4F13007-43 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmer	ital Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	s							
Chloride	10.9	1.05	mg/kg dry	1	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 h	oy EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		95.0 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	78.9	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-14 10

4F13007-44 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	tal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	S							
Chloride	89.1	5.43	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 h	oy EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		93.7 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	81.5	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-14 15

4F13007-45 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmen	ital Lab, I	L.P.				
General Chemistry Parameters by El	PA / Standard Method	8							
Chloride	160	5.38	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	7.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	98.0	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		81.6 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		88.5 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	98.0	80.6	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

		Reporting		Snike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4F1601 - *** DEFAULT PREP ***										
Blank (P4F1601-BLK1)				Prepared &	x Analyzed	: 06/16/14				
% Moisture	ND	0.1	%							
Duplicate (P4F1601-DUP1)	Sou	rce: 4F13004	-01	Prepared 8	k Analyzed	: 06/16/14				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P4F1601-DUP2)	Sou	rce: 4F13009	-01	Prepared 8	k Analyzed	: 06/16/14				
% Moisture	28.0	0.1	%		28.0			0.00	20	
Duplicate (P4F1601-DUP3)	Sou	rce: 4F13009	-02	Prepared &	a Analyzed	: 06/16/14				
% Moisture	15.0	0.1	%		15.0			0.00	20	
Batch P4F1803 - *** DEFAULT PREP ***										
Blank (P4F1803-BLK1)				Prepared &	x Analyzed	: 06/18/14				
Chloride	ND	1.00	mg/kg wet							
LCS (P4F1803-BS1)				Prepared &	a Analyzed	: 06/18/14				
Chloride	113	1.00	mg/kg wet	100		113	80-120			
LCS Dup (P4F1803-BSD1)				Prepared &	a Analyzed	: 06/18/14				
Chloride	116	1.00	mg/kg wet	100		116	80-120	2.38	20	
Duplicate (P4F1803-DUP1)	Sou	rce: 4F13003	-01	Prepared &	a Analyzed	: 06/18/14				
Chloride	2420	10.4	mg/kg dry	-	2440			0.728	20	
Matrix Spike (P4F1803-MS1)	Sou	rce: 4F13003	-01	Prepared 8	k Analyzed	: 06/18/14				
Chloride	2710	10.4	mg/kg dry		2440		80-120			

		Reporting		Snike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4F2002 - *** DEFAULT PREP ***										
Blank (P4F2002-BLK1)				Prepared: (06/18/14 A	nalyzed: 06	6/20/14			
Chloride	ND	1.00	mg/kg wet							
LCS (P4F2002-BS1)				Prepared: (06/18/14 A	nalyzed: 06	6/20/14			
Chloride	123	1.00	mg/kg wet	110		112	80-120			
LCS Dup (P4F2002-BSD1)				Prepared: (06/18/14 A	nalyzed: 06	6/20/14			
Chloride	126	1.00	mg/kg wet	110		115	80-120	3.05	20	
Duplicate (P4F2002-DUP1)	Sou	rce: 4F13013	-39	Prepared: (06/18/14 A	nalyzed: 06	6/20/14			
Chloride	591	5.75	mg/kg dry		588			0.410	20	
Batch P4F2308 - *** DEFAULT PREP ***										
Blank (P4F2308-BLK1)				Prepared 8	د Analyzed	: 06/23/14				
Chloride	ND	1.00	mg/kg wet							
LCS (P4F2308-BS1)				Prepared 8	د Analyzed	: 06/23/14				
Chloride	89.7	1.00	mg/kg wet	100		89.7	80-120			
LCS Dup (P4F2308-BSD1)				Prepared &	k Analyzed:	: 06/23/14				
Chloride	91.3	1.00	mg/kg wet	100		91.3	80-120	1.74	20	
Duplicate (P4F2308-DUP1)	Sou	rce: 4F23002	-01	Prepared &	analyzed:	: 06/23/14				
Chloride	96.8	5.88	mg/kg dry		99.9			3.11	20	
Matrix Spike (P4F2308-MS1)	Sou	rce: 4F13007	-17	Prepared 8	د Analyzed	: 06/23/14				
Chloride	1010	5.62	mg/kg dry	562	500	91.3	80-120			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4F2402 - *** DEFAULT PREP ***										
Blank (P4F2402-BLK1)				Prepared &	z Analyzed	: 06/24/14				
% Moisture	ND	0.1	%							
Duplicate (P4F2402-DUP1)	Sour	ce: 4F13013-4	46	Prepared &	z Analyzed	: 06/24/14				
% Moisture	8.0	0.1	%		7.0			13.3	20	
Duplicate (P4F2402-DUP2)	Sour	ce: 4F24003-0)4	Prepared &	z Analyzed	: 06/24/14				
% Moisture	17.0	0.1	%		17.0			0.00	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4F1603 - TX 1005										
Blank (P4F1603-BLK1)				Prepared:	06/13/14 A	nalyzed: 06	6/14/14			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	154		"	150		103	70-130			
Surrogate: o-Terphenyl	85.4		"	75.0		114	70-130			
LCS (P4F1603-BS1)				Prepared:	06/13/14 A	nalyzed: 06	6/14/14			
C6-C12	1020	25.0	mg/kg wet	1200		84.8	75-125			
>C12-C28	1270	25.0	"	1200		105	75-125			
Surrogate: 1-Chlorooctane	151		"	150		101	70-130			
Surrogate: o-Terphenyl	70.6		"	75.0		94.2	70-130			
LCS Dup (P4F1603-BSD1)				Prepared:	06/13/14 A	nalyzed: 06	6/14/14			
C6-C12	1020	25.0	mg/kg wet	1200		84.8	75-125	0.0246	20	
>C12-C28	1270	25.0	"	1200		106	75-125	0.327	20	
Surrogate: 1-Chlorooctane	151		"	150		101	70-130			
Surrogate: o-Terphenyl	72.6		"	75.0		96.9	70-130			
Duplicate (P4F1603-DUP1)	Sou	rce: 4F13008	8-02	Prepared:	06/13/14 A	nalyzed: 06	6/14/14			
C6-C12	142	26.3	mg/kg dry		136			4.37	20	
>C12-C28	2220	26.3	"		2150			2.87	20	
Surrogate: 1-Chlorooctane	151		"	158		95.8	70-130			
Surrogate: o-Terphenyl	79.5		"	78.9		101	70-130			
Batch P4F1604 - TX 1005										
Blank (P4F1604-BLK1)				Prepared:	06/13/14 A	nalyzed: 06	6/14/14			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	152		"	150		102	70-130			
Surrogate: o-Terphenyl	76.1		"	75.0		101	70-130			

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	N/DEC	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4F1604 - TX 1005										
LCS (P4F1604-BS1)				Prepared: (06/13/14 A	nalyzed: 06	6/14/14			
C6-C12	983	25.0	mg/kg wet	1000		98.3	75-125			
>C12-C28	1180	25.0	"	1000		118	75-125			
Surrogate: 1-Chlorooctane	143		"	150		95.3	70-130			
Surrogate: o-Terphenyl	67.0		"	75.0		89.3	70-130			
LCS Dup (P4F1604-BSD1)				Prepared: (06/13/14 A	nalyzed: 06	6/14/14			
C6-C12	1010	25.0	mg/kg wet	1000		101	75-125	3.03	20	
>C12-C28	1180	25.0	"	1000		118	75-125	0.0510	20	
Surrogate: 1-Chlorooctane	150		"	150		100	70-130			
Surrogate: o-Terphenyl	73.2		"	75.0		97.6	70-130			
Duplicate (P4F1604-DUP1)	Sou	rce: 4F13007	-21	Prepared: (06/13/14 A	nalyzed: 06	/14/14			
C6-C12	ND	27.8	mg/kg dry		ND				20	
>C12-C28	ND	27.8	"		ND				20	
Surrogate: 1-Chlorooctane	178		"	167		107	70-130			
Surrogate: o-Terphenyl	94.6		"	83.3		114	70-130			
Batch P4F1810 - TX 1005										
Blank (P4F1810-BLK1)				Prepared &	2 Analyzed:	06/16/14				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	169		"	200		84.6	70-130			
Surrogate: o-Terphenyl	91.0		"	100		91.0	70-130			
LCS (P4F1810-BS1)				Prepared &	2 Analyzed:	06/16/14				
C6-C12	1200	25.0	mg/kg wet	1200		100	75-125			
>C12-C28	1250	25.0	"	1200		104	75-125			
Surrogate: 1-Chlorooctane	195		"	200		97.3	70-130			
Surrogate: o-Terphenyl	93.5		"	100		93.5	70-130			

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4F1810 - TX 1005										
LCS Dup (P4F1810-BSD1)				Prepared &	د Analyzed	: 06/16/14				
C6-C12	1170	25.0	mg/kg wet	1200		97.6	75-125	2.82	20	
>C12-C28	1290	25.0		1200		107	75-125	3.14	20	
Surrogate: 1-Chlorooctane	192		"	200		95.8	70-130			
Surrogate: o-Terphenyl	94.8		"	100		94.8	70-130			
Duplicate (P4F1810-DUP1)	Sour	ce: 4F13013	-17	Prepared: (06/16/14 A	nalyzed: 06	6/17/14			
C6-C12	ND	27.5	mg/kg dry		ND				20	
>C12-C28	ND	27.5			ND				20	
Surrogate: 1-Chlorooctane	192		"	220		87.2	70-130			
Surrogate: o-Terphenyl	106		"	110		96.1	70-130			

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Bun Barron

Date: 6/26/2014

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

UAY L THER L CARRIER BILL # L CARRIER B	Hata haskon hood time	BATE/TIME	.INQUISHED BY:(Signature)	R
DAY CI CUSTODY SEALS - CI BROKEN CI INTACT CI NO	RECEIVED BY: (Signature)	batertime	INQUISHED BY:(Signature)	RE
URNAROUND TIME LABORATORY USE ONLY:	RECEIVED BY: (Signature)	CATE/TIME	INQUISHED BY:(Signature)	REL
			AL	101
		4 132	25	
		29	2	
	7	1245	8 31	
		124	0	
	- 100 - 100	122	9 S	-OS
~		1024	60 10	
		1015	90 06	
		1006	4. 08	
		(002	35 07	-
		(000)	2 00	-
		450	20 22	-
		980	70 14	
		951 I	50 51	
		1 946 1	lo 02	-
		oh2 940 5	1 10 S 2N	MM
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	# of Conta HCI HNO ₃ H ₂ SO ₄ ICE UNPRES SEA SEA SEA SEA SEA SEA SEA SEA SEA S	Date Time Matrix	Field Lab #	, Ma
	Aliners	2007	IME ZONE: le zone/State:	•
		OT=OTHER	Yes No A=AIR	
$\left \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	PRESERVATION	P=PAINT SI =SI I IDGE	RP report? S=SOIL	1
ECT # 14-0107-01 COLLECTOR: Horn	432-08/-0901 LAI PRO.		a Reported to:	Data
LAB WORK ORDER #:	Midland, TX 79701 PO #:		ssociates, Inc.	-
6/14/14 PAGE (0	507 N. Marienfeld, Ste. 200 DATE:			
CHAIN-OF-CUSI				

where the odditional analysis !	data happe had times	heront o	
HAND DELIVERED	0- 01 112111		
2 UAY L OTHER [] CARRIER BILL #	RECEIVED BY (Signature)	DATE/TIME	RELINQUISHED BY:(Signature)
1 DAY I RECEIVING TEMP: 1 DAY I THERM#: 1 DAY I CUSTODY SEALS - I BROKEN II INTACT II NOT USED	RECEIVED BY: (Signature)	DATE/TIME	RELINQUISHED BY:(Signature)
TURN AROUND TIME LABORATORY USE ONLY:	RECEIVED BY: (Signature)	DATE/TIME	RELINOLAISHED BY:(Signature)
			TOTAL
		1 112 1	20 3()
		<u>e</u>	15 20
		((0))	82 01
		ماكحا	LU 5 11-95
		110	40 J/0
		108	35 25
		1a	30 74
		62	21 23
		Q.	20 22
		1256	15 2
		1252	bo 20
		I CH2I	SB-10 5 19
		145	40' 18
		142 1	35'
		12 135 5	SB-9 bor 10 6
	# of Cont HCl HNO ₃ H ₂ SO ₄ I ICE UNPRES VNPRES VNPRES	Date Time Matrix	Field Sample I.D. Lab #
(a) (b) (c) (c) <td>NaOH I SERVED</td> <td>F13007</td> <td>TIME ZONE: Time zone/State:</td>	NaOH I SERVED	F13007	TIME ZONE: Time zone/State:
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	PRESERVATION	P=PAINT SL=SLUDGE OT=OTHER	TRRP report? S=SOIL
	LAI PR		Data Reported to:
(0/2/14) LAB WORK ORDER #: CT LOCATION OR NAME: Legacy Thuh ht page 43 of	507 N. Marienfeld, Ste. 200 Midland, TX 79701 432-687-0901 PROJE		Aarson & ssociates, Inc.

heart date helve had time or pure for additional analyse	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) OTHER CONTROL CARRIER BILL #	RELINQUISHED BY:(Signature) DATE/TIME RECEIVED BY: (Signature) 1 DAY D RECEIVING TEMP: RELINQUISHED BY:(Signature) 1 DAY D CUSTODY SEALS - D BROKEN D INTACT	RELINQUISHED BY: (Signature) DATE/IMME RECEIVED BY: (Signature) TURN AROUND TIME LABORATORY USE ONLY: 1 10		10 44 248 V	28-14 S L3 ZHS	40 42 228	35 [1] 225	30 40 223	25 39 220	20 38	× 10 30 205	SB-12 S 25 203 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34 1121	35 32 1121	30 32 1 1120 1 1	SB-11 25 31 612 1118 S 1 X X X X X X X X X X X X X X X X X X	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TIME ZONE: Time zone/State: Unit 2017 tainers H NaO H NAO H H NAO H NA	TRRP report? S=SOIL P=PAINT Image: state of the sta	Data Reported to: LAI PROJECT #: I A - QIQ I - QI COLLECTOR: VIQ	Arson & 507 N. Marienfeld, Ste. 200 PO #: LAB WORK ORDER #: And And, TX 79701 PROJECT LOCATION OR NAME: LOUGH TASK
Oncilipan 1		I HERM #:	A NCF													·		FIELD NOTES			CTOR VIAA-	PAGE SOF Trash Pr 1 Page 44

1 Drading Con add Ithomal analysis !	no had time	that yop the	ho
	RECEIVED BY: (Signature)	DATECTINE	RELINQUISHED BY: (Signature)
) 1 DAY C RECEIVING IEMP: 2 0 IHERM #:	RECEIVED BY: (Signature)	DATE/TIME	RELINQUISHED BY:(Signature)
	RECEIVED BY: (Signature)	6/12/0H	RELINQUISHED BY:(Signature)
			TOTAL
		1 311 4	40 50
		308	35 HQ
		305	Sh oc
		1 201 1	Lh sr
	َہ بر	5 352 21°	SB-14 20 46 1
x x x x x x x x x x	 → + of Co + HCI + HNO₃ + H₂SO₄ + ICE - UNPRE 	Date Time Matrix	Field Sample I.D. Lab #
A A C C C C C C C C C C	ntainers	5007	TIME ZONE: Time zone/State:
Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million Image: 100 million	PRESERVATION	P=PAINT SL=SLUDGE OT=OTHER	TRRP report? S=SOIL Yes No A=AIR
	432-687-0901	ġ.	Data Reported to:
200 DATE: ////// PAGE // OF 200 PO #:	507 N. Marienfeld, Ste. Midland, TX 79701		Aarson &
CHAIN-OF-CUSTOD			

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Legacy Trash Pit Project Number: 14-0107-01 Location:

Lab Order Number: 5D16012

NELAP/TCEQ # T104704156-13-3

Report Date: 04/24/15

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-3 0FT	5D16012-01	Soil	04/15/15 09:19	04-15-2015 00:00
MW-3 10FT	5D16012-02	Soil	04/15/15 09:29	04-15-2015 00:00
MW-3 20FT	5D16012-03	Soil	04/15/15 09:32	04-15-2015 00:00
MW-3 30FT	5D16012-04	Soil	04/15/15 09:44	04-15-2015 00:00
MW-3 40FT	5D16012-05	Soil	04/15/15 09:46	04-15-2015 00:00
MW-3 50FT	5D16012-06	Soil	04/15/15 09:56	04-15-2015 00:00
MW-3 60FT	5D16012-07	Soil	04/15/15 09:59	04-15-2015 00:00
MW-4 0FT	5D16012-08	Soil	04/15/15 12:49	04-15-2015 00:00
MW-4 10FT	5D16012-09	Soil	04/15/15 12:54	04-15-2015 00:00
MW-4 20FT	5D16012-10	Soil	04/15/15 12:57	04-15-2015 00:00
MW-4 30FT	5D16012-11	Soil	04/15/15 13:07	04-15-2015 00:00
MW-4 40FT	5D16012-12	Soil	04/15/15 13:45	04-15-2015 00:00
MW-4 50FT	5D16012-13	Soil	04/15/15 14:06	04-15-2015 00:00
MW-4 60FT	5D16012-14	Soil	04/15/15 15:03	04-15-2015 00:00

MW-3 0FT

		5D16	012-01 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permian	Basin E	nvironme	ntal Lab, l	L .P.				
General Chemistry Parameters	by EPA / Standard Methods								
Chloride	ND	1.11	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	10.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

MW-3 10FT

5D16012-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Er	nvironmer	ıtal Lab, L	P.				
General Chemistry Parameters by I	EPA / Standard Methods								
Chloride	550	1.10	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	9.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

MW-3 20FT

5D16012-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin Er	nvironmer	ntal Lab, L	P .				
General Chemistry Parameters by	EPA / Standard Methods								
Chloride	166	1.03	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	3.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

Fax: (432) 687-0456

MW-3 30FT

5D16012-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Er	nvironmen	ıtal Lab, I					
General Chemistry Parameters by E	PA / Standard Methods								
Chloride	195	1.08	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	7.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

Fax: (432) 687-0456

MW-3 40FT

5D16012-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin Ei	nvironmen	ital Lab, L	P.				
General Chemistry Parameters by E	PA / Standard Methods								
Chloride	66.5	1.12	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	11.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

Fax: (432) 687-0456

MW-3 50FT

5D16012-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters by I	EPA / Standard Methods								
Chloride	11.6	1.10	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	9.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

MW-3 60FT

5D16012-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters by E	PA / Standard Methods								
Chloride	46.6	1.08	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	7.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

MW-4 0FT

5D16012-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters by E	PA / Standard Methods								
Chloride	ND	1.09	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	8.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

Fax: (432) 687-0456

MW-4 10FT

5D16012-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters by H	EPA / Standard Methods								
Chloride	ND	1.19	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	16.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

Fax: (432) 687-0456

MW-4 20FT

5D16012-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters by H	EPA / Standard Methods								
Chloride	52.4	1.08	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	7.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

Fax: (432) 687-0456

MW-4 30FT

5D16012-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters by H	EPA / Standard Methods								
Chloride	28.1	1.06	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	6.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

Fax: (432) 687-0456

MW-4 40FT

5D16012-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters by EP.	<u>A / Standard Methods</u>								
Chloride	5.53	1.04	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	7.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

Fax: (432) 687-0456

MW-4 50FT

5D16012-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters by E	EPA / Standard Methods								
Chloride	17.5	1.14	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	12.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

Fax: (432) 687-0456

MW-4 60FT

5D16012-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	ın Basin Eı	nvironmen	ıtal Lab, I					
General Chemistry Parameters by	EPA / Standard Methods								
Chloride	126	1.37	mg/kg dry	1	P5D2203	04/22/15	04/22/15	EPA 300.0	
% Moisture	27.0	0.1	%	1	P5D2002	04/20/15	04/20/15	% calculation	

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5D2002 - *** DEFAULT PREP ***										
Blank (P5D2002-BLK1)				Prepared &	Analyzed:	: 04/20/15				
% Moisture	ND	0.1	%							
Duplicate (P5D2002-DUP1)	Sou	rce: 5D16011	-01	Prepared &	Analyzed:	: 04/20/15				
% Moisture	12.0	0.1	%		11.0			8.70	20	
Duplicate (P5D2002-DUP2)	Sou	rce: 5D16012	-01	Prepared &	Analyzed:	: 04/20/15				
% Moisture	9.0	0.1	%	10.0				10.5	20	
Duplicate (P5D2002-DUP3)	Sou	rce: 5D16013	-01	Prepared &	Analyzed:	: 04/20/15				
% Moisture	6.0	0.1	%	6.0			0.00	20		
Duplicate (P5D2002-DUP4)	Source: 5D17005-07			Prepared &	Analyzed:	: 04/20/15				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Batch P5D2203 - *** DEFAULT PREP ***										
Blank (P5D2203-BLK1)				Prepared 8	Analyzed:	: 04/22/15				
Chloride	ND	1.00	mg/kg wet							
LCS (P5D2203-BS1)				Prepared &	Analyzed:	: 04/22/15				
Chloride	116	1.00	mg/kg wet	100		116	80-120			
LCS Dup (P5D2203-BSD1)				Prepared 8	Analyzed:	: 04/22/15				
Chloride	111	1.00	mg/kg wet	100		111	80-120	4.73	20	
Duplicate (P5D2203-DUP1)	Sou	rce: 5D16006	-02	Prepared &	Analyzed:	: 04/22/15				
Chloride	1570	5.88	mg/kg dry		1580			0.513	20	

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5D2203 - *** DEFAULT PREP ***										
Duplicate (P5D2203-DUP2)	Source	e: 5D16012-	-08	Prepared &	Analyzed:	04/22/15				
Chloride	ND	1.09	mg/kg dry		ND				20	
Matrix Spike (P5D2203-MS1)	Source	e: 5D16006-	-02	Prepared &	Analyzed:	04/22/15				
Chloride	2090	5.88	mg/kg dry	588	1580	86.8	80-120			

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Bun Barron

Date: 4/24/2015

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.
HAND DELIVERED			Sr. Cl			
CARRIER BILL #		D BY: (Signature)		DATE/TI	ELINQUISHED BY:(Signature)	R
CUSTODY SEALS - BROKEN - HINTACT - NOT USED						
RECEIVING TEMP: 2.1 THERM #		D BY: (Signature)	ME RECEIVE	DATE/TI	ELINQUISHED BY:(Signature)	R
LABORATORY USE ONLY: UC N/F		D BY: (Signature)	ME RECEIVE	Charlertin	ELINQUISHED BY: (Signature)	RE
					STAL THE TRUE TO A STATE OF A STA	TC
¥						
		<	4	1503	W-Y GOFT JU	Ň
				1406	W-Y SOFT-VS	M
				1345	W-4 YOFT -22	M
				1307	W-4 30FT -11	M
				1257	IN-4 0FT -10	M
	· · · · · · · · · · · · · · · · · · ·			1254	W-4 10 FT DO	З
				1249	W-4 OFT -N	M)
				9:59	W-3 WFT TN	M
				9:56	W-3 50FT-00	M
				91:46	IW-3 40 FT DT	3
				4.44	W-3 30FT JUL	M
				9:32	W-3 20FT 05	B
	· · · · · · · · · · · · · · · · · · ·			1 9:29	NW-3 10FT 172	Ň
		×	I S	15-15 9.19	NW-3 OFT 01 4	\geq
			Matrix # of C	Date Time	Field Sample I.D. Lab #	·
2010 2010 2010 2010 2010 2010 2010 2010	121-12-12-12-12-12-12-12-12-12-12-12-12-		ontaine	1101	M N N N N N N N N N N N N N N N N N N N	
() (2) (2) (2) (2) (2) (2) (2) (2) (2) (100 000 100 000 100 000 100 100 100 100		rs	1 	TIME ZONE:	_
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 100 100 100 100 100 100 100 100 100			SL=SLUDGE OT=OTHER		<u>·</u> .
[] [[[] [[] [] [] [] [] [] [1/0/	RESERVATION	F		TRRP report? S=SOIL	
07-01 COLLECTOR: KH	PROJECT #: 14-0/	LAII)ata Reported to:	D
VAME: 14-0107-01	JECT LOCATION OR N	and, TX 79701 FU #	Mic	сі *	Environmental Consultant	·
		Marienfeld, Ste. 200	507 N.		A arson &	
	- 4-15-15					

CHAIN OF CLIPTONK

 $\chi_{s}^{(2)}$

APPENDIX G

Horizontal Hydraulic Conductivity (Slug Test) Data

