EXCAVATION CLOSURE REPORT AND GROUNDWATER INVESTIGATION PLAN

Langlie Mattix Penrose Sand Unit Trash Pit Lea County, New Mexico

LAI Project No. 14-0107-01

October 7, 2014

Prepared for: Legacy Reserves, L.P. 30 West Wall Street, Suite 1400 Midland, Texas 79701

Prepared by:

Larson & Associates, Inc. 507 North Marienfeld, Suite 200 Midland, Texas 79701

Mark J. Larson Certified Professional Geologist No. 10490

Table of Contents

1.0 EXECUTIVE SUMMARY 1
2.0 INTRODUCTON
2.1 Regulatory Background 2
2.2 Setting
2.3 Historical Aerial Photographs
2.3.1 2011 US Geological Survey Color Photograph
2.3.2 1997 US Geological Survey Black and White Photograph
2.3.3 1983 US Geological Survey Color Photograph
2.3.4 1968 USGS Black and White Photograph
2.3.5 1954 USGS Black and White Photograph
3.0 CURRENT INVESTIGATIONS 4
3.1 Soil Samples 4
3.2 SPLP Analysis
3.3 Soil Borings
3.4 Monitoring Wells 7
3.5 Groundwater Samples
4.0 EXCAVATION CLOSURE
5.0 CONCLUSIONS
6.0 GROUNDWATER INVESTIGATION PLAN10

List of Tables

Table 1	Excavation Soil Sample Analytical Data Summary
Table 2	Stockpile Soil Sample Analytical Data Summary
Table 3	SPLP Analytical Data Summary
Table 4	Soil Boring Sample Analytical Data Summary
Table 5	Monitoring Well Drilling and Completion Summary
Table 6	Groundwater Sample Analytical Data Summary

List of Figures

•	
Figure 1a	Topographic Map
Figure 1b	Detailed Topographic Map
Figure 2a	Aerial Map
Figure 2b	Detailed Aerial Map
Figure 3a	Site Drawing
Figure 3b	Excavation Sample Location Map
Figure 3c	Soil Pile Sample Location Map
Figure 4a	TPH Concentrations in Bottom Soil Samples
Figure 4b	TPH Concentrations in Sidewall Soil Samples
Figure 4c	Chloride Concentrations in Bottom Soil Samples
Figure 4d	Chloride Concentrations in Sidewall Soil Samples
Figure 4e	TPH Concentrations in Soil Pile Samples
Figure 4f	Chloride Concentrations in Soil Pile Samples
Figure 5a	Soil Boring Location Map

- Figure 5b Monitoring Well Location Map
- Figure 6 Chloride and TDS Concentrations in Groundwater, June 13, 2014
- Figure 7a Historical Aerial Photograph, February 4, 1968
- Figure 7b Historical Aerial Overlain with Recent Aerial Image
- Figure 8 Area of Polyethylene Liner
- Figure 9a EM-34 Survey Site Map

List of Appendices

Appendix A	OCD Correspondence
Appendix B	Historical Aerial Photographs
Appendix C	Photographs
Appendix D	Laboratory Reports
Appendix E	Boring Logs and Well Completion Diagram
Appendix F	Form C-141

1.0 EXECUTIVE SUMMARY

This report is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Legacy Reserves, L.P. (Legacy) by Larson & Associates, Inc. (LAI) to present the investigation, remediation and a plan to investigate impacts to groundwater at the Langlie Mattix Penrose Sand Unit (LMPSU) Trash Pit (Site). The Site is located at Unit O (SW/4, SE/4), Section 27, Township 22 South, Range 37 East, in Lea County, New Mexico. The geodetic position is north 32° 21' 28.40" and west 103° 8' 50.07". The Site is the location of a series of oilfield trash pits used by a previous operator for disposal of solid waste (i.e., drums, pipe, trash, etc.). On May 16, 2011, Legacy and other former operators received a letter from the OCD informing them of the trash pit. Legacy contracted Etech Environmental & Safety Solutions, Inc. (Etech) to investigate the Site. Etech excavated 5 trenches (pits). Oilfield trash and debris was segregated from the soil and disposed at a permitted facility. The soil was retained on location. In 2013 a monitoring well (MW-1) was installed near the southwest corner of the Site.

In March 2014 Legacy retained LAI to resume the investigation and closure of the excavations. On April 9, 2014, LAI personnel collected seven (7) composite samples from the bottom of the excavations at depths ranging about 4 to 20 feet below ground surface (bgs). LAI collected five (5) discrete samples were collected, at OCD's request. Discrete samples were collected from the sides of the excavation to delineate the horizontal extent of the contamination. The side samples were collected at depths from about 2 to 10 feet bgs. Composite samples were collected from four (4) soil piles located west (WP), north (NP), south (SP), and near the center (CP) of the Site. The samples were analyzed to determine the concentration of total petroleum hydrocarbons (TPH) and chloride. The laboratory reported TPH concentrations above the OCD recommended remediation action level (RRAL) of 100 parts per million (ppm) in 9 bottom and 13 side samples. The vertical and lateral extent of TPH impact was determined from 15 soil borings that were drilled at the Site. Chloride was greater than 250 mg/Kg in excavation bottom and 6 side samples. Chloride was above 250 mg/kg in the deepest samples at 9 boring locations. Approximately 1,630 cubic yards of soil from the center pile was disposed at Sundance Services, located east of Eunice, New Mexico.

On April 11, 2014, LAI personnel collected a groundwater sample from well MW-1 located near the southwest corner of the Site. The sample was analyzed for BTEX, cations (calcium, magnesium, sodium and potassium), anions (alkalinity, sulfate and chloride), nitrate and total dissolved solids (TDS). The BTEX concentrations were below the method detection limits (MDL) and New Mexico Water Quality Control Commission (WQCC) human health standards. Chloride and TDS were reported at 1,480 milligrams per liter (mg/L) and 3,510 mg/L, respectively. On June 12, 2014, under LAI supervision, a monitoring well, MW-2, was installed about 275 feet north (up gradient) of the Site. On June 13, 2014, LAI personnel collected groundwater samples from wells MW-1 and MW-2. The chloride and TDS in the up gradient well (MW-2) were 58.8 mg/L and 564 mg/L, respectively, and below the WQCC domestic water quality stands of 250 mg/L and 1,000 mg/L, respectively. Chloride and TDS were 2,720 mg/L and 6,700 mg/L, respectively, in the down gradient well (MW-1). The laboratory results confirm that a release to groundwater has occurred.

Composite samples were collected from the soil piles and analyzed by Synthetic Precipitation Leaching Procedure (SPLP) according to EPA method SW-846-1312, for BTEX, TPH and chloride. BTEX and TPH were below the method detection limits of 0.005 mg/L and 3.0 mg/L, respectively. The SPLP chloride results were 7.96 mg/L and 36 mg/L.

On August 1, 2014, OCD District 1 in Hobbs, New Mexico, approved closing the excavations by installing a 20 mil thickness polyethylene liner in the bottom of the excavations, at least 4 feet bgs, and filling with

soil from the on-site piles. A layer of clean sand was placed over the liner prior to filling with soil from the piles to protect the liner. Excavation closure was completed on August 30, 2014.

Legacy proposes to investigate the groundwater impact by conducting an EM-34 terrain conductivity survey, installing monitoring wells, collecting groundwater samples, performing geochemical profiling and horizontal hydraulic (slug) tests.

2.0 INTRODUCTON

This report is submitted to the New Mexico Oil Conservation Division (NMOCD) on behalf of Legacy Reserves, L.P. (Legacy) by Larson & Associates, Inc. (LAI) to present the investigation and closure of unauthorized trash pits (Site) located at the Langlie Mattix Penrose Sand Unit (LMPSU). The report also presents a plan to investigate groundwater contamination from two (2) historic disposal pits once located at the Site. The trash pits were excavated by a previous operator for unauthorized disposal of oilfield trash including but not limited to used drums, concrete, equipment, pipe and miscellaneous trash. The disposal pits were visible in a historic aerial photograph dated February 4, 1968 and appeared covered in later photographs. On July 1, 2014, Legacy purchased the tract of land (approximately 40 acres) that includes the trash and disposal pits. The Site is located in Unit O (SW4/SE4), Section 27, Township 22 South, Range 37 East, in Lea County, New Mexico. The geodetic position is north 32° 21' 28.40" and west 103° 8' 50.07". Figure 1 presents a topographic. Figure 2a presents an aerial map. Figure 2b presents a detailed aerial map.

2.1 Regulatory Background

On May 16, 2011, OCD issued a letter to current and past operators of the Site that referenced a complaint from a nearby landowner that burial of miscellaneous trash and debris occurred at the Site. Appendix A presents the OCD correspondence.

Legacy, as current operator, retained Etech Environmental & Safety Solutions, Inc. (Etech) to investigate the Site. Etech used a metal detector to identify locations where metallic waste may have been buried and excavated five (5) locations (Pits 1 through 5) to a maximum depth of about 20 feet below ground surface (bgs). Waste and debris was excavated and segregated from soil. The waste was disposed at a permitted facility and about 7,500 to 9,000 cubic yards of soil was retained on the Site.

In 2013, Etech installed a monitoring well (MW-1) about 50 feet south of the west excavation (Pit 4 and Pit 5) near the west side of the Site. The monitoring well was drilled to about 64 feet bgs. Groundwater was gauged at about 42 feet bgs. No construction documentation is available for the well.

2.2 Setting

The Site is located about 5.5 miles southeast of Eunice, in rural Lea County, New Mexico. The surface elevation is approximately 3,315 feet above mean sea level (MSL) and slopes gently to the southeast. The nearest surface water is the ephemeral Monument Draw, which is located about 1.5 miles east of the Site. There are no apparent surface connection for runoff between the Site and Monument Draw.

The surface geology is comprised of recent-age eolian to Pleistocene-age alluvium derived mostly from reworking the underlying Tertiary-aged Blackwater Draw and Ogallala formations, in descending order. The Blackwater Draw formation is comprised mainly of fine grained wind-blown sand derived from the underlying Ogallala formation. The Ogallala formation consists of fluvial sand, silt, clay and localized gravel, with indistinct to massive cross beds. The Ogallala sand is generally fine- to medium-grained quartz. The lithology consists of unconsolidated eolian sand over a unit of carbonate-indurated sand

commonly referred to as "caliche". Caliche was encountered in many of the borings drilled at the Site and ranged between about 5 and 25 feet thick, depending on location. Beneath the caliche unit is a thickness of fine-grained pink quartz sand. Locally this sand is lithified into sandstone with clayey sand or red-bed clay. The Ogallala formation is underlain by the Triassic-age Chinle formation of the Dockum group which is comprised of interbedded sand, clay and mudstone.

Groundwater occurs in the Ogallala formation at approximately 42 feet bgs. The Dockum Group is the lower confining unit for the Ogallala aquifer and occurs at about 60 feet bags. The saturated thickness of the Ogallala formation (aquifer) is approximately 20 feet.

A well identified on the New Mexico State Engineer (OSE) database and is located in Unit O, Section 27, Township 22 south and Range 37 east. The well location was not confirmed but is likely used for livestock watering. The reported depth to groundwater was approximately 46.32 feet bgs.

2.3 Historical Aerial Photographs

Historical aerial photographs were ordered through GeoSearch located in Austin, Texas. A review of the photographs is presented below in chronological order from most recent to oldest. Appendix B presents the aerial photographs.

2.3.1 2011 US Geological Survey Color Photograph

This 2011 color photograph has a scale of 1" to 700'. The photograph depicts the Site condition following closure of the trash pits by a previous operator. The photograph shows evidence of surface scarring from prior operations at the Site.

2.3.2 1997 US Geological Survey Black and White Photograph

This black and white photograph was taken in 1997, and has a scale of 1" to 700'. This photograph shows evidence of scarring from previous operations at the Site. Adjoining properties to the north, south, west and east are in similar configuration observed during the current investigation and remediation.

2.3.3 1983 US Geological Survey Color Photograph

This color photograph was taken on June 3, 1983, and has a scale of 1" to 700'. The photograph shows evidence of scarring from previous operations or releases and shows the Site similar to the condition observed in the previous photograph (1997). The adjoining properties to the north, south, east, and west are in similar configuration observed during the current investigation and remediation. The disposal pits observed in an earlier photograph are not visible in this photograph and appear covered.

2.3.4 1968 USGS Black and White Photograph

This black and white photograph was taken on February 4, 1968, and has a scale of 1" to 700'. The photograph shows two (2) darkened objects at the Site. The darkened objects are disposal pits that received produced water and hydrocarbons from the lease tank battery located about 500 feet southwest of the Site.

2.3.5 1954 USGS Black and White Photograph

This black and white photograph was taken on April 28, 1954, and has a scale of 1" to 700'. This photograph shows a rectangular object that resembles a pit in close proximity to the Site.

3.0 CURRENT INVESTIGATIONS

In March 2014, Legacy requested LAI to conduct a Site visit, review available laboratory data and prepare a plan to investigate and close the excavations. A Site visit was performed on March 7, 2014, at which time LAI personnel observed two (2) large excavations (east and west) and four (4) soil piles (west, center, north and south). The excavations and soil piles are shown on a Site drawing in Figure 3a.

On March 24, 2014, LAI personnel met with OCD District 1 environmental representatives, Mr. Geoffrey Leking and Dr. Tomáš Oberding, to present a plan to investigate the Site. The plan included collecting composite soil samples from the bottom of the excavations and soil piles and discrete samples from the excavation sidewalls. Mr. Leking requested discrete samples from the bottom of the excavations at five (5) locations, in addition to the proposed samples. Fifteen (15) borings (BH-1 through BH-15) and a monitoring well (MW-2) were also installed. About 1,630 cubic yards of soil from the center pile, which reported elevated concentrations of total petroleum hydrocarbons (TPH) and chloride, was disposed at the Sundance Services located east of Eunice, New Mexico.

3.1 Soil Samples

On April 8 – 10, 2014, LAI personnel collected composite samples from the bottom of the excavations and soil piles. Each composite sample consisted of 5 randomly selected discrete samples. The bottom samples from collected to about 0.5 feet below the bottom of the excavations. The pile samples were collected about 1 foot into the piles. Discrete samples were collected at OCD's request from 5 locations in the bottom of the excavations (DS-1 through DS-5) and 13 locations from the sidewalls of the excavations. The discrete samples were collected about 0.5 feet beneath the bottom and into the sidewalls of the excavations. The excavations ranged in depth from about 4 to 20 feet bgs. Duplicate samples were collected for headspace analysis according to the ambient temperature headspace (ATH) method and analyzed for organic vapors using a calibrated photoionization detector (PID). PID readings were less than 100 parts per million (ppm) therefore no samples were analyzed by the laboratory for BTEX. Permian Basin Environmental Lab (PBEL), located in Midland, Texas, analyzed the samples for TPH, including DRO, GRO and ORO by method SW-846-8015, and chloride by method SW-846-300.1. Table 1 presents the excavation soil sample analytical data summary. Table 2 presents the soil pile sample analytical data summary. Figure 3b presents the excavation soil sample locations. Figure 3c presents the soil pile sample locations. Appendix C presents the laboratory reports.

Remediation action levels were calculated for benzene, BTEX and TPH using criteria established by the OCD (*Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993*) using the following ranking criteria:

Ranking Criteria	Result	Ranking Score	
Depth-to-Groundwater	<50 feet	20	
Wellhead Protection Area	No	0	
Distance to Surface Water Body	>1000 Horizontal Feet	0	
	Total Score:	20	

The remediation action levels (RRAL) for benzene, BTEX and TPH are 10, 50 and 100 milligrams per kilogram (mg/Kg), respectively.

The following bottom samples exceeded the RRAL for TPH:

Sample	Excavation	Depth	TPH (mg/Kg)
WEA	West	10	130.2
WEC	West	8	858
WED	West	4	672.45
DS-2 (OCD)	West	12	775
DS-3 (OCD)	West	20	654.7
EEA	East	10	163.6

The following sidewall samples exceeded the RRAL for TPH:

Sample	Excavation	Depth	TPH (mg/Kg)
WS-2	West	6	123.7
WS-3	West	10	176.7
WS-4	West	5	2,998
WS-5	West	6	342
WS-6	West	4	476.2
WS-7	West	3	425
WS-8	West	6	2,741
WS-9	West	8	236.2
WS-11	West	6	467.8
WS-12	West	2	1,150
ES-1	East	4	382.7
ES-9	East	12	1,177
ES-10	East	5	126.8

Figure 4a presents the TPH concentrations in the bottom samples. Figure 4b presents the TPH concentrations in the sidewall sample.

Chloride was above 250 (mg/Kg) in the following bottom and sidewall samples and required further delineation:

Sample	Excavation	Location	Depth	Chloride (mg/Kg)
WED	West	Bottom	4	328
WS-6	West	Sidewall (south)	4	426
WS-8	West	Sidewall (east)	6	478
ES-1	East	Sidewall (west)	4	652
ES-5	East	Sidewall (south)	5	1,120
ES-10	East	Sidewall (east)	5	329

Figure 4c presents the chloride concentrations in the bottom samples. Figure 4d presents the chloride concentrations in the sidewall samples.

Referring to Table 2, the highest TPH concentrations from the stockpile samples was reported from the center pile and ranged from 782 mg/Kg to 1,801 mg/Kg. Soil from the center pile, approximately 1,640 cubic yards, was disposed at Sundance Services, located east of Eunice, New Mexico. The TPH concentrations in the remaining soil piles ranged from 248.6 mg/Kg (North Pile, Sample B) to 715.7 mg/Kg (South Pile Sample A). Chloride ranged from 52.8 mg/Kg (South Pile Sample B) to 583 mg/Kg

(West Pile Sample E). Figure 4e presents TPH concentrations in the stockpile samples. Figure 4f presents chloride concentrations in the stockpile samples.

3.2 SPLP Analysis

On July 1, 2014, LAI personnel collected a composite soil sample from the west soil pile (Comp 1) and a composite sample from the north and south soil piles (Comp 2). The samples were analyzed for BTEX, TPH and chloride by EPA methods SW-846-8021B, SW-846-8015M 300.1, respectively. The samples were also tested using the synthetic precipitation leaching procedure (SPLP) to determine if BTEX, TPH and chloride leached from the soil at concentrations above the RRAL. Table 3 presents the laboratory analysis. Appendix C presents the laboratory report.

Referring to Table 3, concentrations of BTEX and TPH by SPLP method were below the method detection limits. Chloride by SPLP method was 36 milligrams per liter (mg/L) in sample Comp-1 and 7.96 mg/L in samples Comp-2.

3.3 Soil Borings

On June 12 and 13, 2014, Scarborough Drilling, Inc. (SDI), located in Lamesa, Texas, drilled fifteen (15) borings (SB-1 through SB-15) between approximately 30 and 40 feet bgs. The borings were drilled with an air rotary rig and soil samples were collected about every 5 feet for laboratory and headspace analysis using a jam tube sampler. Organic vapors readings exceeded 100 ppm in samples from boring SB-3 at 20 feet (276 ppm) and 25 feet (128 ppm) therefore these samples were analyzed for BTEX by method SW-846-8021B. Samples were also analyzed for TPH by method SW-846-8015, including GRO, DRO and ORO, and chloride by method SW-846-300.1. Table 4 presents the soil boring analytical data summary. Figure 5a presents the boring locations. Appendix C presents the laboratory report. Appendix D presents the boring logs.

Referring to Table 3, benzene and BTEX were below the RRAL of 10mg/Kg and 50 mg/Kg, respectively, in samples from boring SB-3, at 15 and 20 feet bgs. TPH exceeded the RRAL (100 mg/Kg) in the following samples:

Boring	Depth	TPH (mg/Kg)
SB-3	15	11,114
SB-3	20	1,762.3
SB-4	5	238.3
SB-9	5	757

The vertical and lateral extent of TPH was determined from the soil boring investigation.

Chloride was above 250 mg/Kg in the deepest samples from the following borings:

Boring	Depth	Chloride (mg/Kg)
SB-1	35	1,190
SB-3	35	3,530
SB-4	40	1,950
SB-5	30	965
SB-6	30	459

SB-7	40	722
SB-9	40	500
SB-10	30	422
SB-15	40	1,890

3.4 Monitoring Wells

Two (2) monitoring wells (MW-1 and MW-2) were installed at the Site. Etech installed monitoring well MW-1 about 50 feet south (down gradient) of the west excavation. Completion details for MW-1 are not available. SDI installed monitoring well MW-2 about 275 feet north (up gradient) of the Site. The monitoring wells are constructed with 2-inch schedule 40 threaded PVC casing and screen. The well screen in MW-2, approximately 20 feet, is positioned above and below groundwater between approximately 38.17 and 57.77 feet bgs. On June 13, 2014, groundwater was recorded in wells MW-1 and MW-2 at approximately 40.52 and 43.11 feet bgs, respectively. Table 5 presents the monitoring well drilling, completion and gauging summary. Figure 5b presents the monitoring well locations. Appendix D presets the geologic log and well construction diagram.

3.5 Groundwater Samples

LAI personnel collected groundwater samples from well MW-1 on April 10, 2014, and from wells MW-1 and MW-2 on June 13, 2014. The samples were collected after removing approximately 3 casing volumes of groundwater by pumping with an electric stainless steel environmental pump equipped with dedicated disposable polyethylene tubing. The purge water was placed in a 55 gallon drum and retained on location until disposal is arranged. The groundwater samples were submitted to DHL Laboratories, a National Laboratory Accreditation Program (NELAP) certified laboratory, located in Round Rock, Texas. The laboratory analyzed the samples for BTEX (April 10, 2014), cations (calcium, magnesium, sodium and potassium), anions (alkalinity, sulfate and chloride), nitrate and total dissolved solids (TDS). Table 6 presents the groundwater analytical data summary. Appendix C presents the analytical laboratory report.

Referring to Table 6, BTEX concentrations in well MW-1 (down gradient) were below the method detection limits (MDL) and New Mexico Water Quality Control Commission (WQCC) human health standards. Concentrations of chloride and TDS in well MW-1 (down gradient) were 2,720 milligrams per liter (mg/L) and 6,700 mg/l, respectively, and above the WQCC domestic water quality standards of 500 mg/L and 1,000 mg/L, respectively. Concentrations of chloride and TDS in well MW-1 (up gradient) were 58.8 milligrams per liter (mg/L) and 564 mg/L, respectively, and confirm that a release to groundwater has occurred at the Site. Figure 6 presents a drawing showing chloride and TDS concentrations in groundwater from monitoring wells MW-1 and MW-2 on June 13, 2014.

A historical aerial photograph, dated February 4, 1968, shows 2 disposal pits located at the approximate location of the west excavation. An earlier aerial photograph (April 28, 1954) shows a smaller pit near the same location. The pits are not visible in a later photograph (June 3, 1983) that suggests the pits were covered. The pits were likely used for disposal of produced water and hydrocarbons from the lease tank battery located about 500 feet southwest and appear to be the source of elevated chloride and TDS in down gradient well MW-1. The regional groundwater flow direction is generally from northnorthwest to south-southeast. Figure 7a presents the Site location on the aerial photograph dated February 4, 1968. Figure 7b presents a recent aerial image overlain onto the historic aerial photograph.

4.0 EXCAVATION CLOSURE

On July 30, 2014, LAI personnel met with OCD District 1 environmental representative Dr. Tomáš Oberding, and presented the investigation results and a plan for closing the excavations. The following was presented to Dr. Oberding in an email:

- 1. The LMPSU trash pit is the location of two historic disposal pits and where a former operator disposed of miscellaneous oilfield material including empty drums, pipe, etc.
- 2. Groundwater occurs at approximately 42 feet bgs;
- 3. Legacy excavated between about 7,500 and 12,000 cubic yards of soil during removal of buried debris and disposal pits;
- 4. Soil was retained on location in 4 piles (west, north, south and center);
- 5. The center pile was hauled to Sundance due to elevated TPH;
- 6. LAI personnel collected composite and discrete samples from the excavation and soil piles and from 15 borings drilled in and around the excavations (west and east);
- 7. The analytical results of borehole samples showed the highest TPH and chloride in boring SB-3, located near south end of west pit;
- 8. TPH in boring SB-3 decreased below 100 mg/Kg at approximately 25 feet bgs;
- 9. Chloride in boring SB-3 suggests migration to groundwater as the concentration reported at 3,530 mg/Kg at 35 feet bgs;
- 10. Groundwater samples from monitoring well (MW-1) located about 50 feet south (down gradient) of the west excavation reported chloride at 2,720 mg/L;
- 11. The background chloride concentration (MW-2) is 58.8 mg/L;
- 12. Analysis by SPLP leaching procedure reported no benzene (<-0.001 mg/L), BTEX (<0.005 mg/L) or TPH (<3.0 mg/L) in composite samples from the soil piles (west, north and south);
- 13. SPLP chloride results from the soil piles were 7.96 mg/L 9north and south piles) and 36 mg/L (west pile (refer to attached analytical summary);
- 14. Legacy is the owner of the approximate 40-acre tract encompassing the Site.

Excavation Closure Plan

- Remove remaining debris from Site for disposal at Sundance Services, located east of Eunice, New Mexico;
- **<u>2.</u>** Grade bottom of west and east excavations to a level depth of at least 4 feet bgs;
- **3.** Install 20ml liner in bottom of both excavations (refer to attached drawing showing proposed locations for liners);
- **<u>4.</u>** Fill excavations with soil from west, north and south piles and top off with clean topsoil and seed;
- 5. Submit report to OCD District I and Santa Fe following closure of the excavation;

Groundwater Delineation Plan

- 6. Submit plan to OCD in Hobbs and Santa Fe for delineation of elevated chloride in groundwater;
- 7. Delineation to include electromagnetic terrain (EM) conductivity survey and monitoring wells.

On August 1, 2014, OCD District 1 approved the excavation closure plan. Appendix A presents the approval from OCD.

On August 4, 2014, excavation closure commenced with Watson Construction, under supervision from LAI, preparing the bottom of the excavations for installing a polyethylene liner. A dozer was used to

grade the excavation bottoms at least 4 feet bgs crowing the center of the excavations and sloping to the sides. On August 7, 2014, Akome, Inc., located in Hobbs, New Mexico, installed approximately 52,272 square feet or about 1.2 acres of 20 mil thickness polyethylene liner in the bottoms and area between the excavations. Figure 8 presents location of the polyethylene liner based on global positioning system (GPS) measurements.

The liner was covered with about 1 foot of clean soil prior placing soil from the west, north and south piles in the excavations. The volume of soil from the piles was calculated between approximately 7,000 and 9,000 cubic yards. The surface of the Site was finished with a layer of top soil acquired from an adjoining landowner. The Site was graded and crowned for drainage. The surface will be seeded in the first favorable growing season. Appendix E presents photographs. Appendix F presents the C-141.

5.0 CONCLUSIONS

- On May 16, 2011, OCD notified past operators, including Legacy, that burial of trash had occurred at the Site;
- Legacy, as current operator of record, contracted Etech to excavate soil, oilfield debris and trash;
- Oilfield debris and trash were disposed at a, OCD permitted disposal facility;
- Soil was retained on location in 4 piles (north, south, west and central);
- Etech installed a monitoring well (MW-1) near the southwest side of the Site;
- On April 8 and 9, 2014, LAI personnel collected composite and discrete soil samples from the bottoms and sidewalls of the excavations and soil piles;
- Organic vapor headspace readings were less that 100 ppm therefore no samples were analyzed for benzene and BTEX;
- TPH in bottom samples exceeded the OCD cleanup level (100 ppm) at 6 locations and ranged from 130.2 mg/Kg to 858 mg/Kg;
- TPH in sidewall samples exceeded the OCD cleanup level (100 ppm) at 13 locations and ranged from 123.72 mg/Kg to 2,998 mg/Kg;
- The vertical and lateral extent of TPH was determined from the soil boring samples;
- Chloride was above 250 mg/Kg in 6 samples and ranged from 328 mg/Kg to 1,120 mg/Kg and required further delineation;
- Chloride exceeded the deepest samples in 9 borings and ranged from 422 mg/Kg (SB-10, 30 feet) to 3,530 mg/Kg (SB-3, 35 feet);
- TPH was highest in the center pile and ranged from 782 to 1,801 mg/Kg and was disposed at Sundance Services, located east of Eunice, New Mexico;
- TPH is the remaining soil piles (north, south and west) ranged from 248.6 mg/Kg (North Pile) to 715.7 mg/Kg (South Pile);
- Chloride in the soil piles ranged from 52.8 mg/Kg (South Pile) to 583 mg/Kg (West Pile);
- Benzene and TPH were below the MDL in SPLP analysis of soil pile samples;
- The highest BTEX concentration was 0.0021 mg/L in SPLP analysis of soil piles samples and below the recommended remediation action level (50 mg/Kg);
- Chloride was 7.96 mg/L and 36 mg/L in SPLP samples from the soil piles and below the WQCC domestic water quality standard of 250 mg/L;
- BTEX and nitrate were below MDL in groundwater samples from MW-1 and MW-2;
- Sulfate was 896 mg/L and above WQCC domestic water quality standard of 600 mg/L in well MW-1 (down gradient) and 121 mg/L in well MW-2 (up gradient);

- Chloride (2,720 mg/L) and TDS (6,700 mg/L) exceeded the WQCC domestic water quality standards of 250 mg/L and 1,000 mg/L, respectively, in well MW-1 (down gradient). Chloride and TDS were 58.5 mg/L and 564 mg/L, respectively, in well MW-2 (up gradient);
- On August 1, 2014, the OCD District 1 approved closing the excavations by placing a 20 mil thickness liner in the bottom at least 4 feet bgs and backfilling with soil from the stockpiles. Excavation closure was completed on 30, 2014; and
- Legacy proposes to conduct an EM-34 survey to qualitatively assess the chloride and TDS in groundwater and install monitoring wells to confirm the extent of impact.

6.0 GROUNDWATER INVESTIGATION PLAN

Legacy proposes to conduct the following investigations to assess the extent of the groundwater contamination:

- Conduct an electromagnetic ("EM") terrain conductivity survey to qualitatively assess the extent of the groundwater impact;
- Install monitoring wells, collect and analyze groundwater samples for anions, cations and TDS;
- Survey monitoring wells for ground and top of casing elevation;
- Measure depth to groundwater and calculate groundwater flow direction and gradient;
- Perform slug tests in monitoring wells to calculate an average horizontal hydraulic conductivity for the aquifer;
- Perform field reconnaissance to locate water wells within 1,000 feet of the Site; and
- Prepare a report and proposed groundwater remediation plan.

An electromagnetic ("EM") terrain conductivity survey will be performed to qualitatively assess the limits of impacted groundwater and to select locations for monitoring wells. The EM method measures the electrical conductivity of soil, rock and groundwater by imparting an alternating electric current into the subsurface from a surface transmitter. An EM-34 terrain conductivity meter, manufactured by Geonics, Ltd., in Toronto, Ontario, Canada, will be used for the EM survey. The EM-34 has exploration capabilities ranging from approximately 0 to 196.9 feet bgs, depending on transmitter coil and receiver coil separation (i.e., 10, 20 or 40 meters) and orientation of the transmitter coil and receiver coil (i.e., horizontal dipole ("HD") mode or vertical dipole ("VD") mode). The EM-34 has a depth of exploration using the 20 meter coil spacing and HD mode from 0 to about 49.2 feet BGS and 0 to about 98.4 feet bgs in the VD mode. The conductivity response is greater near ground surface in the HD mode. The conductivity response is null near the surface and increases rapidly to a depth equal to about 0.4 times the coil spacing in the VD mode. The greatest conductivity response in the VD mode occurs at approximately 65.6 feet bgs (20 meter). The EM measurements will be collected using sample grids measuring about 100 x 100 feet. The EM survey will be performed over an area measuring approximately 800 x 800 feet or about 15 acres. The final dimension of the EM survey will be determined by the field measurements. The EM-34 data will be compared to background to identify areas of elevated conductivity that correspond with elevated concentrations of chloride and TDS in groundwater. The background location must be free of groundwater impacts and cultural or metallic interferences (i.e., pipelines, overhead power lines, etc.). Monitoring well MW-2 appears to meet the criteria for background. The EM survey results will be compiled on contour drawings that will show

areas of elevated conductivity relative to background and proposed locations for monitoring wells. The EM maps will be submitted to the OCD for concurrence and approval to install the monitoring wells. Figure 9 presents the proposed EM survey grid location.

The monitoring wells will be installed using methods and procedures described earlier. The wells will be drilled with an air rotary rig by a New Mexico licensed well driller. Well permits will be acquired from the New Mexico State Engineer (OSE). The wells will be drilled to about 60 feet bgs, depending on depth to the Dockum formation, and completed with 2-inch schedule 40 PVC casing and screen. Approximately twenty (20) feet of screw-threaded screen will be placed in each well, with about 15 feet of screen in ground water and about 5 feet of screen above groundwater, depending on subsurface conditions. Each well will be secured with a locking steel above-grade cover anchored in concrete. A New Mexico licensed professional land surveyor (NMPLS) will survey the wells for top of casing and ground elevation referenced to a USGS datum. Drill cuttings will be described according to the Unified Soil Classification System (USCS) and placed on plastic until the soil is characterized for disposal. The wells will be developed to remove sediment and water from drilling by pumping with an electric submersible environmental pump equipped with dedicated tubing or bailed with dedicated disposable polyethylene bailers.

Depth to groundwater will be measured in all wells and recorded at the top of PVC casing using an electronic water level meter. The measurements will be used to prepare a groundwater potentiometric surface map and determine groundwater flow direction and gradient. Groundwater samples will be collected after removing approximately 3 casing-volumes of groundwater using dedicated disposable polyethylene bailers or pumping using an electronic submersible pump and dedicated tubing. The groundwater samples will be analyzed by a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory for anions, cations and TDS. Geochemical profiling will be performed in each well using an In-Situ Model 9500 multi-parameter probe to evaluate the groundwater chemical stratification.

Horizontal hydraulic conductivity (slug) tests will be performed in each well to calculate an average hydraulic conductivity for the aquifer and assess ground water flow velocity. Falling and rising head tests will be performed at each well by lowering (falling head) and raising (rising head) a weighted PVC tube (slug) in the well. A pressure transducer will be installed near the bottom of the well to measure changes in head, which will be recorded using an electronic data logger. Horizontal hydraulic conductivity will be calculated using the Bouwer and Rice or equivalent method.

OCD will be notified at least 48 hours in advance of fieldwork and a report will be prepared and submitted following completion of fieldwork, receipt and review of analytical reports. The report will describe the geology, hydrogeology and aquifer characteristics, including ground water elevation, flow direction, gradient, horizontal hydraulic conductivity, inorganic contaminant distribution, chemical stratification. Recommendations for additional investigation or remedial actions will be proposed. Exhibits will include location and base maps, geological cross sections, aquifer thickness map, groundwater flow map and isopleths maps for chloride and TDS. The laboratory analyses will be summarized in tables and EM field sheets, geologic logs, well completion diagrams, slug test results and laboratory analysis will be included as attachments.

Tables

Location	Sample	Date	Depth	Status	PID	ТРН	Chloride
	ID		Feet BGS		(ppm)	(C6 - C35)	(mg/Kg)
OCD RRAL:						100	
			West E	xcavation			
Bottom	WEA	04/10/2014	10	In-Situ	0.8	130.2	81.9
(Composite)	WEB	04/10/2014	5	In-Situ	0.8	24.8	86.1
	WEC	04/10/2014	8	In-Situ	0.8	858	229
	WED	04/10/2014	4	In-Situ	0.8	672.45	328
Sidewall - West	WS-1	04/09/2014	4	In-Situ	0.8	<15.62	<61.6
(Discrete)	WS-2	04/09/2014	6	In-Situ	0.8	123.70	151
(,	WS-3	04/10/2014	10	In-Situ	0.8	176.70	<58.2
	WS-4	04/10/2014	5	In-Situ	1.4	2,998	92.2
Sidewall - South	WS-5	04/10/2014	6	In-Situ	0.8	342	230
(Discrete)	WS-6	04/10/2014	4	In-Situ	1.2	476.20	426
(Discrete)	W3-0	04/10/2014	7	in-Situ	1.2	470.20	420
Sidewall - East	WS-7	04/10/2014	3	In-Situ	0.8	425	248
(Discrete)	WS-8	04/10/2014	6	In-Situ	0.8	2,741	478
	WS-9	04/10/2014	8	In-Situ	0.8	236.20	92.6
	WS-10	04/09/2014	6	In-Situ	0.8	<16.60	<62.2
Sidewall - North	WS-11	04/09/2014	6	In-Situ	0.8	467.80	147
(Discrete)	WS-12	04/09/2014	2	In-Situ	0.8	1,150	187
	WS-13	04/09/2014	5	In-Situ	0.8	81.90	<58.5
OCD	DS-1	04/10/2014	12	In-Situ	0.8	62.38	64.6
(Discrete)	DS-1 DS-2	04/10/2014	12	In-Situ	2.4	775	571
	DS-3	04/10/2014	20	In-Situ	3.6	654.70	<68.6

Location	Sample	Date	Depth	Status	PID	ТРН	Chloride
	ID		Feet BGS		(ppm)	(C6 - C35)	(mg/Kg)
OCD RRAL:					-	100	
			East Ex	kcavation			
Bottom	EEA	04/09/2014	10	In-Situ	0.8	163.60	97.0
(Composite)	EEB	04/09/2014	5	In-Situ	0.8	<14.25	<53.1
	EEC	04/09/2014	8	In-Situ	0.8	39.60	<56.3
Sidewall - West	ES-1	04/09/2014	4	In-Situ	0.8	382.70	652
(Discrete)	ES-2	04/09/2014	4	In-Situ	0.8	<17.28	123
	ES-3	04/09/2014	6	In-Situ	0.8	<13.98	63.1
	ES-4	04/09/2014	5	In-Situ	0.8	<14.79	<51.3
Sidewall - South	ES-5	04/09/2014	5	In-Situ	0.8	<13.85	1,120
(Discrete)	ES-6	04/09/2014	4	In-Situ	0.0	<13.73	<45.6
Sidewall - East	ES-7	04/09/2014	5	In-Situ	11.5	24.47	<44.6
(Discrete)	ES-8	04/09/2014	10	In-Situ	0.8	11.2	<55.7
	ES-9	04/09/2014	12	In-Situ	0.0	1,177	<44.1
	ES-10	04/09/2014	5	In-Situ	0.8	126.80	329
OCD	DS-4	04/09/2014	9	In-Situ	0.8	<13.01	<49.8
(Discrete)	DS-5	04/09/2014	12	In-Situ	0.8	<14.51	<49.8

Notes: Samples analyzed by DHL Analytical, Inc., Round Rock, Texas, using EPA method SW-846-8015M (TPH) and E-300 (chloride) BGS: Below ground surface

mg/Kg: Milligrams per kilogram - equivalent to parts per million (ppm).

Denotes concentration exceeds OCD recommended remediation action level

Location	Sample	Date	Status	PID	ТРН	ТРН	Chloride	Chloride
	•			(ppm)	(C6 - C35)	SPLP	(mg/Kg)	SPLP
OCD RRAL:						100		
North	NP-A	04/08/2014	Excavated	4.2	391.80		<54.0	
	NP-B	04/08/2014	Excavated	1.2	371.60		84.3	
					248.60		73.0	
West	WP-A	04/08/2014	Excavated	0.4	701.30		403	
	WP-B	04/08/2014	Excavated	0.2	713.30		195	
	WP-C	04/08/2014	Excavated	0.8	499.60		345	
	WP-D	04/08/2014	Excavated	0.1	535.90		217	
	WP-E	04/08/2014	Excavated	0.2	692.80		583	
Center	CP-A	04/10/2014	Excavated	7.9	782		239	
Center	CP-B	04/10/2014	Excavated	9.7	1,778		443	
	CP-C	04/10/2014	Excavated	2.6	1,247		354	
	CP-D	04/10/2014	Excavated	1.4	1,801		194	
		0.1/00/0011					200	
South	SP-A	04/08/2014	Excavated	0.0	715.70		398	
	SP-B	04/08/2014	Excavated	0.2	949		52.8	
				SPLP Samples				
Comp-1		7/1/2014	Excavated	0.2	1,488	<3.00	720	36.0
Comp-2		7/1/2014	Excavated	0.2	719	<3.00	290	7.96

Notes: Samples analyzed by DHL Analytical, Inc., Round Rock, Texas and Permian Basin Environmental Lab (SPLP), Midland, Texas Samples analyzed by EPA method SW-846-015M (TPH) and E-300 (chloride).

BGS: Below ground surface

mg/Kg: Milligrams per kilogram - equivalent to parts per million (ppm) except SPLP which is milligrams per liter equivalent to ppm.

Denotes concentration exceeds OCD recommended remediation action level

Location	Depth	Date	PID	Status	Benzene	BTEX	ТРН	Chloride
	(Feet BGS)		(ppm)		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
RRAL:			100		10	50	100	
SB-1	5	6/13/2014	0.0	In-situ			<27.5	1,470
	10	6/13/2014	0.0	In-situ			<26.3	978
	15	6/13/2014	0.0	In-situ			<27.5	1,800
	20	6/13/2014	0.0	In-situ				1,800
	25	6/13/2014	0.0	In-situ				1,020
	30	6/13/2014	0.0	In-situ				817
	35	6/13/2014	0.0	In-situ				1,190
	40	6/13/2014	0.0	In-situ				
<u> </u>		6/42/2044	0.0					102
SB-2	5	6/13/2014	0.0	In-situ			<27.5	483
	10	6/13/2014	0.0	In-situ			<27.2	957
	15	6/13/2014	0.0	In-situ			<26.6	858
	20	6/13/2014	2.6	In-situ				242
	25	6/13/2014	2.6	In-situ				137
	30	6/13/2014	2.6	In-situ				<5.43
	35	6/13/2014	2.6	In-situ				65.1
	40	6/13/2014	0.0	In-situ				
SB-3	5	6/13/2014	NS	Excavated	NS	NS	NS	NS
	10	6/13/2014	NS	Excavated	NS	NS	NS	NS
	15	6/13/2014		In-situ	0.0221	0.9424	11,114	4,370
	20	6/13/2014	276	In-situ	0.00435	0.26627	1,762.3	4,070
	25	6/13/2014	128	In-situ			90.7	3,050
	30	6/13/2014	11.5	In-situ			<27.8	3,840
	35	6/13/2014	2.6	In-situ				3,530
		6/42/204 :	0.0				220.2	654
SB-4	5	6/13/2014	0.0	In-situ			238.3	651
	10	6/13/2014	0.0	In-situ			75.5	1,090
	15	6/13/2014	0.0	In-situ			<26.9	1,070

Location	Depth (Feet BGS)	Date	PID (nnm)	Status	Benzene	BTEX	TPH (mg/Kg)	Chloride (mg/Kg)
RRAL:	(reet bds)		(ppm) 100		(mg/Kg) 10	(mg/Kg) 50	100	(1118/148)
NNAL.	20	6/13/2014	0.0	In-situ				1,370
	25	6/13/2014	0.0	In-situ				2,310
	30	6/13/2014	0.0	In-situ				1,310
	35	6/13/2014	0.0	In-situ				1,950
	40	6/13/2014	0.0	In-situ				1,950
	40	0/15/2014	0.0	in-situ				
SB-5	5	6/13/2014		Excavated	NS	NS	NS	NS
	10	6/13/2014	2.6	In-situ			<26.6	270
	15	6/13/2014	0.0	In-situ			<28.7	588
	20	6/13/2014	0.0	In-situ			<28.4	889
	25	6/13/2014	2.6	In-situ				453
	30	6/13/2014	2.6	In-situ				965
SB-6	5	6/13/2014	NS	Excavated	NS	NS	NS	NS
	10	6/13/2014	NS	In-situ			<26.9	455
	15	6/13/2014	0.8	In-situ			<27.8	840
	20	6/13/2014	0.8	In-situ			54.0	652
	25	6/13/2014	0.0	In-situ				935
	30	6/13/2014	0.0	In-situ				459
SB-7	5	6/13/2014	0.0	In-situ			54	652
	10	6/13/2014	0.0	In-situ			<26.6	436
	15	6/13/2014	0.0	In-situ			<28.7	406
	20	6/13/2014	0.0	In-situ				184
	25	6/13/2014	0.0	In-situ				376
	30	6/13/2014	0.0	In-situ				441
	35	6/13/2014	0.0	In-situ				722
	40	6/13/2014	0.0	In-situ				
SB-8	5	6/13/2014	NS	Excavated	NS	NS	NS	NS

Location	Depth	Date	PID	Status	Benzene	BTEX	ТРН	Chloride
	(Feet BGS)		(ppm)		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
RRAL:			100		10	50	100	
	10	6/13/2013	NS	Excavated	NS	NS	NS	NS
	15	6/13/2014	NS	Excavated	NS	NS	NS	NS
	20	6/13/2014	0.0	In-situ			<28.4	81.9
	25	6/13/2014	0.0	In-situ			<28.1	89.5
	30	6/13/2014	0.0	In-situ				
	35	6/13/2014	0.0	In-situ				
	40	6/13/2014	0.0	In-situ				
SB-9	5	6/12/2014	0.8	In-situ			757	378
	10	6/12/2013	2.6	In-situ			<26.0	316
	15	6/12/2013	0.8	In-situ			<28.4	1,320
	20	6/12/2013	0.8	In-situ				344
	25	6/12/2013	2.6	In-situ				178
	30	6/12/2013	2.6	In-situ				297
	35	6/12/2013	2.6	In-situ				500
	40	6/12/2013	2.6	In-situ				
SB-10	5	6/12/2014	0.8	In-situ			<27.2	227
	10	6/13/2013	6.1	In-situ			<28.7	1,010
	15	6/12/2014	0.8	In-situ			<27.8	328
	20	6/12/2014	0.8	In-situ				572
	25	6/12/2014	0.8	In-situ				621
	30	6/12/2014	0.8	In-situ				422
	35	6/12/2014	0.8	In-situ				
	40	6/12/2014	0.8	In-situ				
SB-11	5	6/12/2014	0.8	In-situ			<27.8	79.2
	10	6/13/2013	0.8	In-situ			<26.9	428
	15	6/12/2014	0.8	In-situ			<27.2	187
	20	6/12/2014	0.8	In-situ				

Location	Depth (Feet BGS)	Date	PID (ppm)	Status	Benzene (mg/Kg)	BTEX (mg/Kg)	TPH (mg/Kg)	Chloride (mg/Kg)
RRAL:			100		10	50	100	
	25	6/12/2014	0.8	In-situ				
	30	6/12/2014	0.8	In-situ				
	35	6/12/2014	0.8	In-situ				
	40	6/12/2014	0.8	In-situ				
SB-12	5	6/12/2014	0.0	In-situ			<26.3	286
	10	6/13/2013	0.0	In-situ			<27.5	700
	15	6/12/2014	0.0	In-situ			<27.5	581
	20	6/12/2014	0.0	In-situ				136
	25	6/12/2014	0.8	In-situ				1,220
	30	6/12/2014	0.8	In-situ				102
	35	6/12/2014	0.8	In-situ				67.7
	40	6/12/2014	0.8	In-situ				
SB-13	5	6/13/2014	0.0	In-situ			47.0	37.1
	10	6/13/2013	0.0	In-situ			<26.3	28.4
	15	6/13/2014	0.0	In-situ			<27.5	245
	20	6/13/2014	0.0	In-situ				
	25	6/13/2014	0.0	In-situ				
	30	6/13/2014	0.0	In-situ				
	35	6/13/2014	0.0	In-situ				
	40	6/13/2014	0.0	In-situ				
SB-14	5	6/12/2014	0.8	In-situ			<26.3	10.9
	10	6/13/2013	0.8	In-situ			<27.2	89.1
	15	6/12/2014	0.8	In-situ			98.0	160
	20	6/12/2014	0.8	In-situ				
	25	6/12/2014	0.8	In-situ				
	30	6/12/2014	0.0	In-situ				
	35	6/12/2014	0.8	In-situ				

Location	Depth (Feet BGS)	Date	PID (ppm)	Status	Benzene (mg/Kg)	BTEX (mg/Kg)	TPH (mg/Kg)	Chloride (mg/Kg)
RRAL:	(1000)		100		10	50	100	(
	40	6/12/2014	0.8	In-situ				
SB-15	5	6/13/2014	0.0	In-situ			<26.9	515
	10	6/13/2013	0.0	In-situ			<25.8	142
	15	6/13/2014	0.0	In-situ			<27.8	584
	20	6/13/2014	0.0	In-situ				139
	25	6/13/2014	0.0	In-situ				364
	30	6/13/2014	0.0	In-situ				504
	35	6/13/2014	0.0	In-situ				1,890
	40	6/13/2014	0.0	In-situ				
MW-2	5	6/12/2014	0.0	In-situ				131
	10	6/13/2013	0.0	In-situ				692
	15	6/12/2014	0.0	In-situ				381
	20	6/12/2014	0.0	In-situ				315
	25	6/12/2014	0.0	In-situ				562
	30	6/12/2014	0.0	In-situ				81.2
	35	6/12/2014	0.0	In-situ				
	40	6/12/2014	0.0	In-situ				
	45	6/12/2014	0.0	In-situ				
	50	6/12/2014	0.0	In-situ				
	55	6/12/2014	0.0	In-situ				
	60	6/12/2014	0.0	In-situ				

Notes: All samples analyzed by Permian Basin Environmental Lab, LP, Midland, Texas, using EPA method SW-8021B (BTEX), SW-8015M (TPH) and E300 (chloride)

Depth measurements are in feet below ground surface (bgs).

All concentrations are in milligrams per kilogram (mg/Kg) equivalent to parts per million (ppm).

NS: Denotes soil excavated - no sample collected

Bold and highlighted denotes analyte detected at concentration above OCD recommended remediation action level (RRAL)

Table 4 Monitoring Well Drilling and Completion Summary Legacy Reserves, L.P., LMPSU Trash Pit Unit) (SW/4, SE/4), Section 27, Township 22 South, Range 37 East Lea County, New Mexico

Well Inform	nation									Groundwater Data			
Well	Location	Date Installed	Drilled Depth (bgs)	Well Depth from TOC	Well Diameter (inches)	Surface Elevation	Screen Interval (bgs)	Casing Stickup	TOC Elevation	Date Gauged	Depth to Water (TOC)	Depth to Water (BGS)	
MW-1	Down gradient			63.69	2			2.86		04/02/2014 06/13/2014	44.35 43.38	41.49 40.52	
MW-2	Up gradient	06/12/2014	58.00	60.50	2		38.17 - 57.77	2.16		06/12/2014 06/13/2014	45.30 45.27	43.14 43.11	

Note: Drilling and completion details for MW-1 are unknown. Well MW-2 drilled and installed by Scarborough Drilling, Inc., Lamesa, Texas.

BGS: Feet below top of ground surface

TOC: Feet below top of PVC well casing

			B	TEX		Cations					Anions			
Sample	Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Sodium (mg/L)	Magnesium (mg/L)	Potassium (mg/L)	Calcium (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Alkalinity (mg/L)	Nitrate (mg/L)	TDS (mg/L)
WQCC Stan	dard:	0.01	0.75	0.75	0.62					600	250		10	1,000
MW-1	04/10/2014	<0.0008	<0.002	< 0.002	<0.003	840	195	20.9	168	509	1,480	673	<0.1	3,510
	06/13/2014					1,420	384	29.5	447	896	2,720	394	<0.1	6,700
MW-2	06/13/2014					114	30.6	7.86	48.2	121	58.8	227	1.54	564

Notes: Analysis performed by DHL Analytical, Inc., Round, Rock, Texas.

Samples analyzed by EPA method SW-8021B (BTEX), SW-8015M (TPH) and E-300 (chloride)

mg/L: milligrams per liter - equivalent to parts per million (ppm).

Bold denotes analyte detected

Bold and highlighteds denotes concentration exceed New Mexico Water Quality Control Commission (WQCC) domestiic water quality standard

Figures

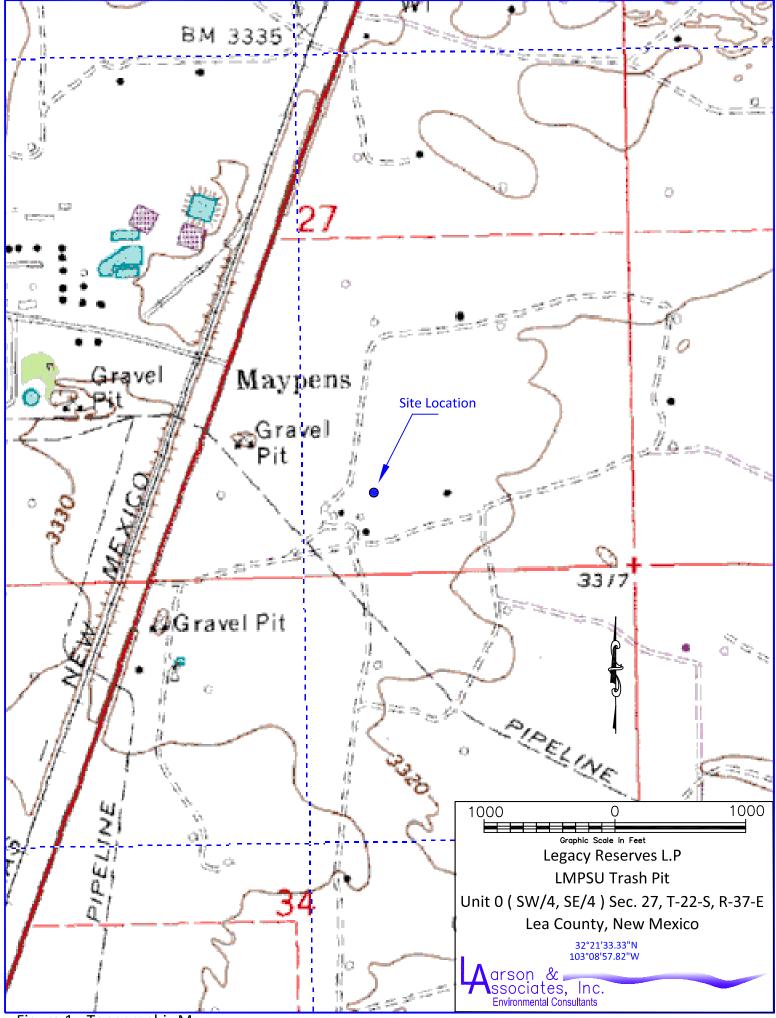


Figure 1 - Topographic Map

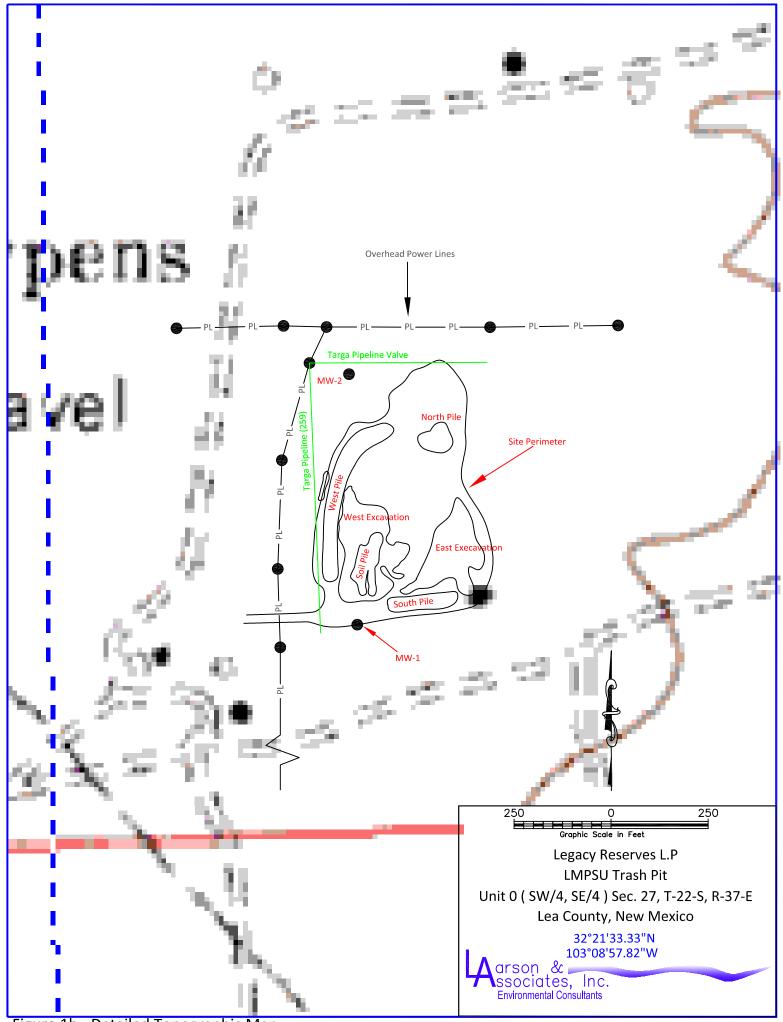


Figure 1b - Detailed Topographic Map

Figure 2a - Aerial Map

Figure 2b - Detailed Aerial Map

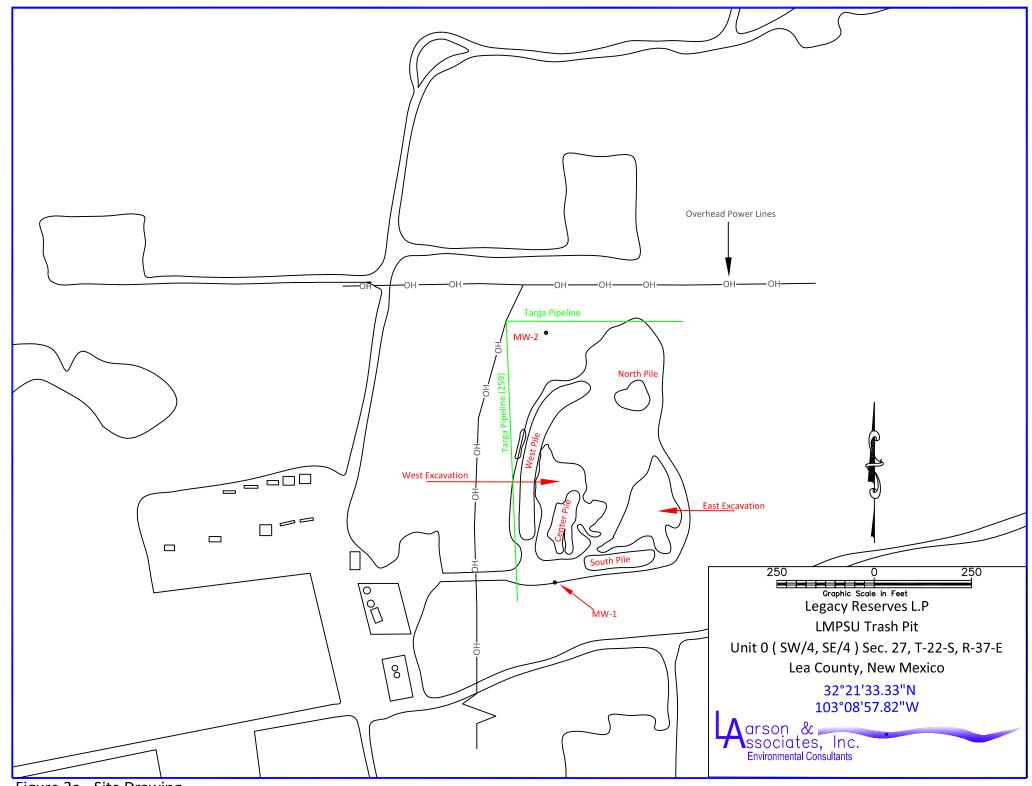
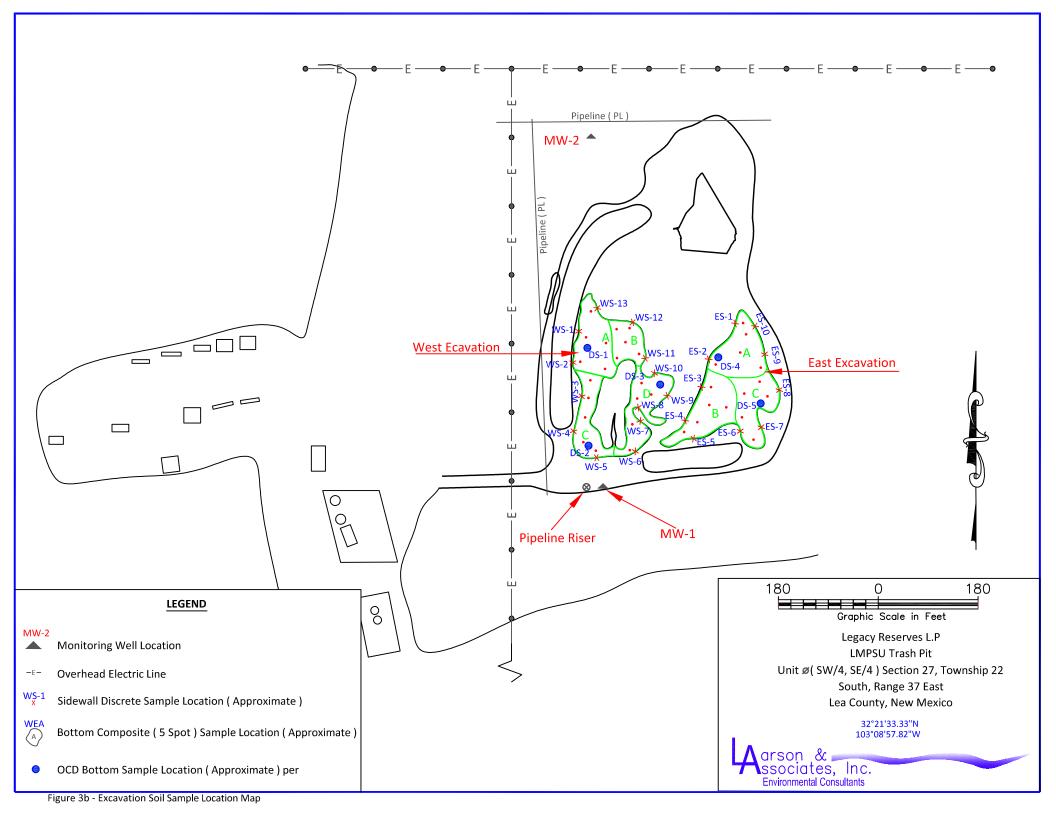
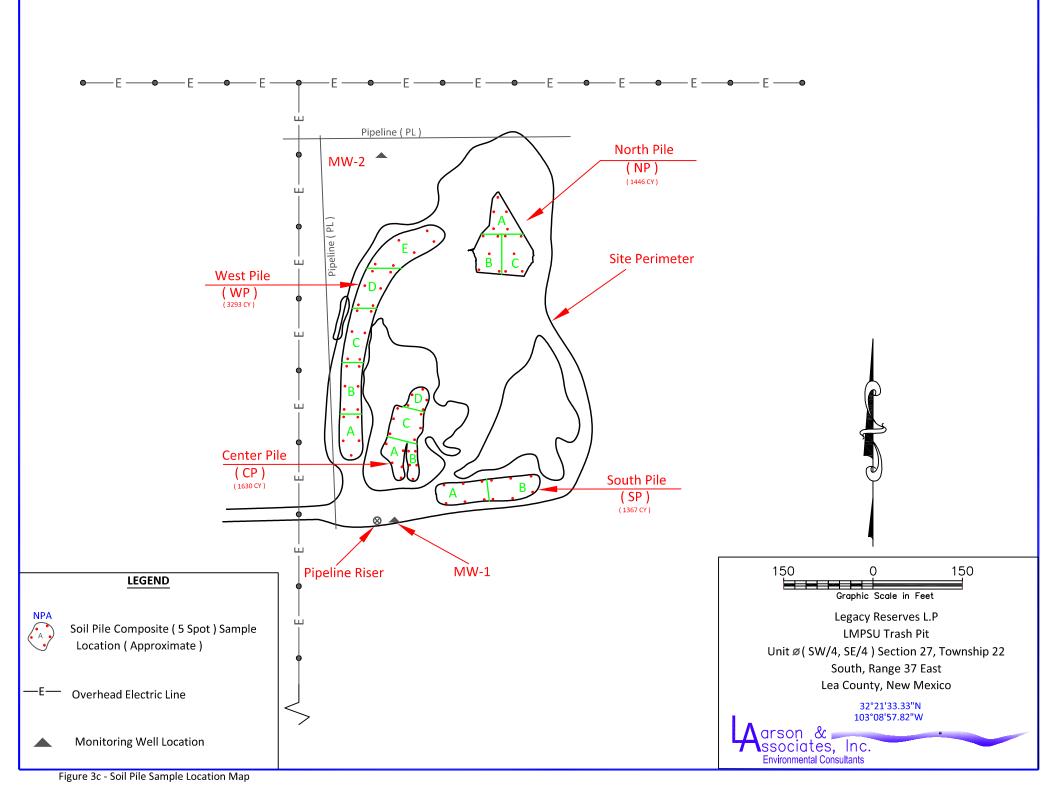




Figure 3a - Site Drawing

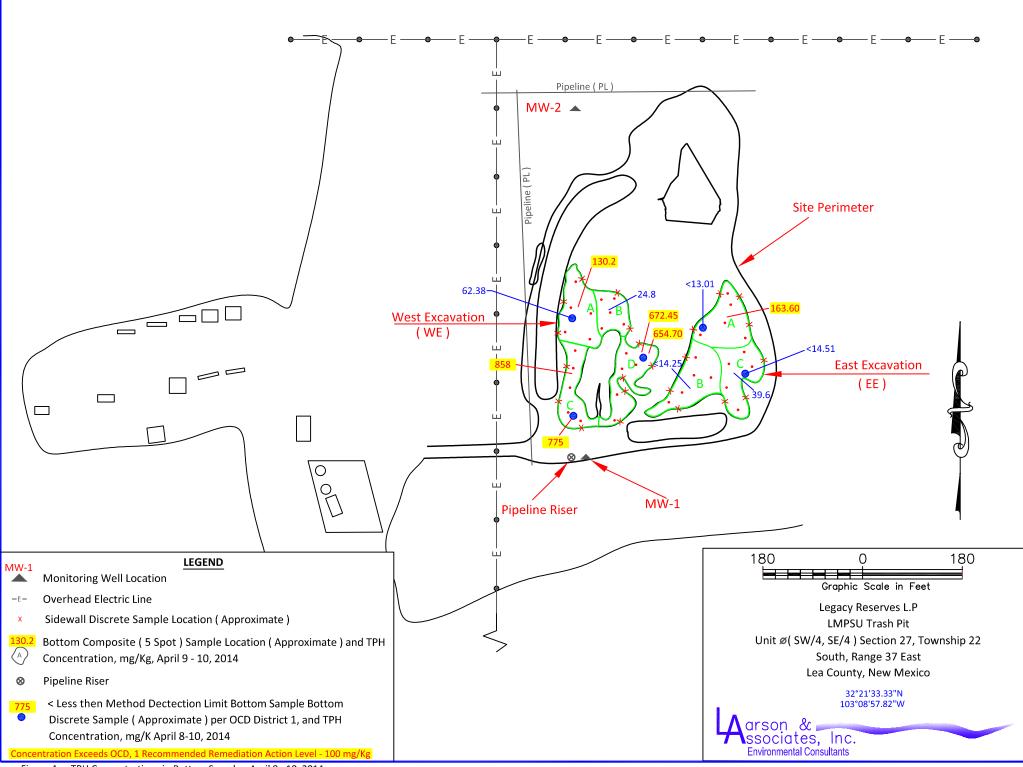


Figure 4a - TPH Concentrations in Bottom Samples, April 8 - 10, 2014

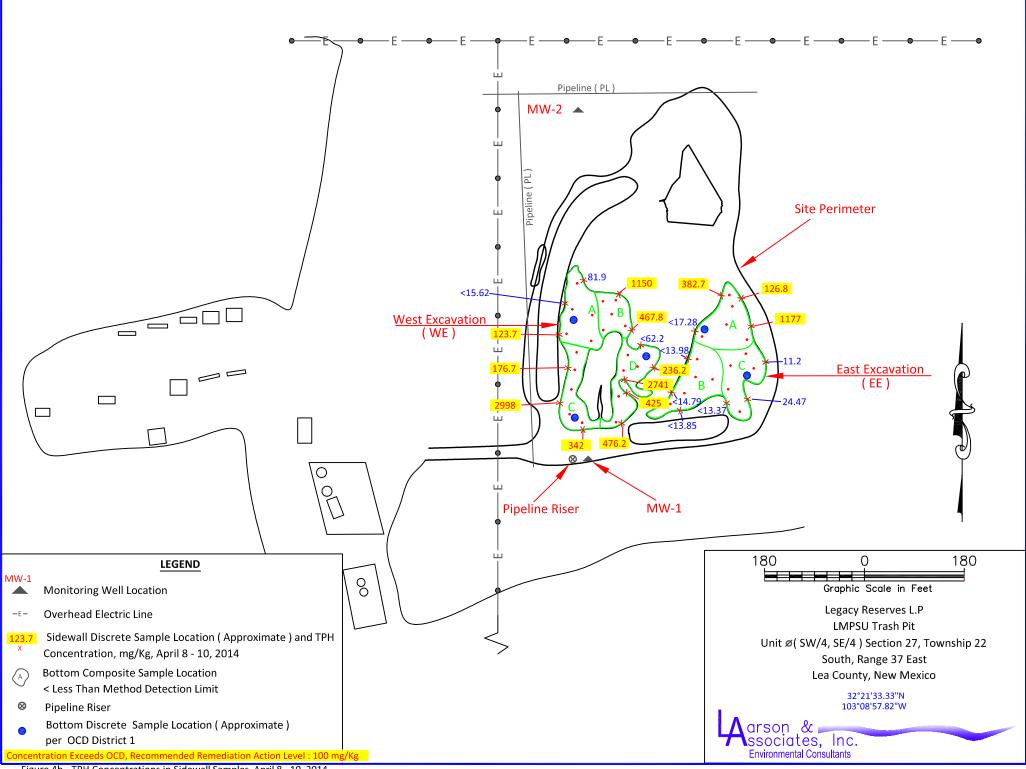
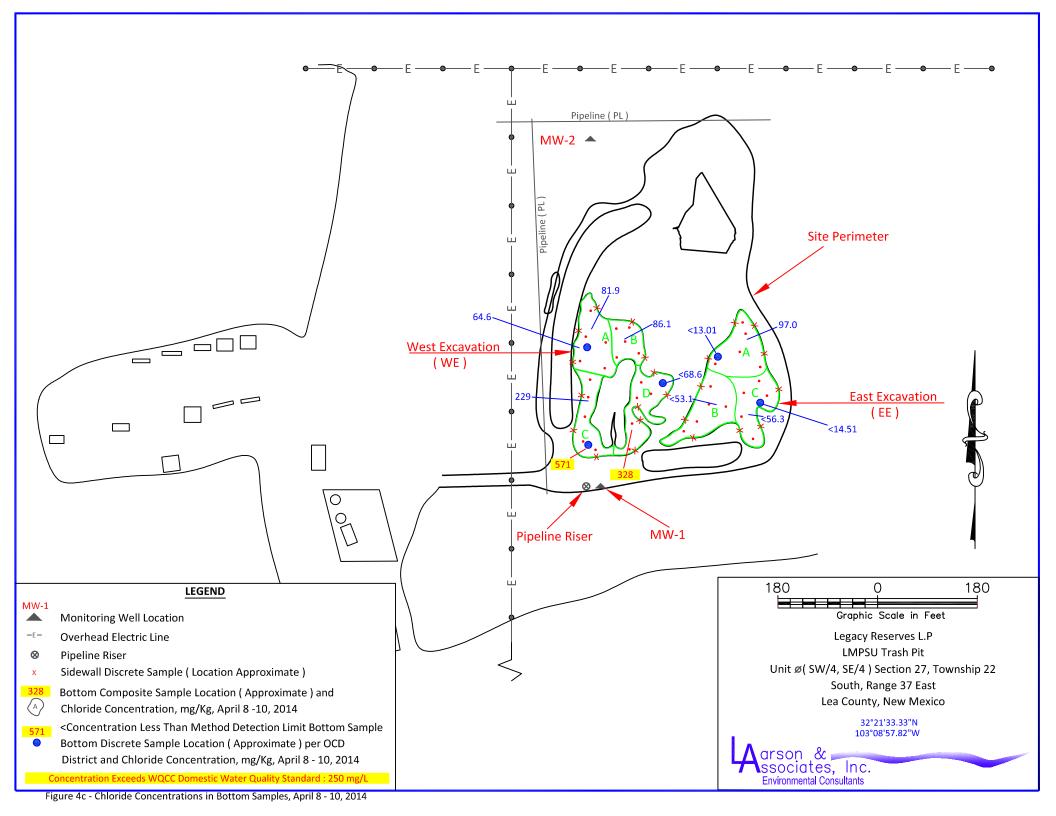
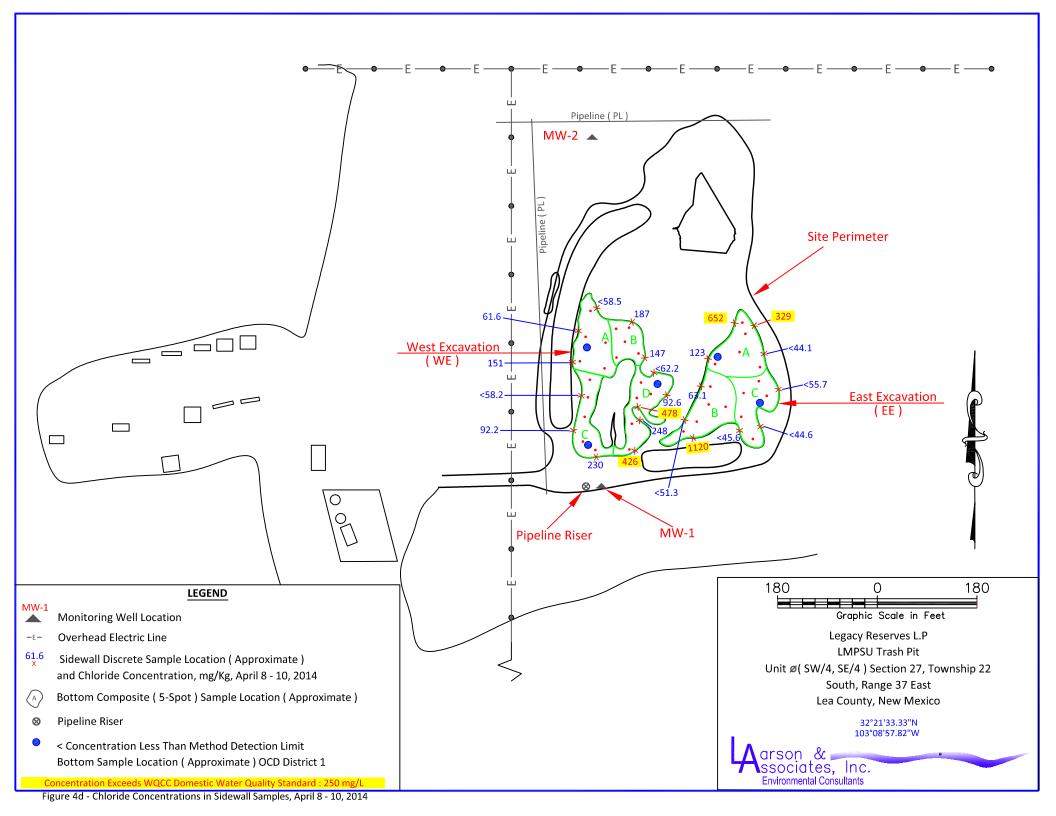




Figure 4b - TPH Concentrations in Sidewall Samples, April 8 - 10, 2014

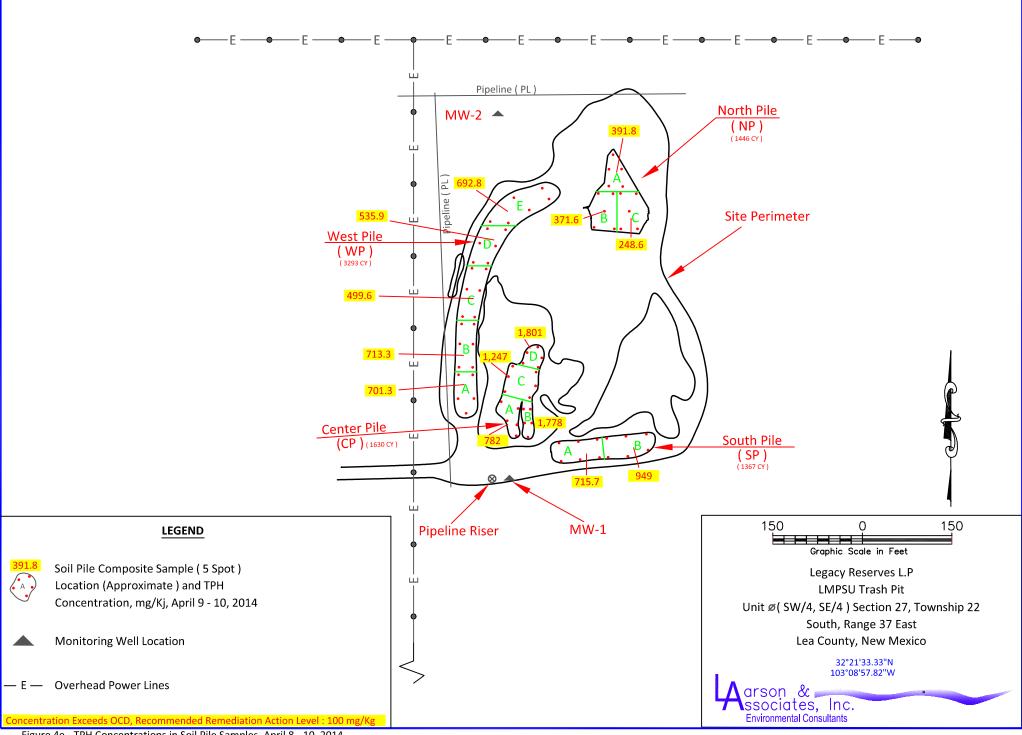


Figure 4e - TPH Concentrations in Soil Pile Samples, April 8 - 10, 2014

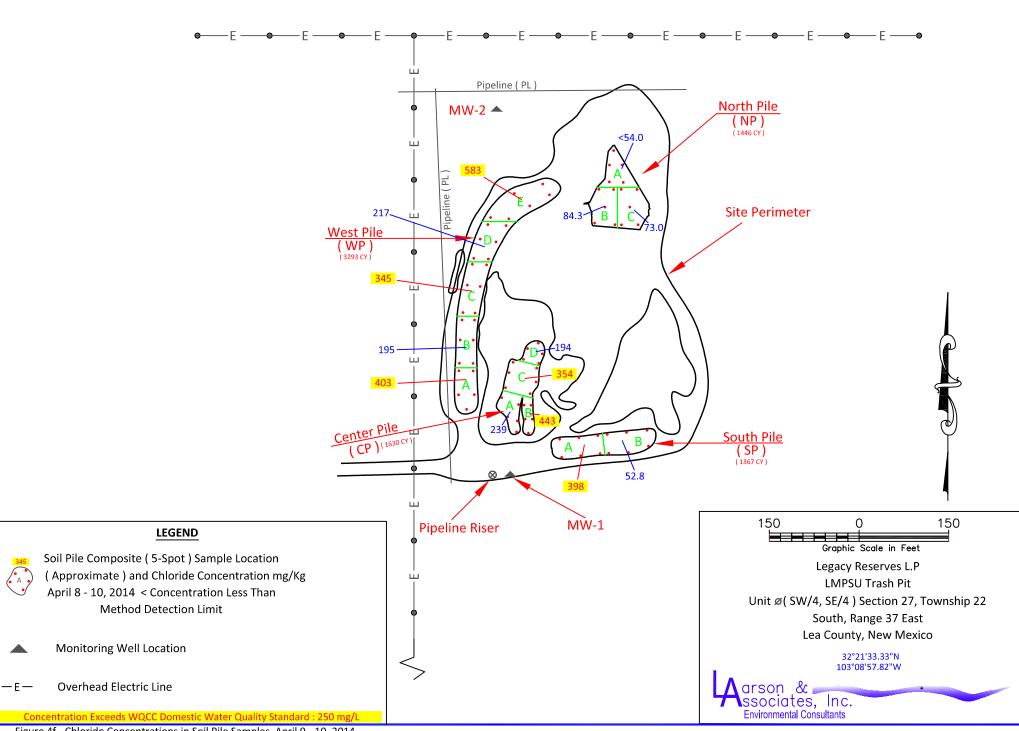


Figure 4f - Chloride Concentrations in Soil Pile Samples, April 9 - 10, 2014

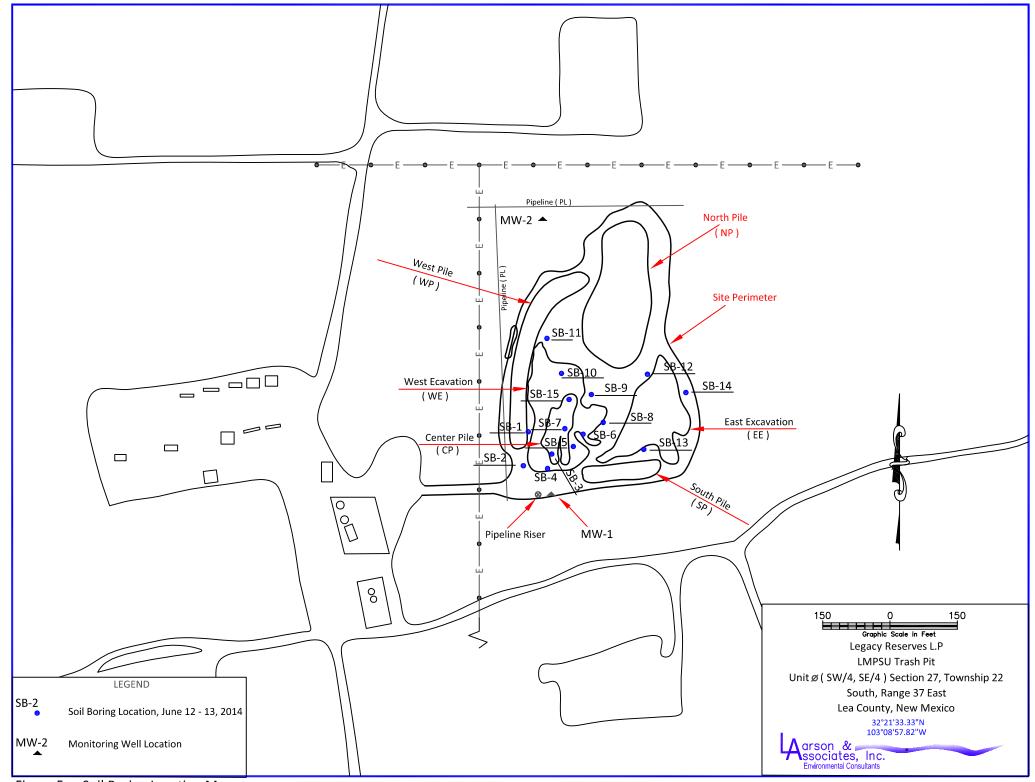


Figure 5a - Soil Boring Location Map

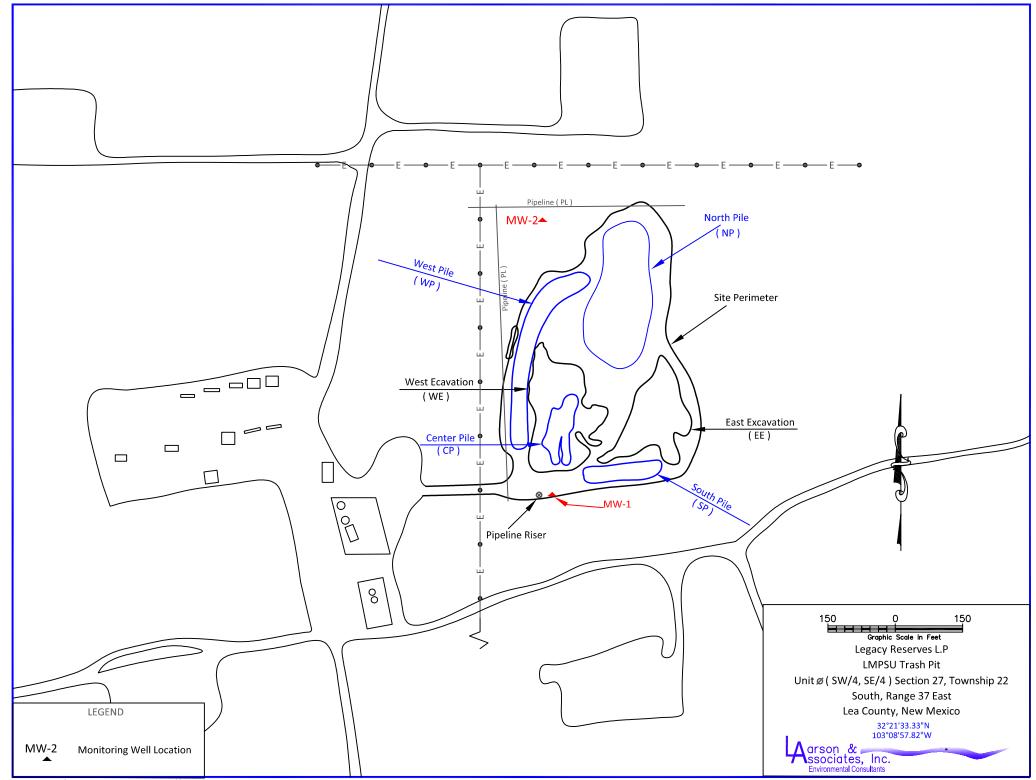


Figure 5b - Monitoring Well Location Map

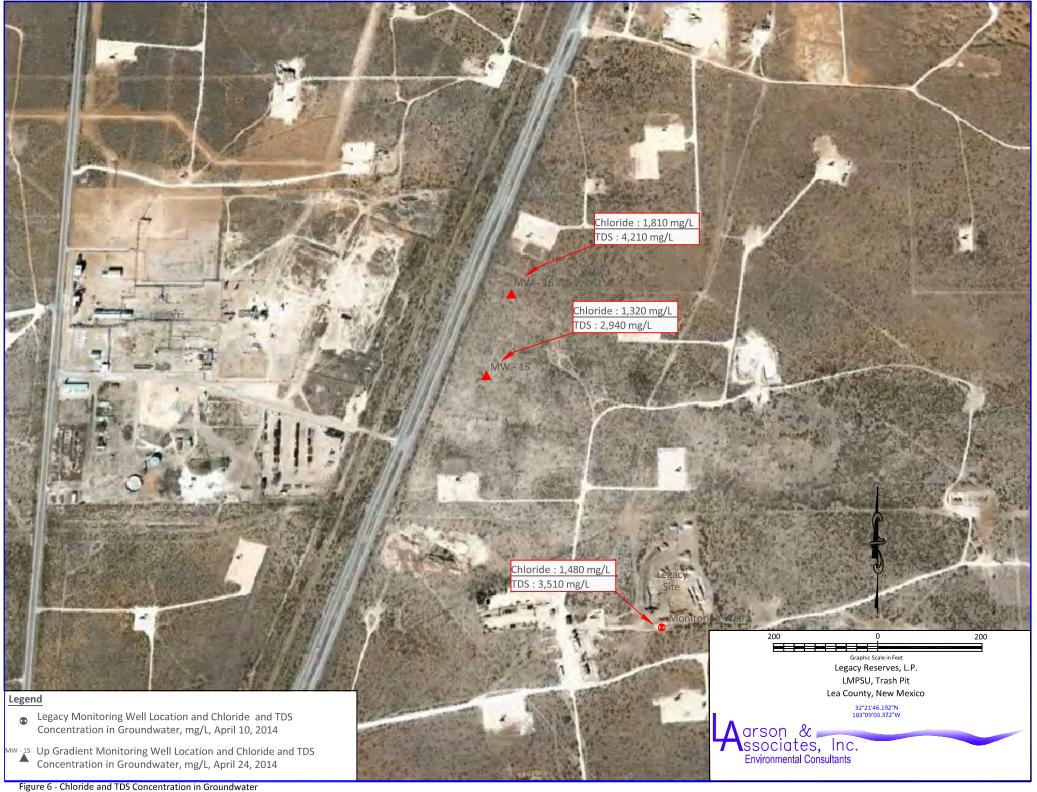



Figure 7a - Aerial Map - Historical Photograph February 04, 1968

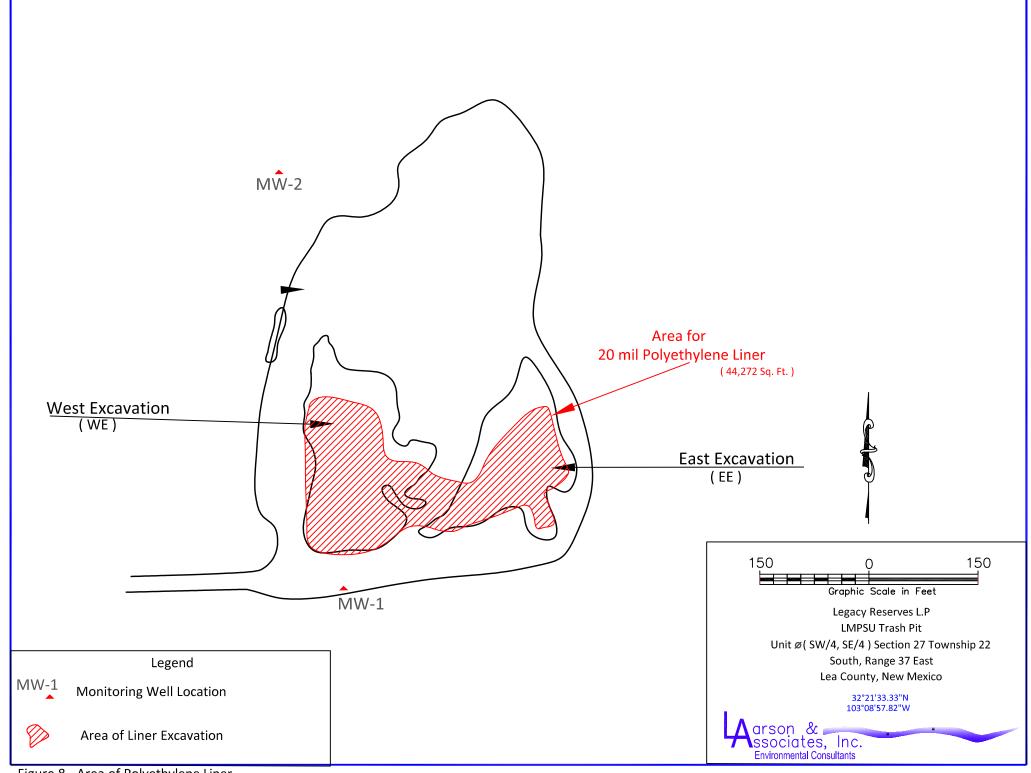


Figure 8 - Area of Polyethylene Liner

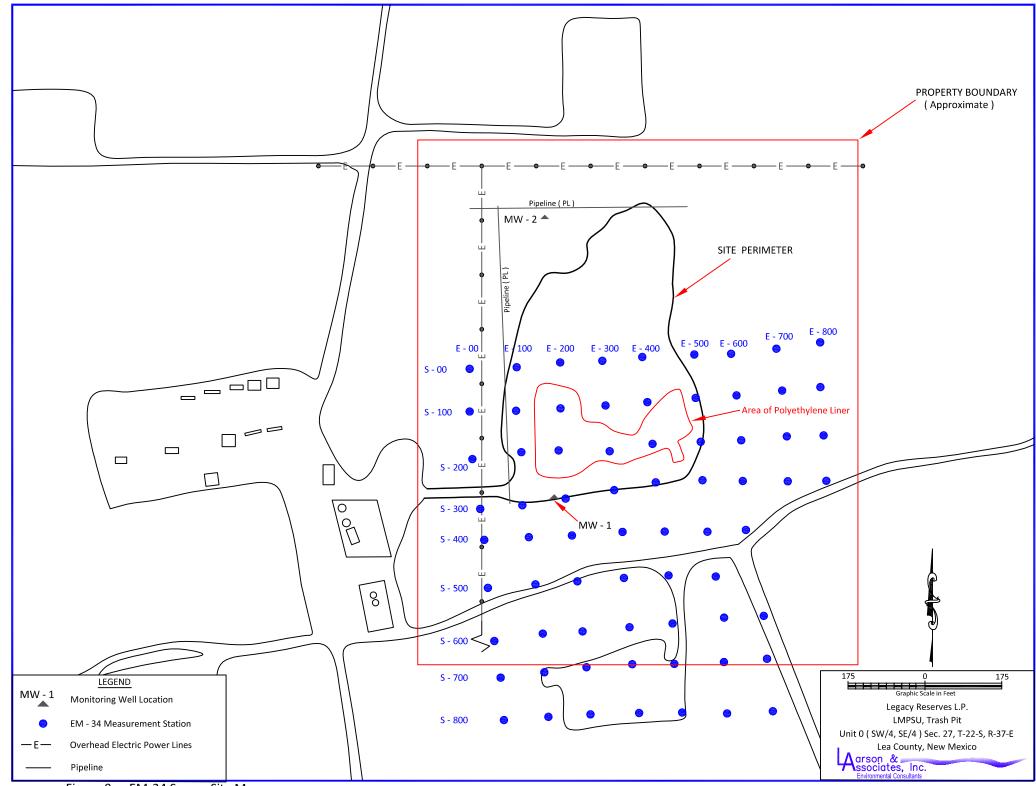


Figure 9a - EM-34 Survey Site Map

Appendix A

OCD Correspondence

New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

John H. Bemis Cabinet Secretary-Designate

Brett F. Woods, Ph.D. Deputy Cabinet Secretary

May 16, 2011

Jami Balley Division Director **Oil Conservation Division**

158 stern 475' E of 201 addetand mi E of 201

Legacy Reserves Operating LP Attn: Paul T. Horne P.O. Box 10848 Midland, TX 79702

Email: phorne@legacylp.com

Legacy Reserves Operating LP 303 W. Wall Suite 1400 Midland, TX 79701

Moriah Resources, Inc. P.O. Box 5562 Midland, TX 79704

Moriah Resources, Inc. 303 W. Wall Suite 1500 Midland, TX 79701

Moriah Resources, Inc. Attn: Alan J. Brown 300 North Marienfeld Suite 700 Midland, TX 79701

Moriah Resources, Inc. C/O James Bruce P.O. Box 1056 Santa Fe, NM 87504-1056

Email: jamesbruc@aol.com

Oil Conservation Division 1220 South St. Francis Drive - Santa Fe, New Mexico 87505 Phone (505) 476-3440 • Fax (605) 476-3462 • www.emord.state.nm.us/OCD

May 16, 2011 Page 2

Pecos Production Company 400 W. Illinois Suite 1070 Midland, TX 79701

Pecos Production Company 400 W. Illinois Suite 1210 Midland, TX 79701

Re: Buried Oilfield Waste Location: 0-27-22S-37E, Lea County, New Mexico Lease Operators: Legacy Reserves Operating LP, OGRID 240974 Moriah Resources, Inc., OGRID 224376 Pecos Production Company, OGRID 215758 Anadarko Petroleum Corporation, OGRID 817

Dear Operators of the Above Lease Location:

The Oil Conservation Division (OCD) is investigating a complaint by a landowner that oilfield waste is buried at the above lease location. The OCD is contacting the operator of the lease, identified in OCD records as Legacy Reserves Operating LP (Legacy), and all prior operators of the lease, identified in OCD records as Moriah Resources Inc. (Moriah), Pecos Production Company (Pecos), and Anadarko Petroleum Corporation (Anadarko), to discuss the matter. Barrels, PVC pipes, metal pipes, buckets, rags, and other oilfield wastes were unearthed during a recent excavation of the site. Pictures of the site are enclosed in the attached letter that was sent to Anadarko early on in the OCD's investigation of this matter.

<u>Please contact me</u> at (505) 476-3493 or daniel.sanchez@state.nm.us <u>within 10 days</u> of receipt of this letter so that I can set up a meeting where we can discuss the matter further.

Your prompt attention to this matter would be greatly appreciated.

Sincerely yours,

Daniel Sanchez OCD Enforcement & Compliance Manager

cc: Jami Bailey, OCD Director
 Geoff Leking, Environmental Specialist, OCD District 1
 Larry "Buddy" Hill, Supervisor, OCD District 1
 E.L. Gonzales, OCD District 1
 Glenn von Gonten, Acting OCD Environmental Bureau Chief
 Bill Sims, Landowner
 Linda S. Kuhn, Anadarko Petroleum Corporation
 Sonny Swazo, OCD Assistant General Counsel

New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

John H. Bemis Cabinet Secretary-Designate

Brett F. Woods, Ph.D. Deputy Cabinet Secretary Danlet Sanchez Acting Division Director Oll Conservation Division

March 29, 2011

Linda S. Kuhn, Sr. Counsel Anadarko Petroleum Corporation 1201 Lake Robbins Drive The Woodlands, TX 77380

Certified Mail: 7008 3230 0000 2318 8588

Anadarko Petroleum Corporation P.O. Box 2497 Midland, Texas 79702

Certified Mail: 7008 3230 0000 2318 8595

Anadarko Petroleum Corporation P.O. Box 1330 Houston, TX 77251

Certified Mail: 7008 3230 0000 2318 8601

Anadarko Petroleum Corporation c/o CT Corporation System 123 E. Marcy St. Santa Fe, NM 87501

Certified Mail: 7008 3230 0000 2318 8618

Anadarko Petroleum Corporation 1209 Orange Street Wilmington, DE 19801

Certified Mail: 7008 3230 0000 2318 8625

Re: Buried Oilfield Waste Operator: Anadarko Petroleum Corporation, OGRID 817 Location: O-27-22S-37E, Lea County, New Mexico

March 29, 2011 Page 2

Dear Operator:

The Oil Conservation Division (OCD) is investigating a complaint by landowner Bill Sims that Anadarko Petroleum Corporation (Anadarko) buried oilfield waste in a trench at the above location while Anadarko was the lease operator.

Mr. Sims unearthed barrels, PVC pipes, metal pipes, buckets, rags, and other oilfield wastes when he recently excavated a portion of the trench. Pictures of the site are enclosed.

Mr. Sims and his family have lived and ranched in the area for generations. According to Mr. Sims, Anadarko had a service yard at the location which it used to service its surrounding wells. Anadarko stockpiled barrels, junk and other items at the service yard. Around 1993, Mr. Sims saw a bulldozer dig a big trench immediately adjacent to the stockpiled barrels and other items at the service yard. A day or two later, Mr. Sims noticed that the stockpiled barrels, junk and other items were gone and the trench had been filed in. OCD records show Anadarko as the lease operator around the time of the incident.

Mr. Sims never saw any excavation or other activity at the location either before or after the incident. According to Mr. Sims, Anadarko had leased the location for decades prior to the incident and continued to lease the location for years after the incident. OCD records show that Anadarko operated the lease as late as 2003.

Section 70-2-12(B)(21) NMSA 1978, gives the OCD the authority to regulate the disposition of nondomestic wastes resulting from the exploration, development, production or storage of crude oil or natural gas to protect public health and the environment.

Section 70-2-12(B) (22) NMSA 1978, gives the OCD the authority to regulate the disposition of nondomestic wastes resulting from the oil field service industry, the transportation of crude oil or natural gas, the treatment of natural gas or the refinement of crude oil to protect public health and the environment, including administering the Water Quality Act [74-6-1 NMSA 1978] as provided in Subsection E of Section 74-6-4 NMSA 1978.

OCD Rule 19.15.34.11 NMAC prohibits the disposal of oilfield waste on or below the surface of the ground, or in another place or in a manner that may constitute a hazard to fresh water, public health, safety or the environment.

Oil field waste is "waste generated in conjunction with the exploration for, drilling for, production of, refining of, processing of, gathering of or transportation of oil, gas or carbon dioxide; waste generated from oil field service company operations; and waste generated from oil field remediation or abatement activity regardless of the date of release." OCD Rule 19.15.2.7.O(3) NMAC.

The buried items are oilfield waste and may constitute a hazard to fresh water, public health, safety or the environment, especially since many of the buried items were items that contained chemicals (such as barrels, buckets, and rags), or transported or could have transported chemicals (such as pipes). The location must be investigated to determine if there has been any unauthorized release to the environment that has contaminated soil and/or ground water.

March 29, 2011 Page 3

. .

OCD Rule 19.15.29.11 NMAC requires the responsible person to complete OCD approved corrective action for releases that endanger public health or the environment. OCD Rule 19.15.29.11 NMAC requires the responsible person to address releases in accordance with a remediation plan submitted to and approved by the OCD.

Anadarko must submit a remediation plan pursuant to 19.15.29 NMAC to the OCD. Based on the results of the investigation, OCD will determine what remediation Anadarko must implement if any.

OCD Rule 19.15.34.13 NMAC requires persons to dispose of oilfield wastes that is not produced water by transferring the wastes to an appropriate permitted or registered surface waste management facility.

Anadarko must excavate the oilfield waste and properly dispose of it at an appropriate permitted or registered surface waste management facility.

Please contact me at (505) 476-3493 or <u>daniel.sanchez@state.nm.us</u> within 10 days of receipt of this letter to schedule a compliance conference with me at the OCD's Santa Fe Office. OCD legal counsel may be present at the conference. You may have counsel participate in the conference if you wish.

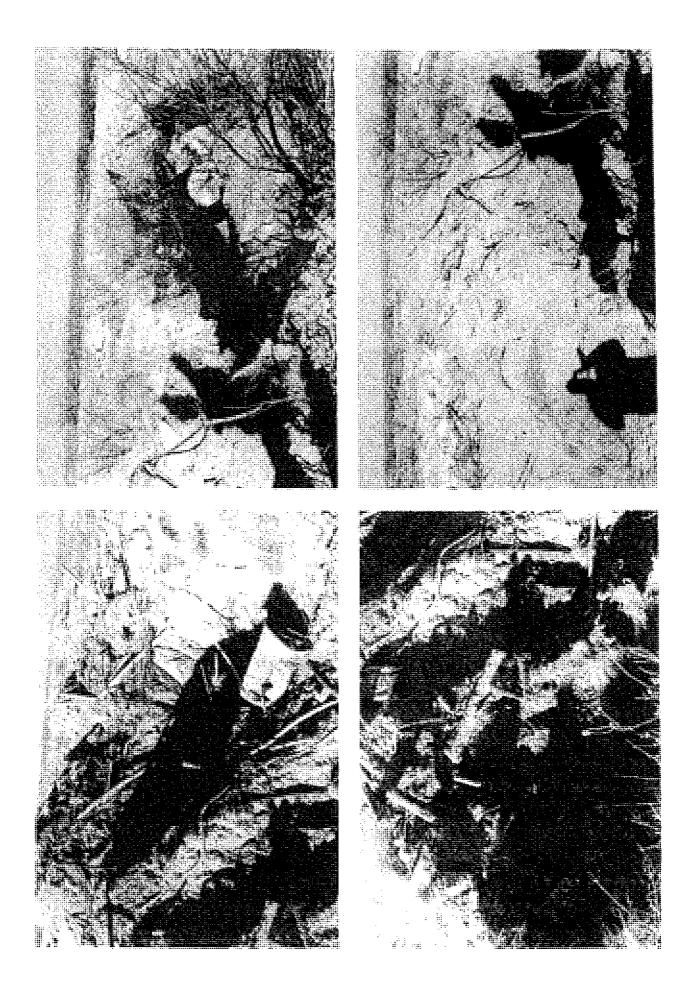
Section 70-2-12(A), NMSA 1978, gives the OCD the power to collect data; make investigations and inspections; and to examine properties, leases, papers, books and records.

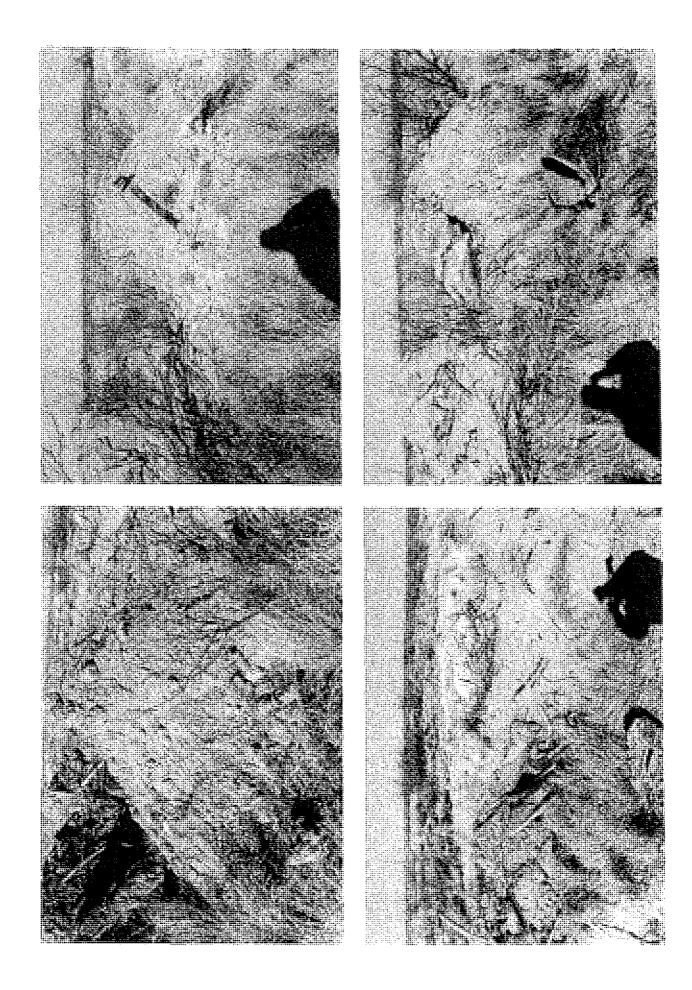
Anadarko must bring the following to the conference:

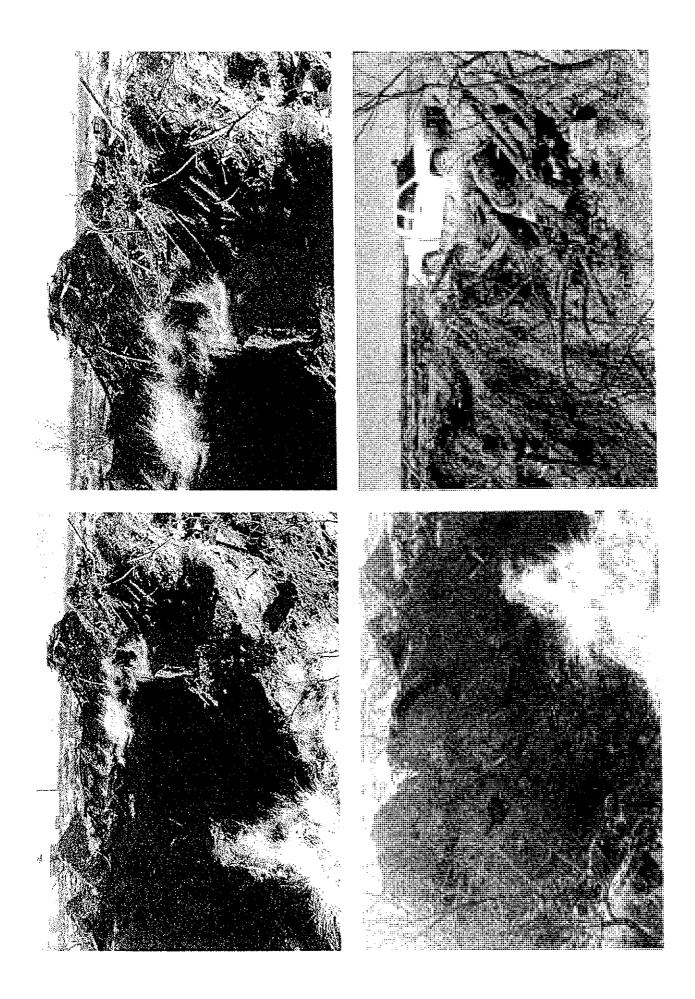
- the approximate date of the service yard's operation from beginning to end;
- a list of all items and chemicals that passed through the service yard during its operation;
- copies of any permit or other document that purportedly gave Anadarko the authority to bury items at the site;
- a remediation plan to delineate and remediate the site;
- a written explanation and records of what Anadarko did with the oilfield waste at the service yard;
- a written explanation and records of what Anadarko did with the items at the service yard;
- any other information pertinent to this case.

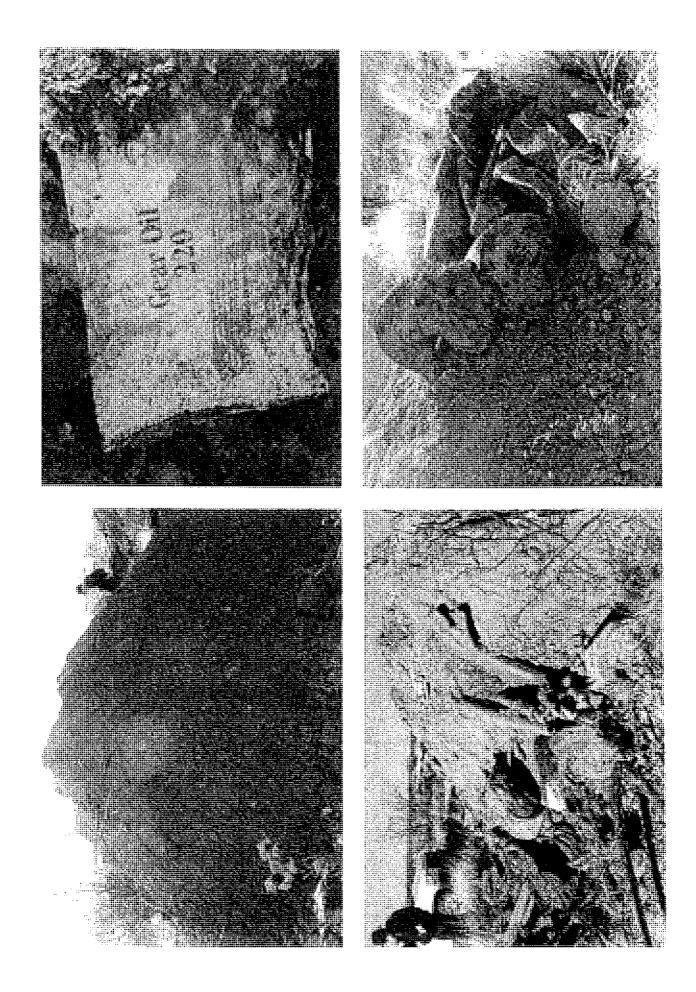
Anadarko's prompt attention to this matter would be greatly appreciated.

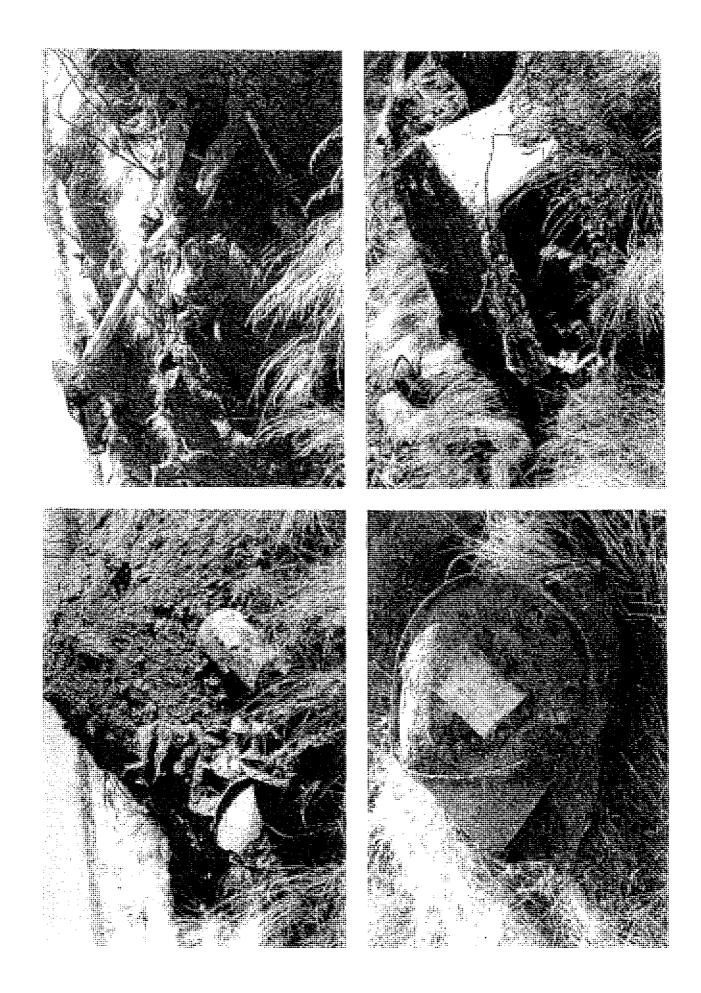
Sincerely,

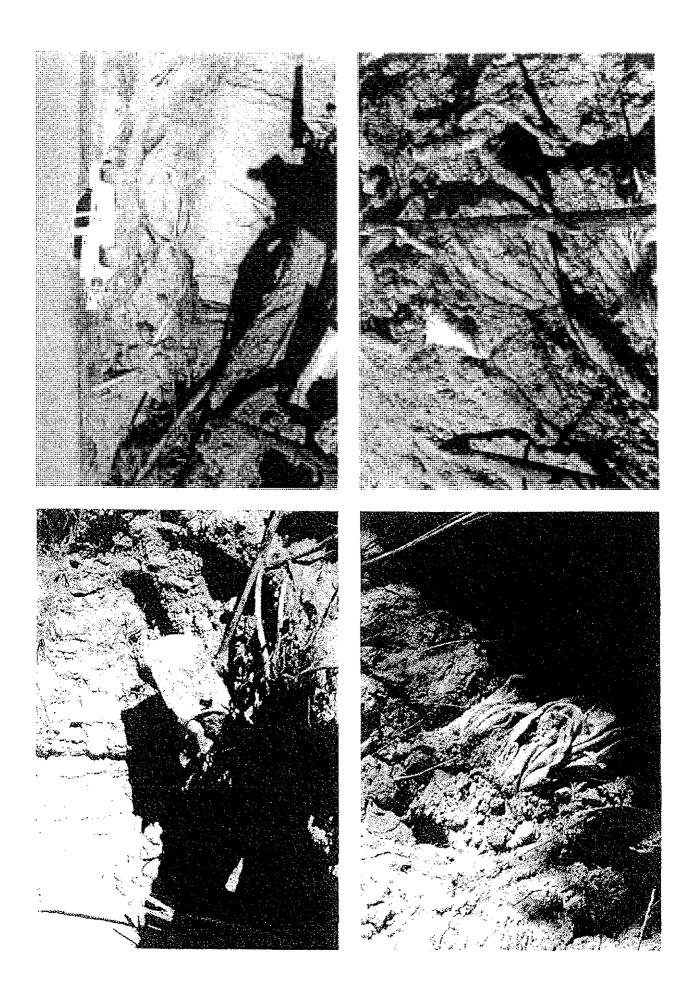

1and

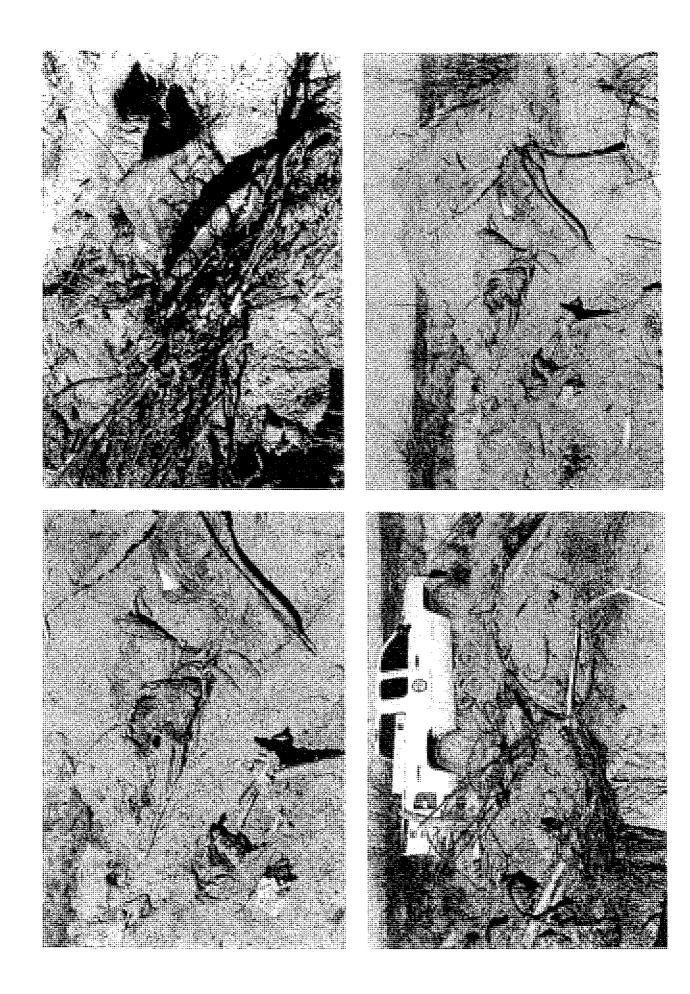

Daniel Sanchez Acting Division Director Division Enforcement & Compliance Manager

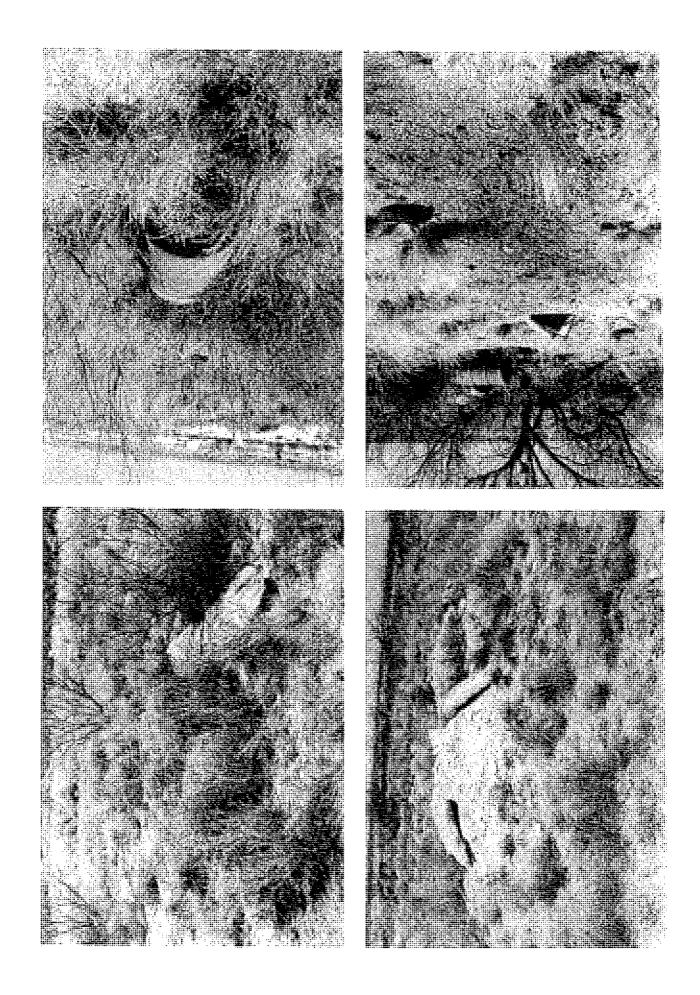

cc: John H. Bemis, EMNRD Cabinet Secretary-Designate

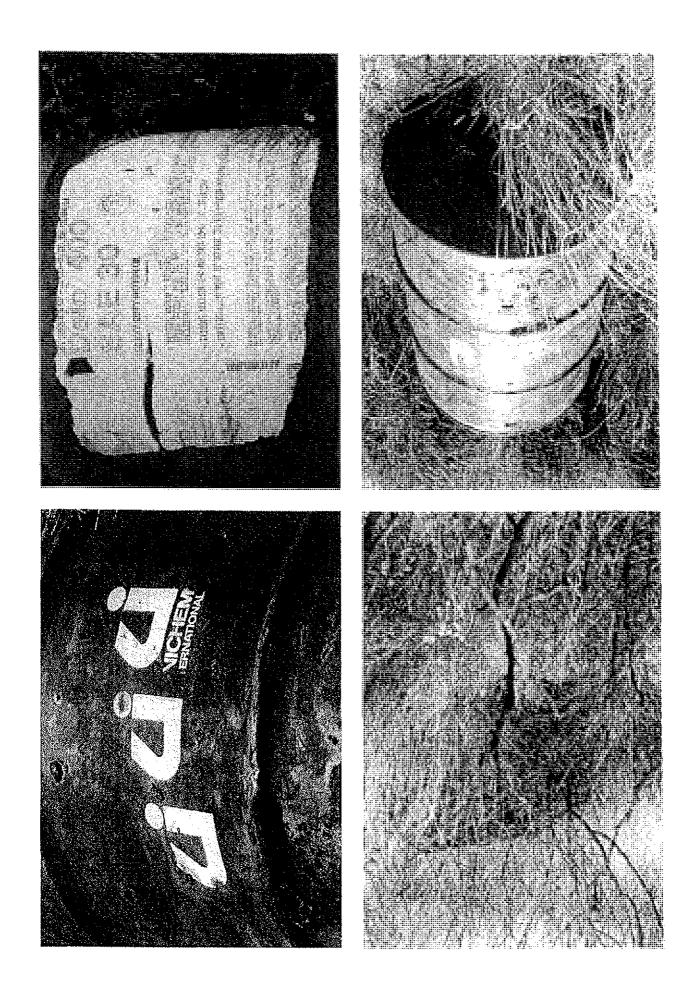

March 29, 2011 Page 4

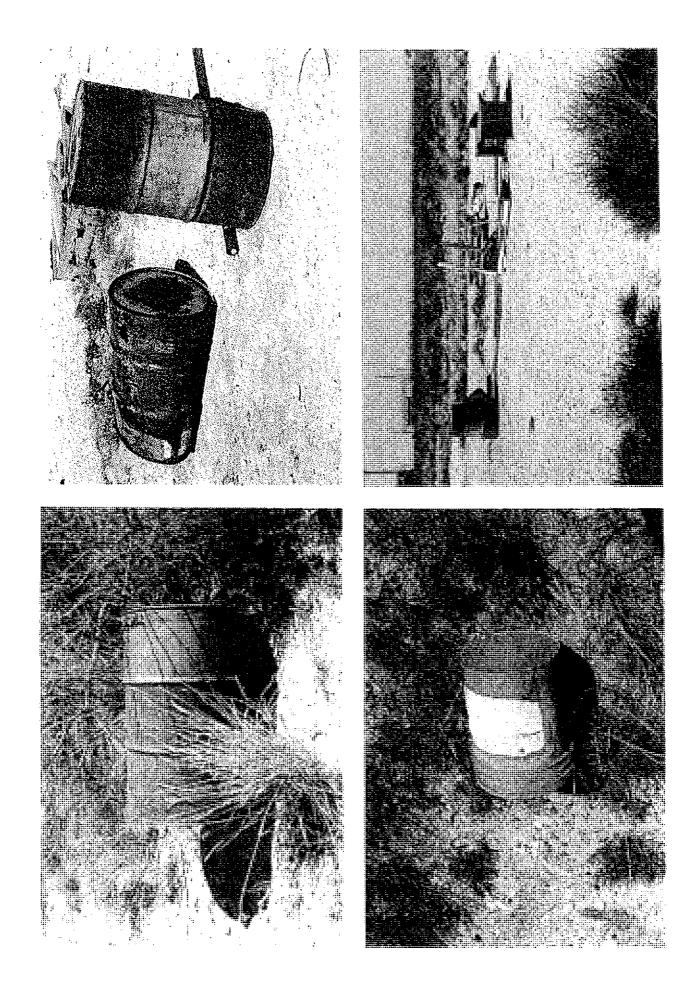

> Bill Brancard, EMNRD General Counsel Sonny Swazo, OCD Assistant General Counsel Geoff Leking, Environmental Specialist, OCD District 1 Larry "Buddy" Hill, Supervisor, OCD District 1 Glenn von Gonten, Acting OCD Environmental Bureau Chief Bill Sims, Landowner Auralie Ashley-Marx, NMED Solid Waste Bureau Chief

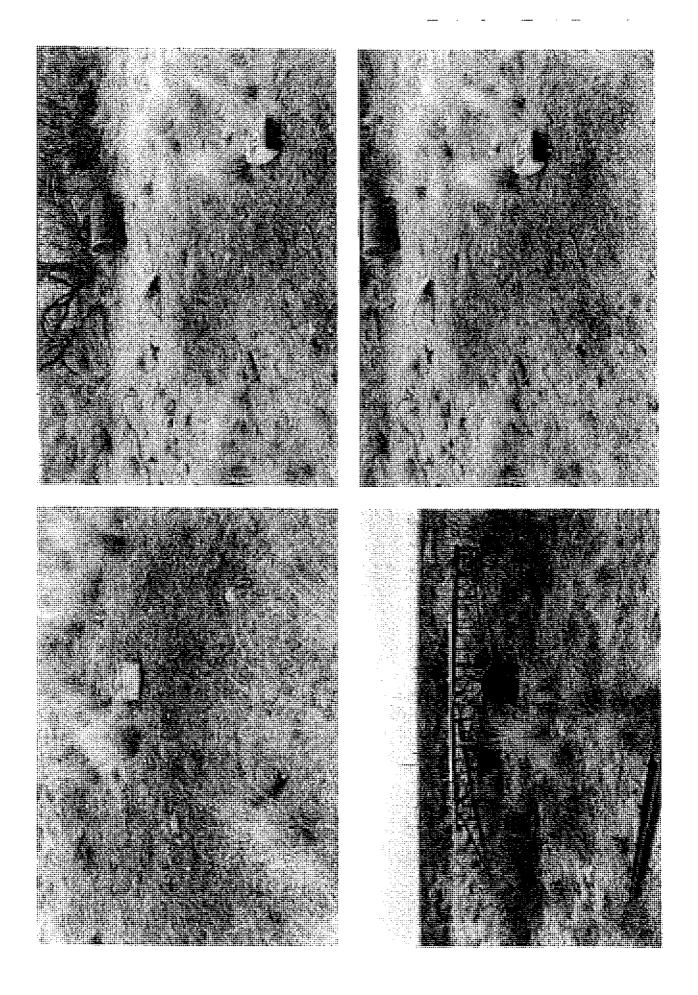












Berry Johnson

From:Paul HorneSent:Wednesday, May 18, 2011 11:22 AMTo:Cary Brown; Steve Pruett; Kyle McGraw; Bill MorrisCc:Ernie Hanson; Berry JohnsonSubject:FW: Anadarko Petroleum Corporation Buried Oilfield Waste

Attachments: 2011 5-16 Letter.pdf

2011 5-16 Letter.pdf (10 MB)

Please read attached letter from NMOCD. This is on the LMPSU. We were aware that the landowner, Bill Simms, was out doing some digging and taking pictures. We believe that someone else had a leak and while digging it up, encountered a bunch of junk and Bill wouldn't let them cover it up. He has not contacted us or asked us to do anything. He has told the NMOCD that Anadarko did this and the NMOCD is investigating. We need to discuss next steps. They are asking us to contact them to setup a meeting. I suggest we might want legal present...Alan Brown?

Paul T. Horne Legacy Reserves EVP - Operations Office(432)-689-5200 Cell(432)559-8473 Fax(432)686-8318

-----Original Message-----From: Duran-Saenz, Theresa, EMNRD [mailto:Theresa.Duran-Saenz@state.nm.us] Sent: Monday, May 16, 2011 12:30 PM To: Paul Horne; jamesbruc@aol.com Cc: Bailey, Jami, EMNRD; Leking, Geoffrey R, EMNRD; Hill, Larry, EMNRD; Gonzales, Elidic L, EMNRD; VonGonten, Glenn, EMNRD; Linda.Kuhn@anadarko.com; Swazo, Sonny, EMNRD; Sanchez, Daniel J., EMNRD Subject: Anadarko Petroleum Corporation Buried Oilfield Waste

Dear Operators,

The original letter with attachments is to follow via U.S. Mail.

The message is ready to be sent with the following file or link attachments:

2011 5-16 Letter

Note: To protect against computer viruses, e-mail programs may prevent sending or receiving certain types of file attachments. Check your e-mail security settings to determine how attachments are handled.

Adrian Jackson

From: Sent: To: Cc: Subject: Mark Larson Friday, August 01, 2014 8:53 AM Heath Loftin Adrian Jackson FW: Legacy Reserves, L.P., LMPSU Trash Pit Remediation

Heath,

Approved! Here's OCD's approval to proceed with lining and filling the trash pit excavations at LMPSU. We will get this on the schedule. The work will involve grading the bottoms of the excavations, installing the 20 mil liners and filling with soil from the soil piles. We will compact the soil while filling the excavations to minimize settling. As I stated earlier it may be necessary to acquire additional soil to complete filling the excavations to replace soil hauled to disposal and debris removed from the pits. It may be beneficial to acquire the extra soil from the adjoining landowner to the south (Sims?) since it will require landowner approval to access the adjoining property for delineating the groundwater including installing monitoring wells. I will let you know when we are ready to begin. Please contact me if you have questions.

Mark

From: Oberding, Tomas, EMNRD [mailto:Tomas.Oberding@state.nm.us]
Sent: Friday, August 01, 2014 8:35 AM
To: Mark Larson
Subject: RE: Legacy Reserves, L.P., LMPSU Trash Pit Remediation

Aloha and good morning Mark,

Thank you again for coming into the office yesterday. I appreciate the summary of our discussion. Please consider this the official notice of receipt of these files. The OCD has no problems with the proposed work plan for this site. Please also consider this the official notice of clearance (stamp of approval) from OCD to continue along this path in the cleanup of this site.

Please let me know if you have any questions, also please keep me informed as the situation warrants. Hope you and the entire crew have a wonderful Friday and weekend (enjoy the cooler temps a bit!) Mahalo -Doc

Tomáš 'Doc' Oberding, PhD Environmental Specialist – New Mexico Oil Conservation Division Energy, Minerals and Natural Resources Department 1625 N. French Dr. Hobbs, NM 88240 (O): (575) 393-6161 ext 111 (C): 575-370-3180 (F): (575) 393-0720 E-Mail: tomas.oberding@state.nm.us Website: MailScanner has detected a possible fraud attempt from "webmail.state.nm.us" claiming to be http://www.emnrd.state.nm.us/ocd/

From: Mark Larson [mailto:Mark@laenvironmental.com] Sent: Thursday, July 31, 2014 4:11 PM To: Oberding, Tomas, EMNRD

Cc: Heath Loftin

Subject: Re: Legacy Reserves, L.P., LMPSU Trash Pit Remediation

Hello Tomáš,

This email summarizes our meeting yesterday and requests approval to proceed with the remediation approach discussed during the meeting.

- 1. The LMPSU trash pit is the location of two historic unlined oil and gas disposal pits and area where a former operator disposed of miscellaneous oilfield material including empty drums, pipe, etc.
- 2. Groundwater occurs at approximately 42 feet below ground surface (bgs);
- 3. Legacy excavated between about 7,500 and 12,000 cubic yards of soil during removal of buried debris and disposal pits;
- 4. Soil was retained on location in 4 piles (west, north, south and center);
- 5. The center pile was hauled to Sundance due to elevated TPH;
- 6. LAI personnel collected composite and discrete samples from the excavation and soil piles and from 15 borings drilled in and around the excavations (west and east);
- 7. The analytical results of borehole samples showed the highest TPH and chloride in boring SB-3, located near south end of west pit;
- 8. TPH in boring SB-3 decreased below 100 mg/Kg at approximately 25 feet bgs;
- Chloride in boring SB-3 suggests migration to groundwater as the concentration reported at 3,530 mg/Kg at 35 feet bgs;
- 10. Groundwater samples from monitoring well (MW-1) located about 50 feet south (down gradient) of the west excavation reported chloride at 2,720 mg/L;
- 11. The background chloride concentration (MW-2) is 58.8 mg/L;
- 12. Analysis by synthetic precipitation leaching procedure (TCLP) reported no benzene (<-0.001 mg/L), BTEX (<0.005 mg/L) or TPH (<3.0 mg/L) in composite samples from the soil piles (west, north and south);
- 13. SPLP chloride results from the soil piles were 7.96 mg/L 9north and south piles) and 36 mg/L (west pile (refer to attached analytical summary);
- **14.** Legacy is the owner of the approximate 40-acre tract encompassing the site.

Per the meeting on July 30, 2014, Legacy proposes the following:

Excavation Closure Plan

- 1. Remove remaining debris from Site for disposal at Sundance Services, located east of Eunice, New Mexico;
- 2. Grade bottom of west and east excavations to a level depth of at least 4 feet bgs;
- 3. Install 20ml liner in bottom of both excavations (refer to attached drawing showing proposed locations for liners);
- 4. Fill excavations with soil from west, north and south piles and top off with clean topsoil and seed;
- 5. Submit report to OCD District I and Santa Fe following closure of the excavation;

Groundwater Delineation Plan

- 6. Submit plan to OCD in Santa Fe and Hobbs for delineate elevated chloride in groundwater south of the site;
- 7. Delineation to include electromagnetic terrain (EM) conductivity survey and monitoring wells.

You approval of the excavation closure plan is requested . Please contact me if you have questions. Sincerely,

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 200 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

From: Oberding, Tomas, EMNRD [mailto:Tomas.Oberding@state.nm.us] Sent: Wednesday, July 30, 2014 11:25 AM To: Mark Larson; Adrian Jackson Subject: 7-30 meeting

Aloha Mark and Adrian,

Was nice getting to see you (and meet you Adrian) in the office this morning. I'll await the summary mail for the official confirmation of approval, but based on the discussions, all looks ok to finish these sites with liners and backfill. One note- the C-141 for the Gas plant site 1RP-3190 is online and can be found at:

http://ocdimage.emnrd.state.nm.us/imaging/AEOrderCriteria.aspx

enter 3190 and it is the first link (you can search all the files by RP that way, as well as by API)-

http://ocdimage.emnrd.state.nm.us/Imaging/FileStore/santafeadmin/ao/256870/pto1419947681 1 ao.pdf

I look forward to working with you. Wishing you both a wonderful afternoon and please let me know if I can help.

Mahalo -Doc

PS- spent 9 years from 2002-2011 in Hawaii before heading to VietNam and Japan for the past 3 years, so it's been a while since I lived on the mainland. Cheers!

Tomáš 'Doc' Oberding, PhD Environmental Specialist – New Mexico Oil Conservation Division Energy, Minerals and Natural Resources Department 1625 N. French Dr. Hobbs, NM 88240 (O): (575) 393-6161 ext 111 (C): 575-370-3180 (F): (575) 393-0720 E-Mail: tomas.oberding@state.nm.us Website: MailScanner has detected a possible fraud attempt from "webmail.state.nm.us" claiming to be http://www.emnrd.state.nm.us/ocd/

This message has been scanned for viruses and dangerous content by **MailScanner**, and is believed to be clean.

This message has been scanned for viruses and dangerous content by **MailScanner**, and is believed to be clean.

Appendix B

Historical Aerial Photographs

Historical Aerial Photographs

http://www.geo-search.net/QuickMap/index.htm?DataID=Standard0000075032 Click on link above to access the map and satellite view of current property

> Target Property: Legacy Reserves, L.P., LMPSU Trash Pit Site SW/4, SE/4, Section 27, Township 22 South, Range 37 East Lea County, New Mexico 88231

> > Prepared For:

Larson & Associates

Order #: 33762 Job #: 75032 Project #: 14-0107-01 Date: 03/17/2014

phone: 888-396-0042 · fax: 512-472-9967 · www.geo-search.com

TARGET PROPERTY SUMMARY

Legacy Reserves, L.P., LMPSU Trash Pit Site SW/4, SE/4, Section 27, Township 22 South, Range 37 East Lea County, New Mexico 88231

USGS Quadrangle: Rattlesnake Canyon, NM Target Property Geometry: Point

Target Property Longitude(s)/Latitude(s): (-103.149394, 32.359258)

County/Parish Covered: Lea (NM)

Zipcode(s) Covered: Eunice NM: 88231

State(s) Covered:

*Target property is located in Radon Zone 2. Zone 2 areas have a predicted average indoor radon screening level between 2 and 4 pCi/L (picocuries per liter).

Disclaimer - The information provided in this report was obtained from a variety of public sources. GeoSearch cannot ensure and makes no warranty or representation as to the accuracy, reliability, quality, errors occurring from data conversion or the customer's interpretation of this report. This report was made by GeoSearch for exclusive use by its clients only. Therefore, this report may not contain sufficient information for other purposes or parties. GeoSearch and its partners, employees, officers and independent contractors cannot be held liable for actual, incidental, consequential, special or exemplary damages suffered by a customer resulting directly or indirectly from any information provided by GeoSearch.

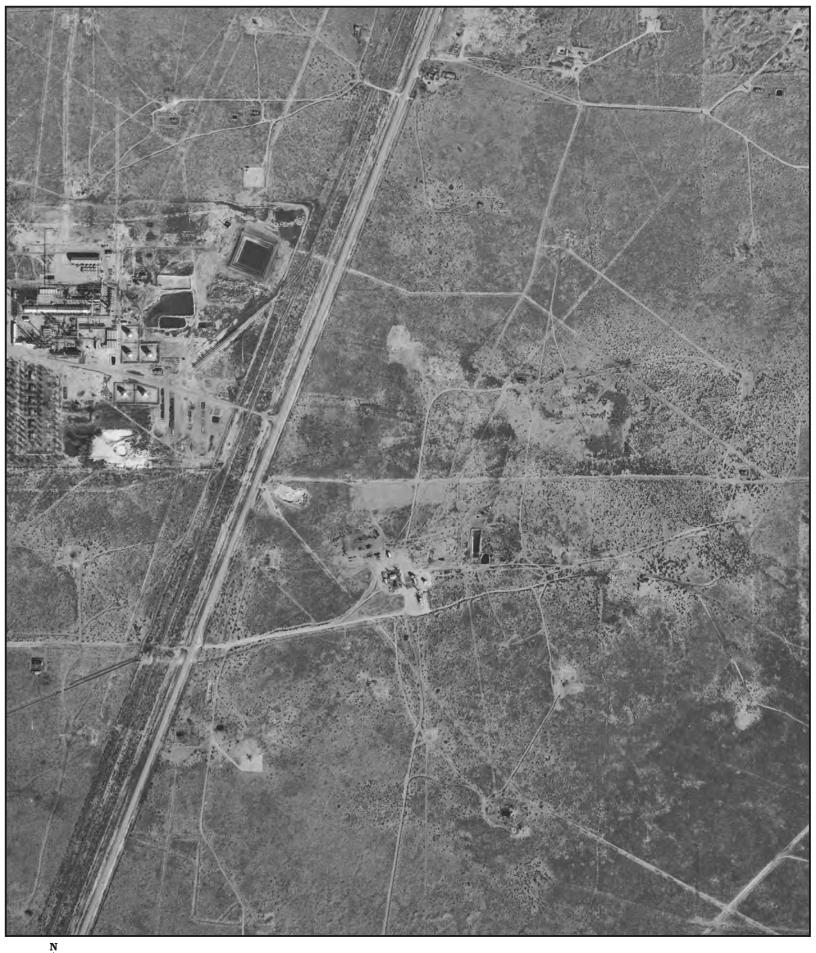
SITE: LEGACY RESERVES, L.P., LMPSU TRASH PIT SITE SOURCE: USDA DATE: 2011 COUNTY: LEA, NM SCALE: 1" = 700'

JOB #: 75032 - 3/17/2014

W E S
JOB #: 75032 - 3/17/2014

SITE: LEGACY RESERVES, L.P., LMPSU TRASH PIT SITE SOURCE: USGS DATE: 11-01-97 COUNTY: LEA, NM SCALE: 1" = 700'

SITE: LEGACY RESERVES, L.P., LMPSU TRASH PIT SITE SOURCE: USGS DATE: 06-03-83 COUNTY: LEA, NM SCALE: 1" = 1320'



Е

SITE: LEGACY RESERVES, L.P., LMPSU TRASH PIT SITE SOURCE: USGS DATE: 02-04-68 COUNTY: LEA, NM SCALE: 1" = 1320'



JOB #: 75032 - 3/18/2014

w - E	
s	
-	

SITE:	LEGACY RESERVES, L.P., LMPSU TRASH	PIT SITE
SOURCE:	USGS	
DATE:	02-04-68	CasCaarah
COUNTY:	LEA, NM	GeoSearch
SCALE:	1'' = 700'	

w - E	
S	

SITE: LEGACY RESERVES, L.P., LMPSU TRASH PIT SITE SOURCE: AMS DATE: 04-28-54 COUNTY: LEA, NM SCALE: 1" = 700' Appendix C

LMPSU Trash Pit, West Excavation, Viewing North

LMPSU Trash Pit, Center Soil Pile, Viewing North

LMPSU Trash Pit, West Excavation (East Side), Viewing North

LMPSU Trash Pit, West Excavation (after removing center soil pile) Viewing North

LMPSU Trash Pit, West Excavation (after removing center pile) Viewing North

LMPSU Trash Pit, West Excavation, Viewing Northwest

LMPSU Trash Pit Legacy Reserves, L.P. Lea County, New Mexico September 2, 2014

LMPSU Trash Pit, West Excavation, Viewing Southwest

LMPSU Trash Pit, West Excavation, Viewing North

LMPSU Trash Pit Legacy Reserves, L.P. Lea County, New Mexico September 2, 2014

LMPSU Trash Pit, East Excavation, Viewing North

LMPSU Trash Pit, West Excavation, Viewing Northeast

LMPSU Trash Pit, East Excavation Linear Installation, Viewing Northeast

LMPSU Trash Pit, East – West Excavation, Viewing West

LMPSU Trash Pit, East Excavation (East Side), Viewing Southwest

LMPSU Trash Pit, Backfill West Excavation, Viewing South

LMPSU Trash Pit, Backfill West Excavation Viewing West

LMPSU Trash Pit, Backfill West Excavation, Viewing West

LMPSU Trash Pit, Backfill West Excavation, Viewing North

LMPSU Trash Pit, Backfill West Excavation, Viewing North

LMPSU Trash Pit, Backfill East Excavation, Viewing Northeast

LMPSU Trash Pit, Backfill Excavations, Viewing Northeast

LMPSU Trash Pit, Backfill Excavations, Viewing Northeast

LMPSU Trash Pit, Backfill Excavations, Viewing North

LMPSU Trash Pit, Backfill Excavations, Viewing Northeast

LMPSU Trash Pit, Backfill Excavations, Viewing East

LMPSU Trash Pit, Backfill Excavations, Viewing Northeast

LMPSU Trash Pit, Backfill Excavations, Viewing North

LMPSU Trash Pit, Backfill Excavations, Viewing North

LMPSU Trash Pit, Backfill Excavations, Viewing East

LMPSU Trash Pit Legacy Reserves, L.P. Lea County, New Mexico September 2, 2014

LMPSU Trash Pit, Backfill Excavations, Viewing East

Appendix D

Laboratory Reports

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Legacy Trash Pit Project Number: 14-0107-01 Location: None Given

Lab Order Number: 4F13007

NELAP/TCEQ # T104704156-13-3

Report Date: 06/26/14

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW2 5	4F13007-01	Soil	06/12/14 09:40	06-13-2014 10:00
MW2 10	4F13007-02	Soil	06/12/14 09:46	06-13-2014 10:00
MW2 15	4F13007-03	Soil	06/12/14 09:51	06-13-2014 10:00
MW2 20	4F13007-04	Soil	06/12/14 09:56	06-13-2014 10:00
MW2 25	4F13007-05	Soil	06/12/14 09:50	06-13-2014 10:00
MW2 30	4F13007-06	Soil	06/12/14 10:00	06-13-2014 10:00
SB-9 5	4F13007-11	Soil	06/12/14 13:22	06-13-2014 10:00
SB-9 10	4F13007-12	Soil	06/12/14 13:24	06-13-2014 10:00
SB-9 15	4F13007-13	Soil	06/12/14 13:25	06-13-2014 10:00
SB-9 20	4F13007-14	Soil	06/12/14 13:29	06-13-2014 10:00
SB-9 25	4F13007-15	Soil	06/12/14 13:32	06-13-2014 10:00
SB-9 30	4F13007-16	Soil	06/12/14 13:35	06-13-2014 10:00
SB-9 35	4F13007-17	Soil	06/12/14 13:42	06-13-2014 10:00
SB-10 5	4F13007-19	Soil	06/12/14 12:47	06-13-2014 10:00
SB-10 10	4F13007-20	Soil	06/12/14 12:52	06-13-2014 10:00
SB-10 15	4F13007-21	Soil	06/12/14 12:56	06-13-2014 10:00
SB-10 20	4F13007-22	Soil	06/12/14 13:00	06-13-2014 10:00
SB-10 25	4F13007-23	Soil	06/12/14 13:02	06-13-2014 10:00
SB-10 30	4F13007-24	Soil	06/12/14 13:06	06-13-2014 10:00
SB-11 5	4F13007-27	Soil	06/12/14 10:56	06-13-2014 10:00
SB-11 10	4F13007-28	Soil	06/12/14 11:00	06-13-2014 10:00
SB-11 15	4F13007-29	Soil	06/12/14 11:04	06-13-2014 10:00
SB-12 5	4F13007-35	Soil	06/12/14 14:03	06-13-2014 10:00
SB-12 10	4F13007-36	Soil	06/12/14 14:05	06-13-2014 10:00
SB-12 15	4F13007-37	Soil	06/12/14 14:10	06-13-2014 10:00
SB-12 20	4F13007-38	Soil	06/12/14 14:15	06-13-2014 10:00
SB-12 25	4F13007-39	Soil	06/12/14 14:20	06-13-2014 10:00
SB-12 30	4F13007-40	Soil	06/12/14 14:23	06-13-2014 10:00
SB-12 35	4F13007-41	Soil	06/12/14 14:25	06-13-2014 10:00
SB-14 5	4F13007-43	Soil	06/12/14 14:45	06-13-2014 10:00
SB-14 10	4F13007-44	Soil	06/12/14 14:48	06-13-2014 10:00
SB-14 15	4F13007-45	Soil	06/12/14 14:53	06-13-2014 10:00

Chloride analysis was requested on additonal samples on 06/20/14. This report includes orginal data and added analyses.

MW2 5

		4F13	007-01 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	an Basin F	nvironme	ntal Lab, I					
General Chemistry Parameters									
Chloride	131	5.32	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	6.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	

MW2 10

4F13007-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters h	by EPA / Standard Methods									
Chloride	692	5.32	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0		
% Moisture	6.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation		

MW2 15

4F13007-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	381	10.6	mg/kg dry	10	P4F1803	06/13/14	06/18/14	EPA 300.0		
% Moisture	6.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation		

MW2 20

4F13007-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters by	y EPA / Standard Methods									
Chloride	315	5.32	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0		
% Moisture	6.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation		

MW2 25

4F13007-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
<u>General Chemistry Parameters b</u>	oy EPA / Standard Methods									
Chloride	562	5.49	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0		
% Moisture	9.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation		

MW2 30

4F13007-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	81.2	5.21	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0		
% Moisture	4.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation		

SB-9 5

4F13007-11 (Soil)

		D (
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	tal Lab,	L.P.				
General Chemistry Parameters by EPA	A / Standard Methods	8							
Chloride	378	5.43	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P4F1810	06/16/14	06/16/14	TPH 8015M	
>C12-C28	490	27.2	mg/kg dry	1	P4F1810	06/16/14	06/16/14	TPH 8015M	
>C28-C35	267	27.2	mg/kg dry	1	P4F1810	06/16/14	06/16/14	TPH 8015M	
Surrogate: 1-Chlorooctane		74.4 %	70-13	80	P4F1810	06/16/14	06/16/14	TPH 8015M	
Surrogate: o-Terphenyl		81.2 %	70-13	80	P4F1810	06/16/14	06/16/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	757	81.5	mg/kg dry	1	[CALC]	06/16/14	06/16/14	calc	

SB-9 10

4F13007-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	Perm	ian Basin F	Invironmer	ntal Lab, I	L.P.					
General Chemistry Parameters by EPA / S	tandard Method	s								
Chloride	316	1.04	mg/kg dry	1	P4F2308	06/23/14	06/23/14	EPA 300.0		
% Moisture	4.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation		
Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M										
C6-C12	ND	26.0	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M		
>C12-C28	ND	26.0	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M		
>C28-C35	ND	26.0	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M		
Surrogate: 1-Chlorooctane		96.3 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M		
Surrogate: o-Terphenyl		107 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M		
Total Petroleum Hydrocarbon C6-C35	ND	78.1	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc		

SB-9 15

4F13007-13 (Soil)

		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters by EPA / Standard Methods										
Chloride	1320	5.68	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0		
% Moisture	12.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation		
Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M										
C6-C12	ND	28.4	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M		
>C12-C28	ND	28.4	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M		
>C28-C35	ND	28.4	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M		
Surrogate: 1-Chlorooctane		92.6 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M		
Surrogate: o-Terphenyl		95.8 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M		
Total Petroleum Hydrocarbon C6-C35	ND	85.2	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc		

SB-9 20

4F13007-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Permian Basin Environmental Lab, L.P.											
General Chemistry Parameters	by EPA / Standard Methods										
Chloride	344	5.43	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0			
% Moisture	8.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation			

SB-9 25

4F13007-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
Permian Basin Environmental Lab, L.P.												
General Chemistry Parameters by	VEPA / Standard Methods											
Chloride	178	5.43	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0				
% Moisture	8.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation				

SB-9 30

4F13007-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
Permian Basin Environmental Lab, L.P.												
General Chemistry Parameters	by EPA / Standard Methods											
Chloride	297	5.75	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0				
% Moisture	13.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation				

SB-9 35

4F13007-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Permian Basin Environmental Lab, L.P.											
General Chemistry Parameters	by EPA / Standard Methods										
Chloride	500	5.62	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0			
% Moisture	11.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation			

SB-10 5

4F13007-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	result	Biiiii	onto	Bilditon	Butten	Troparou	i inal j 20a	memou	110100
	Perm	ian Basin F	Invironmen	ital Lab, I	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	S							
Chloride	227	5.43	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	81.5	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-10 10

4F13007-20 (Soil)

		Reporting	TT		D (1	р I			N
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	iian Basin E	Invironmer	ntal Lab,	L.P.				
General Chemistry Parameters by EPA / St	andard Method	s							
Chloride	1010	5.75	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	13.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 8()15M							
C6-C12	ND	28.7	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	28.7	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	28.7	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		98.7 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		104 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	86.2	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-10 15

4F13007-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmer	ital Lab, I	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	S							
Chloride	328	5.56	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	10.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	27.8	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		103 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-1	30	P4F1604	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	83.3	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

Larson & Associates, Inc. P.O. Box 50685										
Midland TX, 79710 Project Manager: Mark Larson										
		SE	-10 20							
		4F130	07-22 (Se	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	Perm	ian Basin Ei	vironme	ental Lab, L	P.					
General Chemistry Parameters by H	EPA / Standard Method	8								

5.49 mg/kg dry

%

0.1

572

9.0

P4F2308

P4F2402

06/23/14

06/24/14

06/23/14

06/24/14

EPA 300.0

% calculation

5

1

Chloride

% Moisture

Fax: (432) 687-0456

SB-10 25

4F13007-23 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Permian Basin Environmental Lab, L.P.											
General Chemistry Parameters by	y EPA / Standard Methods										
Chloride	621	5.43	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0			
% Moisture	8.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation			

SB-10 30

4F13007-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
Permian Basin Environmental Lab, L.P.												
General Chemistry Parameters h	by EPA / Standard Methods											
Chloride	422	5.38	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0				
% Moisture	7.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation				

SB-11 5

4F13007-27 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Cnvironmer	ntal Lab, 1	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	s							
Chloride	79.2	5.56	mg/kg dry	5	P4F2002	06/18/14	06/20/14	EPA 300.0	
% Moisture	10.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	27.8	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		94.0 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		104 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	83.3	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-11 10

4F13007-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmer	ntal Lab, 1	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	S							
Chloride	428	1.08	mg/kg dry	1	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	7.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		97.3 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	80.6	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-11 15

4F13007-29 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Environmer	ntal Lab, 1	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	s							
Chloride	187	5.43	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		91.2 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		96.8 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	81.5	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-12 5

4F13007-35 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Cnvironmer	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA / St	andard Method	S							
Chloride	286	5.26	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		103 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	78.9	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

SB-12 10

4F13007-36 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmer	ital Lab, 1	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	S							
Chloride	700	5.49	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	9.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		92.7 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		99.9 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	82.4	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

SB-12 15

4F13007-37 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	ital Lab, I	L.P.				
General Chemistry Parameters by EPA / St	andard Method	s							
Chloride	581	5.49	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	9.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		93.3 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	82.4	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

Fax: (432) 687-0456

SB-12 20

4F13007-38 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin Ei	nvironmer	ıtal Lab, I	P .				
General Chemistry Parameters h	by EPA / Standard Methods								
Chloride	136	10.8	mg/kg dry	10	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	7.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

SB-12 25

4F13007-39 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin E	nvironmer	ıtal Lab, I	P.				
General Chemistry Parameters	by EPA / Standard Methods								
Chloride	1220	5.81	mg/kg dry	5	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	14.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

SB-12 30

4F13007-40 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin Eı	nvironmer	ntal Lab, L	P.				
General Chemistry Parameters by	EPA / Standard Methods								
Chloride	102	1.10	mg/kg dry	1	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	9.0	0.1	%	1	P4F2402	06/24/14	06/24/14	% calculation	

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proje Project Numb Project Manag	er: 14-01					Fax: (432) 6	87-0456
			-12 35 07-41 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin Ei	vironme	ental Lab, L	P.				
General Chemistry Parameters by H	EPA / Standard Method	ls							

General Chemistry Farameters by Errer Standa	n a micinous							
Chloride	67.7	1.16 mg/kg dry	1	P4F2308	06/23/14	06/23/14	EPA 300.0	
% Moisture	14.0	0.1 %	1	P4F2402	06/24/14	06/24/14	% calculation	

SB-14 5

4F13007-43 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		ian Basin E				Paroa			10005
General Chemistry Parameters by EPA / Sta			anvin omnici	Ital Lab, 1					
Chloride	10.9	1.05	mg/kg dry	1	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by I	EPA Method 80)15M							
C6-C12	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		95.0 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	78.9	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-14 10

4F13007-44 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmer	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	S							
Chloride	89.1	5.43	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	8.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		<i>93</i> .7 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	81.5	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

SB-14 15

4F13007-45 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmen	tal Lab,	L.P.				
General Chemistry Parameters by EP.	A / Standard Methods	8							
Chloride	160	5.38	mg/kg dry	5	P4F1803	06/13/14	06/18/14	EPA 300.0	
% Moisture	7.0	0.1	%	1	P4F1601	06/16/14	06/16/14	% calculation	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C12-C28	98.0	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: 1-Chlorooctane		81.6 %	70-13	30	P4F1603	06/13/14	06/14/14	TPH 8015M	
Surrogate: o-Terphenyl		88.5 %	70-13	80	P4F1603	06/13/14	06/14/14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	98.0	80.6	mg/kg dry	1	[CALC]	06/13/14	06/14/14	calc	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4F1601 - *** DEFAULT PREP ***	Tessait		Cinto	20101	result	, unde	Linito	10.0	2	10005
Blank (P4F1601-BLK1)				Prepared &	Analyzed	06/16/14				
% Moisture	ND	0.1	%	Troparea e	, i inarj 20a.	00,10,11				
Duplicate (P4F1601-DUP1)	Sour	rce: 4F13004-(01	Prepared &	Analyzed:	06/16/14				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P4F1601-DUP2)	Sour	-ce: 4F13009-(01	Prepared &	Analyzed:	06/16/14				
% Moisture	28.0	0.1	%		28.0			0.00	20	
Duplicate (P4F1601-DUP3)	Sour	-ce: 4F13009-(02	Prepared &	Analyzed:	06/16/14				
% Moisture	15.0	0.1	%		15.0			0.00	20	
Batch P4F1803 - *** DEFAULT PREP ***										
Blank (P4F1803-BLK1)				Prepared &	Analyzed:	06/18/14				
	ND									
Chloride	ND	1.00	mg/kg wet							
	ND	1.00	mg/kg wet	Prepared &	Analyzed:	06/18/14				
LCS (P4F1803-BS1)	113		mg/kg wet	Prepared & 100	Analyzed:	06/18/14	80-120			
LCS (P4F1803-BS1) Chloride				1		113	80-120			
LCS (P4F1803-BS1) Chloride LCS Dup (P4F1803-BSD1)		1.00		100 Prepared &		113	80-120	2.38	20	
LCS (P4F1803-BS1) Chloride LCS Dup (P4F1803-BSD1) Chloride	113	1.00	mg/kg wet	100 Prepared &	Analyzed:	113 06/18/14 116		2.38	20	
LCS (P4F1803-BS1) Chloride LCS Dup (P4F1803-BSD1) Chloride Duplicate (P4F1803-DUP1)	113	1.00 1.00 rce: 4F13003-	mg/kg wet	100 Prepared & 100	Analyzed:	113 06/18/14 116		2.38	20	
Chloride LCS (P4F1803-BS1) Chloride LCS Dup (P4F1803-BSD1) Chloride Duplicate (P4F1803-DUP1) Chloride Matrix Spike (P4F1803-MS1)	113 116 Sour 2420	1.00 1.00 rce: 4F13003-	mg/kg wet mg/kg wet 01 mg/kg dry	100 Prepared & 100	Analyzed: Analyzed: 2440	113 06/18/14 116 06/18/14				

General Chemistry Parameters by EPA / Standard Methods - Quality Control

		D		<i>a</i> .1	6		ANDEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4F2002 - *** DEFAULT PREP ***										
Blank (P4F2002-BLK1)				Prepared: (06/18/14 Ar	nalyzed: 06	/20/14			
Chloride	ND	1.00	mg/kg wet							
LCS (P4F2002-BS1)				Prepared: (06/18/14 Ar	nalyzed: 06	/20/14			
Chloride	123	1.00	mg/kg wet	110		112	80-120			
LCS Dup (P4F2002-BSD1)				Prepared: (06/18/14 Ar	nalyzed: 06	/20/14			
Chloride	126	1.00	mg/kg wet	110		115	80-120	3.05	20	
Duplicate (P4F2002-DUP1)	Sou	rce: 4F13013	-39	Prepared: (06/18/14 Ar	nalyzed: 06	/20/14			
Chloride	591	5.75	mg/kg dry		588			0.410	20	
Batch P4F2308 - *** DEFAULT PREP ***										
Blank (P4F2308-BLK1)				Prepared & Analyzed: 06/23/14						
Chloride	ND	1.00	mg/kg wet							
LCS (P4F2308-BS1)				Prepared &	Analyzed:	06/23/14				
Chloride	89.7	1.00	mg/kg wet	100		89.7	80-120			
				Prepared &	Analyzed [.]	06/23/14				
LCS Dup (P4F2308-BSD1)					a mary 20a.					
	91.3	1.00	mg/kg wet	100	e rinaryzea.	91.3	80-120	1.74	20	
LCS Dup (P4F2308-BSD1) Chloride Duplicate (P4F2308-DUP1)		1.00 rce: 4F23002	00	100	t Analyzed:	91.3	80-120	1.74	20	
Chloride Duplicate (P4F2308-DUP1)		rce: 4F23002	00	100		91.3	80-120	3.11	20	
Chloride	Sou 96.8	rce: 4F23002	-01 mg/kg dry	100 Prepared &	z Analyzed:	91.3 06/23/14	80-120			

General Chemistry Parameters by EPA / Standard Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4F2402 - *** DEFAULT PREP ***										
Blank (P4F2402-BLK1)		Prepared & Analyzed: 06/24/14								
% Moisture	ND	0.1	%							
Duplicate (P4F2402-DUP1)	Sourc	e: 4F13013-	46	Prepared &	Analyzed:	06/24/14				
% Moisture	8.0	0.1	%		7.0			13.3	20	
Duplicate (P4F2402-DUP2)	Sourc	e: 4F24003-	04	Prepared &	Analyzed:	06/24/14				
% Moisture	17.0	0.1	%		17.0			0.00	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4F1603 - TX 1005										
Blank (P4F1603-BLK1)				Prepared: (06/13/14 A	nalyzed: 06	/14/14			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0								
Surrogate: 1-Chlorooctane	154		"	150		103	70-130			
Surrogate: o-Terphenyl	85.4		"	75.0		114	70-130			
LCS (P4F1603-BS1)				Prepared: (06/13/14 A	nalyzed: 06	/14/14			
C6-C12	1020	25.0	mg/kg wet	1200		84.8	75-125			
>C12-C28	1270	25.0	"	1200		105	75-125			
Surrogate: 1-Chlorooctane	151		"	150		101	70-130			
Surrogate: o-Terphenyl	70.6		"	75.0		94.2	70-130			
LCS Dup (P4F1603-BSD1)				Prepared: (06/13/14 A	nalyzed: 06	/14/14			
C6-C12	1020	25.0	mg/kg wet	1200		84.8	75-125	0.0246	20	
>C12-C28	1270	25.0		1200		106	75-125	0.327	20	
Surrogate: 1-Chlorooctane	151		"	150		101	70-130			
Surrogate: o-Terphenyl	72.6		"	75.0		96.9	70-130			
Duplicate (P4F1603-DUP1)	Sour	ce: 4F13008	-02	Prepared: (06/13/14 A	nalyzed: 06	/14/14			
C6-C12	142	26.3	mg/kg dry		136			4.37	20	
>C12-C28	2220	26.3	"		2150			2.87	20	
Surrogate: 1-Chlorooctane	151		"	158		95.8	70-130			
Surrogate: o-Terphenyl	79.5		"	78.9		101	70-130			
Batch P4F1604 - TX 1005										
Blank (P4F1604-BLK1)				Prepared: (06/13/14 A	nalyzed: 06	/14/14			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0								
Surrogate: 1-Chlorooctane	152		"	150		102	70-130			
Surrogate: o-Terphenyl	76.1		"	75.0		101	70-130			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4F1604 - TX 1005										
LCS (P4F1604-BS1)				Prepared: ()6/13/14 A	nalvzed: 06	/14/14			
C6-C12	983	25.0	mg/kg wet	1000		98.3	75-125			
>C12-C28	1180	25.0	"	1000		118	75-125			
Surrogate: 1-Chlorooctane	143		"	150		95.3	70-130			
Surrogate: o-Terphenyl	67.0		"	75.0		89.3	70-130			
LCS Dup (P4F1604-BSD1)				Prepared: (06/13/14 A	nalyzed: 06	/14/14			
C6-C12	1010	25.0	mg/kg wet	1000		101	75-125	3.03	20	
>C12-C28	1180	25.0	"	1000		118	75-125	0.0510	20	
Surrogate: 1-Chlorooctane	150		"	150		100	70-130			
Surrogate: o-Terphenyl	73.2		"	75.0		97.6	70-130			
Duplicate (P4F1604-DUP1)	Sou	rce: 4F13007	-21	Prepared: (06/13/14 A	nalyzed: 06	/14/14			
C6-C12	ND	27.8	mg/kg dry		ND				20	
>C12-C28	ND	27.8	"		ND				20	
Surrogate: 1-Chlorooctane	178		"	167		107	70-130			
Surrogate: o-Terphenyl	94.6		"	83.3		114	70-130			
Batch P4F1810 - TX 1005										
Blank (P4F1810-BLK1)				Prepared &	Analyzed:	06/16/14				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	169		"	200		84.6	70-130			
Surrogate: o-Terphenyl	91.0		"	100		91.0	70-130			
LCS (P4F1810-BS1)				Prepared &	Analyzed:	06/16/14				
C6-C12	1200	25.0	mg/kg wet	1200		100	75-125			
>C12-C28	1250	25.0	"	1200		104	75-125			
Surrogate: 1-Chlorooctane	195		"	200		97.3	70-130			
Surrogate: o-Terphenyl	93.5		"	100		93.5	70-130			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4F1810 - TX 1005										
LCS Dup (P4F1810-BSD1)				Prepared &	k Analyzed	06/16/14				
C6-C12	1170	25.0	mg/kg wet	1200		97.6	75-125	2.82	20	
>C12-C28	1290	25.0	"	1200		107	75-125	3.14	20	
Surrogate: 1-Chlorooctane	192		"	200		95.8	70-130			
Surrogate: o-Terphenyl	94.8		"	100		94.8	70-130			
Duplicate (P4F1810-DUP1)	Sour	e: 4F13013	-17	Prepared: (06/16/14 A	nalyzed: 06	5/17/14			
C6-C12	ND	27.5	mg/kg dry		ND				20	
>C12-C28	ND	27.5	"		ND				20	
Surrogate: 1-Chlorooctane	192		"	220		87.2	70-130			
Surrogate: o-Terphenyl	106		"	110		96.1	70-130			

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Bun Barron

Date: 6/26/2014

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

HAND DELIVERE	Jata hawkow how tine	BATE/TIME	RELINQUISHED BY:(Signature)	R
1 DAY C CUSTODY SEALS - C BROKEN C INTACT O NOT USED	RECEIVED BY: (Signature)	batertime	RELINQUISHED BY:(Signature)	RE
NLY: NO	RECEIVED BY: (Signature)	CATE/TIME	RELINQUISHED BY:(Signature)	REL
				TOTAL
		4 132	25	
		129	2	
	7	1245	8 31	
		124		
	- 100 - 1 	122	9 S	SB-9
~		1024	60 10	
		1015	90 06	
		1006	4. 08	
		(002	35 07	-
		(000)	2 00	-
		450	20 22	-
		980	70 14	
		951 I	50 51	
		1 946 1	lo 02	-
		oh2 940 5	1 10 S 2N	MW2
-2 49 49 12 12 12 12 12 12 12 12 12 12 12 12 12	# of Conta HCI HNO ₃ H ₂ SO ₄ ICE UNPRES States	Date Time Matrix	Field Sample I.D. Lab #	, Ma
	NaOH I	3007		•
		OT=OTHER		
10/20/20/20 00/20/20/20/20/20/20/20/20/20/20/20/20/2	PRESERVATION	P=PAINT SI =SI I IDGE	TRRP report? S=SOIL	1
14-0107-01	432-08/-0901 LAI PROJECT #:		Environmental Consultants Data Reported to:	Data
LAB WORK ORDER #:			ssociates, Inc.	-
6/12/14 PAGE OF	507 N. Marienfeld, Ste. 200 DATE:			
CHAIN-OF-CUSI				

where the odditional analysis !	date happe had times	heront o	
HAND DELIVERED	0- 01 112111		
CARRIER BILL #	RECEIVED BY (Signature)	DATE/TIME	RELINQUISHED BY:(Signature)
1 DAY I RECEIVING TEMP: 1 DAY I THERM#: 1 DAY I CUSTODY SEALS - I BROKEN II INTACT II NOT USED	RECEIVED BY: (Signature)	DATE/TIME	RELINQUISHED BY:(Signature)
	RECEIVED BY: (Signature)	DATE/TIME	RELINOLAISHED BY:(Signature)
			TOTAL
		1 112 1	20 3()
		<u>e</u>	15 20
		((0))	-
		ماكحا	20-11 S 11-9S
		110	40 J/0
		108	
		1a	30 74
		62	
		Q.	20 22
		1256	15 2
		1252	
		I CH2I	SB-10 5 19
		145	46' 18
		142 1	35'
		12 135 5	SB-9 bor 10 6
(2) (3) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	# of Cont HCI HNO ₃ H ₂ SO ₄ \Box ICE UNPRES δ δ δ δ δ δ δ δ δ δ	Date Time Matrix	Field Sample I.D. Lab #
	NaOH [SERVED	F13007	TIME ZONE: Time zone/State:
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	ATION	P=PAINT SL=SLUDGE OT=OTHER	TRRP report? S=SOIL
9	- - -		Data Reported to:
OCATION OR NAME: LAB WORK	507 N. Marienfeld, Ste. 200 Midland, TX 79701 432-687-0901 PROJECT I		Aarson & ssociates, Inc.

AB WORK ORDER #. 1- cl COLLECTOR: TRAN COLLECTOR: TRAN Collector: Tran Collector: Tran FIELD NOTES FIELD NOTES FIEL
--

6x/ww fn add thronge analysis!	hard time	put dots helpe	hep
	RECEIVED BY: (Signature)	DATE/Elive	RELINQUISHED BY: (Signature)
CUSTODY SEALS - D BROK	RECEIVED BY: (Signature)	/ DATE/TIME	RELINQUISHED BY:(Signature)
	RECEIVED BY: (Signature)	6/12/14	RELINQUISHED BY:(Signature)
			TOTAL
		× 311 ×	40 S
		308	35 Ha
		305	3h oc
		1 100 1	Lh sr
· · · · · · · · · · · · · · · · · · ·	- ``	5 252 211°	SB-14 20 46 1
2 (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	# of Co HCI HNO ₃ H ₂ SO ₄ ICE UNPRE	Date Time Matrix	Field Sample I.D. Lab #
	Intainers	30b7	TIME ZONE: Time zone/State:
	PRESERVATION	P=PAINT SL=SLUDGE OT=OTHER	TRRP report? S=SOIL Yes No A=AIR
- CI COLLECTOR: MAD	432-687-0901	4.	Data Reported to:
200 DATE: 6 PAGE Q OF G G 200 PO #: 6 12 14 AB WORK ORDER #: 94 95	507 N. Marienfeld, Ste. 2 Midland, TX 79701		A arson &
CHAIN-OF-CUSTOD			

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Legacy Trash Pit Project Number: 14-0107-01 Location:

Lab Order Number: 4G03013

NELAP/TCEQ # T104704156-13-3

Report Date: 07/23/14

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Comp-1	4G03013-01	Soil	07/01/14 13:00	07-03-2014 12:10
Comp-2	4G03013-02	Soil	07/01/14 14:00	07-03-2014 12:10

Comp-1 4G03013-01 (Soil)

			013-01 (30)					
Analyta	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Analyte	Kesuit	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	INOLE
	Pern	nian Basin E	nvironme	ntal Lab, 1	L .P.				
Organics by GC									
Benzene	ND	0.00102	mg/kg dry	1	P4G1605	07/15/14	07/15/14	EPA 8021B	
Toluene	ND	0.00204	mg/kg dry	1	P4G1605	07/15/14	07/15/14	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P4G1605	07/15/14	07/15/14	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P4G1605	07/15/14	07/15/14	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P4G1605	07/15/14	07/15/14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		84.6 %	75-1	25	P4G1605	07/15/14	07/15/14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.4 %	75-1	25	P4G1605	07/15/14	07/15/14	EPA 8021B	
C6-C12	ND	3.00	mg/L	1	P4G1403	07/07/14	07/12/14	1312/8015M	
>C12-C28	ND	3.00	mg/L	1	P4G1403	07/07/14	07/12/14	1312/8015M	
>C28-C35	ND	3.00	mg/L	1	P4G1403	07/07/14	07/12/14	1312/8015M	
Total Hydrocarbon nC6-nC35	ND	3.00	mg/L	1	P4G1403	07/07/14	07/12/14	1312/8015M	
Surrogate: 1-Chlorooctane		102 %	70-1	30	P4G1403	07/07/14	07/12/14	1312/8015M	
General Chemistry Parameters by El	PA / Standard Metho	ds							
Chloride	720	10.2	mg/kg dry	10	P4G1610	07/16/14	07/16/14	EPA 300.0	
% Moisture	2.0	0.1	%	1	P4G1604	07/16/14	07/16/14	% calculation	
SPLP Volatile Halocarbons by EPA M	Method 1312/8021B								
Benzene	ND	0.00100	mg/L	1	P4G1607	07/15/14	07/15/14	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4G1607	07/15/14	07/15/14	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4G1607	07/15/14	07/15/14	EPA 8021B	
Xylene (p/m)	ND	0.00100	mg/L	1	P4G1607	07/15/14	07/15/14	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4G1607	07/15/14	07/15/14	EPA 8021B	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-1	20	P4G1607	07/15/14	07/15/14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		84.8 %	80-1	20	P4G1607	07/15/14	07/15/14	EPA 8021B	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Comp-1

4G03013-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmen	tal Lab, I	L.P.				
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	25.5	mg/kg dry	1	P4G0901	07/08/14	07/15/14	TPH 8015M	
>C12-C28	1090	25.5	mg/kg dry	1	P4G0901	07/08/14	07/15/14	TPH 8015M	
>C28-C35	398	25.5	mg/kg dry	1	P4G0901	07/08/14	07/15/14	TPH 8015M	
Surrogate: 1-Chlorooctane		128 %	70-1	30	P4G0901	07/08/14	07/15/14	TPH 8015M	
Surrogate: o-Terphenyl		137 %	70-1	30	P4G0901	07/08/14	07/15/14	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	1490	76.5	mg/kg dry	1	[CALC]	07/08/14	07/15/14	cale	
SPLP Extraction by EPA 1312									
Chloride	36.0	0.500	mg/L	1	P4G1507	07/14/14	07/16/14	EPA 1312/300.0	

Г

Project: Legacy Trash Pit Project Number: 14-0107-01 Project Manager: Mark Larson

٦

Comp-2

4G03013-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin E	Invironmer	ıtal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00101	mg/kg dry	1	P4G1605	07/15/14	07/15/14	EPA 8021B	
Foluene	0.00221	0.00202	mg/kg dry	1	P4G1605	07/15/14	07/15/14	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P4G1605	07/15/14	07/15/14	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P4G1605	07/15/14	07/15/14	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P4G1605	07/15/14	07/15/14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	75-1	25	P4G1605	07/15/14	07/15/14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		94.7 %	75-1	25	P4G1605	07/15/14	07/15/14	EPA 8021B	
C6-C12	ND	3.00	mg/L	1	P4G1403	07/07/14	07/14/14	1312/8015M	
>C12-C28	ND	3.00	mg/L	1	P4G1403	07/07/14	07/14/14	1312/8015M	
>C28-C35	ND	3.00	mg/L	1	P4G1403	07/07/14	07/14/14	1312/8015M	
Total Hydrocarbon nC6-nC35	ND	3.00	mg/L	1	P4G1403	07/07/14	07/14/14	1312/8015M	
Surrogate: 1-Chlorooctane		116 %	70-1	30	P4G1403	07/07/14	07/14/14	1312/8015M	
General Chemistry Parameters by EPA	/ Standard Metho	ds							
Chloride	290	5.05	mg/kg dry	5	P4G1610	07/16/14	07/16/14	EPA 300.0	
% Moisture	1.0	0.1	%	1	P4G1604	07/16/14	07/16/14	% calculation	
SPLP Volatile Halocarbons by EPA Me	thod 1312/8021B								
Benzene	ND	0.00100	mg/L	1	P4G1607	07/15/14	07/15/14	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4G1607	07/15/14	07/15/14	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4G1607	07/15/14	07/15/14	EPA 8021B	
Xylene (p/m)	ND	0.00100	mg/L	1	P4G1607	07/15/14	07/15/14	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4G1607	07/15/14	07/15/14	EPA 8021B	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-1	20	P4G1607	07/15/14	07/15/14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		89.4 %	80-1	20	P4G1607	07/15/14	07/15/14	EPA 8021B	

Comp-2

4G03013-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmer	ital Lab, I	L.P.				
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	25.3	mg/kg dry	1	P4G0901	07/08/14	07/15/14	TPH 8015M	
>C12-C28	514	25.3	mg/kg dry	1	P4G0901	07/08/14	07/15/14	TPH 8015M	
>C28-C35	205	25.3	mg/kg dry	1	P4G0901	07/08/14	07/15/14	TPH 8015M	
Surrogate: 1-Chlorooctane		129 %	70-1	30	P4G0901	07/08/14	07/15/14	TPH 8015M	
Surrogate: o-Terphenyl		134 %	70-1	30	P4G0901	07/08/14	07/15/14	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	719	75.8	mg/kg dry	1	[CALC]	07/08/14	07/15/14	calc	
SPLP Extraction by EPA 1312									
Chloride	7.96	2.50	mg/L	5	P4G1507	07/14/14	07/16/14	EPA 1312/300.0	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4G1403 - TX 1005										
Blank (P4G1403-BLK1)				Prepared: 0	07/07/14 Ai	nalyzed: 07	/17/14			
C6-C12	ND	3.00	mg/L							
>C12-C28	ND	3.00	"							
Surrogate: 1-Chlorooctane	120		"	93.8		128	70-130			
LCS (P4G1403-BS1)				Prepared: 0	07/07/14 Ai	nalyzed: 07	/17/14			
C6-C12	1260	3.00	mg/L	1560		80.7	75-125			
>C12-C28	1270	3.00	"	1560		81.0	75-125			
Surrogate: 1-Chlorooctane	121		"	93.8		129	70-130			
LCS Dup (P4G1403-BSD1)				Prepared: 0	07/07/14 Aı	nalyzed: 07	/17/14			
C6-C12	1290	3.00	mg/L	1560		82.3	75-125	1.99	20	
>C12-C28	1270	3.00	"	1560		81.0	75-125	0.00	20	
Surrogate: 1-Chlorooctane	123		"	93.8		131	70-130			
Batch P4G1605 - General Preparatio Blank (P4G1605-BLK1)				Prepared &	Analyzed:	07/15/14				
Benzene	ND	0.00100	mg/kg wet							
Toluene			"							
1 Oluclic	ND	0.00200								
	ND ND	0.00200 0.00100	"							
Ethylbenzene			"							
Ethylbenzene Xylene (p/m)	ND	0.00100								
Ethylbenzene Xylene (p/m) Xylene (o)	ND ND	0.00100 0.00200	" " ug/kg	60.0		80.6	75-125			
Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: 4-Bromofluorobenzene	ND ND ND	0.00100 0.00200		60.0 60.0		80.6 95.7	75-125 75-125			
Ethylbenzene Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Difluorobenzene LCS (P4G1605-BS1)	ND ND ND 48.3	0.00100 0.00200	ug/kg	60.0	z Analyzed:	95.7				
Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Difluorobenzene	ND ND ND 48.3	0.00100 0.00200	ug/kg " mg/kg wet	60.0	z Analyzed:	95.7				
Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Difluorobenzene LCS (P4G1605-BS1) Benzene	ND ND 48.3 57.4	0.00100 0.00200 0.00100	ug/kg "	60.0 Prepared &	z Analyzed:	95.7 07/15/14	75-125			
Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Difluorobenzene LCS (P4G1605-BS1) Benzene Foluene Ethylbenzene	ND ND 48.3 57.4 0.0922 0.0930 0.0905	0.00100 0.00200 0.00100 0.00100 0.00200 0.00100	ug/kg " mg/kg wet "	60.0 Prepared & 0.100 0.100 0.100	c Analyzed:	95.7 07/15/14 92.2 93.0 90.5	75-125 70-130 70-130 70-130			
Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Difluorobenzene LCS (P4G1605-BS1) Benzene Foluene Ethylbenzene	ND ND 48.3 57.4 0.0922 0.0930 0.0905 0.196	0.00100 0.00200 0.00100 0.00100 0.00200 0.00100 0.00200	ug/kg " mg/kg wet " "	60.0 Prepared & 0.100 0.100 0.100 0.200	c Analyzed:	95.7 07/15/14 92.2 93.0 90.5 98.2	75-125 70-130 70-130 70-130 70-130			
Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Difluorobenzene LCS (P4G1605-BS1) Benzene Foluene Ethylbenzene Xylene (p/m)	ND ND 48.3 57.4 0.0922 0.0930 0.0905	0.00100 0.00200 0.00100 0.00100 0.00200 0.00100	ug/kg " mg/kg wet "	60.0 Prepared & 0.100 0.100 0.100	z Analyzed:	95.7 07/15/14 92.2 93.0 90.5	75-125 70-130 70-130 70-130			
Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Difluorobenzene LCS (P4G1605-BS1)	ND ND 48.3 57.4 0.0922 0.0930 0.0905 0.196	0.00100 0.00200 0.00100 0.00100 0.00200 0.00100 0.00200	ug/kg " mg/kg wet " "	60.0 Prepared & 0.100 0.100 0.100 0.200	z Analyzed:	95.7 07/15/14 92.2 93.0 90.5 98.2	75-125 70-130 70-130 70-130 70-130			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P4G1605 - General Preparation (GC)

Duplicate (P4G1605-DUP1)	So	urce: 4G10005	5-02	Prepared: 07/15/14	4 Analy	zed: 07	/16/14			
Benzene	ND	0.00101	mg/kg dry	NE)				20	
Toluene	0.00410	0.00202	"	0.002	24			58.6	20	QR-03
Ethylbenzene	0.0176	0.00101	"	0.02	52			35.7	20	QR-03
Xylene (p/m)	0.0877	0.00202	"	0.10	19			21.9	20	QR-03
Xylene (o)	0.0364	0.00101	"	0.080	06			75.5	20	QR-03
Surrogate: 4-Bromofluorobenzene	26.8		ug/kg	60.0		44.6	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	47.0		"	60.0	:	78. <i>3</i>	75-125			

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Reporting Limit 0.1 rce: 4G15001 0.1	Units % -01 %	Spike Level Prepared & Prepared &			%REC Limits	RPD	RPD Limit	Notes
0.1 rce: 4G15001	%	Prepared &	z Analyzed: z Analyzed:	07/16/14	Limits			Notes
rce: 4G15001	-01		z Analyzed:			12.2		
rce: 4G15001	-01		z Analyzed:			12.2		
rce: 4G15001	-01	Prepared &		07/16/14		12.2		
	-	Prepared &		07/16/14		12.2		
0.1	%		8.0			12.2		
						13.5	20	
		Prepared &	Analyzed:	07/16/14				
1.00	mg/kg wet							
		Prepared &	Analyzed:	07/16/14				
1.00	mg/kg wet	100		101	80-120			
		Prepared &	Analyzed:	07/16/14				
1.00	mg/kg wet	100		94.6	80-120	6.14	20	
rce: 4G14001	-01	Prepared &	Analyzed:	07/16/14				
58.8	mg/kg dry		24100			0.146	20	
rce: 4G14001	-01	Prepared &	Analyzed:	07/16/14				
58.8	mg/kg dry	4120	24100	106	80-120			
	1.00 1.00 rce: 4G14001 58.8 rce: 4G14001	1.00 mg/kg wet 1.00 mg/kg wet rce: 4G14001-01 58.8 mg/kg dry rce: 4G14001-01	1.00 mg/kg wet Prepared & 1.00 mg/kg wet 1.00 Prepared & 58.8 mg/kg dry rce: 4G14001-01 Prepared &	1.00 mg/kg wet Prepared & Analyzed: 1.00 mg/kg wet 100 1.00 mg/kg wet 100 Prepared & Analyzed: 1.00 mg/kg wet 100 Prepared & Analyzed: 1.00 mg/kg wet 100 Prepared & Analyzed: 58.8 mg/kg dry 24100 Prepared & Analyzed: 58.8 mg/kg dry 24100 Prepared & Analyzed:	Prepared & Analyzed: 07/16/14 1.00 mg/kg wet 100 101 Prepared & Analyzed: 07/16/14 100 94.6 rce: 4G14001-01 Prepared & Analyzed: 07/16/14 58.8 mg/kg dry 24100 rce: 4G14001-01 Prepared & Analyzed: 07/16/14	1.00 mg/kg wet 1.00 mg/kg wet Prepared & Analyzed: 07/16/14 1.00 mg/kg wet 100 101 80-120 Prepared & Analyzed: 07/16/14 1.00 mg/kg wet 100 94.6 80-120 Prepared & Analyzed: 07/16/14 58.8 mg/kg dry 24100 Prepared & Analyzed: 07/16/14	1.00 mg/kg wet Prepared & Analyzed: 07/16/14 1.00 mg/kg wet 100 101 80-120 Prepared & Analyzed: 07/16/14 1.00 mg/kg wet 100 94.6 80-120 6.14 Prepared & Analyzed: 07/16/14 rce: 4G14001-01 Prepared & Analyzed: 07/16/14 S8.8 mg/kg dry 24100 0.146 Prepared & Analyzed: 07/16/14	1.00 mg/kg wet Prepared & Analyzed: 07/16/14 1.00 mg/kg wet 100 101 80-120 Prepared & Analyzed: 07/16/14 1.00 mg/kg wet 100 94.6 80-120 6.14 20 rce: 4G14001-01 Prepared & Analyzed: 07/16/14 Solution of the second secon

SPLP Volatile Halocarbons by EPA Method 1312/8021B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4G1607 - General Preparation	<u>(GC)</u>									
Blank (P4G1607-BLK1)				Prepared &	Analyzed:	07/15/14				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100								
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100								
Xylene (o)	ND	0.00100	"							
Surrogate: a,a,a-Trifluorotoluene	60.0		ug/kg	60.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	50.7		"	60.0		84.6	80-120			
LCS (P4G1607-BS1)				Prepared &	Analyzed:	07/15/14				
Benzene	0.100	0.00100	mg/L	0.100		100	80-120			
Toluene	0.0952	0.00100		0.100		95.2	80-120			
Ethylbenzene	0.0896	0.00100		0.100		89.6	80-120			
Xylene (p/m)	0.190	0.00100		0.200		95.1	80-120			
Xylene (o)	0.0949	0.00100	"	0.100		94.9	80-120			
Surrogate: a,a,a-Trifluorotoluene	60.0		ug/kg	60.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	62.5		"	60.0		104	80-120			
Duplicate (P4G1607-DUP1)	Sour	rce: 4G07001-	10	Prepared: 0	7/15/14 Ai	nalyzed: 07	/16/14			
Benzene	ND	0.00100	mg/L		ND				20	
Toluene	ND	0.00100			ND				20	
Ethylbenzene	ND	0.00100			ND				20	
Xylene (p/m)	ND	0.00100			ND				20	
Xylene (o)	ND	0.00100	"		ND				20	
Surrogate: a,a,a-Trifluorotoluene	60.0		ug/kg	60.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	47.1		"	60.0		78.5	80-120			S-

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

		D (G 7	9		AVDEC.		DDD	
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4G0901 - TX 1005										
Blank (P4G0901-BLK1)				Prepared &	Analyzed	: 07/08/14				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0								
>C28-C35	ND	25.0								
Surrogate: 1-Chlorooctane	125		"	150		83.0	70-130			
Surrogate: o-Terphenyl	72.8		"	75.0		97.0	70-130			
LCS (P4G0901-BS1)				Prepared &	Analyzed	: 07/08/14				
C6-C12	1090	25.0	mg/kg wet	1000		109	75-125			
>C12-C28	1150	25.0		1000		115	75-125			
Surrogate: 1-Chlorooctane	127		"	150		84.8	70-130			
Surrogate: o-Terphenyl	63.8		"	75.0		85.0	70-130			
Duplicate (P4G0901-DUP1)	Sou	rce: 4G02005	5-14	Prepared: ()7/08/14 A	nalyzed: 07	//09/14			
C6-C12	ND	25.5	mg/kg dry		ND				20	
>C12-C28	71.4	25.5			ND				20	
Surrogate: 1-Chlorooctane	163		"	153		106	70-130			
Surrogate: o-Terphenyl	90.9		"	76.5		119	70-130			

SPLP Extraction by EPA 1312 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4G1507 - *** DEFAULT PREP ***										
Blank (P4G1507-BLK1)				Prepared: (07/14/14 A	nalyzed: 07	/16/14			
Chloride	ND	0.500	mg/L							
LCS (P4G1507-BS1)				Prepared: (07/14/14 A	nalyzed: 07	/16/14			
Chloride	9.85	0.500	mg/L	10.0		98.5	80-120			
LCS Dup (P4G1507-BSD1)				Prepared: ()7/14/14 A	nalyzed: 07	/16/14			
Chloride	9.36	0.500	mg/L	10.0		93.6	80-120	5.06	20	

Notes and Definitions

- S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
- QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Bun Barron

7/23/2014

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Date:

D HAND DELIVERED							
CARRIER BILL #		Y: (Signature)	RECEIVED BY: (Signature)	DATE/TIME		Y:(Signature)	RELINQUISHED BY:(Signature)
CUSTODY SEALS - D BROKEN D INTACT D NOT USED		· (orginamic)				K4(Sigpature)	RELINQUISHED BY(Signature)
RECEIVING TEMP: THERM #:	NORMAL	V- (Cimpatura)		2/14 14	/		N
LABORATORY USE ONLY:	TURN AROUND TIME	Y: (Signature)	RECEIVED BY: (Signature)	DATE/TIME	L	*:(Signature)	RELINQUISHED BX(Signature)
							TOTAL
							-
							ι.
				-			
					-	-	
					-		
X				2 00 5	7/11/4 2	-02	Cenyo-2
		XX	~	; cè S	71ilia 1	-01	Cry-1
8 / 03 / 03 / 05 / 39 / 03 / 03 / 03 / 05 / 00 / 00 / 00 / 00	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	ICE UNPI	# of (HCI HNO	Time Matrix	Date	Lab #	Field Sample I.D.
60 10 0 0 0 0 00		RESE				- 1062 -	MM
10 00 00 00 00 00 00 00 00 00 00 00 00 0	100 000 000 000 000 000 000 000 000 000	<u> </u>	iners			<u>.</u>	TIME ZONE: Time zone/State:
Serii JO	2105				OT=OTHER	A=AIR	∏Yes ŽNo
00000000000000000000000000000000000000		PRESERVATION	PRES			S=SOIL	TRRP report?
-01	0~1	LA			(afer	\wedge	Data Reported to:
Legicy In	PROJECT LOCATION OR NAME:	432-687-0901 PR(432-6	•	<u>ਤ</u>	tel Consulta	Environmental Consultants
LAB WORK ORDER #:	#	200	507 N. Marie			~~~	
PAGE / OF /	E 7/2/14	DATE:					
CHAIN-OF-CUSTODY							

April 28, 2014

Coty Woolf Larson & Associates 507 N. Marienfeld #200 Midland, TX 79701 TEL: (432) 687-0901 FAX (432) 687-0456 RE: Legacy Pit

Order No.: 1404133

Dear Coty Woolf:

DHL Analytical, Inc. received 51 sample(s) on 4/11/2014 for the analyses presented in the following report.

Revision Number 1 for Work Order 1404133: This revision consists of changing the target analyte list, per the client's request. Please replace the original report with this revised report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-13-11

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 1404133	
WorkOrderSampleSummary 1404133	
PrepDatesReport 1404133	
AnalyticalDatesReport 1404133	
Analytical Report 1404133	
AnalyticalQCSummaryReport 1404133	

		CHAIN-OF-CUSTODY
Aarson & ssociates, Inc. Environmental Consultants Data Reported to:	507 N. Marienfeld, Ste. 200 Midland, TX 79701 - 432-687-0901 PROJ	JECT LOCATION OR NAME: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
TRRP report? Yes No TIME ZONE: Time, zone/State:	# of Containers HCI HNO ₃ HNO ₃ H ₂ SO ₄ D NaOH D ICE UNPRESERVED UNPRESERVED	
Field Time Matrix Sample I.D. Lab # Date Time	# of Co HISO4 HISO6 HISO7 HISO	1 1
$\frac{SPB conp}{SPB conp} 01 4/8/4 1025 S$ $\frac{SPB conp}{SPA conp} 02 1040$ $\frac{SPA conp}{SPA conp} 03 1100$ $\frac{SPA conp}{SPA conp} 04 1100$ $\frac{SPA conp}{SPA conp} 04 1105$ $\frac{SPA conp}{SPA conp} 04 1135$ $\frac{SPA conp}{SPA conp$		
TOTAL. RELINQUISHED BY:(Signature) RELINQUISHED BY:(Signature) DATE/TIME AD4854 UIIIIII RELINQUISHED BY:(Signature) DATE/TIME	RECEIVED BY: (Signature) Company RECEIVED BY: (Signature) 833 RECEIVED BY: (Signature) RECEIVED BY: (Signature) 3	TURN AROUND TIME LABORATORY USE ONLY: NORMAL RECEIVING TEMP: 17

ĺ

Ì

A arson & SSOCIAT Environmenter Data Reported to:		C. ants	+31	100		\idla	nd, 1		9701		P	PO #: PROJ	: IECT ROJI	LO	 CAT * #:		OR	NA -01	ME	:		L	24	40	R#	t:	14:		32
TRRP report?	S=SOIL W≕WATE A=AIR				liners	PR					Å.		ar s			14 14 14 14 14 14 14 14 14 14 14 14 14 1	10010 10010 10010 10010								The state of the s				
Field Sample I.D.	Lab #	Date	Time	Matrix	# of Containers	HCI	HN03	H ₂ SO ₄ U	UNPRESERVED	AHAI				8/0 8/0/	1.81	<u>~</u> /	5/6	\$16	5/6		2/3/ 2/2/ 2/2/	12/2 2/2 2/2			ş¥ L			FIELD	NOTES
ES-4	Ke	4/4/14	9402	5	1				0		X	X	_						_							_			
ES-5	17		950					1]		\downarrow								_		_	.	$\left \right $		┢	-+			
_ <u>ES-</u>	18		1002		+			/	/			┤-┨-┤		_	_				_	- :	+		\parallel		┢━╍┠	\rightarrow			
155-6	15		1003						_					_								-			\square				
1-5-8	22		1003												+			_								+			
- 15-6	21		10/0		+				$\left - \right $					-		$\left \right $			-						i – †	+			
115-4	22		1015	-					$\left\{ \left - \right\rangle \right\}$								+								\square				
1-1-13 Comp	23		1120						\parallel		+	┤╢					- †			- -			\parallel		-				
EFE	1 21 1 25		1.125					1	\parallel		\top	┼╂					\neg		_										
1.15-13(5)	74 74	$\left \right $	100		\uparrow				1-										_										
	27		120																						\square	\square			
1,5-2 (6/	23		200						Д									_				4	<u> </u>		\square	_		:	
145-12-61	29		220		Λ						<u>.</u>				_				_		_	<u> </u> _	<u> </u>		\square	$ \rightarrow$			
· ws - 11 (2)	3)	V	300	V				X			N.	\mathbb{N}	-	_	_								N		┝╼┿				
TOTAL		····	1													ŀ		- +											
RELINQUISHED BY:	25	7	DĂTE/Ť	111	イRECE	IVEC	<u>Хё</u>) вү:	Sigr	sture 30)		-	- N(TIM		REC	CEIV	DY SI	TEMF EALS	-:_[-: [<u>- 7</u>] вк		IN 🗆) INTA	57 1070	 NOT US
RELINQUISHED BY:(DATE/T	IME	RECE	IVED) BY:	(Šigi	nature)				THE						ARF	RIER	BILL	#	<u>L</u>	0,0	st			

		2. 			CHAIN-OF-CUSTODY
A arson & Sociates, Inc Environmental Consultar Data Reported to:	its (cf.		7 N. Marienfeld, Ste. 200 Midland, TX 79701 432-687-0901	DATE: PO #: PROJECT LOCATION OR NAM LAI PROJECT #:	
TRRP report? Yes No TIME ZONE: Time zone/State:	P=PAINT SL=SLUDGE OT=OTHER		# or Containers HCI HNO ₃ HNO ₃ HSO ₄ D NaOH D ICE UNPRESERVED UNPRESERVED		2 2 2 2 2 2 2 2 2 2 2 2 2 2
Sample 1.D. Lab # 1 1 (-10 (2) 31 1 2 - 8 (2) 37 1 2 - 7 (3) 34 1 2 - 7 (3) 37 1 2 - 7 (4) 37 1 2 - 7 (4) 42 1 2 - 7	Date Time 9/9/14 3.30/ 4/0/14 \$00 1 900 900 900 1 900 1 900 1 900 1 900 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000				
RELINQUISHED BY:(Signature) RELINQUISHED BY:(Signature) RELINQUISHED BY:(Signature)		ME REC MIN S		NORMAL	ABORATORY USE ONLY: ECEIVING TEMP: <u>1.7</u> THERM #: <u>57</u> USTODY SEALS - D BROKEN D INTACT QNOT USED CARRIER BILL# COLLST- HAND DELIVERED

																					С	H/	<u> 41</u>	<u>N-</u>	OF	<u>C</u>	<u>:US</u>	<u>STC</u>	<u>יט</u> נ
Aarson & ssociat Data Reported to:	es, In al Consulto	C. ants	A	-h	507 N N	۱idla	arienf nd, T) 2687	(79	701	200	F	20 # 280	t:		CAŢ - #:_	_[44/	NAME 27-	0	7		A	19	Cr	t:	<u></u>	10-11 10-11 24	_OF_ <u>/33</u>	4
TRRP report?	S=SOIL W=WATE A=AIR 2 Uu 7 Uu 7 Uu 7 Uu 7 Uu 7 Uu 7 Soo		Time Time 3364 400 2367 507	Matrix S S S S S S S S S S S S S S S S S S S	V # of Containers					X									0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									NOTE	S
TOTAL RELINQUISHED BY:(RELINQUISHED BY:(Signature)		DATE/TI / 2//2 DATE/TI 4/ 14 DATE/TI	<u>ие</u> ме 11 8	RECE RECE 30 RECE			Sign Sign	<u>م (</u> (ature)	<u>sh</u>	6			TURN NORM 1 DAY 2 DAY OTHEI			TIME		CEIN STO CAR	DY S	TEMF EALS BILL	P: 3 - C .#	1. –7] вг ИС) — ,ЮКЕ			<u>57</u> .cтч		JSED

	Store Call 800 Overnight Airbill No. 473	76958	47376958 Phone (Important)
2A-	Print Name (Person) Gr Ker Siz 33893)	2. From Print Name (Person)	432-687-9661
2B	Company Name	Street Address	
	Suite/Floor	07 NÖRTH MARIENFELD Sundy Floor	
	city Rand Kei King IX 2078-Ad	Çiy State DLAND Weight	ZP 73701 FOR COURIER
	Visit www.lso.com for availability of services to your destination and enjoy added features by creating your shipping label online.	4. Package	USE ONLY
	(Extra charge; www.lso.com www.lso.com not available on Ground)	1 State margary 4 10 - 21-	Courler Number
	(Extra charge, no www.lso.com Uner signature.obtained)	5. Payment:	Pick-up Localien
9 10 10	By 3:00 pm Delivery Assumed 10:30 a.m. service unless Ground (next day to most crites).		
	Deliver Without Delivery Signature (See Liffins of Liability below)		All -
		a eclare a greative value (not to exceed \$25,000); 2) pay an additional sectore of processory Additional limitations of liability are contained in o	tee; 3) and document your actual loss in a timely ur current Service Guide. If you ask us to deliver a
54 - *** 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	LX WX H LIMIT OF LIABILITY: We are not responsible for claims in excess of \$100 for any reason unless you: 1) de manner. We will not pay any claim in excess of the actual toss. We are not liable for any special or conseque package without obtaining a delivery signature, you release us of all tibibility for claims resulting from such s PROVIDED BY LSD IS NOT INTENDED FOR USE ON GROUND SERVICE. OVERSIZE RATES MAY APPLY. DE	GENERAL CONTRELS AND DELIVERY SIGNATURE WILL BE OBTAINED FOR 08:30 Service, NO DELIVERY SIGNATURE WILL BE OBTAINED FOR 08:30 SIVERY COMMITMENTS MAY VARY, ADDITIONAL FEES MAY APP	
ى <u>الإنى</u> خــ			a su a la companya de la companya d

7

Sample Receipt Checklist

	oump	ie Neceipt C	INCOMISE		
Client Name Larson & Associates			Date Rece	eived: 4/11/2	014
Work Order Number 1404133			Received I	by JB	
Checklist completed by:	4/11/20 Det		Reviewed i	by JD	4/11/2014 Date
	Carrier name	<u>LoneStar</u>			
Shipping container/cooler in good condition?		Yes 🔽	No 🗔	Not Present	. .
Custody seals intact on shippping container/c	ooler?	Yes 🗌	No 🗔	Not Present	
Custody seals intact on sample bottles?		Yes 🗌	No 🗔	Not Present	
Chain of custody present?		Yes 🔽	No 🗔		
Chain of custody signed when relinquished an	d received?	Yes 🗹	No 🗔	·	
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	Νο		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌	·	
All samples received within holding time?		Yes 🗹	No 🗌		
Container/Temp Blank temperature in complia	nce?	Yes 🗹		1.7 °C	
Water - VOA vials have zero headspace?		Yes 🗹		No VOA vials submitte	d []
Water - pH<2 acceptable upon receipt?		Yes 🗹	_		7179
		Adjusted?	po	Checked by S	
Water - ph>9 (S) or ph>12 (CN) acceptable up	on receipt?	Yes 🗌	No 🗌	NA 🗹 LOT #	
		Adjusted?		Checked by	
Any No response must be detailed in the comm	nents section below.				
Client contacted	Date contacted:		Pers	son contacted	
Contacted by:	Regarding				
Comments:	· · · · · · · · · · · · · · · · · · ·		555-564 (and 1950) and 1970 (1970) and 1970	a na an an an an an ann an Arra an Arra ann an Arra an	······································
· · · · · · · · · · · · · · · · · · ·					
		<u> </u>			
Corrective Action					
		· · · · · · · · · · · · · · · · · · ·			

Page 1 of 1

CLIENT:Larson & AssociatesProject:Legacy PitLab Order:1404133

CASE NARRATIVE

Sample was analyzed using the methods outlined in the following references:

Method SW6020A - Metals Analysis Method M8015D - DRO Analysis Method M8015V - GRO Analysis Method SW8021B - Volatile Organics by GC Analysis Method E300 - Anions Analysis Method M2320 B - Soluble Alkalinity of Soil Method D2216 - Percent Moisture Analysis

LOG IN

The samples were received and log-in performed on 4/11/2014. A total of 51 samples were received and analyzed. The samples arrived in good condition and were properly packaged. The samples were collected in Mountain Standard Time.

VOLATILES BY GC AND GRO ANALYSIS

As per the TCEQ-NELAP accreditation requirement the following must be noted: NELAP requires a note that if 5035 sampling method for VOCs and GRO is not utilized, the results of samples collected in bulk containers for low level volatile components may be compromised. The client has been notified and has requested the Laboratory to proceed with analysis.

DRO ANALYSIS

For DRO Analysis, the recovery of surrogate Octacosane for the most of the samples and the Matrix Spike Duplicate (1404133-47 MSD) was above the method control limits, due to coelution. The remaining surrogate for these samples were within method control limits. Additionally, the recoveries of both surrogates for the Matrix Spike (1404133-47 MS) were above the method control limits due to coelution and matrix interference. The recoveries of both surrogates for the Continuing Calibration Verification (CCV1-140421) were above the method control limits. The recoveries of the surrogates for the surrogates for the surrogates for the method control limits. The recoveries of the surrogates for the Analytical Data Report and the QC Summary Report. No further corrective action was taken.

For DRO Analysis, the recoveries of the Continuing Calibration Verification (CCV1-140421), the Matrix Spike and Matrix Spike Duplicate (1404133-47 MS/MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. The recoveries of the Laboratory Control Spike and the subsequent CCV were within method control limits. No further corrective action

CLIENT:	Larson & Associates
Project:	Legacy Pit
Lab Order:	1404133

was taken.

For DRO Analysis, performed on 4/18/2014, hydrocarbons were detected below the reporting limit for Method Blank-62980 and Method Blank-62981. The associated samples analyzed in this run may be biased high. No further corrective action was taken.

For DRO Analysis, performed on 4/21/2014, hydrocarbons were detected below the reporting limit for Method Blank-62981. The associated detected greater than 10x the amount of the method blank. No further corrective action was taken.

GRO ANALYSIS

For GRO Analysis, the recoveries and RPD of the Matrix Spike and Matrix Spike Duplicate (1404133-49 MS/MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. The recovery of the associated LCS was within method control limits. No further corrective action was taken.

For GRO Analysis, the recovery of surrogate Tetrachloroethene for the Matrix Spike Duplicate (1404133-49 MSD) was below the method control limits, due to nature of matrix. This is flagged accordingly in the QC Summary Report. No further corrective action was taken.

ANIONS ANALYSIS

For Anions Analysis, for water batch 62862, the recovery of Chloride for the Matrix Spike and Matrix Spike Duplicate (1404119-01 MS/MSD) was below the method control limits. These are flagged accordingly in the QC Summary Report. This anion was within method control limits in the associated LCS. No further corrective action was taken.

For Anions Analysis, for soil batch 62962, the recovery of Chloride for the Matrix Spike and Matrix Spike Duplicate (1404133-39 MS/MSD) was above the method control limits. These are flagged accordingly in the QC Summary Report. This anion was within method control limits in the associated LCS. No further corrective action was taken.

For Anions Analysis, some of the samples were diluted due to nature of matrix.

Larson & Associates

Legacy Pit

CLIENT:

Project:

Date:	23-Apr-14
-------	-----------

Work Order Sample Summary

Lab Order:	1404133		Work Order Sample	Summary
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
1404133-01	SPB Comp		04/08/14 10:25 AM	4/11/2014
1404133-02	WPE Comp		04/08/14 10:40 AM	4/11/2014
1404133-03	-		04/08/14 11:00 AM	4/11/2014
1404133-04	SPA Comp		04/08/14 11:00 AM	4/11/2014
1404133-05	NPA Comp		04/08/14 11:05 AM	4/11/2014
1404133-06	WPD Comp		04/08/14 11:35 AM	4/11/2014
1404133-07	WPB Comp		04/08/14 11:35 AM	4/11/2014
1404133-08	WPC Comp		04/08/14 11:35 AM	4/11/2014
1404133-09	NPB Comp		04/08/14 12:05 PM	4/11/2014
1404133-10	NPC Comp		04/08/14 01:35 PM	4/11/2014
1404133-11	ES-2		04/09/14 09:08 AM	4/11/2014
1404133-12	ES-9		04/09/14 09:15 AM	4/11/2014
1404133-13	ES-10		04/09/14 09:23 AM	4/11/2014
1404133-14	ES-1		04/09/14 09:32 AM	4/11/2014
1404133-15	ES-3		04/09/14 09:37 AM	4/11/2014
1404133-16	ES-4		04/09/14 09:42 AM	4/11/2014
1404133-17	ES-5		04/09/14 09:50 AM	4/11/2014
1404133-18	ES-7		04/09/14 10:02 AM	4/11/2014
1404133-19	ES-6		04/09/14 10:03 AM	4/11/2014
1404133-20	ES-8		04/09/14 10:03 AM	4/11/2014
1404133-21	DS-5		04/09/14 10:10 AM	4/11/2014
1404133-22	DS-4		04/09/14 10:15 AM	4/11/2014
1404133-23	EEB Comp		04/09/14 11:00 AM	4/11/2014
1404133-24	EEC Comp		04/09/14 11:20 AM	4/11/2014
1404133-25	EEA Comp		04/09/14 11:25 AM	4/11/2014
1404133-26	WS-13 (5')		04/09/14 01:00 PM	4/11/2014
1404133-27	WS-1 (4')		04/09/14 01:30 PM	4/11/2014
1404133-28	WS-2 (6')		04/09/14 02:00 PM	4/11/2014
1404133-29	WS-12 (2')		04/09/14 02:30 PM	4/11/2014
1404133-30	WS-11 (6')		04/09/14 03:00 PM	4/11/2014
1404133-31	WS-10 (6')		04/09/14 03:30 PM	4/11/2014
1404133-32	WS-8 (6')		04/10/14 08:00 AM	4/11/2014
1404133-33	WS-9 (8')		04/10/14 08:30 AM	4/11/2014
1404133-34	WS-7 (3')		04/10/14 09:00 AM	4/11/2014
1404133-35	DS-1		04/10/14 09:30 AM	4/11/2014
1404133-36	WS-4 (5')		04/10/14 10:00 AM	4/11/2014
1404133-37	WS-3 (10')		04/10/14 10:30 AM	4/11/2014
1404133-38	WS-5 (6')		04/10/14 11:00 AM	4/11/2014
1404133-39	DS-2		04/10/14 11:30 AM	4/11/2014
1404133-40	WS-6 (4')		04/10/14 12:00 PM	4/11/2014
1404133-41	DS-3		04/10/14 12:30 PM	4/11/2014
1404133-42	WEB Comp		04/10/14 01:00 PM	4/11/2014

Page 1 of 2

CLIENT:Larson & AssociatesProject:Legacy PitLab Order:1404133

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
1404133-43	WEA Comp		04/10/14 01:30 PM	4/11/2014
1404133-44	WEC Comp		04/10/14 02:00 PM	4/11/2014
1404133-45	WED Comp		04/10/14 02:30 PM	4/11/2014
1404133-46	CPA Comp		04/10/14 03:00 PM	4/11/2014
1404133-47	CPB Comp		04/10/14 03:30 PM	4/11/2014
1404133-48	CPC Comp		04/10/14 04:00 PM	4/11/2014
1404133-49	CPD Comp		04/10/14 04:30 PM	4/11/2014
1404133-50	MW-1		04/10/14 05:00 PM	4/11/2014
1404133-51	Trip		04/10/14	4/11/2014

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

PREP DATES REPORT

APP Comp 04/08/14 10:25 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 SPB Comp 04/08/14 10:25 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 SPB Comp 04/08/14 10:25 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-02A WPE Comp 04/08/14 10:25 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62970 WPE Comp 04/08/14 10:40 AM Soil D2216 Moisture Preparation 04/16/14 09:15 AM 62970 WPE Comp 04/08/14 10:40 AM Soil D2216 Moisture Preparation 04/16/14 09:15 AM 62970 WPE Comp 04/08/14 10:40 AM Soil D2216 Moisture Preparation 04/16/14 09:15 AM 62949 404133-03A WPE Comp 04/08/14 10:40 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO	Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
SPB Comp0408/14 10.25 AMSoilSW3030Purge and Trap Soils CC- Gas04/11/14 0349 PM62861SPB Comp0408/14 10.25 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-02ASPB Comp0408/14 10.25 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-02AWPE Comp0408/14 10.40 AMSoilSW9505AAnion Prep04/15/14 10:00 AM62970WPE Comp0408/14 10:40 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62970WPE Comp0408/14 10:40 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM6298040133-03AWPE Comp0408/14 10:40 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62980404133-03AWPE Comp0408/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62981404133-03AWPA Comp0408/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62981404133-04AMPA Comp0408/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62981404133-04ASPA Comp0408/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62981404133-04ASpA Comp0408/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62981404133-04ASoilSW3550C<	1404133-01A	SPB Comp	04/08/14 10:25 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
SPB Comp 04/08/14 10:25 AM Soil SW359C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-02A WPE Comp 04/08/14 10:25 AM Soil SW359C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-02A WPE Comp 04/08/14 10:40 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 WPE Comp 04/08/14 10:40 AM Soil SW3030A Purge and Trap Soils GC-Gas 04/11/14 03:49 PM 62961 WPE Comp 04/08/14 10:40 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPE Comp 04/08/14 10:40 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPA Comp 04/08/14 11:00 AM Soil SW3030A Purge and Trap Soils GC-Gas 04/16/14 09:15 AM 62949 WPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil		SPB Comp	04/08/14 10:25 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
SPB Comp 0408/14 10:25 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-02A WPE Comp 04/08/14 10:40 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 WPE Comp 04/08/14 10:40 AM Soil D2216 Moisture Preparation 04/16/14 09:15 AM 62931 WPE Comp 04/08/14 10:40 AM Soil SW5030A Purge and Trag Soils GC Gas 04/16/14 09:15 AM 62949 WPE Comp 04/08/14 10:40 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 40113-03A WPE Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 40113-04A Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 40413-04A WPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 40413-04A SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO		SPB Comp	04/08/14 10:25 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
404133-02A WPE Comp 0408/14 10:40 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 WPE Comp 04/08/14 10:40 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPE Comp 04/08/14 10:40 AM Soil SW3030A Parge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 WPE Comp 04/08/14 10:40 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPE Comp 04/08/14 10:04 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 WPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 WPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62941 404133-05		SPB Comp	04/08/14 10:25 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
WPE Comp 0408/14 10:40 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPE Comp 0408/14 10:40 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 WPE Comp 0408/14 10:40 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPA Comp 0408/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPA Comp 0408/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62971 WPA Comp 0408/14 11:00 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WPA Comp 0408/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62949 404133-04A SPA Comp 0408/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62949 404133-04A SPA Comp 0408/14 11:00 AM Soil SW350C Soil		SPB Comp	04/08/14 10:25 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
WPE Comp 04/08/14 10:40 AM Soil SW530A Purge and Trap Soils GC-Gas 04/11/14 03:49 PM 62861 WPE Comp 04/08/14 10:40 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 WPA Comp 04/08/14 11:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/16/14 09:15 AM 62861 WPA Comp 04/08/14 11:00 AM Soil SW5050C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil D2216 Moisture Preparation 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM S	404133-02A	WPE Comp	04/08/14 10:40 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
WPE Comp 04/08/14 10:40 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPA Comp 04/08/14 10:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 WPA Comp 04/08/14 11:00 AM Soil D2216 Moisture Preparation 04/16/14 09:15 AM 62949 WPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 WPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-05A SPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-05A NPA Comp 04/08/14 11:05 AM Soil		WPE Comp	04/08/14 10:40 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
WPE Comp 04/08/14 10:40 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-03A WPA Comp 04/08/14 11:00 AM Soil D2216 Moisture Preparation 04/16/14 09:15 AM 62931 WPA Comp 04/08/14 11:00 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62930 WPA Comp 04/08/14 11:00 AM Soil SW550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 WPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-05A PAC Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62861 M04133-05A NPA Comp 04/08/14 11:00 AM Soil		WPE Comp	04/08/14 10:40 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
404133-03A WPA Comp 04/08/14 11:00 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 WPA Comp 04/08/14 11:00 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPA Comp 04/08/14 11:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 WPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62970 SPA Comp 04/08/14 11:00 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-05A NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62970 404133-05A<		WPE Comp	04/08/14 10:40 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
WPA Comp 04/08/14 11:00 AM Soil D2216 Misture Preparation 04/16/14 03:09 PM 62970 WPA Comp 04/08/14 11:00 AM Soil SW350A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 WPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62970 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62861 SPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62861 404133-05A NPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62861 404133-05A NPA Comp 04/08/14 11:05 AM Soil <td></td> <td>WPE Comp</td> <td>04/08/14 10:40 AM</td> <td>Soil</td> <td>SW3550C</td> <td>Soil Prep Sonication: DRO</td> <td>04/16/14 09:15 AM</td> <td>62949</td>		WPE Comp	04/08/14 10:40 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
WPA Comp04/08/14 11:00 AMSoilSW5030APurge and Trap Soils GC-Gas04/11/14 03:49 PM62861WPA Comp04/08/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-04ASPA Comp04/08/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62931404133-04ASPA Comp04/08/14 11:00 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62970SPA Comp04/08/14 11:00 AMSoilD2216Moisture Preparation04/16/14 03:90 PM62970SPA Comp04/08/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 03:49 PM62861A1133-05ASPA Comp04/08/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 03:49 PM62861404133-05ANPA Comp04/08/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 03:49 PM62861404133-05ANPA Comp04/08/14 11:05 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62970404133-05ANPA Comp04/08/14 11:05 AMSoilD2216Moisture Preparation04/16/14 03:99 PM62861404133-05ANPA Comp04/08/14 11:05 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 03:99 PM62861404133-05AMPA Comp04/08/14 11:05 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-06AMPA Comp04/08/14 11:05 AM <td< td=""><td>404133-03A</td><td>WPA Comp</td><td>04/08/14 11:00 AM</td><td>Soil</td><td>SW9056A</td><td>Anion Prep</td><td>04/15/14 10:00 AM</td><td>62931</td></td<>	404133-03A	WPA Comp	04/08/14 11:00 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
WPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-04A SPA Comp 04/08/14 11:00 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 SPA Comp 04/08/14 11:00 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62970 SPA Comp 04/08/14 11:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62970 404133-05A NPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-05A NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62970 A04133-05A NPA Comp 04/08/14 11:05 AM Soil <td< td=""><td></td><td>WPA Comp</td><td>04/08/14 11:00 AM</td><td>Soil</td><td>D2216</td><td>Moisture Preparation</td><td>04/16/14 03:09 PM</td><td>62970</td></td<>		WPA Comp	04/08/14 11:00 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
WPA Comp04/08/14 11:00 AMSoilSW3550CSoil Pre Sonication: DRO04/16/14 09:15 AM62949404133-04ASPA Comp04/08/14 11:00 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62931SPA Comp04/08/14 11:00 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62970SPA Comp04/08/14 11:00 AMSoilSW5030APurge and Trap Soils GC- Gas04/11/14 03:49 PM62861SPA Comp04/08/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62931404133-05ANPA Comp04/08/14 11:05 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62931404133-05ANPA Comp04/08/14 11:05 AMSoilD2216Moisture Preparation04/16/14 09:15 AM62970NPA Comp04/08/14 11:05 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62961NPA Comp04/08/14 11:05 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-06ANPA Comp04/08/14 11:05 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-06AWPD Comp04/08/14 11:05 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-06AWPD Comp04/08/14 11:05 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-06AWPD Comp04/08/14 11:05 AMSoilSW3550CSoil Prep Soni		WPA Comp	04/08/14 11:00 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
A04133-04A SPA Comp 04/08/14 11:00 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 404133-04A SPA Comp 04/08/14 11:00 AM Soil D2216 Moisture Preparation 04/15/14 03:09 PM 62970 SPA Comp 04/08/14 11:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-05A NPA Comp 04/08/14 11:05 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62949 404133-05A NPA Comp 04/08/14 11:05 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62949 404133-05A NPA Comp 04/08/14 11:05 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil SW90		WPA Comp	04/08/14 11:00 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
SPA Comp04/08/14 11:00 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62970SPA Comp04/08/14 11:00 AMSoilSW5030APurge and Trap Soils GC- Gas04/11/14 03:49 PM62861SPA Comp04/08/14 11:00 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-05ANPA Comp04/08/14 11:05 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62970NPA Comp04/08/14 11:05 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62861NPA Comp04/08/14 11:05 AMSoilSW5030APurge and Trap Soils GC- Gas04/11/14 03:49 PM62861NPA Comp04/08/14 11:05 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-06AMPA Comp04/08/14 11:05 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-06AMPD Comp04/08/14 11:35 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949404133-06AMPD Comp04/08/14 11:35 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62931404133-06AMPD Comp04/08/14 11:35 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62970WPD Comp04/08/14 11:35 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62970WPD Comp04/08/14 11:35 AMSoilSW5030APurge and Trap Soils GC- Gas04/11/14 03:49 PM<		WPA Comp	04/08/14 11:00 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
APPL Comp 04/08/14 11:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-05A NPA Comp 04/08/14 11:05 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 APA Comp 04/08/14 11:05 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 NPA Comp 04/08/14 11:05 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 NPA Comp 04/08/14 11:05 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil SW9056A Anion Prep 0	404133-04A	SPA Comp	04/08/14 11:00 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
SPA Comp 04/08/14 11:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-05A NPA Comp 04/08/14 11:05 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 NPA Comp 04/08/14 11:05 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Preg Sonication: DRO 04/16/14 03:09 PM 62861 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Preg Sonication: DRO 04/16/14 09:15 AM 62949 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Preg Sonication: DRO 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:05 AM Soil SW3550C Soil Preg Sonication: DRO 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62910 WPD Comp 04/08/14 11:35 AM Soil D2216 Moisture Preparation 04/16/14		SPA Comp	04/08/14 11:00 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
404133-05A NPA Comp 04/08/14 11:05 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 NPA Comp 04/08/14 11:05 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 NPA Comp 04/08/14 11:05 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 NPA Comp 04/08/14 11:05 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/16/14 09:15 AM 62861 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil SW9056A Anion Prep 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPD Comp 04/08/14 11:35 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPD Comp 04/08/14 11:35 AM <t< td=""><td></td><td>SPA Comp</td><td>04/08/14 11:00 AM</td><td>Soil</td><td>SW5030A</td><td>Purge and Trap Soils GC- Gas</td><td>04/11/14 03:49 PM</td><td>62861</td></t<>		SPA Comp	04/08/14 11:00 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
NPA Comp 04/08/14 11:05 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 NPA Comp 04/08/14 11:05 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 WPD Comp 04/08/14 11:35 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPD Comp 04/08/14 11:35 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPD Comp 04/08/14 11:35 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861		SPA Comp	04/08/14 11:00 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
NPA Comp 04/08/14 11:05 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 WPD Comp 04/08/14 11:35 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPD Comp 04/08/14 11:35 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861	404133-05A	NPA Comp	04/08/14 11:05 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 WPD Comp 04/08/14 11:35 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPD Comp 04/08/14 11:35 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861		NPA Comp	04/08/14 11:05 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
NPA Comp 04/08/14 11:05 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 404133-06A WPD Comp 04/08/14 11:35 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 WPD Comp 04/08/14 11:35 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPD Comp 04/08/14 11:35 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861		NPA Comp	04/08/14 11:05 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
404133-06A WPD Comp 04/08/14 11:35 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 WPD Comp 04/08/14 11:35 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPD Comp 04/08/14 11:35 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861		NPA Comp	04/08/14 11:05 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
WPD Comp 04/08/14 11:35 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 WPD Comp 04/08/14 11:35 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861		NPA Comp	04/08/14 11:05 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
WPD Comp 04/08/14 11:35 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861	404133-06A	WPD Comp	04/08/14 11:35 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
		WPD Comp	04/08/14 11:35 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
WPD Comp 04/08/14 11:35 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949		WPD Comp	04/08/14 11:35 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
		WPD Comp	04/08/14 11:35 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949

Page 1 of 8

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1404133-06A	WPD Comp	04/08/14 11:35 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
1404133-07A	WPB Comp	04/08/14 11:35 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
	WPB Comp	04/08/14 11:35 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
	WPB Comp	04/08/14 11:35 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
	WPB Comp	04/08/14 11:35 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
1404133-08A	WPC Comp	04/08/14 11:35 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
	WPC Comp	04/08/14 11:35 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
	WPC Comp	04/08/14 11:35 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
	WPC Comp	04/08/14 11:35 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
1404133-09A	NPB Comp	04/08/14 12:05 PM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
	NPB Comp	04/08/14 12:05 PM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
	NPB Comp	04/08/14 12:05 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
	NPB Comp	04/08/14 12:05 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
	NPB Comp	04/08/14 12:05 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
1404133-10A	NPC Comp	04/08/14 01:35 PM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
	NPC Comp	04/08/14 01:35 PM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
	NPC Comp	04/08/14 01:35 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
	NPC Comp	04/08/14 01:35 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
1404133-11A	ES-2	04/09/14 09:08 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
	ES-2	04/09/14 09:08 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
	ES-2	04/09/14 09:08 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
	ES-2	04/09/14 09:08 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
1404133-12A	ES-9	04/09/14 09:15 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
	ES-9	04/09/14 09:15 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
	ES-9	04/09/14 09:15 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
	ES-9	04/09/14 09:15 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
	ES-9	04/09/14 09:15 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
1404133-13A	ES-10	04/09/14 09:23 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931

Page 2 of 8

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

PREP DATES REPORT

ES-10 04/09/14/09:23 AM Soil SW5030A Purge and Trap Soils GC-Gas 04/11/14/03:49 PM 62861 14/04133-14A ES-10 04/09/14/09:23 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14/09:15 AM 62979 14/04133-14A ES-11 04/09/14/09:32 AM Soil SW9056A Anion Prep 04/11/14/03:09 PM 62970 ES-11 04/09/14/09:32 AM Soil SW3030A Purge and Trap Soils GC-Gas 04/11/14/03:49 PM 62870 ES-11 04/09/14/09:32 AM Soil SW3030C Soil Prep Sonication: DRO 04/16/14/09:15 AM 62970 ES-13 04/09/14/09:32 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14/09:15 AM 62970 14/04133-15A ES-3 04/09/14/09:37 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14/09:15 AM 62970 14/04133-16A ES-3 04/09/14/09:37 AM Soil SW3500C Soil Prep Sonication: DRO 04/16/14/09:15 AM 62970 14/313-16A ES-4 04/09/14/09:37 AM Soil SW3500C </th <th>Sample ID</th> <th>Client Sample ID</th> <th>Collection Date</th> <th>Matrix</th> <th>Test Number</th> <th>Test Name</th> <th>Prep Date</th> <th>Batch ID</th>	Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
BS-100409/14 09:23 AMSoilSW3550Soil Prep Sonication: DRO04/16/14 09:15 AM62901404133-14ABS-10409/14 09:32 AMSoilSW3050Anion Prep04/15/14 10:00 AM6291ES-10409/14 09:32 AMSoilSW5030Purge and Trap Soils CC-Gas04/16/14 03:09 PM6290ES-10409/14 09:32 AMSoilSW30500Soil Prep Sonication: DRO04/16/14 09:15 AM6294ES-10409/14 09:32 AMSoilSW30500Soil Prep Sonication: DRO04/16/14 09:15 AM62941404133-15AES-30409/14 09:37 AMSoilSW30500Soil Prep Sonication: DRO04/16/14 00:00 AM62931404133-15AES-30409/14 09:37 AMSoilSW30500Soil Prep Sonication: DRO04/16/14 03:09 PM629611404133-15AES-30409/14 09:37 AMSoilSW30500Soil Prep Sonication: DRO04/16/14 03:09 PM629611404133-16AES-40409/14 09:37 AMSoilSW30500Soil Prep Sonication: DRO04/16/14 09:15 AM629411404133-16AES-40409/14 09:24 AMSoilSW30500Soil Prep Sonication: DRO04/16/14 09:15 AM629411404133-16AES-40409/14 09:24 AMSoilSW30500Soil Prep Sonication: DRO04/16/14 09:15 AM629411404133-17AES-50409/14 09:24 AMSoilSW3500Soil Prep Sonication: DRO04/16/14 09:15 AM629411404133-17AES-50409/14 09:24 AMSoilSW35050Soil	1404133-13A	ES-10	04/09/14 09:23 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
H44133-14A ES-1 04/09/14 09:32 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-1 04/09/14 09:32 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-1 04/09/14 09:32 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-1 04/09/14 09:32 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 1404133-15A ES-3 04/09/14 09:37 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 1404133-15A ES-3 04/09/14 09:37 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62949 ES-3 04/09/14 09:37 AM Soil SW3030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-3 04/09/14 09:37 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 1404133-16A ES-4 04/09/14 09:24 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62861 1404133-17A ES-5 04/09/14 09:24 AM <td></td> <td>ES-10</td> <td>04/09/14 09:23 AM</td> <td>Soil</td> <td>SW5030A</td> <td>Purge and Trap Soils GC- Gas</td> <td>04/11/14 03:49 PM</td> <td>62861</td>		ES-10	04/09/14 09:23 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
ES-1 04/09/14/09:32 AM Soil D2216 Moisture Preparation 04/16/14/03:09 PM 62970 ES-1 04/09/14/09:32 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14/03:49 PM 62861 ES-1 04/09/14/09:32 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14/09:15 AM 62949 ES-1 04/09/14/09:37 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14/09:15 AM 62949 ES-3 04/09/14/09:37 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14/09:15 AM 62949 ES-3 04/09/14/09:37 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/16/14/09:15 AM 62949 1404133-15A ES-4 04/09/14/09:37 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14/09:15 AM 62949 1404133-15A ES-4 04/09/14/09:42 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14/09:15 AM 62949 1404133-15A ES-4 04/09/14/09:20 AM Soil SW3550C Soil Prep Sonication: DRO <t< td=""><td></td><td>ES-10</td><td>04/09/14 09:23 AM</td><td>Soil</td><td>SW3550C</td><td>Soil Prep Sonication: DRO</td><td>04/16/14 09:15 AM</td><td>62949</td></t<>		ES-10	04/09/14 09:23 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
FS-10409/1409/32 AMSoilSW5030APurge and Trap Soils GC-Gas04/11/14 03:49 PM62861ES-10409/1409/32 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM62949ES-10409/1409/32 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM629491404133-15AES-30409/14 09:37 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62970ES-30409/14 09:37 AMSoilSW5030APurge and Trap Soils GC-Gas04/11/14 03:49 PM62861ES-30409/14 09:37 AMSoilSW5050CSoil Prep Sonication: DRO04/16/14 09:15 AM62949ES-30409/14 09:37 AMSoilSW5030APurge and Trap Soils GC-Gas04/11/14 03:49 PM62861ES-30409/14 09:37 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62970ES-30409/14 09:37 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62970ES-30409/14 09:32 AMSoilSW9056AAnion Prep04/15/14 00:04 AM629411404133-16AES-40409/14 09:50 AMSoilSW5050APurge and Trap Soils GC-Gas04/11/14 03:49 PM628611404133-17AES-50409/14 09:50 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM629701404133-17AES-50409/14 09:50 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM629701404133-18AES-70409/14 09:20 AM<	1404133-14A	ES-1	04/09/14 09:32 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
ES-1 0.4/09/14 09:32 AM Soil SW3550C Soil Prep Sonication: DRO 0.4/16/14 09:15 AM 62949 ES-1 0.4/09/14 09:32 AM Soil SW3550C Soil Prep Sonication: DRO 0.4/16/14 09:15 AM 62949 1404133-15A ES-3 0.4/09/14 09:37 AM Soil SW3050C Soil Prep Sonication: DRO 0.4/15/14 10:00 AM 62931 ES-3 0.4/09/14 09:37 AM Soil D2216 Moisture Preparation 0.4/15/14 10:00 AM 62931 ES-3 0.4/09/14 09:37 AM Soil SW5030A Purge and Trap Soils GC- Gas 0.4/11/14 03:49 PM 62861 ES-3 0.4/09/14 09:42 AM Soil SW9056A Anion Prep 0.4/15/14 10:00 AM 62931 1204133-16A ES-4 0.4/09/14 09:42 AM Soil SW9056A Anion Prep 0.4/15/14 10:00 AM 62941 1204133-17A ES-4 0.4/09/14 09:42 AM Soil SW3050C Soil Prep Sonication: DRO 0.4/16/14 09:15 AM 62941 1404133-17A ES-5 0.4/09/14 09:50 AM Soil SW3050C Soil Prep Sonication: DRO <td></td> <td>ES-1</td> <td>04/09/14 09:32 AM</td> <td>Soil</td> <td>D2216</td> <td>Moisture Preparation</td> <td>04/16/14 03:09 PM</td> <td>62970</td>		ES-1	04/09/14 09:32 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
ES-104/09/14 09:32 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM629414/4133-15AES-304/09/14 09:37 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62971ES-304/09/14 09:37 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62861ES-304/09/14 09:37 AMSoilSW5030APurge and Trap Soils GC- Gas04/11/14 03:49 PM62861ES-304/09/14 09:37 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM6293114/4133-16AES-404/09/14 09:42 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62970ES-404/09/14 09:42 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 03:09 PM62861ES-404/09/14 09:42 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 03:09 PM6286114/4133-17AES-504/09/14 09:50 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM6293114/4133-17AES-504/09/14 09:50 AMSoilD2216Moisture Preparation04/16/14 03:09 PM6286114/4133-17AES-504/09/14 09:50 AMSoilD2216Moisture Preparation04/16/14 03:09 PM6286114/4133-18AES-704/09/14 09:50 AMSoilD2216Moisture Preparation04/16/14 03:09 PM6286114/4133-18AES-704/09/14 09:50 AMSoilD2216Moisture Preparation: DRO04/16/14 03:09 PM		ES-1	04/09/14 09:32 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
Had H33-15A ES-3 04/09/14 09:37 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-3 04/09/14 09:37 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-3 04/09/14 09:37 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-3 04/09/14 09:37 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62941 ES-4 04/09/14 09:42 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-4 04/09/14 09:42 AM Soil D2216 Moisture Preparation 04/16/14 03:49 PM 62861 ES-4 04/09/14 09:42 AM Soil SW3030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-4 04/09/14 09:50 AM Soil SW3050C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62861 ES-5 04/09/14 09:50 AM Soil SW3050C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62861 ES-5		ES-1	04/09/14 09:32 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
ES-3 04/09/14 09:37 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62901 ES-3 04/09/14 09:37 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-3 04/09/14 09:37 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/16/14 09:15 AM 62949 1404133-16A ES-4 04/09/14 09:42 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/16/14 03:09 PM 62970 ES-4 04/09/14 09:42 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 1404133-17A ES-4 04/09/14 09:42 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 1404133-17A ES-5 04/09/14 09:50 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62970 1404133-18A ES-5 04/09/14 09:50 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62941 1404133-18A ES-7 04/09/14 09:50 AM Soil <td< td=""><td></td><td>ES-1</td><td>04/09/14 09:32 AM</td><td>Soil</td><td>SW3550C</td><td>Soil Prep Sonication: DRO</td><td>04/16/14 09:15 AM</td><td>62949</td></td<>		ES-1	04/09/14 09:32 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
ES-3 04/09/14 09:37 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-3 04/09/14 09:37 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62991 1404133-16A ES-4 04/09/14 09:42 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-4 04/09/14 09:42 AM Soil D2216 Moisture Preparation 04/16/14 03:39 PM 62861 ES-4 04/09/14 09:42 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62931 1404133-17A ES-5 04/09/14 09:42 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62941 1404133-17A ES-5 04/09/14 09:50 AM Soil D2216 Moisture Preparation 04/16/14 09:15 AM 62931 1404133-17A ES-5 04/09/14 09:50 AM Soil D2216 Moisture Preparation 04/16/14 09:15 AM 62941 1404133-18A ES-7 04/09/14 10:02 AM Soil SW3050A Purge and Trap So	1404133-15A	ES-3	04/09/14 09:37 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
ES-3 04/09/14 09:37 AM Soil SW3550C SUI Prep Sonication: DRO 04/16/14 09:15 AM 62949 1404133-16A ES-4 04/09/14 09:42 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-4 04/09/14 09:42 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 ES-4 04/09/14 09:42 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62961 ES-4 04/09/14 09:24 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62961 1404133-17A ES-5 04/09/14 09:50 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62970 1404133-17A ES-5 04/09/14 09:50 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62970 1404133-18A ES-7 04/09/14 09:50 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62981 1404133-18A ES-7 04/09/14 10:02 AM Soil SW3550C Soil		ES-3	04/09/14 09:37 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
4404133-16AES-404/09/14 09:42 AMSoilSW056AAnion Prep04/15/14 10:00 AM62931ES-404/09/14 09:42 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62970ES-404/09/14 09:42 AMSoilSW350CSoil Prep Sonication: DRO04/16/14 09:15 AM62949ES-404/09/14 09:50 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62931ES-504/09/14 09:50 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62931ES-504/09/14 09:50 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62861ES-504/09/14 09:50 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62931ES-504/09/14 09:50 AMSoilSW5030APurge and Trap Soils GC-Gas04/11/14 03:49 PM62861ES-504/09/14 09:50 AMSoilSW350CSoil Prep Sonication: DRO04/16/14 09:15 AM629491404133-18AES-704/09/14 10:02 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62970ES-704/09/14 10:02 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62861ES-704/09/14 10:02 AMSoilSW5030APurge and Trap Soils GC-Gas04/11/14 03:49 PM62861ES-704/09/14 10:02 AMSoilSW505CSoil Prep Sonication: DRO04/16/14 09:15 AM629491404133-19AES-604/09/14 10:03 AMSoilSW505CSoil Prep Sonication: DRO04		ES-3	04/09/14 09:37 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
ES-4 04/09/14 09:42 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-4 04/09/14 09:42 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-4 04/09/14 09:42 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 ES-5 04/09/14 09:50 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62970 ES-5 04/09/14 09:50 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 ES-5 04/09/14 09:50 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 ES-5 04/09/14 09:50 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-5 04/09/14 10:20 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62970 ES-7 04/09/14 10:20 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62970 ES-7 04/09/14 10:02 AM Soil		ES-3	04/09/14 09:37 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
ES-4 04/09/14 09:42 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-4 04/09/14 09:42 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 1404133-17A ES-5 04/09/14 09:50 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-5 04/09/14 09:50 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-5 04/09/14 09:50 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-5 04/09/14 09:50 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-5 04/09/14 09:50 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/16/14 09:15 AM 62949 1404133-18A ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 ES-7 04/09/14 10:02 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62949	1404133-16A	ES-4	04/09/14 09:42 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
ES-4 04/09/14 09:42 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 1404133-17A ES-5 04/09/14 09:50 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-5 04/09/14 09:50 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-5 04/09/14 09:50 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-5 04/09/14 09:50 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 1404133-18A ES-7 04/09/14 10:02 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62970 1404133-18A ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 09:15 AM 62970 1404133-19A ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 1404133-19A ES-6 04/09/14 10:03 AM Soil SW9056A Anion Prep 04		ES-4	04/09/14 09:42 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
1404133-17A ES-5 04/09/14 09:50 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-5 04/09/14 09:50 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-5 04/09/14 09:50 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-5 04/09/14 09:50 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 1404133-18A ES-7 04/09/14 10:02 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-7 04/09/14 10:02 AM Soil SW9056A Anion Prep 04/15/14 00:0 AM 62931 ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 ES-7 04/09/14 10:02 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 03:49 PM 62861 ES-7 04/09/14 10:02 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 ES-6 04/09/14 10:03 AM Soil SW9056A Anion Prep 04/15/		ES-4	04/09/14 09:42 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
ES-5 04/09/14 09:50 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-5 04/09/14 09:50 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-5 04/09/14 09:50 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62970 1404133-18A ES-7 04/09/14 10:02 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62970 ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 ES-7 04/09/14 10:02 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 1404133-19A ES-6 04/09/14 10:03 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62970 1404133-19A ES-6 04/09/14 10:03 AM Soil D2216 Mo		ES-4	04/09/14 09:42 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
ES-5 04/09/14 09:50 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-5 04/09/14 09:50 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 1404133-18A ES-7 04/09/14 10:02 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 ES-7 04/09/14 10:02 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62861 ES-7 04/09/14 10:02 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-7 04/09/14 10:02 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 03:09 PM 62949 1404133-19A ES-6 04/09/14 10:03 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 1404133-19A ES-6 04/09/14 10:03 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-6 04/09/14 10:03 AM Soil D2216 <td>1404133-17A</td> <td>ES-5</td> <td>04/09/14 09:50 AM</td> <td>Soil</td> <td>SW9056A</td> <td>Anion Prep</td> <td>04/15/14 10:00 AM</td> <td>62931</td>	1404133-17A	ES-5	04/09/14 09:50 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
ES-504/09/14 09:50 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM629491404133-18AES-704/09/14 10:02 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62931ES-704/09/14 10:02 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62970ES-704/09/14 10:02 AMSoilSW5030APurge and Trap Soils GC- Gas04/11/14 03:49 PM62861ES-704/09/14 10:02 AMSoilSW3550CSoil Prep Sonication: DRO04/16/14 09:15 AM629491404133-19AES-604/09/14 10:03 AMSoilSW9056AAnion Prep04/15/14 10:00 AM62931ES-604/09/14 10:03 AMSoilD2216Moisture Preparation04/16/14 09:15 AM62949ES-604/09/14 10:03 AMSoilD2216Moisture Preparation04/16/14 09:15 AM62949ES-604/09/14 10:03 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62970ES-604/09/14 10:03 AMSoilD2216Moisture Preparation04/16/14 03:09 PM62970ES-604/09/14 10:03 AMSoilSW5030APurge and Trap Soils GC- Gas04/11/14 03:49 PM62861ES-604/09/14 10:03 AMSoilSW5030APurge and Trap Soils GC- Gas04/11/14 03:49 PM62861		ES-5	04/09/14 09:50 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
1404133-18A ES-7 04/09/14 10:02 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 ES-7 04/09/14 10:02 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-7 04/09/14 10:02 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 1404133-19A ES-6 04/09/14 10:03 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 1404133-19A ES-6 04/09/14 10:03 AM Soil D2216 Moisture Preparation 04/15/14 10:00 AM 62931 ES-6 04/09/14 10:03 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62861 ES-6 04/09/14 10:03 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-6 04/09/14 10:03 AM Soil SW5030A Purge and Trap		ES-5	04/09/14 09:50 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
ES-7 04/09/14 10:02 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-7 04/09/14 10:02 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-7 04/09/14 10:02 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/16/14 09:15 AM 62949 1404133-19A ES-6 04/09/14 10:03 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-6 04/09/14 10:03 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-6 04/09/14 10:03 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-6 04/09/14 10:03 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-6 04/09/14 10:03 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861		ES-5	04/09/14 09:50 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
ES-7 04/09/14 10:02 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861 ES-7 04/09/14 10:02 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 1404133-19A ES-6 04/09/14 10:03 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-6 04/09/14 10:03 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-6 04/09/14 10:03 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861	1404133-18A	ES-7	04/09/14 10:02 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
ES-7 04/09/14 10:02 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949 1404133-19A ES-6 04/09/14 10:03 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-6 04/09/14 10:03 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-6 04/09/14 10:03 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861		ES-7	04/09/14 10:02 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
1404133-19A ES-6 04/09/14 10:03 AM Soil SW9056A Anion Prep 04/15/14 10:00 AM 62931 ES-6 04/09/14 10:03 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-6 04/09/14 10:03 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861		ES-7	04/09/14 10:02 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
ES-6 04/09/14 10:03 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62970 ES-6 04/09/14 10:03 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861		ES-7	04/09/14 10:02 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
ES-6 04/09/14 10:03 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/11/14 03:49 PM 62861	1404133-19A	ES-6	04/09/14 10:03 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
		ES-6	04/09/14 10:03 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62970
ES-6 04/09/14 10:03 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 09:15 AM 62949		ES-6	04/09/14 10:03 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
		ES-6	04/09/14 10:03 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949

Page 3 of 8

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1404133-20A	ES-8	04/09/14 10:03 AM	Soil	SW9056A	Anion Prep	04/15/14 10:00 AM	62931
	ES-8	04/09/14 10:03 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	ES-8	04/09/14 10:03 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/11/14 03:49 PM	62861
	ES-8	04/09/14 10:03 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/16/14 09:15 AM	62949
1404133-21A	DS-5	04/09/14 10:10 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	DS-5	04/09/14 10:10 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	DS-5	04/09/14 10:10 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	DS-5	04/09/14 10:10 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-22A	DS-4	04/09/14 10:15 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	DS-4	04/09/14 10:15 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	DS-4	04/09/14 10:15 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	DS-4	04/09/14 10:15 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-23A	EEB Comp	04/09/14 11:00 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	EEB Comp	04/09/14 11:00 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	EEB Comp	04/09/14 11:00 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	EEB Comp	04/09/14 11:00 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-24A	EEC Comp	04/09/14 11:20 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	EEC Comp	04/09/14 11:20 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	EEC Comp	04/09/14 11:20 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	EEC Comp	04/09/14 11:20 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-25A	EEA Comp	04/09/14 11:25 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	EEA Comp	04/09/14 11:25 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	EEA Comp	04/09/14 11:25 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	EEA Comp	04/09/14 11:25 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-26A	WS-13 (5')	04/09/14 01:00 PM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	WS-13 (5')	04/09/14 01:00 PM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	WS-13 (5')	04/09/14 01:00 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	WS-13 (5')	04/09/14 01:00 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980

Page 4 of 8

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

PREP DATES REPORT

WS-1 (4) 04/09/14 01:30 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-1 (4) 04/09/14 01:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-1 (4) 04/09/14 01:30 PM Soil SW350C Soil Prep Sonication: DRO 04/12/14 09:33 AM 62865 WS-2 (6) 04/09/14 02:00 PM Soil SW9056A Anion Prep 04/16/14 01:30 PM 62961 WS-2 (6) 04/09/14 02:00 PM Soil SW500A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62861 WS-2 (6) 04/09/14 02:30 PM Soil SW500A Purge and Trap Soils GC- Gas 04/16/14 01:30 PM 62971 WS-2 (2) 04/09/14 02:30 PM Soil SW303A Purge and Trap Soils GC- Gas 04/16/14 01:30 PM 62971 WS-12 (2) 04/09/14 02:30 PM Soil SW303A Purge and Trap Soils GC- Gas 04/16/14 01:30 PM 62971 WS-12 (2) 04/09/14 02:30 PM Soil SW303A Purge and Trap Soils GC- Gas 04/16/14 01:30 PM 62962	Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
W3-1 (1) 04/09/14 01:30 PM Soil SW30A Purge and Trap Soils GC-Gas 04/12/14 09:33 AM 62865 W3-1 (4) 04/09/14 01:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 U40133-28A WS-2 (6) 04/09/14 02:00 PM Soil D2216 Moisture Preparation 04/16/14 01:30 PM 62962 WS-2 (6) 04/09/14 02:00 PM Soil D2216 Moisture Preparation 04/16/14 00:33 AM 62962 WS-2 (6) 04/09/14 02:00 PM Soil SW3030 Purge and Trap Soils GC-Gas 04/12/14 09:33 AM 62962 WS-2 (2) 04/09/14 02:30 PM Soil SW3050 Soil Prep Sonication: DRO 04/17/14 08:56 AM 62981 WS-12 (2) 04/09/14 02:30 PM Soil D2216 Moisture Preparation 04/16/14 01:30 AM 62981 404133:304 WS-11 (6) 04/09/14 03:00 PM Soil Sw3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62981 40413:314 WS-11 (6) 04/09/14 03:00 PM Soil Sw3550C Soil Prep Sonication: DRO<	1404133-27A	WS-1 (4')	04/09/14 01:30 PM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
WS-101 0.409/14 01:30 PM Soil SW350C Soil Pep Sonication: DRO 0.4/17/14 08:56 AM 62980 404133-28A WS-2 (6) 0.409/14 02:00 PM Soil D2216 Moisture Preparation 0.4/16/14 11:39 AM 62961 WS-2 (6) 0.409/14 02:00 PM Soil D2216 Moisture Preparation 0.4/16/14 03:09 PM 62971 WS-2 (6) 0.409/14 02:00 PM Soil SW350C Soil Prep Sonication: DRO 0.4/17/14 08:36 AM 62980 4404135-29A WS-12 (2) 0.409/14 02:30 PM Soil D2216 Moisture Preparation 0.4/16/14 11:39 AM 62962 4504133-29A WS-12 (2) 0.409/14 02:30 PM Soil D2216 Moisture Preparation 0.4/16/14 11:39 AM 62980 4504133-30A WS-12 (2) 0.409/14 02:30 PM Soil SW350C Soil Prep Sonication: DRO 0.4/16/14 03:09 PM 62971 4504133-30A WS-11 (6) 0.409/14 03:30 PM Soil D2216 Moisture Preparation 0.4/16/14 03:09 PM 62971 450413-331A WS-10 (6) 0.409/14 03:30 PM		WS-1 (4')	04/09/14 01:30 PM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
404133-28A WS-2 (6) 04/09/14 02:00 PM Soil SW9056A Anion Pep 04/16/14 11:39 AM 62962 WS-2 (6) 04/09/14 02:00 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-2 (6) 04/09/14 02:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-2 (6) 04/09/14 02:30 PM Soil SW9356C Soil Prep Sonication: DRO 04/16/14 01:30 PM 62962 WS-12 (2) 04/09/14 02:30 PM Soil D2216 Moisture Preparation 04/16/14 03:00 PM 62962 WS-12 (2) 04/09/14 02:30 PM Soil D2056A Anion Prep 04/16/14 03:00 PM 62962 WS-12 (2) 04/09/14 02:30 PM Soil D2056A Anion Prep 04/16/14 03:00 PM 62962 WS-12 (2) 04/09/14 03:30 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 404133-314 WS-11 (6) 04/09/14 03:30 PM Soil SW350C Soil Prep Sonication: DRO 04/16/14 11:39 AM 62962 WS-10 (6) 04/09/14 03:30 PM Soil SW350C		WS-1 (4')	04/09/14 01:30 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
WS-2 (6) 04/09/14 02:00 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-2 (6) 04/09/14 02:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-2 (6) 04/09/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 01:30 PM 62961 1404133-29A WS-12 (2) 04/09/14 02:30 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-12 (2) 04/09/14 02:30 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-12 (2) 04/09/14 02:30 PM Soil SW550C Soil Prep Sonication: DRO 04/16/14 03:30 PM 62980 1404133-30A WS-11 (6) 04/09/14 03:00 PM Soil D2216 Moisture Preparation 04/16/14 03:30 PM 62971 WS-11 (6) 04/09/14 03:00 PM Soil D2216 Moisture Preparation 04/16/14 03:30 PM 62980 1404133-31A WS-10 (6) 04/09/14 03:30 PM Soil D2216 Moisture Preparation		WS-1 (4')	04/09/14 01:30 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
WS-2 (o) 0.409/14 02:00 PM Soil SWS030A Purge and Trap Soils GC-Gas 0.4/2/14 09:33 AM 62865 WS-2 (o') 0.409/14 02:00 PM Soil SW350C Soil Pep Sonication: DRO 0.4/17/14 08:56 AM 62980 1404133-29A WS-12 (2) 0.409/14 02:30 PM Soil SW9056A Anion Prep 0.4/16/14 11:39 AM 62961 WS-12 (2) 0.409/14 02:30 PM Soil D2216 Moisture Preparation 0.4/16/14 09:33 AM 62865 WS-12 (2) 0.409/14 02:30 PM Soil SW350C Soil Prep Sonication: DRO 0.4/17/14 08:56 AM 62980 1404133-30 WS-11 (6) 0.409/14 03:00 PM Soil SW9056A Anion Prep 0.4/16/14 03:00 PM 62971 WS-11 (6) 0.409/14 03:00 PM Soil SW9056A Anion Prep 0.4/16/14 03:00 PM 62971 WS-11 (6) 0.409/14 03:00 PM Soil SW9056A Anion Prep 0.4/16/14 03:09 PM 62971 WS-11 (6) 0.409/14 03:00 PM Soil SW350C Soil Prep Sonication: DRO 0.4/16/14 01:30 PM 62976 <td>1404133-28A</td> <td>WS-2 (6')</td> <td>04/09/14 02:00 PM</td> <td>Soil</td> <td>SW9056A</td> <td>Anion Prep</td> <td>04/16/14 11:39 AM</td> <td>62962</td>	1404133-28A	WS-2 (6')	04/09/14 02:00 PM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
WS-2 (6) 04/09/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-29A WS-12 (2) 04/09/14 02:30 PM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-12 (2) 04/09/14 02:30 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-12 (2) 04/09/14 02:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-12 (2) 04/09/14 03:00 PM Soil SW505C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-30A WS-11 (6) 04/09/14 03:00 PM Soil SW9056A Anion Prep 04/16/14 03:09 PM 62971 WS-11 (6) 04/09/14 03:00 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62980 1404133-31A WS-10 (6) 04/09/14 03:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-31A WS-10 (6) 04/09/14 03:30 PM Soil D2216 Moisture Pr		WS-2 (6')	04/09/14 02:00 PM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
Hadul 133-29A WS-12 (2) 04/09/14 02:30 PM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-12 (2) 04/09/14 02:30 PM Soil D2216 Moisture Preparation 04/16/14 01:30 PM 62971 WS-12 (2) 04/09/14 02:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-12 (2) 04/09/14 02:30 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-30A WS-11 (6) 04/09/14 03:00 PM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-11 (6) 04/09/14 03:00 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-11 (6) 04/09/14 03:00 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-31A WS-10 (6) 04/09/14 03:30 PM Soil SW350C Soil Prep Sonication: DRO 04/16/14 11:39 AM 62962 WS-10 (6) 04/09/14 03:30 PM Soil SW3500A Purge and Trap Soils GC- Gas		WS-2 (6')	04/09/14 02:00 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
WS-12 (2) 04/09/14 02:30 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-12 (2) 04/09/14 02:30 PM Soil SWS030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-12 (2) 04/09/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 11:39 AM 62962 1404133-30A WS-11 (6) 04/09/14 03:00 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-11 (6) 04/09/14 03:00 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-11 (6) 04/09/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-11 (6) 04/09/14 03:30 PM Soil SW550C Soil Prep Sonication: DRO 04/16/14 11:39 AM 62962 WS-10 (6) 04/09/14 03:30 PM Soil D2216 Moisture Preparation 04/16/14 03:30 PM 62971 WS-10 (6) 04/09/14 03:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM <t< td=""><td></td><td>WS-2 (6')</td><td>04/09/14 02:00 PM</td><td>Soil</td><td>SW3550C</td><td>Soil Prep Sonication: DRO</td><td>04/17/14 08:56 AM</td><td>62980</td></t<>		WS-2 (6')	04/09/14 02:00 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
WS-12 (2) 04/09/14 02:30 PM Soil SWS030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-12 (2) 04/09/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-30A WS-11 (6) 04/09/14 03:00 PM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-11 (6) 04/09/14 03:00 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-11 (6) 04/09/14 03:00 PM Soil SW350C Soil Prep Sonication: DRO 04/12/14 09:33 AM 62865 WS-11 (6) 04/09/14 03:00 PM Soil SW350C Soil Prep Sonication: DRO 04/16/14 11:39 AM 62962 WS-10 (6) 04/09/14 03:30 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-10 (6) 04/09/14 03:30 PM Soil D2216 Moisture Preparation 04/16/14 03:30 PM 62962 WS-8 (6) 04/10/14 08:00 AM Soil SW350C Soil Prep Sonication: DRO 04/16/14 03:30 PM 62971	1404133-29A	WS-12 (2')	04/09/14 02:30 PM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
WS-12 (2) 04/09/14 02:30 PM Soil SW3550C Soil rep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-30A WS-11 (6) 04/09/14 03:00 PM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-11 (6) 04/09/14 03:00 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-11 (6) 04/09/14 03:00 PM Soil SW500A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-11 (6) 04/09/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 11:39 AM 62960 1404133-31A WS-10 (6) 04/09/14 03:30 PM Soil SW9056A Anion Prep 04/16/14 01:30 PM 62971 WS-10 (6) 04/09/14 03:30 PM Soil D2216 Moisture Preparation 04/16/14 01:30 PM 62980 WS-10 (6) 04/09/14 03:30 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS+10 (6) 04/09/14 03:30 PM Soil SW350C Soil Prep Sonication: DRO 04/16/14 11:39 AM		WS-12 (2')	04/09/14 02:30 PM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
1404133-30A WS-11 (6) 04/09/14 03:00 PM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-11 (6) 04/09/14 03:00 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62961 WS-11 (6) 04/09/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-11 (6) 04/09/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 11:39 AM 62962 WS-10 (6) 04/09/14 03:30 PM Soil SW9056A Anion Prep 04/16/14 01:09 PM 62962 WS-10 (6) 04/09/14 03:30 PM Soil SW9056A Anion Prep 04/16/14 01:09 PM 62962 WS-10 (6) 04/09/14 03:30 PM Soil SW9056A Anion Prep 04/16/14 01:09 PM 62962 WS-10 (6) 04/09/14 03:30 PM Soil SW9056A Anion Prep 04/16/14 01:09 PM 62962 WS-10 (6) 04/09/14 03:30 PM Soil SW503C Soil Prep Sonication: DRO 04/16/14 01:09 PM 62962 WS-8 (6) 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/1		WS-12 (2')	04/09/14 02:30 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
WS-11 (6) 04/09/14 03:00 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-11 (6) 04/09/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-11 (6) 04/09/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62980 1404133-31A WS-10 (6) 04/09/14 03:30 PM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-10 (6) 04/09/14 03:30 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-10 (6) 04/09/14 03:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-10 (6) 04/09/14 03:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62980 1404133-32A WS-8 (6) 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 11:39 AM 62962 WS-8 (6) 04/10/14 08:00 AM Soil D2216 Moisture Preparation 04/16/1		WS-12 (2')	04/09/14 02:30 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
NS-11 (c) 04/09/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 NS-11 (c) 04/09/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-31A WS-10 (c) 04/09/14 03:30 PM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-10 (c) 04/09/14 03:30 PM Soil D2216 Moisture Preparation 04/16/14 09:33 AM 62865 WS-10 (c) 04/09/14 03:30 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-32A WS-8 (c) 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 1404133-32A WS-8 (c) 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 1404133-32A WS-8 (c) 04/10/14 08:00 AM Soil D2216 Moisture Preparation 04/16/14 08:30 AM 62980 1404133-33A WS-8 (G) 04/10/14 08:00 AM Soil SW350C <td< td=""><td>1404133-30A</td><td>WS-11 (6')</td><td>04/09/14 03:00 PM</td><td>Soil</td><td>SW9056A</td><td>Anion Prep</td><td>04/16/14 11:39 AM</td><td>62962</td></td<>	1404133-30A	WS-11 (6')	04/09/14 03:00 PM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
WS-11 (6') 04/09/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-31A WS-10 (6') 04/09/14 03:30 PM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-10 (6') 04/09/14 03:30 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-10 (6') 04/09/14 03:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-10 (6') 04/09/14 03:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-32A WS-8 (6') 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 1404133-32A WS-8 (6') 04/10/14 08:00 AM Soil D2216 Moisture Preparation 04/16/14 01:40 9:40 62961 1404133-32A WS-8 (6') 04/10/14 08:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C <		WS-11 (6')	04/09/14 03:00 PM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
1404133-31A WS-10 (6') 04/09/14 03:30 PM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-10 (6') 04/09/14 03:30 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-10 (6') 04/09/14 03:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-10 (6') 04/09/14 03:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 11:39 AM 62980 1404133-32A WS-8 (6) 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-8 (6') 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-8 (6') 04/10/14 08:00 AM Soil D2216 Moisture Preparation 04/16/14 01:09 PM 62971 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:30 AM Soil S		WS-11 (6')	04/09/14 03:00 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
WS-10 (6') 04/09/14 03:30 PM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-10 (6') 04/09/14 03:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-10 (6') 04/09/14 03:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 11:39 AM 62960 1404133-32A WS-8 (6') 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 03:09 PM 62971 WS-8 (6') 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 03:09 PM 62962 WS-8 (6') 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 03:09 PM 62971 WS-8 (6') 04/10/14 08:00 AM Soil SW9056A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 <td></td> <td>WS-11 (6')</td> <td>04/09/14 03:00 PM</td> <td>Soil</td> <td>SW3550C</td> <td>Soil Prep Sonication: DRO</td> <td>04/17/14 08:56 AM</td> <td>62980</td>		WS-11 (6')	04/09/14 03:00 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
WS-10 (6') 04/09/14 03:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-10 (6') 04/09/14 03:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-32A WS-8 (6') 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-8 (6') 04/10/14 08:00 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-8 (6') 04/10/14 08:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-8 (6') 04/10/14 08:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-8 (6') 04/10/14 08:00 AM Soil SW550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:30 AM Soil SW3550C Soil Prep Sonication: DRO 04/16/14 11:39 AM	1404133-31A	WS-10 (6')	04/09/14 03:30 PM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
WS-10 (6') 04/09/14 03:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-32A WS-8 (6') 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-8 (6') 04/10/14 08:00 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-8 (6') 04/10/14 08:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-33A WS-9 (8') 04/10/14 08:30 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-9 (8') 04/10/14 08:30 AM S		WS-10 (6')	04/09/14 03:30 PM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
1404133-32A WS-8 (6') 04/10/14 08:00 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-8 (6') 04/10/14 08:00 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-8 (6') 04/10/14 08:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-33A WS-9 (8') 04/10/14 08:30 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-9 (8') 04/10/14 08:30 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971		WS-10 (6')	04/09/14 03:30 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
WS-8 (6') 04/10/14 08:00 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971 WS-8 (6') 04/10/14 08:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-33A WS-9 (8') 04/10/14 08:30 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-9 (8') 04/10/14 08:30 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971		WS-10 (6')	04/09/14 03:30 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
WS-8 (6') 04/10/14 08:00 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-33A WS-9 (8') 04/10/14 08:30 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-9 (8') 04/10/14 08:30 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971	1404133-32A	WS-8 (6')	04/10/14 08:00 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-33A WS-9 (8') 04/10/14 08:30 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-9 (8') 04/10/14 08:30 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971		WS-8 (6')	04/10/14 08:00 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
WS-8 (6') 04/10/14 08:00 AM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 1404133-33A WS-9 (8') 04/10/14 08:30 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-9 (8') 04/10/14 08:30 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971		WS-8 (6')	04/10/14 08:00 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
1404133-33A WS-9 (8') 04/10/14 08:30 AM Soil SW9056A Anion Prep 04/16/14 11:39 AM 62962 WS-9 (8') 04/10/14 08:30 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971		WS-8 (6')	04/10/14 08:00 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
WS-9 (8') 04/10/14 08:30 AM Soil D2216 Moisture Preparation 04/16/14 03:09 PM 62971		WS-8 (6')	04/10/14 08:00 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
	1404133-33A	WS-9 (8')	04/10/14 08:30 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
WS-9 (8') 04/10/14 08:30 AM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 09:33 AM 62865		WS-9 (8')	04/10/14 08:30 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
		WS-9 (8')	04/10/14 08:30 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865

Page 5 of 8

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1404133-33A	WS-9 (8')	04/10/14 08:30 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-34A	WS-7 (3')	04/10/14 09:00 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	WS-7 (3')	04/10/14 09:00 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	WS-7 (3')	04/10/14 09:00 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	WS-7 (3')	04/10/14 09:00 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-35A	DS-1	04/10/14 09:30 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	DS-1	04/10/14 09:30 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	DS-1	04/10/14 09:30 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	DS-1	04/10/14 09:30 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-36A	WS-4 (5')	04/10/14 10:00 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	WS-4 (5')	04/10/14 10:00 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	WS-4 (5')	04/10/14 10:00 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	WS-4 (5')	04/10/14 10:00 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
	WS-4 (5')	04/10/14 10:00 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-37A	WS-3 (10')	04/10/14 10:30 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	WS-3 (10')	04/10/14 10:30 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	WS-3 (10')	04/10/14 10:30 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	WS-3 (10')	04/10/14 10:30 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-38A	WS-5 (6')	04/10/14 11:00 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	WS-5 (6')	04/10/14 11:00 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	WS-5 (6')	04/10/14 11:00 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	WS-5 (6')	04/10/14 11:00 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-39A	DS-2	04/10/14 11:30 AM	Soil	SW9056A	Anion Prep	04/16/14 11:39 AM	62962
	DS-2	04/10/14 11:30 AM	Soil	D2216	Moisture Preparation	04/16/14 03:09 PM	62971
	DS-2	04/10/14 11:30 AM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
	DS-2	04/10/14 11:30 AM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
1404133-40A	WS-6 (4')	04/10/14 12:00 PM	Soil	SW9056A	Anion Prep	04/17/14 09:31 AM	62986
	WS-6 (4')	04/10/14 12:00 PM	Soil	D2216	Moisture Preparation	04/17/14 09:51 AM	62988

Page 6 of 8

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

PREP DATES REPORT

WS-6 (*) 04/10/14 12:00 PM Soil Swi350C Soil Prep Sonication: DRO 04/17/14 08:56 AM 62980 404133-41A DS-3 04/10/14 12:30 PM Soil DZ216 Moisture Preparation 04/17/14 09:51 AM 62986 DS-3 04/10/14 12:30 PM Soil DX30A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 DS-3 04/10/14 12:30 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62981 404133-42A WEB Comp 04/10/14 01:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62981 WEB Comp 04/10/14 01:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/17/14 09:51 AM 62981 WEB Comp 04/10/14 01:00 PM Soil SW5050C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62981 04/13343A WEA Comp 04/10/14 01:30 PM Soil SW5050C Soil Prep Sonication: DRO 04/17/14 09:51 AM 629861 WEA Comp 04/10/14 01:30 PM Soil SW5050C Soil Prep Sonication: D	Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
404133-41ADS-304/10/14 12:30 PMSoilSW9056AAnion Prep04/17/14 09:31 AM62986DS-304/10/14 12:30 PMSoilD2216Moisture Preparation04/17/14 09:51 AM62987DS-304/10/14 12:30 PMSoilSW9050APurge and Trap Soils GC- Gas04/12/14 12:22 PM62867DS-304/10/14 12:30 PMSoilSW9056AAnion Prep04/17/14 09:51 AM62987404133-42AWEB Comp04/10/14 01:00 PMSoilSW9056AAnion Prep04/17/14 09:51 AM62988WEB Comp04/10/14 01:00 PMSoilSW9056AAnion Prep04/17/14 09:51 AM62987WEB Comp04/10/14 01:00 PMSoilSW9056AAnion Prep04/17/14 09:51 AM629881WEB Comp04/10/14 01:00 PMSoilSW950CSoil Prep Solication: DRO04/17/14 09:51 AM629881404133-43AWEA Comp04/10/14 01:30 PMSoilSW350CSoil Prep Solication: DRO04/17/14 09:51 AM629881WEA Comp04/10/14 02:00 PMSoilSW350CSoil Prep Solication: DRO04/17/14 09:51 AM629881WEB Comp04/10/14 02:00 PMSoil	404133-40A	WS-6 (4')	04/10/14 12:00 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 09:33 AM	62865
DS-304/10/14 12:30 PMSoilD2216Moisture Preparation04/17/14 09:51 AM6298DS-304/10/14 12:30 PMSoilSW303APurge and Trap Soils CC-Gas04/12/14 12:22 PM62867DS-304/10/14 12:30 PMSoilSW350CSoil Perp Sonication: DRO04/17/14 09:51 AM6298140133-42AWEB Comp04/10/14 01:00 PMSoilD2216Moisture Preparation04/17/14 09:51 AM62981WEB Comp04/10/14 01:00 PMSoilSW350CSoil Prep Sonication: DRO04/17/14 09:51 AM62981WEB Comp04/10/14 01:00 PMSoilSW350CSoil Prep Sonication: DRO04/17/14 09:51 AM62981WEB Comp04/10/14 01:30 PMSoilSW350CSoil Prep Sonication: DRO04/17/14 09:51 AM62981WEA Comp04/10/14 01:30 PMSoilSW350CSoil Prep Sonication: DRO04/17/14 09:51 AM6298140133-454WEC Comp04/10/14 02:00 PMSoilSW350CSoil Prep Sonication: DRO04/17/14 09:51 AM6298140133-454<		WS-6 (4')	04/10/14 12:00 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:56 AM	62980
DS-3 04/10/14 12:30 PM Soil SW303A Purge and Trap Soils GC-Gas 04/12/14 12:22 PM 62867 DS-3 04/10/14 12:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-42A WEB Comp 04/10/14 01:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WEB Comp 04/10/14 01:00 PM Soil SW5030A Purge and Trap Soils GC-Gas 04/17/14 09:51 AM 62986 WEB Comp 04/10/14 01:00 PM Soil SW5030A Purge and Trap Soils GC-Gas 04/17/14 09:51 AM 62986 404133-43A WEB Comp 04/10/14 01:30 PM Soil SW5050A Anion Prep 04/17/14 09:51 AM 62986 WEA Comp 04/10/14 01:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WEA Comp 04/10/14 01:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62986 WEA Comp 04/10/14 02:00 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 09:51 AM <t< td=""><td>1404133-41A</td><td>DS-3</td><td>04/10/14 12:30 PM</td><td>Soil</td><td>SW9056A</td><td>Anion Prep</td><td>04/17/14 09:31 AM</td><td>62986</td></t<>	1404133-41A	DS-3	04/10/14 12:30 PM	Soil	SW9056A	Anion Prep	04/17/14 09:31 AM	62986
DS-3 04/10/14 12:30 PM Soil SW3550C Soi Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-42A WEB Comp 04/10/14 01:00 PM Soil DS-3 Anion Prep 04/17/14 09:51 AM 62986 WEB Comp 04/10/14 01:00 PM Soil DS216 Moisture Preparation 04/17/14 09:51 AM 62987 WEB Comp 04/10/14 01:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62981 404133-43A WEA Comp 04/10/14 01:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62981 404133-43A WEA Comp 04/10/14 01:30 PM Soil DS3 SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 629861 WEA Comp 04/10/14 01:30 PM Soil DS01 DS12 Moisture Preparation 04/12/14 12:22 PM 628671 WEA Comp 04/10/14 02:00 PM Soil DS01 SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-454 WEC Comp 04/10/14 02:00 PM <		DS-3	04/10/14 12:30 PM	Soil	D2216	Moisture Preparation	04/17/14 09:51 AM	62988
404133-42A WEB Comp 04/10/14 01:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WEB Comp 04/10/14 01:00 PM Soil D2216 Moisture Preparation 04/12/14 12:22 PM 62867 WEB Comp 04/10/14 01:00 PM Soil SW9056A Anion Prep 04/17/14 09:51 AM 62981 404133-43A WEA Comp 04/10/14 01:30 PM Soil SW9056A Anion Prep 04/17/14 09:51 AM 62986 WEA Comp 04/10/14 01:30 PM Soil SW9056A Anion Prep 04/17/14 09:51 AM 62986 WEA Comp 04/10/14 01:30 PM Soil SW9056A Anion Prep 04/17/14 09:51 AM 62986 WEA Comp 04/10/14 01:30 PM Soil SW9056A Anion Prep 04/17/14 09:51 AM 62986 WEA Comp 04/10/14 01:30 PM Soil SW9056A Anion Prep 04/17/14 08:31 AM 62986 WEA Comp 04/10/14 02:00 PM Soil SW9056A Anion Prep 04/17/14 08:31 AM 62986 WEC Comp 04/10/14 02:00 P		DS-3	04/10/14 12:30 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 12:22 PM	62867
WEB Comp 04/10/14 01:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 WEB Comp 04/10/14 01:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WEB Comp 04/10/14 01:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62981 404133-43A WEA Comp 04/10/14 01:30 PM Soil SW3050A Anion Prep 04/17/14 09:51 AM 62986 WEA Comp 04/10/14 01:30 PM Soil SW5050A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WEA Comp 04/10/14 01:30 PM Soil SW5050A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WEA Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62986 WEC Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62986 WEC Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM <t< td=""><td></td><td>DS-3</td><td>04/10/14 12:30 PM</td><td>Soil</td><td>SW3550C</td><td>Soil Prep Sonication: DRO</td><td>04/17/14 08:58 AM</td><td>62981</td></t<>		DS-3	04/10/14 12:30 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:58 AM	62981
WEB Comp 04/10/14 01:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 404133-43A WEA Comp 04/10/14 01:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-43A WEA Comp 04/10/14 01:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WEA Comp 04/10/14 01:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62987 WEA Comp 04/10/14 01:30 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62987 404133-44A WEC Comp 04/10/14 02:00 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62987 404133-45A WEC Comp 04/10/14 02:00 PM Soil D2216 Moisture Preparation 04/10/14 09:51 AM 62987 WEC Comp 04/10/14 02:00 PM Soil SW3030A Purge and Trap Soils GC- Gas 04/12/14 12:32 PM 62867 WED Comp 04/10/14 02:30 PM Soil SW350C Soil	1404133-42A	WEB Comp	04/10/14 01:00 PM	Soil	SW9056A	Anion Prep	04/17/14 09:31 AM	62986
WEB Comp 04/10/14 01:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-43A WEA Comp 04/10/14 01:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62981 WEA Comp 04/10/14 01:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62981 WEA Comp 04/10/14 01:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WEA Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-44A WEC Comp 04/10/14 02:00 PM Soil SW9056A Anion Prep 04/17/14 09:51 AM 62986 WEC Comp 04/10/14 02:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62981 WEC Comp 04/10/14 02:00 PM Soil SW505C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 WED Comp 04/10/14 02:30 PM Soil SW9056A Anion Prep 04/17/14 08:58 AM 62981		WEB Comp	04/10/14 01:00 PM	Soil	D2216	Moisture Preparation	04/17/14 09:51 AM	62988
404133-43A WEA Comp 04/10/14 01:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WEA Comp 04/10/14 01:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WEA Comp 04/10/14 01:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WEA Comp 04/10/14 01:30 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62986 404133-44A WEC Comp 04/10/14 02:00 PM Soil SW9056A Anion Prep 04/17/14 09:51 AM 62986 WEC Comp 04/10/14 02:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WEC Comp 04/10/14 02:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WEC Comp 04/10/14 02:00 PM Soil SW350C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62986 WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WED Comp 04/10/14 02:30 PM Soil SW350C		WEB Comp	04/10/14 01:00 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 12:22 PM	62867
WEA Comp 04/10/14 01:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 WEA Comp 04/10/14 01:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WEA Comp 04/10/14 01:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 404133-44A WEC Comp 04/10/14 02:00 PM Soil SW9056A Anion Prep 04/17/14 09:51 AM 62988 WEC Comp 04/10/14 02:00 PM Soil D2216 Moisture Preparation 04/12/14 12:22 PM 62867 WEC Comp 04/10/14 02:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WEC Comp 04/10/14 02:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WED Comp 04/10/14 02:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62988 WED Comp 04/10/14 02:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867		WEB Comp	04/10/14 01:00 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:58 AM	62981
WEA Comp 04/10/14 01:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 404133-44A WEC Comp 04/10/14 01:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-44A WEC Comp 04/10/14 02:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WEC Comp 04/10/14 02:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WEC Comp 04/10/14 02:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WEC Comp 04/10/14 02:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 02:30 PM 629867 404133-45A WED Comp 04/10/14 02:30 PM Soil SW9056A Anion Prep 04/17/14 09:51 AM 629867 WED Comp 04/10/14 02:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WED Comp 04/10/14 02:30 PM Soil SW5030A Soil Prep Sonication: DRO	1404133-43A	WEA Comp	04/10/14 01:30 PM	Soil	SW9056A	Anion Prep	04/17/14 09:31 AM	62986
WEA Comp 04/10/14 01:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-44A WEC Comp 04/10/14 01:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:31 AM 62986 WEC Comp 04/10/14 02:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WEC Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 WEC Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 WEC Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-45A WED Comp 04/10/14 02:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM <td></td> <td>WEA Comp</td> <td>04/10/14 01:30 PM</td> <td>Soil</td> <td>D2216</td> <td>Moisture Preparation</td> <td>04/17/14 09:51 AM</td> <td>62988</td>		WEA Comp	04/10/14 01:30 PM	Soil	D2216	Moisture Preparation	04/17/14 09:51 AM	62988
404133-44A WEC Comp 04/10/14 02:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WEC Comp 04/10/14 02:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WEC Comp 04/10/14 02:00 PM Soil SW3030A Purge and Trap Soils GC- Gas 04/17/14 09:51 AM 62867 WEC Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62986 404133-45A WED Comp 04/10/14 02:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 404133-45A WED Comp 04/10/14 02:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62986 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-46A CPA Comp 04/10/14 03:00 PM		WEA Comp	04/10/14 01:30 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 12:22 PM	62867
WEC Comp 04/10/14 02:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 WEC Comp 04/10/14 02:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WEC Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62988 404133-45A WED Comp 04/10/14 02:30 PM Soil SW9056A Anion Prep 04/17/14 09:51 AM 62988 WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62981 404133-46A CPA Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-46A CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/1		WEA Comp	04/10/14 01:30 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:58 AM	62981
WEC Comp 04/10/14 02:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WEC Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-45A WED Comp 04/10/14 02:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/12/14 12:22 PM 62867 WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/12/14 12:22 PM 62867 WED Comp 04/10/14 02:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WED Comp 04/10/14 02:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-46A CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM </td <td>1404133-44A</td> <td>WEC Comp</td> <td>04/10/14 02:00 PM</td> <td>Soil</td> <td>SW9056A</td> <td>Anion Prep</td> <td>04/17/14 09:31 AM</td> <td>62986</td>	1404133-44A	WEC Comp	04/10/14 02:00 PM	Soil	SW9056A	Anion Prep	04/17/14 09:31 AM	62986
WEC Comp 04/10/14 02:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-45A WED Comp 04/10/14 02:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62986 WED Comp 04/10/14 02:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-46A CPA Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-46A CPA Comp 04/10/14 03:00 PM Soil SW9056A Anion Prep 04/17/14 08:58 AM 62986 CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/17		WEC Comp	04/10/14 02:00 PM	Soil	D2216	Moisture Preparation	04/17/14 09:51 AM	62988
404133-45A WED Comp 04/10/14 02:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/12/14 12:22 PM 62867 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-46A CPA Comp 04/10/14 03:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 CPA Comp 04/10/14 03:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988		WEC Comp	04/10/14 02:00 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 12:22 PM	62867
WED Comp 04/10/14 02:30 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 WED Comp 04/10/14 02:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-46A CPA Comp 04/10/14 03:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62988 CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 CPA Comp 04/10/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 CPA Comp 04/10/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867		WEC Comp	04/10/14 02:00 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:58 AM	62981
WED Comp 04/10/14 02:30 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-46A CPA Comp 04/10/14 03:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/12/14 12:22 PM 62867 CPA Comp 04/10/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62986 CPA Comp 04/10/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 CPA Comp 04/10/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/12/14 12:22 PM 62867 CPA Comp 04/10/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/12/14 08:58 AM <t< td=""><td>1404133-45A</td><td>WED Comp</td><td>04/10/14 02:30 PM</td><td>Soil</td><td>SW9056A</td><td>Anion Prep</td><td>04/17/14 09:31 AM</td><td>62986</td></t<>	1404133-45A	WED Comp	04/10/14 02:30 PM	Soil	SW9056A	Anion Prep	04/17/14 09:31 AM	62986
WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-46A CPA Comp 04/10/14 03:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 CPA Comp 04/10/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 CPA Comp 04/10/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 09:51 AM 62988 CPA Comp 04/10/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 CPA Comp 04/10/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981		WED Comp	04/10/14 02:30 PM	Soil	D2216	Moisture Preparation	04/17/14 09:51 AM	62988
WED Comp 04/10/14 02:30 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981 404133-46A CPA Comp 04/10/14 03:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 CPA Comp 04/10/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 CPA Comp 04/10/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981		WED Comp	04/10/14 02:30 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 12:22 PM	62867
404133-46A CPA Comp 04/10/14 03:00 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986 CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 CPA Comp 04/10/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 CPA Comp 04/10/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981		WED Comp	04/10/14 02:30 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:58 AM	62981
CPA Comp 04/10/14 03:00 PM Soil D2216 Moisture Preparation 04/17/14 09:51 AM 62988 CPA Comp 04/10/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 CPA Comp 04/10/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981		WED Comp	04/10/14 02:30 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:58 AM	62981
CPA Comp 04/10/14 03:00 PM Soil SW5030A Purge and Trap Soils GC- Gas 04/12/14 12:22 PM 62867 CPA Comp 04/10/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981	1404133-46A	CPA Comp	04/10/14 03:00 PM	Soil	SW9056A	Anion Prep	04/17/14 09:31 AM	62986
CPA Comp 04/10/14 03:00 PM Soil SW3550C Soil Prep Sonication: DRO 04/17/14 08:58 AM 62981		CPA Comp	04/10/14 03:00 PM	Soil	D2216	Moisture Preparation	04/17/14 09:51 AM	62988
		CPA Comp	04/10/14 03:00 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 12:22 PM	62867
404133-47A CPB Comp 04/10/14 03:30 PM Soil SW9056A Anion Prep 04/17/14 09:31 AM 62986		CPA Comp	04/10/14 03:00 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:58 AM	62981
	404133-47A	CPB Comp	04/10/14 03:30 PM	Soil	SW9056A	Anion Prep	04/17/14 09:31 AM	62986

Page 7 of 8

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1404133-47A	CPB Comp	04/10/14 03:30 PM	Soil	D2216	Moisture Preparation	04/17/14 09:51 AM	62988
	CPB Comp	04/10/14 03:30 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 12:22 PM	62867
	CPB Comp	04/10/14 03:30 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:58 AM	62981
1404133-48A	CPC Comp	04/10/14 04:00 PM	Soil	SW9056A	Anion Prep	04/17/14 09:31 AM	62986
	CPC Comp	04/10/14 04:00 PM	Soil	D2216	Moisture Preparation	04/17/14 09:51 AM	62988
	CPC Comp	04/10/14 04:00 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 12:22 PM	62867
	CPC Comp	04/10/14 04:00 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:58 AM	62981
1404133-49A	CPD Comp	04/10/14 04:30 PM	Soil	SW9056A	Anion Prep	04/17/14 09:31 AM	62986
	CPD Comp	04/10/14 04:30 PM	Soil	D2216	Moisture Preparation	04/17/14 09:51 AM	62988
	CPD Comp	04/10/14 04:30 PM	Soil	SW5030A	Purge and Trap Soils GC- Gas	04/12/14 12:22 PM	62867
	CPD Comp	04/10/14 04:30 PM	Soil	SW3550C	Soil Prep Sonication: DRO	04/17/14 08:58 AM	62981
1404133-50A	MW-1	04/10/14 05:00 PM	Aqueous	SW5030C	Purge and Trap Water GC	04/14/14 03:07 PM	62916
1404133-50B	MW-1	04/10/14 05:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	04/16/14 08:13 AM	62921
	MW-1	04/10/14 05:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	04/16/14 08:13 AM	62921
1404133-50C	MW-1	04/10/14 05:00 PM	Aqueous	M2320 B	Alkalinity Preparation	04/15/14 12:52 PM	62937
	MW-1	04/10/14 05:00 PM	Aqueous	E300	Anion Preparation	04/11/14 04:06 PM	62862
	MW-1	04/10/14 05:00 PM	Aqueous	E300	Anion Preparation	04/11/14 04:06 PM	62862
	MW-1	04/10/14 05:00 PM	Aqueous	E300	Anion Preparation	04/11/14 04:06 PM	62862
	MW-1	04/10/14 05:00 PM	Aqueous	M2540C	TDS Preparation	04/15/14 08:49 PM	62872
404133-51A	Trip	04/10/14	Trip Blank	SW5030C	Purge and Trap Water GC	04/14/14 03:07 PM	62916

Client: Larson & Associates

Project: Legacy Pit

ANALYTICAL DATES REPORT

NP Soil D2216 Percent Moisture 6270 1 04/17/14 01:06 PM PMOIST_140416C SPB Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 01:40 PM GC15_140417B SPB Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 10:59 AM GCC15_140417B SPB Comp Soil M8015D TPH Extractable by GC - Soil 62861 1 04/11/14 07:58 PM GCC15_140417B 1404133-02A WPE Comp Soil SW9056A Anions by IC method - Soil 62970 1 04/15/14 01:48 PM IC2_140415A WPE Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/15/14 01:40 SAM GC15_140417B WPE Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 10:50 AM GC15_140417B WPE Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 10:50 AM GC15_140417B WPA Comp Soil M8015D </th <th>Sample ID</th> <th>Client Sample ID</th> <th>Matrix</th> <th>Test Number</th> <th>Test Name</th> <th>Batch ID</th> <th>Dilution</th> <th>Analysis Date</th> <th>Run ID</th>	Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
SPB CompSoilM8015DTPH Extractable by GC - Soil62949104/17/14 04:40 PMGC L15_140417BSPB CompSoilM8015DTPH Extractable by GC - Soil629491004/18/14 10.59 AMGC L1_140417BM8015DSPB CompSoilM8015VTPH Purgable by GC - Soil62861104/17/14 01:65 PMGC L1_140417A1404133-02AWPE CompSoilSW956AAnions by IC method - Soil629311004/17/14 01:65 PMPMOIST_140416CWPE CompSoilM8015DTPH Extractable by GC - Soil62949104/17/14 01:65 PMPMOIST_140416CWPE CompSoilM8015DTPH Extractable by GC - Soil629491004/18/14 10:50 AMGC L1_640417BWPE CompSoilM8015DTPH Extractable by GC - Soil629491004/18/14 10:50 AMGC L1_640417B1404133-03AWPA CompSoilM8015DTPH Extractable by GC - Soil629311004/18/14 10:50 AMGC L1_64047B1404133-03AWPA CompSoilM8015DTPH Extractable by GC - Soil629311004/18/14 10:60 PMPMOIST_140416CWPA CompSoilM8015DTPH Extractable by GC - Soil629491004/18/14 10:40 PMGC L1_64047B1404133-03AKPA CompSoilM8015DTPH Extractable by GC - Soil629491004/18/14 10:40 PMGC L1_64047B1404133-04ASPA CompSoilM8015DTPH Extractable by GC - Soil629491004/18/14 0:	1404133-01A	SPB Comp	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 12:49 PM	IC2_140415A
SPB Cump Soil M8015D TPII Extractable by GC - Soil 62949 10 04/18/14 10.59 AM GCL5_140417B 1404133-02A WPE Comp Soil M8015V TPI Purgeable by GC - Soil 62861 1 04/11/14 07.58 PM GC4_14011A 1404133-02A WPE Comp Soil D216 Percent Moisture 62970 1 04/17/14 01.06 PM PMOST_14014E WPE Comp Soil M8015D TPI Extractable by GC - Soil 62949 10 04/17/14 01.22 PM GC15_140417B WPE Comp Soil M8015D TPI Extractable by GC - Soil 62949 10 04/18/14 10.50 AM GC15_140417B 1404133-03A WPE Comp Soil M8015D TPI Extractable by GC - Soil 62849 10 04/18/14 0.50 AM GC15_140417B 1404133-03A WPA Comp Soil SW9056A Anions by IC method - Soil 62949 10 04/18/14 0.50 AM GC15_140417B 1404133-03A WPA Comp Soil M8015D TPI Extractable by GC - Soil 62949 1 04/17/14 0.60 PM		SPB Comp	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
NP Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/11/14 07:58 PM GC4_140411A 1404133-02A WPE Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 01:48 PM IC2_140415A WPE Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:60 PM PMOIST_140416C WPE Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 10:50 AM GC1_140417B WPE Comp Soil M8015V TPH Purgeable by GC - Soil 62841 1 04/17/14 01:60 PM PMOIST_140416C WPE Comp Soil M8015D TPH Purgeable by GC - Soil 62841 1 04/17/14 04:80 PM PGC1_140417A 1404133-03A WPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 04:49 PM GC1_140417A 1404133-04A SPA Comp Soil M8015D TPH Purgeable by GC - Soil 62849 10 04/18/14 10:80 AM GC1_5_140417B 14041133-05A		SPB Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 04:40 PM	GC15_140417B
1404133-02A WPE Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 01:48 PM IC2_140415A WPE Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPE Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 04:22 PM GC15_140417B WPE Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 04:52 PM GC4_140411A 1404133-03A WPE Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/17/14 04:20 PM GC15_140417B 1404133-03A WPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 04:49 PM GC15_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 04:49 PM GC15_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 04:49 PM GC15_140417B WPA Comp Soil M8015D TPH Purgeable by GC - Soil 62861 1 </td <td></td> <td>SPB Comp</td> <td>Soil</td> <td>M8015D</td> <td>TPH Extractable by GC - Soil</td> <td>62949</td> <td>10</td> <td>04/18/14 10:59 AM</td> <td>GC15_140417B</td>		SPB Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	10	04/18/14 10:59 AM	GC15_140417B
WPE Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPE Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:22 PM GC15_140417B WPE Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 10:50 AM GC15_140417B WPE Comp Soil M8015V TPH Extractable by GC - Soil 62861 1 04/17/14 04:20 PM GC15_140417B WPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/17/14 01:06 PM PMOIST_140416C WPA Comp Soil M8015D TPH Extractable by GC - Soil 62930 1 04/17/14 01:06 PM PMOIST_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 01:06 PM GC15_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 01:06 PM GC15_140417B WPA Comp Soil M8015D TPH		SPB Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/11/14 07:58 PM	GC4_140411A
WPE Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04.22 PM GC15_14017B WPE Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 10.50 AM GC15_14017B WPE Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/17/14 04.22 PM GC4_140411A 1404133-03A WPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 02.02 PM HC2_140415A WPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01.06 PM PMOIST_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 1.08 AM GC15_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 1.08 AM GC15_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62941 0 04/18/14 0.10 M HC2_140415A 1404133-054 SPA Comp Soil </td <td>1404133-02A</td> <td>WPE Comp</td> <td>Soil</td> <td>SW9056A</td> <td>Anions by IC method - Soil</td> <td>62931</td> <td>10</td> <td>04/15/14 01:48 PM</td> <td>IC2_140415A</td>	1404133-02A	WPE Comp	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 01:48 PM	IC2_140415A
WPE Comp Soil M8015D TPII Extractable by GC - Soil 62949 10 04/18/14 10:50 AM GC15_1404178 WPE Comp Soil M8015V TPII Purgeable by GC - Soil 62861 1 04/11/14 08:22 PM GC4_140411A 1404133-03A WPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 02:02 PM IC2_140415A WPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPA Comp Soil M8015D TPII Extractable by GC - Soil 62949 10 04/17/14 04:49 PM GC15_140417B WPA Comp Soil M8015D TPII Extractable by GC - Soil 62949 10 04/17/14 04:49 PM GC15_140417B WPA Comp Soil M8015D TPII Extractable by GC - Soil 62949 10 04/17/14 04:49 PM GC4_140411A 1404133-04A SPA Comp Soil SW9056A Anions by IC method - Soil 62910 0 04/17/14 01:06 PM PMOIST_140415P 1404133-05A		WPE Comp	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
WPE Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/11/14 08:22 PM GC4_14011A 1404133-03A WPA Comp Soil SW905A Anions by IC method - Soil 62931 10 04/15/14 02:02 PM IC2_140415A WPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 01:49 PM GC15_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 01:49 PM GC15_140417B 1404133-04A SPA Comp Soil M8015D TPH Extractable by GC - Soil 62861 1 04/17/14 01:60 PM PMOIST_140415A 1404133-04A SPA Comp Soil M8015D TPH Extractable by GC - Soil 6291 0 04/17/14 01:60 PM PMOIST_140416A 1404133-05A SPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 01:60 PM PMOIST_140417B </td <td></td> <td>WPE Comp</td> <td>Soil</td> <td>M8015D</td> <td>TPH Extractable by GC - Soil</td> <td>62949</td> <td>1</td> <td>04/17/14 04:22 PM</td> <td>GC15_140417B</td>		WPE Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 04:22 PM	GC15_140417B
1404133-03A WPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 02:02 PM IC2_140415A WPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:49 PM GC15_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 11:08 AM GC15_140417B WPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/11/14 08:46 PM GC4_140411A 1404133-04A SPA Comp Soil D2216 Percent Moisture 62970 1 04/15/14 04:11 PM IC2_140415A 1404133-04A SPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_14041C 1404133-05A NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 05:25 PM GC15_140417B 1404133-05A NPA Comp Soil M8015D TPH Extractable by GC - Soil<		WPE Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	10	04/18/14 10:50 AM	GC15_140417B
WPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOR_140416C WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:49 PM GC15_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 11:08 AM GC15_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62861 1 04/17/14 04:49 PM GC4_140411A 1404133-04A SPA Comp Soil SW956A Anions by IC method - Soil 62931 10 04/17/14 01:06 PM PMOIST_140416C SPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140417B SPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 01:06 PM PMOIST_140416C SPA Comp Soil M8015D TPH Extractable by GC - Soil 62861 1 04/17/14 01:06 PM PMOIST_140417B 1404133-05A NPA Comp Soil<		WPE Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/11/14 08:22 PM	GC4_140411A
WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:49 PM GC15_140417B WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 11:08 AM GC15_140417B 1404133-04A SPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/17/14 04:49 PM GC4_140411A 1404133-04A SPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/17/14 01:06 PM PMOIST_140415A 1404133-04A SPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140415A SPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 01:06 PM PMOIST_140416A 1404133-05A NPA Comp Soil M8015D TPH Purgeable by GC - Soil 62861 1 04/17/14 01:06 PM PMOIST_140416A 1404133-05A NPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM	1404133-03A	WPA Comp	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 02:02 PM	IC2_140415A
WPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/18/14 11:08 AM GC 15_10417B 1404133-04A SPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/11/14 08:46 PM GC4_140411A 1404133-04A SPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/17/14 01:06 PM PMOIST_140415A SPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C SPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 05:25 PM GC15_140417B SPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/17/14 05:25 PM GC15_140417B 1404133-05A NPA Comp Soil M8015D TPH Purgeable by GC - Soil 62931 10 04/17/14 05:25 PM GC15_140417B 1404133-05A NPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C		WPA Comp	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
WPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/11/14 08:46 PM GC4_140411A 1404133-04A SPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 04:11 PM IC2_140415A SPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C SPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 01:06 PM PMOIST_140416C SPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/17/14 01:06 PM PMOIST_140417B 1404133-05A NPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/17/14 01:06 PM PMOIST_140417A 1404133-05A NPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140417B NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 10:41 AM GC15_140417B NPA Com		WPA Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 04:49 PM	GC15_140417B
1404133-04A SPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 04:11 PM IC2_140415A SPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C SPA Comp Soil M8015D TPH Extractable by GC - Soil 62970 10 04/17/14 01:26 PM GC15_140417B SPA Comp Soil M8015D TPH Extractable by GC - Soil 62861 1 04/17/14 01:26 PM GC4_140411A 1404133-05A NPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 04:26 PM IC2_140415A 1404133-05A NPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C NPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 10:41 AM GC15_140417B NPA Comp		WPA Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	10	04/18/14 11:08 AM	GC15_140417B
SPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C SPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 01:06 PM GC15_140417B SPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/17/14 01:06 PM GC4_140411A 1404133-05A NPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/17/14 01:06 PM PMOIST_140416C NPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C NPA Comp Soil M8015D TPH Extractable by GC - Soil 62970 1 04/17/14 01:06 PM PMOIST_140416C NPA Comp Soil M8015D TPH Extractable by GC - Soil 62970 1 04/17/14 01:06 PM PMOIST_140416C NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 10:41 AM GC15_140417B 1404133-06A WPD Comp Soil<		WPA Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/11/14 08:46 PM	GC4_140411A
SPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 10 04/17/14 05:25 PM GC15_140417B SPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/17/14 05:25 PM GC4_140411A 1404133-05A NPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/17/14 04:26 PM IC2_140415A 1404133-05A NPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 04:31 PM GC15_140417B NPA Comp Soil M8015D TPH Extractable by GC - Soil 62970 1 04/17/14 04:31 PM GC15_140417B NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:31 PM GC15_140417B NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 10:41 AM GC15_140417B NPA Comp Soil M8015D TPH Purgeable by GC - Soil 62861 1 04/17/14 01:35 PM GC4_140411A 1404133-06A WPD	1404133-04A	SPA Comp	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 04:11 PM	IC2_140415A
SPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/11/14 09:11 PM GC4_140411A 1404133-05A NPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 04:26 PM IC2_140415A NPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:31 PM GC15_140417B NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 10:41 AM GC15_140417B NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 10:41 AM GC15_140417B NPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/17/14 09:35 PM GC4_140411A 1404133-06A WPD Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/17/14 09:35 PM GC4_140411A 1404133-06A WPD		SPA Comp	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
1404133-05A NPA Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 04:26 PM IC2_140415A NPA Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:31 PM GC15_140417B NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 10:41 AM GC15_140417B NPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/17/14 09:35 PM GC4_140411A 1404133-06A WPD Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 04:41 PM IC2_140415A 1404133-06A WPD Comp Soil D2216 Percent Moisture 62970 1 04/17/14 04:51 PM MC2_140415A WPD Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPD Comp <td< td=""><td></td><td>SPA Comp</td><td>Soil</td><td>M8015D</td><td>TPH Extractable by GC - Soil</td><td>62949</td><td>10</td><td>04/17/14 05:25 PM</td><td>GC15_140417B</td></td<>		SPA Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	10	04/17/14 05:25 PM	GC15_140417B
NPA CompSoilD2216Percent Moisture62970104/17/14 01:06 PMPMOIST_140416CNPA CompSoilM8015DTPH Extractable by GC - Soil62949104/17/14 04:31 PMGC15_140417BNPA CompSoilM8015DTPH Extractable by GC - Soil62949504/18/14 10:41 AMGC15_140417BNPA CompSoilM8015DTPH Extractable by GC - Soil62861104/11/14 09:35 PMGC4_140411A1404133-06AWPD CompSoilSW9056AAnions by IC method - Soil629311004/15/14 04:41 PMIC2_140415AWPD CompSoilD2216Percent Moisture62970104/17/14 01:06 PMPMOIST_140416CWPD CompSoilM8015DTPH Extractable by GC - Soil62949104/17/14 01:06 PMPMOIST_140416CWPD CompSoilD2216Percent Moisture62970104/17/14 01:06 PMPMOIST_140416CWPD CompSoilM8015DTPH Extractable by GC - Soil62949104/17/14 04:58 PMGC15_140417B		SPA Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/11/14 09:11 PM	GC4_140411A
NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:31 PM GC15_140417B NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 10:41 AM GC15_140417B NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 10:41 AM GC15_140417B NPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/17/14 09:35 PM GC4_140411A 1404133-06A WPD Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 04:41 PM IC2_140415A WPD Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPD Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 01:06 PM PMOIST_140416C WPD Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:58 PM GC15_140417B	1404133-05A	NPA Comp	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 04:26 PM	IC2_140415A
NPA Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 10:41 AM GC15_140417B NPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/11/14 09:35 PM GC4_140411A 1404133-06A WPD Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 04:41 PM IC2_140415A WPD Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPD Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:58 PM GC15_140417B		NPA Comp	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
NPA Comp Soil M8015V TPH Purgeable by GC - Soil 62861 1 04/11/14 09:35 PM GC4_140411A 1404133-06A WPD Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 04:41 PM IC2_140415A WPD Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPD Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:58 PM GC15_140417B		NPA Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 04:31 PM	GC15_140417B
1404133-06A WPD Comp Soil SW9056A Anions by IC method - Soil 62931 10 04/15/14 04:41 PM IC2_140415A WPD Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPD Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:58 PM GC15_140417B		NPA Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	5	04/18/14 10:41 AM	GC15_140417B
WPD Comp Soil D2216 Percent Moisture 62970 1 04/17/14 01:06 PM PMOIST_140416C WPD Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:58 PM GC15_140417B		NPA Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/11/14 09:35 PM	GC4_140411A
WPD Comp Soil M8015D TPH Extractable by GC - Soil 62949 1 04/17/14 04:58 PM GC15_140417B	1404133-06A	WPD Comp	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 04:41 PM	IC2_140415A
		WPD Comp	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
WPD Comp Soil M8015D TPH Extractable by GC - Soil 62949 5 04/18/14 11:17 AM GC15_140417B		WPD Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 04:58 PM	GC15_140417B
		WPD Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	5	04/18/14 11:17 AM	GC15_140417B

Page 1 of 8

Client: Larson & Associates

Project: Legacy Pit

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1404133-06A	WPD Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/11/14 09:59 PM	GC4_140411A
1404133-07A	WPB Comp	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 02:51 PM	IC2_140415A
	WPB Comp	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	WPB Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	10	04/17/14 05:07 PM	GC15_140417B
	WPB Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/11/14 10:24 PM	GC4_140411A
1404133-08A	WPC Comp	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 03:06 PM	IC2_140415A
	WPC Comp	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	WPC Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	10	04/17/14 05:16 PM	GC15_140417B
	WPC Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/11/14 10:48 PM	GC4_140411A
1404133-09A	NPB Comp	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 03:20 PM	IC2_140415A
	NPB Comp	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	NPB Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 04:04 PM	GC15_140417B
	NPB Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	5	04/18/14 10:32 AM	GC15_140417B
	NPB Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/11/14 11:12 PM	GC4_140411A
1404133-10A	NPC Comp	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 04:55 PM	IC2_140415A
	NPC Comp	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	NPC Comp	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 04:13 PM	GC15_140417B
	NPC Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/11/14 11:37 PM	GC4_140411A
1404133-11A	ES-2	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 05:10 PM	IC2_140415A
	ES-2	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	ES-2	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 01:27 PM	GC15_140417B
	ES-2	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/12/14 01:39 AM	GC4_140411A
1404133-12A	ES-9	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 05:24 PM	IC2_140415A
	ES-9	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	ES-9	Soil	M8015D	TPH Extractable by GC - Soil	62949	10	04/18/14 10:23 AM	GC15_140417B
	ES-9	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 02:39 PM	GC15_140417B
	ES-9	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/12/14 02:03 AM	GC4_140411A
1404133-13A	ES-10	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 05:39 PM	IC2_140415A

Page 2 of 8

Client: Larson & Associates

Project: Legacy Pit

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1404133-13A	ES-10	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	ES-10	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 02:30 PM	GC15_140417B
	ES-10	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/12/14 02:28 AM	GC4_140411A
1404133-14A	ES-1	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 05:53 PM	IC2_140415A
	ES-1	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	ES-1	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 02:48 PM	GC15_140417B
	ES-1	Soil	M8015D	TPH Extractable by GC - Soil	62949	5	04/18/14 10:14 AM	GC15_140417B
	ES-1	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/12/14 02:52 AM	GC4_140411A
1404133-15A	ES-3	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 06:08 PM	IC2_140415A
	ES-3	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	ES-3	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 01:36 PM	GC15_140417B
	ES-3	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/12/14 03:16 AM	GC4_140411A
1404133-16A	ES-4	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 06:23 PM	IC2_140415A
	ES-4	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	ES-4	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 01:45 PM	GC15_140417B
	ES-4	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/12/14 03:41 AM	GC4_140411A
1404133-17A	ES-5	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 06:52 PM	IC2_140415A
	ES-5	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	ES-5	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 01:54 PM	GC15_140417B
	ES-5	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/12/14 04:05 AM	GC4_140411A
1404133-18A	ES-7	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 07:06 PM	IC2_140415A
	ES-7	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	ES-7	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 02:21 PM	GC15_140417B
	ES-7	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/12/14 04:30 AM	GC4_140411A
1404133-19A	ES-6	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 07:21 PM	IC2_140415A
	ES-6	Soil	D2216	Percent Moisture	62970	1	04/17/14 01:06 PM	PMOIST_140416C
	ES-6	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 02:03 PM	GC15_140417B
	ES-6	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/12/14 04:54 AM	GC4_140411A

Page 3 of 8

Client: Larson & Associates

Project: Legacy Pit

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1404133-20A	ES-8	Soil	SW9056A	Anions by IC method - Soil	62931	10	04/15/14 07:35 PM	IC2_140415A
	ES-8	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	ES-8	Soil	M8015D	TPH Extractable by GC - Soil	62949	1	04/17/14 02:12 PM	GC15_140417B
	ES-8	Soil	M8015V	TPH Purgeable by GC - Soil	62861	1	04/12/14 05:18 AM	GC4_140411A
1404133-21A	DS-5	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 01:22 PM	IC2_140416B
	DS-5	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	DS-5	Soil	M8015D	TPH Extractable by GC - Soil	62980	1	04/18/14 01:08 PM	GC15_140418A
	DS-5	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 01:30 PM	GC4_140412A
1404133-22A	DS-4	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 01:46 PM	IC2_140416B
	DS-4	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	DS-4	Soil	M8015D	TPH Extractable by GC - Soil	62980	1	04/18/14 01:17 PM	GC15_140418A
	DS-4	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 01:55 PM	GC4_140412A
1404133-23A	EEB Comp	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 02:01 PM	IC2_140416B
	EEB Comp	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	EEB Comp	Soil	M8015D	TPH Extractable by GC - Soil	62980	1	04/18/14 01:26 PM	GC15_140418A
	EEB Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 02:19 PM	GC4_140412A
1404133-24A	EEC Comp	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 02:15 PM	IC2_140416B
	EEC Comp	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	EEC Comp	Soil	M8015D	TPH Extractable by GC - Soil	62980	1	04/18/14 01:53 PM	GC15_140418A
	EEC Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 02:46 PM	GC4_140412A
1404133-25A	EEA Comp	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 02:30 PM	IC2_140416B
	EEA Comp	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	EEA Comp	Soil	M8015D	TPH Extractable by GC - Soil	62980	1	04/18/14 02:05 PM	GC15_140418A
	EEA Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 03:10 PM	GC4_140412A
1404133-26A	WS-13 (5')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 02:44 PM	IC2_140416B
	WS-13 (5')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	WS-13 (5')	Soil	M8015D	TPH Extractable by GC - Soil	62980	1	04/18/14 02:14 PM	GC15_140418A
	WS-13 (5')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 03:35 PM	GC4_140412A

Page 4 of 8

Client: Larson & Associates

Project: Legacy Pit

ANALYTICAL DATES REPORT

WS-12 (2) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-12 (2) Soil M8015D TPH Extractable by GC - Soil 62980 10 04/17/14 01:15 PM GC15_140418A WS-12 (2) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/17/14 01:15 PM GC4_140412A 1404133-30A WS-11 (6) Soil SW9056A Anions by IC method - Soil 62921 10 04/17/14 01:15 PM PMOIST_140416D WS-11 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-11 (6) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/17/14 01:15 PM GC4_140412A 1404133-31A WS-10 (6) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/17/14 01:15 PM PMOIST_140416B WS-10 (6) Soil M8015D TPH Extractable by GC - Soil 62962 10 04/16/14 04:32 PM GC15_140418A 1404133-32A	Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
WS-1 (4') Soil M8015D TPH Extractable by GC - Soil 62980 1 04/18/14 01:35 PM GC 1:140418A WS-1 (4') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 03:59 PM GC 1:140412A 1404133-28A WS-2 (6') Soil M8015D TPE Extractable by GC - Soil 62962 10 04/16/14 03:14 PM ICC_140416A WS-2 (6') Soil M8015D TPE Extractable by GC - Soil 62960 1 04/16/14 04:22 PM GC 1:140418A WS-2 (6') Soil M8015D TPE Extractable by GC - Soil 62865 1 04/16/14 04:23 PM GC 1:140418A 1404133-29A WS-12 (2) Soil M8015V TPI Purgeable by GC - Soil 62962 10 04/16/14 03:34 PM ICC_140416A WS-12 (2) Soil M8015V TPI Purgeable by GC - Soil 62962 10 04/16/14 03:43 PM ICC_140418A 1404133-304 WS-11 (6) Soil M8015V TPI Purgeable by GC - Soil 62962 10 04/16/14 03:43 PM ICC_140416A <	1404133-27A	WS-1 (4')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 02:59 PM	IC2_140416B
WS-1 (4) Soil M8015V TPII Purgeable by GC - Soil 62655 1 04/12/14 03-59 PM GCG-140412A 1404133-28A WS-2 (6) Soil D216 Percent Moisture 63971 1 04/17/14 01:5 PM PMOIST_140416D WS-2 (6) Soil M8015D TPII Extractable by GC - Soil 62980 1 04/17/14 01:5 PM PMOIST_140416D WS-2 (6) Soil M8015D TPII Extractable by GC - Soil 62980 1 04/17/14 01:5 PM PGC414012A 1404133-29A WS-12 (2) Soil M8015D TPII Extractable by GC - Soil 62980 10 04/16/14 03.28 PM ICC_140412A 1404133-29A WS-12 (2) Soil D216 Percent Moisture 62971 1 04/17/14 01:5 PM PMOIST_140416D WS-12 (2) Soil M8015V TPI Purgeable by GC - Soil 62980 10 04/18/14 03:1 PM GCC1_140412A 1404133-30A WS-11 (6) Soil D216 Percent Moisture 62971 1 04/16/14 03:43 PM ICC_140416B		WS-1 (4')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
1404133-28A WS-2 (6) Soil SW056A Anions by IC method - Soil 62962 10 04/16/14 03:14 PM IC2_140416B WS-2 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-2 (6) Soil M8015D TPH Extractable by GC - Soil 62980 1 04/17/14 01:23 PM GCC1_140412A 1404133-29A WS-12 (2) Soil SW056A Anions by IC method - Soil 62962 10 04/16/14 03:28 PM IC2_140416B WS-12 (2) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-12 (2) Soil M8015D TPH Extractable by GC - Soil 62865 1 04/16/14 03:34 PM IC2_140416B WS-12 (2) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/16/14 03:34 PM IC2_140416B WS-11 (6) Soil D2216 Percent Moisture 62971 1 04/16/14 03:34 PM IC2_140416B WS-11 (6) Soil D216 Percent Moisture 62971 1 04/16/14 03:17 PM OC15_140		WS-1 (4')	Soil	M8015D	TPH Extractable by GC - Soil	62980	1	04/18/14 01:35 PM	GC15_140418A
WS-2 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMDT_1401B0 WS-2 (6) Soil M8015D TPH Extractable by GC - Soil 62980 1 04/17/14 01:15 PM GC15_140418A WS-2 (6) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/17/14 04:23 PM GC4_140412A 1404133-29A WS-12 (2) Soil SW0966A Anions by IC method - Soil 62962 10 04/16/14 03:28 PM IC2_140416B WS-12 (2) Soil MS015V TPH Purgeable by GC - Soil 62980 10 04/16/14 03:43 PM ICC_140416D WS-12 (2) Soil MS015V TPH purgeable by GC - Soil 62980 10 04/12/14 04:48 PM GCC4_140412A 1404133-30A WS-11 (6) Soil D2216 Percent Moisture 62971 1 04/12/14 01:15 PM PMOIST_140416D WS-11 (6) Soil MS015D TPH Extractable by GC - Soil 62980 10 04/17/14 01:15 PM PMOIST_140416D WS-10 (6) Soil		WS-1 (4')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 03:59 PM	GC4_140412A
WS-2 (6) Soil M8015D TPH Extractable by GC - Soil 62980 1 04/18/14 04:02 PM GC15/140118A 1404133-29A WS-2 (6) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 04:23 PM GC4_140412A 1404133-29A WS-12 (2) Soil D2216 Percent Moisture 62971 1 04/16/14 03.28 PM IC2_140416B WS-12 (2) Soil M8015D TPH Extractable by GC - Soil 62962 10 04/16/14 043.28 PM GC4_140412A WS-12 (2) Soil M8015D TPH Extractable by GC - Soil 62962 10 04/16/14 043.49 PM GC4_140418A 1404133-30A WS-11 (6) Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 043.49 PM GC1_140418A 1404133-310 WS-11 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-11 (6) Soil M8015D TPH Extractable by GC - Soil 62865 1 04/17/14 01:15 PM PMOIST_140416D	1404133-28A	WS-2 (6')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 03:14 PM	IC2_140416B
WS-2 (c) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 04:23 PM GC4_14012A 1404133-29A WS-12 (2) Soil DSU05A Anions by IC method - Soil 62962 10 04/16/14 03:28 PM IC2_140416B WS-12 (2) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-12 (2) Soil M8015D TPH Extractable by GC - Soil 62980 10 04/18/14 04:11 PM GC4_140412A 1404133-30A WS-11 (6) Soil SW9056A Anions by IC method - Soil 62962 10 04/18/14 04:15 PM PMOIST_140416B WS-11 (6) Soil D2016 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416B WS-11 (6) Soil M8015D TPH Extractable by GC - Soil 62865 1 04/12/14 05:12 PM GC4_140412A 1404133-31A WS-10 (6) Soil M8015D TPH Extractable by GC - Soil 62865 1 04/12/14 05:12 PM GC4_140412A 14041		WS-2 (6')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
1404133-29A WS-12 (2) Soil SW9056A Anions by IC method - Soil 62962 10 0/4/16/14 03:28 PM IC2_140416B WS-12 (2) Soil D2216 Percent Moisture 62971 1 0/4/17/14 01:15 PM PMOIST_140416D WS-12 (2) Soil M8015D TPH Extractable by GC - Soil 62980 10 0/4/18/14 04:11 PM GC1_140418A WS-12 (2) Soil M8015V TPH Purgeable by GC - Soil 62865 1 0/4/12/14 04:48 PM GC4_140412A 1404133-30A WS-11 (6) Soil SW9056A Anions by IC method - Soil 62962 10 0/4/16/14 03:43 PM IC2_140416B WS-11 (6) Soil D2216 Percent Moisture 62971 1 0/4/17/14 01:51 PM PMOIST_140416B WS-11 (6) Soil M8015D TPH Extractable by GC - Soil 62865 1 0/4/18/14 03:12 PM IC2_140416A 1404133-31A WS-10 (6) Soil M8015D TPH Extractable by GC - Soil 62962 10 0/4/16/14 04:32 PM IC2_140416A 1404133-31A WS-10 (6) Soil M8015D TPH Extractable by GC - Soil		WS-2 (6')	Soil	M8015D	TPH Extractable by GC - Soil	62980	1	04/18/14 04:02 PM	GC15_140418A
WS-12 (2) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-12 (2) Soil M8015D TPH Extractable by GC - Soil 62980 10 04/17/14 01:15 PM GC15_140418A WS-12 (2) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 04:48 PM GC4_140412A 1404133-30A WS-11 (6) Soil SW9056A Anions by IC method - Soil 62921 10 04/17/14 01:15 PM PMOIST_140416D WS-11 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-11 (6) Soil M8015V TPH Purgeable by GC - Soil 62980 10 04/18/14 03:17 PM GC15_140418A 1404133-31A WS-10 (6) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/16/14 04:32 PM IC2_140416B WS-10 (6) Soil M8015D TPH Extractable by GC - Soil 62962 10 04/16/14 04:42 PM GC15_140418A 1404133-32A K		WS-2 (6')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 04:23 PM	GC4_140412A
WS-12 (2) Soil M8015D TPH Extractable by GC - Soil 62980 10 04/18/14 04:11 PM GC15_140418A WS-12 (2) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 04:48 PM GC4_140412A 1404133-30A WS-11 (6) Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 03:43 PM IC2_140416B WS-11 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-11 (6) Soil M8015D TPH Extractable by GC - Soil 62980 10 04/18/14 03:17 PM GC15_140418A WS-11 (6) Soil M8015D TPH Extractable by GC - Soil 62865 1 04/12/14 05:12 PM GC4_140412A 1404133-31A WS-10 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416B WS-10 (6) Soil M8015D TPH Extractable by GC - Soil 62865 1 04/18/14 04:46 PM IC2_140416B WS+3 (6) Soil<	1404133-29A	WS-12 (2')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 03:28 PM	IC2_140416B
WS-12 (2) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 04:48 PM GC4_14012A 1404133-30A WS-11 (6) Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 03:43 PM IC2_140416B WS-11 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-11 (6) Soil M8015D TPH Extractable by GC - Soil 62980 10 04/18/14 03:17 PM GC15_140418A WS-11 (6) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 05:12 PM GC4_140412A 1404133-31A WS-10 (6) Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 04:32 PM IC2_140416B WS-10 (6) Soil M2015D TPH Extractable by GC - Soil 62980 1 04/17/14 01:15 PM PMOIST_140416B WS-10 (6) Soil M8015D TPH Extractable by GC - Soil 62980 1 04/16/14 04:46 PM IC2_140416B WS-8 (6) <		WS-12 (2')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
1404133-30A WS-11 (6) Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 03:43 PM IC2_140416B WS-11 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-11 (6) Soil M8015D TPH Extractable by GC - Soil 62980 10 04/18/14 03:17 PM GC15_140418A WS-11 (6) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 05:12 PM GC4_140412A 1404133-31A WS-10 (6) Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 04:32 PM IC2_140416B WS-10 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-10 (6) Soil D2216 Percent Moisture 62980 1 04/18/14 01:44 PM GC15_140418A WS-10 (6) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/17/14 01:15 PM PMOIST_140416B WS-8 (6) Soil M8015D TPH Extractable by GC - Soil 62865 1 04/16/14 04:46 PM <td></td> <td>WS-12 (2')</td> <td>Soil</td> <td>M8015D</td> <td>TPH Extractable by GC - Soil</td> <td>62980</td> <td>10</td> <td>04/18/14 04:11 PM</td> <td>GC15_140418A</td>		WS-12 (2')	Soil	M8015D	TPH Extractable by GC - Soil	62980	10	04/18/14 04:11 PM	GC15_140418A
WS-11 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOET_140416D WS-11 (6) Soil M8015D TPH Extractable by GC - Soil 62980 10 04/18/14 03:17 PM GC15_140418A WS-11 (6) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 05:12 PM GC4_140412A 1404133-31A WS-10 (6) Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 04:32 PM IC2_140416B WS-10 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-10 (6) Soil M8015D TPH Extractable by GC - Soil 62980 1 04/17/14 01:15 PM PMOIST_140416D WS-10 (6) Soil M8015D TPH Purgeable by GC - Soil 62980 1 04/18/14 01:4 PM GC1_140412A 1404133-32A WS-8 (6) Soil M8015D TPH Purgeable by GC - Soil 62962 10 04/16/14 04:46 PM IC2_140416B WS-8 (6) Soil		WS-12 (2')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 04:48 PM	GC4_140412A
WS-11 (6') Soil M8015D TPH Extractable by GC - Soil 62980 10 04/18/14 03:17 PM GC15_10418A WS-11 (6') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 05:12 PM GC4_140412A 1404133-31A WS-10 (6') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 04:32 PM IC2_140416B WS-10 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-10 (6') Soil M8015V TPH Purgeable by GC - Soil 62980 1 04/18/14 01:44 PM GC15_140418A 1404133-32A WS-8 (6') Soil M8015V TPH Purgeable by GC - Soil 62980 1 04/17/14 01:15 PM PMOIST_140416B 1404133-32A WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62962 10 04/16/14 04:46 PM IC2_140416B 1404133-32A WS-8 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D	1404133-30A	WS-11 (6')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 03:43 PM	IC2_140416B
WS-10 Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 05:12 PM GC4_140412A 1404133-31A WS-10 (6) Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 04:32 PM IC2_140416B WS-10 (6) Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-10 (6) Soil M8015D TPH Extractable by GC - Soil 62980 1 04/12/14 06:49 PM GC4_140412A WS-10 (6) Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 06:49 PM GC4_140412A 1404133-32A WS-8 (6') Soil M8015V TPH Purgeable by GC - Soil 62962 10 04/16/14 04:46 PM IC2_140416B 1404133-32A WS-8 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 10 04/21/14 09:36 PM GC12_140412A WS-8 (6') </td <td></td> <td>WS-11 (6')</td> <td>Soil</td> <td>D2216</td> <td>Percent Moisture</td> <td>62971</td> <td>1</td> <td>04/17/14 01:15 PM</td> <td>PMOIST_140416D</td>		WS-11 (6')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
1404133-31A WS-10 (6') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 04:32 PM IC2_140416B WS-10 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-10 (6') Soil M8015D TPH Extractable by GC - Soil 62980 1 04/18/14 01:44 PM GC15_140418A WS-10 (6') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 06:49 PM GC4_140412A 1404133-32A WS-8 (6') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 04:32 PM IC2_140416B 1404133-32A WS-8 (6') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 04:46 PM IC2_140416B WS-8 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 10 04/18/14 03:26 PM GC15_140418A WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980		WS-11 (6')	Soil	M8015D	TPH Extractable by GC - Soil	62980	10	04/18/14 03:17 PM	GC15_140418A
WS-10 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-10 (6') Soil M8015D TPH Extractable by GC - Soil 62980 1 04/17/14 01:15 PM GC15_140418A WS-10 (6') Soil M8015D TPH Extractable by GC - Soil 62980 1 04/12/14 06:49 PM GC4_140412A 1404133-32A WS-8 (6') Soil SW9056A Anions by IC method - Soil 62962 10 04/17/14 01:15 PM PMOIST_140416B WS-8 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-8 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 10 04/12/14 09:36 PM GC12_140421C WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 5 04/18/14 03:26 PM GC15_140418A WS-8 (6') Soil M8015V		WS-11 (6')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 05:12 PM	GC4_140412A
WS-10 (6') Soil M8015D TPH Extractable by GC - Soil 62980 1 04/18/14 01:44 PM GC15_140418A WS-10 (6') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 06:49 PM GC4_140412A 1404133-32A WS-8 (6') Soil SW9056A Anions by IC method - Soil 62962 10 04/17/14 01:15 PM PMOIST_140416B WS-8 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 10 04/17/14 01:15 PM GC15_140418A WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 10 04/18/14 03:26 PM GC15_140418A WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 5 04/18/14 03:26 PM GC15_140418A WS-8 (6') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/18/14 03:26 PM GC4_140412A 1404133-33A WS-9 (8')	1404133-31A	WS-10 (6')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 04:32 PM	IC2_140416B
WS-10 (6') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 06:49 PM GC4_140412A 1404133-32A WS-8 (6') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 04:46 PM IC2_140416B WS-8 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 10 04/21/14 09:36 PM GC12_140421C WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 5 04/18/14 03:26 PM GC15_140412A WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62865 1 04/12/14 07:14 PM GC4_140412A 1404133-33A WS-9 (8') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 05:01 PM IC2_140416B 1404133-33A WS-9 (8') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 05:01 PM IC2_140416B WS-9 (8') Soil D2216 Percent Moisture 62971 <td< td=""><td></td><td>WS-10 (6')</td><td>Soil</td><td>D2216</td><td>Percent Moisture</td><td>62971</td><td>1</td><td>04/17/14 01:15 PM</td><td>PMOIST_140416D</td></td<>		WS-10 (6')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
1404133-32A WS-8 (6') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 04:46 PM IC2_140416B WS-8 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 10 04/21/14 09:36 PM GC12_140421C WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 5 04/18/14 03:26 PM GC15_140418A WS-8 (6') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 07:14 PM GC4_140412A 1404133-33A WS-9 (8') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 05:01 PM IC2_140416B WS-9 (8') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D		WS-10 (6')	Soil	M8015D	TPH Extractable by GC - Soil	62980	1	04/18/14 01:44 PM	GC15_140418A
WS-8 (6') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 10 04/21/14 09:36 PM GC12_140421C WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 5 04/18/14 03:26 PM GC15_140418A WS-8 (6') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 07:14 PM GC4_140412A 1404133-33A WS-9 (8') Soil SW9056A Anions by IC method - Soil 62971 10 04/17/14 01:15 PM PMOIST_140416B WS-9 (8') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D		WS-10 (6')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 06:49 PM	GC4_140412A
WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 10 04/21/14 09:36 PM GC12_140421C WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 5 04/18/14 03:26 PM GC15_140418A WS-8 (6') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 07:14 PM GC4_140412A 1404133-33A WS-9 (8') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 05:01 PM IC2_140416B WS-9 (8') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D	1404133-32A	WS-8 (6')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 04:46 PM	IC2_140416B
WS-8 (6') Soil M8015D TPH Extractable by GC - Soil 62980 5 04/18/14 03:26 PM GC15_140418A WS-8 (6') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 07:14 PM GC4_140412A 1404133-33A WS-9 (8') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 05:01 PM IC2_140416B WS-9 (8') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D		WS-8 (6')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
WS-8 (6') Soil M8015V TPH Purgeable by GC - Soil 62865 1 04/12/14 07:14 PM GC4_140412A 1404133-33A WS-9 (8') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 05:01 PM IC2_140416B WS-9 (8') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D		WS-8 (6')	Soil	M8015D	TPH Extractable by GC - Soil	62980	10	04/21/14 09:36 PM	GC12_140421C
1404133-33A WS-9 (8') Soil SW9056A Anions by IC method - Soil 62962 10 04/16/14 05:01 PM IC2_140416B WS-9 (8') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D		WS-8 (6')	Soil	M8015D	TPH Extractable by GC - Soil	62980	5	04/18/14 03:26 PM	GC15_140418A
WS-9 (8') Soil D2216 Percent Moisture 62971 1 04/17/14 01:15 PM PMOIST_140416D		WS-8 (6')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 07:14 PM	GC4_140412A
	1404133-33A	WS-9 (8')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 05:01 PM	IC2_140416B
WS-9 (8') Soil M8015D TPH Extractable by GC - Soil 62980 5 04/21/14 09:19 PM GC12 140421C		WS-9 (8')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
		WS-9 (8')	Soil	M8015D	TPH Extractable by GC - Soil	62980	5	04/21/14 09:19 PM	GC12_140421C

Page 5 of 8

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1404133-33A	WS-9 (8')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 07:38 PM	GC4_140412A
1404133-34A	WS-7 (3')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 05:15 PM	IC2_140416B
	WS-7 (3')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	WS-7 (3')	Soil	M8015D	TPH Extractable by GC - Soil	62980	5	04/21/14 09:27 PM	GC12_140421C
	WS-7 (3')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 08:03 PM	GC4_140412A
1404133-35A	DS-1	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 05:30 PM	IC2_140416B
	DS-1	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	DS-1	Soil	M8015D	TPH Extractable by GC - Soil	62980	1	04/18/14 02:23 PM	GC15_140418A
	DS-1	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 08:27 PM	GC4_140412A
1404133-36A	WS-4 (5')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 05:44 PM	IC2_140416B
	WS-4 (5')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	WS-4 (5')	Soil	M8015D	TPH Extractable by GC - Soil	62980	10	04/21/14 09:52 PM	GC12_140421C
	WS-4 (5')	Soil	M8015D	TPH Extractable by GC - Soil	62980	5	04/18/14 04:20 PM	GC15_140418A
	WS-4 (5')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 08:51 PM	GC4_140412A
1404133-37A	WS-3 (10')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 05:59 PM	IC2_140416B
	WS-3 (10')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	WS-3 (10')	Soil	M8015D	TPH Extractable by GC - Soil	62980	5	04/21/14 08:36 PM	GC12_140421C
	WS-3 (10')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 09:16 PM	GC4_140412A
1404133-38A	WS-5 (6')	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 06:14 PM	IC2_140416B
	WS-5 (6')	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	WS-5 (6')	Soil	M8015D	TPH Extractable by GC - Soil	62980	5	04/21/14 08:45 PM	GC12_140421C
	WS-5 (6')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 09:40 PM	GC4_140412A
1404133-39A	DS-2	Soil	SW9056A	Anions by IC method - Soil	62962	10	04/16/14 06:28 PM	IC2_140416B
	DS-2	Soil	D2216	Percent Moisture	62971	1	04/17/14 01:15 PM	PMOIST_140416D
	DS-2	Soil	M8015D	TPH Extractable by GC - Soil	62980	5	04/18/14 02:32 PM	GC15_140418A
	DS-2	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 10:05 PM	GC4_140412A
1404133-40A	WS-6 (4')	Soil	SW9056A	Anions by IC method - Soil	62986	10	04/17/14 11:44 AM	IC2_140417A
	WS-6 (4')	Soil	D2216	Percent Moisture	62988	1	04/18/14 11:46 AM	PMOIST_140417C

Page 6 of 8

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1404133-40A	WS-6 (4')	Soil	M8015D	TPH Extractable by GC - Soil	62980	5	04/18/14 03:35 PM	GC15_140418A
	WS-6 (4')	Soil	M8015V	TPH Purgeable by GC - Soil	62865	1	04/12/14 10:29 PM	GC4_140412A
1404133-41A	DS-3	Soil	SW9056A	Anions by IC method - Soil	62986	10	04/17/14 12:42 PM	IC2_140417A
	DS-3	Soil	D2216	Percent Moisture	62988	1	04/18/14 11:46 AM	PMOIST_140417C
	DS-3	Soil	M8015D	TPH Extractable by GC - Soil	62981	5	04/21/14 09:10 PM	GC12_140421C
	DS-3	Soil	M8015V	TPH Purgeable by GC - Soil	62867	1	04/13/14 02:32 AM	GC4_140412B
1404133-42A	WEB Comp	Soil	SW9056A	Anions by IC method - Soil	62986	10	04/17/14 12:57 PM	IC2_140417A
	WEB Comp	Soil	D2216	Percent Moisture	62988	1	04/18/14 11:46 AM	PMOIST_140417C
	WEB Comp	Soil	M8015D	TPH Extractable by GC - Soil	62981	1	04/18/14 02:59 PM	GC15_140418A
	WEB Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62867	1	04/13/14 02:57 AM	GC4_140412B
1404133-43A	WEA Comp	Soil	SW9056A	Anions by IC method - Soil	62986	10	04/17/14 01:12 PM	IC2_140417A
	WEA Comp	Soil	D2216	Percent Moisture	62988	1	04/18/14 11:46 AM	PMOIST_140417C
	WEA Comp	Soil	M8015D	TPH Extractable by GC - Soil	62981	1	04/18/14 03:44 PM	GC15_140418A
	WEA Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62867	1	04/13/14 03:22 AM	GC4_140412B
1404133-44A	WEC Comp	Soil	SW9056A	Anions by IC method - Soil	62986	10	04/17/14 01:26 PM	IC2_140417A
	WEC Comp	Soil	D2216	Percent Moisture	62988	1	04/18/14 11:46 AM	PMOIST_140417C
	WEC Comp	Soil	M8015D	TPH Extractable by GC - Soil	62981	5	04/21/14 08:53 PM	GC12_140421C
	WEC Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62867	1	04/13/14 03:46 AM	GC4_140412B
1404133-45A	WED Comp	Soil	SW9056A	Anions by IC method - Soil	62986	10	04/17/14 01:41 PM	IC2_140417A
	WED Comp	Soil	D2216	Percent Moisture	62988	1	04/18/14 11:46 AM	PMOIST_140417C
	WED Comp	Soil	M8015D	TPH Extractable by GC - Soil	62981	5	04/21/14 09:44 PM	GC12_140421C
	WED Comp	Soil	M8015D	TPH Extractable by GC - Soil	62981	1	04/18/14 03:53 PM	GC15_140418A
	WED Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62867	1	04/13/14 04:10 AM	GC4_140412B
1404133-46A	CPA Comp	Soil	SW9056A	Anions by IC method - Soil	62986	10	04/17/14 01:55 PM	IC2_140417A
	CPA Comp	Soil	D2216	Percent Moisture	62988	1	04/18/14 11:46 AM	PMOIST_140417C
	CPA Comp	Soil	M8015D	TPH Extractable by GC - Soil	62981	5	04/18/14 03:08 PM	GC15_140418A
	CPA Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62867	1	04/13/14 04:35 AM	GC4_140412B
1404133-47A	CPB Comp	Soil	SW9056A	Anions by IC method - Soil	62986	10	04/17/14 02:10 PM	 IC2_140417A

Page 7 of 8

Lab Order: 1404133

Client: Larson & Associates

Project: Legacy Pit

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1404133-47A	CPB Comp	Soil	D2216	Percent Moisture	62988	1	04/18/14 11:46 AM	PMOIST_140417C
	CPB Comp	Soil	M8015D	TPH Extractable by GC - Soil	62981	10	04/21/14 10:18 PM	GC12_140421C
	CPB Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62867	1	04/13/14 04:59 AM	GC4_140412B
1404133-48A	CPC Comp	Soil	SW9056A	Anions by IC method - Soil	62986	10	04/17/14 02:24 PM	IC2_140417A
	CPC Comp	Soil	D2216	Percent Moisture	62988	1	04/18/14 11:46 AM	PMOIST_140417C
	CPC Comp	Soil	M8015D	TPH Extractable by GC - Soil	62981	5	04/21/14 09:02 PM	GC12_140421C
	CPC Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62867	1	04/13/14 05:23 AM	GC4_140412B
1404133-49A	CPD Comp	Soil	SW9056A	Anions by IC method - Soil	62986	10	04/17/14 03:02 PM	IC2_140417A
	CPD Comp	Soil	D2216	Percent Moisture	62988	1	04/18/14 11:46 AM	PMOIST_140417C
	CPD Comp	Soil	M8015D	TPH Extractable by GC - Soil	62981	20	04/21/14 10:26 PM	GC12_140421C
	CPD Comp	Soil	M8015V	TPH Purgeable by GC - Soil	62867	1	04/13/14 05:48 AM	GC4_140412B
1404133-50A	MW-1	Aqueous	SW8021B	Volatile Organics by GC	62916	1	04/14/14 05:51 PM	GC8_140414B
1404133-50B	MW-1	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	62921	1	04/16/14 06:26 PM	ICP-MS3_140416C
	MW-1	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	62921	50	04/16/14 08:33 PM	ICP-MS3_140416C
1404133-50C	MW-1	Aqueous	M2320 B	Alkalinity	62937	1	04/15/14 03:04 PM	TITRATOR_140415B
	MW-1	Aqueous	E300	Anions by IC method - Water	62862	1	04/11/14 06:04 PM	IC_140411B
	MW-1	Aqueous	E300	Anions by IC method - Water	62862	10	04/11/14 06:33 PM	IC_140411B
	MW-1	Aqueous	E300	Anions by IC method - Water	62862	100	04/14/14 04:17 PM	IC_140414B
	MW-1	Aqueous	M2540C	Total Dissolved Solids	62872	1	04/16/14 09:40 AM	WC_140415D
1404133-51A	Trip	Trip Blank	SW8021B	Volatile Organics by GC	62916	1	04/14/14 06:11 PM	GC8_140414B

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: SPB C	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-01	
Project No:	14-0107-01	Collection Date: 04/08/14 10:25 AM						
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	TABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	835	103	207		mg/Kg-dry	10	04/18/14 10:59 AM
TPH-ORO >C2	28-C35	114	31.0	103		mg/Kg-dry	10	04/18/14 10:59 AM
Surr: Isoprop	bylbenzene	74.4	0	47-142		%REC	10	04/18/14 10:59 AM
Surr: Octaco	osane	477	0	25-162	S	%REC	10	04/18/14 10:59 AM
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.202	0.303		mg/Kg-dry	1	04/11/14 07:58 PM
Surr: Tetrach	hlorethene	98.7	0	70-134		%REC	1	04/11/14 07:58 PM
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV	
Chloride		420	52.8	52.8		mg/Kg-dry	10	04/15/14 12:49 PM
PERCENT MOISTURE			D22	16				Analyst: JL
Percent Moistu	re	5.92	0	0		WT%	1	04/17/14 01:06 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WPE	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-02	
Project No:	14-0107-01	Collection Date: 04/08/14 10:40 AM						
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10-	-C28	633	103	206		mg/Kg-dry	10	04/18/14 10:50 AN
TPH-ORO >C2	8-C35	59.8	30.9	103	J	mg/Kg-dry	10	04/18/14 10:50 AN
Surr: Isoprop	ylbenzene	76.6	0	47-142		%REC	10	04/18/14 10:50 AN
Surr: Octaco	sane	330	0	25-162	S	%REC	10	04/18/14 10:50 AN
TPH PURGEAE	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Range	e Organics	ND	0.214	0.321		mg/Kg-dry	1	04/11/14 08:22 PN
Surr: Tetrach	lorethene	89.0	0	70-134		%REC	1	04/11/14 08:22 PN
ANIONS BY IC	METHOD - SOIL		SW90	56A				Analyst: AV
Chloride		583	50.0	50.0		mg/Kg-dry	10	04/15/14 01:48 PN
PERCENT MOI	STURE		D22	16				Analyst: JL
Percent Moistur	re	9.84	0	0		WT%	1	04/17/14 01:06 PN

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: WPA	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-03	
Project No:	14-0107-01	Collection Date: 04/08/14 11:00 AM						
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10-	-C28	657	114	228		mg/Kg-dry	10	04/18/14 11:08 AN
TPH-ORO >C2	8-C35	44.3	34.2	114	J	mg/Kg-dry	10	04/18/14 11:08 AN
Surr: Isoprop	ylbenzene	71.4	0	47-142		%REC	10	04/18/14 11:08 AN
Surr: Octaco	sane	455	0	25-162	S	%REC	10	04/18/14 11:08 AN
TPH PURGEAE	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Range	e Organics	ND	0.230	0.345		mg/Kg-dry	1	04/11/14 08:46 PN
Surr: Tetrach	lorethene	94.8	0	70-134		%REC	1	04/11/14 08:46 PN
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV	
Chloride		403	57.6	57.6		mg/Kg-dry	10	04/15/14 02:02 PM
PERCENT MOI	STURE		D22	16				Analyst: JL
Percent Moistur	re	14.1	0	0		WT%	1	04/17/14 01:06 PN

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: SPA C	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-04	
Project No:	14-0107-01	Collection Date: 04/08/14 11:00 AM						
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	653	129	259		mg/Kg-dry	10	04/17/14 05:25 PN
TPH-ORO >C2	8-C35	62.7	38.8	129	J	mg/Kg-dry	10	04/17/14 05:25 PM
Surr: Isoprop	bylbenzene	67.1	0	47-142		%REC	10	04/17/14 05:25 PN
Surr: Octaco	sane	354	0	25-162	S	%REC	10	04/17/14 05:25 PN
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.265	0.398		mg/Kg-dry	1	04/11/14 09:11 PM
Surr: Tetrach	nlorethene	97.2	0	70-134		%REC	1	04/11/14 09:11 PN
ANIONS BY IC METHOD - SOIL		SW9056A				Analyst: AV		
Chloride		398	65.7	65.7		mg/Kg-dry	10	04/15/14 04:11 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL
Percent Moistu	re	24.8	0	0		WT%	1	04/17/14 01:06 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: NPA (Comp		
Project:	Legacy Pit				L	ab ID: 14041	33-05		
Project No:	14-0107-01	Collection Date: 04/08/14 11:05 AM							
Lab Order:	1404133	Matrix: SOIL							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	TABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	350	60.9	122		mg/Kg-dry	5	04/18/14 10:41 AM	
TPH-ORO >C2	28-C35	41.8	18.3	60.9	J	mg/Kg-dry	5	04/18/14 10:41 AM	
Surr: Isoprop	bylbenzene	77.8	0	47-142		%REC	5	04/18/14 10:41 AM	
Surr: Octaco	osane	221	0	25-162	S	%REC	5	04/18/14 10:41 AM	
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV	
Gasoline Rang	e Organics	ND	0.233	0.350		mg/Kg-dry	1	04/11/14 09:35 PM	
Surr: Tetrach	hlorethene	97.1	0	70-134		%REC	1	04/11/14 09:35 PM	
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV		
Chloride		ND	54.0	54.0		mg/Kg-dry	10	04/15/14 04:26 PM	
PERCENT MOISTURE			D22	16				Analyst: JL	
Percent Moistu	re	19.7	0	0		WT%	1	04/17/14 01:06 PM	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: WPD	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-06	
Project No:	14-0107-01	Collection Date: 04/08/14 11:35 AM						
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	476	58.8	118		mg/Kg-dry	5	04/18/14 11:17 AM
TPH-ORO >C2	8-C35	59.9	17.6	58.8		mg/Kg-dry	5	04/18/14 11:17 AM
Surr: Isoprop	bylbenzene	70.0	0	47-142		%REC	5	04/18/14 11:17 AM
Surr: Octaco	sane	269	0	25-162	S	%REC	5	04/18/14 11:17 AM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.209	0.313		mg/Kg-dry	1	04/11/14 09:59 PM
Surr: Tetrach	hlorethene	95.8	0	70-134		%REC	1	04/11/14 09:59 PM
ANIONS BY IC METHOD - SOIL		SW9056A				Analyst: AV		
Chloride		217	58.8	58.8		mg/Kg-dry	10	04/15/14 04:41 PM
PERCENT MO	ISTURE		D22 ⁻	16				Analyst: JL
Percent Moistu	re	18.0	0	0		WT%	1	04/17/14 01:06 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: WPB	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-07	
Project No:	14-0107-01	Collection Date: 04/08/14 11:35 AM						
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10-	-C28	639	119	238		mg/Kg-dry	10	04/17/14 05:07 PM
TPH-ORO >C2	8-C35	74.3	35.7	119	J	mg/Kg-dry	10	04/17/14 05:07 PM
Surr: Isoprop	ylbenzene	72.4	0	47-142		%REC	10	04/17/14 05:07 PM
Surr: Octaco	sane	400	0	25-162	S	%REC	10	04/17/14 05:07 PM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Range	e Organics	ND	0.230	0.345		mg/Kg-dry	1	04/11/14 10:24 PM
Surr: Tetrach	hlorethene	99.1	0	70-134		%REC	1	04/11/14 10:24 PM
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV	
Chloride		195	54.5	54.5		mg/Kg-dry	10	04/15/14 02:51 PM
PERCENT MO	STURE		D22	16				Analyst: JL
Percent Moistu	re	16.1	0	0		WT%	1	04/17/14 01:06 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: WPC	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-08	
Project No:	14-0107-01	Collection Date: 04/08/14 11:35 AM						
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	456	115	230		mg/Kg-dry	10	04/17/14 05:16 PM
TPH-ORO >C2	8-C35	43.6	34.5	115	J	mg/Kg-dry	10	04/17/14 05:16 PM
Surr: Isoprop	bylbenzene	72.7	0	47-142		%REC	10	04/17/14 05:16 PM
Surr: Octaco	sane	279	0	25-162	S	%REC	10	04/17/14 05:16 PM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Range	e Organics	ND	0.210	0.315		mg/Kg-dry	1	04/11/14 10:48 PM
Surr: Tetrach	nlorethene	97.6	0	70-134		%REC	1	04/11/14 10:48 PM
ANIONS BY IC METHOD - SOIL		SW9056A				Analyst: AV		
Chloride		345	59.3	59.3		mg/Kg-dry	10	04/15/14 03:06 PM
PERCENT MO	ISTURE		D22 ⁻	16				Analyst: JL
Percent Moistu	re	17.6	0	0		WT%	1	04/17/14 01:06 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: NPB (Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-09	
Project No:	14-0107-01	Collection Date: 04/08/14 12:05 PM						
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	320	53.3	107		mg/Kg-dry	5	04/18/14 10:32 AM
TPH-ORO >C2	8-C35	51.6	16.0	53.3	J	mg/Kg-dry	5	04/18/14 10:32 AM
Surr: Isoprop	bylbenzene	75.4	0	47-142		%REC	5	04/18/14 10:32 AM
Surr: Octaco	sane	226	0	25-162	S	%REC	5	04/18/14 10:32 AM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Range	e Organics	ND	0.218	0.327		mg/Kg-dry	1	04/11/14 11:12 PM
Surr: Tetrach	hlorethene	101	0	70-134		%REC	1	04/11/14 11:12 PM
ANIONS BY IC METHOD - SOIL		SW9056A				Analyst: AV		
Chloride		84.3	53.9	53.9		mg/Kg-dry	10	04/15/14 03:20 PM
PERCENT MO	ISTURE		D22 ⁻	16				Analyst: JL
Percent Moistu	re	8.73	0	0		WT%	1	04/17/14 01:06 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: NPC C	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-10	
Project No:	14-0107-01			C	ollection	Date: 04/08/	14 01:35	PM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	215	11.2	22.4		mg/Kg-dry	1	04/17/14 04:13 PN
TPH-ORO >C2	8-C35	33.6	3.36	11.2		mg/Kg-dry	1	04/17/14 04:13 PM
Surr: Isoprop	bylbenzene	68.4	0	47-142		%REC	1	04/17/14 04:13 PN
Surr: Octaco	sane	188	0	25-162	S	%REC	1	04/17/14 04:13 PN
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Range	e Organics	ND	0.212	0.318		mg/Kg-dry	1	04/11/14 11:37 PM
Surr: Tetrach	nlorethene	99.6	0	70-134		%REC	1	04/11/14 11:37 PM
ANIONS BY IC	METHOD - SOIL		SW90	56A				Analyst: AV
Chloride		73.0	52.2	52.2		mg/Kg-dry	10	04/15/14 04:55 PM
PERCENT MO	ISTURE		D22 ⁻	16				Analyst: JL
Percent Moistu	re	12.9	0	0		WT%	1	04/17/14 01:06 PN

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: ES-2				
Project:	Legacy Pit				L	Lab ID: 1404133-11				
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 09:08	AM		
Lab Order:	1404133	Matrix: SOIL								
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed		
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS		
TPH-DRO C10	-C28	ND	13.1	26.2		mg/Kg-dry	1	04/17/14 01:27 PN		
TPH-ORO >C2	8-C35	ND	3.93	13.1		mg/Kg-dry	1	04/17/14 01:27 PM		
Surr: Isoprop	bylbenzene	66.9	0	47-142		%REC	1	04/17/14 01:27 PN		
Surr: Octaco	sane	77.7	0	25-162		%REC	1	04/17/14 01:27 PM		
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV		
Gasoline Range	e Organics	ND	0.256	0.384		mg/Kg-dry	1	04/12/14 01:39 AN		
Surr: Tetrach	nlorethene	103	0	70-134		%REC	1	04/12/14 01:39 AM		
NIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV		
Chloride		123	60.6	60.6		mg/Kg-dry	10	04/15/14 05:10 PN		
PERCENT MO	ISTURE		D22	16				Analyst: JL		
Percent Moistu	re	29.9	0	0		WT%	1	04/17/14 01:06 PN		

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: ES-9						
Project:	Legacy Pit				L	ab ID: 14041	33-12					
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 09:15	AM				
Lab Order:	1404133	Matrix: SOIL										
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed				
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS				
TPH-DRO C10	-C28	1030	100	201		mg/Kg-dry	10	04/18/14 10:23 AM				
TPH-ORO >C2	8-C35	147	30.1	100		mg/Kg-dry	10	04/18/14 10:23 AM				
Surr: Isoprop	bylbenzene	78.9	0	47-142		%REC	10	04/18/14 10:23 AM				
Surr: Octaco	sane	439	0	25-162	S	%REC	10	04/18/14 10:23 AM				
TPH PURGEA	BLE BY GC - SOIL		M801	5V			Analyst: AV					
Gasoline Range	e Organics	ND	0.201	0.302		mg/Kg-dry	1	04/12/14 02:03 AM				
Surr: Tetrach	nlorethene	96.2	0	70-134		%REC	1	04/12/14 02:03 AM				
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV				
Chloride		ND	44.1	44.1		mg/Kg-dry	10	04/15/14 05:24 PM				
PERCENT MO	ISTURE		D22	16				Analyst: JL				
Percent Moistu	re	3.63	0	0		WT%	1	04/17/14 01:06 PM				

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: ES-10			
Project:	Legacy Pit				L	ab ID: 14041	33-13		
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 09:23	AM	
Lab Order:	1404133	Matrix: SOIL							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	110	9.92	19.8		mg/Kg-dry	1	04/17/14 02:30 PM	
TPH-ORO >C28-C35		16.8	2.97	9.92		mg/Kg-dry	1	04/17/14 02:30 PM	
Surr: Isoprop	bylbenzene	69.7	0	47-142		%REC	1	04/17/14 02:30 PM	
Surr: Octaco	sane	142	0	25-162		%REC	1	04/17/14 02:30 PM	
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV	
Gasoline Rang	e Organics	ND	0.190	0.285		mg/Kg-dry	1	04/12/14 02:28 AM	
Surr: Tetrach	nlorethene	103	0	70-134		%REC	1	04/12/14 02:28 AM	
NIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV		
Chloride		329	45.5	45.5		mg/Kg-dry	10	04/15/14 05:39 PM	
PERCENT MO	ISTURE		D22	16				Analyst: JL	
Percent Moistu	re	6.45	0	0		WT%	1	04/17/14 01:06 PN	

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: ES-1						
Project:	Legacy Pit				L	ab ID: 14041	33-14					
Project No:	14-0107-01			C	ollection	n Date: 04/09/	14 09:32	AM				
Lab Order:	1404133	Matrix: SOIL										
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed				
TPH EXTRACI	TABLE BY GC - SOIL		M801	5D				Analyst: AS				
TPH-DRO C10	-C28	350	51.5	103		mg/Kg-dry	5	04/18/14 10:14 AN				
TPH-ORO >C2	28-C35	32.7	15.5	51.5	J	mg/Kg-dry	5	04/18/14 10:14 AM				
Surr: Isoprop	bylbenzene	71.3	0	47-142		%REC	5	04/18/14 10:14 AN				
Surr: Octaco	osane	280	0	25-162	S	%REC	5	04/18/14 10:14 AM				
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV				
Gasoline Rang	e Organics	ND	0.195	0.293		mg/Kg-dry	1	04/12/14 02:52 AN				
Surr: Tetrach	hlorethene	98.6	0	70-134		%REC	1	04/12/14 02:52 AM				
NIONS BY IC METHOD - SOIL		SW9056A				Analyst: AV						
Chloride		652	49.4	49.4		mg/Kg-dry	10	04/15/14 05:53 PM				
PERCENT MO	ISTURE		D22	16				Analyst: JL				
Percent Moistu	re	4.39	0	0		WT%	1	04/17/14 01:06 PM				

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: ES-3		
Project:	Legacy Pit				L	ab ID: 14041	33-15	
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 09:37	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	ND	10.6	21.2		mg/Kg-dry	1	04/17/14 01:36 PM
TPH-ORO >C2	8-C35	ND	3.18	10.6		mg/Kg-dry	1	04/17/14 01:36 PN
Surr: Isoprop	bylbenzene	65.4	0	47-142		%REC	1	04/17/14 01:36 PN
Surr: Octaco	sane	71.8	0	25-162		%REC	1	04/17/14 01:36 PM
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.209	0.313		mg/Kg-dry	1	04/12/14 03:16 AM
Surr: Tetrach	nlorethene	105	0	70-134		%REC	1	04/12/14 03:16 AM
NIONS BY IC METHOD - SOIL		SW9056A			Analyst: AV			Analyst: AV
Chloride		63.1	54.6	54.6		mg/Kg-dry	10	04/15/14 06:08 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL
Percent Moistu	re	10.6	0	0		WT%	1	04/17/14 01:06 PN

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: ES-4		
Project:	Legacy Pit				L	ab ID: 14041	33-16	
Project No:	14-0107-01			C	ollection	Date: 04/09/	/14 09:42	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	ND	11.2	22.4		mg/Kg-dry	1	04/17/14 01:45 PM
TPH-ORO >C2	8-C35	ND	3.36	11.2		mg/Kg-dry	1	04/17/14 01:45 PN
Surr: Isoprop	bylbenzene	67.2	0	47-142		%REC	1	04/17/14 01:45 PM
Surr: Octaco	sane	76.2	0	25-162		%REC	1	04/17/14 01:45 PM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Range	e Organics	ND	0.236	0.354		mg/Kg-dry	1	04/12/14 03:41 AN
Surr: Tetrach	nlorethene	105	0	70-134		%REC	1	04/12/14 03:41 AM
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		ND	51.3	51.3		mg/Kg-dry	10	04/15/14 06:23 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL
Percent Moistu	re	15.9	0	0		WT%	1	04/17/14 01:06 PN

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: ES-5		
Project:	Legacy Pit				L	ab ID: 14041	33-17	
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 09:50	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	TPH-DRO C10-C28		10.5	20.9		mg/Kg-dry	1	04/17/14 01:54 PM
TPH-ORO >C28-C35		ND	3.14	10.5		mg/Kg-dry	1	04/17/14 01:54 PM
Surr: Isoprop	bylbenzene	70.0	0	47-142		%REC	1	04/17/14 01:54 PM
Surr: Octaco	sane	76.6	0	25-162		%REC	1	04/17/14 01:54 PM
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.208	0.312		mg/Kg-dry	1	04/12/14 04:05 AN
Surr: Tetrach	nlorethene	105	0	70-134		%REC	1	04/12/14 04:05 AN
NIONS BY IC METHOD - SOIL		SW9056A				Analyst: AV		
Chloride		1120	53.9	53.9		mg/Kg-dry	10	04/15/14 06:52 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL
Percent Moistu	re	9.66	0	0		WT%	1	04/17/14 01:06 PN

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: ES-7			
Project:	Legacy Pit				L	ab ID: 14041	33-18		
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 10:02	AM	
Lab Order:	1404133	Matrix: SOIL							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	18.7	10.0	20.1	J	mg/Kg-dry	1	04/17/14 02:21 PM	
TPH-ORO >C28-C35		5.77	3.01	10.0	J	mg/Kg-dry	1	04/17/14 02:21 PM	
Surr: Isoprop	bylbenzene	65.5	0	47-142		%REC	1	04/17/14 02:21 PM	
Surr: Octaco	sane	91.4	0	25-162		%REC	1	04/17/14 02:21 PM	
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV	
Gasoline Rang	e Organics	ND	0.184	0.276		mg/Kg-dry	1	04/12/14 04:30 AM	
Surr: Tetrach	nlorethene	106	0	70-134		%REC	1	04/12/14 04:30 AM	
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV		
Chloride		ND	44.6	44.6		mg/Kg-dry	10	04/15/14 07:06 PM	
PERCENT MO	ISTURE		D22	16				Analyst: JL	
Percent Moistu	re	2.52	0	0		WT%	1	04/17/14 01:06 PM	

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: ES-6		
Project:	Legacy Pit				L	ab ID: 14041	33-19	
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 10:03	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	ND	10.4	20.9		mg/Kg-dry	1	04/17/14 02:03 PN
TPH-ORO >C2	8-C35	ND	3.13	10.4		mg/Kg-dry	1	04/17/14 02:03 PM
Surr: Isoprop	bylbenzene	64.5	0	47-142		%REC	1	04/17/14 02:03 PN
Surr: Octaco	sane	88.0	0	25-162		%REC	1	04/17/14 02:03 PN
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.204	0.306		mg/Kg-dry	1	04/12/14 04:54 AN
Surr: Tetrach	nlorethene	103	0	70-134		%REC	1	04/12/14 04:54 AM
ANIONS BY IC	METHOD - SOIL		SW90	56A				Analyst: AV
Chloride		ND	45.6	45.6		mg/Kg-dry	10	04/15/14 07:21 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL
Percent Moistu	re	5.06	0	0		WT%	1	04/17/14 01:06 PN

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: ES-8		
Project:	Legacy Pit				L	ab ID: 14041	33-20	
Project No:	14-0107-01			C	ollectior	Date: 04/09/	14 10:03	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	11.2	11.2	22.4	J	mg/Kg-dry	1	04/17/14 02:12 PM
TPH-ORO >C2	8-C35	ND	3.35	11.2		mg/Kg-dry	1	04/17/14 02:12 PM
Surr: Isoprop	bylbenzene	66.3	0	47-142		%REC	1	04/17/14 02:12 PM
Surr: Octaco	sane	90.0	0	25-162		%REC	1	04/17/14 02:12 PM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Range	e Organics	ND	0.207	0.311		mg/Kg-dry	1	04/12/14 05:18 AM
Surr: Tetrach	nlorethene	101	0	70-134		%REC	1	04/12/14 05:18 AN
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		ND	55.7	55.7		mg/Kg-dry	10	04/15/14 07:35 PM
PERCENT MO	ISTURE		D22 ⁻	16				Analyst: JL
Percent Moistu	re	13.4	0	0		WT%	1	04/17/14 01:15 PN

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: DS-5		
Project:	Legacy Pit				L	ab ID: 14041	33-21	
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 10:10	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	ND	11.0	22.0		mg/Kg-dry	1	04/18/14 01:08 PM
TPH-ORO >C2	8-C35	ND	3.30	11.0		mg/Kg-dry	1	04/18/14 01:08 PM
Surr: Isoprop	bylbenzene	72.6	0	47-142		%REC	1	04/18/14 01:08 PN
Surr: Octaco	sane	81.1	0	25-162		%REC	1	04/18/14 01:08 PN
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.211	0.316		mg/Kg-dry	1	04/12/14 01:30 PM
Surr: Tetrach	nlorethene	117	0	70-134		%REC	1	04/12/14 01:30 PM
ANIONS BY IC	METHOD - SOIL		SW90	56A				Analyst: AV
Chloride		ND	49.8	49.8		mg/Kg-dry	10	04/16/14 01:22 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL
Percent Moistu	re	10.7	0	0		WT%	1	04/17/14 01:15 PN

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: DS-4		
Project:	Legacy Pit				L	ab ID: 14041	33-22	
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 10:15	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	ND	9.87	19.7		mg/Kg-dry	1	04/18/14 01:17 PM
TPH-ORO >C2	8-C35	ND	2.96	9.87		mg/Kg-dry	1	04/18/14 01:17 PM
Surr: Isoprop	bylbenzene	71.0	0	47-142		%REC	1	04/18/14 01:17 PM
Surr: Octaco	sane	91.4	0	25-162		%REC	1	04/18/14 01:17 PM
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.189	0.284		mg/Kg-dry	1	04/12/14 01:55 PM
Surr: Tetrach	nlorethene	117	0	70-134		%REC	1	04/12/14 01:55 PM
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		ND	49.8	49.8		mg/Kg-dry	10	04/16/14 01:46 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL
Percent Moistu	re	6.63	0	0		WT%	1	04/17/14 01:15 PN

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: EEB C	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-23	
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 11:00	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	ND	10.8	21.6		mg/Kg-dry	1	04/18/14 01:26 PM
TPH-ORO >C2	8-C35	ND	3.24	10.8		mg/Kg-dry	1	04/18/14 01:26 PM
Surr: Isoprop	bylbenzene	70.8	0	47-142		%REC	1	04/18/14 01:26 PM
Surr: Octaco	sane	84.3	0	25-162		%REC	1	04/18/14 01:26 PM
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.212	0.317		mg/Kg-dry	1	04/12/14 02:19 PM
Surr: Tetrach	nlorethene	113	0	70-134		%REC	1	04/12/14 02:19 PM
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		ND	53.1	53.1		mg/Kg-dry	10	04/16/14 02:01 PM
ERCENT MOISTURE			D22	16				Analyst: JL
Percent Moistu	re	10.3	0	0		WT%	1	04/17/14 01:15 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: EEC C	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-24	
Project No:	14-0107-01			C	ollectior	Date: 04/09/	14 11:20	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACI	TABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	31.7	10.6	21.3		mg/Kg-dry	1	04/18/14 01:53 PM
TPH-ORO >C2	28-C35	7.90	3.19	10.6	J	mg/Kg-dry	1	04/18/14 01:53 PM
Surr: Isoprop	bylbenzene	67.0	0	47-142		%REC	1	04/18/14 01:53 PM
Surr: Octaco	osane	107	0	25-162		%REC	1	04/18/14 01:53 PM
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.225	0.337		mg/Kg-dry	1	04/12/14 02:46 PM
Surr: Tetrach	hlorethene	110	0	70-134		%REC	1	04/12/14 02:46 PM
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		ND	56.3	56.3		mg/Kg-dry	10	04/16/14 02:15 PM
ERCENT MOISTURE			D22	16				Analyst: JL
Percent Moistu	re	12.8	0	0		WT%	1	04/17/14 01:15 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: EEA (Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-25	
Project No:	14-0107-01			C	ollectior	Date: 04/09/	14 11:25	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	136	10.2	20.4		mg/Kg-dry	1	04/18/14 02:05 PM
TPH-ORO >C2	8-C35	27.8	3.06	10.2		mg/Kg-dry	1	04/18/14 02:05 PM
Surr: Isoprop	bylbenzene	67.6	0	47-142		%REC	1	04/18/14 02:05 PM
Surr: Octaco	sane	173	0	25-162	S	%REC	1	04/18/14 02:05 PM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.196	0.294		mg/Kg-dry	1	04/12/14 03:10 PM
Surr: Tetrach	nlorethene	111	0	70-134		%REC	1	04/12/14 03:10 PM
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		97.0	44.7	44.7		mg/Kg-dry	10	04/16/14 02:30 PM
PERCENT MO			D22					Analyst: JL
Percent Moistu	re	4.95	0	0		WT%	1	04/17/14 01:15 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WS-13	3 (5')		
Project:	Legacy Pit				L	ab ID: 14041	33-26		
Project No:	14-0107-01	Collection Date: 04/09/14 01:00 PM							
Lab Order:	1404133	Matrix: SOIL							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	TABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	62.1	11.9	23.9		mg/Kg-dry	1	04/18/14 02:14 PM	
TPH-ORO >C2	28-C35	19.8	3.58	11.9		mg/Kg-dry	1	04/18/14 02:14 PM	
Surr: Isoprop	bylbenzene	64.6	0	47-142		%REC	1	04/18/14 02:14 PM	
Surr: Octaco	osane	124	0	25-162		%REC	1	04/18/14 02:14 PM	
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV	
Gasoline Rang	e Organics	ND	0.243	0.364		mg/Kg-dry	1	04/12/14 03:35 PM	
Surr: Tetrach	hlorethene	95.1	0	70-134		%REC	1	04/12/14 03:35 PM	
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV		
Chloride		ND	58.5	58.5		mg/Kg-dry	10	04/16/14 02:44 PM	
PERCENT MO	ISTURE		D22 ⁻	16				Analyst: JL	
Percent Moistu	re	20.1	0	0		WT%	1	04/17/14 01:15 PM	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WS-1	(4')	
Project:	Legacy Pit				L	ab ID: 14041	33-27	
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 01:30	PM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACI	TABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	ND	12.0	24.0		mg/Kg-dry	1	04/18/14 01:35 PM
TPH-ORO >C2	28-C35	ND	3.60	12.0		mg/Kg-dry	1	04/18/14 01:35 PM
Surr: Isoprop	bylbenzene	65.0	0	47-142		%REC	1	04/18/14 01:35 PM
Surr: Octaco	osane	80.4	0	25-162		%REC	1	04/18/14 01:35 PM
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.213	0.319		mg/Kg-dry	1	04/12/14 03:59 PM
Surr: Tetrach	nlorethene	105	0	70-134		%REC	1	04/12/14 03:59 PM
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		ND	61.6	61.6		mg/Kg-dry	10	04/16/14 02:59 PM
PERCENT MO			D22					Analyst: JL
Percent Moistu	re	19.2	0	0		WT%	1	04/17/14 01:15 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WS-2	(6')			
Project:	Legacy Pit				L	Lab ID: 1404133-28				
Project No:	14-0107-01			C	ollectior	Date: 04/09/	14 02:00	PM		
Lab Order:	1404133	Matrix: SOIL								
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed		
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS		
TPH-DRO C10	-C28	96.1	11.9	23.8		mg/Kg-dry	1	04/18/14 04:02 PM		
TPH-ORO >C2	8-C35	27.6	3.56	11.9		mg/Kg-dry	1	04/18/14 04:02 PM		
Surr: Isoprop	bylbenzene	67.8	0	47-142		%REC	1	04/18/14 04:02 PM		
Surr: Octaco	sane	200	0	25-162	S	%REC	1	04/18/14 04:02 PM		
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV		
Gasoline Range	e Organics	ND	0.227	0.341		mg/Kg-dry	1	04/12/14 04:23 PM		
Surr: Tetrach	hlorethene	109	0	70-134		%REC	1	04/12/14 04:23 PM		
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV		
Chloride		151	59.9	59.9		mg/Kg-dry	10	04/16/14 03:14 PM		
PERCENT MO	ERCENT MOISTURE		D22	16				Analyst: JL		
Percent Moistu	re	22.1	0	0		WT%	1	04/17/14 01:15 PM		

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: WS-12	2 (2')		
Project:	Legacy Pit				L	ab ID: 14041	33-29		
Project No:	14-0107-01			C	ollectior	Date: 04/09/	14 02:30 1	PM	
Lab Order:	1404133	Matrix: SOIL							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	TABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	946	129	258		mg/Kg-dry	10	04/18/14 04:11 PN	
TPH-ORO >C2	28-C35	204	38.7	129		mg/Kg-dry	10	04/18/14 04:11 PN	
Surr: Isoprop	bylbenzene	89.1	0	47-142		%REC	10	04/18/14 04:11 PN	
Surr: Octaco	osane	409	0	25-162	S	%REC	10	04/18/14 04:11 PM	
TPH PURGEA	BLE BY GC - SOIL		M801	5V			Analyst: AV		
Gasoline Range	e Organics	ND	0.257	0.385		mg/Kg-dry	1	04/12/14 04:48 PN	
Surr: Tetrach	hlorethene	96.2	0	70-134		%REC	1	04/12/14 04:48 PM	
ANIONS BY IC METHOD - SOIL			SW90	56A				Analyst: AV	
Chloride		187	56.6	56.6		mg/Kg-dry	10	04/16/14 03:28 PM	
PERCENT MO	ERCENT MOISTURE		D22 ⁻	16				Analyst: JL	
Percent Moistu	re	24.7	0	0		WT%	1	04/17/14 01:15 PN	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WS-1	1 (6')	
Project:	Legacy Pit				L	ab ID: 14041	33-30	
Project No:	14-0107-01			C	ollection	n Date: 04/09/	14 03:00 1	PM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	376	115	231		mg/Kg-dry	10	04/18/14 03:17 PN
TPH-ORO >C2	8-C35	91.8	34.6	115	J	mg/Kg-dry	10	04/18/14 03:17 PN
Surr: Isoprop	bylbenzene	79.0	0	47-142		%REC	10	04/18/14 03:17 PN
Surr: Octaco	sane	406	0	25-162	S	%REC	10	04/18/14 03:17 PN
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.207	0.310		mg/Kg-dry	1	04/12/14 05:12 PN
Surr: Tetrach	nlorethene	92.8	0	70-134		%REC	1	04/12/14 05:12 PM
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		147	55.2	55.2		mg/Kg-dry	10	04/16/14 03:43 PN
PERCENT MO			D22	-				Analyst: JL
Percent Moistu	re	19.0	0	0		WT%	1	04/17/14 01:15 PN

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WS-10) (6')	
Project:	Legacy Pit				L	ab ID: 14041	33-31	
Project No:	14-0107-01			C	ollection	Date: 04/09/	14 03:30	PM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	TABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	ND	12.6	25.2		mg/Kg-dry	1	04/18/14 01:44 PM
TPH-ORO >C2	28-C35	ND	3.78	12.6		mg/Kg-dry	1	04/18/14 01:44 PM
Surr: Isoprop	bylbenzene	76.0	0	47-142		%REC	1	04/18/14 01:44 PM
Surr: Octaco	osane	91.4	0	25-162		%REC	1	04/18/14 01:44 PM
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.223	0.335		mg/Kg-dry	1	04/12/14 06:49 PM
Surr: Tetrach	nlorethene	113	0	70-134		%REC	1	04/12/14 06:49 PM
ANIONS BY IC METHOD - SOIL			SW90	56A				Analyst: AV
Chloride		ND	62.2	62.2		mg/Kg-dry	10	04/16/14 04:32 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL
Percent Moistu	re	21.5	0	0		WT%	1	04/17/14 01:15 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Percent Moisture

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WS-8	(6')		
Project:	Legacy Pit				L	ab ID: 14041	33-32		
Project No:	14-0107-01			C	ollection	Date: 04/10/	14 08:00	АМ	
Lab Order:	1404133	Matrix: SOIL							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10-	-C28	2140	111	223		mg/Kg-dry	10	04/21/14 09:36 PM	
TPH-ORO >C2	8-C35	601	33.4	111		mg/Kg-dry	10	04/21/14 09:36 PM	
Surr: Isoprop	ylbenzene	83.8	0	47-142		%REC	10	04/21/14 09:36 PM	
Surr: Octaco	sane	721	0	25-162	S	%REC	10	04/21/14 09:36 PM	
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV	
Gasoline Range	e Organics	ND	0.220	0.330		mg/Kg-dry	1	04/12/14 07:14 PM	
Surr: Tetrachlorethene		91.8	0	70-134		%REC	1	04/12/14 07:14 PM	
ANIONS BY IC METHOD - SOIL			SW90	56A				Analyst: AV	
Chloride		478	54.7	54.7		mg/Kg-dry	10	04/16/14 04:46 PM	
PERCENT MO	STURE		D22 ⁻	16				Analyst: JL	

0

0

WT%

12.3

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

04/17/14 01:15 PM

1

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: WS-9	(8')	
Project:	Legacy Pit				L	ab ID: 14041	33-33	
Project No:	14-0107-01			C	ollectior	Date: 04/10/	14 08:30	AM
Lab Order:	1404133	Matrix: SOIL						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	138	58.8	118		mg/Kg-dry	5	04/21/14 09:19 PM
TPH-ORO >C2	8-C35	98.2	17.6	58.8		mg/Kg-dry	5	04/21/14 09:19 PM
Surr: Isoprop	bylbenzene	69.4	0	47-142		%REC	5	04/21/14 09:19 PM
Surr: Octaco	sane	283	0	25-162	S	%REC	5	04/21/14 09:19 PM
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.219	0.329		mg/Kg-dry	1	04/12/14 07:38 PM
Surr: Tetrach	nlorethene	114	0	70-134		%REC	1	04/12/14 07:38 PM
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		92.6	59.8	59.8		mg/Kg-dry	10	04/16/14 05:01 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL
Percent Moistu	re	19.6	0	0		WT%	1	04/17/14 01:15 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: WS-7	(3')		
Project:	Legacy Pit				L	ab ID: 14041	33-34		
Project No:	14-0107-01	Collection Date: 04/10/14 09:00 AM Matrix: SOIL							
Lab Order:	1404133								
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	265	50.0	100		mg/Kg-dry	5	04/21/14 09:27 PM	
TPH-ORO >C2	8-C35	160	15.0	50.0		mg/Kg-dry	5	04/21/14 09:27 PM	
Surr: Isoprop	bylbenzene	75.8	0	47-142		%REC	5	04/21/14 09:27 PM	
Surr: Octaco	sane	432	0	25-162	S	%REC	5	04/21/14 09:27 PM	
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV	
Gasoline Rang	e Organics	ND	0.207	0.311		mg/Kg-dry	1	04/12/14 08:03 PM	
Surr: Tetrach	nlorethene	99.8	0	70-134		%REC	1	04/12/14 08:03 PM	
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV		
Chloride		248	49.1	49.1		mg/Kg-dry	10	04/16/14 05:15 PM	
PERCENT MO	ERCENT MOISTURE		D22	16				Analyst: JL	
Percent Moistu	re	6.21	0	0		WT%	1	04/17/14 01:15 PM	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: DS-1			
Project:	Legacy Pit				L	ab ID: 14041	33-35		
Project No:	14-0107-01			C	ollection	Date: 04/10/	14 09:30	AM	
Lab Order:	1404133	Matrix: SOIL							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	53.9	12.5	25.1		mg/Kg-dry	1	04/18/14 02:23 PM	
TPH-ORO >C2	8-C35	8.48	3.76	12.5	J	mg/Kg-dry	1	04/18/14 02:23 PM	
Surr: Isoprop	bylbenzene	70.1	0	47-142		%REC	1	04/18/14 02:23 PM	
Surr: Octaco	sane	112	0	25-162		%REC	1	04/18/14 02:23 PM	
TPH PURGEAI	BLE BY GC - SOIL		M801	5V			Analyst: AV		
Gasoline Rang	e Organics	ND	0.224	0.335		mg/Kg-dry	1	04/12/14 08:27 PM	
Surr: Tetrach	nlorethene	104	0	70-134		%REC	1	04/12/14 08:27 PM	
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV	
Chloride		64.6	63.9	63.9		mg/Kg-dry	10	04/16/14 05:30 PM	
PERCENT MO	ISTURE		D22 ⁻	16				Analyst: JL	
Percent Moistu	re	22.5	0	0		WT%	1	04/17/14 01:15 PM	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: WS-4	(5')	
Project:	Legacy Pit				L	ab ID: 14041	33-36	
Project No:	14-0107-01	Collection Date: 04/10/14 10:00 AM Matrix: SOIL						
Lab Order:	1404133							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	2220	116	231		mg/Kg-dry	10	04/21/14 09:52 PM
TPH-ORO >C2	8-C35	778	34.7	116		mg/Kg-dry	10	04/21/14 09:52 PM
Surr: Isoprop	bylbenzene	76.7	0	47-142		%REC	10	04/21/14 09:52 PM
Surr: Octaco	sane	921	0	25-162	S	%REC	10	04/21/14 09:52 PM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.250	0.375		mg/Kg-dry	1	04/12/14 08:51 PM
Surr: Tetrach	hlorethene	88.8	0	70-134		%REC	1	04/12/14 08:51 PM
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV	
Chloride		92.2	54.0	54.0		mg/Kg-dry	10	04/16/14 05:44 PM
PERCENT MOISTURE			D22	16				Analyst: JL
Percent Moistu	re	21.0	0	0		WT%	1	04/17/14 01:15 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Percent Moisture

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WS-3	(10')		
Project:	Legacy Pit				L	ab ID: 14041	33-37		
Project No:	14-0107-01	Collection Date: 04/10/14 10:30 AM Matrix: SOIL							
Lab Order:	1404133								
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	ABLE BY GC - SOIL	M8015D					Analyst: AS		
TPH-DRO C10	TPH-DRO C10-C28		65.2	130	J	mg/Kg-dry	5	04/21/14 08:36 PM	
TPH-ORO >C2	8-C35	72.7	19.6	65.2		mg/Kg-dry	5	04/21/14 08:36 PM	
Surr: Isoprop	bylbenzene	74.0	0	47-142		%REC	5	04/21/14 08:36 PM	
Surr: Octaco	sane	253	0	25-162	S	%REC	5	04/21/14 08:36 PM	
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV	
Gasoline Rang	e Organics	ND	0.261	0.392		mg/Kg-dry	1	04/12/14 09:16 PM	
Surr: Tetrachlorethene		107	0	70-134		%REC	1	04/12/14 09:16 PM	
ANIONS BY IC METHOD - SOIL			SW90	56A				Analyst: AV	
Chloride		ND	58.2	58.2		mg/Kg-dry	10	04/16/14 05:59 PM	
PERCENT MOISTURE			D22 ⁻	16				Analyst: JL	

0

0

WT%

26.1

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

04/17/14 01:15 PM

1

Percent Moisture

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WS-5	(6')	
Project:	Legacy Pit				L	ab ID: 14041	33-38	
Project No:	14-0107-01	Collection Date: 04/10/14 11:00 AM Matrix: SOIL						
Lab Order:	1404133							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	TABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	213	61.0	122		mg/Kg-dry	5	04/21/14 08:45 PM
TPH-ORO >C2	28-C35	129	18.3	61.0		mg/Kg-dry	5	04/21/14 08:45 PM
Surr: Isoprop	bylbenzene	72.7	0	47-142		%REC	5	04/21/14 08:45 PM
Surr: Octaco	osane	324	0	25-162	S	%REC	5	04/21/14 08:45 PM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.228	0.343		mg/Kg-dry	1	04/12/14 09:40 PM
Surr: Tetrach	nlorethene	100	0	70-134		%REC	1	04/12/14 09:40 PM
ANIONS BY IC METHOD - SOIL			SW90	56A				Analyst: AV
Chloride		230	61.0	61.0		mg/Kg-dry	10	04/16/14 06:14 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL

0

0

WT%

19.1

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

04/17/14 01:15 PM

1

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: DS-2			
Project:	Legacy Pit				L	ab ID: 14041	33-39		
Project No:	14-0107-01			C	ollection	Date: 04/10/	/14 11:30	AM	
Lab Order:	1404133	Matrix: SOIL							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	684	57.4	115		mg/Kg-dry	5	04/18/14 02:32 PM	
TPH-ORO >C2	8-C35	91.0	17.2	57.4		mg/Kg-dry	5	04/18/14 02:32 PM	
Surr: Isoprop	bylbenzene	74.0	0	47-142		%REC	5	04/18/14 02:32 PM	
Surr: Octaco	sane	520	0	25-162	S	%REC	5	04/18/14 02:32 PM	
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV	
Gasoline Rang	e Organics	ND	0.215	0.323		mg/Kg-dry	1	04/12/14 10:05 PM	
Surr: Tetrach	nlorethene	97.4	0	70-134		%REC	1	04/12/14 10:05 PM	
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV		
Chloride		571	54.5	54.5		mg/Kg-dry	10	04/16/14 06:28 PM	
PERCENT MO	ISTURE		D22	16				Analyst: JL	
Percent Moistu	re	19.4	0	0		WT%	1	04/17/14 01:15 PN	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: WS-6	(4')	
Project:	Legacy Pit				L	ab ID: 14041	33-40	
Project No:	14-0107-01	Collection Date: 04/10/14 12:00 PM Matrix: SOIL						
Lab Order:	1404133							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	384	48.5	97.0		mg/Kg-dry	5	04/18/14 03:35 PM
TPH-ORO >C2	8-C35	92.2	14.6	48.5		mg/Kg-dry	5	04/18/14 03:35 PM
Surr: Isoprop	bylbenzene	74.7	0	47-142		%REC	5	04/18/14 03:35 PM
Surr: Octaco	sane	481	0	25-162	S	%REC	5	04/18/14 03:35 PM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.191	0.287		mg/Kg-dry	1	04/12/14 10:29 PM
Surr: Tetrach	nlorethene	97.3	0	70-134		%REC	1	04/12/14 10:29 PM
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		426	46.4	46.4		mg/Kg-dry	10	04/17/14 11:44 AM
PERCENT MOISTURE			D22	16				Analyst: JL
Percent Moistu	re	4.42	0	0		WT%	1	04/18/14 11:46 AM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: DS-3			
Project:	Legacy Pit		Lab ID: 1404133-41						
Project No:	14-0107-01			C	ollectior	Date: 04/10/	14 12:30	PM	
Lab Order:	1404133	Matrix: SOIL							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	421	68.7	137		mg/Kg-dry	5	04/21/14 09:10 PM	
TPH-ORO >C2	8-C35	137	20.6	68.7		mg/Kg-dry	5	04/21/14 09:10 PM	
Surr: Isoprop	bylbenzene	66.8	0	47-142		%REC	5	04/21/14 09:10 PM	
Surr: Octaco	sane	363	0	25-162	S	%REC	5	04/21/14 09:10 PM	
TPH PURGEA	BLE BY GC - SOIL		M801	5V			Analyst: AV		
Gasoline Range	e Organics	ND	0.282	0.424		mg/Kg-dry	1	04/13/14 02:32 AM	
Surr: Tetrach	nlorethene	96.7	0	70-134		%REC	1	04/13/14 02:32 AM	
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV	
Chloride		ND	68.6	68.6		mg/Kg-dry	10	04/17/14 12:42 PM	
PERCENT MO	ISTURE		D22	16				Analyst: JL	
Percent Moistu	re	33.3	0	0		WT%	1	04/18/14 11:46 AM	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WEB	Comp		
Project:	Legacy Pit				L	ab ID: 14041	33-42		
Project No:	14-0107-01	Collection Date: 04/10/14 01:00 PM							
Lab Order:	1404133	Matrix: SOIL							
Analyses		Result MDL RL Qual Units DF Date An						Date Analyzed	
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	24.8	10.9	21.7		mg/Kg-dry	1	04/18/14 02:59 PM	
TPH-ORO >C2	8-C35	ND	3.26	10.9		mg/Kg-dry	1	04/18/14 02:59 PM	
Surr: Isoprop	bylbenzene	72.0	0	47-142		%REC	1	04/18/14 02:59 PM	
Surr: Octaco	sane	92.9	0	25-162		%REC	1	04/18/14 02:59 PM	
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV	
Gasoline Rang	e Organics	ND	0.227	0.341		mg/Kg-dry	1	04/13/14 02:57 AM	
Surr: Tetrach	nlorethene	101	0	70-134		%REC	1	04/13/14 02:57 AM	
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV		
Chloride		86.1	51.6	51.6		mg/Kg-dry	10	04/17/14 12:57 PM	
PERCENT MOISTURE			D22	16				Analyst: JL	
Percent Moistu	re	14.9	0	0		WT%	1	04/18/14 11:46 AN	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- С Sample Result or QC discussed in the Case Narrative
- Е TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

Parameter not NELAC certified Ν

- В Analyte detected in the associated Method Blank
- DF **Dilution Factor**
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Percent Moisture

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WEA	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-43	
Project No:	14-0107-01	Collection Date: 04/10/14 01:30 PM Matrix: SOIL						
Lab Order:	1404133							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
IPH EXTRACTABLE BY GC - SOIL		M8015D				Analyst: AS		
TPH-DRO C10-C28		105	13.0	26.0		mg/Kg-dry	1	04/18/14 03:44 PM
TPH-ORO >C2	8-C35	25.2	3.90	13.0		mg/Kg-dry	1	04/18/14 03:44 PM
Surr: Isoprop	bylbenzene	75.0	0	47-142		%REC	1	04/18/14 03:44 PM
Surr: Octaco	sane	141	0	25-162		%REC	1	04/18/14 03:44 PM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Range	e Organics	ND	0.261	0.392		mg/Kg-dry	1	04/13/14 03:22 AM
Surr: Tetrachlorethene		104	0	70-134		%REC	1	04/13/14 03:22 AM
ANIONS BY IC METHOD - SOIL			SW90	56A				Analyst: AV
Chloride		81.9	62.4	62.4		mg/Kg-dry	10	04/17/14 01:12 PM
PERCENT MOISTURE			D22 ⁻	16				Analyst: JL

0

0

WT%

26.4

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

04/18/14 11:46 AM

1

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: WEC	Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-44	
Project No:	14-0107-01	Collection Date: 04/10/14 02:00 PM Matrix: SOIL						
Lab Order:	1404133							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	TABLE BY GC - SOIL		M801	5D				Analyst: AS
TPH-DRO C10	-C28	629	50.9	102		mg/Kg-dry	5	04/21/14 08:53 PM
TPH-ORO >C2	28-C35	229	15.3	50.9		mg/Kg-dry	5	04/21/14 08:53 PM
Surr: Isoprop	bylbenzene	79.7	0	47-142		%REC	5	04/21/14 08:53 PM
Surr: Octaco	osane	336	0	25-162	S	%REC	5	04/21/14 08:53 PM
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Rang	e Organics	ND	0.206	0.309		mg/Kg-dry	1	04/13/14 03:46 AN
Surr: Tetrach	hlorethene	95.8	0	70-134		%REC	1	04/13/14 03:46 AN
ANIONS BY IC METHOD - SOIL		SW9056A						Analyst: AV
Chloride		229	49.0	49.0		mg/Kg-dry	10	04/17/14 01:26 PM
PERCENT MOISTURE			D22	16				Analyst: JL
Percent Moistu	re	8.65	0	0		WT%	1	04/18/14 11:46 AN

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: WED	Comp		
Project:	Legacy Pit				L	ab ID: 14041	33-45		
Project No:	14-0107-01	Collection Date: 04/10/14 02:30 PM Matrix: SOIL							
Lab Order:	1404133								
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AS	
TPH-DRO C10	-C28	592	68.5	137		mg/Kg-dry	5	04/21/14 09:44 PM	
TPH-ORO >C2	8-C35	80.1	20.6	68.5		mg/Kg-dry	5	04/21/14 09:44 PM	
Surr: Isoprop	bylbenzene	69.6	0	47-142		%REC	5	04/21/14 09:44 PM	
Surr: Octaco	sane	225	0	25-162	S	%REC	5	04/21/14 09:44 PM	
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV	
Gasoline Range	e Organics	0.349	0.272	0.408	J	mg/Kg-dry	1	04/13/14 04:10 AM	
Surr: Tetrach	nlorethene	91.7	0	70-134		%REC	1	04/13/14 04:10 AM	
ANIONS BY IC METHOD - SOIL		SW9056A					Analyst: AV		
Chloride		328	67.8	67.8		mg/Kg-dry	10	04/17/14 01:41 PM	
PERCENT MOISTURE			D22	16				Analyst: JL	
Percent Moistu	re	29.8	0	0		WT%	1	04/18/14 11:46 AM	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Percent Moisture

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: CPA (Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-46	
Project No:	14-0107-01			C	ollection	n Date: 04/10/	14 03:00	PM
Lab Order:	1404133				Ν	Aatrix: SOIL		
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL			M801	5D				Analyst: AS
TPH-DRO C10-C28		697	63.1	126		mg/Kg-dry	5	04/18/14 03:08 PM
TPH-ORO >C2	8-C35	85.0	18.9	63.1		mg/Kg-dry	5	04/18/14 03:08 PM
Surr: Isoprop	ylbenzene	64.2	0	47-142		%REC	5	04/18/14 03:08 PM
Surr: Octaco	sane	187	0	25-162	S	%REC	5	04/18/14 03:08 PM
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: AV
Gasoline Range	e Organics	ND	0.260	0.390		mg/Kg-dry	1	04/13/14 04:35 AM
Surr: Tetrach	hlorethene	105	0	70-134		%REC	1	04/13/14 04:35 AM
ANIONS BY IC METHOD - SOIL			SW90	56A				Analyst: AV
Chloride		239	61.3	61.3		mg/Kg-dry	10	04/17/14 01:55 PM
PERCENT MO	PERCENT MOISTURE		D22 ⁻	16				Analyst: JL

0

0

WT%

23.7

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

04/18/14 11:46 AM

1

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: CPB C	Comp				
Project:	Legacy Pit				L	ab ID: 14041	33-47				
Project No:	14-0107-01			C	ollectior	Date: 04/10/	14 03:30 1	PM			
Lab Order:	1404133	Matrix: SOIL									
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed			
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS			
TPH-DRO C10	-C28	1200	99.9	200		mg/Kg-dry	10	04/21/14 10:18 PM			
TPH-ORO >C2	8-C35	578	30.0	99.9		mg/Kg-dry	10	04/21/14 10:18 PM			
Surr: Isoprop	bylbenzene	67.2	0	47-142		%REC	10	04/21/14 10:18 PM			
Surr: Octaco	sane	644	0	25-162	S	%REC	10	04/21/14 10:18 PM			
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV			
Gasoline Rang	e Organics	ND	0.199	0.299		mg/Kg-dry	1	04/13/14 04:59 AM			
Surr: Tetrach	hlorethene	102	0	70-134		%REC	1	04/13/14 04:59 AM			
ANIONS BY IC	METHOD - SOIL		SW90	56A				Analyst: AV			
Chloride		443	45.1	45.1		mg/Kg-dry	10	04/17/14 02:10 PM			
PERCENT MO	ISTURE		D22 ⁻	16				Analyst: JL			
Percent Moistu	re	3.25	0	0		WT%	1	04/18/14 11:46 AM			

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: CPC C	Comp				
Project:	Legacy Pit				L	ab ID: 14041	33-48				
Project No:	14-0107-01			C	ollection	Date: 04/10/	14 04:00	PM			
Lab Order:	1404133	Matrix: SOIL									
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed			
TPH EXTRACI	ABLE BY GC - SOIL		M801	5D				Analyst: AS			
TPH-DRO C10	-C28	1020	59.1	118		mg/Kg-dry	5	04/21/14 09:02 PM			
TPH-ORO >C2	8-C35	227	17.7	59.1		mg/Kg-dry	5	04/21/14 09:02 PM			
Surr: Isoprop	bylbenzene	72.3	0	47-142		%REC	5	04/21/14 09:02 PM			
Surr: Octaco	sane	315	0	25-162	S	%REC	5	04/21/14 09:02 PM			
TPH PURGEAI	BLE BY GC - SOIL		M801	5V				Analyst: AV			
Gasoline Rang	e Organics	2.41	0.209	0.313		mg/Kg-dry	1	04/13/14 05:23 AM			
Surr: Tetrach	nlorethene	88.0	0	70-134		%REC	1	04/13/14 05:23 AM			
ANIONS BY IC	METHOD - SOIL		SW90	56A				Analyst: AV			
Chloride		354	57.5	57.5		mg/Kg-dry	10	04/17/14 02:24 PM			
PERCENT MO	ISTURE		D22	16				Analyst: JL			
Percent Moistu	re	16.3	0	0		WT%	1	04/18/14 11:46 AM			

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Percent Moisture

CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: CPD (Comp	
Project:	Legacy Pit				L	ab ID: 14041	33-49	
Project No:	14-0107-01			C	ollection	Date: 04/10/	14 04:30 1	PM
Lab Order:	1404133				Ν	Aatrix: SOIL		
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACI	TABLE BY GC - SOIL		M80 1	5D				Analyst: AS
TPH-DRO C10-C28		1300	229	459		mg/Kg-dry	20	04/21/14 10:26 PM
TPH-ORO >C2	28-C35	501	68.8	229		mg/Kg-dry	20	04/21/14 10:26 PM
Surr: Isoprop	bylbenzene	120	0	47-142		%REC	20	04/21/14 10:26 PM
Surr: Octaco	osane	1120	0	25-162	S	%REC	20	04/21/14 10:26 PM
TPH PURGEA	BLE BY GC - SOIL		M80 1	5V				Analyst: AV
Gasoline Rang	e Organics	0.785	0.232	0.348		mg/Kg-dry	1	04/13/14 05:48 AM
Surr: Tetrach	nlorethene	99.2	0	70-134		%REC	1	04/13/14 05:48 AM
ANIONS BY IC METHOD - SOIL			SW90	56A				Analyst: AV
Chloride		194	54.5	54.5		mg/Kg-dry	10	04/17/14 03:02 PM
PERCENT MO	ISTURE		D22	16				Analyst: JL
			_					

0

0

WT%

18.8

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

04/18/14 11:46 AM

1

Date: 28-Apr-14

DIIL Alla	ytical, Inc.					1		
CLIENT:	Larson & Associates			Cli	ent Sam	ple ID: MW-1		
Project:	Legacy Pit				L	ab ID: 1404133	-50	
Project No:	14-0107-01			C	ollection	Date: 04/10/14	05:00	PM
Lab Order:	1404133				N	Matrix: AQUEO	US	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
	GANICS BY GC		SW80)21B				Analyst: LM
Benzene		ND	0.000800	0.00200		mg/L	1	04/14/14 05:51 PM
Ethylbenzene		ND	0.00200	0.00600		mg/L	1	04/14/14 05:51 PM
Toluene		ND	0.00200	0.00600		mg/L	1	04/14/14 05:51 PM
Xylenes, Total		ND	0.00300	0.00900		mg/L	1	04/14/14 05:51 PM
Surr: a,a,a-Trifluorotoluene		101	0	87-113		%REC	1	04/14/14 05:51 PM
TRACE METALS: ICP-MS - WATER			SW60)20A				Analyst: SW
Calcium		168	5.00	15.0		mg/L	50	04/16/14 08:33 PM
Magnesium		195	5.00	15.0		mg/L	50	04/16/14 08:33 PM
Potassium		20.9	0.100	0.300		mg/L	1	04/16/14 06:26 PM
Sodium		840	5.00	15.0		mg/L	50	04/16/14 08:33 PM
ANIONS BY IC	METHOD - WATER		E3	00				Analyst: AV
Chloride		1480	30.0	100		mg/L	100	04/14/14 04:17 PM
Nitrate-N		ND	0.100	0.500		mg/L	1	04/11/14 06:04 PM
Sulfate		509	10.0	30.0		mg/L	10	04/11/14 06:33 PM
ALKALINITY			M232	20 B				Analyst: LM
Alkalinity, Bicar	bonate (As CaCO3)	673	12.5	25.0		mg/L @ pH 4.52	1	04/15/14 03:04 PM
Alkalinity, Carbo	onate (As CaCO3)	ND	12.5	25.0		mg/L @ pH 4.52	1	04/15/14 03:04 PM
Alkalinity, Hydro	oxide (As CaCO3)	ND	12.5	25.0		mg/L @ pH 4.52	1	04/15/14 03:04 PM
Alkalinity, Total	(As CaCO3)	673	25.0	25.0		mg/L @ pH 4.52	1	04/15/14 03:04 PM
TOTAL DISSOI	LVED SOLIDS		M254	40C				Analyst: MK
Total Dissolved Filterable)	Solids (Residue,	3510	50.0	50.0		mg/L	1	04/16/14 09:40 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Xylenes, Total

Surr: a,a,a-Trifluorotoluene

Date: 28-Apr-14

1

1

04/14/14 06:11 PM

04/14/14 06:11 PM

mg/L

%REC

CLIENT:	Larson & Associates			Cli	ent Samj	ple ID: Trip				
Project:	Legacy Pit				L	ab ID: 1404	133-51			
Project No:	14-0107-01		Collection Date: 04/10/14							
Lab Order:	1404133		Matrix: TRIP BLANK							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed		
	GANICS BY GC		SW80	21B				Analyst: LM		
Benzene		ND	0.000800	0.00200 mg/L		mg/L	1	04/14/14 06:11 PN		
Ethylbenzene		ND	0.00200	0.00600		mg/L	1	04/14/14 06:11 PN		

0.00900

87-113

0.00300

0

ND

91.3

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Page 1 of 36

CLIENT: Larson & Associates

1404133

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Pit

Work Order:

RunID: GC12_140421C

The QC data in batch 62980 applies to the following samples: 1404133-21A, 1404133-22A, 1404133-23A, 1404133-24A, 1404133-25A, 1404133-26A, 1404133-27A, 1404133-28A, 1404133-29A, 1404133-30A, 1404133-31A, 1404133-32A, 1404133-33A, 1404133-34A, 1404133-35A, 1404133-36A, 1404133-37A, 1404133-38A, 1404133-39A, 1404133-40A

Sample ID MB-62980	Batch ID:	62980		TestNo	: M80	15D		Units:	mg/Kg
SampType: MBLK	Run ID:	GC12_'	140421C	Analys	is Date: 4/21	/2014 8:11:	28 PM	Prep Date:	4/17/2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLimit Qual
TPH-DRO C10-C28		ND	10.0						
TPH-ORO >C28-C35		ND	10.0						
Surr: Isopropylbenzene		5.50		7.500		73.3	47	142	
Surr: Octacosane		7.57		7.500		101	25	162	

Qualifiers:

В Analyte detected in the associated Method Blank

- Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit
 - Reporting Limit
- RL
- J Analyte detected between SDL and RL
- Dilution Factor DF
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - Ν Parameter not NELAC certified

ANALYTICAL QC SUMMARY REPORT

Work Order: 1404133 **Project:**

Legacy Pit

RunID: GC12_140421C

The QC data in batch 62981 applies to the following samples: 1404133-41A, 1404133-42A, 1404133-43A, 1404133-44A, 1404133-45A, 1404133-46A, 1404133-47A, 1404133-48A, 1404133-49A

Sample ID MB-62981	Batch ID:	62981		TestNo	: M80	15D		Units:	mg/Kg
SampType: MBLK	Run ID:	GC12_	140421C	Analysi	s Date: 4/21	/2014 8:19:	56 PM	Prep Date:	4/17/2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
TPH-DRO C10-C28		4.87	10.0						
TPH-ORO >C28-C35		ND	10.0						
Surr: Isopropylbenzene		4.84		7.500		64.5	47	142	
Surr: Octacosane		7.22		7.500		96.2	25	162	

Qualifiers:

Analyte detected in the associated Method Blank

- Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit
- RL Reporting Limit

В

- Analyte detected between SDL and RL J
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - Ν Parameter not NELAC certified

Page 2 of 36

Work Order:1404133Project:Legacy Pit

ANALYTICAL QC SUMMARY REPORT

Page 3 of 36

RunID: GC12_140421C

										=
Sample ID ICV-140421	Batch ID:	R72554		TestNo:	M80	015D		Units:	mg/Kg	
SampType: ICV	Run ID:	GC12_1	40421C	Analysis	5 Date: 4/21	1/2014 7:54:	32 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qu	ıal
TPH-DRO C10-C28		546	10.0	500.0	0	109	80	120		
Surr: Isopropylbenzene		26.2		25.00		105	80	120		
Surr: Octacosane		27.4		25.00		110	80	120		
Sample ID CCV1-140421	Batch ID:	R72554		TestNo:	M80	015D		Units:	mg/Kg	
SampType: ССV	Run ID:	GC12_1	40421C	Analysis	a Date: 4/21	1/2014 10:09	9:46 PM	Prep Date	:	
Analyte	I	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qu	ıal
TPH-DRO C10-C28		327	10.0	250.0	0	131	80	120	S	3
Surr: Isopropylbenzene		16.7		12.50		133	80	120	S	3
Surr: Octacosane		16.9		12.50		135	80	120	S	3
Sample ID CCV2-140421	Batch ID:	R72554		TestNo:	M80	015D		Units:	mg/Kg	
SampType: CCV	Run ID:	GC12_1	40421C	Analysis	a Date: 4/21	1/2014 11:00):35 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qu	ıal
TPH-DRO C10-C28		291	10.0	250.0	0	117	80	120		
Surr: Isopropylbenzene		14.2		12.50		113	80	120		
Surr: Octacosane		13.6		12.50		109	80	120		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified

ANALYTICAL QC SUMMARY REPORT

Work Order: 1404133 **Project:**

Legacy Pit

RunID: GC15_140417B

The QC data in batch 62949 applies to the following samples: 1404133-01A, 1404133-02A, 1404133-03A, 1404133-04A, 1404133-05A, 1404133-06A, 1404133-07A, 1404133-08A, 1404133-09A, 1404133-10A, 1404133-11A, 1404133-12A, 1404133-13A, 1404133-14A, 1404133-15A, 1404133-16A, 1404133-17A, 1404133-18A, 1404133-19A, 1404133-20A

Sample ID LCS-62949	Batch ID:	62949		TestNo	: M8 0	015D		Units:	mg/K	g
SampType: LCS	Run ID:	GC15_	140417B	Analys	is Date: 4/1 7	7/2014 12:43	3:05 PM	Prep Date:	4/16/2	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	PDLimit Qual
TPH-DRO C10-C28		105	10.0	125.0	0	84.3	50	114		
Surr: Isopropylbenzene		5.69		7.500		75.8	47	142		
Surr: Octacosane		5.66		7.500		75.5	25	162		
Sample ID 1404133-20AMS	Batch ID:	62949		TestNo	: M8 0	015D		Units:	mg/K	g-dry
SampType: MS	Run ID:	GC15_	140417B	Analys	s Date: 4/17	7/2014 12:52	2:04 PM	Prep Date:	4/16/2	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	PDLimit Qual
TPH-DRO C10-C28		116	11.1	138.3	11.20	76.0	50	114		
Surr: Isopropylbenzene		5.82		8.298		70.2	47	142		
Surr: Octacosane		6.94		8.298		83.7	25	162		
Sample ID 1404133-20AMSD	Batch ID:	62949		TestNo	: M8 0	015D		Units:	mg/K	g-dry
SampType: MSD	Run ID:	GC15_	140417B	Analys	is Date: 4/17	7/2014 1:01:	03 PM	Prep Date:	4/16/2	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	PDLimit Qual
TPH-DRO C10-C28		116	10.8	135.1	11.20	77.8	50	114	0.042	30
Surr: Isopropylbenzene		5.78		8.104		71.3	47	142	0	0
Surr: Octacosane		6.97		8.104		86.0	25	162	0	0
Sample ID MB-62949	Batch ID:	62949		TestNo	: M8 0	015D		Units:	mg/K	g
SampType: MBLK	Run ID:	GC15_	140417B	Analys	is Date: 4/1 7	7/2014 1:19:	01 PM	Prep Date:	4/16/2	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	PDLimit Qual
TPH-DRO C10-C28		ND	10.0							
TPH-ORO >C28-C35		ND	10.0							
Surr: Isopropylbenzene		5.23		7.500		69.7	47	142		
Surr: Octacosane		5.86		7.500		78.2	25	162		

Qualifiers:

В Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

- Not Detected at the Method Detection Limit ND
- RL Reporting Limit
- J Analyte detected between SDL and RL
- Dilution Factor DF
- MDL Method Detection Limit R RPD outside accepted control limits

Page 4 of 36

- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

Work Order: 1404133 **Project:** Legacy Pit

ANALYTICAL QC SUMMARY REPORT

GC15_140417B **RunID:**

Run ID:	CC15 14							
	GC15_14	0417B	Analysi	s Date: 4/17	/2014 12:33	3:17 PM	Prep Date:	
[Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
	475	10.0	500.0	0	95.1	80	120	
	0	10.0	0					
	24.5		25.00		97.9	80	120	
	21.2		25.00		84.9	80	120	
Batch ID:	R72456		TestNo	: M80	15D		Units:	mg/Kg
Run ID:	GC15_14	0417B	Analysi	s Date: 4/17	/2014 3:55:	38 PM	Prep Date:	
I	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
	251	10.0	250.0	0	101	80	120	
(0.0543	10.0	0					
	12.5		12.50		99.6	80	120	
	10.5		12.50		84.1	80	120	
Batch ID:	R72456		TestNo	: M80	15D		Units:	mg/Kg
Run ID:	GC15_14	0417B	Analysi	s Date: 4/17	/2014 5:43:	20 PM	Prep Date:	
	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
	234	10.0	250.0	0	93.5	80	120	
	0	10.0	0					
	12.1		12.50		96.9	80	120	
	10.5		12.50		83.7	80	120	
Batch ID:	R72456		TestNo	: M80	15D		Units:	mg/Kg
Run ID:	GC15_14	0417B	Analysi	s Date: 4/18	/2014 9:47:	34 AM	Prep Date:	
I	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
	468	10.0	500.0	0	93.5	80	120	
	1.26	10.0	0					
	24.8		25.00		99.1	80	120	
	21.3		25.00		85.2	80	120	
Batch ID:	R72456		TestNo	: M80	15D		Units:	mg/Kg
Run ID:	GC15_14	0417B	Analysi	s Date: 4/18	/2014 11:3	5:16 AM	Prep Date:	
1	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
	260	10.0	250.0	0	104	80	120	
	0.145	10.0	0					
	13.4		12.50		107	80	120	
	Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID:	475 0 24.5 21.2 Batch ID: R72456 Run ID: 251 0.0543 12.5 10.5 Batch ID: R72456 Run ID: 234 0 12.1 10.5 8 Batch ID: R72456 Run ID: 234 0 12.1 10.5 10.5 Batch ID: R72456 Run ID: GC15_14 0 12.1 10.5 3 Batch ID: R72456 Run ID: 468 1.26 24.8 21.3 21.3 Batch ID: R72456 Run ID: GC15_14 Hatch ID: GC15_14 24.8 21.3 Batch ID: R72456 Run ID: GC15_14 GC15_14 3 GC15_14 3 GC15_14 3	475 10.0 0 10.0 24.5 21.2 Batch ID: R72456 Run ID: 251 10.0 0.0543 10.0 0.0543 10.0 0.0543 10.0 12.5 10.0 12.5 10.5 Batch ID: R72456 Run ID: 6C15_140417B Batch ID: 234 10.0 12.1 10.5 10.0 12.5 10.5 10.0 Batch ID: R234 10.0 12.1 10.5 10.0 12.1 10.5 10.0 12.1 10.5 10.0 12.1 10.5 10.0 12.1 10.5 10.0 12.1 10.5 10.0 12.1 10.5 10.0 12.1 10.5 10.0 12.1 10.5 10.0 12.2 10.1 10.0 24.8 10.0 10.0 24.8 1.3 10.0	475 10.0 500.0 0 10.0 0 24.5 25.00 21.2 25.00 Batch ID: $\mathbf{R72456}$ TestNo Run ID: $\mathbf{GC15_140417B}$ Analysi 0.0543 10.0 250.0 0.0543 10.0 250.0 0.0543 10.0 0 12.5 12.50 12.50 10.5 12.50 12.50 Batch ID: $\mathbf{R72456}$ TestNo Run ID: $\mathbf{GC15_140417B}$ Analysi Batch ID: $\mathbf{R72456}$ TestNo Run ID: $\mathbf{GC15_140417B}$ Analysi Batch ID: $\mathbf{R72456}$ TestNo Run ID: $\mathbf{GC15_140417B}$ Analysi Batch ID: $\mathbf{R72456}$ TestNo Run ID: $\mathbf{GC15_140417B}$ $\mathbf{SPK value}$ 468 10.0 00.00 12.6 10.0 0 $\mathbf{Rrouline}$ $\mathbf{R72456}$ TestNo Run ID: $\mathbf{R72456}$ $\mathbf{Rcouline}$ $\mathbf{R72456}$ <td>475 10.0 500.0 0 0 10.0 0 24.5 25.00 24.5 25.00 25.00 25.00 Batch ID: R72456 TestN: M80 Run ID: GC15_140417B Analysis Date: 4/17 0.0543 10.0 250.0 0 0.0543 10.0 0 12.50 12.5 12.50 12.50 12.50 Batch ID: R72456 TestNo: M80 Run ID: GC15_140417B Analysis Date: 4/17 Batch ID: R72456 TestNo: M80 Run ID: GC15_140417B Analysis Date: 4/17 Batch ID: R72456 TestNo: M80 Run ID: GC15_140417B Analysis Date: 4/18 Run ID: GC1</td> <td>475 10.0 500.0 0 95.1 0 10.0 0 97.9 24.5 25.00 97.9 21.2 25.00 84.9 Batch ID: R72456 TestNo: M8015D Run ID: GC15_140417B Analysis Date: 4/17/2014 3:55: Quint Quint 251 0.0 250.0 0 10.1 0.0543 10.0 250.0 0 10.1 99.6 10.5 12.50 99.6 10.5 12.50 99.6 10.5 12.50 99.6 10.5 12.50 99.6 Run ID: GC15_140417B Analysis Date: 4/17/2014 5:43: 96.9 Quint 10.0 0 93.5 96.9 10.5 12.50 96.9 96.9 10.5 12.50 96.9 96.9 10.5 12.50 96.9 10.5 12.50 96.9 10.5 12.50 96.9 Quint 25.00 0 91.4 Run ID: GC15_140417B SPK</td> <td>475 10.0 500.0 0 95.1 80 0 10.0 0 97.9 80 24.5 25.00 84.9 80 Batch ID: R72456 TestNo: M8015J Run ID: GC15_140417B Analysis Date: 4/17/2014 3:55:38 PM PM 251 10.0 250.0 0 101 80 0.0543 10.0 250.0 0 101 80 0.0543 10.0 250.0 0 101 80 0.0543 10.0 0 12.5 99.6 80 12.5 12.50 12.50 99.6 80 10.5 12.50 84.1 80 Batch ID: R72456 TestNo: M8015D PM Run ID: GC15_140417B Analysis Date: 4/17/2014 5:43:20 PM 80 10.5 12.50 80 80 80 10.5 12.50 80 80 80 10.5 12.50 80 80 80 10.5 12.50 80</td> <td>475 10.0 500.0 0 95.1 80 120 24.5 25.00 97.9 80 120 24.5 25.00 84.9 80 120 Batch ID: R72456 TestNo: M8015D Units: Run ID: GC15_140417B Analysis Date: 4/17/2014 3:55:38 PM Prep Date: 251 10.0 250.0 0 10 80 120 0.0543 10.0 250.0 0 101 80 120 12.5 12.50 99.6 80 120 10.5 12.50 99.6 80 120 10.5 12.50 99.6 80 120 10.5 12.50 99.6 80 120 Batch ID: R72456 TestNo: M8015D Units: Nere Date: Run ID: GC15_140417B Analysis Date: 4/17/2014 5:43:20 PM Prep Date: 120 10.5 REsult RL SPK value Ref Val %RE</td>	475 10.0 500.0 0 0 10.0 0 24.5 25.00 24.5 25.00 25.00 25.00 Batch ID: R72456 TestN: M80 Run ID: GC15_140417B Analysis Date: 4/17 0.0543 10.0 250.0 0 0.0543 10.0 0 12.50 12.5 12.50 12.50 12.50 Batch ID: R72456 TestNo: M80 Run ID: GC15_140417B Analysis Date: 4/17 Batch ID: R72456 TestNo: M80 Run ID: GC15_140417B Analysis Date: 4/17 Batch ID: R72456 TestNo: M80 Run ID: GC15_140417B Analysis Date: 4/18 Run ID: GC1	475 10.0 500.0 0 95.1 0 10.0 0 97.9 24.5 25.00 97.9 21.2 25.00 84.9 Batch ID: R72456 TestNo: M8015D Run ID: GC15_140417B Analysis Date: 4/17/2014 3:55: Quint Quint 251 0.0 250.0 0 10.1 0.0543 10.0 250.0 0 10.1 99.6 10.5 12.50 99.6 10.5 12.50 99.6 10.5 12.50 99.6 10.5 12.50 99.6 Run ID: GC15_140417B Analysis Date: 4/17/2014 5:43: 96.9 Quint 10.0 0 93.5 96.9 10.5 12.50 96.9 96.9 10.5 12.50 96.9 96.9 10.5 12.50 96.9 10.5 12.50 96.9 10.5 12.50 96.9 Quint 25.00 0 91.4 Run ID: GC15_140417B SPK	475 10.0 500.0 0 95.1 80 0 10.0 0 97.9 80 24.5 25.00 84.9 80 Batch ID: R72456 TestNo: M8015J Run ID: GC15_140417B Analysis Date: 4/17/2014 3:55:38 PM PM 251 10.0 250.0 0 101 80 0.0543 10.0 250.0 0 101 80 0.0543 10.0 250.0 0 101 80 0.0543 10.0 0 12.5 99.6 80 12.5 12.50 12.50 99.6 80 10.5 12.50 84.1 80 Batch ID: R72456 TestNo: M8015D PM Run ID: GC15_140417B Analysis Date: 4/17/2014 5:43:20 PM 80 10.5 12.50 80 80 80 10.5 12.50 80 80 80 10.5 12.50 80 80 80 10.5 12.50 80	475 10.0 500.0 0 95.1 80 120 24.5 25.00 97.9 80 120 24.5 25.00 84.9 80 120 Batch ID: R72456 TestNo: M8015D Units: Run ID: GC15_140417B Analysis Date: 4/17/2014 3:55:38 PM Prep Date: 251 10.0 250.0 0 10 80 120 0.0543 10.0 250.0 0 101 80 120 12.5 12.50 99.6 80 120 10.5 12.50 99.6 80 120 10.5 12.50 99.6 80 120 10.5 12.50 99.6 80 120 Batch ID: R72456 TestNo: M8015D Units: Nere Date: Run ID: GC15_140417B Analysis Date: 4/17/2014 5:43:20 PM Prep Date: 120 10.5 REsult RL SPK value Ref Val %RE

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

- Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor

- MDL Method Detection Limit R RPD outside accepted control limits
 - S

Page 5 of 36

Spike Recovery outside control limits

Ν Parameter not NELAC certified

ANALYTICAL QC SUMMARY REPORT

Work Order: 1404133 **Project:**

Legacy Pit

RunID: GC15_140418A

The QC data in batch 62980 applies to the following samples: 1404133-21A, 1404133-22A, 1404133-23A, 1404133-24A, 1404133-25A, 1404133-26A, 1404133-27A, 1404133-28A, 1404133-29A, 1404133-30A, 1404133-31A, 1404133-32A, 1404133-33A, 1404133-34A, 1404133-35A, 1404133-36A, 1404133-37A, 1404133-38A, 1404133-39A, 1404133-40A

Sample ID LCS-62980	Batch ID:	62980		TestNo): M8 (015D		Units:	mg/Kg	9
SampType: LCS	Run ID:	GC15_	140418A	Analys	is Date: 4/18	8/2014 11:4	7:51 AM	Prep Date:	4/17/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
TPH-DRO C10-C28		99.9	10.0	125.0	0	79.9	50	114		
Surr: Isopropylbenzene		5.38		7.500		71.8	47	142		
Surr: Octacosane		5.84		7.500		77.8	25	162		
Sample ID 1404133-22AMS	Batch ID:	62980		TestNo): M8 (015D		Units:	mg/Kg	g-dry
SampType: MS	Run ID:	GC15_	140418A	Analys	is Date: 4/18	8/2014 12:0	5:50 PM	Prep Date:	4/17/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-DRO C10-C28		108	10.1	126.7	0	85.1	50	114		
Surr: Isopropylbenzene		5.86		7.599		77.0	47	142		
Surr: Octacosane		6.71		7.599		88.3	25	162		
Sample ID 1404133-22AMSD	Batch ID:	62980		TestNo): M8 0	015D		Units:	mg/Kg	g-dry
SampType: MSD	Run ID:	GC15_	140418A	Analys	is Date: 4/18	8/2014 12:14	4:48 PM	Prep Date:	4/17/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-DRO C10-C28		113	10.6	132.4	0	85.5	50	114	5.00	30
Surr: Isopropylbenzene		6.28		7.945		79.0	47	142	0	0
Surr: Octacosane		7.04		7.945		88.6	25	162	0	0
Sample ID MB-62980	Batch ID:	62980		TestNo): M8 0	015D		Units:	mg/Kg	9
SampType: MBLK	Run ID:	GC15_	140418A	Analys	is Date: 4/18	8/2014 12:5	0:42 PM	Prep Date:	4/17/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-DRO C10-C28		5.25	10.0							
TPH-ORO >C28-C35		ND	10.0							
Surr: Isopropylbenzene		4.75		7.500		63.4	47	142		
Surr: Octacosane		10.1		7.500		135	25	162		

Qualifiers:

В Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

Not Detected at the Method Detection Limit ND

RL Reporting Limit

- J Analyte detected between SDL and RL
- Dilution Factor DF

MDL Method Detection Limit R

RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAC certified Page 6 of 36

1404133

Legacy Pit

Work Order:

Project:

ANALYTICAL QC SUMMARY REPORT

GC15_140418A

RunID:

The QC data in batch 62981 applies to the following samples: 1404133-41A, 1404133-42A, 1404133-43A, 1404133-44A, 1404133-45A, 1404133-46A, 1404133-47A, 1404133-48A, 1404133-49A

Sample ID LCS-62981	Batch ID:	62981		TestNo	M80	015D		Units:	mg/K	g	
SampType: LCS	Run ID:	GC15_	140418A	Analysi	s Date: 4/18	8/2014 11:50	6:51 AM	Prep Date:	4/17/2	2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimi	t Qual
TPH-DRO C10-C28		97.1	10.0	125.0	0	77.6	50	114			
Surr: Isopropylbenzene		5.03		7.500		67.1	47	142			
Surr: Octacosane		5.72		7.500		76.3	25	162			
Sample ID 1404133-47AMS	Batch ID:	62981		TestNo	M80	015D		Units:	mg/K	g-dry	
SampType: MS	Run ID:	GC15_	140418A	Analysi	s Date: 4/18	B/2014 12:23	3:47 PM	Prep Date:	4/17/2	2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimi	t Qual
TPH-DRO C10-C28		966	49.1	122.7	1197	-189	50	114			S
Surr: Isopropylbenzene		10.6		7.362		144	47	142			S
Surr: Octacosane		35.7		7.362		485	25	162			S
Sample ID 1404133-47AMSD	Batch ID:	62981		TestNo	M80	015D		Units:	mg/K	g-dry	
SampType: MSD	Run ID:	GC15_	140418A	Analysi	s Date: 4/18	8/2014 12:32	2:46 PM	Prep Date:	4/17/2	2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimi	t Qual
TPH-DRO C10-C28		986	49.9	124.8	1197	-169	50	114	2.07	30	S
Surr: Isopropylbenzene		5.73		7.490		76.6	47	142	0	0	
Surr: Octacosane		48.1		7.490		643	25	162	0	0	S
Sample ID MB-62981	Batch ID:	62981		TestNo	M80	015D		Units:	mg/K	g	
SampType: MBLK	Run ID:	GC15_	140418A	Analysi	s Date: 4/18	8/2014 12:59	9:40 PM	Prep Date:	4/17/2	2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimi	Qual
TPH-DRO C10-C28		3.78	10.0								
TPH-ORO >C28-C35		ND	10.0								
Surr: Isopropylbenzene		4.35		7.500		58.1	47	142			
Surr: Octacosane		6.21		7.500		82.9	25	162			

Qualifiers:

Analyte detected in the associated Method Blank В

Analyte detected between MDL and RL J ND

- Not Detected at the Method Detection Limit
- RL Reporting Limit
- Analyte detected between SDL and RL J
- DF Dilution Factor

MDL Method Detection Limit R

- RPD outside accepted control limits
- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

Page 7 of 36

Work Order:1404133Project:Legacy Pit

ANALYTICAL QC SUMMARY REPORT

RunID: GC15_140418A

Sample ID ICV-140418	Batch ID:	R72490		TestNo	: M8 0	015D		Units:	mg/Kg
SampType: ICV	Run ID:	GC15_1	40418A	Analysi	s Date: 4/18	3/2014 9:47:	:34 AM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
TPH-DRO C10-C28		468	10.0	500.0	0	93.5	80	120	
Surr: Isopropylbenzene		24.8		25.00		99.1	80	120	
Surr: Octacosane		21.3		25.00		85.2	80	120	
Sample ID CCV1-140418	Batch ID:	R72490		TestNo	: M8 0	015D		Units:	mg/Kg
SampType: CCV	Run ID:	GC15_1	40418A	Analysi	s Date: 4/18	3/2014 11:3	5:16 AM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
TPH-DRO C10-C28		260	10.0	250.0	0	104	80	120	
Surr: Isopropylbenzene		13.4		12.50		107	80	120	
Surr: Octacosane		10.8		12.50		86.2	80	120	
Sample ID CCV2-140418	Batch ID:	R72490		TestNo	: M8 0	015D		Units:	mg/Kg
Sample ID CCV2-140418 SampType: CCV	Batch ID: Run ID:	R72490 GC15_1	40418A			015D 3/2014 2:50:	:42 PM	Units: Prep Date	
	Run ID:		40418A RL					Prep Date	
SampType: CCV	Run ID:	GC15_1		Analysi	is Date: 4/18	3/2014 2:50:		Prep Date	9:
SampType: CCV Analyte	Run ID:	GC15_1 Result	RL	Analysi SPK value	is Date: 4/18 Ref Val	8/2014 2:50: %REC	LowLim	Prep Date	9:
SampType: CCV Analyte TPH-DRO C10-C28	Run ID:	GC15_1 Result 269	RL	Analysi SPK value 250.0	is Date: 4/18 Ref Val	3/2014 2:50 %REC 108	LowLim	Prep Date it HighLimit 120	9:
SampType: CCV Analyte TPH-DRO C10-C28 Surr: Isopropylbenzene	Run ID:	GC15_1 Result 269 13.7	RL	Analysi SPK value 250.0 12.50	Ref Val	8/2014 2:50 %REC 108 110	LowLim 80 80	Prep Date it HighLimit 120 120	9:
SampType: CCV Analyte TPH-DRO C10-C28 Surr: Isopropylbenzene Surr: Octacosane	Run ID:	GC15_1 Result 269 13.7 11.5	RL 10.0	Analysi SPK value 250.0 12.50 12.50 TestNo	Ref Val 0	8/2014 2:50 %REC 108 110 91.7	LowLim 80 80 80	Prep Date it HighLimit 120 120 120	wRPD RPDLimit Qual
SampType: CCV Analyte TPH-DRO C10-C28 Surr: Isopropylbenzene Surr: Octacosane Sample ID CCV3-140418	Run ID: Batch ID: Run ID:	GC15_1 Result 269 13.7 11.5 R72490	RL 10.0	Analysi SPK value 250.0 12.50 12.50 TestNo	Ref Val 0	8/2014 2:50 %REC 108 110 91.7	LowLim 80 80 80	Prep Date it HighLimit 120 120 120 Units: Prep Date	wRPD RPDLimit Qual
SampType: CCV Analyte TPH-DRO C10-C28 Surr: Isopropylbenzene Surr: Octacosane Sample ID CCV3-140418 SampType: CCV	Run ID: Batch ID: Run ID:	GC15_1 Result 269 13.7 11.5 R72490 GC15_1	RL 10.0 40418A	Analysi SPK value 250.0 12.50 12.50 TestNo Analysi	Ref Val 0 : M80 is Date: 4/18	8/2014 2:50 %REC 108 110 91.7 015D 8/2014 4:38	LowLim 80 80 80	Prep Date it HighLimit 120 120 120 Units: Prep Date	wRPD RPDLimit Qual
SampType: CCV Analyte TPH-DRO C10-C28 Surr: Isopropylbenzene Surr: Octacosane Sample ID CCV3-140418 SampType: CCV Analyte	Run ID: Batch ID: Run ID:	GC15_1 Result 269 13.7 11.5 R72490 GC15_1 Result	RL 10.0 40418A RL	Analysi SPK value 250.0 12.50 12.50 TestNo Analysi SPK value	is Date: 4/18 Ref Val 0 : M80 is Date: 4/18 Ref Val	3/2014 2:50 %REC 108 110 91.7 015D 3/2014 4:38	LowLim 80 80 80 :19 PM LowLim	Prep Date it HighLimit 120 120 Units: Prep Date it HighLimit	wRPD RPDLimit Qual

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 8 of 36

- S Spike Recovery outside control limits
- N Parameter not NELAC certified

ANALYTICAL QC SUMMARY REPORT

Work Order: 1404133 **Project:**

Legacy Pit

RunID: GC4_140411A

The QC data in batch 62861 applies to the following samples: 1404133-01A, 1404133-02A, 1404133-03A, 1404133-04A, 1404133-05A, 1404133-06A, 1404133-07A, 1404133-08A, 1404133-09A, 1404133-10A, 1404133-11A, 1404133-12A, 1404133-13A, 1404133-14A, 1404133-15A, 1404133-16A, 1404133-17A, 1404133-18A, 1404133-19A, 1404133-20A

Sample ID LCS-62861	Batch ID:	62861		TestNo	M80	015V		Units:	mg/Kg	I
SampType: LCS	Run ID:	GC4_14	0411A	Analysi	s Date: 4/1 1	1/2014 5:24:	02 PM	Prep Date:	4/11/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		4.02 0.360	0.200	5.000 0.4000	0	80.3 90.0	68 70	126 134		
Sample ID MB-62861	Batch ID:	62861		TestNo	M80	015V		Units:	mg/Kg	l
SampType: MBLK	Run ID:	GC4_14	0411A	Analysi	s Date: 4/1 1	1/2014 7:33:	56 PM	Prep Date:	4/11/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		ND 0.412	0.200	0.4000		103	70	134		
Sample ID 1404133-01AMS	Batch ID:	62861		TestNo	M80	015V		Units:	mg/Kg	J-dry
SampType: MS	Run ID:	GC4_14	0411A	Analysis	s Date: 4/12	2/2014 12:01	1:57 AM	Prep Date:	4/11/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		3.59 0.344	0.201	5.024 0.4019	0	71.6 85.6	68 70	126 134		
Sample ID 1404133-01AMSD	Batch ID:	62861		TestNo	M80	015V		Units:	mg/Kg	J-dry
SampType: MSD	Run ID:	GC4_14	0411A	Analysis	s Date: 4/12	2/2014 12:20	6:11 AM	Prep Date:	4/11/2	014
Analyte				0.01/	D ()()	0/ DEO	L a v d i aa			
Analyte		Result	RL	SPK value	Ref Val	%REC	LOWLIM	it HighLimit %	6RPD R	PDLimit Qual

Qualifiers:	В	Analyte detected in the associated Method Blank
	J	Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL J

Dilution Factor DF

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAC certified Page 9 of 36

Work Order:1404133Project:Legacy Pit

ANALYTICAL QC SUMMARY REPORT

RunID: GC4_140411A

Sample ID ICV-140411	Batch ID:	R72355	5	TestNo:	M80	015V		Units:	mg/Kg
SampType: ICV	Run ID:	GC4_1	40411A	Analysis	Date: 4/11	1/2014 4:35:	02 PM	Prep Date	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Gasoline Range Organics		8.43	0.200	10.00	0	84.3	80	120	
Surr: Tetrachlorethene		0.310		0.4000		77.6	70	134	
Sample ID CCV1-140411	Batch ID:	R7235	5	TestNo:	M80	015V		Units:	mg/Kg
SampType: ССV	Run ID:	GC4_1	40411A	Analysis	Date: 4/12	2/2014 12:50	0:51 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Gasoline Range Organics		4.40	0.200	5.000	0	88.0	80	120	
Surr: Tetrachlorethene		0.395		0.4000		98.7	70	134	
Sample ID CCV2-140411	Batch ID:	R7235	5	TestNo:	M80	015V		Units:	mg/Kg
SampType: ССV	Run ID:	GC4_1	40411A	Analysis	Date: 4/12	2/2014 6:32:	17 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Gasoline Range Organics		4.47	0.200	5.000	0	89.4	80	120	
Surr: Tetrachlorethene		0.403		0.4000		101	70	134	

Qualifiers:

Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
 - D Not Detected at the Method Detection Emitt
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 10 of 36

- S Spike Recovery outside control limits
- N Parameter not NELAC certified

ANALYTICAL QC SUMMARY REPORT

Work Order: 1404133 **Project:**

Legacy Pit

RunID: GC4_140412A

Page 11 of 36

The QC data in batch 62865 applies to the following samples: 1404133-21A, 1404133-22A, 1404133-23A, 1404133-24A, 1404133-25A, 1404133-26A, 1404133-27A, 1404133-28A, 1404133-29A, 1404133-30A, 1404133-31A, 1404133-32A, 1404133-33A, 1404133-34A, 1404133-35A, 1404133-36A, 1404133-37A, 1404133-38A, 1404133-39A, 1404133-40A

Sample ID LCS-62865	Batch ID:	62865		TestNo	M80	015V		Units:	mg/Kg	
SampType: LCS	Run ID:	GC4_14	0412A	Analysi	s Date: 4/12	2/2014 11:25	5:45 AM	Prep Date:	4/12/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		4.49 0.390	0.200	5.000 0.4000	0	89.8 97.5	68 70	126 134		
Sample ID MB-62865	Batch ID:	62865		TestNo	M80	015V		Units:	mg/Kg	I
SampType: MBLK	Run ID:	GC4_14	0412A	Analysi	s Date: 4/12	2/2014 1:03:	07 PM	Prep Date:	4/12/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		ND 0.420	0.200	0.4000		105	70	134		
Sample ID 1404133-40AMS	Batch ID:	62865		TestNo	M80	015V		Units:	mg/Kg	J-dry
SampType: MS	Run ID:	GC4_14	0412A	Analysi	s Date: 4/12	2/2014 10:53	3:45 PM	Prep Date:	4/12/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics		3.91	0.208	5.200	0	75.3	68	126		
Surr: Tetrachlorethene		0.367		0.4160		88.3	70	134		
Sample ID 1404133-40AMSD	Batch ID:	62865		TestNo	M80	015V		Units:	mg/Kg	J-dry
SampType: MSD	Run ID:	GC4_14	0412A	Analysi	s Date: 4/12	2/2014 11:18	3:08 PM	Prep Date:	4/12/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics		3.61	0.183	4.581	0	78.8	68	126	8.06	30
Surr: Tetrachlorethene		0.322		0.3664		88.0	70	134	0	0

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified

Work Order: 1404133 **Project:** Legacy Pit

ANALYTICAL QC SUMMARY REPORT

GC4_140412A **RunID:**

Sample ID ICV-140412	Batch ID:	R7235	6	TestNo:	M8	015V		Units:	mg/Kg
SampType: ICV	Run ID:	GC4_1	40412A	Analysis	Date: 4/1	2/2014 10:34	:08 AM	Prep Date	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		8.66 0.380	0.200	10.00 0.4000	0	86.6 95.0	80 70	120 134	
Sample ID CCV1-140412	Batch ID:	R7235	6	TestNo:	M8	015V		Units:	mg/Kg
SampType: CCV	Run ID:	GC4_1	40412A	Analysis	Date: 4/1	2/2014 6:01:	17 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		4.57 0.408	0.200	5.000 0.4000	0	91.5 102	80 70	120 134	
Sample ID CCV2-140412	Batch ID:	R7235	6	TestNo:	M8	015V		Units:	mg/Kg
SampType: ССV	Run ID:	GC4_1	40412A	Analysis	Date: 4/1	3/2014 12:06	39 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		4.72 0.409	0.200	5.000 0.4000	0	94.3 102	80 70	120 134	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 12 of 36

- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

ANALYTICAL QC SUMMARY REPORT

Work Order: 1404133 **Project:**

Legacy Pit

GC4_140412B **RunID:**

The QC data in batch 62867 applies to the following samples: 1404133-41A, 1404133-42A, 1404133-43A, 1404133-44A, 1404133-45A, 1404133-46A, 1404133-47A, 1404133-48A, 1404133-49A

Sample ID LCS-62867	Batch ID:	62867		TestNo	: M80)15V		Units:	mg/K	9	
SampType: LCS	Run ID:	GC4_14	40412B	Analysi	s Date: 4/13	8/2014 12:31	1:12 AM	Prep Date:	4/12/2	014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimi	t Qual
Gasoline Range Organics Surr: Tetrachlorethene		4.87 0.415	0.200	5.000 0.4000	0	97.5 104	68 70	126 134			
Sample ID MB-62867	Batch ID:	62867		TestNo	: M80)15V		Units:	mg/K	9	
SampType: MBLK	Run ID:	GC4_14	40412B	Analysi	is Date: 4/13	8/2014 2:08:	30 AM	Prep Date:	4/12/2	014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimi	t Qual
Gasoline Range Organics Surr: Tetrachlorethene		ND 0.410	0.200	0.4000		102	70	134			
Sample ID 1404133-49AMS	Batch ID:	62867		TestNo	: M80)15V		Units:	mg/Kg	g-dry	
SampType: MS	Run ID:	GC4_14	10412B	Analysi	s Date: 4/13	8/2014 6:12:	56 AM	Prep Date:	4/12/2	014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimi	t Qual
Gasoline Range Organics		2.70	0.228	5.702	0.7852	33.6	68	126			S
Surr: Tetrachlorethene		0.385		0.4562		84.4	70	134			
Sample ID 1404133-49AMSD	Batch ID:	62867		TestNo	: M80)15V		Units:	mg/Kg	g-dry	
SampType: MSD	Run ID:	GC4_14	10412B	Analysi	is Date: 4/13	8/2014 6:37:	10 AM	Prep Date:	4/12/2	014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimi	t Qual
Analyte Gasoline Range Organics		Result 1.78	RL 0.237	SPK value 5.933	Ref Val 0.7852	%REC 16.8	LowLim 68	it HighLimit % 126	6RPD R 40.9	PDLimi	t Qual SR

-					
Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 13 of 36
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	0
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

CLIENT:	Larson & Associates

Work Order:1404133Project:Legacy Pit

ANALYTICAL QC SUMMARY REPORT

RunID: GC4_140412B

Sample ID ICV-140412	Batch ID:	R72358		TestNo	M80)15V		Units:	mg/Kg
SampType: ICV	Run ID:	GC4_14	0412B	Analysi	s Date: 4/12	2/2014 10:34	4:08 AM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Gasoline Range Organics		8.66	0.200	10.00	0	86.6	80	120	
Surr: Tetrachlorethene		0.380		0.4000		95.0	70	134	
Sample ID CCV1-140412	Batch ID:	R72358		TestNo	M80)15V		Units:	mg/Kg
SampType: CCV	Run ID:	GC4_14	0412B	Analysi	s Date: 4/12	Prep Date:			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Gasoline Range Organics		4.57	0.200	5.000	0	91.5	80	120	
Surr: Tetrachlorethene		0.408		0.4000		102	70	134	
Sample ID CCV2-140412	Batch ID:	R72358		TestNo	M80	015V		Units:	mg/Kg
SampType: CCV	Run ID:	GC4_14	0412B	Analysi	s Date: 4/13	8/2014 12:00	6:39 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Analyte Gasoline Range Organics		Result 4.72	RL 0.200	SPK value 5.000	Ref Val 0	%REC 94.3	LowLim 80	it HighLimit 120	%RPD RPDLimit Qual
								-	%RPD RPDLimit Qual
Gasoline Range Organics	Batch ID:	4.72		5.000	0	94.3	80	120	%RPD RPDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		4.72 0.409	0.200	5.000 0.4000 TestNo	0 M80	94.3 102	80 70	120 134	mg/Kg
Gasoline Range Organics Surr: Tetrachlorethene Sample ID CCV3-140412	Batch ID: Run ID:	4.72 0.409 R72358	0.200	5.000 0.4000 TestNo	0 M80	94.3 102 015V	80 70 51 AM	120 134 Units: Prep Date	mg/Kg e:
Gasoline Range Organics Surr: Tetrachlorethene Sample ID CCV3-140412 SampType: CCV	Batch ID: Run ID:	4.72 0.409 R72358 GC4_14	0.200	5.000 0.4000 TestNo Analysia	0 M80 s Date: 4/13	94.3 102 015V 8/2014 7:25:	80 70 51 AM	120 134 Units: Prep Date	mg/Kg

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 14 of 36
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	e
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

CLIENT:	Larson & 1	Associates	5		AN	NALYT	ICAL (QC SI	UMMAF	RY R	EPORT
Work Order: Project:	1404133 Legacy Pit	ŀ					RunII) . (GC8_1404	14R	
The QC data in bat			ollowing s	amples: 1404	133-50A, 1404	133-51A	Kuiili		000_1404		
Sample ID MB-62		Batch ID:		•	TestNo		8021B		Units:	mg/L	
SampType: MBLK		Run ID:	GC8_1	40414B	Analys	is Date: 4/14	4/2014 3:55:	46 PM	Prep Date:	4/14/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit Qual
Benzene			ND	0.00200							
Toluene			ND	0.00600							
Ethylbenzene			ND	0.00600							
Xylenes, Total			ND	0.00900							
Surr: a,a,a-Triflu	orotoluene		200		200.0		100	87	113		
Sample ID LCS-6	2916	Batch ID:	62916		TestNo	: SW	8021B		Units:	mg/L	
SampType: LCS		Run ID:	GC8_1	40414B	Analys	is Date: 4/14	4/2014 4:15:	12 PM	Prep Date:	4/14/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit Qual
Benzene			0.0495	0.00200	0.0500	0	98.9	81	125		
Toluene			0.0510	0.00600	0.0500	0	102	84	123		
Ethylbenzene			0.0508	0.00600	0.0500	0	102	83	119		
Xylenes, Total			0.152	0.00900	0.150	0	101	81	117		
Surr: a,a,a-Triflu	orotoluene		201		200.0		101	87	113		
Sample ID 14041	18-01AMS	Batch ID:	62916		TestNo): SW	8021B		Units:	mg/L	
SampType: MS		Run ID:	GC8_1	40414B	Analys	is Date: 4/14	4/2014 5:13:	05 PM	Prep Date:	4/14/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit Qual
Benzene			0.0504	0.00200	0.0500	0	101	81	125		
Toluene			0.0521	0.00600	0.0500	0	104	84	123		
Ethylbenzene			0.0520	0.00600	0.0500	0	104	83	119		
Xylenes, Total			0.156	0.00900	0.150	0	104	81	117		
Surr: a,a,a-Triflu	orotoluene		202		200.0		101	87	113		
Sample ID 14041	18-01AMSD	Batch ID:	62916		TestNo): SW	8021B		Units:	mg/L	
SampType: MSD		Run ID:	GC8_1	40414B	Analys	is Date: 4/14	4/2014 5:32:	15 PM	Prep Date:	4/14/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit Qual
Benzene			0.0518	0.00200	0.0500	0	104	81	125	2.75	20
Toluene			0.0539	0.00600	0.0500	0	108	84	123	3.33	20
Ethylbenzene			0.0537	0.00600	0.0500	0	107	83	119	3.22	20
Xylenes, Total			0.162	0.00900	0.150	0	108	81	117	3.64	20
Surr: a,a,a-Triflu	orotoluene		202		200.0		101	87	113	0	0

Qualifiers: В Analyte detected in the associated Method Blank Analyte detected between MDL and RL J

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits

Page 15 of 36

- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

CLIENT: Larson & Associates Work Order: 1404133

Work Order: 14 Project: Le

Legacy Pit

ANALYTICAL QC SUMMARY REPORT

RunID: GC8_140414B

Sample ID ICV-140414	Batch ID:	R72378		TestNo:	SW8	3021B		Units:	mg/L
SampType: ICV	Run ID:	GC8_140	0414B	Analysis	Date: 4/14	/2014 12:26	6:22 PM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Benzene		0.0968	0.00200	0.100	0	96.8	80	120	
Toluene		0.0998	0.00600	0.100	0	99.8	80	120	
Ethylbenzene		0.100	0.00600	0.100	0	100	80	120	
Xylenes, Total		0.299	0.00900	0.300	0	99.7	80	120	
Surr: a,a,a-Trifluorotoluene		199		200.0		99.5	87	113	
Sample ID CCV1-140414	Batch ID:	R72378		TestNo:	SW8	3021B		Units:	mg/L
Sample ID CCV1-140414 SampType: CCV	Batch ID: Run ID:	R72378 GC8_140)414B			3021B /2014 7:10:	29 PM	Units: Prep Date	-
			9 414B RL					Prep Date	-
SampType: CCV	Run ID:	GC8_140		Analysis	Date: 4/14	/2014 7:10:		Prep Date	2
SampType: CCV Analyte	Run ID:	GC8_140 Result	RL	Analysis SPK value	Date: 4/14 Ref Val	/2014 7:10: %REC	LowLimi	Prep Date	2
SampType: CCV Analyte Benzene	Run ID:	GC8_140 Result 0.0498	RL 0.00200	Analysis SPK value 0.0500	5 Date: 4/14 Ref Val 0	/2014 7:10: %REC 99.5	LowLimi	Prep Date it HighLimit 120	2
SampType: CCV Analyte Benzene Toluene	Run ID:	GC8_140 Result 0.0498 0.0514	RL 0.00200 0.00600	Analysis SPK value 0.0500 0.0500	B Date: 4/14 Ref Val 0 0	/2014 7:10: %REC 99.5 103	LowLimi 80 80	Prep Date it HighLimit 120 120	2

Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 16 of 36

- S Spike Recovery outside control limits
- N Parameter not NELAC certified
- 95

Project:	L agoon Di	+					RunII) . 1	ICP-MS3_1	1/0/1	60
•	Legacy Pi			aplaa: 1404	122 EOP		Kuiiii	J.		14041	
	in batch 62921 app			ipies. 1404		0.00			L laita		
Sample ID		Batch ID:			TestNo	-	6020A		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-MS3	_140416C	Analysi	s Date: 4/16	/2014 3:31:	00 PM	Prep Date:	4/16/2	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	6RPD F	RPDLimit Qu
Calcium			ND	0.300							
Magnesium			ND	0.300							
Potassium			ND	0.300							
Sodium			ND	0.300							
Sample ID	LCS-62921	Batch ID:	62921		TestNo	SW	6020A		Units:	mg/L	
SampType:	LCS	Run ID:	ICP-MS3	_140416C	Analysi	s Date: 4/16	/2014 3:49:	00 PM	Prep Date:	4/16/2	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD F	RPDLimit Qu
Calcium			4.86	0.300	5.00	0	97.3	80	120		
Magnesium			4.72	0.300	5.00	0	94.4	80	120		
Potassium			4.95	0.300	5.00	0	99.1	80	120		
Sodium			4.76	0.300	5.00	0	95.2	80	120		
Sample ID	LCSD-62921	Batch ID:	62921		TestNo	SW	6 020A		Units:	mg/L	
SampType:	LCSD	Run ID:	ICP-MS3	_140416C	Analysi	s Date: 4/16	/2014 3:55:	00 PM	Prep Date:	4/16/2	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD F	RPDLimit Qu
Calcium			4.85	0.300	5.00	0	97.0	80	120	0.247	15
Magnesium			4.80	0.300	5.00	0	95.9	80	120	1.60	15
Potassium			4.99	0.300	5.00	0	99.7	80	120	0.644	15
Sodium			4.82	0.300	5.00	0	96.4	80	120	1.34	15
Sample ID	1404120-01C SD	Batch ID:	62921		TestNo	SW	6020A		Units:	mg/L	
SampType:	SD	Run ID:	ICP-MS3	_140416C	Analysi	s Date: 4/16	/2014 4:13:	00 PM	Prep Date:	4/16/2	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD F	RPDLimit Qu
Calcium			11.4	1.50	0	11.6				1.91	10
Magnesium			5.09	1.50	0	4.91				3.66	10
Potassium			1.97	1.50	0	1.92				2.67	10
Sodium			18.9	1.50	0	18.7				0.957	10
Sample ID	1404120-01C PDS	Batch ID:	62921		TestNo	SW	6020A		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS3	_140416C	Analysi	s Date: 4/16	/2014 5:14:	00 PM	Prep Date:	4/16/2	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	6RPD F	RPDLimit Qu
Calcium			16.0	0.300	5.00	11.6	87.4	80	120		
Magnesium			9.56	0.300	5.00	4.91	93.1	80	120		
Potassium			6.89	0.300	5.00	1.92	99.4	80	120		
Sodium			22.7	0.300	5.00	18.7	80.2	80	120		
Qualifiers:	B Analyte dete	ected in the a	ssociated Me	thod Blank	DF I	Dilution Facto	or				
2 uumerst											
2	J Analyte dete	ected between	n MDL and F	8L	MDL N	Method Detec	tion Limit			Pa	ge 17 of 36

RL Reporting Limit

J Analyte detected between SDL and RL

S Spike Recovery outside control limits

N Parameter not NELAC certified

CLIENT: Larson & Associates Work Order: 1404133

ANALYTICAL QC SUMMARY REPORT

Project:

Legacy Pit

RunID: ICP-MS3_140416C

Sample ID 1404120-01C MS	Batch ID:	62921		TestNo	: SW6	6020A		Units:	mg/L	
SampType: MS	Run ID:	ICP-MS3_140416C		Analysis Date: 4/16/2014 5:20:			00 PM	Prep Date:	4/16/2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit 9	%RPD R	PDLimit Qual
Calcium		16.3	0.300	5.00	11.6	93.2	80	120		
Magnesium		9.58	0.300	5.00	4.91	93.4	80	120		
Potassium		6.88	0.300	5.00	1.92	99.1	80	120		
Sodium		23.0	0.300	5.00	18.7	86.6	80	120		
Sample ID 1404120-01C MSD	Batch ID:	62921		TestNo	: swe	6020A		Units:	mg/L	
SampType: MSD	Run ID:	ICP-MS	3_140416C	Analys	is Date: 4/16	/2014 5:26:	00 PM	Prep Date:	4/16/2	014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit 9	%RPD R	PDLimit Qual
						/01.120		0		
Calcium		16.4	0.300	5.00	11.6	96.0	80	120	0.855	15
								5	0.855 1.40	15 15
Calcium		16.4	0.300	5.00	11.6	96.0	80	120		-

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- Detected at the Method Detection Emit
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 18 of 36

- S Spike Recovery outside control limits
- N Parameter not NELAC certified

CLIENT: Larson & Associates

Work Order: 1404133 **Project:** Legacy Pit

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS3_140416C

Page 19 of 36

Sample ID ILCVL-140416	Batch ID:	R72445		TestNo	: SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS3	_140416C	Analys	is Date: 4/1	6/2014 2:59:	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Calcium		0.0978	0.300	0.100	0	97.8	70	130	
Magnesium		0.0993	0.300	0.100	0	99.3	70	130	
Potassium		0.112	0.300	0.100	0	112	70	130	
Sodium		0.108	0.300	0.100	0	108	70	130	
Sample ID LCVL1-140416	Batch ID:	R72445		TestNo	: SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS3	_140416C	Analys	is Date: 4/10	6/2014 5:56:	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Calcium		0.0993	0.300	0.100	0	99.3	70	130	
Magnesium		0.0956	0.300	0.100	0	95.6	70	130	
Potassium		0.113	0.300	0.100	0	113	70	130	
Sodium		0.0992	0.300	0.100	0	99.2	70	130	
Sample ID LCVL2-140416	Batch ID:	R72445		TestNo	: sw	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS3	_140416C	Analys	is Date: 4/1	6/2014 7:45:	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Calcium		0.106	0.300	0.100	0	106	70	130	
Magnesium		0.0942	0.300	0.100	0	94.2	70	130	
Potassium		0.107	0.300	0.100	0	107	70	130	
Sodium		0.103	0.300	0.100	0	103	70	130	
Sample ID LCVL3-140416	Batch ID:	R72445		TestNo	: SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS3	_140416C	Analys	is Date: 4/1	6/2014 9:15:	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Calcium		0.0971	0.300	0.100	0	97.1	70	130	
Magnesium		0.0953	0.300	0.100	0	95.3	70	130	
Sodium		0.0965	0.300	0.100	0	96.5	70	130	
Sample ID ICV1-140416	Batch ID:	R72445		TestNo	: sw	6020A		Units:	mg/L
SampType: ICV	Run ID:	ICP-MS3	_140416C	Analys	is Date: 4/1	6/2014 2:47:	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Calcium		2.51	0.300	2.50	0	100	90	110	
Magnesium		2.45	0.300	2.50	0	97.9	90	110	
Potassium		2.60	0.300	2.50	0	104	90	110	

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R

- RL Reporting Limit
- J Analyte detected between SDL and RL
- RPD outside accepted control limits
- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

CLIENT: Larson & Associates

Work Order: 1404133

Sodium

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS3_140416C **Project:** Legacy Pit Sample ID CCV1-140416 SW6020A Batch ID: R72445 TestNo: Units: mg/L SampType: CCV ICP-MS3_140416C Run ID: Analysis Date: 4/16/2014 5:32:00 PM Prep Date: Analyte RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Result Calcium 5.39 0.300 5.00 0 108 90 110 Magnesium 5.27 0.300 5.00 0 105 90 110 Potassium 5.48 0.300 5.00 0 110 90 110 Sodium 5.30 0.300 5.00 0 106 90 110 Sample ID CCV2-140416 Batch ID: SW6020A R72445 TestNo: Units: mg/L SampType: CCV Run ID: ICP-MS3_140416C Analysis Date: 4/16/2014 7:09:00 PM Prep Date: Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 5.43 0 Calcium 0.300 5.00 109 90 110 5.24 0 Magnesium 0.300 5.00 105 90 110 Potassium 5.52 0.300 5.00 0 110 90 110 Sodium 5.36 0.300 5.00 0 107 90 110 Sample ID CCV3-140416 Batch ID: SW6020A R72445 TestNo: Units: mg/L SampType: CCV ICP-MS3_140416C Run ID: Analysis Date: 4/16/2014 8:39:00 PM Prep Date: Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Calcium 5.29 0.300 0 106 90 5.00 110 Magnesium 5.23 0.300 5.00 0 105 90 110

5.00

0

105

90

110

Page 20 of 36

5.27

0.300

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified

CLIENT: Work Order:	Larson & A 1404133	Associates	5		AN	ALYT		-	UMMAR		EPORT
Project:	Legacy Pit						RunII): 1	[C_140411]	B	
The QC data in b				nples: 1404					11.2		
Sample ID LCS	-62862	Batch ID:			TestNo		-		Units:	mg/L	04.4
SampType: LCS		Run ID:	IC_14041	118	Analysi	s Date: 4/11	/2014 4:37:	06 PM	Prep Date:	4/11/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Chloride			10.3	1.00	10.00	0	103	90	110		
Nitrate-N			5.23	0.500	5.000	0	105	90	110		
Sulfate			31.4	3.00	30.00	0	105	90	110		
Sample ID LCS		Batch ID:			TestNo				Units:	mg/L	
SampType: LCS	D	Run ID:	IC_14041	118	Analysi	s Date: 4/11	/2014 4:51:	43 PM	Prep Date:	4/11/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Chloride			10.4	1.00	10.00	0	104	90	110	1.19	20
Nitrate-N			5.28	0.500	5.000	0	106	90	110	0.966	20
Sulfate			31.6	3.00	30.00	0	105	90	110	0.594	20
Sample ID MB-6	62862	Batch ID:	62862		TestNo	E30	0		Units:	mg/L	
SampType: MBL	К	Run ID:	IC_14041	I1B	Analysi	s Date: 4/11	/2014 5:06:	19 PM	Prep Date:	4/11/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Chloride			ND	1.00							
Nitrate-N			ND	0.500							
Sulfate			ND	3.00							
Sample ID 1404	119-01AMS	Batch ID:	62862		TestNo	E30	0		Units:	mg/L	
SampType: MS		Run ID:	IC_14041	I1B	Analysi	s Date: 4/11	/2014 6:48:	33 PM	Prep Date:	4/11/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Nitrate-N			13.0	0.500	4.516	8.711	95.4	90	110		
Sulfate			75.4	3.00	20.00	56.25	95.6	90	110		
Sample ID 1404	119-01AMSD	Batch ID:	62862		TestNo	E30	0		Units:	mg/L	
SampType: MSD	1	Run ID:	IC_14041	I1B	Analysi	s Date: 4/11	/2014 7:03:	10 PM	Prep Date:	4/11/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Nitrate-N			13.0	0.500	4.516	8.711	95.1	90	110	0.120	20
Sulfate			75.1	3.00	20.00	56.25	94.3	90	110	0.345	20
Sample ID 1404	119-01AMS	Batch ID:	62862		TestNo	E30	0		Units:	mg/L	
SampType: MS		Run ID:	IC_14041	I1B	Analysi	s Date: 4/11	/2014 7:17:	46 PM	Prep Date:	4/11/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Chloride			421	10.0	200.0	276.0	72.7	90	110		S

Qualifiers:

В Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND

Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 21 of 36

S Spike Recovery outside control limits

Ν Parameter not NELAC certified

ate			31.4	3.00	30.00	0	105	90	110		
ple ID	LCSD-62862	Batch ID:	62862		TestNo	: E30	0		Units:	mg/L	
рТуре:	LCSD	Run ID:	IC_1404	11B	Analys	is Date: 4/11	/2014 4:51:	43 PM	Prep Date	e: 4/11 /	2014
yte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
ride			10.4	1.00	10.00	0	104	90	110	1.19	20
ite-N			5.28	0.500	5.000	0	106	90	110	0.966	20
ate			31.6	3.00	30.00	0	105	90	110	0.594	20
ple ID	MB-62862	Batch ID:	62862		TestNo): E30	0		Units:	mg/L	
рТуре:	MBLK	Run ID:	IC_1404	11B	Analys	is Date: 4/11	/2014 5:06:	19 PM	Prep Date	e: 4/11/	2014
yte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
ride			ND	1.00							
ite-N			ND	0.500							
ate			ND	3.00							
ple ID	1404119-01AMS	Batch ID:	62862		TestNo	: E30	0		Units:	mg/L	
рТуре:	MS	Run ID:	IC_1404	11B	Analys	is Date: 4/11	/2014 6:48:	33 PM	Prep Date	: 4/11/	2014
yte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
ite-N			13.0	0.500	4.516	8.711	95.4	90	110		
ate			75.4	3.00	20.00	56.25	95.6	90	110		
ple ID	1404119-01AMSD	Batch ID:	62862		TestNo): E30	0		Units:	mg/L	-
рТуре:	MSD	Run ID:	IC_1404	11B	Analys	is Date: 4/11	/2014 7:03:	10 PM	Prep Date	e: 4/11/	2014
yte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
ite-N			13.0	0.500	4.516	8.711	95.1	90	110	0.120	20
ate			75.1	3.00	20.00	56.25	94.3	90	110	0.345	20
ple ID	1404119-01AMS	Batch ID:	62862		TestNo	D: E30	0		Units:	mg/L	
рТуре:	MS	Run ID:	IC_1404	11B	Analys	is Date: 4/11	/2014 7:17:	46 PM	Prep Date	: 4/11/	2014
yte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
ride			421	10.0	200.0	276.0	72.7	90	110		S

CLIENT: Larson & Associates Work Order: 1404133 **Project:** Legacy Pit

ANALYTICAL QC SUMMARY REPORT

IC_140411B **RunID:**

Sample ID 1404119-01AMSD	Batch ID:	62862		TestNo	E30	00		Units:	mg/l	_	
SampType: MSD	Run ID:	IC_140411I	3	Analysi	s Date: 4/1	1/2014 7:32:	22 PM	Prep Date	: 4/11	/2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimi	t Qual
Chloride		422	10.0	200.0	276.0	73.0	90	110	0.146	20	S

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

- Not Detected at the Method Detection Limit
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit

Page 22 of 36

- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

CLIENT: Larson & Associates Work Order: 1404133

Legacy Pit

Project:

ANALYTICAL QC SUMMARY REPORT

RunID: IC_140411B

Sample ID ICV-140411	Batch ID:	R72403		TestNo	: E30	D		Units:	mg/L
SampType: ICV	Run ID:	IC_1404	11B	Analysi	s Date: 4/11	/2014 4:22:	30 PM	Prep Date	÷
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Chloride		26.1	1.00	25.00	0	105	90	110	
Nitrate-N		13.0	0.500	12.50	0	104	90	110	
Sulfate		78.7	3.00	75.00	0	105	90	110	
Sample ID CCV1-140411	Batch ID:	R72403		TestNo	: E30	0		Units:	mg/L
SampType: ССV	Run ID:	IC_1404 [·]	11B	Analysi	s Date: 4/11	/2014 7:46:	59 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Chloride		10.4	1.00	10.00	0	104	90	110	
Nitrate-N		5.26	0.500	5.000	0	105	90	110	
Sulfate		31.5	3.00	30.00	0	105	90	110	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- D Not Detected at the Method Detection Elimit
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 23 of 36

- S Spike Recovery outside control limits
- 5 Spike Recovery outside control minit
- N Parameter not NELAC certified

CLIENT: Larson & Associates Work Order: 1404133

ANALYTICAL QC SUMMARY REPORT

Project:

1404133 Legacy Pit

RunID: IC_140414B

Sample ID ICV-140414	Batch ID:	R72404		TestNo:	E30	0		Units:	mg/L
SampType: ICV	Run ID:	IC_1404	414B	Analysis	Date: 4/14	4/2014 10:12	2:23 AM	Prep Date	2:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qu
Chloride		27.1	1.00	25.00	0	108	90	110	
Nitrate-N		13.5	0.500	12.50	0	108	90	110	
Sample ID CCV2-140414	Batch ID:	R72404		TestNo:	E30	0		Units:	mg/L
SampType: ССV	Run ID:	IC_1404	414B	Analysis	Date: 4/14	4/2014 2:58:	48 PM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qu
Chloride		10.5	1.00	10.00	0	105	90	110	
Nitrate-N		5.23	0.500	5.000	0	105	90	110	
Sample ID CCV3-140414	Batch ID:	R72404		TestNo:	E30	0		Units:	mg/L
SampType: ССV	Run ID:	IC_1404	414B	Analysis	Date: 4/14	4/2014 6:34:	52 PM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qu
Chloride		10.6	1.00	10.00	0	106	90	110	
Nitrate-N		5.35	0.500	5.000	0	107	90	110	

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

Den estine Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

Page 24 of 36

S Spike Recovery outside control limits

N Parameter not NELAC certified

CLIENT: Larson & Associates

ANALYTICAL QC SUMMARY REPORT

Work Order: 1404133 **Project:**

Legacy Pit

IC2 140415A **RunID:**

The QC data in batch 62931 applies to the following samples: 1404133-01A, 1404133-02A, 1404133-03A, 1404133-04A, 1404133-05A, 1404133-06A, 1404133-07A, 1404133-08A, 1404133-09A, 1404133-10A, 1404133-11A, 1404133-12A, 1404133-13A, 1404133-14A, 1404133-15A, 1404133-16A, 1404133-17A, 1404133-18A, 1404133-19A, 1404133-20A Sample ID LCS-62931 Batch ID: 62931 TestNo: SW9056A Units: mg/Kg 4/15/2014 SampType: LCS Run ID: IC2_140415A Analysis Date: 4/15/2014 11:33:46 AM Prep Date: Result RL SPK value Ref Val LowLimit HighLimit %RPD RPDLimit Qual Analyte %REC Chloride 50.3 5.00 50.00 0 101 80 120 Sample ID LCSD-62931 Batch ID: 62931 TestNo: SW9056A Units: mg/Kg SampType: LCSD Run ID: IC2_140415A Analysis Date: 4/15/2014 11:48:21 AM Prep Date: 4/15/2014 RL SPK value LowLimit HighLimit %RPD RPDLimit Qual Analyte Result Ref Val %REC 5.00 Chloride 50.9 50.00 0 102 80 120 1.27 15 Sample ID MB-62931 Batch ID: 62931 TestNo: SW9056A Units: mg/Kg SampType: MBLK Run ID: IC2 140415A Analysis Date: 4/15/2014 12:02:55 PM Prep Date: 4/15/2014 Result RL SPK value Ref Val LowLimit HighLimit %RPD RPDLimit Qual Analyte %REC ND 5.00 Chloride Sample ID 1404133-01ADUP Batch ID: 62931 TestNo: SW9056A Units: mg/Kg-dry SampType: DUP Run ID: IC2_140415A Analysis Date: 4/15/2014 1:04:30 PM Prep Date: 4/15/2014 SPK value Result RL Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte 455 0 Chloride 51.5 420.3 7.89 10 Sample ID 1404133-01AMS Batch ID: 62931 TestNo: SW9056A Units: mg/Kg-dry SampType: MS Run ID: IC2_140415A Analysis Date: 4/15/2014 1:19:04 PM Prep Date: 4/15/2014 LowLimit HighLimit %RPD RPDLimit Qual Result RL SPK value %REC Analyte Ref Val Chloride 540 53.0 106.1 420.3 113 120 80 Sample ID 1404133-01AMSD SW9056A mg/Kg-dry Batch ID: 62931 TestNo: Units: SampType: MSD Run ID: IC2_140415A Analysis Date: 4/15/2014 1:33:38 PM Prep Date: 4/15/2014 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 525 50.2 100.5 420.3 105 80 Chloride 120 2.75 15

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 25 of 36
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	e
	RL	Reporting Limit	S	Spike Recovery outside control limits	

Analyte detected between SDL and RL J

Parameter not NELAC certified Ν

CLIENT: Work Order: Project:	Larson & A 1404133 Legacy Pit		5		AN	ALYT	ICAL Q RunID		UMMA C2_1404	RY REPORT 15A
Sample ID ICV	-140415	Batch ID:	R72416		TestNo:	SW	/9056A		Units:	mg/Kg
SampType: ICV		Run ID:	IC2_140	415A	Analysis	Date: 4/1	5/2014 11:10	:09 AM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Chloride			25.6	5.00	25.00	0	102	90	110	
Sample ID CC	/1-140415	Batch ID:	R72416		TestNo:	SW	9056A		Units:	mg/Kg
SampType: CC	/	Run ID:	IC2_140	415A	Analysis	Date: 4/1	5/2014 3:35:3	82 PM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Chloride			10.1	5.00	10.00	0	101	90	110	
Sample ID CC	/2-140415	Batch ID:	R72416		TestNo:	SW	/9056A		Units:	mg/Kg
SampType: CC	/	Run ID:	IC2_140	415A	Analysis	Date: 4/1	5/2014 6:37:3	88 PM	Prep Date	2
Analyte			Result	RI	SPK value	Ref Val	%REC	Low imi	t Highl imit	%RPD_RPDI imit Qual

Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLim	it Qual
Chloride		10.1	5.00	10.00	0	101	90	110		
Sample ID CCV3-140415	Batch ID	R72416		TestNo	SWS	9056A		Units:	mg/Kg	
SampType: ССV	Run ID:	IC2_1404	415A	Analysi	s Date: 4/15	/2014 7:50:	30 PM	Prep Date	e:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLim	it Qual
Chloride		10.1	5.00	10.00	0	101	90	110		

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit Page 26 of 36 ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAC certified

CLIENT: Larson & Associates

ANALYTICAL QC SUMMARY REPORT

Work Order: 1404133 IC2 140416B **Project: RunID:** Legacy Pit The QC data in batch 62962 applies to the following samples: 1404133-21A, 1404133-22A, 1404133-23A, 1404133-24A, 1404133-25A, 1404133-26A, 1404133-27A, 1404133-28A, 1404133-29A, 1404133-30A, 1404133-31A, 1404133-32A, 1404133-33A, 1404133-34A, 1404133-35A, 1404133-36A, 1404133-37A, 1404133-38A, 1404133-39A Sample ID MB-62962 Batch ID: 62962 TestNo: SW9056A Units: mg/Kg IC2_140416B Analysis Date: 4/16/2014 12:32:17 PM 4/16/2014 SampType: MBLK Run ID: Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte Chloride ND 5.00 Sample ID LCS-62962 Batch ID: 62962 TestNo: SW9056A Units: mg/Kg SampType: LCS Run ID: IC2_140416B Analysis Date: 4/16/2014 12:46:52 PM Prep Date: 4/16/2014 RL SPK value Ref Val LowLimit HighLimit %RPD RPDLimit Qual Analyte Result %REC 5.00 Chloride 48.9 50.00 0 97.8 80 120 Sample ID LCSD-62962 Units: Batch ID: 62962 TestNo: SW9056A mg/Kg SampType: LCSD Run ID: Analysis Date: 4/16/2014 1:01:26 PM Prep Date: 4/16/2014 IC2 140416B Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte 5.00 50.00 1.75 Chloride 49.8 0 99.5 80 120 15 Sample ID 1404133-39ADUP Batch ID: SW9056A Units: 62962 TestNo: mg/Kg-dry SampType: DUP Run ID: IC2_140416B Analysis Date: 4/16/2014 6:43:10 PM Prep Date: 4/16/2014 SPK value Result RL Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte 588 57.0 0 Chloride 570.9 2.88 10 Sample ID 1404133-39AMS Batch ID: 62962 TestNo: SW9056A Units: mg/Kg-dry SampType: MS Run ID: IC2_140416B Analysis Date: 4/16/2014 6:57:45 PM Prep Date: 4/16/2014 Result RL SPK value %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte Ref Val Chloride 798 59.6 119.1 570.9 191 S 80 120 Sample ID 1404133-39AMSD SW9056A Batch ID: 62962 TestNo: Units: mg/Kg-dry SampType: MSD Run ID: IC2_140416B Analysis Date: 4/16/2014 7:12:19 PM Prep Date: 4/16/2014 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified

60.4

888

Chloride

120.7

570.9

263

80

120

10.6

S

15

Page 27 of 36

CLIENT: Work Order:	Larson & . 1404133	Associates	5		AN	ALYTI	CAL (QC SU	J MMA	RY REPORT
Project:	Legacy Pit	t					RunII): I	C2_1404	16B
Sample ID ICV-14	0416	Batch ID:	R72466		TestNo:	SW9	056A		Units:	mg/Kg
SampType: ICV		Run ID:	IC2_14041	6B	Analysis	a Date: 4/16/	2014 8:54:	13 AM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Chloride			25.1	5.00	25.00	0	101	90	110	
Sample ID CCV1-	140416	Batch ID:	R72466		TestNo:	SW9	056A		Units:	mg/Kg
SampType: CCV		Run ID:	IC2_14041	6B	Analysis	a Date: 4/16/	2014 11:17	:17 AM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Chloride			9.81	5.00	10.00	0	98.1	90	110	
Sample ID CCV2-	140416	Batch ID:	R72466		TestNo:	SW9	056A		Units:	mg/Kg
SampType: CCV		Run ID:	IC2_14041	6B	Analysis	Bate: 4/16/	2014 3:57:	46 PM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Chloride			9.82	5.00	10.00	0	98.2	90	110	
Sample ID CCV3-	140416	Batch ID:	R72466		TestNo:	SW9	056A		Units:	mg/Kg
SampType: CCV		Run ID:	IC2_14041	6B	Analysis	a Date: 4/16/	2014 7:26:	54 PM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			9.99	5.00	10.00	0	99.9	90	110	

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAC certified

Page 28 of 36

WORK Order: 1404155									
Project: Legacy P	lit				RunID): I	C2_140417	7A	
The QC data in batch 62986 ap 45A, 1404133-46A, 1404133-4			04133-40A, 14041	33-41A, 14	04133-42A,	1404133	-43A, 1404133	3-44A, 1	404133-
Sample ID MB-62986	Batch ID:	62986	TestNo:	SWS	9056A		Units:	mg/Kg	
SampType: MBLK	Run ID:	IC2_140417A	Analysis	s Date: 4/17	/2014 10:57	:30 AM	Prep Date:	4/17/20	014
Analyte	R	esult RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %		PDLimit Qual
Chloride		ND 5.00							
Sample ID LCS-62986	Batch ID:	62986	TestNo:	SWS	9056A		Units:	mg/Kg	I
SampType: LCS	Run ID:	IC2_140417A	Analysis	a Date: 4/17	/2014 11:12	:04 AM	Prep Date:	4/17/20	014
Analyte	R	esult RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Chloride	5	52.8 5.00	50.00	0	106	80	120		
Sample ID LCSD-62986	Batch ID:	62986	TestNo:	SWS	9056A		Units:	mg/Kg	l
SampType: LCSD	Run ID:	IC2_140417A	Analysis	s Date: 4/17	/2014 11:26	:39 AM	Prep Date:	4/17/20	014
Analyte	R	esult RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Chloride	5	51.1 5.00	50.00	0	102	80	120	3.31	15
Sample ID 1404133-40ADUP	Batch ID:	62986	TestNo:	SWS	9056A		Units:	mg/Kg	-dry
SampType: DUP	Run ID:	IC2_140417A	Analysis	a Date: 4/17	/2014 11:59	:15 AM	Prep Date:	4/17/20	014
Analyte	R	esult RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Chloride	4	443 51.0	0	425.6				4.04	10
Sample ID 1404133-40AMS	Batch ID:	62986	TestNo:	SWS	9056A		Units:	mg/Kg	-dry
SampType: MS	Run ID:	IC2_140417A	Analysis	a Date: 4/17	/2014 12:13	:49 PM	Prep Date:	4/17/20	014
Analyte	R	esult RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Chloride	Į	529 48.3	96.51	425.6	107	80	120		
Sample ID 1404133-40AMSD	Batch ID:	62986	TestNo:	SWS	9056A		Units:	mg/Kg	-dry
SampType: MSD	Run ID:	IC2_140417A	Analysis	s Date: 4/17	/2014 12:28	:24 PM	Prep Date:	4/17/20	014
Analyte	R	esult RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %		PDLimit Qual
Chloride	į	540 51.3	102.6	425.6	112	80	120	2.09	15

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

- Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits

Page 29 of 36

- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

ANALYTICAL QC SUMMARY REPORT

CLIENT: Larson & Associates Work Order: 1404133

CLIENT: Work Order: Project:	Larson & Asso 1404133 Legacy Pit	ociates			ANALYTICAL QC SUMMARY REP RunID: IC2_140417A									
Sample ID ICV-14	0417 Ba	atch ID:	R72495		TestNo:	SW90	56A		Units:	mg/Kg				
SampType: ICV	Ru	un ID:	IC2_140417	Α	Analysis	a Date: 4/17/2	2014 10:24	:18 AM	Prep Date:					
Analyte		F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual				
Chloride			26.0	5.00	25.00	0	104	90	110					
Sample ID CCV1-	140417 Ba	atch ID:	R72495		TestNo:	SW90	56A		Units:	mg/Kg				
SampType: CCV	Ru	ın ID:	IC2_140417	Α	Analysis	a Date: 4/17/2	2014 2:39:3	34 PM	Prep Date:					
Analyte		F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual				
Chloride			10.2	5.00	10.00	0	102	90	110					
Sample ID CCV2-	140417 Ba	atch ID:	R72495		TestNo:	SW90	56A		Units:	mg/Kg				
SampType: CCV	Ru	ın ID:	IC2_140417	Α	Analysis	a Date: 4/17/2	2014 4:55:3	38 PM	Prep Date:					
Analyte		F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual				
Chloride			10.2	5.00	10.00	0	102	90	110					

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified

Page 30 of 36

CLIENT: Larson & Associates

ANALYTICAL QC SUMMARY REPORT

Work Order: 1404133 **Project:** Legacy Pit

PMOIST_140416C **RunID:**

The QC data in batch 62970 applies to the following samples: 1404133-01A, 1404133-02A, 1404133-03A, 1404133-04A, 1404133-05A, 1404133-06A, 1404133-07A, 1404133-08A, 1404133-09A, 1404133-10A, 1404133-11A, 1404133-12A, 1404133-13A, 1404133-14A, 1404133-15A, 1404133-16A, 1404133-17A, 1404133-18A, 1404133-19A

Sample ID 1404133-19A-DUP	Batch ID:	62970		TestNo	: D	2216	Units	: WT%	6
SampType: DUP	Run ID:	PMOIST_	140416C	Analysi	s Date: 4/	/17/2014 1:06:0	00 PM Prep	Date: 4/16	/2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit HighL	imit %RPD	RPDLimit Qual
Percent Moisture		5.09	0	0	5.059			0.661	30

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J Not Detected at the Method Detection Limit ND

- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- Dilution Factor DF
- MDL Method Detection Limit R

Page 31 of 36

- RPD outside accepted control limits
- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

CLIENT: Larson & Associates ANALYTICAL QC SUMMARY REPORT Work Order: 1404133 **RunID:** PMOIST_140416D **Project:** Legacy Pit The QC data in batch 62971 applies to the following samples: 1404133-20A, 1404133-21A, 1404133-22A, 1404133-23A, 1404133-24A, 1404133-25A, 1404133-26A, 1404133-27A, 1404133-28A, 1404133-29A, 1404133-30A, 1404133-31A, 1404133-32A, 1404133-33A, 1404133-34A, 1404133-35A, 1404133-36A, 1404133-37A, 1404133-38A, 1404133-39A Sample ID 1404133-39A-DUP Batch ID: 62971 TestNo: D2216 Units: **WT%** SampType: DUP PMOIST_140416D Analysis Date: 4/17/2014 1:15:00 PM 4/16/2014 Run ID: Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte Percent Moisture 18.9 0 0 19.43 2.64 30

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits

Page 32 of 36

- S Spike Recovery outside control limits
- Ν
- Parameter not NELAC certified

CLIENT:	Larson &	Associates	ANALYTICAL QC SUMMARY REPORT										
Work Order:	1404133												
Project:	Legacy Pi	t					RunII): I	PMOIST_	140417	С		
The QC data in bat 45A, 1404133-46A					133-40A, 1404 ⁻	33-41A, 14	04133-42A,	1404133	-43A, 140413	33-44A, 1	404133-		
Sample ID 14041	37-28A-DUP	Batch ID:	62988		TestNo	D22	16		Units:	WT%			
SampType: DUP		Run ID:	PMOIST	_140417C	Analysi	s Date: 4/18	/2014 11:46	:00 AM	Prep Date:	4/17/2	014		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual		
Percent Moisture			13.1	0	0	13.99				6.92	30		

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND

- Not Detected at the Method Detection Limit
- RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R

Page 33 of 36

- RPD outside accepted control limits S
- Spike Recovery outside control limits
- Ν Parameter not NELAC certified

CLIENT:	Larson & .	Associates			AN	ALYTI	CALO)C SI	U MMAR	YR	EPORT
Work Order:	1404133										
Project:	Legacy Pit	t					RunII):]	FITRATO	R_140	415B
The QC data in bate	ch 62937 app	lies to the fo	llowing samp	oles: 14041	33-50C						
Sample ID MB-62	937	Batch ID:	62937		TestNo:	M232	0 B		Units:	mg/L	@ pH 4.34
SampType: MBLK		Run ID:	TITRATOR	_140415B	Analysis	a Date: 4/15/2	2014 1:53:	00 PM	Prep Date:	4/15/2	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD F	PDLimit Qual
Alkalinity, Bicarbona	ate (As CaCO	3)	ND	20.0							
Alkalinity, Carbonat	e (As CaCO3)	ND	20.0							
Alkalinity, Hydroxide	e (As CaCO3))	ND	20.0							
Alkalinity, Total (As	CaCO3)		ND	20.0							
Sample ID LCS-62	2937	Batch ID:	62937		TestNo:	M232	0 B		Units:	mg/L	@ pH 4.3
SampType: LCS		Run ID:	TITRATOR	_140415B	Analysis	a Date: 4/15/2	2014 1:56:	00 PM	Prep Date:	4/15/2	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD F	PDLimit Qual
Alkalinity, Total (As	CaCO3)		54.0	20.0	50.00	0	108	74	129		
Sample ID 140413	3-50C DUP	Batch ID:	62937		TestNo:	M232	0 B		Units:	mg/L	@ pH 4.52
SampType: DUP		Run ID:	TITRATOR	_140415B	Analysis	a Date: 4/15/2	2014 3:17:	00 PM	Prep Date:	4/15/2	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD	PDLimit Qual
Alkalinity, Bicarbona	ate (As CaCO	3)	665	25.0	0	673.4				1.30	20
Alkalinity, Carbonat	e (As CaCO3)	0	25.0	0	0				0	20
Alkalinity, Hydroxide	e (As CaCO3))	0	25.0	0	0				0	20
Alkalinity, Total (As	CaCO3)		665	25.0	0	673.4				1.30	20

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 34 of 36
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	U
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

CLIENT: Work Order: Project:	Larson & 1404133 Legacy Pir				AN	ALYTI	CAL (RunII	-		RY REPORT R_140415B
Sample ID ICV-14	0415	Batch ID:	R72417		TestNo:	M232	0 B		Units:	mg/L @ pH 4.49
SampType: ICV		Run ID:	TITRATOR	_140415B	Analysis	a Date: 4/15/2	2014 1:51:	00 PM	Prep Date:	4/15/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCC	93)	1.52	20.0	0					
Alkalinity, Carbonat	e (As CaCO3)	100	20.0	0					
Alkalinity, Hydroxid	e (As CaCO3))	0	20.0	0					
Alkalinity, Total (As	CaCO3)		102	20.0	100.0	0	102	98	102	
Sample ID CCV1-	140415	Batch ID:	R72417		TestNo:	M232	0 B		Units:	mg/L @ pH 4.5
SampType: CCV		Run ID:	TITRATOR	_140415B	Analysis	a Date: 4/15/2	2014 3:22:	00 PM	Prep Date:	4/15/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCC	93)	17.4	20.0	0					
Alkalinity, Carbonat	e (As CaCO3)	80.5	20.0	0					
Alkalinity, Hydroxid	e (As CaCO3))	0	20.0	0					

100.0

0

97.9

90

110

Page 35 of 36

Qualifiers: В Analyte detected in the associated Method Blank Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

97.9

20.0

RL Reporting Limit

Alkalinity, Total (As CaCO3)

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R
- RPD outside accepted control limits
- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

CLIENT:	Larson & A	Associates			ΛN	λι ντι	CAT C	C ST	MMAR	VRF	PORT
Work Order	: 1404133										
Project:	Legacy Pit	t					RunID): V	VC_14041	5D	
The QC data in	batch 62872 app	lies to the fo	llowing samp	les: 1404	133-50C						
Sample ID ME	B-62872	Batch ID:	62872		TestNo:	M2540	C		Units:	mg/L	
SampType: M	BLK	Run ID:	WC_14041	5D	Analysis	Date: 4/16/2	014 9:40:0	00 AM	Prep Date:	4/15/201	4
Analyte		l	Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %		DLimit Qual
Total Dissolved	I Solids (Residue,	Filtera	ND	10.0							
Sample ID LC	S-62872	Batch ID:	62872		TestNo:	M2540	C		Units:	mg/L	
SampType: LC	s	Run ID:	WC_14041	5D	Analysis	Date: 4/16/2	014 9:40:0	00 AM	Prep Date:	4/15/20 1	4
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPI	DLimit Qual
Total Dissolved	I Solids (Residue,	Filtera	761	10.0	745.6	0	102	90	113		
Sample ID 14	04113-02A-DUP	Batch ID:	62872		TestNo:	M2540	C		Units:	mg/L	
SampType: DL	JP	Run ID:	WC_14041	5D	Analysis	Date: 4/16/2	014 9:40:0	00 AM	Prep Date:	4/15/201	4
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPI	DLimit Qual
Total Dissolved	Solids (Residue,	Filtera	3110	50.0	0	3090				0.484	5
Sample ID 14	04141-02D-DUP	Batch ID:	62872		TestNo:	M2540	C		Units:	mg/L	
SampType: DL	JP	Run ID:	WC_14041	5D	Analysis	Date: 4/16/2	014 9:40:0	00 AM	Prep Date:	4/15/20 1	4
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %		DLimit Qual
Total Dissolved	Solids (Residue,	Filtera	522	10.0	0	523.0				0.191	5

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 36 of 36
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	U
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

May 05, 2014

Coty Woolf Larson & Associates 507 N. Marienfeld #200 Midland, TX 79701 TEL: (432) 687-0901 FAX (432) 687-0456 RE: Legacy Trash Pit

Order No.: 1404295

Dear Coty Woolf:

DHL Analytical, Inc. received 2 sample(s) on 4/25/2014 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-14-12

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 1404295	6
WorkOrderSampleSummary 1404295	7
PrepDatesReport 1404295	
AnalyticalDatesReport 1404295	9
Analytical Report 1404295	
AnalyticalQCSummaryReport 1404295	

																					(СĤ	AI	N-	0	F-(<u>)US</u>	<u>STO</u>	<u>DY</u>
A arson & ssociat Environmente Data Reported to:	es, In consulto	C. mis	(ct.	1001	507 N N	بد الد :	۳ ل	v 70	0701)	DATE PO # PRO LAI F	E: 	DIFO	I #:_	. /	1-0	10	/-	<u></u>		U	ULL	-EC	101	۲	104 104 104	_OF) -290 ////	<u> </u>
TRRP report?	S=SOIL W=WATEI A=AIR Lab #	P=PA R SL=S		Matrix	# of Containers	PR	ESE			or Th	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2/0/ 2/2/0/ 2/2/0/		2 - 14 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	100 100 100 100 100 100 100 100 100 100						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				COLORIZATION COLORIZATION		FIELD	NOTES	
MW15-5+ 1. MW160 1.1		\$4/)D)D 30 30						2																				
TOTAL RELINQUISHED BY: RELINQUISHED BY: RELINQUISHED BY:	Signature) Dre in	- {[]}; ~	DATE/T	IME 25/14	RECE		<u>О</u> /) вү: 	Cigo (Sigo	$\frac{1}{2}$	>	- - - - - - - - - - - - - - - - - - -	14		NOR 1 DA 2 DA	MAL	ŧ	D TIMI	لى: 	RECI CUS ⁻ L <mark>E</mark> C/	EIVIN TODY ARRIE	IG TE ' SE# ER B	USE EMP: ALS - ILL # (VERE	<u>)</u> . ов Х	L	тн ЕN Сл		#: ACT 2	<u>57</u> 1 Not U	ISED

FLSO	WWW.LSO. Questions? Call 800 Airbill No. 488	0-800-8984			
Print Name (Person)	Phone (Important)	2. From:	Print Name (Person)		(Important) 587-0.001.
Company Name 2711. And Ny Fired)	anna ann an ann an ann ann ann ann ann	Company Name LARSON &	ASSOCIATES,	INC.	
Street Address (No P.O. Box or P.O. Box Zip Co 2349 Deviele cree		Street Address 507 N. M	ARLENETLD	••••••••••••••••••••••••••••••••••••••	
Suite / Floor		Suite / Floor #200	**************************************	211-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	4994841464439484411747474144
City State Rock TX	Zp 7 8 1.6 4	<i>ch</i> y " Mendandi	State	Zir. TX	
Visit www.lso.com for	r avoilability of services ta your destination and by creating your shipping label online.	4. Package			DRIVER E ONLY
LSO Priority Overnight* By 10:30 a.m. to most cities	150 Ground	Your Company's Billing I	Reference Information		
LSO Early Overnight* By 8:30 a.m. select cities	LSO Saturday* Other	Ship Date: (mm/dd/yy)		Driver Numl	ber 101249 re il LSO Supplies with LSO Ground Service
LSO Economy Next Day* By 3 p.m. to most cities	*Check commitment times and availability at www.lso.com	and the second		San Strange	
] LSO 2nd Day*	Assumed LSO Priority Overnight service unless otherwise noted.	非常感染着于药		Date: <u>(* 1</u> Time: <u>1</u>	<u>4-25-19</u>
] Deliver Without Delivery Signature (See L	imits of Liability below)			City Code:	· · · · · ·
Release Sig	gnature				

. ÷.

1 .

under, We will not pay any claim in excess of the actual loss. We are not liable for any special or consequential damages. Additional limitations of liability are contained in our current Service Guide. If you ask us to deliver a chage willoud obtaining a delivery signature, you release us of all liability for claims resulting from such service. NO DELIVERY SIGNATURE WILL BE OBTAINED FOR LSO EARLY OVERNIGHT SERVICE. PACKAGING covided by LSO IS NOT INTENDED FOR USE ON LSO GROUND SERVICE. OVERSIZE BATES MAY APPLY. DELIVERY COMMITMENTS MAY VARY. ADDITIONAL FEES MAY APPLY. _____

.

Sar	nple Receipt Che	ecklist
Client Name Larson & Associates		Date Received: 4/25/2014
Work Order Number 1404295		Received by JB
Signatufe	5/2014 Date	Reviewed by 4/25/2014
Carrier na	ame <u>LoneStar</u>	
Shipping container/cooler in good condition?	Yes 🔽	No 🗌 Not Present 🔲
Custody seals intact on shippping container/cooler?	Yes	No 🗋 Not Present 🗹
Custody seals intact on sample bottles?	Yes 🗌	No 🗌 Not Present 🗹
Chain of custody present?	Yes 🔽	No 🗀
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗀
Chain of custody agrees with sample labels?	Yes 🗹	Νο
Samples in proper container/bottle?	Yes 🗹	Νο
Sample containers intact?	Yes 🗹	No 🗔
Sufficient sample volume for indicated test?	Yes 🔽	Νο
All samples received within holding time?	Yes 🗹	Νο
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌 1.6 °C
Water - VOA vials have zero headspace?	Yes 🗌	No 🗌 No VOA vials submitted 🗹
Water - pH<2 acceptable upon receipt?	Yes 🔽	No 🗌 NA 🗌 LOT # 7179
	Adjusted?	Checked by
Water - ph>9 (S) or ph>12 (CN) acceptable upon receipt?	Yes 🗌	
	Adjusted?	Checked by
Any No response must be detailed in the comments section belo		
Client contacted Date contacted:		Person contacted
Contacted by: Regarding		
Comments:		

Corrective Action

Page 1 of 1

·

2

CLIENT:Larson & AssociatesProject:Legacy Trash PitLab Order:1404295

CASE NARRATIVE

Sample was analyzed using the methods outlined in the following references:

Method SW6020A - Metals Analysis Method E300 - Anions Analysis Method M2320 B - Alkalinity Method M2540C - Total Dissolved Solids Analysis

LOG IN

The samples were received and log-in performed on 4/25/2014. A total of 2 samples were received and analyzed. The samples arrived in good condition and were properly packaged. Samples were collected in Mountain Standard Time.

METALS ANALYSIS

For Metals Analysis, the recovery of Potassium for the post Digestion Spike (140428/63-01 PDS) was marginally above the method control limits. These are flagged accordingly in the QC Summary Report. This analyte was within method control limits in the associated Serial Dilution. No further corrective action was taken.

Date: 05-May-14

04/24/14 11:30 AM

4/25/2014

CLIENT:Larson & AssociatesProject:Legacy Trash PitLab Order:1404295			Work Order Sample	Summary
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
1404295-01 N	MW-15		04/24/14 11:20 AM	4/25/2014

1404295-01 MW-15 1404295-02 MW-16

1404295

Larson & Associates

Legacy Trash Pit

Lab Order:

Client:

Project:

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1404295-01A	MW-15	04/24/14 11:20 AM	Aqueous	M2320 B	Alkalinity Preparation	04/25/14 02:47 PM	63182
	MW-15	04/24/14 11:20 AM	Aqueous	E300	Anion Preparation	04/28/14 02:18 PM	63214
	MW-15	04/24/14 11:20 AM	Aqueous	E300	Anion Preparation	04/25/14 02:56 PM	63183
	MW-15	04/24/14 11:20 AM	Aqueous	M2540C	TDS Preparation	04/30/14 05:30 PM	63271
1404295-01B	MW-15	04/24/14 11:20 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	04/28/14 09:42 AM	63199
1404295-02A	MW-16	04/24/14 11:30 AM	Aqueous	M2320 B	Alkalinity Preparation	04/25/14 02:47 PM	63182
	MW-16	04/24/14 11:30 AM	Aqueous	E300	Anion Preparation	04/28/14 02:18 PM	63214
	MW-16	04/24/14 11:30 AM	Aqueous	E300	Anion Preparation	04/25/14 02:56 PM	63183
	MW-16	04/24/14 11:30 AM	Aqueous	M2540C	TDS Preparation	04/30/14 05:30 PM	63271
1404295-02B	MW-16	04/24/14 11:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	04/28/14 09:42 AM	63199
	MW-16	04/24/14 11:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	04/28/14 09:42 AM	63199

Lab Order: 1404295

Client: Larson & Associates

Project: Legacy Trash Pit

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1404295-01A	MW-15	Aqueous	M2320 B	Alkalinity	63182	1	04/25/14 04:06 PM	TITRATOR_140425B
	MW-15	Aqueous	E300	Anions by IC method - Water	63214	100	04/28/14 08:34 PM	IC2_140428B
	MW-15	Aqueous	E300	Anions by IC method - Water	63183	1	04/25/14 06:46 PM	IC2_140425A
	MW-15	Aqueous	M2540C	Total Dissolved Solids	63271	1	05/01/14 09:00 AM	WC_140430C
1404295-01B	MW-15	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	63199	50	04/29/14 11:58 AM	ICP-MS4_140429A
1404295-02A	MW-16	Aqueous	M2320 B	Alkalinity	63182	1	04/25/14 04:12 PM	TITRATOR_140425B
	MW-16	Aqueous	E300	Anions by IC method - Water	63214	100	04/28/14 08:49 PM	IC2_140428B
	MW-16	Aqueous	E300	Anions by IC method - Water	63183	1	04/25/14 07:00 PM	IC2_140425A
	MW-16	Aqueous	M2540C	Total Dissolved Solids	63271	1	05/01/14 09:00 AM	WC_140430C
1404295-02B	MW-16	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	63199	100	04/29/14 12:36 PM	ICP-MS4_140429A
	MW-16	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	63199	50	04/29/14 12:00 PM	ICP-MS4_140429A

	J,								
CLIENT:	Larson & Associates			Cli	ent Sample ID: MW-15	5			
Project:	Legacy Trash Pit				Lab ID: 140429	5-01			
Project No:	14-0107-01			C	collection Date: 04/24/1	4 11:20 4	АМ		
Lab Order:	1404295	Matrix: AQUEOUS							
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed		
TRACE METALS: ICP-MS - WATER			SW602	20A			Analyst: SW		
Calcium		304	5.00	15.0	mg/L	50	04/29/14 11:58 AN		
Magnesium		201	5.00	15.0	mg/L	50	04/29/14 11:58 AN		
Potassium		15.9	5.00	15.0	mg/L	50	04/29/14 11:58 AN		
Sodium		430	5.00	15.0	mg/L	50	04/29/14 11:58 AN		
ANIONS BY IC	METHOD - WATER		E30	0			Analyst: AV		
Chloride		1320	30.0	100	mg/L	100	04/28/14 08:34 PM		
Nitrate-N		0.757	0.100	0.500	mg/L	1	04/25/14 06:46 PN		
Sulfate		492	100	300	mg/L	100	04/28/14 08:34 PM		
ALKALINITY			M2320) В		Analyst: LM			
Alkalinity, Bicar	bonate (As CaCO3)	249	12.5	25.0	mg/L @ pH 4.51	1 1	04/25/14 04:06 PN		
Alkalinity, Carbo	onate (As CaCO3)	ND	12.5	25.0	mg/L @ pH 4.51	1 1	04/25/14 04:06 PN		
Alkalinity, Hydro	oxide (As CaCO3)	ND	12.5	25.0	mg/L @ pH 4.51	1 1	04/25/14 04:06 PM		
Alkalinity, Total	(As CaCO3)	249	25.0	25.0	mg/L @ pH 4.51	1 1	04/25/14 04:06 PN		

M2540C

50.0

2940

50.0

TOTAL DISSOLVED SOLIDS

Total Dissolved Solids (Residue, Filterable)

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL

mg/L

ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

Analyst: MK

1

05/01/14 09:00 AM

TOTAL DISSOLVED SOLIDS

Filterable)

Total Dissolved Solids (Residue,

CLIENT:	Larson & Associates			Cli	ent Sample ID: MW-	16				
Project:	Legacy Trash Pit	Lab ID: 1404295-02								
Project No:	14-0107-01			C	ollection Date: 04/24	/14 11:30 /	AM			
Lab Order:	1404295		Matrix: AQUEOUS							
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed			
TRACE METALS: ICP-MS - WATER			SW602	20A		Analyst: SW				
Calcium		778	10.0	30.0	mg/L	100	04/29/14 12:36 PM			
Magnesium		172	5.00	15.0	mg/L	50	04/29/14 12:00 PN			
Potassium		16.3	5.00	15.0	mg/L	50	04/29/14 12:00 PN			
Sodium		836	5.00	15.0	mg/L	50	04/29/14 12:00 PN			
ANIONS BY IC	METHOD - WATER		E30	0			Analyst: AV			
Chloride		1810	30.0	100	mg/L	100	04/28/14 08:49 PM			
Nitrate-N		4.39	0.100	0.500	mg/L	1	04/25/14 07:00 PN			
Sulfate		555	100	300	mg/L	100	04/28/14 08:49 PM			
ALKALINITY			M232) B		Analyst: LM				
Alkalinity, Bicar	bonate (As CaCO3)	238	12.5	25.0	mg/L @ pH 4.	51 1	04/25/14 04:12 PM			
Alkalinity, Carb	onate (As CaCO3)	ND	12.5	25.0	mg/L @ pH 4.	51 1	04/25/14 04:12 PN			
Alkalinity, Hydro	oxide (As CaCO3)	ND	12.5	25.0	mg/L @ pH 4.	51 1	04/25/14 04:12 PM			
Alkalinity, Total	(As CaCO3)	238	25.0	25.0	mg/L @ pH 4.	51 1	04/25/14 04:12 PN			

M2540C

50.0

4210

50.0

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL

mg/L

ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

Analyst: MK

1

05/01/14 09:00 AM

_

CLIENT: Work Ord	Jone	Larson & 1404295	Associates	5		AN	NALYT	ICAL (QC SU	JMMAF	RY R	EPORT
Work Ord Project:	ler:	Legacy Ti	ash Pit					RunII	D: I	CP-MS4_	140429	DA
The QC dat	a in bato			ollowing sa	mples: 1404	295-01B, 1404	295-02B					
Sample ID	MB-63 ⁻	99	Batch ID:	63199		TestNo	: SW	6020A		Units:	mg/L	
SampType:	MBLK		Run ID:	ICP-MS	4_140429A	Analys	is Date: 4/2 9	9/2014 11:39	9:00 AM	Prep Date:	4/28/2	014
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 🦻	6RPD R	PDLimit Qua
Calcium				ND	0.300							
Magnesium				ND	0.300							
Potassium				ND	0.300							
Sodium				ND	0.300							
Sample ID	LCS-63	199	Batch ID:	63199		TestNo): SW	6020A		Units:	mg/L	
SampType:	LCS		Run ID:	ICP-MS	4_140429A	Analys	is Date: 4/2 9	9/2014 11:41	1:00 AM	Prep Date:	4/28/2	014
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 🖇	6RPD R	PDLimit Qua
Calcium				4.67	0.300	5.00	0	93.3	80	120		
Magnesium				4.85	0.300	5.00	0	97.0	80	120		
Potassium				4.98	0.300	5.00	0	99.5	80	120		
Sodium				4.82	0.300	5.00	0	96.4	80	120		
Sample ID	LCSD-	63199	Batch ID:	63199		TestNo): SW	6020A		Units:	mg/L	
SampType:	LCSD		Run ID:	ICP-MS	4_140429A	Analys	is Date: 4/2 9	9/2014 11:42	2:00 AM	Prep Date:	4/28/2	014
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qua
Calcium				4.65	0.300	5.00	0	93.0	80	120	0.351	15
Magnesium				4.89	0.300	5.00	0	97.7	80	120	0.746	15
Potassium				4.85	0.300	5.00	0	97.0	80	120	2.59	15
Sodium				4.85	0.300	5.00	0	96.9	80	120	0.533	15
Sample ID	140428	3-01A SD	Batch ID:	63199		TestNo): SW	6020A		Units:	mg/L	
SampType:	SD		Run ID:	ICP-MS	4_140429A	Analys	is Date: 4/29	9/2014 11:48	3:00 AM	Prep Date:	4/28/2	014
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qua
Calcium				12.3	7.50	0	12.8				4.14	10
Magnesium				4.54	7.50	0	4.58				0.940	10
Potassium				4.27	7.50	0	4.39				2.71	10
Sodium				29.7	7.50	0	30.4				2.39	10
Sample ID	140428	3-01A PDS	Batch ID:	63199		TestNo): SW	6020A		Units:	mg/L	
SampType:	PDS		Run ID:	ICP-MS	4_140429A	Analys	is Date: 4/29	9/2014 12:08	3:00 PM	Prep Date:	4/28/2	014
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qua
Calcium				41.0	1.50	25.0	12.8	113	80	120		
Magnesium				33.6	1.50	25.0	4.58	116	80	120		
Potassium				34.5	1.50	25.0	4.39	121	80	120		S
Qualifiers:	B J	•	ected in the a				Dilution Factor Method Deteo				ת	ago 1 of 12
	, ND	•	ected betwee				RPD outside		trol limits		Pa	age 1 of 12
	RL	Reporting L		-sa seleen			Spike Recove	-				
	J		ected betwee	n SDL and 1	RL		Parameter not	-				
	J	Analyte det	ected betwee	n SDL and I	XL.	N	Parameter not	I NELAC cer	uned			

CLIENT: Larson & Associates Work Order:

1404295 **Project:** Legacy Trash Pit

ANALYTICAL QC SUMMARY REPORT

ICP-MS4_140429A **RunID:**

Sample ID	1404283-01A PDS	Batch ID:	63199		TestNo:	S	W6020A		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS4	_140429A	Analysis	Date: 4/	29/2014 12:08	:00 PM	Prep Date:	4/28/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD R	PDLimit Qual
Sodium			60.4	1.50	25.0	30.5	120	80	120		
Sample ID	1404283-01A MS	Batch ID:	63199		TestNo:	S	W6020A		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS4	_140429A	Analysis	Date: 4/	29/2014 12:09	:00 PM	Prep Date:	4/28/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD R	PDLimit Qual
Calcium			17.4	0.300	5.00	12.8	92.5	80	120		
Magnesium			9.52	0.300	5.00	4.70	96.3	80	120		
Potassium			9.27	0.300	5.00	4.55	94.3	80	120		
Sodium			35.8	0.300	5.00	30.7	102	80	120		
Sample ID	1404283-01A MSD	Batch ID:	63199		TestNo:	S	W6020A		Units:	mg/L	
SampType:	MSD	Run ID:	ICP-MS4	_140429A	Analysis	Date: 4/	29/2014 12:11	:00 PM	Prep Date:	4/28/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD R	PDLimit Qual
Calcium			17.3	0.300	5.00	12.8	90.2	80	120	0.657	15
Magnesium			9.51	0.300	5.00	4.70	96.1	80	120	0.113	15
Potassium			9.34	0.300	5.00	4.55	95.7	80	120	0.782	15

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

Reporting Limit

RL

- J Analyte detected between SDL and RL
- DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAC certified Ν

Page 2 of 12

CLIENT: Larson & Associates Work Order: 1404295

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Trash Pit

Sample ID ICV-1404029	Batch ID:	R72754		TestNo	: SW	6020A		Units:	mg/L
SampType: ICV	Run ID:	ICP-MS4	_140429A	Analysi	s Date: 4/29	9/2014 11:00	0:00 AM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Calcium		2.51	0.300	2.50	0	100	90	110	
Magnesium		2.64	0.300	2.50	0	106	90	110	
Potassium		2.60	0.300	2.50	0	104	90	110	
Sodium		2.68	0.300	2.50	0	107	90	110	
Sample ID LCVL-140429	Batch ID:	R72754		TestNo	: SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4	_140429A	Analysi	s Date: 4/29	9/2014 11:04	4:00 AM	Prep Date	2:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Calcium		0.105	0.300	0.100	0	105	70	130	
Magnesium		0.109	0.300	0.100	0	109	70	130	
Potassium		0.104	0.300	0.100	0	104	70	130	
Sodium		0.101	0.300	0.100	0	101	70	130	
Sample ID CCV1-140429	Batch ID:	R72754		TestNo	: SW	6020A		Units:	mg/L
SampType: CCV	Run ID:	Run ID: ICP-MS4_140429A			s Date: 4/29	9/2014 11:29	9:00 AM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Calcium		4.74	0.300	5.00	0	94.9	90	110	
Magnesium		5.06	0.300	5.00	0	101	90	110	
Potassium		5.00	0.300	5.00	0	100	90	110	
Sodium		4.91	0.300	5.00	0	98.2	90	110	
Sample ID LCVL1-140429	Batch ID:	R72754		TestNo	: SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4	_140429A	Analysi	s Date: 4/29	9/2014 11:33	3:00 AM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Calcium		0.106	0.300	0.100	0	106	70	130	
Magnesium		0.108	0.300	0.100	0	108	70	130	
Potassium		0.103	0.300	0.100	0	103	70	130	
Sodium		0.102	0.300	0.100	0	102	70	130	
Sample ID CCV2-140429	Batch ID:	R72754		TestNo	: SW	6020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS4	_140429A	Analysi	s Date: 4/29	9/2014 12:1:	3:00 PM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	%RPD RPDLimit Qua	
Calcium		4.72	0.300	5.00	0	94.4	90	110	
Magnesium		5.00	0.300	5.00	0	100	90	110	
Potassium		4.88	0.300	5.00	0	97.5	90	110	
Sodium			0.300	5.00				110	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 3 of 12

CLIENT: Larson & Associates Work Order: 1404295

Project: Legacy Trash Pit

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS

ICP-MS4_140429A

Sample ID LCVL2-1	40429 Batch ID	R72754		TestNo:	SW	/6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4	_140429A	Analysis	Date: 4/2	9/2014 12:17:	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Calcium		0.103	0.300	0.100	0	103	70	130	
Magnesium		0.107	0.300	0.100	0	107	70	130	
Potassium		0.0983	0.300	0.100	0	98.3	70	130	
Sodium		0.104	0.300	0.100	0	104	70	130	
Sample ID CCV3-14	0429 Batch ID	R72754		TestNo:	SW	/6020A		Units:	mg/L
SampType: ССV	Run ID:	ICP-MS4	_140429A	Analysis	Date: 4/2	9/2014 12:40:	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Calcium		4.70	0.300	5.00	0	94.0	90	110	
Sample ID LCVL3-1	40429 Batch ID	R72754		TestNo:	SW	/6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4	_140429A	Analysis	Date: 4/2	9/2014 12:44:	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Calcium		0.101	0.300	0.100	0	101	70	130	

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

KL Reporting Linit

J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 4 of 12

CLIENT: L	arson & Associates	;		ΔΝ		CAL (OC SI	UMMA	V RF	PORT	
Work Order: 1	404295			111			-				
Project: L	egacy Trash Pit					RunII	D: 1	IC2_14042	5A		
The QC data in batch 63183 applies to the following samples: 1404295-01A, 1404295-02A											
Sample ID MB-63183	B Batch ID:	63183		TestNo	E300)		Units:	mg/L		
SampType: MBLK	Run ID:	IC2_140	425A	Analysi	s Date: 4/25/	2014 3:24:	11 PM	Prep Date:	4/25/20	14	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD RF	PDLimit Qual	
Nitrate-N		ND	0.500								
Sample ID LCS-6318	Batch ID:	63183		TestNo	E300)		Units:	mg/L		
SampType: LCS	Run ID:	IC2_140	425A	Analysi	s Date: 4/25/	/2014 3:38:	45 PM	Prep Date:	4/25/20	14	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD RF	PDLimit Qual	
Nitrate-N		5.15	0.500	5.000	0	103	90	110			
Sample ID LCSD-631	Batch ID:	63183		TestNo	E300)		Units:	mg/L		
SampType: LCSD	Run ID:	IC2_140	425A	Analysi	s Date: 4/25/	/2014 3:53:	20 PM	Prep Date:	4/25/20	14	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD RF	PDLimit Qual	
Nitrate-N		5.09	0.500	5.000	0	102	90	110	1.32	20	
Sample ID 1404284-0	Batch ID:	63183		TestNo	E300)		Units:	mg/L		
SampType: MS	Run ID:	IC2_140	425A	Analysi	s Date: 4/25/	/2014 4:34:	57 PM	Prep Date:	4/25/20	14	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD RF	PDLimit Qual	
Nitrate-N		14.4	0.500	4.516	9.923	99.1	90	110			
Sample ID 1404284-0	Batch ID:	63183		TestNo	E300)		Units:	mg/L		
SampType: MSD	Run ID:	IC2_140	425A	Analysi	s Date: 4/25/	/2014 4:49:	31 PM	Prep Date:	4/25/20	14	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD RF	PDLimit Qual	
Nitrate-N		14.3	0.500	4.516	9.923	97.3	90	110	0.567	20	

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 5 of 12
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	e
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

CLIENT: Work Order: Project:	Larson & 1404295 Legacy T		,		AN	ALYTI	CAL (RunID	-	J MMA C2_14042		REPORT
Sample ID ICV-14	0425	Batch ID:	R72810		TestNo:	E300			Units:	mg/	L
SampType: ICV		Run ID:	IC2_14042	5A	Analysis	Date: 4/25/20	014 3:06:2	29 PM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Nitrate-N			13.0	0.500	12.50	0	104	90	110		
Sample ID CCV1-	140425	Batch ID:	R72810		TestNo:	E300			Units:	mg/	L
SampType: CCV		Run ID:	IC2_14042	5A	Analysis	Date: 4/25/2	014 7:29:	50 PM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Nitrate-N			5.32	0.500	5.000	0	106	90	110		

Qualifiers:

В

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit

Page 6 of 12

R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAC certified

Work Orde	er: 1404295	11550014005			AN	ALYT	ICAL (ĮC S I	UMMAF	Y R	EPORT
Project:	Legacy Tr	ash Pit					RunII): I	C2 14042	8B	
-	in batch 63214 app		ollowing sa	mples: 1404	295-01A, 14042	295-02A			_		
Sample ID	MB-63214	Batch ID:	63214		TestNo	E30	0		Units:	mg/L	
SampType: I	MBLK	Run ID:	IC2_140	428B	Analysi	s Date: 4/28	8/2014 3:48:	24 PM	Prep Date:	4/28/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Chloride			ND	1.00							
Sulfate			ND	3.00							
Sample ID	LCS-63214	Batch ID:	63214		TestNo	E30	0		Units:	mg/L	
SampType: I	LCS	Run ID:	IC2_140	428B	Analysi	s Date: 4/28	8/2014 4:02:	59 PM	Prep Date:	4/28/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Chloride			10.4	1.00	10.00	0	104	90	110		
Sulfate			31.0	3.00	30.00	0	103	90	110		
Sample ID	LCSD-63214	Batch ID:	63214		TestNo	E30	0		Units:	mg/L	
SampType: I	LCSD	Run ID:	IC2_140	428B	Analysi	s Date: 4/28	8/2014 4:17:	33 PM	Prep Date:	4/28/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Chloride			10.4	1.00	10.00	0	104	90	110	0.235	20
Sulfate			31.2	3.00	30.00	0	104	90	110	0.499	20
Sample ID	1404297-08CMS	Batch ID:	63214		TestNo	E30	0		Units:	mg/L	
SampType: I	MS	Run ID:	IC2_140	428B	Analysi	s Date: 4/28	8/2014 9:18:	36 PM	Prep Date:	4/28/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Chloride			3140	100	2000	1168	98.8	90	110		
Sulfate			3330	300	2000	1445	94.3	90	110		
Sample ID	1404297-08CMSD	Batch ID:	63214		TestNo	E30	0		Units:	mg/L	
SampType: I	MSD	Run ID:	IC2_140	428B	Analysi	s Date: 4/28	8/2014 9:33:	10 PM	Prep Date:	4/28/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Chloride			3170	100	2000	1168	100	90	110	0.988	20
Sulfate			3370	300	2000	1445	96.4	90	110	1.25	20
Sample ID	1404297-10CMS	Batch ID:	63214		TestNo	E30	0		Units:	mg/L	
SampType: I	MS	Run ID:	IC2_140	428B	Analysi	s Date: 4/28	8/2014 10:02	2:19 PM	Prep Date:	4/28/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Chloride			2670	100	2000	660.1	101	90	110		
Sulfate			2740	300	2000	850.9	94.4	90	110		

ANALYTICAL OC SUMMARY REPORT

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J

Analyte detected between SDL and RL

CLIENT:

Larson & Associates

Ν Parameter not NELAC certified Page 7 of 12

CLIENT:Larson & AssociatesWork Order:1404295Project:Legacy Trash Pit

ANALYTICAL QC SUMMARY REPORT

RunID: IC2_140428B

Sample ID 1404297-10CMSD	Batch ID:	63214	8B	TestNo: E300				Units:	mg/L	-
SampType: MSD	Run ID:	IC2_14042		Analysis Date: 4/28/2014 10:16:54 PI				Prep Date	:: 4/28/	/2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride		2670	100	2000	660.1	100	90	110	0.171	20
Sulfate		2730	300	2000	850.9	93.9	90	110	0.319	20

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

Page 8 of 12

- S Spike Recovery outside control limits
- N Parameter not NELAC certified

CLIENT: Larson & Associates

Work Order:1404295Project:Legacy Trash Pit

ANALYTICAL QC SUMMARY REPORT

RunID: IC2_140428B

Sample ID	CV-140428	Batch ID:	R72816		TestNo:	E300			Units:	mg/L
SampType: I	cv	Run ID:	IC2_140428	в	Analysis	Date: 4/28/2	2014 10:44	1:44 AM	Prep Date	2
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Chloride			26.9	1.00	25.00	0	108	90	110	
Sulfate			79.6	3.00	75.00	0	106	90	110	
Sample ID C	CCV1-140428	Batch ID:	R72816		TestNo: E300				Units:	mg/L
SampType: C	ccv	Run ID:	IC2_140428	в	Analysis Date: 4/28/2014 3:30:5				Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Chloride			10.6	1.00	10.00	0	106	90	110	
Sulfate			31.3	3.00	30.00	0	104	90	110	
Sample ID	CCV2-140428	Batch ID:	R72816		TestNo:	E300			Units:	mg/L
SampType: C	CCV	Run ID:	IC2_140428	В	Analysis	Date: 4/28/2	2014 6:52:	51 PM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Chloride			10.5	1.00	10.00	0	105	90	110	
Sulfate			31.3	3.00	30.00	0	104	90	110	
Sample ID	CCV3-140428	Batch ID:	R72816		TestNo:	E300			Units:	mg/L
SampType: C	CCV	Run ID:	IC2_140428	В	Analysis	Date: 4/28/2	2014 10:46	6:03 PM	Prep Date	:
			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Analyte			Result						0	
Analyte Chloride			10.6	1.00	10.00	0	106	90	110	

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 9 of 12
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

CLIENT:	Larson & A	Associates			A N				U MMA F	DV DI	FDADT
Work Order:	1404295				AIN		ICAL	QC SI			
Project:	Legacy Tra	ash Pit					RunII	D: 1	ГITRATO	R_140	425B
The QC data in batc	h 63182 appl	ies to the fo	llowing samp	les: 14042	95-01A, 14042	95-02A					
Sample ID MB-631	82	Batch ID:	63182		TestNo:	M23	20 B		Units:	mg/L (@ pH 4.28
SampType: MBLK		Run ID:	TITRATOR	_140425B	Analysis	a Date: 4/25	/2014 2:58:	00 PM	Prep Date:	4/25/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Alkalinity, Bicarbona	te (As CaCO	3)	ND	20.0							
Alkalinity, Carbonate	e (As CaCO3))	ND	20.0							
Alkalinity, Hydroxide	(As CaCO3)		ND	20.0							
Alkalinity, Total (As	CaCO3)		ND	20.0							
Sample ID LCS-63	182	Batch ID:	63182		TestNo:	M23	20 B		Units:	mg/L (@ pH 4.06
SampType: LCS		Run ID:	TITRATOR	_140425B	Analysis	a Date: 4/25	/2014 3:02:	00 PM	Prep Date:	4/25/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Alkalinity, Total (As	CaCO3)		56.5	20.0	50.00	0	113	74	129		
Sample ID 140428	3-01D DUP	Batch ID:	63182		TestNo:	M23	20 B		Units:	mg/L (@ pH 4.44
SampType: DUP		Run ID:	TITRATOR	_140425B	Analysis	a Date: 4/25	/2014 3:07:	00 PM	Prep Date:	4/25/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Alkalinity, Bicarbona	te (As CaCO	3)	41.1	25.0	0	40.90				0.488	20
Alkalinity, Carbonate	e (As CaCO3))	0	25.0	0	0				0	20
Alkalinity, Hydroxide	(As CaCO3)		0	25.0	0	0				0	20
Alkalinity, Total (As	CaCO3)		41.1	25.0	0	40.90				0.488	20
Sample ID 140429	7-10C DUP	Batch ID:	63182		TestNo:	M23	20 B		Units:	mg/L (@ pH 4.52
SampType: DUP		Run ID:	TITRATOR	_140425B	Analysis	a Date: 4/25	/2014 5:07:	00 PM	Prep Date:	4/25/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Alkalinity, Bicarbona	te (As CaCO	3)	662	25.0	0	660.2				0.287	20
Alkalinity, Carbonate	e (As CaCO3)	1	0	25.0	0	0				0	20
Alkalinity, Hydroxide	(As CaCO3)		0	25.0	0	0				0	20
Alkalinity, Total (As	CaCO3)		662	25.0	0	660.2				0.287	20

Qualifiers:

В Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND

Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R

Page 10 of 12

RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAC certified

Work Order: 1	arson & Ass 404295 Jegacy Trash				AN	ALYT	(CAL (RunII		UMMAR titratoi	Y REPORT R_140425B
Sample ID ICV-1404	25 Ba	atch ID:	R72719		TestNo:	M23	20 B		Units:	mg/L @ pH 4.49
SampType: ICV	R	un ID:	TITRATOR	_140425B	Analysis	s Date: 4/25	/2014 2:57:	00 PM	Prep Date:	4/25/2014
Analyte		I	Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbonate	(As CaCO3)		7.04	20.0	0					
Alkalinity, Carbonate (As CaCO3)		93.8	20.0	0					
Alkalinity, Hydroxide (A	As CaCO3)		0	20.0	0					
Alkalinity, Total (As Ca	aCO3)		101	20.0	100.0	0	101	98	102	
Sample ID CCV1-14	0425 Ba	atch ID:	R72719		TestNo:	M23	20 B		Units:	mg/L @ pH 4.49
SampType: ССV	R	un ID:	TITRATOR	_140425B	Analysis	s Date: 4/25	/2014 3:54:	00 PM	Prep Date:	4/25/2014
Analyte		I	Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbonate	(As CaCO3)		15.9	20.0	0					
Alkalinity, Carbonate (As CaCO3)		83.2	20.0	0					
Alkalinity, Hydroxide (A	As CaCO3)		0	20.0	0					
Alkalinity, Total (As Ca	aCO3)		99.1	20.0	100.0	0	99.1	90	110	
Sample ID CCV2-14	0425 Ba	atch ID:	R72719		TestNo:	M23	20 B		Units:	mg/L @ pH 4.48
SampType: CCV	R	un ID:	TITRATOR	_140425B	Analysis	s Date: 4/25	2014 5:12:	00 PM	Prep Date:	4/25/2014
Analyte		I	Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual

Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	6RPD RP
Alkalinity, Bicarbonate (As CaCO3)	23.8	20.0	0					
Alkalinity, Carbonate (As CaCO3)	75.0	20.0	0					
Alkalinity, Hydroxide (As CaCO3)	0	20.0	0					
Alkalinity, Total (As CaCO3)	98.9	20.0	100.0	0	98.9	90	110	

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 11 of 12
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	U
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

CLIENT: Work Order:	Larson & 1404295	Associates			AN	ALYTI	CAL Q)C S	UMMAR	Y REPORT
Project:	Legacy Tr	ash Pit					RunID):	WC_14043	DC
The QC data in ba	tch 63271 app	lies to the fo	ollowing samp	les: 1404	295-01A, 14042	95-02A				
Sample ID MB-63	3271	Batch ID:	63271		TestNo:	M254	0C		Units:	mg/L
SampType: MBLK	X	Run ID:	WC_14043	0C	Analysis	Date: 5/1/20	014 9:00:00	0 AM	Prep Date:	4/30/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual
Total Dissolved So	lids (Residue,	Filtera	ND	10.0						
Sample ID LCS-6	3271	Batch ID:	63271		TestNo:	M254	0C		Units:	mg/L
SampType: LCS		Run ID:	WC_14043	0C	Analysis	Date: 5/1/20	014 9:00:00	0 AM	Prep Date:	4/30/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual
Total Dissolved So	lids (Residue,	Filtera	757	10.0	745.6	0	102	90	113	
Sample ID 14042	84-01B-DUP	Batch ID:	63271		TestNo:	M254	0C		Units:	mg/L
SampType: DUP		Run ID:	WC_14043	0C	Analysis	Date: 5/1/20	014 9:00:00	0 AM	Prep Date:	4/30/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual
Total Dissolved So	lids (Residue,	Filtera	693	10.0	0	691.0				0.289 5
Sample ID 14042	95-02A-DUP	Batch ID:	63271		TestNo:	M254	0C		Units:	mg/L
SampType: DUP		Run ID:	WC_14043	0C	Analysis	Date: 5/1/20	014 9:00:00	0 AM	Prep Date:	4/30/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual
Total Dissolved So	lids (Residue,	Filtera	4220	50.0	0	4210				0.237 5

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 12 of 12
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

June 24, 2014

Coty Woolf Larson & Associates 507 N. Marienfeld #200 Midland, TX 79701 TEL: (432) 687-0901 FAX (432) 687-0456 RE: Eunice NM / Legacy Trash Pit

Order No.: 1406153

Dear Coty Woolf:

DHL Analytical, Inc. received 2 sample(s) on 6/14/2014 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

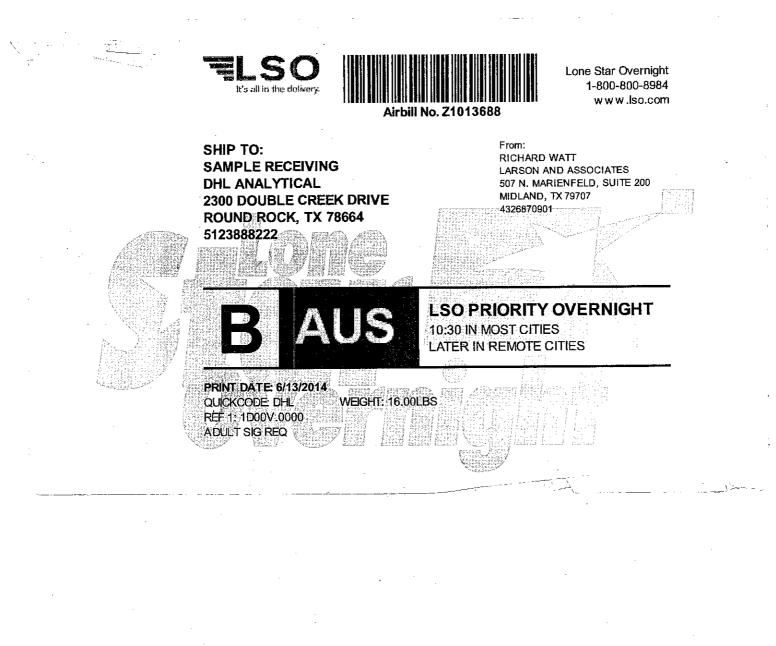
If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-14-12

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com


Table of Contents

Miscellaneous Documents	
CaseNarrative 1406153	6
WorkOrderSampleSummary 1406153	
PrepDatesReport 1406153	
AnalyticalDatesReport 1406153	
Analytical Report 1406153	
AnalyticalQCSummaryReport 1406153	

				I	0 Double (Phone (51:	2) 38	8-8 M	222 Veb:	F WW	AX w.dl	(512 hlan		8-8 ical.	229 con) (,	he		P					ΞH				587 OF) UST	0[ΟY
CLIENT: Lorson							•					DATI	E: 💋	(-)	3-	- 10	1	۰.									PAGE		OF	Ż	
ADDRESS: 507	V Main	seureta	STE	120	nD							PO #	:							_Dł	IL W	ORK	OR	DEF	(#		14	06	<u>153</u>	<u></u>	_
PHONE: <u>432)6</u> DATA REPORTED TO	87-	<u>0901</u> F	AX/E-N	MAIL:		:		;				PRO.	JEC	T LC		101		R NA	ME:	Ē	m	ic.	N^{\prime}	7	12	<u>- 90</u>	ncy	Tr	ath	<u> ד</u> וק	<u> </u>
ADDITIONAL REPOR	T COPI	ES TO: C.	10	wol	F							CLEN	NT P	RO.	JECT	#:	14	- 9	10	7-	?/		co	LĹE	стс	DR:					_
Authorize 5% surcharge for TRRP Report?	S=S(W=V A=A L=LI	DIL P=P VATER SL= IR O=C		έE		# of Containers			Ī	ION I											7										
Field Sample 1.D.	DHL Lab #	Date	Time	Matrix	Container Type	to t	도 :	HNO, H SO, H	чШ	ND	Ň	X				ŶŶ	V3			Ż	\$ <u>}</u> {;	3.3)	Ŋ	74 8	S	"/	//	· FII		ES	
	101	6-13-14	9:20	1	Poly	2	+				$\frac{2}{1}$		<u>y</u> T		<u>~~</u>	<u></u>	<u>/ %</u>		$\frac{\sqrt{2}}{\sqrt{2}}$		$\frac{\sqrt{2}}{1}$	$\frac{2}{1}$	<u>%/</u>	1							-
MW1 MW2			915 Jen		Polu	2	+	-	Č							-			17	$\overline{\mathbf{v}}$			Ŭ	$\overline{\mathbf{V}}$							
TOTAL	1	1	1			┝╼╋		-+-										+			-		1-	1							
RELINQUISHED BY: (Signature RELINQUISHED BY: (Signature X 200 RELINQUISHED BY: (Signature	est-	•	DATE/1 في أدبر أ DATE/1	<u> :5</u> пме с.е пме	RECEIVEI	(X) 3/84.45	igna'	ture)	j		 	3	F 1 2 N	RUSH I DA 2 DA NORI		CAL ÇAL	L FIF			JSTO CAR	/ING DY S RIER DEL	DRY U TEM EAL BILL IVER ELIVE	P: <u>(</u> 5: #://		<u>7</u>			UTAC'	57 ruq N		ED

a.

.

Sample	Receipt Check	dist	
Client Name Larson & Associates		Date Received: 6/14/2	014
Work Order Number 1406153		Received by JB	
Checklist completed by 50000 6/16/201 Signature Date Carrier name	4 LoneStar	Reviewed by	6/16/2014 Date
Shipping container/cooler in good condition?	Yes 🗹	No 🗌 Not Present 🗌	
Shipping container/cooler in good condition? Custody seals intact on shippping container/cooler?	Yes	No Not Present	
Custody seals intact on sample bottles?	Yes	No Not Present	
Chain of custody present?	Yes 🗹		
Chain of custody signed when relinquished and received?	Yes 🗹		
Chain of custody agrees with sample labels?	Yes 🗹		
Samples in proper container/bottle?	Yes 🗹	No 🗌	
Sample containers intact?	Yes 🗹	No 🗌	
Sufficient sample volume for indicated test?	Yes 🗹	Νο	
All samples received within holding time?	Yes	No 🗹	
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌 🐘 0.9 °C	
Water - VOA vials have zero headspace?	Yes 🗌	No 🗌 No VOA vials submit	tted 🔽
Water - pH<2 acceptable upon receipt?	Yes 🗌	No 🗌 🛛 NA 🗹 🛛 LOT #	
	Adjusted?	Checked by	·
Water - ph>9 (S) or ph>12 (CN) acceptable upon receipt?	Yes	No□ NA 🗹 LOT #	
	Adjusted?	Checked by	
Any No response must be detailed in the comments section below.		· · · · · · · · · · · · · · · · · · ·	
Client contacted Ransan Date contacted:	Le lueli-r	Person contacted	
		aty - hold	time
Comments: Per Cate RL	ocied	with ana	Lusio
To home of hold	- tine	for Nitra	ites
Flag data.		~	
Corrective Action			
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
· ·			

Page 1 of 1

CLIENT:Larson & AssociatesProject:Eunice NM / Legacy Trash PitLab Order:1406153

CASE NARRATIVE

Sample was analyzed using the methods outlined in the following references:

Method E300 - Anions Analysis Method SW6020A - Metals Analysis Method M2540C - Total Dissolved Solids Analysis Method M2320 B - Alkalinity Analysis

LOG IN

The samples were received and log-in performed on 6/14/14. A total of 2 samples were received. The Time of Collection was Mountain Standard Time. The samples were submitted to DHL Analytical outside of the HoldTime for the Anions analysis (Nitrate-N). Proceeded with analysis as per the client. All Nitrate-N results are flagged with a "C" to designate this. The samples arrived in good condition and were properly packaged.

ANIONS ANALYSIS

For Anions analysis performed on 6/18/14 the matrix spikes and matrix spike duplicate recoveries (1406125-03 MS/MSD & 1406177-02 MS/MSD) were slightly below control limits for Chloride and/or Nitrate-N. These are flagged accordingly in the QC summary report. The reference samples selected for the matrix spikes and matrix spike duplicates were not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Anions analysis performed on 6/18/14 the CCVs (CCV2-140618 & CCV3-140618) were slightly below control limits for Nitrate-N. These are flagged accordingly. The associated samples were the matrix spikes and matrix spike duplicates (1406125-03 MS/MSD & 1406177-02 MS/MSD). These QC samples may be biased low for this analyte. No further corrective actions were taken.

METALS ANALYSIS

For Metals analysis performed on 6/19/14 the matrix spike and matrix spike duplicate recoveries were above control limits for all analytes. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 6/19/14 the PDS recovery was slightly below control limits for Magnesium. This is flagged accordingly. The serial dilution was within control limits for this analyte. No further corrective actions were taken.

CLIENT:	Larson & Associates
Project:	Eunice NM / Legacy Trash Pit
Lab Order:	1406153

CASE NARRATIVE

For Metals analysis performed on 6/19/14 the LCVLs (ILCVL-140619 & LCVL1-140619) were slightly above control limits for Sodium. These are flagged accordingly. The associated ICV and CCV (ICV-140619 & CCV1-140619) were within control limits for this analyte. No further corrective actions were taken.

TDS ANALYSIS

For TDS analysis performed on 6/16/14 the sample and sample duplicate (1406127-01 and 1406127-1 DUP) had the RPD slightly above control limits. This is flagged accordingly in the QC summary report. No further corrective actions were taken.

Date: 24-Jun-14

CLIENT:	Larson & Associate	S						
Project:	Eunice NM / Legac	y Trash Pit	Work Order Sample Summary					
Lab Order:	1406153			S annual J				
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved				
1406153-01 N	MW-1		06/13/14 09:20 AM	6/14/2014				
1406153-02 N	MW-2		06/13/14 09:59 AM	6/14/2014				

Lab Order: 1406153

Client: Larson & Associates

Project: Eunice NM / Legacy Trash Pit

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1406153-01A	MW-1	06/13/14 09:20 AM	Aqueous	M2320 B	Alkalinity Preparation	06/17/14 09:04 AM	64141
	MW-1	06/13/14 09:20 AM	Aqueous	E300	Anion Preparation	06/18/14 09:16 AM	64209
	MW-1	06/13/14 09:20 AM	Aqueous	E300	Anion Preparation	06/18/14 09:16 AM	64209
	MW-1	06/13/14 09:20 AM	Aqueous	M2540C	TDS Preparation	06/16/14 06:28 PM	64173
1406153-01B	MW-1	06/13/14 09:20 AM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 10µ Filter	06/19/14 10:31 AM	64243
	MW-1	06/13/14 09:20 AM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 10µ Filter	06/19/14 10:31 AM	64243
1406153-02A	MW-2	06/13/14 09:59 AM	Aqueous	M2320 B	Alkalinity Preparation	06/17/14 09:04 AM	64141
	MW-2	06/13/14 09:59 AM	Aqueous	E300	Anion Preparation	06/18/14 09:16 AM	64209
	MW-2	06/13/14 09:59 AM	Aqueous	E300	Anion Preparation	06/18/14 09:16 AM	64209
	MW-2	06/13/14 09:59 AM	Aqueous	M2540C	TDS Preparation	06/16/14 06:28 PM	64173
1406153-02B	MW-2	06/13/14 09:59 AM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 10µ Filter	06/19/14 10:31 AM	64243

Lab Order: 1406153

Client: Larson & Associates

Project: Eunice NM / Legacy Trash Pit

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1406153-01A	MW-1	Aqueous	M2320 B	Alkalinity	64141	1	06/17/14 12:33 PM	TITRATOR_140617B
	MW-1	Aqueous	E300	Anions by IC method - Water	64209	100	06/18/14 03:14 PM	IC_140618A
	MW-1	Aqueous	E300	Anions by IC method - Water	64209	1	06/18/14 10:28 AM	IC_140618A
	MW-1	Aqueous	M2540C	Total Dissolved Solids	64173	1	06/17/14 09:01 AM	WC_140616B
1406153-01B	MW-1	Aqueous	SW6020A	Trace Metals-ICPMS (10µ filter)	64243	100	06/19/14 04:29 PM	ICP-MS3_140619A
	MW-1	Aqueous	SW6020A	Trace Metals-ICPMS (10µ filter)	64243	50	06/19/14 03:53 PM	ICP-MS3_140619A
1406153-02A	MW-2	Aqueous	M2320 B	Alkalinity	64141	1	06/17/14 12:37 PM	TITRATOR_140617B
	MW-2	Aqueous	E300	Anions by IC method - Water	64209	10	06/18/14 03:28 PM	IC_140618A
	MW-2	Aqueous	E300	Anions by IC method - Water	64209	1	06/18/14 10:43 AM	IC_140618A
	MW-2	Aqueous	M2540C	Total Dissolved Solids	64173	1	06/17/14 09:01 AM	WC_140616B
1406153-02B	MW-2	Aqueous	SW6020A	Trace Metals-ICPMS (10µ filter)	64243	50	06/19/14 04:05 PM	ICP-MS3_140619A

CLIENT:	Larson & Associates	ciates Client Sample ID: MW-1							
Project:	Eunice NM / Legacy Tra	Lab ID: 1406153-01							
Project No:	14-0107-01		Collection Date: 06/13/14 09:20 AM						
Lab Order:	1406153				Matrix: AQU	EOUS			
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed		
TRACE METAI	LS-ICPMS (10µ FILTER)		SW602	20A			Analyst: SW		
Calcium		447	5.00	15.0	mg/L	50	06/19/14 03:53 PM		
Magnesium		384	5.00	15.0	mg/L	50	06/19/14 03:53 PM		
Potassium		29.5	5.00	15.0	mg/L	50	06/19/14 03:53 PM		
Sodium		1420	10.0	30.0	mg/L	100	06/19/14 04:29 PM		

Souluiti	1420	10.0	30.0		iiig/L	100	00/19/14 04.29 FM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: AV
Chloride	2720	30.0	100		mg/L	100	06/18/14 03:14 PM
Nitrate-N	ND	0.100	0.500	С	mg/L	1	06/18/14 10:28 AM
Sulfate	896	100	300		mg/L	100	06/18/14 03:14 PM
ALKALINITY		M2320) В				Analyst: LM
Alkalinity, Bicarbonate (As CaCO3)	394	10.0	20.0		mg/L @ pH 4.51	1	06/17/14 12:33 PM
Alkalinity, Carbonate (As CaCO3)	ND	10.0	20.0		mg/L @ pH 4.51	1	06/17/14 12:33 PM
Alkalinity, Hydroxide (As CaCO3)	ND	10.0	20.0		mg/L @ pH 4.51	1	06/17/14 12:33 PM
Alkalinity, Total (As CaCO3)	394	20.0	20.0		mg/L @ pH 4.51	1	06/17/14 12:33 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: MK
Total Dissolved Solids (Residue, Filterable)	6700	200	200		mg/L	1	06/17/14 09:01 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:	Larson & Associates			Clie	ent Sam	ple ID: MW	MW-2			
Project:	Eunice NM / Legacy Tra	ash Pit			L	ab ID: 1406	5153-02			
Project No:	14-0107-01			С	ollection	Date: 06/1	3/14 09:59	AM		
Lab Order:	1406153		Matrix: AQUEOUS							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed		
TRACE META	LS-ICPMS (10µ FILTER)		SW602	20A				Analyst: SW		
Calcium		48.2	5.00	15.0		mg/L	50	06/19/14 04:05 PM		
Magnesium		30.6	5.00	15.0		mg/L	50	06/19/14 04:05 PM		
Potassium		7.86	5.00	15.0	J	mg/L	50	06/19/14 04:05 PM		
Sodium		114	5.00	15.0		mg/L	50	06/19/14 04:05 PM		
ANIONS BY IC	METHOD - WATER		E30	0				Analyst: AV		
Chloride		58.8	3.00	10.0		mg/L	10	06/18/14 03:28 PM		
Nitrate-N		1.54	0.100	0.500	С	mg/L	1	06/18/14 10:43 AM		
Sulfate		121	1.00	3.00		mg/L	1	06/18/14 10:43 AM		
			Maaa					Applyot: IM		

ALKALINITY		M2320	в			Analyst: LM
Alkalinity, Bicarbonate (As CaCO3)	227	10.0	20.0	mg/L @ pH 4.49	1	06/17/14 12:37 PM
Alkalinity, Carbonate (As CaCO3)	ND	10.0	20.0	mg/L @ pH 4.49	1	06/17/14 12:37 PM
Alkalinity, Hydroxide (As CaCO3)	ND	10.0	20.0	mg/L @ pH 4.49	1	06/17/14 12:37 PM
Alkalinity, Total (As CaCO3)	227	20.0	20.0	mg/L @ pH 4.49	1	06/17/14 12:37 PM
TOTAL DISSOLVED SOLIDS		M2540	C			Analyst: MK
Total Dissolved Solids (Residue, Filterable)	564	10.0	10.0	mg/L	1	06/17/14 09:01 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

CLIENT: Work Ord		Larson & 1406153	Associates			AN	JALYT	ICAL (QC SI	UMMAF	RY R	EPORT
work Ord Project:			M / Legacy	Trash Pit				RunII):]	ICP-MS3_	14061	9A
						153-01B, 1406	153-02B				1.001	
Sample ID	MB-642	43	Batch ID:	64243		TestNo	: SW	6020A		Units:	mg/L	
SampType:	MBLK		Run ID:	ICP-MS3	_140619A	Analys	is Date: 6/1 9	9/2014 3:23:	00 PM	Prep Date:	6/19/	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	6RPD	RPDLimit Qu
Calcium				ND	0.300							
Magnesium				ND	0.300							
Potassium				ND	0.300							
Sodium				ND	0.300							
Sample ID	FB-6424	3	Batch ID:	64243		TestNo	: SW	6020A		Units:	mg/L	
SampType:	MBLK		Run ID:	ICP-MS3	_140619A	Analys	is Date: 6/1 9	9/2014 3:29:	00 PM	Prep Date:	6/19/	2014
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit 9	6RPD	RPDLimit Qu
Calcium				ND	0.300							
Magnesium				ND	0.300							
Potassium				ND	0.300							
Sodium				ND	0.300							
Sample ID	LCS-64	243	Batch ID:	64243		TestNo	: SW	6020A		Units:	mg/L	
SampType:	LCS		Run ID:	ICP-MS3	_140619A	Analys	is Date: 6/1 9	9/2014 3:35:	00 PM	Prep Date:	6/19/	2014
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD	RPDLimit Qu
Calcium				4.91	0.300	5.00	0	98.2	80	120		
Magnesium				4.82	0.300	5.00	0	96.3	80	120		
Potassium				4.85	0.300	5.00	0	97.0	80	120		
Sodium				4.99	0.300	5.00	0	99.8	80	120		
Sample ID	LCSD-6	4243	Batch ID:	64243		TestNo	: SW	6020A		Units:	mg/L	
SampType:	LCSD		Run ID:	ICP-MS3	_140619A	Analys	is Date: 6/19	9/2014 3:41:	00 PM	Prep Date:	6/19/	2014
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	6RPD	RPDLimit Qu
Calcium				4.94	0.300	5.00	0	98.7	80	120	0.467	15
Magnesium				4.88	0.300	5.00	0	97.7	80	120	1.36	15
Potassium				4.94	0.300	5.00	0	98.7	80	120	1.76	15
Sodium				5.06	0.300	5.00	0	101	80	120	1.47	15
Sample ID	1406153	3-01B SD	Batch ID:	64243		TestNo	: SW	6020A		Units:	mg/L	
SampType:	SD		Run ID:	ICP-MS3	5_140619A	Analys	is Date: 6/1 9	9/2014 3:59:	00 PM	Prep Date:	6/19/	2014
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	6RPD	RPDLimit Qu
Calcium				440	75.0	0	447				1.53	10
Magnesium				407	75.0	0	384				5.70	10
Potassium				29.9	75.0	0	29.5				1.21	10
Qualifiers:	В	Analyte det	ected in the a	ssociated M	ethod Blank	DF	Dilution Fact	or				
	J	•	ected between				Method Dete				Ţ	Page 1 of 10
	ND	-	ed at the Meth					accepted cont	rol limits		1	-50 1 01 10
	RL	Reporting I	Limit					ery outside con				
	J		ected between	SDL and R	т		Parameter no	-				

CLIENT: Larson & Associates Work Order: 1406153

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS3_140619A

Project: Eunice NM / Legacy Trash Pit

- 3		0,										
Sample ID	1406153-01B PDS	Batch ID:	64243		TestNo	: SW	6020A		Units:	mg/L		
SampType:	PDS	Run ID:	ICP-MS3	_140619A	Analys	is Date: 6/19	9/2014 4:11:	00 PM	Prep Date:	6/19/20	014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	PDLimit	Qual
Calcium			736	15.0	250	447	115	80	120			
Magnesium			693	15.0	250	384	124	80	120			S
Potassium			299	15.0	250	29.5	108	80	120			
Sample ID	1406153-01B MS	Batch ID:	64243		TestNo	: SW	6020A		Units:	mg/L		
SampType:	MS	Run ID:	ICP-MS3	_140619A	Analys	is Date: 6/19	9/2014 4:17:	00 PM	Prep Date:	6/19/20	014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	PDLimit	Qual
Calcium			465	15.0	5.00	447	367	80	120			S
Magnesium			408	15.0	5.00	384	481	80	120			S
Potassium			36.2	15.0	5.00	29.5	132	80	120			S
Sodium			1380	15.0	5.00	1330	1120	80	120			S
Sample ID	1406153-01B MSD	Batch ID:	64243		TestNo): SW	6020A		Units:	mg/L		
SampType:	MSD	Run ID:	ICP-MS3	5_140619A	Analys	is Date: 6/19	9/2014 4:23:	00 PM	Prep Date:	6/19/20	014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	PDLimit	Qual
Calcium			465	15.0	5.00	447	366	80	120	0.010	15	S
Magnesium			408	15.0	5.00	384	475	80	120	0.073	15	S
Potassium			35.8	15.0	5.00	29.5	126	80	120	0.889	15	S
Sodium			1380	15.0	5.00	1330	1160	80	120	0.145	15	S
Sample ID	1406153-01B SD	Batch ID:	64243		TestNo	: SW	6020A		Units:	mg/L		
SampType:	SD	Run ID:	ICP-MS3	_140619A	Analys	is Date: 6/19	9/2014 4:36:	00 PM	Prep Date:	6/19/20	014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RF	PDLimit	Qual
Sodium			1380	150	0	1420				3.15	10	
Sample ID	1406153-01B PDS	Batch ID:	64243		TestNo	: SW	6020A		Units:	mg/L		
SampType:	PDS	Run ID:	ICP-MS3	_140619A	Analys	is Date: 6/19	9/2014 4:42:	00 PM	Prep Date:	6/19/20)14	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🧐	%RPD RF	PDLimit	Qual
Sodium			2020	30.0	500	1420	119	80	120			

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
 - D Not Detected at the Method Detection Emitt
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 2 of 10

- S Spike Recovery outside control limits
- N Parameter not NELAC certified

CLIENT: Larson & Associates Work Order:

ANALYTICAL QC SUMMARY REPORT

ICP-MS3_140619A

RunID:

Project: Eunice NM / Legacy Trash Pit

1406153

Sample ID ILCVL-140	619 Batch ID:	R73857	,	TestNo	sw	6020A		Units:	mg/L	
SampType: LCVL	Run ID:	ICP-MS	63_140619A	Analys	is Date: 6/19	9/2014 12:46	6:00 PM	Prep Date:	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLim	it Qual
Calcium		0.109	0.300	0.100	0	109	70	130		
Magnesium		0.114	0.300	0.100	0	114	70	130		
Potassium		0.123	0.300	0.100	0	123	70	130		
Sodium		0.134	0.300	0.100	0	134	70	130		S
Sample ID LCVL1-140	619 Batch ID:	R73857	,	TestNo	: SW	6020A		Units:	mg/L	
SampType: LCVL	Run ID:	ICP-MS	63_140619A	Analys	is Date: 6/1 9	9/2014 3:11:	00 PM	Prep Date:	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLim	it Qual
Calcium		0.109	0.300	0.100	0	109	70	130		
Magnesium		0.113	0.300	0.100	0	113	70	130		
Potassium		0.121	0.300	0.100	0	121	70	130		
Sodium		0.140	0.300	0.100	0	140	70	130		S
Sample ID LCVL2-140	619 Batch ID:	R73857	,	TestNo	: SW	6020A		Units:	mg/L	
SampType: LCVL	Run ID:	ICP-MS	63_140619A	Analys	is Date: 6/19	9/2014 5:00:	00 PM	Prep Date:	÷	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLim	it Qual
Calcium		0.112	0.300	0.100	0	112	70	130		
Magnesium		0.116	0.300	0.100	0	116	70	130		
Potassium		0.114	0.300	0.100	0	114	70	130		
Sodium		0.119	0.300	0.100	0	119	70	130		
Sample ID ICV1-1406	I9 Batch ID:	R73857	,	TestNo	: SW	6020A		Units:	mg/L	
SampType: ICV	Run ID:	ICP-MS	63_140619A	Analys	is Date: 6/19	9/2014 12:14	4:00 PM	Prep Date:		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLim	it Qual
Calcium		2.58	0.300	2.50	0	103	90	110		
Magnesium		2.63	0.300	2.50	0	105	90	110		
Potassium		2.62	0.300	2.50	0	105	90	110		
Sodium		2.67	0.300	2.50	0	107	90	110		
				TeetNe	sw	6020A		Units:	mg/L	
Sample ID CCV1-1406	Batch ID:	R73857	,	TestNo	• • • •					
Sample ID CCV1-1406 SampType: CCV	19 Batch ID: Run ID:		, 53_140619A		-	9/2014 2:59:	00 PM	Prep Date:	-	
					-				%RPD RPDLim	it Qual
SampType: CCV		ICP-MS	63_140619A	Analys	is Date: 6/19	9/2014 2:59:				it Qual
SampType: CCV Analyte		ICP-MS Result	83_140619A RL	Analys SPK value	is Date: 6/19 Ref Val	9/2014 2:59: %REC	LowLim	it HighLimit		it Qual
SampType: CCV Analyte Calcium		ICP-MS Result 4.57	RL 0.300	Analys SPK value 5.00	is Date: 6/1 9 Ref Val	9/2014 2:59: %REC 91.4	LowLim 90	it HighLimit		it Qual

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAC certified Page 3 of 10

CLIENT:Larson & AssociatesWork Order:1406153Project:Eunice NM / Legacy Trash Pit

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS3_140619A

Sample ID CCV2-140619	Batch ID:	R73857		TestNo	: SW	6020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS	3_140619A	Analys	s Date: 6/19	9/2014 4:48:	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Calcium		4.58	0.300	5.00	0	91.6	90	110	
Magnesium		4.57	0.300	5.00	0	91.3	90	110	
Potassium		4.68	0.300	5.00	0	93.5	90	110	
Sodium		4.70	0.300	5.00	0	93.9	90	110	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- D Not Detected at the Method Detection Elimit
- RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 4 of 10

- R RPD outside accepted control limits
- S Spike Recovery outside control limits

N Parameter not NELAC certified

CLIENT: Work Ord		& Associates			AN	ALYT	TICAL (QC SU	UMMAF	RY R	EPOI	RT
Project:		NM / Legacy	Trash P	it			RunII): 1	[C_140618	A		
The QC data	a in batch 64209 a	applies to the fo	ollowing s	amples: 1406	6153-01A, 14061	53-02A						
Sample ID	MB-64209	Batch ID:	64209		TestNo:	E30	00		Units:	mg/L		
SampType:	MBLK	Run ID:	IC_140	618A	Analysis	Date: 6/1	8/2014 9:42:	39 AM	Prep Date:	6/18/2	014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit	Qual
Chloride			ND	1.00								
Nitrate-N			ND	0.500								
Sulfate			ND	3.00								
Sample ID	LCS-64209	Batch ID:	64209		TestNo:	E30	00		Units:	mg/L		
SampType:	LCS	Run ID:	IC_140	618A	Analysis	Date: 6/1	8/2014 9:57:	15 AM	Prep Date:	6/18/2	014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	%RPD R	PDLimit	Qual
Chloride			9.65	1.00	10.00	0	96.5	90	110			
Nitrate-N			4.87	0.500	5.000	0	97.4	90	110			
Sulfate			30.6	3.00	30.00	0	102	90	110			
Sample ID	LCSD-64209	Batch ID:	64209		TestNo:	E30	00		Units:	mg/L		
SampType:	LCSD	Run ID:	IC_140	618A	Analysis	Date: 6/1	8/2014 10:11	:51 AM	Prep Date:	6/18/2	014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit	Qual
Chloride			9.59	1.00	10.00	0	95.9	90	110	0.606	20	
Nitrate-N			4.86	0.500	5.000	0	97.2	90	110	0.199	20	
Sulfate			30.5	3.00	30.00	0	102	90	110	0.393	20	
Sample ID	1406177-02DMS	Batch ID:	64209		TestNo:	E30	00		Units:	mg/L		
SampType:	MS	Run ID:	IC_140	618A	Analysis	Date: 6/1	8/2014 5:10:	00 PM	Prep Date:	6/18/2	014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit	Qual
Chloride			54.1	1.00	20.00	37.47	83.3	90	110			S
Nitrate-N			5.13	0.500	4.516	1.313	84.6	90	110			S
Sulfate			58.4	3.00	20.00	38.15	101	90	110			
Sample ID	1406177-02DMS	D Batch ID:	64209		TestNo:	E30	00		Units:	mg/L		
SampType:	MSD	Run ID:	IC_140	618A	Analysis	Date: 6/1	8/2014 5:24:	36 PM	Prep Date:	6/18/2	014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit	Qual
Chloride			54.2	1.00	20.00	37.47	83.7	90	110	0.176	20	S
Nitrate-N			5.51	0.500	4.516	1.313	93.0	90	110	7.11	20	
Sulfate			58.5	3.00	20.00	38.15	102	90	110	0.135	20	
Sample ID	1406125-03DMS	Batch ID:	64209		TestNo:	E30	00		Units:	mg/L		
SampType:	MS	Run ID:	IC_140	618A	Analysis	Date: 6/1	8/2014 5:39:	13 PM	Prep Date:	6/18/2	014	
Analyte			Result	RL	SPK value	Ref Val	%REC	مر المربع	nit HighLimit 9			Qual

Qualifiers:

- В Analyte detected in the associated Method Blank
- Analyte detected between MDL and RL J ND
 - Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor

- MDL Method Detection Limit R RPD outside accepted control limits
 - S Spike Recovery outside control limits

Page 5 of 10

Ν Parameter not NELAC certified

ANALVELCAL OC SUMMADV DEDODE

CLIENT: Larson & Associates Work Order: 1406153

ANALYTICAL QC SUMMARY REPORT

Project: Eunice NM / Legacy Trash Pit

RunID: IC_140618A

Sample ID	1406125-03DMS	Batch ID:	64209		TestNo	E300			Units:	mg/L		
SampType:	MS	Run ID:	IC_140618	BA	Analysi	s Date: 6/18/2	2014 5:39:	13 PM	Prep Date:	6/18/2	2014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD F	RPDLimit	Qual
Chloride			2300	100	2000	407.3	94.8	90	110			
Nitrate-N			367	50.0	451.6	0	81.3	90	110			S
Sulfate			2410	300	2000	439.4	98.5	90	110			
Sample ID	1406125-03DMSD	Batch ID:	64209		TestNo	E300			Units:	mg/L		
SampType:	MSD	Run ID:	IC_140618	BA	Analysis	s Date: 6/18/2	2014 5:53:	49 PM	Prep Date:	6/18/2	2014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD F	RPDLimit	Qual
Chloride			2290	100	2000	407.3	94.1	90	110	0.664	20	
					454.0	•	04 7	90	440	0 4 4 5	20	S
Nitrate-N			369	50.0	451.6	0	81.7	90	110	0.445	20	3

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 6 of 10

- S Spike Recovery outside control limits
- S Spike Recovery outside control limit
- N Parameter not NELAC certified

CLIENT: Larson & Associates

Work Order:

ANALYTICAL QC SUMMARY REPORT

1406153

Project:	l	Eunice NM / Le	gacy	Trash Pit				RunID):]	[C_14061	8A	
Sample ID	ICV-1406	18 Batch	h ID:	R73845		TestNo	E30	0		Units:	mg/L	
SampType:	ICV	Run	ID:	IC_14061	8A	Analysi	s Date: 6/18	8/2014 9:25:	53 AM	Prep Date	:	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD I	RPDLimit Qual
Chloride				24.4	1.00	25.00	0	97.6	90	110		
Nitrate-N				12.4	0.500	12.50	0	98.8	90	110		
Sulfate				76.7	3.00	75.00	0	102	90	110		
Sample ID	CCV1-14	0618 Batch	h ID:	R73845		TestNo	E30	0		Units:	mg/L	
SampType:	CCV	Run	ID:	IC_14061	8A	Analysis	s Date: 6/18	8/2014 1:10: [,]	12 PM	Prep Date	:	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD F	RPDLimit Qual
Chloride				9.65	1.00	10.00	0	96.5	90	110		
Nitrate-N				4.81	0.500	5.000	0	96.2	90	110		
Sulfate				30.4	3.00	30.00	0	101	90	110		
Sample ID	CCV2-14	0618 Batch	h ID:	R73845		TestNo	E30	0		Units:	mg/L	
SampType:	CCV	Run	ID:	IC_14061	8A	Analysi	s Date: 6/18	8/2014 4:12:3	33 PM	Prep Date	:	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD I	RPDLimit Qual
Chloride				9.59	1.00	10.00	0	95.9	90	110		
Nitrate-N				4.29	0.500	5.000	0	85.8	90	110		S
Sulfate				30.7	3.00	30.00	0	102	90	110		
Sample ID	CCV3-14	0618 Batch	h ID:	R73845		TestNo	E30	0		Units:	mg/L	
SampType:	CCV	Run	ID:	IC_14061	8A	Analysis	s Date: 6/18	8/2014 6:37:4	41 PM	Prep Date	:	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD I	RPDLimit Qual
Chloride				10.1	1.00	10.00	0	101	90	110		
Nitrate-N				4.21	0.500	5.000	0	84.3	90	110		S
Sulfate				30.9	3.00	30.00	0	103	90	110		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
2	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 7 of 10
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

CLIENT:	Larson & A	Associates							UMMAR		FDODT
Work Order:	1406153						ICAL				
Project:	Eunice NN	/I / Legacy	Trash P	it			RunII): [FITRATO	R_140	617B
The QC data in batc	h 64141 app	lies to the fo	ollowing s	amples: 14061	53-01A, 1406	153-02A					
Sample ID MB-641	41	Batch ID:	64141		TestNo	: M23	320 B		Units:	mg/L	@ pH 4.39
SampType: MBLK		Run ID:	TITRAT	OR_140617B	Analysi	s Date: 6/17	//2014 9:29:	00 AM	Prep Date:	6/17/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit Qual
Alkalinity, Bicarbona	te (As CaCO	3)	ND	20.0							
Alkalinity, Carbonate	e (As CaCO3)	ND	20.0							
Alkalinity, Hydroxide	(As CaCO3)	1	ND	20.0							
Alkalinity, Total (As	CaCO3)		ND	20.0							
Sample ID LCS-64	141	Batch ID:	64141		TestNo	: M23	320 B		Units:	mg/L	@ pH 3.78
SampType: LCS		Run ID:	TITRAT	OR_140617B	Analysi	s Date: 6/17	/2014 9:33:	00 AM	Prep Date:	6/17/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit Qual
Alkalinity, Total (As	CaCO3)		62.0	20.0	50.00	0	124	74	129		
Sample ID 140612	5-10D DUP	Batch ID:	64141		TestNo	: M23	320 B		Units:	mg/L	@ pH 4.52
SampType: DUP		Run ID:	TITRAT	OR_140617B	Analysi	s Date: 6/17	//2014 12:24	1:00 PM	Prep Date:	6/17/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit Qual
Alkalinity, Bicarbona	te (As CaCO	3)	412	20.0	0	418.1				1.35	20
Alkalinity, Carbonate	e (As CaCO3)	0	20.0	0	0				0	20
Alkalinity, Hydroxide	(As CaCO3))	0	20.0	0	0				0	20
Alkalinity, Total (As	CaCO3)		412	20.0	0	418.1				1.35	20
Sample ID 140615	3-02A DUP	Batch ID:	64141		TestNo	: M23	320 B		Units:	mg/L	@ pH 4.5
SampType: DUP		Run ID:	TITRAT	OR_140617B	Analysi	s Date: 6/17	//2014 12:42	2:00 PM	Prep Date:	6/17/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD R	PDLimit Qual
Alkalinity, Bicarbona	te (As CaCO	3)	229	20.0	0	227.0				0.964	20
Alkalinity, Carbonate	e (As CaCO3)	0	20.0	0	0				0	20
Alkalinity, Hydroxide	(As CaCO3)	1	0	20.0	0	0				0	20
Alkalinity, Total (As	CaCO3)		229	20.0	0	227.0				0.964	20

Qualifiers:

В Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 8 of 10

S Spike Recovery outside control limits

Ν Parameter not NELAC certified

CLIENT: Work Order:	Larson & . 1406153	Associates			AN	[ALYT]	CAL C	QC SI	UMMAR	Y REPORT
Project:	Eunice NN	И / Legacy	Trash Pit				RunII	D: 7	FITRATO	R_140617B
Sample ID ICV-14	0617	Batch ID:	R73789		TestNo	M23	20 B		Units:	mg/L @ pH 4.48
SampType: ICV		Run ID:	TITRATO	R_140617B	Analysi	s Date: 6/17/	/2014 9:28:	00 AM	Prep Date:	6/17/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCO	3)	1.92	20.0	0					
Alkalinity, Carbonat	e (As CaCO3)	100	20.0	0					
Alkalinity, Hydroxide	e (As CaCO3))	0	20.0	0					
Alkalinity, Total (As	CaCO3)		102	20.0	100.0	0	102	98	102	
Sample ID CCV1-	140617	Batch ID:	R73789		TestNo	M23	20 B		Units:	mg/L @ pH 4.48
SampType: CCV		Run ID:	TITRATO	R_140617B	Analysi	s Date: 6/17/	/2014 12:13	3:00 PM	Prep Date:	6/17/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCO	3)	3.92	20.0	0					
Alkalinity, Carbonat	e (As CaCO3)	96.6	20.0	0					
Alkalinity, Hydroxide	e (As CaCO3))	0	20.0	0					
Alkalinity, Total (As	CaCO3)		101	20.0	100.0	0	101	90	110	
Sample ID CCV2-	140617	Batch ID:	R73789		TestNo	M23	20 B		Units:	mg/L @ pH 3.93
SampType: CCV		Run ID:	TITRATO	R_140617B	Analysi	s Date: 6/17 /	/2014 12:47	7:00 PM	Prep Date:	6/17/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCO	3)	25.5	20.0	0					
Alkalinity, Carbonat	e (As CaCO3)	81.8	20.0	0					
Alkalinity, Hydroxide	e (As CaCO3)	1	0	20.0	0					
Alkalinity, Total (As	CaCO3)		107	20.0	100.0	0	107	90	110	

_

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 9 of 10
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	e
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

CLIENT: Work Order: Project:	Larson & 1406153 Eunice NN	Associates M / Legacy			AN	ALYT	ICAL (RunII	-	J MMAR VC_14061		EPO	RT
The QC data in ba	tch 64173 app	lies to the fo	ollowing sam	nples: 1406	6153-01A, 14061	53-02A						
Sample ID MB-64	4173	Batch ID:	64173		TestNo:	M2	540C		Units:	mg/L		
SampType: MBL	K	Run ID:	WC_1406	16B	Analysis	s Date: 6/1	7/2014 9:01:	00 AM	Prep Date:	6/16/20	14	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	DLimit	t Qual
Total Dissolved Sc	olids (Residue,	Filtera	ND	10.0								
Sample ID LCS-6	64173	Batch ID:	64173		TestNo:	M2	540C		Units:	mg/L		
SampType: LCS		Run ID:	WC_1406	516B	Analysis	s Date: 6/1	7/2014 9:01:	00 AM	Prep Date:	6/16/20	14	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	DLimit	t Qual
Total Dissolved Sc	olids (Residue,	Filtera	778	10.0	745.6	0	104	90	113			
Sample ID 14061	27-01B-DUP	Batch ID:	64173		TestNo:	M2	540C		Units:	mg/L		
SampType: DUP		Run ID:	WC_1406	516B	Analysis	s Date: 6/1	7/2014 9:01:	00 AM	Prep Date:	6/16/20	14	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RF	DLimit	t Qual
Total Dissolved Sc	olids (Residue,	Filtera	2690	50.0	0	2510				6.92	5	R
Sample ID 14061	53-02A-DUP	Batch ID:	64173		TestNo:	M2	540C		Units:	mg/L		
SampType: DUP		Run ID:	WC_1406	516B	Analysis	s Date: 6/1	7/2014 9:01:	00 AM	Prep Date:	6/16/20	14	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %		DLimit	t Qual
Total Dissolved Sc	lids (Residue,	Filtera	555	10.0	0	564.0				1.61	5	

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Page 10 of 10 Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAC certified

Appendix E

Boring Logs and Well Completion Diagram

					BORING	RECORD)											
					NO	g		Ρ	DI	RE.	AC	DINC	3	SÆ	١M	PLE	REMARKS	
GEOLOGIC	ПЕРТЦ	DES		ITHOLOGIC	DESCRIPTION USCS	GRAPHIC LOG		PPN	1 >	<							BACKGROUN	
UNIT		DLS		IIIIOEOGIC	SCR US	APHI	2	4 6		3 10								
					DĔ	GR/											SOIL : SOIL :	PPM PPM
	1																	
		7.5YR5/6 Str	ong brown, sanc	ly clay, fine-med grain														
																		_
																		_
					CL												9:40	
	5																0.8 ppm	
																		_
	10																	
		10YR8/2 very fine sand gra	/ pale caliche fria ins, caliche conc	ble, dry chert modules entration													9:46 0.8 ppm	
	-																	
																		_
																		_
	15																	
			he, reddish yello % chert modules,	w very grained sand slightly moist													9:51 0.8 ppm	_
			,															
					Caliche													_
																		_
																		_
	20																9:56	
																	0.8 ppm	_
		SAA mor	e chert modules	and larger size														
																		_
	—	Caliche 7.5V	R8/2 pinkich whi	te, friable, very fine													0.50	_
	25	grains, dry ca coarse grains	aliche concentrat	ion consolidated 50%		-											9:58 0.8 ppm	
<u> </u>						┝━╨━┓━						<u> </u>				107	01	
		JOUS AUGER				OF BORING	1	JOB HOI									- 01	
	ANDARD PI	ENETRATION	IEST															
		E (24 HRS)		+ PENETROM		NS/ SQ. FT)											511	
		(<u> </u>	DRILL DATE :			NUMBER :											carborough	
Aarson & ssociates,	nc.			12 - 2014		/W-2											Page 1	of 3

	. <u> </u>			E		RECORD	 								
					NO	g	PID	REA	DING		SA	MPL	E	REMARKS	
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LITHOLO	GIC	DESCRIPTION USCS	GRAPHIC LOG			14 16					BACKGROUN PID READING	
	26														
															-
	-				Caliche	ЦП									-
						┝┰╌┸╴┧								10:00	_
	30													0.8 ppm	
		5YR6/6 reddis	h yellow very fine to med gr	ained sand											
		chert, Pink 5Y													-
															-
															-
														10:02	_
	25													0.8 ppm	
	35														
			more moist SAA												-
	_														-
															-
					sw										
														40.00	-
	40													10:06 0.8 ppm	
															-
	_	. <;	2% chert very moist SAA												-
															-
															-
	45														
															-
															-
		1													-
															-
	50													10:15 0.8 ppm	-
		L JOUS AUGER S		WATER TAF		OF BORING	B NU	JMB	ER :_		14 ·	- 010	1 7 - 0		
		ENETRATION T		LABORATO			LE C	DIAN	IETEI	२ :	5"				
	NDISTURBE					NS/ SQ. FT)			:						
w	ATER TABLI	E(24 HRS)		NO RECOVE					GIST						
Aarson & ssociates, T	nc.	\sim	DRILL DATE : 6 - 13 - 2014			NUMBER : /IW-2			CONT //ETH						of 3
Environmental Consult	ants		0.0 2014			. –		- U I		50	·			raye z	010

				BORING	RECORD)											
				NO	g		PI) R	ΞAI	DIN	G		SA	٩M	PLE	E	REMARKS
				DESCRIPTION USCS	GRAPHIC LOG	DI	РМ	x									BACKGROUND
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LITHOLOGIC	CRI) Hc	2 4		^ 8 10									PID READING
CIAIT				DES	RAI		Î			14		10	1				SOIL : PPM SOIL : PPM
					0	_					+		$\left \right $				10:15
	51	5YR4/6 SA	A, yellowish reddish fine med grained,														0.8 ppm
		very moist v	well rounded, sand grains														_
43.27																	
-				sw													_
																	_
	55																
																	—
		5YR4/6 yell clay (no rib	owish reddish med grains sand sandy bon)														_
			balled up very moist														10:24
	60		TD : 60'														0.8 ppm
		C	Groundwater Not Observed														_
																	_
																	_
																	_
	65																
																	-
																	—
																	_
																	_
	70																
	10																
																	-
																	_
																	_
																	_
	75——																_
0	NE CONTINU	JOUS AUGER	SAMPLER WATER TA	BLE (TIME	OF BORING)]](NUM	1BE	ER	:		. 14	4 - (0107	7 -	01
		ENETRATION 1					OLE	DI/	٩M	ΕT	ER	:	5"				
	NDISTURBEI				NS/ SQ. FT)		CA	TIO	N	:	Ν	Jorth	n of I	Exc	ava	tio	<u>1</u>
— w	ATER TABLE	E(24 HRS)	NR NO RECOV		,	LA	AI G	EOI	_0	GIS	эт :				AJ		
Aarson &			DRILL DATE :	BORING	NUMBER :	Чы	RILL	ING	G C	NO	ITF	RAC	стс	R	:	SF	۲C
Aarson &	nc.		6 - 13 - 2014	1	MW-2	D	RILL		ΞM	1ET	ΉС	DD		A	R		Page 3 of 3

				E		RECORD								
					NO	8	Р	ID RE	ADIN	G	SA	MPL	.E	REMARKS
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LITHOLOGI	IC	DESCRIPTION USCS	GRAPHIC LOG	PPM	X						BACKGROUND PID READING
			9 : 10		DE	GR								SOIL : PPM
	5	7.5YR5/4 Bro	wn organic smell, organic rich	ı sandy										9:12 0.0 ppm
		7.5YR6/4 ligh moist	t brown sand v. fine - fine grair	ns	SW									9:13 0.0 ppm
	15	10YR7/3 v. pa grains, moist	ale brown, sandy clay v. fine to	o med	CL									9:14 0.0 ppm
	20	10Y	caliche v. fine - fine sand grain R7/4 v. pale brown, sand ne - fine grains, <2% chert	ns friable	SW									9:17 0.0 ppm
		JOUS AUGER S				OF BORING)		NUMI E DIA)7 -	9:19 0.0 ppm 01
		ENETRATION 1			RY TEST L								- XC	avation
	NDISTURBEI			ENETROM		NS/ SQ. FT)		GEOL						
			DRILL DATE :		BORING	NUMBER :		LING	CON	TRA	сто	२ :_	SF	
Aarson & ssociates, T Environmental Consult	nc.		6 - 13 - 2014		5	SB - 1	DRIL	LING	MET	HOD	:	AR		Page 1 of 2

BORING RECORD																
					NO	ଥ		PID	RE		IG	s	SAMPLE REMARKS			
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LITHOLO	DGIC	DESCRIPTION USCS	GRAPHIC LOG			K		16 18	-				BACKGROUND PID READING
	26															
	20		<2% chert													
																-
					SW											-
																-
																0.04
	30															9:21 0.0 ppm
			SAA													-
																-
																_
							,									9:21 - 0.0 ppm
	35		SAA													
																-
																_
																_
																-
		5YR5/6 ye	ellowish red sand, river be	d material												-
	40															9:22 0.0 ppm
		TD : 40' Groundwater Not Observed														0.0 ppm
																-
																-
																-
																_
	45															
																-
																-
																_
																-
	50															-
ONE CONTINUOUS AUGER SAMPLER WATER TABLE (TIME OF BORING)								JOB NUMBER : 14 - 0107 - 01								
STANDARD PENETRATION TEST								HOLE DIAMETER : 5"								
	IDISTURBE		+	PENETROM		NS/ SQ. FT)		LOCATION : West of West Excavation LAI GEOLOGIST : AJ							ation	
	ATER TABLE		NR DRILL DATE :	NO RECOVE		NUMBER :					ST : NTRA					、 、
Aarson & ssociates, T Environmental Consulta	nc.	\sim	6 - 13 - 2014			B - 1					TRA HOE					

BORING RECORD දු ග PID READING SAMPLE REMARKS																		
				NO	00		PID READING						LE	REMARKS				
GEOLOGIC UNIT	DEPTH	DESC	CRIPTION LITHOLOG	GIC	DESCRIPTION USCS	GRAPHIC LOG		PM 2							BACKGROUND PID READING			
	1		9:31					$\left \right $	++	++		++	-					
	1 5 10	7.5YR6/3 light <2% amount o	sandy soll organic fine grain clay damp	and small	SW		,								9:36 0.0 ppm —			
	10 clayey sand odor, damp 	clayey sand odor, damp		SM		•								0.0 ppm				
			SW										9:41 0.0 ppm					
	20		SAA <5% chert damp				•								9:43 2.6 ppm —			
	25														9:51 2.6 ppm			
0	ONE CONTINUOUS AUGER SAMPLER WATER TABLE (TIME OF BORING										JOB NUMBER : 14 - 0107 - 01							
ST	ANDARD P																	
	IDISTURBE		+ F	PENETROM	ETER (TOI	NS/ SQ. FT)		LOCATION : South West of West Excavation										
w/	ATER TABLI	E(24 HRS)		IO RECOVE	ERY			AI GE										
Aarson &		\sim	DRILL DATE :			NUMBER :		RILL										
Aarson & ssociates, T Environmental Consulta	ants		6 - 13 - 2014		5	SB - 2	D	RILL	NG	MET	HOD	:	AR		Page 1 of			

BORING RECORD														
		ද පු PID READING							SA	SAMPLE REMARKS				
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LITHOLOGIC	DESCRIPTION	GRAPHIC LOG		PPM	X						BACKGROUND PID READING
				ā	<u>5</u>	·			++		+			SOIL :PPM
	26	7.5 YR8/3 Pi	nk Sand v. fine - fine damp - no c	odor			•							9:51 2.6 ppm
		7.5YR;	2/4 pink				•							- -
				sw										9:53 2.6 ppm _
							•							-
	35		SAA											9:55 2.6 ppm
			damp											
			easing in cherty gravels sh gray sand, odor, moist, chert	gravel										-
	40	G	TD : 40' Groundwater Not Observed											9:56 0.0 ppm ——
	45													
														· ·
	50 ———													
	IE CONTINU	IOUS AUGER S	ER TABLE (TIM	IE OF BOF	RING)		JOB NUMBER : <u>14 - 0107 - 01</u>							
ST	N													
		TONS/ SQ.	FT)		LOCATION : South West of West Excavation									
Aarson & Associates, The Environmental Consulta	ATER TABLE	: (24 HRS)	NR NO R DRILL DATE : 6 - 13 - 2014		IG NUMBEF SB - 2	र:		LAI GEOLOGIST :AJ DRILLING CONTRACTOR : <u>SPC</u> DRILLING METHOD : <u>AR Page 2 of 2</u>						

					NOI	00	PID READING						S	SAMPLE			REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLOGIC		DESCRIPTION USCS	GRAPHIC LOG	PPM X 25									BACKGROUND PID READING	
UNIT					C SCI	SAPI	2	4 6	8 10	12	14	16 18					SOIL:PPM
			11 : 37		B	С Ч Ч											SOIL:PPM
	1																
			Soil Excavated to 10'														
	5																
	J																
																	_
	10	10YR7/3 v. p	ale brown, caliche friable damp														
																	_
					Caliche												
										?							
	15		/1 light gray caliche, friable													11:40 2.76 ppm	
		strong o	dor														_
		damp															
	20																11:42 1.28 ppm
			light gray sand v. fine - fine,														—
		strong o	Jight gray sand v. fine - fine, dor														
					SW			/									
			SAA				V										
	25——																11:44 11.5 ppm
	E (TIME)	OF BORING	, J	JOB NUMBER :14 - 0107 - 01						01							
ONE CONTINUOUS AUGER SAMPLER - WATER TAI								HOLE DIAMETER : <u>5"</u>									
						IS/ SQ. FT)	L	LOCATION : South Bottom of West Excavation									
WATER TABLE (24 HRS) NR NO RECOVE							L	LAI GEOLOGIST :AJ									
🛆 arson . & 🚐			DRILL DATE :	E		NUMBER :		RILL									
Arson & DRILL DATE: Environmental Consultants 6 - 13 - 2014						B - 3	C	RILL	ING	i M	ET	HOD) <u>:</u>	-	١R		Page 1 of 2

				BORING	RECORD												
		EPTH DESCRIPTION LITHOLOGIC NOL division 90 PID REAL 2 4 6 10 2 4 6 10											s	٩M	PLE	Ξ	REMARKS
				ULC S	LO L										Т		BACKGROUND
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLOGIC	SC	H H	PF	PM >	x				_					PID READING
UNIT					AP	2 4	6	8 10	12	14	16 1	18	$\left \right $				SOIL : PPM
				DE	GF GF												SOIL : PPM
	26																
			SAA														_
																	_
			damp, odor														
						•											_
	30	10YR6/2 ligh	nt brownish gray, sand v. fine to fine														11:45
	30			SW													2.6 ppm
																	_
																	-
		damp - mois	st odor 10% chert														_
		damp mole															
																	_
	35					 											11:49
		G	TD : 35' Groundwater Not Observed														7.9 ppm
																	—
																	_
																	_
																	_
	40																
																	_
																	_
																	_
																	_
	45																
																	_
																	_
																	_
	50																
0	NE CONTINU	JOUS AUGER S	SAMPLER — WATER TA	ABLE (TIME	OF BORING	/)B N								0107	7 _ (01
ST ST	ANDARD PE	ENETRATION T		ORY TEST L			DLE	DIA	M	ETE	ER	:	5"				
	NDISTURBE	D SAMPLE			NS/ SQ. FT)	LC	DCA ⁻	IOI	N :		S	out	n Bo	ottor	n of	fW	est Excavation
— w	ATER TABLE	E(24 HRS)	NR NO RECO			LA	I GE	EOL	00	GIS	Т:				AJ		
Agrson &			DRILL DATE :	BORING	NUMBER :		RILL	ING	С	ON	ITR	RAC	тс	R	::	SP	°C
Aarson &	nc.	\sim	6 - 13 - 2014		SB - 3		RILL										

					-	RECORD									
					NO	ЭG		PID	REA		G	SA	MP	LE	REMARKS
GEOLOGIC UNIT	DEPTH	DES	CRIPTION L	THOLOGIC	DESCRIPTION USCS	GRAPHIC LOG				2 14					BACKGROUND PID READING
			8 : 48		ä	- 5									SOIL : PPM
	1	5`	YR5/6 yellowish i	ed sand moist											
	5				sw		,								- 8:50 0.0 ppm
															-
	10	10YR8/	2 v. pale brown o	aliche, damp											8:52 0.0 ppm
		50% che	ert, harder more e	consolidated layer	Caliche		,								- 8:54
		10YR8/3 v.	pale brown sand	l, moist 10% chert											0.0 ppm -
	20	10	/R7/4 v. pale bro	wn sand	SW		,								- 8:55 0.0 ppm
			<10% chert damp												-
		5	damp YR5/6 yellowish	red											8:58 0.0 ppm
	NE CONTINU	IOUS AUGER S	SAMPLER		BLE (TIME	OF BORING	,					14	- 01	07 -	_01
	ANDARD PE NDISTURBEI ATER TABLE		EST	L LABORATO + PENETROM NR NO RECOV	IETER (TOI		LC	CAT	ΓΙΟΝ		Sout				cavation
Aarson & ssociates, I Environmental Consulta			DRILL DATE : 6 - 1	3 - 2014		NUMBER : SB - 4		RILLI	NG	CON	TRA	стоі :	R :_	SF	Page 1 of 2

					G RECORD)			
				NO	POG	F	PID READING	SAMPLE	REMARKS
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LITHOLOGIC	DESCRIPTION USCS	GRAPHIC L(AX	-	BACKGROUND PID READING soil:PPM
	26		sand						12:35 0.0 ppm
	30	moi	SAA re hard, chert modules, 50% more	sw					8:59 0.0 ppm
	35	less chert abo as SB - 13	SAA ut 10% not as much river bed mate	ərial					9:01 0.0 ppm - - - 9:03
	40	G	TD : 40' Groundwater Not Observed						0.0 ppm
	45								
10		IOUS AUGER S	SAMPLER WATER	R TABLE (TIM) JOB	3 NUMBER :	14 - 0107	- 01
		ENETRATION T		ATORY TEST		HOL	E DIAMETER :		
	NDISTURBED			ROMETER (TO	DNS/ SQ. FT)		CATION : <u>So</u>		cavation
W. Aarson & Environmental Consult	AJ								

						RECORD)					_			
					NO	ЭG		PI	D RE	ADIN	IG	SA	١MF	PLE	REMARKS
GEOLOGIC UNIT	DEPTH	DES	CRIPTION L	ITHOLOGIC	DESCRIPTION USCS	GRAPHIC LOG									BACKGROUND PID READING
			11 : 55		DE	GR									SOIL : PPM
	1														
			Soil Excavated	to 5'											_
															-
															-
	5					64-10-14-14-14-14-14-14-14-14-14-14-14-14-14-									
															_
															-
	_														-
															_
							Ģ	,							10.00
	10			1.											12:02 2.6 ppm
			7.5YR7/4 pin	К	C)W										-
			sand		SW										_
			odor												
															-
															-
	15														12:03 0.0 ppm
			SAA												0.0 ppm
															-
															_
															-
															_
			odor												
	20														12:05 0.0 ppm
	-		5YR5/6 yellowis	sh red											-
															-
															-
	$- $		SAA moist odor												-
	25——	sar	nd fine to v. fine r	noist, odor											12:07 2.6 ppm -
		JOUS AUGER S					<u> </u> , J			<u> </u>	<u> </u>	14	<u> </u> 1 - 0	<u> </u>	01
		ENETRATION 1		WATER TAE			/				ER :_				
	NDISTURBE			+ PENETROM			L	OCA	TIO	: ۱	Sou	ith Ea	ist C	orne	r of West Excavation
—— w.	ATER TABLE	E(24 HRS)		NR NO RECOV			L	Al Gl	EOL	OGIS	вт <u>:</u>			AJ	
Aarson & ssociates, I Environmental Consult	nc	\sim	DRILL DATE :	0.004		NUMBER :									
Environmental Consult	ants		6 - 1	3 - 2014	5	SB - 5		RILL	ING	MET	HOD	· :	AF	2	Page 1 of 2

				E	BORING	RECORD)										
					DESCRIPTION USCS	og		Ρ	ID F	REA	DIN	G	S	SAN	1PL	.E	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LITHOL		CS	GRAPHIC LOG	Р	PM	Х_				_				BACKGROUND
UNIT		DLO		0010	US	HA	2	4 6				<u>16 18</u>					PID READING
					DE	GR/											SOIL : PPM SOIL : PPM
	26		SAA				f	'		\mathbf{H}			+	+			12:07
			0														2.6 ppm
																	-
					SW												
			<15% chert														
																	-
	30																12:09 2.6 ppm
		G	TD : 30' Groundwater Not Observed	t													
																	-
																	-
																	-
	35																
																	-
																	-
																	-
	40																
																	-
																	-
																	-
	45																
																	-
																	-
																	-
																	-
	50																-
		JOUS AUGER S		WATER TAE			∕ 1	OB	NU	MBI	ER :			14 -	010)7 -	01
				LABORATO			/					ER :_					
	NDISTURBED		+	PENETROM			L	OC/	ATIO	ЛС	:	So	uth E	East	of V	Nes	st Excavation
	ATER TABLE		NR	NO RECOVI		,	L	AI C	GEC	LO	GIS	т:_			AL	J	
∆arson &			DRILL DATE :		BORING	NUMBER :	d	RIL	LIN	GC	CON	ITRA	νСΤ	OR	:	SF	<u></u>
Aarson & ssociates, Environmental Consult	nc.		6 - 13 - 2014		5	SB - 5		RIL	LIN	GΝ	/ET	HOE):_	Ā	١R		Page 2 of 2

					BORING	RECORD)											
					NO	g		F	۶ID	RE.	AC	NIN	3	s	AM	PLE	Ξ	REMARKS
					DESCRIPTION USCS	GRAPHIC LOG		PPN	<u> </u>	(BACKGROUND
GEOLOGIC UNIT	DEPTH	DESC	CRIPTION LI	THOLOGIC	CRI USC	HH	2	4 6		` 3 10								PID READING
					DES	BRA					Ī							SOIL : PPM SOIL : PPM
	1		12:25	4.01							+			_	$\left \right $			
			Soil Excavated to	o 10 [.]														
																		_
																		_
																		_
	5																	
																		_
																		_
																		_
																		_
	10	5YR5/6 vellov	wish red moist sa	ndy clay v. fine - fine			•											12:29 0.8 ppm
		o more your		nay olay v. inter inte														_
					CL													
																		_
																		-
																		_
	15	10YR7/1 light	gray clayey / sna	ady fine v. fine moist														12:30 0.8 ppm
		-																_
					SM													_
						$\langle \rangle \rangle \rangle$												-
						$\langle \rangle \rangle \rangle$												_
						$\langle \rangle \rangle$												
	20	7.5YR8/5 pink	caliche v. fine - fi	ne sand grains friable														12:31 0.0 ppm
																		-
																		_
					Caliche													
																		_
																		_
	25——					┝┰╼┸─												
	25																	
		JOUS AUGER S			BLE (TIME	OF BORING		JOB								0107	<u>' - 0</u>	<u>1</u>
		ENETRATION T	EST					HOL								<u>، ۲</u>		
						NS/ SQ. FT)												ation
	ATER TABLE	= (24 HKS)	DRILL DATE :	NR NO RECOV		NUMBER :		LAI (DRII										
Aarson &	nc.	\sim		3 - 2014		NUMBER : SB - 6												Page 1 of 2

				E	BORING	RECORD)											
					NC	ŋ		ΡI	D R	EA	DIN	G	S	AM	PLE	REM	ARKS	
					DESCRIPTION USCS	GRAPHIC LOG			v							BACKG	ROUN	
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLC	OGIC		UH I	Р	PM								PID RE		
UNIT					L ESC	AF	2	4 6	8 1	0 12	14	16 18	-			SOIL :		PPM
						Ū										SOIL :		PPM
	26		7.5 YR7/4 Pink Sand													12:3 0.0 p		
																	•	
					SW													
																		_
	30	7.5YR	6/4 light brown sand v fine	- fine												12:38 0.0 p		
		C	TD : 30' Groundwater Not Observed															
																		_
	35																	
																		_
	40																	
	40																	
	45																	
																		_
	50 ———																	
				14/4						⊥ ∕/RI	 =R ·		1	цці 4 - С)107 -	<u>ا</u> - 01		
		JOUS AUGER		WATER TAE			/					 R :_						
			E	LABORATO											Fro	avation		
	NDISTURBE		+			NS/ SQ. FT)						s						
	ATER TABLE	- (24 MKS)		NO RECOVE														
Aarson & ssociates, Environmental Consult	nc.	\sim	DRILL DATE : 6 - 13 - 2014			NUMBER : SB - 6						TRA				PC	Page 2	
Environmental Consult	ants		1 0 10 - 2014				יין	INFL	-11 //				-	А	1		_ raye z	

				E	-	RECORD								
					NO	DG	F	PID F	READ	ING	SA	MP	-E	REMARKS
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LITHOLC	DGIC	DESCRIPTION USCS	GRAPHIC LOG				14 16 18	-			BACKGROUND PID READING
			10 : 40		DË	GR/								SOIL : PPM SOIL : PPM
	1	7.5YR5/8, str	ong brown sand, fine v. fin	e <2% chert										
	5													10:44 0.0 ppm
	10		SAA		sw									
	 15 		7.5YR7/4 pink SAA Increased chert											10:48 0.0 ppm
	20		7.5YR5/8 strong brown											
			SAA											-
10	NE CONTINU	JOUS AUGER S	SAMPLER	WATER TAE	BLE (TIME	OF BORING				R :			07 -	01
sī	ANDARD PE	ENETRATION 1	EST	LABORATO			Ног			TER :				
	NDISTURBEI	D SAMPLE	+	PENETROM	IETER (TOI	NS/ SQ. FT)								cavation
—— w.	ATER TABLE	E(24 HRS)	NR	NO RECOVE						IST :_				
Aarson & ssociates, I Environmental Consult	nc.	\sim	DRILL DATE :			NUMBER :								
Environmental Consult	ants		6 - 13 - 2014			SB - 7	DRI	LLIN	ME ی	THO	י:	AR		Page 1 of 2

				E		RECORD						_			
					NO	00		PID	REA	DIN	G	s	AMF	PLE	REMARKS
GEOLOGIC UNIT	DEPTH	DES		OLOGIC	DESCRIPTION USCS	GRAPHIC LOG				2 14					BACKGROUND PID READING soil:PPM
						U				++		+			SOIL:PPM
	26	5YR5/6 Yellov	vish Red, moist sand	clay v. fine - fine											
	30		SAA <5% chert												10:55 0.0 ppm
															-
	35		SAA		SW										10:56 0.0 ppm
	40	Riverbed	gravel SAA chert aga	te chalcedony											
		C	TD : 40' Groundwater Not Obse	erved											10:58 0.0 ppm
	45														11:00
															0.0 ppm
	50														
								B N		ER ·		 1.	 4 - 0'	107 -	01
		JOUS AUGER S		WATER TAE			/				R :_				
	IDISTURBEI		L				LO	CAT	ION	:	Cen	ter o	f We	<u>st Ex</u>	cavation
		E(24 HRS)	NF			,	LAI	I GE	OLC	GIS	т:		,	ANJ	
DRILL DATE : BORING NUMBER : DRILLING CONTRACTOR : SPC															

				I	BORING	RECORD												
					NC	ЭG		P	٥I	RE	EAE	DIN	G		SAN	ИРI	LE	REMARKS
		DEO			DESCRIPTION USCS	GRAPHIC LOG		PPN	1 >	<								BACKGROUND
GEOLOGIC UNIT	DEPIN	DES	SRIPTIONL	ITHOLOGIC	US(HA		4 E						-				PID READING
			12 : 47		DES	GRA												SOIL : PPM SOIL : PPM
	1		12:47				+	-								╈		
																		—
																		_
	5																	
																		_
		S	Soil Excavated t	o 20'														
																		_
																		-
																		_
	10																	
	10																	
																		-
																		_
																		-
	15																	
																		_
																		_
																		_
	20	7.5YR 8/2 pi	nkish white calic	he v. fine - sand, moist			•											12:50
																		0.0 ppm
				nore consolidated sand		┝╌┎╌┸╌┥												_
		(25 Ft.) moi	st		Caliche	┝┸╌┰┥												
						┝┰╌┖┥												-
																		_
	25——																	12:51
	20						\rightarrow											0.0 ppm
		JOUS AUGER			BLE (TIME	OF BORING	1	JOB								01	<u>07 -</u>	
			EST													et F		vation
	NDISTURBEI ATER TABLE			+ PENETROM		NS/ SQ. FT)												
		- (24 11(0)	DRILL DATE :			NUMBER :												
Aarson &	nc.	\sim		13 - 2014		6B - 8												Page 1 of 2

				E		RECORD)								
					NO	g		PID	REA		3	SÆ	٩MF	PLE	REMARKS
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LITHOLO	GIC	DESCRIPTION USCS	GRAPHIC LOG				2 14 1	6 18				BACKGROUND PID READING SOIL:PPM
	26														
					Caliche										-
															-
	30														12:52
			5YR5/6 Yellowish Red Sand												0.0 ppm
			Moist												-
															-
					SW										- 12:53
	35		SAA												0.0 ppm
															-
															-
															-
	40		SAA TD : 40'												12:54 0.0 ppm
		e	Froundwater Not Observed												-
															-
															-
	45														
															-
															-
															-
	50														-
		JOUS AUGER				OF BORING	/			SER ∷ ∕IETE				107 -	
	ANDARD PE	ENETRATION 1		LABORATOR PENETROM										<u>Exc</u> a	avation
	ATER TABLE			NO RECOVE		יטי טע. דו)				GIS ⁻					
Aarson & DRILL DATE : BORING NUMBER : DRILLING CONTRACTOR : Ssociates, Inc. 6 - 13 - 2014 SB - 8 DRILLING METHOD :											PC				
Environmental Consult	ants		6 - 13 - 2014		s s	ы - қ		KILL	NG	VIETH	HOD	:	AF		Page 2 of 2

					BORING	RECORE)											
					NO	OG		F	PID	RE	AC	DINC	3	s	AM	IPL	Е	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LI	THOLOGIC	DESCRIPTION USCS	GRAPHIC LOG		PPM	/ >	<								BACKGROUND
UNIT					SCF	APH	2	4 0	<u>6 8</u>	<u>3 10</u>	12	14 1	6 18					
			1 : 20		DE	GR												SOIL :PPM
	1																	
		7.5 YR 6/6 re	eddish yellow SAA	\ SB - 11														
																		_
																		_
	5																	1:22 0.8
																		_
					SW													
																		—
								Ĭ										_
		10YR v. pale	e brown sand very	/ fine sand														1:24
	10	unconsildate	d damp															2.6
																		_
																		_
																		—
																		_
	15																	1:25
		7.5YR8/2 p	oinkish white calich	he damp														0.8
																		_
																		_
					Caliche													_
																		_
	20	7 5YR 7/4 ni	nk sandy caliche	10% chert module														1:29 0.8
		damp																
																		_
					C)M/													_
					SW													_
																		1:32
	25——		SAA damp															1:32 2.6
0	NE CONTINU	JOUS AUGER S	SAMPLER	WATER	R TABLE (TIMI	E OF BORING)	JOB	3 N	UΜ	BE	R			4 -	010	7 -	01
S	ANDARD PE	ENETRATION 1	EST		ATORY TEST	LOCATION							R :_					
10	NDISTURBEI	O SAMPLE		+ PENET	ROMETER (TO	NS/ SQ. FT)												st Excavation
w	ATER TABLE	E(24 HRS)		NR NO REC	COVERY								T :					
Aarson &	nc.	~	DRILL DATE : 6 - 12	2 - 2014		NUMBER : SB - 9												Scarborough Page 1 of 2

				E		RECORD											
					NOI	90		PIC	D RE	ADII	١G	S	SAMF			EMARK	
GEOLOGIC UNIT	DEPTH	DESC	CRIPTION LITHOLOGI	IC	DESCRIPTION USCS	GRAPHIC LOG	PI	>M .	X		16 1					KGROU READII	
	26						٩										
							V										
							\										-
							$\left \right $										
	30	5YR 4/6 yell	owish red sand fine to v. fine g olidated moist	grained												:35 2.6	
		Sand uncons															
					014/												
	35				SW											:42	
																2.6	
			SAA														
		5YR 4/6 yello	wish red course to fine grain r	river													
	40	channel depo	osit sand grains and chert v. m	noist agate												:45	
		G	TD : 40' roundwater Not Observed													2.6	
		G	ioundwater not Observed														
	45																
																	-
	50																
							10						14 - 0	107	- 01		
		IOUS AUGER S			LE (TIME) RY TEST LO		, I		DIAI						<u> </u>		
	IDISTURBE					IS/ SQ. FT)	LC	CA	TION	1:		E	East c	of We	est Excava	ation	
W4	ATER TABLE			O RECOVE					EOLO								
A grson & ssociates, Inc. DRILL DATE : BORING NUMBER : DRILLING CONTRACTOR : Scarborough Environmental Consultants 6 - 12 - 2014 SB - 9 DRILLING METHOD : AR Page 2 of 2																	

	·			BORING	RECORD)										
				N	g		PIE) RE	EAD	DINC	3	s	AM	IPLE	Ξ	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLOGIC	DESCRIPTION USCS	GRAPHIC LOG	F	PM	x_							T	BACKGROUND PID READING
UNIT				C SCI	API	2	4 6	8 10	12	14 1	6 18					SOIL:PPM
			12 : 40	DE	GR GR											SOIL :PPM
	1	7.5 YR 6/6 re	eddish yellow													
																_
																—
																_
	5	Clayey sand rounded con	with colored slight odor fine to red well solidated medium stiff clay	CL		٩										12:47 0.8
			·	UL UL		N										
						`	\mathbf{N}									
							NL									_
							N									
							`									-
	10															12:52 6.1
		10YR 8/3 v. consolidated	pale brown sandy clay moist semi 90% fine medium grains													0.1
			Ū					1								_
																_
				CL												_
							/									_
						X										
	15	7.5Y	R 8/2 pinkish white caliche													12:56 0.8
																_
																_
																_
	20		7.5YR 8/4 pink		┝┸╌┰┥	•										1:00 0.8
				Caliche												_
					┝┸╌┰┥											
																_
																_
					┝╌┎╌┛											
																—
	25															_
						<u> </u>						1			7	
		JOUS AUGER S			OF BORING	/	IOB N IOLE							010/	- 1	
		ENETRATION T												of M		st Excavation
					NS/ SQ. FT)		.OCA .AI GI									<u>st ⊏xcavation</u>
	ATER TABLE	= (24 HKS)	NR NO RECOVI		NUMBER :											Scarborough
Aarson &	nc.	\sim	6 - 12 - 2014		SB - 10											Scarborougn Page 1 of 2

GEOLOGIC UNIT DEFCRIPTION LITHOLOGIC PD E							RECORD)						_				
2x 9YR 82 pik syst- title very fregatiled, well rounded de. 5V 3x 3x 3x						NOI	00		PI) RE	AD	ING	i	SA	MP	LE	REMARKS	
2x 9YR 82 pik syst- title very fregatiled, well rounded de. 5V 3x 3x 3x	GEOLOGIC	DEPTH	DES	CRIPTION LITHOL	OGIC	RIPT		F	PM	x_								
2x 9YR 82 pik syst- title very fregatiled, well rounded de. 5V 3x 3x 3x	UNIT					C SCI	API	2	4 6	8 10	12	14 16	18					А
30 5VR 82 pinkity, caldrer, fielde 0 <						B	GR										SOIL:PPM	1
0 5/7 62 jenser, callete, febbr 10 0 5/7 62 jenser, callete, febbr 10 3 5/7 62 jenser, callete, febbr 100 0 Calleter 100		26						P										
SVR 8/2 pinkish, calche, freate Calche Cal			tine v	ery fine grained, well rour	nded etc.												0.0	
SVR 8/2 pinkish, calche, freate Calche Cal																	-	
OVE CONTINUOUS AUGER SAMPLER OVE CONTINUEST						SW												_
OVE CONTINUOUS AUGER SAMPLER OVE CONTINUEST																		
OVE CONTINUOUS AUGER SAMPLER OVE CONTINUEST																		
Califys Ca		30	EX	P 9/2 pinkish solishs fri	abla													
SYR & 66 yellowish red samty day v. The to medium SYR & 66 yellowish red samty day SYR & 66 yellowish SYR & 66			51	R 6/2 pinkish, caliche, ma	able		┝┸╌┰─┸											
SYR & 66 yellowish red samty day v. The to medium SYR & 66 yellowish red samty day SYR & 66 yellowish SYR & 66																		
SYR & 66 yellowish red samty day v. The to medium SYR & 66 yellowish red samty day SYR & 66 yellowish SYR & 66						Caliaba												
SAA SW						Calicne												
SAA SW																		
SAA SW																		
SXA SX		35						Ĭ.									1:08	
40 TD: 40' 40 TD: 40' Groundwater Not Observed				SAA													0.8	
40 TD: 40' 40 TD: 40' Groundwater Not Observed						SW												
ONE CONTINUOUS AUGER SAMPLER																		_
ONE CONTINUOUS AUGER SAMPLER																		
unconsidiated v. moist CL 40 TD : 40' Groundwater Not Observed			5YR 4/6 yell	owish red sandy clay v. fi	ne to medium		\square											_
TD: 40' Groundwater Not Observed			unconsildate	d v. moist		CL												_
TD: 40' Groundwater Not Observed		40						•										
45 - 45 - 45 - 50 - 51 - 52 - 53 - 54 - 55 - 100 - 100 - 100 - 100 - 100 - 100			-															
50			G	roundwater Not Observe	d													
50																		
50																		
50																		
50																		_
50		45																
ONE CONTINUOUS AUGER SAMPLER		40																
ONE CONTINUOUS AUGER SAMPLER																		
ONE CONTINUOUS AUGER SAMPLER																		_
ONE CONTINUOUS AUGER SAMPLER																		
ONE CONTINUOUS AUGER SAMPLER																		_
ONE CONTINUOUS AUGER SAMPLER		-																
ONE CONTINUOUS AUGER SAMPLER		50																
STANDARD PENETRATION TEST L LABORATORY TEST LOCATION HOLE DIAMETER : UNDISTURBED SAMPLE + PENETROMETER (TONS/ SQ. FT.) LOCATION : WATER TABLE (24 HRS.) NR NO RECOVERY LAI GEOLOGIST : Agroon & DRILL DATE : BORING NUMBER : DRILLING CONTRACTOR :																		
UNDISTURBED SAMPLE + PENETROMETER (TONS/ SQ. FT.) LOCATION : East of West Excavation WATER TABLE (24 HRS.) NR NO RECOVERY LAI GEOLOGIST : ANJ DRILL DATE : BORING NUMBER : DRILLING CONTRACTOR : Scarborough					WATER TAE	BLE (TIME	OF BORING	/								07 -	01	—
WATER TABLE (24 HRS) NR NO RECOVERY LAI GEOLOGIST :ANJ Agroon & DRILL DATE :BORING NUMBER : DRILLING CONTRACTOR :Scarborough																	-1 E	—
DRILL DATE : BORING NUMBER : DRILLING CONTRACTOR : Scarborough							NS/ SQ. FT)										st Excavation	—
	w	ATER TABLE	(24 HRS)		NO RECOVI													—
	Aarson &	nc.	\sim		L													— ,

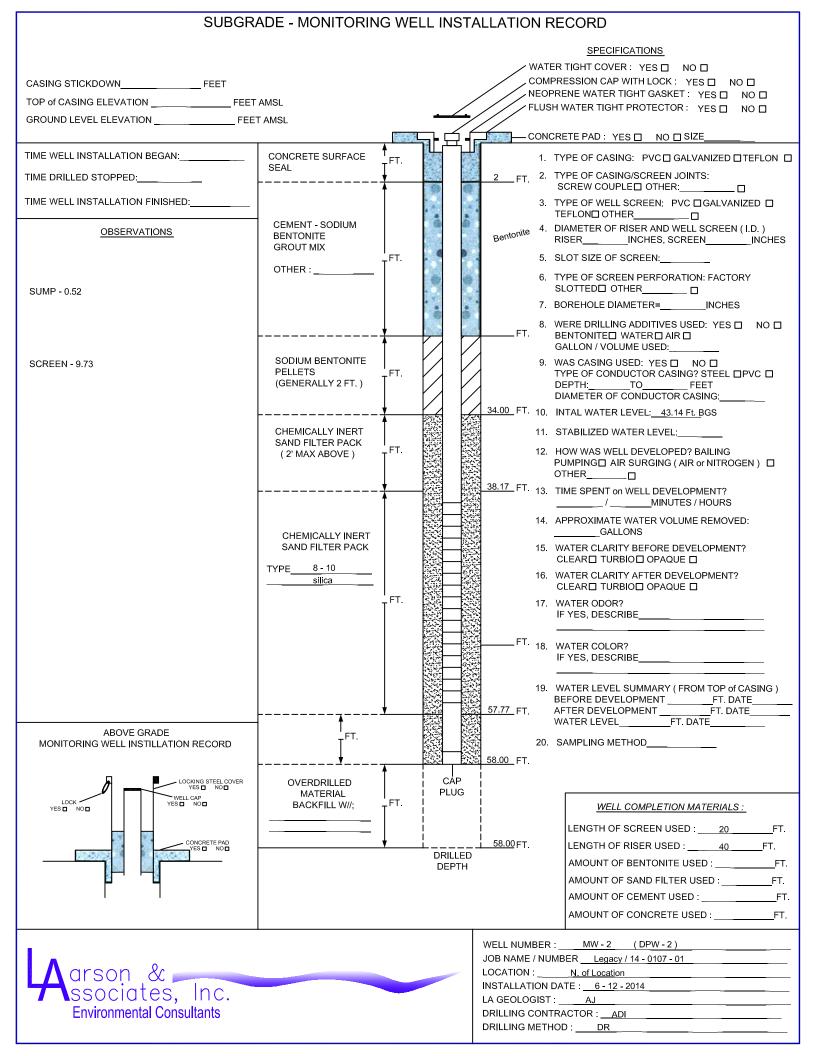
				E	BORING	RECORD										
					NO	90		ΡI	d re	EAC	DINC	3	SÆ	١MF	PLE	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LITH	HOLOGIC	DESCRIPTION USCS	GRAPHIC LOG	F	РРМ	x_							BACKGROUND PID READING
UNIT					N SCF	APF	2	4 6	8 10	12	14 1	6 18	4			
			10 : 53		B	B R										SOIL:PPM
	1	7 5 YR 6/6 r	eddish yellow clayey	sand multicame			╈			+						
		out as core,	eduisii yellow clayey	sand, multi came												
																_
																_
																_
	5															10:56
		slight odor d	amp fine to med. we I medium stiff clay 10	II rounded grains												0.8
		brown friable		finte, e tery paie												_
																_
					sw											-
							•									_
	10	20% course unconsolidat	grains fine - medium ed damp slight odor	n sand grains chart molecules												11:00 0.8
		<5% SAA														_
																_
	15															11:04
																0.8
																-
																_
																-
																_
	20	7.5YR8/3 pir	nk sand with fires													11:12 0.8
																_
																-
																–
		5YR6/6 reddis	sh yellow <10% ches	st modules fine med												_
	25——		rounded unconsolid													11:18 <u> </u> 0.8
						<u>1999/001</u>	Y	JOB I			R ·		 14	1 - 0	107 ·	
		JOUS AUGER ENETRATION ⁻				OF BORING	/	HOLE								
															of We	est Excavation
	NDISTURBEI ATER TABI F	E (24 HRS)		+ PENETROM		NS/ SQ. FT)		.AI G								
		_ (2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	DRILL DATE :			NUMBER :										SPI
Aarson &	nc.	\sim	6 - 12 -	2014		B - 11										Page 1 of 2

				BORING	RECORD											
				NO	00	Ρ	ID RI	EAI	DIN	G		SA	١MF	٩LE	REMARKS	
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLOGIC	DESCRIPTION USCS	GRAPHIC LOG	PPM	1 X_								BACKGROUND	
UNIT		2201		SCF	HAA	246	8 10) 12	14	<u>16</u> 1	18					264
				DE	GR										SOIL:PPI	²M
	26				3765	,									_	
																_
						,										_
															11:20	
	30		SAA												0.8	
				SW												
			very moist													
	35		5YR 4/6 yellowish red												11:21	
			SAA												0.8	
																_
			moist													_
			< 20% clay													_
		5YR6/6 yellow	ish brown fin - ned grains cementatio	n												
		of calcite friab	le with consolidated 50% moist													_
	40					`									11:27 — 0.8	
		Gro	TD : 40' bundwater Not Observed													
																_
	45															
	45															
																_
	50															_
		JOUS AUGER S				, JOB		<u>і </u>	 ER			14 14	 - 0	107	- 01	_
		ENETRATION T		ORY TEST I		/	E DI/									_
	NDISTURBEI				NS/ SQ. FT)	LOC	ATIC	N	:			Le	egac	y Tr	ash Pit	
— w	ATER TABLE	E (24 HRS)	NR NO RECC			LAI	GEOI	LO	GIS	эт :				ANJ		_
Aarson &		~	DRILL DATE :		NUMBER :										SPI	
T SSOCIATES,	nc.		6 - 12 - 2014		SB - 11	DRIL	LINC	ΞN	1ET	ΉC	D :		AR		Page 2 of	f 2

					BORING	RECORD)										
					N	g		PI	D RE	EAD	DINC	3	s	AM	PLE	Ξ	REMARKS
GEOLOGIC				ITHOLOGIC	DESCRIPTION USCS	GRAPHIC LOG		РРМ	х								BACKGROUND
UNIT		DES		ITHOLOGIC	USCR	H4	2		8 10								PID READING
			1 : 55		DE	GR/											SOIL :PPM SOIL :PPM
	1		Soil Excavated t	o 3'													
																	_
																	_
			7.5 YR 8/2 pinki	sh white													_
																	2:03
	5																0.8
		Calich	e friable, caliche	e cement, damp													-
																	_
																	_
	10																
			SAA		Caliche												2:05 0.8 —
																	0.8 —
																	—
																	_
							•										_
	15		pink, caliche mor ated damp	e sand v. fine less													2:10
			-														_
																	_
	20																
		5YR6/6 redd fine to fine g		<10% chart modules v													2:15 0.8
		into to into g															—
					sw												_
					5.0												_
																	_
	25																—
0	NE CONTINU	OUS AUGER S	SAMPLER	WATER TA	BLE (TIME	OF BORING) '	JOB	NUM	BE	R :.	<u> </u>	1	4 - (0107	7 - (01
S1	ANDARD PE	NETRATION 1	TEST		ORY TEST L			HOLE	E DIA	MI	ETE	R :_	5	5"			
10	NDISTURBED) SAMPLE			METER (TOI	NS/ SQ. FT)											of East Excavation
w	ATER TABLE			NR NO RECO				_AI G									
Aarson &	nc.	\sim	DRILL DATE : 6 - 1	12 - 2014		NUMBER : SB - 12		DRILL DRILL									SPI Page 1 of 2

				E	BORING	RECORD)											
					NOI	OG		F	PID	RE	AD	INC	3	(SAN	ΛPL	LE	REMARKS
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLC	OGIC	DESCRIPTION USCS	GRAPHIC LOG		PPN	/ X	<				-				BACKGROUND PID READING
UNIT						SAP	2	4 0	68	10	12	14 1	6 18	_				SOIL:PPM
					B	ВЪ												SOIL:PPM
	26	5YR7/4 pink unconsolida	caliche v. fine - coarse gra	ins			•											2:20 0.8
		unconsolida	leu															
																		_
					Caliche													_
																		_
	30						•											2:23
		5YR6/6 redd fine grain sa	ish yellow sand <10% chert าd	v. fine to														0.8
																		-
																		_
																		—
	35																	2:25
					SW													0.8
																		_
		5YR4/6 yello chalcedony	wish red over bed sands ch	iert, agate,														_
	40																	2:28
	40		TD : 40'															0.8
		Gr	oundwater Not Observed															—
																		—
	45																	
																		_
																		_
																		_
																		—
	50																	
	00																	
0	NE CONTINU	JOUS AUGER	SAMPLER	WATER TAE	BLE (TIME	OF BORING		JOB								010	07 -	01
s s	ANDARD PE	ENETRATION	TEST L	LABORATO	RY TEST LO	OCATION		HOL										
10	IDISTURBEI	O SAMPLE	+	PENETROM	ETER (TON	NS/ SQ. FT)												t of Excavation
w	ATER TABLE	E(24 HRS)	NR	NO RECOVE	ERY			LAI										
🛕 arson & 💻			DRILL DATE :			NUMBER :		DRI										
Aarson & ssociates, Environmental Consult	nc.		6 - 12 - 2014		s	B - 12		DRI	LLI	NG	M	ETH	100):_	AF	२		Page 2 of 2

				E		RECORD										
					NO	g		PID	REA	ADIN	G	SA	٩MF	PLE	REMARKS	
GEOLOGIC UNIT	DEPTH	DESC		OGIC	DESCRIPTION USCS	GRAPHIC LOG				12 14	16 18				BACKGROUN PID READIN	
			8:20		DE	GR									SOIL :	
	1	5YR5/6 yel	lowish red sandy clay v. fi	ne to fine												
		grains														_
																-
							,									-
	5		Caliche SA Before												8:24	
					CL										0.0	
																-
																-
																-
							,									-
	10					<u></u>									8:26 0.0	
		10Y	R8/2 very pale brown, cal	iche												
			30% chert modules													-
						┝┸╌┰┥										-
						┝╌┎╌┛╺	,									-
	15														0.07	
	15	Caliche mo	ore fine grains no chert ve	ry friable											8:27 0.0	
					Caliche											-
					Gallonio	┝╌┰╌┹┥										
						┝┹╌┰┥										
						┝╌┰╌┙	,									-
	20		Caliche												8:28 0.0	
															0.0	
						┝┸┰┥										-
						┝┰╌┸┥										-
						┝┸╌┰┥										-
	0.5					┝┰╌┸┥	'									
	25——				SW											
		OUS AUGER S		WATER TAE	BLE (TIME	OF BORING	,							107 -	01	
		ENETRATION T	L	LABORATO							ER :_				ant Frank and	
	IDISTURBEE ATER TABLE		+ NR	PENETROM		NS/ SQ. FT)					т:				ast Excavation	
		. (27 1103)	DRILL DATE :			NUMBER :									Scarborough	
Aarson & ssociates, The Environmental Consulta	nc.	\sim	6 - 12 - 2014			SB - 13									Page	1 of 2


GEOLOGIC UNIT DEPTH DESCRIPTION LITHOLOGIC Product Product Product Product SAMPLE REMARKS 2 4 8 10 12 14 18 1 <td< th=""></td<>
26 10YR7/3 v. pale brown sand, <2% chert
26 10YR7/3 v. pale brown sand, <2% chert
26 10YR7/3 v. pale brown sand, <2% chert
26 10YR7/3 v. pale brown sand, <2% chert
10YR8/2 v. pale brown, caliche, friable
35
v. fine - fine
SAA
Riverbed, chert, agate chalcedony
TD : 40' Groundwater Not Observed Image: Construction of the served Image: Conserved Image: Construction of the served<
ONE CONTINUOUS AUGER SAMPLER WATER TABLE (TIME OF BORING) JOB NUMBER : 14 - 0107 - 01
STANDARD PENETRATION TEST L LABORATORY TEST LOCATION
UNDISTURBED SAMPLE + PENETROMETER (TONS/ SQ. FT)
WATER TABLE (24 HRS) NR NO RECOVERY
Agrson & DRILL DATE : BORING NUMBER : DRILLING CONTRACTOR : SPI Agrson & 6 - 12 - 2014 SB - 13 DRILLING METHOD : AR Page 2 of 2

						RECORD												
					NO	g		P	ID F	REA	DIN	G	5	SAM	IPLE	Ξ	REMARKS	3
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LI	THOLOGIC	DESCRIPTION USCS	GRAPHIC LOG	2 2	PPM				16 18	-				BACKGROU PID READIN	NG
	1		2:40			╞┯┷┹╡	+	+	+	+	+	+	+	+	\vdash	+		
	'																	
																		-
																		-
			5YR 8/2 pinkish	white		┝┰╼┸┥												
			orreorz pinkisin	Wille														-
	5		Caliche SA Befo	re			•										2:45 0.8	
	$- $					┝┹╌┯┥												
					Caliche	┝┰╾┻┥												
	10		Caliche														2:48 0.8	
							•											
	15		SAA														2:53 0.8	
		But ha	der and more co	nsolidated chert														
	20		~ • •				•											
			SAA														2:58	
					SW												0.8	
			SAA															
	25——		<10% chert mode	els			•										3:01 0.8	
						Neerbox	4	JOB						 14 -	0107			
		JOUS AUGER S				OF BORING	/ I	HOLE									···	
	NDISTURBEI			L LABORATO												ast	Excavation	
	ATER TABLE			NR NO RECOVI														
			DRILL DATE :		BORING	NUMBER :	-	DRIL	LIN	IG (CON	ITR/	٩СТ	OR	:		Scarborough	
Aarson & ssociates, T Environmental Consulta	nc. ants		6 - 1:	2 - 2014	9	SB - 14	[DRIL	LIN	IG I	ИЕТ	HO) :_	AR			Page	e 1 of

	,			E		RECORD									1
					NOI	90		PID	REA		G	S	AM	PLE	REMARKS
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LITHOLC	OGIC	DESCRIPTION USCS	GRAPHIC LOG		PM)							BACKGROUND PID READING
			Really Hard quartz stringer 5YR5/6 yellowish red SAA SAA TD : 40' Groundwater Not Observe	ed	SW										3:05 0.8 3:08 0.8 3:11 0.8
10	NE CONTINU	IOUS AUGER S	SAMPLER	WATER TAE	BLE (TIME	OF BORING	/	OB N						107	- 01
ST	ANDARD PE	ENETRATION 1		LABORATO			H	OLE							
	IDISTURBED		+	PENETROM	ETER (TON	NS/ SQ. FT)									st Excavation
—— w.	ATER TABLE	(24 HRS)	NR	NO RECOVE	ERY			AI GE							
Aarson & ssociates, I Environmental Consult		\sim	DRILL DATE :			NUMBER :									SPI
Associates, Environmental Consult	nC.		6 - 12 - 2014		s	6 B - 14	D	RILLI	NG	MET	HOD):	٩R		Page 2 of

					RECORD						
				NO	Ŋ	F	PID READING	s	SAM	PLE	REMARKS
GEOLOGIC UNIT	DEPTH	DESC	CRIPTION LITHOLOGIC	DESCRIPTION USCS	GRAPHIC LOG		AX				BACKGROUND PID READING Soll :PPM
			10 : 15		Ū				+		SOIL:PPM
	1		Soil Excavated to 2'								-
	5	7.5YR7/4 pink	sandy clay, friable, v. fine - fine grians	CL							
											-
	10										
		5YR5/6 yellov odor	<i>i</i> ish red sand v. fine - fine, moist, no	SW							-
	15 	5YR8/2 pinkis	h white, caliche, friable	Caliche							10:20 0.0 ppm
	20	5YR7/4 pink	sand v. fine - fine moist, no odor	SW							
			SAA								- 10:26 0.0 ppm
	E CONTINU	IOUS AUGER S	SAMPLER WATER TAB	LE (TIME	OF BORING)		NUMBER :)107 -	- 01
		ENETRATION T		RY TEST LO	OCATION		E DIAMETER			. =	
			+ PENETROM		IS/ SQ. FT)		CATION : <u>v</u>				avation
	TER TABLE	(24 HRS)	NR NO RECOVE	RY BORING I							
Harson & Environmental Consultant		\sim	6 - 13 - 2014		ыомвек : В - 15		LLING CONTR LLING METHC				

BORING RECORD																		
					DESCRIPTION USCS	00	PID READING						G		SAMPLE			REMARKS
GEOLOGIC	DEPTH	DES		SIC	RIPTI	GRAPHIC LOG	PPM X							_				BACKGROUND PID READING
UNIT					i sci	API	2 4 6 8 10 12 14 16 18						16 1	3				SOIL:PPM
					B	GR												SOIL : PPM
	26																	
																		_
																		_
																		_
	30																	10:29 0.0 ppm
			7.5YR6/4 light brown SAA,															_
			increased moister															
			causing darker pink															_
																		_
					SW		'											_
	35																	10:30 0.0 ppm
																		_
																		-
																		_
		SAA with the ad agate, chalced	ddition of river bed gravels chert,				,											
		agate, chaiceut	JIIY															_
	40					288522												10:32 0.0 ppm
		G	TD : 40' Groundwater Not Observed															_
																		-
																		_
																		_
	45																	
																		_
																		_
																		_
																		_
	50 ———																	_
ONE CONTINUOUS AUGER SAMPLER WATER TAB								JOB		UM	BE	R			14	- 0	107	- 01
						/	HOLE DIAMETER : <u>5"</u>											
					TEST LOCATION LOCATION : North Center of West Excavation					Vest Excavation								
WATER TABLE (24 HRS) NR NO RECOVER																		
										DRILLING CONTRACTOR : <u>Scarborough</u>								
Arson & DRILL DATE . Ssociates, Inc. Environmental Consultants 6 - 13 - 2014				SB - 15			DRILLING METHOD : AR Page 2 of 2											

Appendix F

Form C-141

1RP-3360 State of New Mexico Energy Minerals and Natural Resources

HOBBS OCD

Form C-141 Revised August 8, 2011

SEP 2 9 2014 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

RECEIVED

API No.

Release Notification and Corrective Action

	OPERATOR	Firmal	🛛 Final Report
Name of Company: Legacy Reserves, L.P.	Contact: Heath Loftin, Producti		
Address: 303 West Wall St., Ste. 1800, Midland, TX 79701	Telephone No.: (432) 689-5200		
Facility Name: LMPSU Trash Pit	Facility Type: Unauthorized Sc	lid Waste Disposal Pit	

Surface Owner: Legacy Reserves, L.P. Mineral Owner

LOCATION OF RELEASE

Unit Letter O	Section 27	Township 22S	Range 37E	Fcet from the 640	North/South Line South	Feet from the 2,080	East/West Line East	County: Lea

Latitude <u>32° 21' 28.40"</u> Longitude <u>103° 8' 50.07"</u>

NATURE OF RELEASE

Type of Release: Produced water (historic)	Volume of Release: Unknown	Volume Recovered: N/A							
Source of Release: Unlined disposal pit (historic)	Date and Hour of Occurrence Date and Hour of Discovery: Unknown May 5, 2014								
Was Immediate Notice Given?	If YES, To Whom?								
🗌 Yes 🖾 No 🗌 Not Required									
By Whom?	Date and Hour								
Was a Watercourse Reached?	If YES, Volume Impacting the Watercourse.								
If a Watercourse was Impacted, Describe Fully.*									
Describe Cause of Problem and Remedial Action Taken.* A complia unauthorized trash pit that was used by a previous operator and buried in informed of the trash pit in a letter from OCD in May 2011. Legacy c contractor uncovered tow (2) historic unlined disposal pits that received p in a historic aerial photograph dated February 4, 1968. The pits appeared Describe Area Affected and Cleanup Action Taken.* The trash and historic dis excavated soil, trash and debris between about 4 and 20 feet below gro disposal facility. Approximately 7,000 to as much as 9,000 cubic yards center). The center pile, approximately 1,640 cubic yards, contained clev hauled to Sundance Services, east of Eunice, New Mexico. Upon delin potential (SPLP) OCD approved closing the excavations by installing a The disposal pits are located near the west side of the site. Two (2) mo pits, respectively. Laboratory results of groundwater samples from well respectively. Legacy will delineate the groundwater impact. I hereby certify that the information given above is true and complete to the best o are required to report and/or file certain release notifications and perform correctiv acceptance of a C-141 report by the NMOCD marked as "Final Report" does not r and remediate contamination that pose a threat to ground water, surface water, hur relieve the operator of responsibility for compliance with any other federal, state, of Signature:	the early 2000's. Legacy Reserves, I ontract with Etech to excavate the tr produced water and hydrocarbons fror covered in a later photograph (June 3 sposal pits are located about 500 feet 1 und surface. The waste was segrega of soil was excavated and retained o vated concentrations of total petroleur eating the chloride and TPH in the v 20 mil thickness liner in the bottom a nitoring wells (MW-1 and MW-2) w MW-2 reported chloride and total dis f my knowledge and understand that pursu e actions for releases which may endanget elieve the operator of liability should their nan health or the environment. In addition	2.P., as current operation of the Lini SO, was ash pit. While excavating the trash pit the n the lease tank battery. The pits are visible , 1983). northeast of the LMPSU tank battery. Etech ted from the soil and hauled to a permitted n location in 4 piles (west, north, south and n hydrocarbons (YPH) and chloride and was adose zone and a determination of leaching and covering with soil from the onsite piles. ere installed south and north of the disposal ssolved solids at 2720 mg/L and 6700 mg/L, and to NMOCD rules and regulations all operators r public health or the environment. The operations have failed to adequately investigate a, NMOCD acceptance of a C-141 report does not							
	Approved by Environmental Specialist:								
Printed Name: Heath Loftin									
Title: Production Superintendent	Approval Date: 9-29-19	Expiration Date:							
E-mail Address: hloftin@legacylp.com	Conditions of Approval:	Attached							
Date: September 29, 2014 Phone: (432) 689-5200		00000 240074							

* Attach Additional Sheets If Necessary