NEW MEXICO OIL CONSERVATION COMMISSION | NUMBER OF COPIE | SRECEIVE | D 11 | | |-----------------|-----------|------|-------| | DIS | TRIBUTION | | | | SANTA FE | | | | | FILE | | | | | U.S.G.S. | | | حنبيا | | LAND OFFICE | | | 100 | | TRANSPORTER | OIL | | [| | TRANSPORTER | GAS | | l | | PRORATION OFFI | CE | | | Santa Fe, New Mexico WELL RECORD Depth Cleaned Fut....4350 ... Mail to District Office, Oil Conservation Commission, to which Form C-101 was sent not later than twenty days after completion of well. Follow instructions in Rules and Regulations of the Commission. Submit in QUINTUPLICATE If State Land submit 6 Copies AREA 640 ACRES LOCATE WELL, CORRECTLY Cities Service Production Company State Bi (Lease) Undesignated Pool, Lea Well is 1980 feet from North line and 660 feet from Wast line Drilling Commenced 4-14 19.62 Drilling was Completed 6-27 19.62 6015 Andrews Highway - Odessa, Texas **–** 19...... OIL SANDS OR ZONES 8431 No. 6, from to ____ 70921 to..... IMPORTANT WATER SANDS Include data on rate of water inflow and elevation to which water rose in hole. No. 1, from ________teet. CASING RECORD KIND OF SHOE CUT AND PULLED FROM WEIGHT PER FOOT NEW OR PERFORATIONS PURPOSE AMOUNT SIZE Surface 13-3/811 <u> 374. 26'</u> Texas 48# New Intermediate 24# s 32# New 3423.60' Rector 24# & 32# New 8-5/8" 43241-43301 Production Halliburton -5-1/2" MUDDING AND CEMENTING RECORD MUD GRAVITY AMOUNT OF MUD USED NO. SACKS OF CEMENT METHOD WHERE BIZE OF HOLE SIZE OF 13-3/8" 3961 375 Pump 17+1 8-5/8" 3443" 1610 Pump 111 5-1/2" 8865.51 600 Pumo 7-7/8" RECORD OF PRODUCTION AND STIMULATION (Record the Process used, No. of Qts. or Gals. used, interval treated or shot.) 2000 gal. Acid 4324! =4330! Result of Production Stimulation Swab 16 bbls. oil per hour. 5/10 bbls. water per hr. ## RECORD OF DRILL-STEM AND SPECIAL TESTS If drill-stem or other special tests or deviation surveys were made, submit report on separate sheet and attach hereto ## TOOLS USED | | | 3 | | | , | Iee | i, and from | ····· | feet to | • | |---|---|---|---|--|----------------|---|--|---|--|---| | | | | | | P | BODUCTION | ī | | | | | Put to | Producin | g | iui | y 19 | , 19. | .62 | | | | | | OIL V | WELL: | The produc | tion during | the first 24 h | ours was | 104 | b | arrale of I | iquid of which97 | | | | , | was oil: | | 0/ ₂ | | | ~ | arreis or i | iquid of which | | | | | | •••••••••• | ie o | emuision; | ····· | % wat | er; and | % was s | ediment. A | | | • | ÷ravity | ••••••• | 15.9 | * | •••• | | | | | | GAS W | VELL: 7 | The produc | tion during | the first 24 ho | ours was | | M.C.F. 1 | plus | | barre | | | | | | hut in Pressure | | | | | | | | Length | EASE II | DICATE | South | FORMATION
eastern New 1 | TOPS (IN | CONFORMA | NCE WIT | H GEOG | RAPHICAL SECTION O | | | `. An | hv | | | | | | A 5000 | | Northwestern New | | | | | | | | | | - | | - j | | | | | | | | | · | | | Kirtland-Fruitland | | | | | | 225' | | | | | | | | | . 7 R | Civers | ••••••• | ••••• | т. | | | | | Pictured Cliffs | | | Γ Λ | | | | • | | | Point Lookout | | | | | . Gra | yburg | 3 | 62 A s | T. | | *************************************** | | | Mancos | | | . San
Glo | Andres | 3. | 812' | T. | | · | | | Dakota | | | | | | | | | | | | Morrison. | | | | | | | | | | | | Penn | | | |) <u></u> | - | | A. | ************** | • | | | *************************************** | | | - 100 | / | | 792' | Т. | | | | T r | | | | Pen | n | 8, | 91 1 | T. | | ••••••••••••••••••••••••••••••••••••••• | | | | | | Pen | n | 8, | 91 1 | | • | ••••• | ····· | T. | | | | Pen | n | 4 | 91 1 | т. | | | | T. | | | | Pen
Miss | ns | Thickness | 182' | T. | FORMAT | ••••• | | T. | | ······································ | | Pen
Miss | To | Thickness in Feet | 182' | T. T. T. Formatio | FORMAT | From | | T. | | ······ | | Pen
Miss | To | Thickness in Feet | Surfa | Formatio | FORMAT | From | ORD To | Thickness in Feet | Formation | | | Pen
Miss | To 125 1454 1585 | Thickness in Feet | Surfa
Red a | Formatio | FORMAT | From 8226 | ORD To Shan | Thickness in Feet | Formation Lime Lime, Chart St. | | | Pen
Miss | To 125 1454 1585 2006 | Thickness in Feet | Surfa
Rad &
Rad &
Salt, | Formatio | FORMAT | From 8226 9403 | ORD To 9403 9434 9461 | Thickness in Feet | Formation Lime Lime Lime Lime Lime | | | Pen
Miss | To 125 1454 1585 2006 2495 | Thickness
in Feet
125
1329
131
421 | Surfac
Red &
Red &
Red &
Anhyde | Formation to Soli . Condition analysis analysis . Soli . Condition analysis . Soli . Condition analysis . Soli . Condition analysis | FORMAT | From 8226 9403 9461 9503 | ORD To Shan | Thickness in Feet | Formation Lime Lime, Chert Sta | | | Pen Miss | To 125 1454 1585 2006 2495 2000 | Thickness
in Feet
125
1329
131
421
489
305 | Surfai
Red ai
Red ai
Red ai
Anhydi
Anhydi | Formation T. Anhydr Italy Soil 1 | FORMAT | From 8226 9403 9461 9503 9565 | To
9403
9434
9461
9503
9565
9596 | Thickness in Feet | Formation Lime Lime, Chart Station Lime, Shale Lime Lime Lime | | | Pen Miss | To
125
1454
1585
2006
2495
2810
3013 | Thickness
in Feet
125
1329
131
421 | Surfa
Rad B
Rad B | Formation T. | FORMAT | From 8226 9403 9424 9461 9503 9565 9596 | ORD 903 9434 9461 9503 9565 9596 9723 | Thickness in Feet | Formation Lime Lime, Chart Station Lime Lime Lime Lime Lime Lime Lime Lime | | | Pen
Miss | To
125
1454
1585
2006
2495
2000
2810
3013
3282 | Thickness in Feet 125 1329 131 421 489 305 10 203 | Surfai
Rad Bi
Rad Bi
Sal E,
Anhydi
Anhydi
Anhydi
Anhydi
Anhydi | Formation T. | FORMAT | From 8226
9403
9434
9461
9503
9565
9596
9723 | ORD 9h03 9461 9503 9565 9596 9723 9754 | Thickness in Feet | Formation Lime Lime Lime Lime Lime Lime Lime Lime | reeks | | Pen
Miss | To
125
1454
1585
2006
2009
2810
3013
3282
3443 | Thickness
in Feet
125
1329
131
421
489
305
10
203
269
161 | Serfa
Rad B
Rad B
Rad B
Rahydi
Anhydi
Anhydi
Anhydi
Anhydi
Anhydi | Formation T. | FORMAT | From 8226 9403 9484 9461 9503 9565 9596 9723 9754 | ORD 9403 9424 9461 9503 9565 9723 9754 9793 9613 | Thickness in Feet | Formation Lime Lime, Chert Str Lime Lime, Shele Lime Lime, Shele Lime, Shele Lime, Shele | reaks | | Pen Miss | To
125
145A
1585
2006
2810
2810
3013
3282
3443
3510 | Thickness
in Feet
125
1329
131
421
489
305
10
203
269
161
67 | Surfai
Red Bi
Red Bi
Selt,
Anhydi
Anhydi
Anhydi
Anhydi
Anhydi
Lime, | Formation T. | FORMAT | From 8226 9403 9404 9461 9503 9565 9596 9723 9754 9793 9813 | ORD 9403 9434 9461 9503 9565 9723 9754 9793 9613 | Thickness in Feet | Formation Lime Lime Lime Lime Lime Lime Lime Lime | reaks | | Pen Miss | To
125
1454
1585
2006
2009
2010
3013
3282
3443
3510
4115
4346 | Thickness
in Feet
125
1329
131
421
489
305
10
203
269
161 | Surfai
Rad Bi
Rad Bi
Rad Bi
Rahydi
Anhydi
Anhydi
Anhydi
Anhydi
Anhydi
Lime | Formation T. | FORMAT | From 8226 9403 9403 9461 9503 9565 9596 9723 9754 9793 9813 | ORD 9403 9434 9461 9503 9565 9596 9723 9754 9793 9613 9651 | Thickness in Feet 177 21 37 42 62 31 27 39 20 38 20 | Formation Line Line Line Line Line Line Line Lin | reaks | | Pen
Miss
From
5
6
5
0
0
3
2
3 | To
125
145A
1585
2006
2495
2810
3013
3282
3443
3510
4115
4348
4743 | Thickness in Feet 125 1329 131 421 489 305 10 203 269 161 67 605 234 | Surfai
Red Bi
Red Bi
Selt,
Anhydi
Anhydi
Anhydi
Anhydi
Lime,
Lime
Delami
Lime, | Formation T. | FORMAT | From 8226 9403 9403 9404 9461 9503 9565 9596 9723 9754 9793 9813 9851 | ORD 9403 9434 9461 9503 9565 9723 9754 9793 9613 9651 9671 | Thickness in Feet 1177 21 37 42 62 31 127 31 39 20 39 | Formation Line Line, Chart Str Line Line, Shele Line Line, Shele Line, Shele Line, Shele Line, Shele Line, Shele Line, Shele Line, Chart Str Line Line, Shele, Ch | reaks | | Pen Miss | To
125
1454
1585
2006
2000
2810
3013
3282
3443
3510
4115
4349
4743
4975 | Thickness in Feet 125 1329 131 421 489 305 10 203 269 161 67 605 234 394 232 | Surfa
Red B
Red B
Red B
Red B
Red B
Selt,
Anhydr
Anhydr
Anhydr
Lime,
Lime
Delami
Lime,
Belami | Formation T. | FORMAT | From 8226 9403 9424 9461 9503 9565 9596 9723 9773 9813 9851 9871 | ORD 9403 9461 9503 9565 9596 9723 9754 9793 9613 9651 9671 9910 | Thickness in Feet 1177 21 37 42 62 31 127 31 39 20 38 20 39 49 | Formation Lime Lime, Chart Str Lime Lime, Shale Lime Lime, Shale Lime, Shale Lime, Shale Lime, Shale Lime, Shale Lime, Shale, Str Lime Lime, Shale, Chart Str Lime Lime, Chart Str Lime, Chart Str Lime, Chart Str Lime, Chart | reaks | | Pen Miss | To
125
1454
1585
2006
2000
2810
3013
3282
3443
4575
5014 | Thickness in Feet 125 1329 131 421 489 305 10 203 269 161 67 605 234 394 232 | Surfai
Red Bi
Red Bi
Sel t,
Anhydi
Anhydi
Anhydi
Anhydi
Anhydi
Lime,
Lime
Dolani
Lime,
Bolani
Cotani | Formation T. Fo | FORMAT | From 8226 9403 9424 9461 9503 9565 9596 9723 9754 9793 9813 9813 9811 9871 9910 9959 | ORD 5403 5461 9503 9565 9596 9723 9754 9793 9611 9910 9959 10041 10060 | Thickness in Feet 1177 21 37 42 62 31 127 31 39 20 39 | Formation Lime Lime, Chart Str Lime Lime, Shale Lime Lime, Shale Lime, Shale Lime, Shale Lime, Shale Lime, Chart Str Lime Lime, Shale, Ch Lime, Chart Str Lime Lime, Chart Sand | reaks | | Pen Miss | To
125
1454
1585
2006
2000
2010
3013
3202
3443
3510
4115
4743
4975
5014
5435 | Thickness in Feet 125 1329 131 421 489 305 10 203 269 161 67 605 234 394 232 39 421 | Surfai
Red &
Red &
Red &
Red &
Red &
Relydi
Anhydi
Anhydi
Anhydi
Lime,
Lime
Delqui
Delqui
Delqui | Formation T. | FORMAT | From 8226 9403 9434 9461 9503 9565 9596 9723 9754 9793 9813 9871 9910 9959 10041 | ORD To 9403 9434 9461 9503 9565 9723 9754 9793 9613 9651 9910 9959 10041 10060 10125 | Thickness in Feet 1177 21 37 42 62 31 127 31 39 20 38 20 39 49 62 | Formation Lime Lime, Chert Str Lime Lime, Shele Lime, Shele Lime, Shele Lime, Shele Lime, Shele Lime, Shele Lime, Chert Str Lime, Chert Str Lime, Chert Lime, Chert Lime, Shele | reaks | | Pen Miss | To
125
145A
1585
2006
2000
2010
3013
3282
3AA3
3510
4115
43A9
47A3
4975
5014
5435
63A9
6505 | Thickness in Feet 125 1329 131 421 489 305 10 203 269 161 67 605 234 394 232 | Surfai
Red Bi
Red Bi
Sel t,
Anhydi
Anhydi
Anhydi
Anhydi
Anhydi
Lime,
Lime
Dolani
Lime,
Bolani
Cotani | Formation T. Fo | FORMAT | From 8226 9403 9434 9461 9503 9565 9596 9723 9754 9793 9813 9813 9871 9910 9959 10041 10060 10125 | ORD To 9403 9434 9461 9503 9565 9723 9754 9793 9613 9651 9971 9910 9959 10041 10060 10125 10136 | Thickness in Feet 1177 21 37 42 62 31 127 31 39 20 39 49 62 11 | Formation Lime Lime, Chert Str Lime Lime, Shele Chert Str Lime Lime, Chert Str Lime, Chert Lime, Chert Lime, Sand Shele, Lime Shele Shele, Sand | reaks | | Pen Miss | To
125
1454
1585
2006
2810
3013
3282
3443
3510
4115
4349
4743
4975
5014
5435
6349
6505
7043 | 8,
10,
10,
125
1329
131
421
489
305
10
203
269
161
67
605
234
232
39
421
914
156
538 | Surfai
Red Bi
Red Bi
Red Bi
Selt,
Anhydi
Anhydi
Anhydi
Anhydi
Anhydi
Lime
Delami
Lime
Delami
Delami
Delami
Lime
Sand
Lime | Formation T. Fo | FORMAT | From 8226 9403 9484 9461 9503 9565 9596 9723 9754 9793 9813 9813 9811 10060 10125 10136 | ORD 9403 9434 9461 9503 9565 9596 9723 9754 9793 9613 9651 9071 9910 9959 10041 10060 10125 10163 | Thickness in Feet 1177 21 37 42 62 31 127 39 20 38 20 39 49 62 11 27 | Formation Lime Lime Lime Lime Lime Lime Lime Lim | reaks | | Pen Miss | To
125
145A
1585
2006
2495
2810
3013
3282
3A43
3510
4115
4348
4743
4975
5014
5435
6349
6505
7943
7536 | Thickness
in Feet
125
1329
131
421
489
305
10
203
269
161
67
605
234
394
232
39
421
914
156
538
493 | Surfai
Red Bi
Red Bi
Red Bi
Selt,
Anhydi
Anhydi
Anhydi
Anhydi
Anhydi
Lime,
Lime
Delomi
Delomi
Delomi
Delomi
Jelomi
Lime
Sand
Lime
Sand
Lime
Shele | Formation T. Formation T. Formation T. T. Formation | FORMAT | From 8226 9403 9404 9461 9503 9565 9596 9723 9754 9793 9813 9851 9871 9910 9959 10041 10060 10125 10136 10163 10188 | ORD To 9403 9434 9461 9503 9565 9723 9754 9793 9613 9651 9971 9910 9959 10041 10060 10125 10136 | Thickness in Feet 1177 21 37 42 62 31 127 31 39 20 39 49 62 11 | Formation Line Line, Chert Str Line Line, Shele Chert Str Line Line, Chert Str Line, Chert Line, Chert Line, Shele Shele, Line Shele, Sand Shele, Sand Line, Chert | reaks
and
teaks
or t | | Pen Miss | To
125
1454
1585
2006
2810
3013
3282
3443
3510
4115
4349
4743
4975
5014
5435
6349
6505
7043 | Thickness in Feet 125 1329 131 421 489 305 10 203 269 161 67 605 234 394 232 39 421 914 156 538 493 120 | Surfai
Red Bi
Red Bi
Selt,
Anhydi
Anhydi
Anhydi
Anhydi
Lime,
Lime
Delomi
Lime,
Belomi
Lime
Sand
Lime
Shele
Lime, | Formation T. Formation T. Formation T. T. Formation | FORMAT | From 8226 9403 9434 9461 9503 9565 9596 9723 9754 9793 9813 9851 9871 9910 9959 10041 10060 10125 10136 10163 10188 10237 | 7° 9403 9461 9503 9565 9596 9723 9754 9793 9613 9051 9071 9910 9959 10041 10060 10125 10136 10163 10188 10237 10202 | Thickness in Feet 1177 21 37 42 62 31 127 31 39 49 62 19 65 11 27 25 65 65 | Formation Lime Lime, Chart Str Lime Lime, Shale Lime, Shale Lime, Shale Lime, Shale Lime, Shale, Sar Lime Lime, Shale, Chart Lime, Chart Str Lime, Chart Lime, Shale, Chart Lime, Sand Shale, Lime Shale, Sand Lime, Chart Lime, Sand Lime, Chart Lime, Sand, Chart Lime, Sand, Chart Lime, Sand, Shale | reaks ont onks ort vaks | | Pen Miss | To
125
1454
1585
2006
2495
2810
3013
3282
3443
3510
4115
4348
4743
4975
5014
5435
6349
6505
7043
7536
7656
8092
8102 | Thickness in Feet 125 1329 131 421 489 305 10 203 269 161 67 605 234 394 232 39 421 914 156 538 493 120 436 | Surfa
Red &
Red &
Red &
Selt,
Anhydr
Anhydr
Anhydr
Lime,
Lime
Delani
Lime,
Belani
Lime
Serai
Lime
Sand
Lime
Shele
Lime,
Lime
Sand | Formation T. Formation T. Formation T. T. Formation | FORMAT | From 8226 9403 9403 9404 9401 9503 9565 9596 9723 9754 9793 9813 9851 9871 9910 9959 10041 10060 10125 10136 10163 10188 10237 10282 | 7° 9403 9404 9461 9503 9565 9596 9723 9754 9793 9613 9651 9671 9910 9959 10041 10060 10125 10186 10188 10237 10202 10304 | Thickness in Feet 1177 21 37 42 62 31 127 31 39 49 62 19 65 11 27 25 46 45 22 | Formation Lime Lime, Chart Str Lime Lime, Shale Lime, Shale Lime, Shale Lime, Shale Lime, Shale Lime, Chart Str Lime Lime, Shale, Ch Lime, Chart Lime, Shale Lime | reaks and anks art waks | | Pen Miss | To
125
1454
1585
2006
2000
2810
3013
3282
3443
3510
4115
4348
4743
4975
5014
5435
6349
6505
7043
7536
7656
8092 | 8,
10,
10,
10,
10,
125
131
421
489
305
10
203
269
161
67
605
234
394
232
39
421
914
156
538
493
120
436 | Surfa
Red B
Red B
Red B
Red B
Red B
Red B
Red B
Relyde
Anhyde
Anhyde
Anhyde
Lime
Lime
Dolani
Lime
Serd
Lime
Shele
Lime
Lime
Lime
Lime
Lime
Lime
Lime
Lim | Formation T. Formation T. T. Formation T. To Solid | FORMAT | From 8226 9403 9434 9461 9503 9565 9596 9723 9754 9793 9813 9851 9871 9910 9959 10041 10060 10125 10136 10163 10188 10237 | 7° 9403 9461 9503 9565 9596 9723 9754 9793 9613 9051 9071 9910 9959 10041 10060 10125 10136 10163 10188 10237 10202 | Thickness in Feet 1177 21 37 42 62 31 127 31 39 49 62 19 65 11 27 25 65 65 | Formation Lime Lime, Chart Str Lime Lime, Shale Lime, Shale Lime, Shale Lime, Shale Lime, Shale, Sar Lime Lime, Shale, Chart Lime, Chart Str Lime, Chart Lime, Shale, Chart Lime, Sand Shale, Lime Shale, Sand Lime, Chart Lime, Sand Lime, Chart Lime, Sand, Chart Lime, Sand, Chart Lime, Sand, Shale | reaks ont onks ort waks | | as can be determined from available records. | complete and correct record of the well and all work done on it so far | |--|--| | Cities Service Production Co. | Address 97 - Mobs, New Mexics (Date) | | Name E. M. Geyer | Project or Title Pistrict Superintendent | ## WELL RECORD CONTINUED: STATE BL No. 1 Sec. 14-10S-32E, Lea County, New Mexico | | | Thickness | | |-------|-------|-----------|-------------------| | From: | To: | in Foot | <u>Formation</u> | | 10473 | 10507 | 34 | Lime, Shale, Sand | | 10507 | 10521 | 14 | Lime, Shale | | 10521 | 10567 | 46 | Sand, Lime, Shale | | 10567 | 10602 | 35 | Sand | | 10602 | 10610 | 8 | Sand, Shale | | 10610 | 10631 | 21 | Lime, Chert | TD 10,631' PBTD 4,350'