NEW MEXICO OIL CONSERVATION COMMISSION | _ | | |------------|----------| | S RECEIVED | | | TRIBUTION | | | | | | | <u> </u> | | | | | | | | OIL | | | GAS | | | CE | | | | _ | | | | Santa Fe, New Mexico # 1 368 SEP 27 2 49 PM '63 27 2330 330 ### WELL RECORD Mail to District Office, Oil Conservation Commission, to which Form C-101 was sent not later than twenty days after completion of well. Follow instructions in Rules and Regulations of the Commission. Submit in QUINTUPLICATE If State Land submit 6 Copies | | | X1 Company | | | U.D. Sanyer | | | |------------|-------------------|--|--|--|---------------------|---|-----------------------| | 2 | ······ | mneny or Operator) | | | | | 368 | | Vo | | , in | of | of Sec | Т | , R. | 363 , NM | | estol | de Devor | den | | Pool, | | | Co | | 3301 |) | feet from | r th | line and | 2310 | feet from | Bast | | ~ | | | | | | | | | | . 6-4 | 26 | 19 | 63 Drillin | g was Completed. | 9-26 | 19 | | ig Comme | nced | Hob! | le Drilling | Corp. | 5 | - | uvannos:ogdoqjio-vano | | | | | ista Mida. | Midland. | Texas | *************************************** | | | . L | C) F | DF | 1033- | | | | be kept confidential | | | | | | | The inic | ormation given is to | be kept connuential | | | | | 19 | | | | | | | | | | SANDS OR Z | | | | | from | 4825 | to | 4874 (Sen | Andrea) | , from | to. | | | f | 12144 | . 1 | 2175 (Devon | ian(No. 5 | , from | to. | | | , irom | | | | | | | | | , trom | | | | | , | | | | | | | IMPORT | ANT WATER | SANDS | | | | de data or | rate of wat | er inflow and elev | ation to which w | ater rose in hol | le. | | | | , from | ···· | | to | | | feet | ••••••• | | . from | | | to | | , | feet | | | | | | | | | | | | from | | | to | | | feet | | | , from | | | to | | | feet | | | , from | | | toto | | | feet | | | , from | | | toto | ASING BECO |)RD | feet | | | , from | | NEW OR | toto | | | feet | PURPOSE | | , from | WEIGHT
FER FOO | NEW OR | toC | ASING RECO | ORD | feetfeet. | | | , from | WEIGHT PER FOOT | NEW OR USED | to | ASING RECO | ORD | feetfeet. | | | , from | WEIGHT
FER FOO | NEW OR USED | toC | ASING RECO | CUT AND PULLED FROM | rect. | PURPOSE | | , from | WEIGHT PER FOOT | NEW OR USED | to | ASING RECO | CUT AND PULLED FROM | rect. | PURPOSE | | , from | WEIGHT PER FOOT | NEW OR USED | 235
i)186 | ASING RECO | CUT AND PULLED FROM | rect. | PURPOSE | | from | WEIGHT FER FOOT | I NEW OR USED I Set S | AMOUNT 235 112177 MUDDING A NO. SACKS | ASING RECO KIND OF SHOE WDW WDW AND CEMENT | CUT AND PULLED FROM | rect. | PURPOSE | | from | WEIGHT PER FOOT | NEW OR USED ION NOS ION NOS WHERE SET | AMOUNT 235 11277 MUDDING A NO. SACES OF CEMENT | ASING RECO KIND OF SHOE WDW WDW AND CEMENT | CUT AND PULLED FROM | PERFORATIONS 12168-75 | PURPOSE Prod Cag. | | from | WEIGHT PER FOOT | NEW OR USED ION ION WHERE SET | AMOUNT 235 1186 12177 MUDDING A NO. SACES OF CEMENT | ASING RECO KIND OF SHOE WDW WDW AND CEMENT | CUT AND PULLED FROM | PERFORATIONS 12166-75 | PURPOSE Prod Cag. | | , from | WEIGHT PER FOOT | NEW OR USED ION NOS ION NOS WHERE SET | AMOUNT 235 11277 MUDDING A NO. SACES OF CEMENT | ASING RECO KIND OF SHOE WIDW WIDW AND CEMENT METHOD USED | CUT AND PULLED FROM | PERFORATIONS 12166-75 | PURPOSE Prod Cag. | _____Depth Cleaned Out..... ### RECORD OF DRILL-STEM AND SPECIA ESTS If drill-stem or other special tests or deviation surveys were made, submit report on separate sheet and attach hereto #### TOOLS USED | able tools w | ere used from | . 0 | feet | to | feet | , and from. | ······ | f | eet to | | |--|---|--|--------------------------------|------------------|--|--|---|---|--|--| | W | nom | ••••••••••••••••••••••••••••••••••••••• | 1661 | | | , and from | ····· | f | eet to | | | | 9 ~ | 26 | | | ODUCTION | | | | | | | ut to Produc | cing | <u></u> | ••••••• | , 19 | 63 | | | | | | | IL WELL: | The produc | tion during the fi | rst 24 ho | ours was | 443 | ba | arrels of 1 | iquid of wh | ich 96 | % | | | was oil; | lili Dag | % w | D.M. | 0 | C/ | 1 | 0 | | ······/c | | | Gravity | | | | | /0 wate | ı, and | | % was | s sediment. A | | AS WELL: | - | | | | - | | | | | | | io well. | | tion during the fir | | | | M.C.F. p | lus | •••• | | barre | | | | ocarbon. Shut in 1 | PLEASE | INDICATE | BELOW FORM | ATION | TOPS (IN | CONFORMA | NCE WIT | H GEOG | RAPHICAI | L SECTION | OF STATE | | | | Southeaster | n New M | lexico | | | | | western Nev | | | | | | т. | | الملار12 | | | | | | | Salt | | | т | | | | | Kirtland-I | ruitland | | | Yates | 2805 | | T.
T. | | · | | | | | | | 7 Rivers | | *************************************** | T. | | | | | | | ····· | | | | ••••• | | | | | | | | | | Grayburg | 1.000 | | Т. | | | | | | | | | | | | | Granite | | | | | | | | | | ••••• | | Rustler
Atoka | 2188 | •••••••••••• | т. | | | | | | | | | Woodfor | | | т. | | | | | | | ····· | T. | WOODLE OF I | TEAT | | т. | | | ······································ | | | | | T | | | | 1. | | | ······································ | | | | | | | | ••••• | т. | *************************************** | | | | Penn | 11520 | | T . | • | | | T. | | | | | Penn | 11520 | | T . | | | | T. | | | | | Penn | Thickness | | T. | FORMAT | TION RECO | | T. T. T. T. | | | | | Penn | Thickness in Feet | F | T . | FORMAT | TION RECO | ORD
To | Thickness | | | | | Penn To To 1042 | Thickness in Feet | F Redbed | T T. | FORMAT | From 11352 | ORD To 11365 | Thickness in Feet | Line, | Formatic | | | Penn To 104 216 651 268 | Thickness in Feet 12 1012 1139 0 1199 | Redbed
Redbed & | T. T. Formation | FORMAT | From 11352 11365 | To 11365 | Thickness in Feet | Line, | Formatic | | | Penn To 104 216 81 268 358 | Thickness in Feet 1012 1139 109 900 | Redbed & A
Redbed, A
Anhy, Sali | T. T. Formation | FORMAT | From 11352 11365 11477 11822 | To
11365
11477
11822
11850 | Thickness in Feet | Line,
Line, | Formatic
Shale
Sand | | | Penn To Miss 1 2068 216 358 387 | Thickness in Feet 12 1012 1139 10 1199 0 900 290 | Redbed
Redbed & A
Redbed, A
Anhy, Sali | T. T. Formation | FORMAT | From 11352 11365 11477 11822 11850 | To
11365
11477
11822
11850
11903 | Thickness in Feet 13 112 345 28 | Lime,
Lime,
Lime,
Lime, | Formatic
Shale
Sand
Chert | | | Penn To Miss 1 204 216 268 358 367 70 469 92 614 | Thickness in Feet 1012 11139 0 199 0 900 0 290 2 822 8 1156 | Redbed & A
Redbed, A
Anhy, Sali | T. T. Formation | FORMAT | From 11352 11365 11477 11822 11850 11903 | To
11365
111,77
11822
11850
11903
12073 | Thickness in Feet 13 112 345 28 53 | Lime,
Lime,
Lime
Lime | Formatic
Shale
Sand
Chert | | | Penn To 104 218 81 268 358 367 169 92 614 669 | Thickness in Feet 1012 1139 10 139 10 900 10 290 12 822 8 1156 8 550 | Redbed & Redbed, As Anhy, Salidanhy Anhy Lime, Sand | T. T. Formation | FORMAT | From 11352 11365 11477 11822 11850 | To
11365
11477
11822
11850
11903
12073
12124 | Thickness in Feet Thickness 112 345 28 53 170 51 | Line,
Line,
Line
Line,
Line,
Shale | Formation Shale Sand Chert Shale | | | Penn To 104 218 851 268 80 387 70 614 669 98 765 | Thickness in Feet 1012 1139 0 199 0 900 2 90 2 822 8 1156 8 550 6 958 | Recibed & Recibed & Anhy, Sali Anhy Anhy Lime | T. T. Formation | FORMAT | From 11352 11365 111,77 11822 11850 11903 12003 12121 12113 | To
11365
11177
11822
11850
11903
12073
12124
12113
12158 | Thickness in Feet Thickness in Feet 13 112 345 28 53 170 51 19 | Lime,
Lime,
Lime
Lime,
Lime,
Shale
Lime,
Lime, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To 104 218 80 387 169 92 614 86 669 98 765 56 780 | Thickness in Feet 12 1012 1139 10 199 0 900 290 22 82 1156 8 550 6 958 0 1141 | Redbed & A
Redbed & A
Anhy, Sali
Anhy
Anhy
Lime
Lime, Sand
Lime, Shali | T. T. Formation | FORMAT | From 11352 11365 11477 11822 11850 11903 12003 12124 12143 12158 | To
11365
11477
11822
11850
11903
12073
12124
12143
12158
12168 | Thickness in Feet T. T. Thickness in Feet T. T. T. T. T. T. T. T. T. T | Lime,
Lime,
Lime
Lime,
Lime,
Shale,
Lime,
Shale, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To Miss 1 1 2 2 1 6 2 2 1 6 2 2 6 8 3 5 8 7 6 5 5 6 7 8 0 0 0 8 1 9 9 6 8 7 1 | Thickness in Feet 12 1012 1139 10 199 10 290 290 290 290 290 290 290 290 290 29 | Redbed & Redbed, Ar Anhy, Salis Anhy Anhy Lime, Sand Lime, Shale Lime, Shale | T. T. T. Anhy | FORMAT | From 11352 11365 111,77 11822 11850 11903 12003 12121 12113 | To
11365
11177
11822
11850
11903
12073
12124
12113
12158 | Thickness in Feet Thickness in Feet 13 112 345 28 53 170 51 19 | Lime,
Lime,
Lime
Lime,
Lime,
Shale
Lime,
Lime, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To Miss 104 2 216 2 216 2 268 358 367 70 469 98 669 98 765 56 780 00 849 96 871 15 962 | Thickness in Feet 1012 11139 10199 | Redbed & Redbed & Redbed, As Anhy, Salidan Lime, Sand Lime, Shale Lime, Shall Lime, Shall Lime | T. T. Tormation Anhy hhy, S | FORMAT | From 11352 11365 11477 11822 11850 11903 12003 12124 12143 12158 | To
11365
11477
11822
11850
11903
12073
12124
12143
12158
12168 | Thickness in Feet T. T. Thickness in Feet T. T. T. T. T. T. T. T. T. T | Lime,
Lime,
Lime
Lime,
Lime,
Shale,
Lime,
Shale, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To Miss 1 2018 218 268 358 367 70 169 92 611, 18 669 96 871 15 962 23 966 | Thickness in Feet 1012 1139 1090 2090 2822 8 1456 8 550 6 958 0 144 6 696 5 219 3 908 | Redbed & Redbed, Ar Anhy, Salis Anhy Anhy Lime, Sand Lime, Shale Lime, Shale | T. T. Tormation Anhy hhy, S | FORMAT | From 11352 11365 11477 11822 11850 11903 12003 12124 12143 12158 | To
11365
11477
11822
11850
11903
12073
12124
12143
12158
12168 | Thickness in Feet T. T. Thickness in Feet T. T. T. T. T. T. T. T. T. T | Lime,
Lime,
Lime
Lime,
Lime,
Shale,
Lime,
Shale, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To Miss 1 204 218 81 268 80 387 70 469 92 614 8 669 96 871 15 962 23 966 81 998 85 100 | Thickness in Feet 12 1012 1139 10 900 290 222 8 1156 8 550 6 958 0 1141 6 6 6 6 6 5 219 3 708 14 15 321 6 9 84 | Redbed & Redbed & Anhy, Sali Anhy Anhy Lime Lime, Shale Lime, Shall Lime Lime, Shall Lime Lime, Shall Lime Lime, Shall S | T. T. Tormation | FORMAT | From 11352 11365 11477 11822 11850 11903 12003 12124 12143 12158 | To
11365
11477
11822
11850
11903
12073
12124
12143
12158
12168 | Thickness in Feet T. T. Thickness in Feet T. T. T. T. T. T. T. T. T. T | Lime,
Lime,
Lime
Lime,
Lime,
Shale,
Lime,
Shale, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To Miss 104 216 216 216 358 387 770 169 871 15 962 | Thickness in Feet 12 1012 1139 10 199 00 290 290 282 8 1156 8 550 6 958 0 111 6 696 5 219 3 708 11 15 321 6 981 27 958 | Redbed & Redbed & Anhy, Sali Anhy Anhy Lime Lime, Sand Lime, Shall Lime | T. T. T. Anhy hhy, S | FORMAT | From 11352 11365 11477 11822 11850 11903 12003 12124 12143 12158 | To
11365
11477
11822
11850
11903
12073
12124
12143
12158
12168 | Thickness in Feet T. T. Thickness in Feet T. T. T. T. T. T. T. T. T. T | Lime,
Lime,
Lime
Lime,
Lime,
Shale,
Lime,
Shale, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To Miss 104 2 216 268 358 387 770 169 98 871 15 962 23 966 64 998 85 100 007 110 007 110 | Thickness in Feet 1012 1139 10 199 10 900 10 290 12 822 8 1156 8 550 6 958 1111 6 96 5 219 3 908 14 11 5 321 6 981 27 958 97 70 | Redbed Redbed & Redbed, Ar Redbed, Ar Anhy, Sali Anhy Anhy Lime Lime, Sand Lime Lime, Shal | T. T. T. Anhy hhy, S | FORMAT | From 11352 11365 11477 11822 11850 11903 12003 12124 12143 12158 | To
11365
11477
11822
11850
11903
12073
12124
12143
12158
12168 | Thickness in Feet T. T. Thickness in Feet T. T. T. T. T. T. T. T. T. T | Lime,
Lime,
Lime
Lime,
Lime,
Shale,
Lime,
Shale, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To Miss 104 2 164 2 165 2 166 356 387 770 169 92 614 98 765 56 780 00 849 96 871 15 962 23 966 85 100 007 110 097 1112 \$226 | Thickness in Feet 1012 11139 10 199 10 900 12 822 8 1156 8 550 6 958 1111 5 321 69 81 127 958 17 70 12 15 62 120 | Redbed & Redbed, As Anhy, Salis Anhy Anhy Lime Lime, Shale Lime, Shall Lime Lime, Shall Lime Lime, Shall Lime Lime, Shall Lime | T. T. T. Anhy hhy, S | FORMAT | From 11352 11365 11477 11822 11850 11903 12003 12124 12143 12158 | To
11365
11477
11822
11850
11903
12073
12124
12143
12158
12168 | Thickness in Feet T. T. Thickness in Feet T. T. T. T. T. T. T. T. T. T | Lime,
Lime,
Lime
Lime,
Lime,
Shale,
Lime,
Shale, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To Miss 1 104, 218, 218, 268, 387, 169, 614, 18, 669, 169, 169, 169, 169, 169, 169, 169 | Thickness in Feet 12 1012 1139 10 900 290 22 822 8 550 6 958 0 111 6 6 6 6 6 5 219 3 708 11 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 1 5 5 321 6 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Redbed & Redbed & Redbed, As Anhy, Salidane Lime, Shale Lime, Shall Shal | T. T. T. T. Anhy hhy, St. | FORMAT | From 11352 11365 11477 11822 11850 11903 12003 12124 12143 12158 | To
11365
11477
11822
11850
11903
12073
12124
12143
12158
12168 | Thickness in Feet T. T. Thickness in Feet T. T. T. T. T. T. T. T. T. T | Lime,
Lime,
Lime
Lime,
Lime,
Shale,
Lime,
Shale, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To Miss 1 104 2 168 80 387 770 469 871 15 962 871 100 097 110 097 111 112 112 113 113 113 113 113 113 113 | Thickness in Feet 12 1012 1139 10 900 290 22 822 8 550 6 958 0 111 6 6 6 6 6 5 219 3 708 11 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 1 5 5 321 6 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Redbed & Redbed & Redbed, Ar Anhy, Salidan Lime, Sand Lime, Shall | T. T. T. T. Anhy hhy, St. | FORMAT | From 11352 11365 11477 11822 11850 11903 12003 12124 12143 12158 | To
11365
11477
11822
11850
11903
12073
12124
12143
12158
12168 | Thickness in Feet T. T. Thickness in Feet T. T. T. T. T. T. T. T. T. T | Lime,
Lime,
Lime
Lime,
Lime,
Shale,
Lime,
Shale, | Formatic
Shale
Sand
Chert
Shale
Shale | | | Penn To Miss 104 2 164 2 165 2 166 2 169 96 871 15 962 110 0 110 0 114 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Thickness in Feet 12 1012 1139 10 900 290 22 822 8 550 6 958 0 111 6 6 6 6 6 5 219 3 708 11 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 5 5 321 6 9 8 1 1 1 5 5 321 6 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Redbed & Redbed & Redbed, As Anhy, Salidane Lime, Shale Lime, Shall Shal | T. T. T. T. Anhy hhy, St. | FORMAT | From 11352 11365 11477 11822 11850 11903 12003 12124 12143 12158 | To
11365
11477
11822
11850
11903
12073
12124
12143
12158
12168 | Thickness in Feet T. T. Thickness in Feet T. T. T. T. T. T. T. T. T. T | Lime,
Lime,
Lime
Lime,
Lime,
Shale,
Lime,
Shale, | Formatic
Shale
Sand
Chert
Shale
Shale | | # ATTACH SEPARATE SHEET IF ADDITIONAL SPACE IS NEEDED | | · | |---|--| | I hereby swear or affirm that the information given herewith is | a complete and correct record of the well and all work done on it so far | | as can be determined from available records. | the well and all work done on it so far | | _ | 18 // Janah 9-27-63 | | Company or Operator | Box 128, Hobbs, Merico (Date) | | Name V. R. Hayabb | District Engineer | | - 1 | Position or Title | | | |