OIL SPILL & CLOSURE

R. Neal Goates Sr. Environmental Specialist Mid-Continent Region Exploration/Production Conoco Inc. 10 Desta Drive Midland, TX 79705-4500 (915) 686-5400

March 5, 1998

Mr. Wayne Price New Mexico Oil Conservation Division Hobbs District Office PO Box 1980 Hobbs, NM 88241-1980

RE: Limit Gross Excavation Procedure based on Expanded Risk Assessment Findings, Lea County, New Mexico

Dear Mr. Price:

Conoco is in receipt of the February 16, 1998 document "Crude Oil Spill SEMU DTB Battery UL J, Sec 15, T2OS, R37E, Crude remaining in the ground (322-50) = 272 bbls".

Subsequent to Conoco's initial fate/transport assessment for the subject site, Conoco has addressed the OCD's concerns about the original model. Within that process, Conoco considered additional exposure pathways at the subject site to aid in estimating potential human health risk based on two additional scenarios for both worker and resident pathways.

Concerns from NMOCD February 16, 1998 document are as follows:

Concern: "OVM calibration was set for benzene only".

My statement on this subject from Conoco's previous document was false. The instrument does not screen for benzene only but instead utilizes 246 ppm isobutylene for calibration thus screens for common volatile constituents and their associated ions. Please refer to the attached fax copy from Philip Services to Conoco which identifies the common volatile constituents.

- Concern: "Fate/Transport modeling was performed for only the first five feet of the soil". I apologize for Conoco not highlighting the units of measurement. For all measurement, the model utilizes the metric system for all computation. 5 meters (16.4 feet) was the vertical dimension of the prism of material used to represent the contaminated soil. I hope this clears up any concerns relative to the original fate/transport output results.
- Concern: "No assessment was modeled for the potential human health exposure".

Conoco expanded the fate/transport model to include a human-health risk assessment for a worker exposure scenario to include ingestion, dermal contact, and outdoor inhalation pathways. In addition, Conoco chose a second scenario to illustrate the magnitude of exposure necessary for the site to fail a risk assessment. The resident scenario calculates the exposure for indoor/outdoor inhalation, dermal and ingestion pathways. The results for human health risk are inclusive of the February 23, 1998 report from Steve Danbom. For ease of understanding, Steve printed color images in association with the steps necessary to determine risk. The worker scenario passes with flying colors, whereas the basement resident scenario (albeit unrealistic due to the location in question) does not.

Steve H. Danbom, Ph.D. Sr. Consultant Remediation Technology RMNA Conoco Inc. P.O. Box 2197 Houston, TX 77252-2197 (281) 293-2636

February 23, 1998

Mr. Neal Goates Midland Production Division 10 Desta Drive, Suite 100 West Midland, TX 79705

Dear Neal:

In response to the letter from Wayne Price, Environmental Engineer with NMOCD, I would like take three actions: (1) go through the original model one screen at a time with more discussion to alleviate some misconceptions that I apparently left with him due to the succinct nature of my November 24, 1997 mailing (enclosed as an attachment); (2) extend this model from the domain of fate and transport modeling into the risk-assessment domain, calculating human-health consequences of the contaminated soil by computing the carcinogenic risk and hazard indices using a typical worker scenario and, although it is highly unlikely, an adult, basement-residential scenario; and (3) pass on to him the complete computer program, "Risk-Integrated Software for Cleanups (RISC) developed by Lynn Spence and BP Oil. Regarding item 3, there is no charge for the computer program RISC because BP OIL has made the program free of charge to regulators in order that they might understand the utility of such software.

I have made 38 color images taken from the computer screen while modeling using the program RISC and have numbered them in association with the Steps 1-6 as shown on the first screen of the program.

1ST SCREEN -- This is the first screen of the program RISC. Steps 1-6 show the various stages of development of the risk-assessment information. This first figure might be set aside so that the figures that follow, developed within the context of this figure's various steps, might be better understood.

FIGURE 1A -- Regarding the chemicals of concern with this Lea County, NM model, BETX is used for a <u>crude oil spill</u> by <u>substituting</u> the 200 bbl crude oil spill with a 200 bbl <u>gasoline spill</u> and speciating BETX concentrations from the gasoline using an available generic gasoline for percentages. This is a <u>very conservative</u> action to take. When I use the word "conservative" in this letter report, by that I mean a scenario that exaggerates the actual situation so as to err on the side of protecting human health.

FIGURE 2A -- For the possible exposure pathways, since the site has no shallow groundwater, the exposure pathways are limited to ingestion and dermal contact with soil and inhalation of outdoor air emissions from the soil.

FIGURE 3A – This program will use fate and transport models fully described in the RISC manual to compute the receptor point concentrations in outdoor air and will use the speciated BETX estimations for soil concentrations.

FIGURE 3B — This figure might be set aside for the next five figures so that details of each of these modeling elements might be discussed in detail.

FIGURE 3C — For the Box model described in the RISC manual, the height of the box fits an average worker, the width is the modeled Y dimension of the spill, and the wind speed is an average number that is appropriate for the site.

FIGURE 3D - This slide is included for completeness; the thickness of the lens is conservatively set at 0.

FIGURE 3E — The contamination source is a $5 \ge 20 \ge 20$ meter prism that has no soil cover. This is a conservative estimate of the spill volume.

FIGURE 3F — Here are the modeled BETX and TPH concentrations. It should be noted that the entire contamination source prism has this concentration throughout. This conservatively accommodates the range in TPH measurements from borings B-1, B-2, and B3 at the site.

FIGURE 3G — These unsaturated zone geotechnical parameters are largely provided by the Philip Environmental Report with changes in fraction of organic carbon and residual water content that seemed unreasonable from that report. These values are replaced with values normally associated with the site's locale.

FIGURE 3H - A figure to indicate that we have computed fate and transport concentrations.

FIGURE 3I – A graph showing model-predicted outdoor air concentration as a function of modeled time.

FIGURE 3J – A graph showing model-predicted soil concentration as a function of modeled time.

FIGURE 3K -- A graph showing volatilization losses each year as a function of modeled time.

FIGURE 3L -- A graph showing cumulative volatilization losses as a function of modeled time.

FIGURE 4A – Beginning of the risk assessment showing a typical worker exposure scenario is to be used.

FIGURE 4B AND 4C — These figures are combined for discussion as one has to scroll the screen in order to see all variable choices. This scenario is untouched from that which comes with the program. It is evident from examining each of the values that this exposure scenario is very conservative.

FIGURE 5A AND 5B – Carcinogenic risk (due to benzene) and hazard indices (total of the hazard quotients for the non-carcinogens ethylbenzene, toluene, and xylene) for the typical worker exposure scenario as a function of route of exposure. Note that the largest risk is about 2×10^{-7} (or 0.2×10^{-6}) which is 5 times less than the very first threshold set by the EPA of 1.0 10^{-6} (it should be noted that this first risk standard of 1.0×10^{-6} or one-in-a-million has largely been replaced by the EPA with standards that are 10 and 100 times less stringent). EPA has no concern with hazard indices that are below 1.0, which is more than 100 times bigger than the largest value shown on FIGURE 5B.

I have included all of the input data for all aspects of the modeling and the highlights of the output data in two tables at the end of these modeling figures.

For a <u>very unlikely</u> future residential scenario, where an adult lived in a basement home for what the EPA considers a typical exposure scenario, basement resident versions of many of these same figures follow. Discussion of these figures will be limited to differences from the worker scenario.

BASEMENT RESIDENCE FIGURE 2A -- Notice the inclusion of an indoor air exposure pathway.

BASEMENT RESIDENCE FIGURE 3B -- This figure now includes a basement home.

BASEMENT RESIDENCE FIGURE 3D -- The lens is now finite and has default values from the sandy loam database.

BASEMENT RESIDENCE FIGURE 3E — Notice the addition of one meter of fill and topsoil in transforming the site into a residence.

BASEMENT RESIDENCE FIGURE 3G -- Water content under house is a new variable.

BASEMENT RESIDENCE FIGURE 3 NEW — These <u>crucial</u> basement home data are unknown for this hypothetical model. The equations are <u>very</u> conservative as well. The result is a scenario that is unrepresentative of reality. Research that should lead to a better understanding of the actual vapor flux into a basement home is widespread as witnessed by last year's Petroleum Hydrocarbon Conference technical sessions that pointed out the various problems with current models including the RISC indoor air models that are used here. Therefore, irrespective of whether or not one would build a home of any type on the site, much less a basement home, the RISC program has a model that will be changed once the EPA recognizes the correct model to substitute. **BASEMENT RESIDENCE FIGURE 3I -- Somewhat lower outdoor air concentrations** due to the one meter topsoil for the residence.

BASEMENT RESIDENCE FIGURE 3J -- Somewhat more persistent soil concentrations due to the topsoil.

BASEMENT RESIDENCE FIGURE 3K -- Somewhat lower volatilization losses due to the topsoil.

BASEMENT RESIDENCE FIGURE 3L -- Somewhat lower cumulative volatilization losses due to the topsoil.

BASEMENT RESIDENCE FIGURE 3 NEW -- Notice the soil concentrations for the indoor air calculations not diminishing with time.

BASEMENT RESIDENCE FIGURE 3 NEW -- Vapor flux as a function of modeled time going into the basement.

BASEMENT RESIDENCE FIGURE 3 NEW -- Rather constant air concentrations of BETX in the basement breathing space as a function of modeled time.

BASEMENT RESIDENCE FIGURE 4A -- Figure showing the typical adult resident as the new receptor.

BASEMENT RESIDENCE FIGURE 4B and 4C -- For these two figures, notice the person lives in the house for 16 hours each day, only taking a vacation for two weeks during the year, ...etc...

BASEMENT RESIDENCE FIGURE 5A and 5B -- Notice for both the carcinogenic risk and the non-carcinogenic hazard indices, the only exposure route that is troublesome is the unrealistic calculations for risk and HI for the indoor air in the basement as discussed previously. The other exposure routes, which do not show up well at this graphical scale, can be found in the tables that follow to all be less than 1.0×10^{-7} .

Sincerely,

Steve H. Danbom, Ph.D. Senior Consultant Remediation Technology

1ST SCREEN

Select the exp	osure pathways and t	e method to determine rec	aptor point	encentrations
Soil	Ingestion	User Specified Concentrations		Moder
Ground Water	Ingestion Dermal Contact Inhalation (Shower)			
Outdoor Air		Emissions from Soil		Model2
Indoor Air				
Surface Water	Ingestion (Swimming) Dermal Contact	artan an Angendering an Angendering and an Angendering and an Angendering and an Angendering and an Angendering	To lock a know that PLAN A provident lock and the solution	
Food Chain	At Food Pathways	n perserangan serangkan kerangkan kerangkan kerangkan kerangkan kerangkan kerangkan kerangkan kerangkan ker		
Ecological	🗌 Fisti Mortality			
	「「「「「「「」」」、「「」」「「」」、「「」」、「」「」」、「」」、「」」、			

Enter Parameters for Vadose Zone Lang	Пr
Databases Example problem	
Total Porosity of Lens [cm3/cm3]	100
Residual Water Content of Lens [cm3/cm3]	
Sat. Conductivity of the Lens [m/day] 0.022 Range: 1E-4 to 100	
Value of Van Genuchten's N [-]	
Thickness of Lens [m]	
	「小説」 「市町日 1960日

	Descriptions Lea Save Date: 02/20	County, New Mexico Spill /99 3208 - Andrew Spill	
	Enter Unseturated S	iource Data	
Thickness of Contamination [m]	5		
Depth to Top of Contamination (m	ay be zero) [m]	From ground surface	
Length of Source Area [m]	20	In the direction of GW flo	W
Width of Source Area [m]	20	Perpendicular to GW flo	W III

	Unseturated Zone S	aurce
	Enter Source Concentrations for Soil in the	Unsaturated Zone [mg/kg]
	Benzene	65
	Ethylbenzene	256
	Toluene	470
	Xylenes (mixed)	854
	Enter <u>IPH Mixture</u> Information for the Unsat	lurated Zone Source
	TPH Concentration in soil [mg/kg]	8535
	Molecular Weight of TPH mixture [g/mol]	100
a cost of the second second second second		h NGH NAN HER YER YER YER YER YER YER YER YER YER Y

L'Enter Unsaturat	ed Züne	Porometers	
Patebases:	Sandy Loa	m <u>2</u>	
Total Porosity [cm3/cm3]	0.30		
Residual Water Content [cm3/cm3]	0.05	Range: >0 to Porosity	
Fraction Organic Carbon [g oc/g soil]	0.002	Range: 0.001 to 0.05	
Soil Bulk Density [g/cm3]	1.7	Range: 1.4 to 2.2	
Infiltration Rate [cm/yr]	5]	् संस्थिति भारतन्त्री
Sat. Conductivity of the Vadose Zone [m/day]	5.0	Range: 1E-4 to 100	
Value of <u>Van Genuchten's N</u> [-]	2.68]	
Thickness of Vadose Zone [m]	20		S
Enter Unsaturated Zone Degrad	lation fla	tes for Each Chemical I /day 1	
Benzene	0.002		
Ethylbenzene	0.003		
Toluene	0.0033		
Xylenes (mixed)	0.002		調約

FIGURE 3I

FIGURE 3J

FIGURE 3K

FIGURE 3L

Worke	r-Typical	
Lifetime [yr]	70	
Body Weight (kg)	70	
Exp. Freq. for Soil [events/yr]	125	
Exp. Duration for Soil (yr]	8	
Ingestion rate for soil [mg/day]	40	
Totał Skin Surface Area [cm^2]	18400	
Fraction Skin Exposed to Soil [-]	0.11	
<u>Soil/Skin Adherence Factor</u> [mg/cm^2]	0.2	
Exp. Freq. for Outdoor Air [events/yr]	125	and a second
Exp. Duration for Outdoor Air [yr]	8	
EnterBinevailability in	a chattare de la chemitra ann	

worki	IS [
Ingestion rate for soil [mg/day]	40	
Total Skin Surface Area [cm^2]	18400	
Fraction Skin Exposed to Soil [-]	0.11	
<u>Soil/Skin Adherence Factor</u> [mg/cm^2]	0.2	
Exp. Freq. for Butdoor Air (events/yr)	125	
Exp. Duration for Outdoor Air [yr]	8	
Lung Retention Factor [-]	1	
nhalation Rate Outdoors [m^3/hr]	0.83	
Time Outdoors [hr/day]	4	
ra – 15. dr. – 19. dr. – 19. dr. 19. dr. – 19. dr. 2010 – 20. dr. 19. dr. – 19. dr. – 19. dr. – 19. dr. – 19. dr	Langener Jahren 200 Martin Langener State and State	
Enter Bioavallability in	Soil for Each Chemical fira	ction]
Toluene		
Xylenes (mixed)	1.0	BUE TO A STATE OF

BASEMENT RESIDENCE FIGURE 5B

BASEMENT RESIDENCE FIGURE 5A

Adult	Resident - Typical	
<u>501/5Kin Aunerence Factor</u> (ing/cm 2)	0.2	
Exp. Freq. for Outdoor Air [events/yr]	350	
Exp. Duration for Outdoor Air [yr]	9	
Lung Retention Factor [-]	1	
Inhalation Rate Outdoors [m^3/hr]	0.83	
Time Outdoors [hr/day]	1.1	
Exp. Freq. for Indoor Air [events/yr]	350	
Exp. Duration for Indoor Air [yr]	9	
Inhalation Rate Indoors [m^3/hr]	0.625	
Time Indoors [hr/day]	IE	
a seu como de la provincia de la compañía de la com		
Enter Bioavailability in	Soil for Each Chemical (tra	ction]
Toluene	10	

BASEMENT RESIDENCE FIGURE 4C

	RECEPTOR SPECIEG DATA	
	Adult Resident - Typical	
Lifetime (yr)	70	
Body Weight (kg)	70	
Exp. Freq. for Soil [events/yr]	40	
Exp. Duration for Soil [yr]	9	
Ingestion rate for soil [mg/day]	40	
Total Skin Surface Area [cm^2]	18400	
Fraction Skin Exposed to Soil [-]	0.11	
<u>Soil/Skin Adherence Factor</u> [mg/cm^2]	0.2	
Exp. Freq. for Outdoor Air [events/yr]	350	
Exp. Duration for Outdoor Air [yr]	9	
	in a Shi for Fach Chemical Inact	
Benzene		
Ethylbenzene	1.0	
	Lifetime [yr] Body Weight [kg] Exp. Freq. for Soil [events/yr] Exp. Duration for Soil [yr] Ingestion rate for soil [mg/day] Total Skin Surface Area [cm^2] Fraction Skin Exposed to Soil [-] Soil/Skin Adherence Factor [mg/cm^2] Exp. Freq. for Outdoor Air [events/yr] Exp. Duration for Outdoor Air [yr] Exp. Duration for Outdoor Air [yr]	ENTERFRECEPTOR SPECIFIC DATA Adult Resident - Typical Lifetime [yr] 70 Body Weight [kg] 70 Body Weight [kg] 70 Exp. Freq. for Soil [events/yr] 40 Exp. Duration for Soil [yr] 9 Ingestion rate for soil [mg/day] 40 Total Skin Surface Area [cm^2] 18400 Fraction Skin Exposed to Soil [-] 0.11 Soil/Skin Adherence Factor [mg/cm^2] 0.2 Exp. Freq. for Outdoor Air [events/yr] 350 Exp. Duration for Outdoor Air [yr] 9 Exp. Duration for Outdoor Air [yr] 10 Enter Bioevailability in Sbil for Eact Chemical Ifraction Benzene 1.0 Ethylbenzene 1.0

BASEMENT RESIDENCE FIGURE 4B

BASEMENT RESIDENCE FIGURE 4A

BASEMENT RESIDENCE FIGURE 3 - NEW

BASEMENT RESIDENCE FIGURE 3 - NEW

BASEMENT RESIDENCE FIGURE 3 - NEW

BASEMENT RESIDENCE FIGURE 3L

BASEMENT RESIDENCE FIGURE 3K

BASEMENT RESIDENCE FIGURE 3.I

BASEMENT RESIDENCE FIGURE 3I

	Enter Baseme			
	Distance to basement or foundation [m]	1	Either from soil source or water table	
	Cross-sectional area of basement [m2]	150	Perpendicular to vapor flux	
	Volume of house [m3]	400		
	No. of air exchanges per day [1/day]	12		
	Thickness of basement or foundation walls [m]	0.15]	
	Length of foundation perimeter [m]	49	Not needed if Qsoil specified	
	Basement depth below ground surface [m]	3	Not needed if Qsoil specified	
	Pressure difference [g/cm2-s]	5	Not needed if Qsoil specified	
記録	Fraction of the basement walls that are cracks [-]	0.001		
	Flow rate of soil gas into house [cm3/s]	0	Qsoil: set = 0 for code-calculated	

BASEMENT RESIDENCE FIGURE 3 - NEW

	EnterUnsaturat	ed Zone I Sandy Loa	Parameters	
	Total Porosity [cm3/cm3]	0.30		
調調	Water Content Under House [cm3/cm3]	0.05]	
	Fraction Organic Carbon [g oc/g soil]	0.002	Range: 0.001 to 0.05	
	Sat. Conductivity of the Vadose Zone [m/day]	5.0	Range: 1E-4 to 100	
	Soil Bulk Density [g/cm3]	1.7	Range: 1.4 to 2.2	
	Residual Water Content [cm3/cm3]	0.05	Range: >0 to Porosity	
	Infiltration Rate [cm/yr]	5		
	Value of <u>Van Genuchten's N</u> [-]	2.68		
	Thickness of Vadose Zone [m]	20		
	EnterUnsaturated Zane Degrad	Lation Re	tes tor Each Chemical (Vday)	
	Benzene	0.002		
	Ethylbenzene	0.003]	
	Toluene	0.0033		
	Xylenes (mixed)	0.002		

	ata Sou	ca Data	
Thickness of Contamination [m]	5		
Length of Source Area [m]	20	In the direction of GW flow	
Width of Source Area [m]	20	Perpendicular to GW flow	
Depth to Top of Contamination (may be zero) [m]	1	From ground surface	

BASEMENT RESIDENCE

Parameters	ler Vedo	se Zone Lens	
Total Porosity of Lens [cm3/cm3]	Sandy Loa Di25		
Water Content in Lens Under House [cm3/cm3] Thickness of Lens [m]	0.1		
Residual Water Content of Lens [cm3/cm3]	0.1	Range: >0 to 1	
Value of <u>Van Genuchten's N</u> [-]	0.62 1.89		

BASEMENT RESIDENCE FIGURE 3D

BASEMENT RESIDENCE FIGURE 3B

		Bure pelliways, and a	he method to determine raced	pitatineanto trioq to	
K	Soil	⊠ Ingestion ⊠ Dermal Contact	User Specified Concentrations	Meter	
	Ground Water	Ingestion Dermal Contact Inhalation (Shower)			
	Outdoor Air	Inhalation	Emissions from Soil		
	Indoor Air		Emissions from Soil		
	Surface Water	Ingestion (Swimming) Dermal Contact			
	Food Chain	All Food Pathways			
		Eist Montaity			

BASEMENT RESIDENCE FIGURE 2A

Title: Lea County, New Mexico Soll 02/20/98 11:15	
Scenarios: Worker - Typical	n na hanna a' dh'ann ann a' chuireann ann and Adhraich. Anns anns ann an dhairteann a' dhairtean
Routes: INGESTION OF SOIL DERMAL CONTACT WITH SOIL INHALATION OF OUTDOOR AIR	
Chemicals: Benzene Ethylbenzene Toluene Xylenes (mixed)	
SUMMARY OF INPUT PARAMETERS	SCENARIO: 1
Lifetime and Body Weight	
Body Weight (kg) Lifetime (years)	70.00 70.00
INGESTION OF SOIL	
Soil Ingestion Rate (mg/day) Exp. Frequency Soil (events/year) Exp. Duration Soil (years) Absorption Adjustment Factor for Ingestion of Soil (-)	40.00 125.00 8.00
Benzene Ethylbenzene Toluene Xylenes (mixed)	1.0 1.0 1.0 1.0
Soil Bioavailability (-) Benzene Ethylbenzene Toluene Xylenes (mixed)	1.0 1.0 1.0 1.0
DERMAL CONTACT WITH SOIL	
Fraction Skin Exposed to Soil (-) Adherence Factor for Soil (mg/cm ² Exposure Freq. Soil (events/year Exposure Duration Soil (years) Absorption Adjustment Factor for Dermal Exposure to Soil (-)	0.11 0.20 125.00 8.00
Benzene Ethylbenzene Toluene Xylenes (mixed)	0.50 0.50 0.50 0.50
Soil Bioavailability (-) Benzene Ethylbenzene Toluene Xylenes (mixed)	1.0 1.0 1.0 1.0

ı,

· INHALATION OF OUTDOOR AIR_		
Inhalation rate (m ³ /hr)	0.83
Time outdoors (hours/da	X)	4.00
Lung Retention Factor (-)	1.00
Exp. Freq. Outdoor Air	(events/yr)	125.00
Exp. Duration Outdoor A	ir (yr)	8.00
Absorption Adjustment F	actor for	
	20	1 0
Ethyl	henzene	1 0
Tolue	ne	1.0
Xvlen	es (mixed)	1.0
	(,	
MEDIA CONCENTRATIONS		
Concentration in Outdoor A	ir (mg/m^3)	
Obtained from Fate and	Transport output	
AVERAGE Concentration (over exposure duration)	
(used to calculate carc	inogenic risk)	
Exposure D	uration (years)	8.0
Benze	ne	1.61E-03
Ethyl	benzene	6.67E-04
Tolue	ne	4.09E-03
Xylen	es (mixed)	2.18E-03
Concentration used to c	alculate hazard index	
(MINIMUM OI / Years or	exposure duration)	7.0
Exposite D Benze	ne	1.65E-03
Ethvl	benzene	6.69E-04
Tolue	ne	4.12E-03
Xylen	es (mixed)	2.19E-03
*		
Concentration in Soil (mg/	kg)	
Used in calculating ca	rcinogenic risk and haz	ard index
Benze	ne	65.
Ethyl	benzene	2.568+02
Tolue	ne og (miwoð)	4./UE+U2 9.54T+02
xyten	es (mixed)	6.54ETU2
SLOPE FACTORS AND REFERENC	E DOSES	
Ingestion Slope Factor [1/	(mg/kg-day)]	` .
Benze	ne	2.90E-02
Ethyl	benzene	ND
Tolue	ne 	ND
xyien	es (mixed)	ND
Ingestion Reference Dose (ma/ka-dav)	
Benze	ne	ND
Ethyl	benzene	0.10
Tolue	ne	0.20
Xylen	es (mixed)	2.0
Inhalation Slope Factor [1	/(mg/kg-day)]	A AAR AA
Benze	ne	2.90E-02
ECNY1	Denzene De	
Tolue	es (mixed)	ND
хутен	es (mived)	
Inhalation Reference Dose	(mg/kg-dav)	
Benze	ne	ND

• • •	Ethylbenzene	0.29	
	Tolene	0	
	Xylenes (mixed)	0.20	
Dermal Slope Factor	[1/(mg/kg-day)]		
	Benzene	2,90E-02	
	Ethylbenzene	ND	
	Toluene	ND	ł
	Xylenes (mixed)	ND	Ŷ
Dermal Reference Do	se (mg/kq-day)		
	Benzene	ND	
	Ethylbenzene	0.10	
	Toluene	0.20	
	Xylenes (mixed)	2.0	

SUMMARY OF RESULTS

.

INGESTION OF SOIL

Benzene			
CDI (mg/kg-day)	1.27E-05		
LADD (mg/kg-day)	1.45E-06		
Cancer Risk (-)	4.22E-08		
Hazard Index (-)	0.00E+00		
Ethylbenzene			
CDI (mg/kg-day)	5.01E-05		
LADD (mg/kg-day)	5.73E-06		
Cancer Risk (-)	0.00E+00		
Hazard Index (-)	5.01E-04		
Toluene			
CDI (mg/kg-day)	9.20E-05		
LADD (mg/kg-day)	1.05E-05		
Cancer Risk (-)	0.00E+00		· · · · ·
Hazard Index (-)	4.60E-04		
Xvlenes (mixed)		$\omega_{\rm eff} = 2 T_{\rm eff} - \frac{1}{2} v_{\rm eff} + \frac{1}{2} v_{\rm eff} $	
CDI (mg/kg-dav)	1.67E-04		- • •
LADD (mg/kg-day)	1.91E-05		
Cancer Risk (-)	0.00E+00	· · · · ·	
Hazard Index (-)	8.36E-05		
DERMAL CONTACT WITH SOIL			
		2 	
Benzene			•
CDI (mg/kg-day)	6.44E-05		
LADD (mg/kg-day)	7.36E-06		
Cancer Risk (-)	2.13E-07		
Hazard Index (-)	0.00E+00	·	
Ethylbenzene			
CDI (mg/kg-day)	2.53E-04		
LADD (mg/kg-day)	2.90E-05		·
Cancer Risk (-)	0.00E+00		
Hazard Index (-)	2.53E-03	,	

· Toluene	
CD1 (mg/kg-day)	4.65E-04
LADD (mg/kg-day)	5.328-05
Cancer Risk (-)	0.008+00
Hazard Index (-)	2.33E-03
Xvlenes (mixed)	
CDT (mg/kg-day)	8.46E-04
LADD (mg/kg-day)	9,66E-05
Cancer Risk (-)	0.00E+00
Hazard Index (-)	4.23E-04
nabaza znabn ()	
INHALATION OF OUTDOOR AIR	
Benzene	
CDI (mg/kg-day)	2.68E-05
LADD (mg/kg-day)	2.98E-06
Cancer Risk (-)	8.66E-08
Hazard Index (-)	0.00E+00
Ethylbenzene	1 007 05
CDI (mg/kg-day)	1.09E-05
LADD (mg/kg-day)	1.24E-06
Cancer Risk (-)	0.008+00
Hazard Index (-)	3./5E-05
Toluene	
CDI (mg/kg-day)	6.69E-05
LADD (mg/kg-day)	7.58E-06
Cancer Risk (-)	0.00E+00
Hazard Index (-)	6.08E-04
Xylenes (mixed)	
CDI (mg/kg-day)	3.55E-05
LADD (mg/kg-day)	4.05E-06
Cancer Risk (-)	0.00E+00
Hazard Index (-)	1.77E-04

. .

-

· · · ·

.

•

Indoor air model with volatile emissions from soil

Vadose zone model used to estimate outdoor air concentration

1

.

· · · · ·

٠,

.

1 - 12 1

Title: Lea County, New Mexico Spill

Simulation time (years)..... 50

Vadose Zone Source Parameters

Thickness of contamination (m)	5.00
Depth to top of contamination (m)	1.00
Length of source (m)	20.0
Width of source (m)	20.0

Unsaturated Zone Properties

Total Porosity in vadose zone (cm3/cm3)	.300
Residual water content (cm3/cm3)	5.000E-02
Fraction organic carbon (g oc/g soil)	2.000E-03
Soil bulk density (g/cm3)	1.70
Infiltration Rate (cm/yr)	5.00
Saturated conductivity (m/d)	5.00
Van Genuchten"s N	2.68
Thickness of vadose zone (m)	20.0
Water content under house(cm3/cm3)	5.000E-02
Air content in capillary fringe(cm3/cm3)	.000

Lens Parameters

N.

Total porosity in lens (cm3/cm3)	.250
Residual water contentlens (cm3/cm3)	.100
Saturated conductivity (m/d)	.620
Van Genuchten N in lens	1.89
Water contentlens under house(cm3/cm3)	.100
Thickness of lens (m)	.100

OUTDOOR AIR PARAMETERS

Height of box (breathing zone) (m)	2.00
Width of box (m)	20.0
Wind speed (m/s)	5.00

Basement and House Data

Distance from source to basement (m)	1.00
Cross-sect. area of basement (m2)	150.
Volume of house (m3)	400.
Number of air changes per day	12.0
Foundation thickness (m)	.150
Length of foundation perimeter (m)	49.0
Depth of foundation (m)	3.00
Pressure difference (g/cm-s2)	5.00
Fraction of cracks (cm3/cm3)	1.000E-03
Permeability of soil to vapors (cm2)	5.903E-08
Intrinsic Permeability calculated from com	nductivity
->Volumetric flow rate of soil gas into hous	se

	(This parameter is fixed)
PH Data for Uns	saturated Zone Source
Concentration of Molecular weigh	of TPH in soil (mg/kg) 8.535E+03 ht of TPH (g/mol) 100.
CHEMICAL I	DATA INPUT: Benzene
Diffusion coeff Diffusion coeff Solubility (mg/ KOC (ml/g) Henry's Law Coe Molecular Weigh Density of cher Degradation rat Degradation rat	<pre>f. in air (cm2/s) 8.800E-02 f. in water (cm2/s) 9.800E-06 /1) 58.9 efficient (-) 58.9 efficient (-) 78.0 mical (g/cm3) 78.0 mical (g/cm3) 877 te sat. zone (1/d) 000 te unsat. zone (1/d) 2.000E-03 ions: Benzene</pre>
Source Conc. fo	or unsaturated zone model (mg/kg) 65.0
CHEMICAL I	DATA INPUT: Ethylbenzene
Diffusion coeff Diffusion coeff	f. in air (cm2/s) 7.500E-02 f. in water (cm2/s) 7.800E-06 /1) 169. 363.

CHEMICAL DATA INPUT: Toluene	2
Diffusion coeff in six (cm2/c)	
Diffusion coeff. in water (cm2/s)	8.600E-02
Solubility (mg/l)	526.
KOC (m1/g)	182.
Henry"s Law Coefficient (-)	.272
Molecular Weight (g/mol)	92.1

Degradation rate unsat. zone (1/d).. 3.300E-03 Source Concentrations: Toluene Source Conc. for unsaturated zone model (mg/kg)... 470. Xylenes (mixed) CHEMICAL DATA INPUT: Diffusion coeff. in air (cm2/s).... 7.200E-02 Diffusion coeff. in water (cm2/s)... 8.500E-06 Solubility (mg/l)..... 185. KOC (ml/g)..... 386. Henry"s Law Coefficient (-)..... .301 Molecular Weight (g/mol)..... 106. Degradation rate unsat. zone (1/d).. 2.000E-03 Source Concentrations: Xylenes (mixed) Source Conc. for unsaturated zone model (mg/kg)... 854. a second a s · · ·

ritle: Lea County, New Mexico S 02/23/98 10:56	
Scenarios: Adult Resident - Typical	, <u>.</u>
Routes: INGESTION OF SOIL DERMAL CONTACT WITH SOIL INHALATION OF OUTDOOR AIR INHALATION OF INDOOR AIR	
Chemicals: Benzene Ethylbenzene Toluene Xylenes (mixed)	
SUMMARY OF INPUT PARAMETERS	SCENARIO: 1
Lifetime and Body Weight	
Body Weight (kg) Lifetime (years)	70.00 70.00
INGESTION OF SOIL	
Soil Ingestion Rate (mg/day) Exp. Frequency Soil (events/year) Exp. Duration Soil (years) Absorption Adjustment Factor for Ingestion of Soil (-)	40.00 40.00 9.00
Benzene Ethylbenzene Toluene	1.0 1.0 1.0
Xylenes (mixed)	1.0
Soil Bioavailability (-) Benzene Ethylbenzene Toluene Xylenes (mixed)	1.0 1.0 1.0 1.0
DERMAL CONTACT WITH SOIL	
Fraction Skin Exposed to Soil (-) Adherence Factor for Soil (mg/cm ²) Exposure Freq. Soil (events/year) Exposure Duration Soil (years) Absorption Adjustment Factor for	0.11 0.20 40.00 9.00
Benzene	0.50
Ethylbenzene Toluene	0.50
Xylenes (mixed)	0.50
Benzene	1.0
Ethylbenzene Toluene	1.0 1.0

Xylenes (mixed)

INHALATION OF OUTDOOR AIR

а. ⁴

Inhalation rate (m ³ /hr)	0.83	
Time outdoors (hours/day)	1.10 x	
Lung Retention Factor (-)	1.00	
Exp. Freq. Outdoor Air (events/vr)	350 00	
Exp. Duration Outdoor Air (vr)	9.00	
Absorption Adjustment Easter for	9.00	
Trhalation (.)		
	1.0	
Denzene	1.0	
Etnylbenzene	1.0	
Toluene	1.0	
Xylenes (mixed)	1.0	
INHALATION OF INDOOR AIR		
	0.50	
Innalation rate (m 3/hr)	0.62	
Time indoors (hours/day)	16.00	
Lung Retention Factor (-)	1.00	
Exp. Freq. Indoor Air (events/yr)	350.00	
Exp. Duration Indoor Air (yr)	9.00	
Absorption Adjustment Factor for		
Inhalation (-)		
Benzene	1.0	
Ethylbenzene	1.0	
Toluene	1.0	
Xvlenes (mixed)	1.0	
ny teneb (mined)	2.0	•
MEDIA CONCENTRATIONS		
AVERAGE Concentration (over exposure (used to calculate carcinogenic ris) Exposure Duration (yea: Benzene	e duration) k) rs) 9.0 8.27E-04	
Ethylbenzene	3.12E-04	
Toluene	1.96E-03	
Xvlenes (mixed)	1.02E-03	
Concentration used to calculate haz	ard index	
(Minimum of 7 years or exposure dur	ation)	
Exposure Duration (vea	r_{s} 7.0	· · ·
Bonzono	8 50E-04	· ~ ·
Fthylbenzene	3 13F-04	· -
Moluoro	1 070-03	
Toluene Yulonog (miyod)	1.028-03	•
xylenes (mixed)	T.05E-02	
Concentration in Soil (mg/kg)	ish and he sawd indom	
Used in calculating carcinogenic r	isk and nazard index	
Benzene	65.	
Ethylbenzene	2.56E+02	
Toluene	4.70E+02	
Xylenes (mixed)	8.54E+02	
Concentration in Indoor Air (mg/m ³) Obtained from Fate and Transport ou AVERAGE Concentration (over exposur (used to calculate carcinogenic ris	tput e duration) k)	
Exposure Duration (vea	rs) 9.0	
Benzene	, 0.44	
Ethylhonzono	0.17	
	~	

·· · · ·					
	Tolyme		0.2		
	Xylenes (mixed)		0.5		
Concentration use	d to calculate h	azard index	K		
(Minimum of 7 yea:	rs or exposure d	uration)			
Expo	sure Duration (y	ears)	7.0		
	Benzene		0.44		
	Ethylbenzene		0.17		
	Toluene		0.97		
	Xylenes (mixed)		0.59		
_					
SLOPE FACTORS AND RE	FERENCE DOSES				
Ingestion Slope Facto	or [1/(mg/kg-day)]			
	Benzene		2.901	-02	
	Ethylbenzene		ND		
	Toluene		ND		
	xylenes (mixed)		ND		
Town and in the Backson and I					
Ingestion Reference	Dose (mg/kg-day)				
	Benzene		ND		
	Ethylbenzene		0.10		
	Toluene		0.20		
	xylenes (mixed)		2.0		
Innalation Slope Fact	cor [1/(mg/kg-da	Y)]	0 005		
	Benzene		2.901	-02	
	Etnylbenzene				
	Toluene		ND		
	xylenes (mixed)		ND		
Tabalandan Dafamanaa					
Innalation Reference	Dose (mg/kg-day)			
	Benzene Etherlbenzene				
	Echylbenzene Melwere		0.29		
	Yulones (miwed)		0.11		
	vitenes (mixed)		0.20		
Dormal Flong Factor	$\left[1/(m\sigma/k\sigma_{day})\right]$				
Dermar Stope Factor	[1/(mg/kg=day)]		2 905	-07	
	Fthylbongono			-72	
		•			
	Yulonog (miyod)	•		,	
	Ayrenes (mixed)	*-	ND.		
Dormal Reference Dec	o (ma/ka-dow)		•	· · · ·	- :
Dermai Reference Dos	e (mg/kg-day)		ND	5.1 F	•
	Belizelle Ethulbergene	••••			
	Echy i Denzene Molyono		0.10		-
	Yulonog (miyod)		0.20		
	valenes (mixed)		2.0	· .	
		· · ·			
			,		
			, i		
CIMMADY OF DECILING			· ·		
SUMMARI OF RESULTS					
		.			
INGESTION OF SOTT					
TUGEDITOM OF SOTR			<i>'</i> .		-
Benzene					
CDT (ma/ka-day)		4.078-06			
TADD (mg/kg-udy)	۱	5.23E-07			
Cancer Dick (_)	1	1.528-09			
CHICEL KISK (=)		T.JCD_00			

Ethylbenzene		
CDI (mg/kg-day)	1.60E-05	
LADD (mg/kg-day)	2.06E-06	
Cancer Risk (-)	0.00E+00	
Hazard Index (-)	1.60E-04	
Toluene		
CDI (mg/kg-dav)	2.94E-05	
LADD (mg/kg-day)	3.78E-06	
Cancer Risk (-)	0 00E+00	
Hazard Index (-)	1 47E = 04	
Mazara Index ()	1:4/11-04	
Xvlenes (mixed)		
CDT (mg/kg-day)	5.35E-05	
LADD (mg/kg-day)	6.88E-06	
Cancer Dick (-)	0.005+00	
Hagard Index (-)	2 678-05	
nazaru index (-)	2:07E-05	
DERMAL CONTACT WITH SOIL		
Benzene		
CDI (mg/kg-day)	2.068-05	
LADD (mg/kg ddy)	2.658-06	
Cancor Bisk (a)	7 68F-08	
Vancer KISK (-)	7.00E-00	
Hazard Index (-)	0.002+00	
Ethvlbenzene		
CDT (mg/kg-day)	8.118-05	
IADD (mg/kg ddy)	1 048-05	
Cancer Dick (-)	1.04E-05	
Cancer RISK (-)		
Hazard Index (-)	8.118-04	
Toluene		
	1 405-04	
LADD (mg/Kg-udy)	1.492-04	
LADD (mg/kg-day)	1.91E-05	
Cancer Risk (-)	0.002+00	
Hazard Index (-)	7.45E-04	
Yulonog (miyod)		
Aylenes (mixed)	2 71 8-04	•
CDI (mg/kg=day)	2.71E-04	
LADD (mg/kg-day)	3.48E-05	
Cancer Risk (-)	0.00E+00	÷.,
Hazard Index (-)	1.35E-04	
INHALATION OF OUTDOOR AIR		
Ponzono		
	1 060 05	
CDI (mg/kg-day)	1.064-05	
LADD (mg/kg-day)	1.33E-06	-
Cancer Risk (-)	3.86E-08	1
Hazard Index (-)	0.00E+00	
Fthulbongono		
	2 00 8 00	
CDI (mg/kg-day)	3.92K-U6	
LADD (mg/kg-day)	5.025-07	
Cancer Risk (-)	0.00E+00	
Hazard Index (-)	1.35E-05	
Toluene		
CDT (mg/kg-dav)	2-47E-05	!
LADD (mg/kg-day)	3.158-06	
TURE (MALVA-Mall	~·-~~	

· _.

Cancer Risk (-)	0 008+00	
Hazard Index (-)	2 25F-04	
		•
Xvlenes (mixed)		
CDI (mg/kg-day)	1.28E-05	
LADD (mg/kg-day)	1.64E-06	
Cancer Risk (-)	0.00E+00	
Hazard Index (-)	6.40E-05	
INHALATION OF INDOOR AIR		
Benzene		
CDI (mg/kg-day)	6.09E-02	
LADD (mg/kg-day)	7.83E-03	
Cancer Risk (-)	2.27E-04	
Hazard Index (-)	0.00E+00	
CDI (mg/kg-day)	2.38E-02	
LADD (mg/xg-day)	3.05E-03	
Cancer KISK (-)	0.00E+00	
nazaru index (-)	8.196-02	
Toluene		
CDI (mg/kg-day)	1.34E-01	
LADD (mg/kg-day)	1.72E-02	
Cancer Risk (-)	0.00E+00	
Hazard Index (-)	1.21E+00	
Mart an are student at		
Aylenes (mixed)		
CDI (mg/kg-day)	8.06E-02	
Cancon Dick (-)	1.04E-02	
Vagard Index (-)	0.00ET00	
Hazard Index (-)	4.036-01	
-		
·		· · · ·
2017		
ч		

... .

,

、•

ang shin National ang

Vadose zone model used to estimate outdoor air concentration

Title: Lea County, New Mexico Spill

Simulation time (years)..... 50

Vadose Zone Source Parameters

Thickness of contamination (m)	5.00
Depth to top of contamination (m)	.000
Length of source (m)	20.0
Width of source (m)	20.0

Unsaturated Zone Properties

Total Porosity in vadose zone (cm3/cm3)	.300
Residual water content (cm3/cm3)	5.000E-02
Fraction organic carbon (g oc/g soil)	2.000E-03
Soil bulk density (g/cm3)	1.70
Infiltration Rate (cm/yr)	5.00
Saturated conductivity (m/d)	5.00
Van Genuchten"s N	2.68
Thickness of vadose zone (m)	20.0

OUTDOOR AIR PARAMETERS

Height of box (breathing zone) (m)	2.00
Width of box (m)	20.0
Wind speed (m/s)	5.00

TPH Data for Unsaturated Zone Source

Concentration of	TPH in	soil (mg/kg)	8.535E+03
Molecular weight	of TPH	(g/mol)	100.

. . . .

.

-

CHEMICAL DATA INPUT: Benzene

Diffusion coeff. in air (cm2/s).... 8.800E-02 Diffusion coeff. in water (cm2/s)... 9.800E-06 Solubility (mg/l)..... 1.750E+03 KOC (ml/g)..... 58.9 Henry"s Law Coefficient (-)..... 228 Molecular Weight (g/mol)..... 78.0 Density of chemical (g/cm3)..... 877 Degradation rate sat. zone (1/d)... 000 Degradation rate unsat. zone (1/d)... 2.000E-03

Source Concentrations: Benzene

Source Conc. for unsaturated zone model (mg/kg)... 65.0

CHEMICAL DATA INPUT: Ethylbenzene Diffusion coeff. in air (cm2/s)..... 7.500E-02 and realized and realiz Diffusion coeff. in water (cm2/s)... 7.800E-06 Solubility (mg/l)..... 169. KOC (ml/g)..... 363. Molecular Weight (g/mol)..... 106. Degradation rate unsat. zone (1/d).. 3.000E-03 Source Concentrations: Ethylbenzene Source Conc. for unsaturated zone model (mg/kg)... 256. CHEMICAL DATA INPUT: Toluene Diffusion coeff. in air (cm2/s).... 8.700E-02 Diffusion coeff. in water (cm2/s)... 8.600E-06 Solubility (mg/l)..... 526. KOC (ml/g)..... 182. Molecular Weight (g/mol)..... 92.1

Source Concentrations: Toluene

Source Conc. for unsaturated zone model (mg/kg)... 470.

··· · ·

•

CHEMICAL DATA INPUT: Xylenes (mixed) Diffusion coeff. in air (cm2/s).... 7.200E-02 Diffusion coeff. in water (cm2/s)... 8.500E-06 Solubility (mg/l)..... 185. KOC (ml/g)..... 386. Henry"s Law Coefficient (-)..... 301 Molecular Weight (g/mol)..... 106. Density of chemical (g/cm3)..... 870 Degradation rate sat. zone (1/d)... 000 Degradation rate unsat. zone (1/d)... 2.000E-03 Source Concentrations: Xylenes (mixed)

Source Conc. for unsaturated zone model (mg/kg)... 854.

0/98	FRI 09:13	FAX 915 563 9526	PESC MIDLAND	
		[]		
		P	HILIP SERVICES	
D	DATE:	Deluny 20, 1998	PAGES: 8	
1	:0:	Neil	Genty	
C	COMPAN	Y: Conoco		
F	FAX #:	686- 5780	PHONE #:	
F	ROM:	JeFF	Kindler	
Γ		PHILI 7904 INTER	P SERVICES CORPORATION STATE 20 WEST, MIDLAND, TX, 79706	· · · · ·
	-	TELEPHON	E:(915) 563-0118 FAX (915) 563-9526	
X	MESSAGE:			
-				
-				
_				
-				
-				
-				
-				
τ	his message is in	tended only for the use of the ir	CONFIDENTIALITY CAUTION adividual or entity to which it is addressed and contains information	tion that is privileged and

confidential. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hareby notified that any dissemination, distribution, or copying of this communications is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and return the original message to us at the address at our cost.

•

.

ť

•

ŗ

4<u>.</u>1002

APPENDIX F COMMON ORGANIC SOLVENTS AND GASES DATA SHEET

	CHEMICAL MATERIALS	F.W. (G/MOLE)	DENSITY (G/ML)	^{BP} (°C)*	I.P. (EV)**	twa (PPM)*
	Acetaldehyde	44.05	0.788	21	10.21	200
	Acetamide	59.07	1.159	221	9.77	
,	Acetic Acid	60.05	1.049	116-117	10.37	10
	Acetic Anhydride	102.1	1.10	138-117	9.88	5
	Acetone	58.1	0.79	56	9.69	1000
	Acetonitrile	41.1	0.79	82	12.22	40 cell
	Acetophenone	120.15	1.033	202	9.27	
	Acetyl Bromide	122.96	1.52	75-75	10.55	
	Acetyl Chloride	78.50	1.104	52	11.02	
	Acetylene	26.02	0.90	•	11.41	
	Acrolein	56.06	0.8389	53	10.10	0.1
	Acrylonitrile	53.06	0.8004	77	10.91	10
	Allyl Alcohol	58.1	0.85	96-98	9.67	2
	Allyl Chloride	76.5	0.94	44-46	9.9	1
	Aniline	93.1	1.02	184	7.70	5
	Anisole	108.13	0,9956	154	8.22	
	Ammonia	17.03	gas		10.15	
	Arsine	77.9	gas			0.05
	Renzal del vde	106.12	1.053	178-185	9.53	
	Benzene	78.1	0.88	80	9.25	1
	Benzonitrile	103.12	1.010	188	9.71	-
	Benzotriflouride	146.11	1,1886	102	9-68	
	Benzyl Chloride	126-6	1.10	177-181	9.14	1
	Binheny]	154.21	0.992	255		-
	Bromine	159.81	3,1023	58-8	10.55	0.1
	Bromohenzena	157 02	1 495	156	8,98	•••
	1-Bromobutene	137 03	1.276	100-04	10.13	
	2-Bromobutene	137.03	1.255	Q1	9,98	
	1-Bromo-2-Chlorethene	143.47	1 723	106-07	10.63	
	Promochloromethane	179 30	1 001	68	10.77	
	1-Promo-2-Elourobenzene	175 01	1 503	150	g_99	
	1-DI ONO-2-FIVAL ODENZENA	767 0	2 0	150-01	10.47	0.5
	1-Bromo-2-methyl proper	2J2.0	1 760	90-92	10.09	0.5
	2-Browo-2-wethyl propar	10 137.03	1 100	77-74	9,99	
	1-Bromonantane	181 05	1 219	130	10.10	
	3-Browobeurgue	123 00	1 354	71	10.18	
	2-Bromopropane	123.00	1 310	71 60	10.10	
	1-Bropobrobelle	123.00	1 412	58-63	<u><u>a</u> 30</u>	
	1-Browobiobene	120.30	1 200	70-71	9 70	
	3-Bromotriobene	163 04	1 694	149-151	B 63	
	A-promoturobueus	171 04	1.004 1.004	103 7	8 81	
	U-Bromotolucie	171 04	1 431	58 60	g 70	
	D-Dromotoluce	171 04	7 497 T149T	194	01/7 0 47	
	l J-Batedic	1/1.04	1.431	104	0+01	1000
,	スリーマン ひんし ひひ し ひんし ひ ひ し ひ い い い い	24.1 E0 17	gas	10 67		1000
	hereite .	30.12 30.12	945	<u>10.05</u>	•	
		20.13	.842	2.14		

Boiling Point Degrees Centigrade
Ionization Potential BP

IP

*** TWA - Time Weighted Average = Parts Per Million

1

:

ĺ

i

.

ι

W 000	2	0	0;	3
-------	---	---	----	---

CHENICAL MATERIALS	F.W. (g/Mole)	DENSITY (G/ML)	(°C)*	I.P. (EV)**	'!WA (IPPM) ***
2-Butanone	72.1	0.81	80	9.53	200
1-Butene	56.10	0.6255		9.58	
N-Butyl Acetate	116.2	0.88	124-26	10.01	150
S-Butyl Acetate	116.2	0.88	111-12	9.91	150
N-Butyl Alcohol	74.1	0.81	117.7	10.04	100
N-Butyl Amine	73.1	0.73	73	78	5
S-Butyl Amine	73.1	0.73	63	8.70	5
T-Butyl Amine	73.1	0.73	46	8.64	5
N-Butyl Benzene	134.21	0.8604	183	8.69	
S-Butyl Benzene	134.21	0.8604	173 - 04	8.68	
T-Butyl Benzene	134.21	0.8669	169	8.68	
N-Butyraldehyde	72.10	0.8016	75	9.86	
N-Butyric Acid	88.10	0.959	162	10.16	
N-Butyronitrile	69.10	0.7954	115 - 17	11.67	
Camphor	152.2	0.99	204	8.76	2 mg/m
Carbon Dioxide	44.01	gas		13.79	5:0 00
Carbon Monoxide	28.01	gas		14.01	50
Carbon Tetrachloride	153.8	1.59	77	11.47	10
Chlorine	70,90	gas		11.48	1 cell
Chlorobenzene	112.6	1.10	132	9.07	75
Chloroform	119.4	1.48	60.5-61.5	11.37	50 cell
1-Chloro-2-Methylpropar	ne 92.57	.883	68-69	10.66	
2-Chloro-2-Methylpropar	ie 101.64	.851	51-52	10.61	
1-Chloropropane	78.54	.892	46-47	10.82	
2-Chloropropane	78.54	•859	34-36	10.78	
3-Chloropropane	76.53	.939	44-46	10.04	
2-Chlorothiophene	118.59	1.286	127-29	8.68	
M-Chlorotoluene	126.58	1.076	160-162	8.83	
O-Chlorotoluene	126.58	1.0826	157-159	8.83	
P-Chlorotoluene	126.58	1.0697	162	8.70	÷
M-Cresol	108.1	1.034	203	8.52	5 Cell
0-Cresol	108.1	1.048	191	8.50	5 Cell
P-Cresol	108.1	1.034	202	8.38	5 Cell
Crotonaldehyde	70.09	0.853	104	9.73	2
Cumene	120.2	0.86	152 - 154	8.75	50
Cyanogen	52.04	0.9537		13.80	• • •
Cyclohexane	84.2	0.81	80.7-81	9.98	300
Cyclohexane	100.2	0.96	160-161	10.0	50
Cyclohexanone	98.1	0.95	155	9.14	50
Cyclohexene	82.1	0.81	83	8.95	300
Cyclo-Octatetraene	104.15	0.925	142-43	7.99	
Cyclopentane	70.13	0.7460	50	10.53	
Cyclopentanone	84.11	1.4366	130-131	9.26	
cyclopentene	68.12	0.744	44	9.01	
Cyclopropane	42.08	gas		9.91	
Diborane	27.68	gas		11.00	
Diazomethane	42.0	gas	•	9.0	0.2

* BP - Boiling Point Degrees Centigrade ** IP - Ionization Potential

.

*** TWA - Time Weighted Average = Parts Per Million

•

• •

1

ł

}

ļ

TESC MIDLAND

4<u>61</u> V V 4

	CHEMICAL MATERIALS	F.W. (G/MOLE)	DENSITY (G/ML)	,● 	I.P. (EV)**	TWA (PPM)*
	Dibromodiflouromethane	209.83	2.297	22-23	11.07	•
• 💭	1,2-Dibromoethane	187.87	2.180	131-32	9.45	
	1,3~Dibromopropane	201.90	1.937	167	10.07	
	Dibutylphthlate	278.3	1.04	- 340		5 mg/ m
	M-Dichlorobenzene	147.01	1.288	172-73	9.12	5 0
	O-Dichlorobenzene	147.01	1.306	179-180	9.07	50
	P-Dichlorobenzene	147.01	1.241	173	8.94	75
	1,1-Dichlorethane	99.0	1.18	57	11.06	100
	1,2-Dichlorethane	98.96 [·]	1.256	83	11.12	
•	1,2-Dichlorethylene	97.0	1.28	46-60	9.66	200
	Dichloromethane	84.93	1.325	39.8-40	11.35	
	1,2-Dichloropropane	112.99	1.156	95-96	10.87	
	1,3-Dichloropropane	112.99	1.190	120-22	10.85	
	2,3-Dichloropropane	110.97	1.204	94	9.82	
	N,N-Diethyl Acetamide	115.18	0.925	182-86	8.60	
	Diethylamine	73.1	0.71	55	8.01	25
	Diethyl Ether	74.12	0.7134	34.6	9.53	
	N.N-Diethyl Formamide	101.15	0.908	176-77	8.89	
	Diethyl Ketone	86.13	0.816	102	9.32	
	Diethyl Sulfide	90.19	.837		8.43	
	Diethyl Sulfite	138.19	1.883	158-60	9.68	
	Dihydropyran	84.12	0.922	86	8.34	
	Diisopropylamine	101.2	0.72	84	7.73	5
	1.1-Dimethoxyethane	90.12	0.863	64	9.65	-
	N.N-Dimethyl Acetamide	87.12	0.937	164.5-66	8.81	. 10
	Dimethyl Amine	45.1	0.68		8.24	10
	N.N-Dimethyl Aniline	122.2	0.96	193-94	7.13	
9	2.2-Dimethyl Butane	86.18	0.649	50	10.06	
	2.3-Dimethvl Butane	86.18	0.662	50	10.02	
	3,3-Dimethyl Butanone	100.16	0.801	106	9.17	
	N.N-Dimethyl Formamide	73-09	0.9445	153	9.12	10
	Dimethlvl Sulfide	63.13	0.846	38	8.69	10
	P-Dioxane	88.1	1.03	100-102	9,13	100
	Dipropyl Amine	101.19	0.738	105-110	7.84	*00
	Durene	134.12	0.84	80-82	8 03	
	EpiChlorohydrin	92.5	1.18	115-117	0.03	ĸ
	Fthane	30-07	1.1.		11 65	2
	Ethanethiol	62.13	0 2115	25	9 20	
۲	Ethyl Acetate	88 1	0.0010	76 5-77 5	10 11	400
	Ethyl Alcohol	46.1	0.90	79	10 49	1000
:	Ethyl Amine	45.1	0.69	19 20	A 04	1000
	Ethyl Benzene	106.2	0.03	1760	0.00	100
	Ethyl Bromide	109.0	1 15	17-40	10 20	200
	Ethyl Butyl Ketope	114 2	1.49 1.49	37-40	20.27	200
ł	Ethyl Chloride	64 67	0.04	740-43	7.02	1000
š	Ethyl Digulfide	122 25	0.9414	157	4 77	1000
6	Ethylene Dibromide	187.0	0.373 2 17	.121-122 CCT	0.4/ 10 57	20
E.	Ethylene Dichloride	99.0	6.1/ 1 26	03 437-735	11 22	20
	arourdrage	22.0	1.20	63	11.34	50

* BP - Boiling Point Degrees Centigrade ** IP - Ionization Potential *** TWA - Time Weighted Average = Parts Per Million

ł 1 4

I.

Т

F.W.

(G/MOLE)

74.1

74.1

155.98

I.P. (NV)**

9.59

10.61

Т (

Ę

;

Ο.

	1.950	67-73	9.33
	1.003	60	9,14
	0.842	66-67	8.55
	0.90	112	11.22
	0.891	99	10.00
	1.007		9,89
	0.9300	142-44	8.82
	gas		15.70
	1.024	85	9.20
	1.256	172-74	8.95
	0.997	178	8.92
	1.004	172-172	8.92
	1.001	185	8.79
	1.083		10.87
	1.1334	210	10.25
	1.220	110-101	11.05
	1.160	182	9.21
	0.9371		8.89
	0.68	98	10.08
	0.8068	149-50	9.33
	0.66	68-69	10.19
	0.673	64	9.46
	0.80		· 9.53
7	gas		15.43
	gas		11.62
	gas		12.74
	0.687		13.91
	gas		15.77
	gas		10.38
	gas		9.38
	<u> </u>		10 46

BP

34.6

52-54

(⁰C)*

DENSITY

(G/ML)

0.73

0.92

CHEMICAL MATERIALS

Ethyl Ether

Ethyl Formate

Ethyl Iodide

Ethyl Isothiocyanate	87.15	1.003	60	9,14
Ethyl Methyl Sulfide	76.16	0.842	66-67	8.55
Ethyl Nitrate	75.07	0.90	112	11.22
Ethyl Propionate	102.13	0.891	99	10.00
Ethyl Thiocyanate	87.14	1.007		9.89
Ethynylbenzene	102.13	0.9300	142-44	8.82
Fluorine	37.99	gas		15.70
Flourobenzene	96.10	1.024	85	9.20
O-Fluorophenol	112.10	1.256	172-74	8.95
M-Fluorotoluene	110.13	0.997	178	8.92
O-Fluorotoluene	110.13	1.004	172-172	8.92
P-Fluorotoluene	110.13	1.001	185	8.79
Formaldehyde	30.03	1.083		10.87
Formahide	45.04	1.1334	210	10.25
Formic Acid	46.02	1.220	110-101	11.05
2-Furaldehyde	96.09	1.160	182	9.21
Furan	68.07	0.9371		8.89
Heptane	100.2	0.68	98	10.08
2-Heptanone	114.18	0.8068	149-50	9.33
Hexane	86.2	0.66	68-69	10.19
1-Нехале	84.16	0.673	64	9.46
Hexone	100.2	0.80		. 9.53
Hydrogen	2.017	gas		15.43
Hvdrogen Bromide	80.92	gas		11.52
		-		
Hydrogen Chloride	36.47	gas		12.74
Hydrogen Chloride Hydrogen Cyanide	36.47 27.03	gas 0.687		12.74
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride	36.47 27.03 20.01	gas 0.687 gas		12.74 13.91 15.77
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide	36.47 27.03 20.01 127.93	gas 0.687 gas gas		12.74 13.91 15.77 10.38
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide Hydrogen Selenide	36.47 27.03 20.01 127.93 80.98	gas 0.687 gas gas gas		12.74 13.91 15.77 10.38 9.38
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide Hydrogen Selenide Hydrogen Sulfide	36.47 27.03 20.01 127.93 80.98 34.08	gas 0.687 gas gas gas gas		12.74 13.91 15.77 10.38 9.38 10.46
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide Hydrogen Selenide Hydrogen Sulfide Hydrogen Telluride	36.47 27.03 20.01 127.93 80.98 34.08 129.63	gas 0.687 gas gas gas gas gas		12.74 13.91 15.77 10.38 9.38 10.46 9.L4
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide Hydrogen Selenide Hydrogen Sulfide Hydrogen Telluride Iodine	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81	gas 0.687 gas gas gas gas 4.93		12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide Hydrogen Selenide Hydrogen Sulfide Hydrogen Telluride Iodine Iodobenzene	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02	gas 0.687 gas gas gas gas gas 4.93 1.8384	188	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide Hydrogen Selenide Hydrogen Sulfide Hydrogen Telluride Iodine Iodobenzene 1-Iodobutene	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02 184.02	gas 0.687 gas gas gas gas 4.93 1.8384 1.617	188 130-31	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73 9.21
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide Hydrogen Selenide Hydrogen Sulfide Hydrogen Telluride Iodine Iodobenzene 1-Iodobutene 2-Iodobutene	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02 184.02 184.02	gas 0.687 gas gas gas gas 4.93 1.8384 1.617 1.4991	188 130-31 119-120	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73 9.21 9.09
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide Hydrogen Selenide Hydrogen Sulfide Hydrogen Telluride Iodine Iodobenzene 1-Iodobutene 2-Iodobutene 1-Iodo-2-Methylpropane	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02 184.02 184.02	gas 0.687 gas gas gas gas 4.93 1.8384 1.617 1.4991 1.599	188 130-31 119-120 120-21	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73 9.21 9.09 9.L8
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide Hydrogen Selenide Hydrogen Sulfide Hydrogen Telluride Iodine Iodobenzene 1-Iodobutene 2-Iodobutene 1-Iodo-2-Methylpropane 1-Iodopentane	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02 184.02 184.02 184.02 184.02	gas 0.687 gas gas gas gas 4.93 1.8384 1.617 1.4991 1.599 1.517	188 130-31 119-120 120-21 154-55	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73 9.21 9.09 9.L8 9.L9
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Iodide Hydrogen Selenide Hydrogen Sulfide Hydrogen Telluride Iodine Iodobenzene 1-Iodobutene 2-Iodobutene 1-Iodo-2-Methylpropane 1-Iodopentane 1-Iodopropane	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02 184.02 184.02 184.02 184.02 184.02	gas 0.687 gas gas gas gas 4.93 1.8384 1.617 1.4991 1.599 1.517 1.743	188 130-31 119-120 120-21 154-35 101-02	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73 9.21 9.09 9.L8 9.19 9.26
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Flouride Hydrogen Selenide Hydrogen Selenide Hydrogen Telluride Iodine Iodobenzene 1-Iodobutene 2-Iodobutene 1-Iodo-2-Methylpropane 1-Iodopentane 1-Iodopropane	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02 184.02 184.02 184.02 184.02 184.02 184.02 198.05 169.99 169.99	gas 0.687 gas gas gas gas 4.93 1.8384 1.617 1.4991 1.599 1.517 1.743 1.703	188 130-31 119-120 120-21 154-55 101-02 88-90	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73 9.21 9.09 9.L8 9.L9 9.26 9.L7
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Flouride Hydrogen Selenide Hydrogen Selenide Hydrogen Telluride Iodine Iodobenzene 1-Iodobutene 2-Iodobutene 1-Iodo-2-Methylpropane 1-Iodopropane 2-Iodopropane 2-Iodopropane	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02 184.02 184.02 184.02 184.02 184.02 184.02 198.05 169.99 169.99 218.04	gas 0.687 gas gas gas gas 4.93 1.8384 1.617 1.617 1.599 1.517 1.743 1.703 1.713	188 130-31 119-120 120-21 154-55 101-02 88-90 211	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73 9.21 9.09 9.L8 9.L9 9.L9 9.L9 9.L9 9.L9 9.L9 9.L
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Flouride Hydrogen Selenide Hydrogen Selenide Hydrogen Selenide Hydrogen Telluride Iodine Iodobenzene 1-Iodobutene 2-Iodobutene 1-Iodo-2-Methylpropane 1-Iodopropane 2-Iodopropane 2-Iodopropane 0-Iodotoluene M-Iodotoluene	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02 184.02 184.02 184.02 184.02 184.02 184.02 184.02 184.02 184.02 184.02 198.05 169.99 218.04 218.04	gas 0.687 gas gas gas gas 4.93 1.8384 1.617 1.4991 1.599 1.517 1.743 1.703 1.713 1.698	188 130-31 119-120 120-21 154-55 101-02 88-90 211	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73 9.21 9.09 9.L8 9.L9 9.L9 9.L9 9.L9 9.L9 9.L9 9.L
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Flouride Hydrogen Selenide Hydrogen Selenide Hydrogen Selenide Hydrogen Telluride Iodine Iodobenzene 1-Iodobutene 2-Iodobutene 1-Iodopentane 1-Iodopentane 1-Iodopropane 2-Iodopropane 2-Iodopropane 0-Iodotoluene M-Iodotoluene P-Odotoluene	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02 184.02 184.02 184.02 184.02 184.02 184.02 184.02 184.02 198.05 169.99 218.04 218.04 218.04	gas 0.687 gas gas gas gas 4.93 1.8384 1.617 1.4991 1.599 1.517 1.743 1.703 1.713 1.698	188 130-31 119-120 120-21 154-55 101-02 88-90 211 211-5	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73 9.21 9.09 9.L8 9.19 9.26 9.L9 9.26 9.L7 8.62 8.51 8.50
Hydrogen Chloride Hydrogen Cyanide Hydrogen Flouride Hydrogen Flouride Hydrogen Selenide Hydrogen Selenide Hydrogen Telluride Iodine Iodobenzene 1-Iodobutene 2-Iodobutene 1-Iodo-2-Methylpropane 1-Iodopentane 1-Iodopropane 2-Iodopropane 2-Iodopropane 2-Iodotoluene M-Iodotoluene P-Odotoluene Isoamyl Acetate	36.47 27.03 20.01 127.93 80.98 34.08 129.63 253.81 204.02 184.02 184.02 184.02 184.02 184.02 184.02 184.02 198.05 169.99 218.04 218.04 218.04 218.04 130.2	gas 0.687 gas gas gas gas 4.93 1.8384 1.617 1.4991 1.599 1.517 1.743 1.703 1.713 1.698 0.88	188 130-31 119-120 120-21 154-55 101-02 88-90 211 211-5 142	12.74 13.91 15.77 10.38 9.38 10.46 9.L4 9.28 8.73 9.21 9.09 9.L8 9.L9 9.L9 9.L9 9.L9 9.L9 9.L9 9.L

* BP - Boiling Point Degrees Centigrade

** IP - Ionization Potential

*** TWA - Time Weighted Average = Parts Per Million

ļ

0

	•					
	CREMICAL MATERIALS	F.W. (g/Mole)	DENSITY (G/ML)	B₽ (°C)*	I.P (EV)**	TWA (PPM) [°]
	Isobutyl Amine	73.14	0.724	6 4- 71	8.70	
	Isobutyl Formate	102.13	0.885	98.4	10.46	
	Isobutylene	56.11	0.5942	-6.9	9.23	
	Isobutyraldehyde	72.11	0.794	63	9.74	
	Isobutyric Acid	88.11	0.950	153-54	10.02	
	Isoctane	114.2	0.70	98-99	17.9	4 00
	Isopentane	114.23	0.692	30	10.32	
	Isoprene	68.12	0.681	34	8.85	
	Isopropyl Acetate	102.1	0.87	85	9.99	250
	Isopropyl Alcohol	60.1	0.79		10.16	400
	Isopropyl Amine	59.1	0.69	33-34	8.72	£
	Isopropyl Benzene	120.2	0.86	152-54	8.75	50
	Isopropyl Ether	102.2	1.37	68-69	9.20	50C
	Isovaleraldehyde	86.13	0.785	90	9.71	
	2,3-Lutidine	107.15	0.945	162-63	8.85	
	2,4-Lutidine	107.15	0.927	159	8.85	
	2,6-Lutidine	107.15	0.9252	143-45	8.85	
	Malaic Anhydride	98.1	0.93	200	11.1	
	Mesitylene	120.19	0.8637	162-64	8.40	
	Mesityl Oxide	98.14	0.8592	129	9.08	
•	Methane	16.04	qas		12.98	
	Methanethiol	48.11	0.96		9.44	
	N-Methyl Acetamide	73.10	0.957	204~05	8.90	
	Methyl Acetate	74.08	0.9279	57:5	10.27	
	Methyl Acrylate	86.1	0.96	80	9.9	10
	Methyl Amine	31.06	gas	48	8.97	
	Methyl Bromide	95.0	gas		10.53	
	2-Methy1-1-Butane	70.16	0.650	31	9.12	
	3-Methy1-1-Butane	70.14	0.627	20	9.51	
•	3-Methyl-2-Butane	70.14	0.643		8.67	
	Methyl Butyl Ketone	100.6	0.83	127	9.34	100
	Methyl Butyrate	102.13	0.898	102-103	10.07	
•	Methyl Chloride	50.5			11.28	100
-	Methyl Cyclohexane	98.19	0.770	101	9.85	
	Methyl Disulfide	94.20	1.046	109	8.46	
	Methyl Ethyl Ketone	72.10	0.805	80	9.53	
	Methyl Formate	60.1	1.34	34	10.815 .	100
	2-Methyl Furan	82.10	0.827	63-66	8.39	
	Methyl Iodide	142.0	2.28	41-43	9.54	5
•	Methyl Isobutyl Ketone	100.2	0.80	117-18	9.30	100
	Methyl Isobutyrate	102.13	0.891	90	9,98	
	Methyl Isopropyl Ketone	86.12	0.805	94-95	9.32	
	Methyl Isothiocyanate	73.12	0.000	37-39	9.25	
	Nethyl Methacrylate	100.1	0.94	100	9,9	100
	1-Methyl Napthalene	142_20	1,001	240-243	7.96	744
	2-Methyl Napthalene	142.20	1.000	.241-242	7.96	
í i	2-Methyl Pentane	86.18	0.653	62	10.12	
	3-Methyl Pentane	86.18	0.664	64	10.08	
	Methyl Propionate	88.11	0.915	- 79	10.15	
		~~.77	~ ~ ~ ~ ~ ~		~~	•

* BP - Boiling Point Degrees Centigrade ** IP - Ionization Potential *** TWA - Time Weighted Average = Parts Per Million

	2720795	r K 1	03:10	r AA	912	503	9520
--	---------	-------	-------	------	-----	-----	------

<i

PESC MIDLAND

4.001

0	FRI 09:10 FAA 915 505 3520					
	CHENICAL MATER LS	F.W. (G/MOLE)	DENSITY (G/ML)		I.P. (<i>EV</i>)**	тwa (ррм)*
	Methyl Propyl Ketone	86.13	.0.809	100.01	9.38	
	2-Methyl Styrene	165.4	1.068	131	10.07	
	Monomethyl Aniline	107.16	0.989			
	Monomethyl Hydrazine	46.1	0.87		1	
	Morpholine	87.1	1.01	129	8.88	20
	Nephthalene	93.7	1.16	217.7	8.12	10
	Nitric Oxide	162.2	1.01		9.25	
	P-Nitroaniline	138.1				1.0
	Nitrobenzene	123.1	1.21	210-211	9.92	1.0
	4-Nitrobiphenyl	199.2				
	P-Nitrochlorobenzene	157.6	1.52		9.96	1.0 mg/r
	Nitrogen Dioxide	46.01	1.448		9.78	
	Nitroethane	75.1	1.38	112	10.81	100
	Nitromethane	61.0	1.13	100.8-101	11.08	100
	1-Nitropropane	89.1	0.99	131-32	10.88	25
	2-Nitropropane	89.1	0.98	120	10.71	25
	N-Nitrosodimethylamine	74.1	1.00	153	9.07	
	Nitrotoluene	137.1	1.16	225-238	11.63	5
	Oxygen	31.9988	gas		12.08	
	Ozone	48.00	gas		12.08	
	Pentaborane	63.17	0.61		10.40	
	Pentane	72.15	0.62638	3 35	10.35	
	2,4-Pentanedione	70.13	0.6429	140.4	8.87	
	1-Pentene	70.13	0.6503	29.9-30.1	9.50	
	Phenetol	122.16	0.967	169-70	8.13	
	Phenol	94.1	1.07	182	8.50	5
	Phenyl Hydrazine	108.1	1.1	238-41	7.86	5
	Phenyl Isocyanate	119.12	1.0887	162-63	8.77	
	Phenyl Isothiocyanate	135.18	1.1288	221	8.52	
	Phosgene	98.9	gas		11.77	0.4 mg/n
	Phosphine	34.0	gas			0.3
	Phosphorous Pentachloric	de208.2	1.6		10.7	l mg/n
	Phosphorous Trichloride	137.3	1.57	76	10.5	
	2-Picoline	93.12	0.950	128-29	9.02	
	3-Picoline	93.12	0.9613	144	9.02	
	4-Picoline	93.12	0.9571	145	9.04	
	Propane	44.09	gas		11.07	
	1-Propanethiol	76.16	0.841	67-68	9.20	,
	Propiolactone	72.06	1.146	162	9.70	
	Propionic Acid	74.08	0.99336	i 141	10.24	
	Propionaldehyde	58.08	0.8071	46-50	9.98	
	Propionitrile	55.08	0.7818	97	11.84	
	N-Propyl Acetate	102.1	0.84	120	10.04	200
	Propyl Alcohol	60.10	0.804	97	10.20	
	Propyl Amine	59.11	0.719	48	8.78	
	Propyl Benzene	120.20	0.862	159	8.72	
	Propylene	42.08	gas		8.73	
	Propylene Oxide	58.08	0.859	34	10.22	

* BP - Boiling Point Degrees Centigrade ** IP - Ionization Potential *** TWA - Time Weighted Average = Parts Per Million

F-6

.

l

PESC MIDLAND

CHEMICAL MATENZALS F.W. I.P. (EV)** DENSITY BÞ TWA (°c)* (G/ML) (G/MOLE) (PPN) Methyl Propyl Ketone 86.13 0.809 100.01 9.38 2-Methyl Styrene 165.4 1.068 131 10.07 107.16 0.989 Monomethyl Aniline Monomethyl Hydrazine 46.1 0.87 87.1 1.01 129 8.88 20 Morpholine 93.7 217.7 10 1.16 8.12 Napthalene 0.7360 88.90 9.27 Propyl Ether 102.17 0.901 10.54 Propyl Pormate 88.10 202.3 gas 7.41 Pyrene 115 5 79.1 0.98 9.32 Pyridine 0.9691 67.09 131 8.20 Pyrrole 9.9059 145-146 8.47 104.14 Styrene 9.04 Styrene Oxide 120.2 1.054 194 1.63 9.32 165.9 121 100 Tetrachloroethylene 9.54 72.10 0.8892 67 Tetrahydrofuran 9.26 86.13 88 Tetrahydropyran 0.8814 1.53 84 8.86 Thiophene 84.1 0.866 8.82 93.13 111 Toluene 7,44 5 199-200 107.2 1.01 O-Toluidine 9.45 131.40 1.4649 87 Trichloroethene 101.19 7.50 1.069 88.18 Tricthylamine 59.11 0.636 3-4 7.82 Trimethyl Amine 2,2,4-Trimethyl Pentane 114.23 0.692 98-99 9.86 155-58 7.23 143.27 0.753 Tripropyl Amine 86.13 9.82 103 Valeraldehyder 0.8095 0.939 185 10.12 Valeric Acid 102.13 72-73 9.19 10 Vinyl Acetate 118 0.94 9.80 106.96 Vinyl Bromide 1.517 16 Vinyl Chloride 10.00 1 62.5 gas 18.016 100 12.59 Water 1.00 8.56 100 138-39 M-Xylene 106.16 0.8684 8.56 100 143-45 O-Xylene 106.16 0.8801 8.45 100 138 P-Xylene 106.16 0.8614

* BP - Boiling Point Degrees Centigrade ** IP - Ionization Potential *** TWA - Time Weighted Average = Parts Per Million

F-7

Ø008

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OFFICE OF THE SECRETARY 2040 South Pachaco Street Sente Fe, New Mexico 87505 (898) 827-5980

Jennifer A. Salisbury casing secretary February 16, 1998

> Mr. Neal Goates Sr. Environmental Specialist Conoco Inc. Midland Production Division 10 Desta Drive, Suite 100 West Midland, Tx 79705

Re: Crude Oil Spill SEMU DTB Battery UL J-Sec 15-Ts20s-R37E Crude remaining in the ground (322-50)=272 bbls.

Dear Mr. Goates:

New Mexico Conservation Division (NMOCD) is in receipt of the C-141 and attached documentation "Apply Risk Evaluation to Limit Gross Excavation Procedure Lea County, New Mexico" for the above referenced site. (50 year Fate & Transport Model).

After careful review and resultant telephone conversations with your technical personnel the NMOCD has the following comments:

Your cover letter indicated the contamination was screened using an OVM corrected for benzene. Please provide to the NMOCD the QA/QC information pertaining to this instrument. The NMOCD normally experiences companies using calibrations for total BTEX not just benzene.

After reviewing the fate and transport model it was apparent the model was for the top five feet of the soil. However, your letter indicated this top five feet would be removed and replaced with new soils which were not identified. NMOCD's concern is that soils buried below the "zero flux plane" within the vadose zone may not have an opportunity to bio-remediate or transport either up or down. Thus, the site would just become a burial site. It is NMOCD's opinion that Conoco has not properly demonstrated the actual fate and transport at this time.

Also, Conoco did not include the actual assessment of human and ecological exposure and the associated risks at the site. It appeared the Fate & Transport model just looked at future concentration of the contaminants of selected concern.

The analyticals only provided values for TPH. The NMOCD would have liked to seen what the actual BTEX values are since your OVM meter was calibrated only on benzene.

There is also a possible site control issue in which Conoco has not demonstrated to the NMOCD the long term control (50 years model time) of this remediation project. Also, what restriction controls would be placed on this site and how would it be implemented and monitored over the next 50 years. NMOCD understands some monitoring is required to calibrate models. Another issue is the amount of contaminated soil remaining might exceed 1400 cu yds and may trigger a 711 permit.

Therefore your request as presented is hereby denied and the NMOCD will require the following actions in order for Conoco to receive an approved closure;

Conoco shall remove and/or treat all contaminated soils in excess of 5000 ppm TPH (by method 418.1 or 8015-M) and demonstrate that all soils are below the 50 ppm level for BTEX (method 8020) all pursuant to the attached "OCD APPROVAL CONDITIONS".

Conoco shall provide a closure report pursuant to the attached OCD approval conditions and satisfy the above condition action items for this site within one year of receipt of this letter. Conoco may be granted more time for good cause shown.

Conoco shall start removal and/or treatment within 30 days receipt of this letter. Please notify the NMOCD within 48 hours of start of project.

If you require any further information or assistance please do not hesitate to call or write this office.

Sincerely Yours,

Ware ai

Wayne Price-Environmental Engineer

cc: Chris Williams-NMOCD District I Supervisor Roger Anderson-Environmental Bureau Chief, Santa Fe, NM Bill Olson-Environmental Bureau-SF Hobbs Environmental/Spill file.

file:linda/wpconoco

attachments- copy of spill report, OCD APPROVAL CONDITIONS.

OCD APPROVAL CONDITIONS FOR REMEDIATION OF LEAKS AND SPILLS

- 1. The following remeaial actions will be performed in accordance with OCD's August 13, 1993 "GUIDELINES FOR REMEDIATION OF LEAKS, SPILLS AND RELEASES":
 - a. Vertical and horizontal extent of contamination will be determined either prior to, during or upon completion of remedial actions.
 - b. Contaminated soils will be remediated to the OCD's recommended levels or a risk assessment will be provided which shows that an alternate cleanup level is protective of surface water, ground water, human health and the environment.
 - c. Final soil contaminant concentrations will be determined upon completion of remedial actions.
 - d. Soil samples for verification of completion of remedial actions will be sampled and analyzed for benzene, toluene, ethylbenzene, xylene and total petroleum hydrocarbons.
- 2. All wastes removed from a specific site will be disposed of at an OCD approved facility.
- 3. The OCD Santa Fe Office's Environmental Bureau Chief and the OCD Hobbs District Office will be notified within 24 hours of the discovery of ground water contamination related to remedial actions.
- 4. Upon completion of all remedial actions, a final remedial action report containing a description and the results of all remedial actions will be submitted to the OCD for approval. The report will include the concentrations and application rates of any materials or additives used to enhance bioremediation of the contaminants and the final concentrations of any soils landfarmed onsite or the final disposition of soils removed from the site. To simplify the approval process, the OCD requests that the final remedial action report be submitted only upon completion of all remedial activities including onsite remediation or landfarming of contaminated soils.
- 5. All original documents will be submitted to the OCD Hobbs Office for approval with copies provided to the OCD Santa Fe Office.
- 6. OCD approval does not relieve you of liability should remedial activities determine that contamination exists which is beyond the scope of the work plan or if the actions fail to adequately remediate contamination related to your activities. In addition, OCD approval does not relieve you of responsibility for compliance with other federal, state or local laws and regulations.

:				-						
District 1 (5	505) 393-6 ⁻	161		S C	tate of Ne	ew M	evico		Form C - 141	
P. O. Box 198 Hobbs, NM 8	30 88241-198()	Ene	erav Mine	rals and Natu	ural Des	UNICOS Deportm	ant	Originated 2/13/97	
District II - (505) 748-1283 All South First Oil Conservation Division										
Artesia, NM 88210 2040 South Pacheco Stre									Submit 2 copies to Appropriate District	
<u>District III</u> - 1000 Rio Bra	(505) 334- izos Road	6178			Santa Fe, Nev	v Mexico	87505		Office in accordance	
Aztec, NM 87410 (505) 827-7131									with Rule 110 on back side of form	
<u>District IV</u> - ((505) 827-7	131								
				Releas	e Notification	and Cor	rective Action		Initial Raport N First Raport	
Name							ontact		India Report	
	Conoco In	C						John	Inlow	
Address	0.0	- Sta 100			205 4500	T	elephone No.			
1	U Desta L	. Ste 100		ina, 1x. 79.	/05-4500		5	05-393-0	138 ext. 28	
Facility Nam	le			D-44		F	icility Type			
L		SEC	NUDIB	Battery		I		well lo		
Surface Ow	ner				M ineral Owner			L	case No.	
L		frent Stradl	у						003085	
					LOCATION	OF REL	EASE			
Unit Letter	Section	Township	Range	Feet from th	e North/South Line	Feet from	the East/West Line	County		
J	15	205	37E						Lea	
					NATUREO	רב מבו ב	ASE			
				· · · · · · · · · · · · · · · · · · ·			nlume of Release		Volume Recovered	
Type of Release Crude Oil 3							322 bbls, oi	2 bbls. oil 50 bbls. oil		
Source of Release Date and Hour of Occurrence Date and Hour of Discovery										
Tank overflow due to well kick 8/27/97; 5:00 p.m. 8/28/97; 9:30 a.m.										
Was Immediate Notice Given? Ves Not Required If YES, To Whom? Karen Sharp										
By Whom?						ſ	ate and Hour			
		1 49	Jo	hn Inlow			CVCC Volume Incontin	8/29/97;	9:30 a.m.	
	elcourse Read] Y 65	N N 0		1.		a me v ator		
If a Waterce	ourse was Im	pacted, Describ	e Fully.*					· · · ·		
Describe Ca	ause of Proble	m and Kemed	al Action 1a	iken."						
Cause: Remedia	well # 87 al Action T	aken: Add	high psi to	separation;	add choke in flow	line; set ps	к. i shut in at well at 1	50; incre	ase plate size	
Describe	Area Affected	and Cleanup A	ction Taken	•						
Area Af	fected: up	der tank are	a & runni	ng into field	with 2 pockets a	pprox 15	by 15'			
Cleanup Action Taken: Vertical extent of contamination has been determined. Area will be excavated down to 5' depth and material										
removed for proper disposal. Area will be backfilled with clean top soil to allow for reseeding of natural vegetation. See attachment for										
assessm	ent details	•								
Describe C	Jeneral Condi	tions Prevailing	; (Temperatu	re, Precipitatio	n, etc.).*					
clear										
					-					
[hereby co	rtify that the	information of	iven above i	s true and com	nlete to the best of	<u> </u>				
my knowles	dge and belief	δ. Λ		L /	piere to the best di		<u>OIL CO</u>	<u>NSERVAT</u>	ION DIVISION	
Signature:	72	eal x	Foal	esfloy?	del .	Approved	by			
Printed Name: Neal Goates District Supervisor										
Title:	Sr.	Environm	ental Sp	ecialist		Approval	Date:	Ex	piration Date:	
Luate:	2/22/1	Chaste If Ma		rnone (S	915) 686-5488	Conditions	of Approval:		Attached	
Attach	Additional	Sheets If Ne	cessary							

Attach Additional Sheets If Necessary

د

<u>District 1</u> (505) 393-6161 P. O. Box 1980 Hobbs, NM 88241-1980 <u>District II</u> - (505) 748-1283 811 South First Artesia, NM 88210 <u>District III</u> - (505) 334-6178 1000 Rio Brazos Road Aztec, NM 87410 <u>District IV</u> - (505) 827-7131

e 1

State of New Mexico

. . .

•

Energy Minerals and Natural Resources Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131 Form C- 141 Originated 2/13/97

Submit 2 copies to Appropriate District Office in accordance with Rule 116 on back side of form

				Releas	e Notification OPF	and C ERAT(orrect)R	ive Action] Initia	al Report	Final Report
						Contact						
Conoco Inc.						Telepho	ne No.	Johr	<u>n Iniov</u>	V		
10) Desta I	Dr. Ste 100	W, Midla	nd, Tx. 797	05-4500			50	5-393-	0138 e	ext. 28	
Facility Nam	e	· CEI		D			Facility	Туре		1		
SEMU DTB Battery									well	locatio	on	
Surface Owner Mineral Owner Trent Stradly										Lease)	N 0.	003085
LOCATION OF RELEASE												
Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feetf	rom the	East/West Line	Count	у		
J	15	205	37E								Lea	
				.	NATURE C	F REI	EASE	·				
Type of Relea	56		Cruda (`			Volume	of Release		Va	iume Recovered	l J
Source of Rel	6116		Crude	<u>, </u>			Date an	JZZDDIS. 011 d Hour of Occurren	Ce	Date	JU DD and Hour of D	iscovery
		Tank ove	erflow du	e to well kic	k	-		8/27/97; 5:00p.r	n		8/28/97;	9:30a.m.
W as Immedi	Was Immediate Notice Given? No Not Required If YES, To Whom?											
By Whom? Date and Hour												
John Inlow 8/29/97; 9:30a.m.												
Was a Wate												
If a Watercourse was Impacted, Describe Fully.*												
Describe Cause of Problem and Remedial Action Taken.*												
Remedia	Vell # 87	Ricked caus Taken: Add	high psi to	seperation; a	dd choke in flow	id into i line; set	iank. I psi shu	t in at well at 15	50; incr	ease p	late size	
Describe A	rea Affecte	d and Cleanup A	Ction Taken	.•	·····							
Area Affected: under tank area & running into field with 2 pockets approx. 15' by 15' Cleanup Action Taken: Scheduling investigation for determine vertical extent of contamination remedial plan to follow												
Cleanup Action Taken. Scheduling investigation for determine vertical extent of contamination-remedial plan to follow.												
Describe General Conditions Prevailing (Temperature, Precipitation, etc.).*												
Clear												
L hereby cer	tify that the	information a	iven above i	s true and com	Dista to the hert of			· · · · · · · · · · · · · · · · · · ·				
my knowled Signature:	nereby certify that the information given above is true and complete to the best of my knowledge and belief. Signature:						OIL CONSERVATION DIVISION					
Printed Nan	ne: Do	oris A. Pow	ers			Approved by District Supervisor						
Title:	St	aff Regulat	ory Assis	stant		Approv	al Date:		E:	xpiratio	n Date:	
Date: 9/8/97 Phone (915) 686-6188 Conditions of Approval: Attached												

* Attach Additional Sheets If Necessary

Environmental Services Group Southern Region

> October 15, 1997 Project Number 18626

Mr. John Inlow Conoco Inc. 1410 NW County Road Hobbs, New Mexico 88240

Dear Mr. Inlow,

Philip Services Corporation is pleased to submit this report of spill assessment activities of a tank battery location near Monument, New Mexico. Based on the results of this work, hydrocarbon impacted soil in the spill area appears to be limited to a depth of approximately 25 feet below ground surface (bgs), with the highest TPH concentrations in the interval from surface to approximately 10 feet bgs. Groundwater was not encountered, and no surface water bodies or water wells were observed within a one-mile radius of the site.

Based on ranking criteria established in the New Mexico Oil Conservation Division's (NMOCD) *Guidelines for Remediation of Leaks, Spills, and Releases*, the NMOCD will likely require remediation of the impacted soils to achieve a remediation action level of 5,000 parts per million (milligrams per kilogram).

Philip has enjoyed working with you on this project. If you have any questions or we can be of further assistance, please call Jeff Kindley or me at (915) 563-0118.

Sincerely,

PHILIP SERVICES CORPORATION

Shann E. Hall

Sharon E. Hall Operations Manager
CONOCO MONUMENT TANK BATTERY SPILL ASSESSMENT REPORT

October, 1997

Prepared For Conoco Inc. Hobbs, New Mexico

Project 18626

PHILIP SERVICES CORPORATION 7904 Interstate 20 West Midland, Texas 79706 (915) 563-0118

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 HYDROGEOLOGY	1
3.0 SUBSURFACE INVESTIGATION	1
4.0 ANALYTICAL RESULTS	. 2
5.0 CONCLUSIONS	, 3
6.0 REFERENCES	3

APPENDIX A BORING/DRILLER'S LOGS APPENDIX B SITE PHOTOGRAPHS

APPENDIX C LABORATORY ANALYSIS

-

a terefo

1.0 INTRODUCTION

Philip Services Corporation (Philip) has completed a site characterization of a spill area at a Conoco Tank Battery located near Monument, New Mexico (Figure 1). This report details the installation and sampling of four boreholes in the subject area. The purpose of the site investigation was to delineate the vertical extent of crude oil impacts to the soil at a recent spill site, and to identify if groundwater has been impacted.

2.0 HYDROGEOLOGY

The Ogallala Formation is the principal source of groundwater in Lea County, New Mexico. Depth to groundwater in Lea County ranges from 12 feet below ground surface (bgs) to 300 feet bgs. The Ogallala consists of predominantly coarse fluvial conglomerate and sandstone and fine-grained eolian siltstone and clay. Where present in the subject area, the Ogallala unconformably overlies Triassic red-beds.

3.0 SUBSURFACE INVESTIGATION

As per Philip's Workplan dated September 9, 1997, Philip field personnel were on-site September 17, 1997 to oversee the installation of four boreholes. Three of the boreholes were drilled in the area impacted by the spill, and the fourth was drilled in a direction assumed to be down-gradient based on surface topography (Figure 2).

Subsurface conditions were similar in the four boreholes installed (Appendix A - Boring Logs). The surface material to a depth of approximately 5 feet bgs is composed of a brown fine to medium-grained sand. From approximately 5 feet bgs to approximately 43 bgs, the lithology is white to buff limestone containing fine-grained sand. A one-foot thick sandstone layer occurs at a depth of approximately 25 feet bgs in each of the boreholes.

Soil samples were collected in each of the boreholes installed within the spill area (B-1, B-2, and B-3) at five-foot intervals, and were screened in the field for volatile organic compounds (VOCs) by a Philip representative using a photoionization detector (PID). The samples were visually inspected for evidence of staining. Soil characteristics, evidence of staining, and PID readings are shown on the boring logs in Appendix A.

Soil samples collected from the fourth borehole (B-4) were examined for visible evidence of staining, but samples were not screened using a PID due to the borehole's downgradient location and lack of staining or odor. The purpose of installing borehole B-4 in a location outside of the spill area was to identify if shallow groundwater occurs at the site without risk of cross-contaminating the groundwater. B-4 was advanced to a depth of 45 feet bgs and terminated in red clay (red-bed). Groundwater was not encountered in this borehole.

1

Following installation and sampling of the boreholes, each was grouted to the surface with cement containing a minimum 5% bentonite (Appendix B - Site Photographs).

4.0 ANALYTICAL RESULTS

In each of the boreholes drilled in the subject spill area (B-1, B-2 and B-3) the soil sample exhibiting the highest PID reading, and the sample collected at total depth of each borehole was submitted to Trace Analysis in Lubbock, Texas for analysis of total petroleum hydrocarbons (TPH). Analytical results are summarized below in **Table 1** and are included in **Appendix C**.

	Table I	
J	Laboratory Analy	/sis
(S	amples Collected 9/1	9/97)
Sample	Depth	Total Petroleum Hydrocarbon
B-1	5'	11,000
B-1	30'	11.9
B-2	5'	29,700
B-2	25'	<10.0
B-3	10'	33,900
B-3	30'	<10.0

mg/kg = milligrams per kilogram

USEPA Method 418.1

TPH concentrations in surface soil samples (5-10 feet bgs) range from 11,000 milligrams per kilogram (mg/kg) to 33,900 mg/kg. TPH concentrations were below the detection limit of 10 mg/kg in samples collected at total depth of boreholes B-2 and B-3. A TPH concentration of 11.9 mg/kg was detected in the sample collected at total depth of borehole B-1.

Percent moisture and fraction organic content (FOC) were analyzed for the sample collected at 5 feet bgs in borehole B-4. The moisture content of the sample was 82%, and the FOC 2.7%.

5.0 CONCLUSIONS

Based on field observation and laboratory analysis, hydrocarbon impacted soil in the spill area appears to be limited to a depth of approximately 25 feet bgs, with the highest TPH concentrations in the interval from surface to approximately 10 feet bgs.

Groundwater was not encountered at this location, and is typically encountered in this area above the Triassic red-bed. The red-bed was identified at a depth of 43 feet bgs in B-4.

Additionally, based on a conversation with a local rancher who has attempted to drill several water wells, shallow groundwater does not occur in this area.

Based on field observation, no surface water bodies or water wells are located within a one-mile radius of the site.

6.0 **REFERENCES**

Hydrology and Hydrochemistry of the Ogallala Aquifer, Southern High Plains, Texas Panhandle, and Eastern New Mexico; Report Number 177; Bureau of Economic Geology; 1988

Hydrogeochemistry and Water Resources of the Lower Dockum Group in the Texas Panhandle and Eastern New Mexico; Report Number 161; Bureau of Economic Geology; 1986

0.

and a second sec

and the second second

STREET.

State of the second

Number of Street, or other

Caller .

101 A 1010

Project Name: <u>Conoco</u> Project No.: <u>18626</u> Page: 1

Soil staining around boring B-1

Drilling of boring B-1

Project Name: <u>Conoco</u> Project No.: <u>18626</u> Page: 1

Soil staining around boring B-1

Drilling of boring B-1

P

Summer of

Contraction of the second

The state of the s

ALC: NOT THE OWNER.

And in case of the local division of the loc

The state of the s

Project Name: <u>Conoco</u> Project No.: <u>18626</u> Page: 2

Grouting of Boring B-1

Grouted Boring B-1

and and

I

I

Concession of the Indiana

Project Name: <u>Conoco</u> Project No.: <u>18626</u> Page: 2

Grouting of Boring B-1

Grouted Boring B-1

and the second s

Name of Street, or other

Project Name: <u>Conoco</u> Project No.: <u>18626</u> Page: 3

Soil staining around Boring B-2

Drilling of Boring B-2

and the

Project Name: <u>Conoco</u> Project No.: <u>18626</u> Page: 3

Soil staining around Boring B-2

Drilling of Boring B-2

0

11

•

Project Name: <u>C</u> Project No.: Project No.:

Grouting of Boring B-2

Grouted Boring B-2

Project Name: <u>Con</u> Project No.: <u>18(</u> Page

Grouting of Boring B-2

Grouted Boring B-2

APPENDIX A BORING/DRILLER'S LOGS

•

...

RECORD OF SUBSURFACE EXPLORATION

Page _i_of i Borehole No. B-1

Project Na Borehole I	me: _ocation:	<u>Conoco</u> <u>Lea Co. Ne</u>	w Mexico	Project No Logged By Dritting/Ri	g Methods:	18626 Jeffrey Air Ro	Kindley			
Date/Time	Started:	09/17/97 @		Date/Time	Completion	(s): <u>09/17/</u>	97.@1140			
Air Monite	oring Type	: Not Applic	able	GWL Dep	ւհ:	Not en	Not encountered			
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	OVM Readings (ppm)	USCS Symbol	Comments			
0- - -										
5 -	B-1	3-5	S.S.	Brown hydrocarbon stained fine-grain sand	780	SW	Dry			
- - 10 - -		8-10	S.S.	Brown hydrocarbon stained limestone with brown clayey silty fine-grain sand inter- mixed	620	L	Dry			
- 15 - -		13-15	S.S.	White/buff limestone	244	L	Dry Hydrocarbon odor			
- 20 - -		18-20	S.S.	White/buff limestone with fine-grain sand	96	Ĺ	Dry Slight Hydrocarbon odor-			
- 25 -		23-25	S.S.	Sandstone at 25'	174	SS	-Dry- Hydrocarbon odor			
- 	B-2	28-30	S.S.	White/buff limestone with fine-grain sand Boring terminated at 30 feet	3	L	Dry No hydrocarbon odor-			
- 35 -										
- - 40										

Comments: ____Boring terminated at 30 feet. Samples collected at 3-5 feet and 28-30 feet. __

Star Kmill Geologist Signature ٥Q

RECORD OF SUBSURFACE EXPLORATION

Page <u>1</u>of 1 Borehole No. B-2

Project Nat Borehole L Drilled By: Date/Time	me: location: : Started: Dring Type	Conoco Lea Co Ne Scarborough 09/17/97 @	w Mexico Drilling 1218	Project No Logged By Drilling/Ri Date/Time GWL Den	Project No								
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	OVM Readings (ppm)	USCS Symbol	Comments						
0- - - - 5	B-3	3-5	S.S.	Brown hydrocarbon stained fine-grain sand	489	SW	Dry Hydrocarbon odor & staining						
- - - 10 -		8-10	S.S.	White/Buff limestone	56	L	- Dry Slight hydrocarbon odor						
		13-15	S.S.	with small amount of fine-grain sand	16		- Dry Slight hydrocarbon odor						
- 20 - - -		18-20	\$.S.	tan fine-grain sand	72	SW	Dry Slight Hydrocarbon odor- -						
- 25 - -	B-4	23-25	S.S.	Grey sandstone at 25' Boring terminated at 26 feet	3	SS	-Dry- No hydrocarbon odor -						
30 - - -													
35 - - - - - - -													

Comments:____Boring terminated at 26 feet. Samples collected at 3-5 feet and 26 feet._

Kmill Geologist Signature Sel ۱đ

RECORD OF SUBSURFACE EXPLORATION

Page _____ of [Borehole No. B-3

Project Na	me:	_Conoco		Project	No <u>.</u>	18626	
Borehole L	ocation:	Lea Co., Ne	w Mexico	Logged	By <u>:</u>	Jeffrey	Kindley
Drilled By:		Scarborough	Drilling	Drilling	Rig Methods:	Air Ro	<u>otary 8 1/4"</u>
Date/Time	Started:	<u>_09/17/97 @</u>	1354	Date/Tr	me Completion	(s): <u>09/17/</u>	<u>97 @ 1430</u>
Air Monito	oring Type	<u>Not Applic</u>	able	GWL D	epth:	Not en	countered
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	OVM Readings (ppm)	USCS Symbol	Comments
0- -							
- 5 -		3-5	S.S.	Brown medium-grain sand	325	SW	Dry -Hydrocarbon stained with hydrocarbon odor
- 10 - -	B-5	8-10	S.S.		532		
- - 15 -		13-15	S.S.	Buff/White limestone	185	L	- Dry Hydrocarbon odor
- 20 -		18-20	S .S.	with fine-grain sand intermixed	43	L	Dry Slight Hydrocarbon odor-
- 25 -		23-25	\$.S.	Sandstone at 26'	87	L SS	 Dry No hydrocarbon odor
- 	B-6	28-30	S.S.	White/buff limestone with fine-grain sand Boring terminated at 30 feet		L	Dry No hydrocarbon odor-
- 35 -							
- - 40							

Comments:_____Boring terminated at 30 feet. Samples collected at 8-10 feet and 28-30 feet.

Kind Geologist Signature fef 10 J

 ∇

RECORD OF SUBSURFACE EXPLORATION

Page <u>1</u> of <u>2</u> Borehole No. B-4

Project Na	me:	Conoco		Project N	0,	18626	
Borehole L	.ocation:	Lea Co., Ne	w Mexico	Logged B	ia Methodo:	Jettrey	Kindley
Drined By	Started	09/17/97 @	1445	Date/Time	e Completion	(s): 09/17/9	07 @ 1549
Air Monito	oring Type	: Not Applic	able		oth:	Not enc	ountered
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	OVM Readings (ppm)	USCS Symbol	Comments
0- - -							-
- 5 -		3-5	S.S.	Brown medium-grain sand		sw	Dry
- 10 -		8-10	S.S.	White/buff limestone		L	
- 15 -		13-15	S.S.				- Dry
- 20 -		18-20	S. S.	with fine-grain sand intermixed		L	Dry
- 25 -		23-25	S.S.	Sandstone at 25'	-	ss	Dry
- 30 -		28-30	S.S.	White/buff limestone with fine-grain sand		L	Dry
- 35 -		33-35	S.S .				-
- - 40							-

Comments:

Geologist Signature

and

RECORD OF SUBSURFACE EXPLORATION

...

Page <u>1</u> of <u>2</u> Borehole No. B-4

Borehole I	Location:	Lea Co., No	ew Mexico		d By	Jeffrey K	Lindley
rilled By	:	Scarboroug	h Drilling	Drillin	g/Rig Methods;	Air Rot	ary 8 1/4"
ate/Time	Started:	<u>09/17/97 @</u>	1445	Date/T	ime Completion	(s): <u>09/17/9</u> 2	7 @ 1549
ir Monit	oring Type	: Not Applic	able	GWL	Depth:	Not enco	puntered
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	OV M Cov M (ppm)	USCS Symbol	Comments
0-					_		
1.F		47.46		Ded also of birth standaire	İ		D
5		4,3-45	3.3.	Boring terminated at 45 feet	==		Dry
				Doring infinition as to tool			
50		l					
		1	1				
					1 1		
	1						
		ļ					
	1	Į					
-		1					
-							
-							
		ļ				ļļ	
-							
•	1						
		1			1		

Comments: Boring terminated at 45 feet_____

Kind A9.4 Geologist Signature

APPENDIX B SITE PHOTOGRAPHS

,

Į.

-

یں بر ہ

 $(\gamma_{i})_{i \in \mathcal{I}}$

I

er hanne

APPENDIX C LABORATORY ANALYSIS

,

1

Í

Sec.

1

1

5ep-24-97 12:46P

1

P.01

	6/01 Aberdeen Ave Lubbock, lexas 794 806•794•1296 HAX 806•794•129 Date: Sep Date Rec: Project: Proj Name: Proj Loc:	enue 124 24, 1997 9/19/97 18626 Tranawester n Morakans, Tr	ANALY Phili Attent 7904 I Midlan	FICAL RESULT D Environm ion Jeff Kin -20 West id 7	TS FOR Mental Modley TX 79706	Lab Receiving # : 970 Sampling Date: 9/17/ Sample Condition: In Sample Received By:	9000328 97 Mact and Cool JH
	TA# Fie	eld Code		MATRI	ĽΧ	TRPHC	
		/=			····	(mg/Kg)	
:	181915 B-1	(201)		S011		11,008	
•	[81916 B·1	. (30')		SOIL		11.9	
	10191/ B-2 Telole D.7	()) ())		Soil		29,700	
	101710 D"2	23)		Soil		270.0	
	T81920 B 3	5 (10) 5 (30')		Soil			
	Method Blan Reporting 1 QC	nk Limit		·		<10.0 10 102	

25 RPD % Extraction Accuracy 94 % Instrument Accuracy 102 TEST PREP PREP ANALYSIS ANALYSIS CHEMIST QC : SPIKE: METHOD DATE METHOD COMPLETED (mg/L)(mg/Kg) TRPHC EPA 418.1 EPA 3550 9/24/97 9/24/97 MS 100 250 3 9-24-97 Dr. Blair Leftwich Director, Date į A Laboratory for Advanced Environmental Research and Analysis

2t-03-97 10:47A		P.02
701 Aberdeen Avenue		
ubbock, Lexas 79424		
806 • /94 • 1295	ANALYTICAL RESULTS F	'OR
AX 806+794+1298	Philip Environment	al
Date: Oct 03, 1997	7904 1 20 West	
Date Rec: 9/19/97 Project: 18626 Proj Name: Transwestern Proj Loc: Monahans, Tx	Midland TX 7	9706 Lab Receiving # : 9709000328 Sampling Date: 9/17/97 Sample Condition: Intact and Sample Received By: JH
TA# Field Code	MATRIX	FOC (%)
T81921 B-4 (5')	Soil	2.7
RPD	· .	14

ſ

TEST	PREP METHOD	PREP DATE	ANALYSIS METHOD	ANALYSIS COMPLETED	CHEMIST	
FOC	N/A	9/29/97	ASTM 2974-8	9/29/97	JS	
		R	2			
			<u>></u>	_	0-3-77	
	ector Dr.	Blair Lef	twich	1	Date	
		TRACI	EANALYSI	<u>is, Inc.</u>		

A Laboratory for Advanced Environmental Research and Apologie

Aberdeen Avenue		
uck, Texas 79424		
•794•1296		
806∙794•1298	ANALYTICAL RESULTS FOR PHILIP ENVIRONMENTAL Attention: Jaff Kindley 7904 I-20 West Midland, TX 79706	
		Prep Date: 09/29/97
ober 03, 1997 eiving Date: 09/19/97		Analysis Date: 09/29/97 Sampling Date: 09/17/97
nple Type: Soil		Sample Condition: Intact & Cool
ect No: 18626	M	Sample Received by: JH
ect Location: Monument, No	W MEXICO	Project Name: Conoco
۰. ۲	FIELD CODE	% Moisture (%)
921	B-4 (5')	0.82
D		10
iemist: JS		
Director, Dr. Blair Let	wich DAT	₹-3-97 E
	1	
Director, Dr. Blair Let	wich DAT	- 3-9: E

A Laboratory for Advanced Environmental Research and Analy

	Relinquished by	<			Relinquished by			9	Δ	7	9	8		e			LAB # (LAB USE)	Project Location Monym	Project#:	Company Name	Project Manager	
	Dute:		Dutes	all been	Dute:			-9 (15'	-4 (Io()	-4 (5')	-3 (30'	(,01) 5-	5-2 (25)	-2 (5)	3-1 (30)	₿-1 (s′ <u>)</u>	FIELD	ent, New	26	Address: Phili	" Kindle	raceA
	Time		Times	18.1997 Jie 14	Time:													Mexi co		6 Service 0 West, M	2	nalysi
	Josef ed	•	Received h	The second	Repetype										-		# CONTAINERS		an a	Corpora Vidland,		s, In
	Laboratory by		à	M ake	4)			<		く		<	<	۲	ر		WATER SOIL AIR			Tx 77	Pho	C. 6701
	Duter		Date:	Scient M	L 1 Dates					24.94		· · · · · · · · · · · · · · · · · · ·		 			HCL		POCO	706	**(912) * (912)	Aberdeen Ave 806) 794 129 1 (80
		:	Time	18197				×	5	<	<	<	 • /ul>	K		<u> </u>	ICE III	8			563-0 563-9	nce Lubboch 6 Fax (80 00) 378 1296
		ł	<u> </u>	3-108	RE			PL LUUGBO	PI LINES	othata jy	children bo	ALL LAND	<u>alitet v</u>	2111117	DUNT IIS	11 (144.046)		,		:	526	5 Texas 7942)6) 794 1298
4 E.		and	0-4		MARK			ប្រ	50	G	ĉ	8	52	õ	<u>مًا</u>	5	BTEX, MTBE	1 .1	a a se	L.) in (4 Ω
	3. 6 _ 31	ŝ	ر ا ک		, <u>va</u> 5						2	<	S	5	5	<u><</u>	ТРН		ju aturi es		5 E .	
ų.		ŧ	<u>م</u>	ţ		È		+	<u> </u>	├-,		-	1 TT			┢	TCLP Metais Ag	As Bé Cd	Cr Pb Hg	Se		OF-C
	n or c	5	9								<u> </u>		1				TCLP Volatiles				2	STO
	C 7	2	ì	à F		·			<u> </u>	\vdash	<u> </u>	+		+			TCLP Semi Volat RCI	les			IALY:	DY R
		× 	0.4		F		<u>+ .</u>										8240 / 8260		• •		LA SU	COR
	1	•	6	ۇ يەسى		<u> </u>	<u></u>	ŀ	<u> </u>	K	<u> </u>	·	1		$\left - \right $	ļ;	8270		. • .	1=00)	Qu	D AN
Ľ			23	5				-	+	R						1	Maisture Co	ntent	HAT .	(FOC)	51	DAN
		I	٩	53	Þ			<u>\</u>		5	,			Ţ		ļ	Porosity	*				ALY
			ົີ			<u> </u>		\uparrow	┡					-			Tum around a	t of days	elite*			șis ri
	,	•	الله ال	5,5										+			Fax ASAP	<u>i</u>			HA	QUE
			Į	<u>.</u>	-	\vdash			┨		ļ		-	<u> </u>		-	Hold	<u> </u>			BCIV	SI
	1					1	1	1		1	1		1	1	i –			<u></u>			1851	

Steve H. Danbom, Ph.D. Sr. Consultant Remediation Technology RMNA Conoco Inc. P.O. Box 2197 Houston, TX 77252-2197 (281) 293-2636

November 24, 1997

Mr. Neal Goates Midland Production Division 10 Desta Drive, Suite 100 West Midland, TX 79705

Dear Neal:

The following letter report discusses fate and transport modeling results using Risk-Integrated Software for Cleanups (RISC), a product of British Petroleum that has recently been released. I have used this program to evaluate long-term effects of a spill from a tank battery in Lea County, NM. Appendix A gives a brief discussion of the scope of the computer-modeling program RISC. Appendix B provides details of Model #1 input parameters including a graph showing the 50-year predicted concentrations of benzene, ethylbenzene, and toluene in the soil for the spill assuming no remediation and using some supplied site-specific parameters. Appendix B details a second model that is identical to Model #1 except for inserting more nominal values for fraction of organic carbon in the indigenous soil and percentage of partial-water saturation in the vadose zone.

General Discussion

First, I want to emphasize what is obvious, that the area surrounding the site is quite remote. As a result, there are no human receptors living near this spill. The workers that encounter this site do so infrequently and are assumed to wear protective clothing consistent with work of this nature. Secondly, concerning the groundwater issue, which is almost always foremost in the thinking of professionals in the human-health riskassessment business, this site has no established near-surface groundwater. The Ogallala Aquifer, which is underlain by Permian-aged sedimentary rock, is absent.

As a consequence of the combination of the absence of people living nearby and no near-surface groundwater or surface water, the risk to human health is nearly zero. The only potential risk, which is very small, would be for oil-field workers (this can be calculated with this same RISC program given additional information on worker exposure, etc.).

The Spill

I have done this modeling with somewhat limited information on the spill. The report, dated October 15th from Philip Environmental describing (TPH) analytical measurements for two depths at four locations around the spill was the primary source of information. Three of the sample locations were within the spill boundary and a fourth location was taken outside this boundary for control purposes. With no speciation of the TPH information and potential exposure pathways limited to inhalation of volatiles from the lighter ends of the crude oil, it was decided to evaluate a "worst case" scenario by assuming the spill to have concentrations of commonly modeled BETX constituents (benzene, ethylbenzene, toluene, and xylene) as if the spill was predominately of the gasoline range organic variety. As a result of this conservative assumption (i.e., an assumption that would maximize the effects of volatilization in order to err on the side of human health), an available generic gasoline was used to further speciate the spill analytical data, using the mass-fraction analysis of the generic gasoline as a guide. The modeling also shows the amount of BETX that remains at the site over time as well; this information is graphically displayed in Appendices B and C to estimate site conditions in the future.

For Both Models

The estimation for the spill (200 bbl) was converted into 2.9 X 10^{10} milligrams by common physical constants. The spill dimensions, chosen by examining the information of the Philips report, are 20m X 20m X 5m which converts into 3.4 X 10^6 kilograms of affected soil. This gives an average concentration of 8535 mg/kg (ppm) in the soil, which is consistent with specific, point measurements reported in the Phillips report. The mass fractions of 0.076, 0.03, 0.055, and 0.010 for benzene, ethylbenzene, toluene, and xylene respectively, are from the generic gasoline model.

Other specific parameters listed in Appendices B and C are appropriate for the site's geology, hydrogeology, and climatic conditions. It should be stressed that the modeling did not assume any contaminant degradation due to intrinsic bioremediation (the commonly observed phenomenon due to local soil microbial communities). This is because the model has no provisions to account for intrinsic bioremediation in the vadose zone, only for the saturated zone. There is a lack of refereed papers on the subject of vadose-zone bioremediation from which one could extract meaningful constants of decay.

Model #1

The input data for Model #1 and the graph showing model predictions for residual contamination over time for three of the BETX compounds is included as Appendix B (xylene was omitted due to graphical limitations of the program). Two of the input values, that of fraction of organic carbon for the indigenous soil (taken from sample #4 that is out of the spill area) and partial water saturation in the vadose zone are questionable. Due to the near-desert conditions in the area, fraction of organic carbon might be expected to range from 0.001 to 0.01. The value of 0.027 that was measured for sample #4 is outside the expected range. Similarly, the value of 82 percent for partial-water saturation in the vadose zone is very high considering the local soil type and the limited rainfall for the region. This first model would predict very little hydrocarbon loss over the next fifty years, even for these lighter ends in this crude oil

spill. Whereas this would render human-health risk for an oil-field worker to an insignificant value, it would probably not be the best prediction for the site, as one would normally expect the lighter ends of the spill to volatilize somewhat rapidly due to the fact that the spill is currently neither excavated nor capped.

Model #2

Model #2 is identical to Model #1 except for changing the fraction of organic carbon and partial water saturation to values more normal for this area. As expected, Model #2 predicts a greater volatilization into the atmosphere over time, leaving less residual hydrocarbon saturation at the site for the same fifty years modeled.

Sincerely,

Steve H. Danbom, Ph.D. Senior Consultant Remediation Technology

APPENDIX A

•

..

1.1 INTRODUCTION

1.1.1 Background

British Petroleum's (BP's) Risk-Integrated Software for Cleanups (RISC) has been developed to assist in the evaluation of potential human health risks from contaminated sites. RISC is a Windows[®] based software program that can be used to estimate the potential for adverse human health impacts (both carcinogenic and non-carcinogenic) from up to nine exposure pathways; additional pathways and other non-human health impacts may be considered in future revisions. The software contains vadose zone, saturated zone, and air fate and transport models for estimating receptor point concentrations.

The reader should note that through out this document the term "risk" will be used to refer to the estimated potential for adverse human health impacts, for both carcinogenic and non-carcinogenic compounds. For some, this is a departure from the more rigorous use of the term "risk", where it is sometimes only used to refer to the probability of developing cancer as a result of exposure to a chemical or group of chemicals.

1.1.2 Uses of this Software

There are at least three broad applications for the RISC software. RISC can be used to (1) estimate human health risk from exposure to contaminated media, (2) estimate risk-based clean-up levels in various media, and (3) perform simple fate and transport modeling. These three different applications are discussed in the following sections.

1.1.2.1 Human Health Risk Assessment

Human health risk assessment can be defined as the characterization of the potential adverse effects on human life or health. Calculating risk is sometimes called the "forward calculation" whereas calculating clean-up levels is called the "back calculation". US EPA's Risk Assessment Guidance for Superfund, or the "RAGS" manual (US EPA, 1989), characterize the risk assessment process by dividing it into four basic steps:

......

........

The RISC software is a powerful, flexible tool that can be used for any of the above objectives. The reader is referred to the RAGS manual (US EPA, 1989) for more detailed information on each step of the risk assessment process.

1.1.2.2 Risk-Based Corrective Action

Risk-Based Corrective Action (RBCA) is a decision-making process for assessment and response to subsurface contamination, and is based on protection of human health and environmental resources. One of the steps in RBCA is to calculate clean-up levels, or concentrations of contaminants that pose an acceptable risk left in place (the back-calculation). The guidelines for RBCA are published in ASTM E1739-95, Standard Guide for Risk-based Corrective Action Applied at Petroleum Release Sites.

- The RBCA process was developed as a way to allocate limited resources (time, money, regulatory oversight, etc.) to multiple release sites in a way that allows innovative and cost-effective decision making while ensuring that human health and environmental resources are protected. In order to meet that goal, the process emphasizes the following:
- it integrates site assessment, remedial action selection and site monitoring so the approach is streamlined, targeted and consistent;
- site assessment activities are focused on collecting information needed to make risk-based corrective action decisions; and
- these corrective action decisions are based on site-specific factors and compliance points directed toward cost-effective alternatives that have a high probability of achieving an appropriate reduction in risk.

The RBCA process involves a tiered approach to data collection and evaluation. In general, Tier 1 of the RBCA process involves an initial site assessment and classification of the site based on conservative risk-based screening levels (RBSLs) that are not site specific. Tiers 2 and 3 involve evaluating the site using more site-specific information (e.g., depth to groundwater, infiltration rate, etc.) and/or evaluating alternate compliance points (locations of exposure). Tier 3 is likely to involve more complex analysis such as detailed site assessment, probabilistic evaluations, and sophisticated chemical fate and transport models.

- Dispersion, advection, and degradation of groundwater as it moves in an aquifer:
- Saturated soil source at the water table impacting groundwater;
- Emissions from soil to outdoor and indoor air; and
- Emissions from groundwater to indoor air.

The models listed above may be linked together as well. For example, the saturated soil source model (at the water table) can be linked with the groundwater model and then used to estimate volatile emissions to indoor air.

1.1.3 Overview of Features

- 1. The RISC software includes many features to assist in performing and presenting risk assessments or the results of fate and transport models. Version 3.0 of RISC allows the user to:
 - follow the ASTM tiered approach by utilizing a spreadsheet based on the ASTM algorithms for Tier 1, the embedded fate and transport models in RISC for Tier 2, and the Monte Carlo option in RISC for Tier 3:
 - choose chemicals of concern from a standard library of 86 chemicals; users may also add or delete chemicals from the library and alter the physical, chemical, and toxicological properties of each;
 - perform calculations for two different exposure scenarios (with up to nine exposure pathways each) simultaneously (e.g. calculations for both residential and industrial scenarios can be performed at the same time);
 - determine cumulative risks from two different exposure scenarios, as might be the case when the user wants to sum the risks for the scenario where a resident is exposed during both childhood and adulthood;
 - estimate exposure point water and air (both indoor and outdoor) concentrations using predictive chemical fate and transport models;
 - allow for additivity of pathways and compounds for either a forward calculation of risk or back calculation of cleanup levels
 - use a Word® template to write a risk-based closure report for regulatory submission;
 - use an embedded tool to estimate average, 95th UCL, and weight-averaged concentrations for a set of parameter values; and

APPENDIX B

L

Vadose zone model used to estimate outdoor air concentration

•

۰

Title: Lea County, New Mexico Spill

50 Simulation time (years)

Vadose Zone Source Parameters

5.00	.000	20.0	20.0
Thickness of contamination (m)	Depth to top of contamination (m)	Length of source (m)	Width of source (m)

Unsaturated Zone Properties

Total Porosity in vadose zone (cm3/cm3)	.300
Residual water content (cm3/cm3)	.250
Fraction organic carbon (g oc/g soil)	2.700E-02
Soil bulk density (g/cm3)	1.70
Infiltration Rate (cm/yr)	5.00
Saturated conductivity [m/d]	5.00
Van Genuchten"s N	2.68
Thickness of vadose zone (m)	20.0

OUTDOOR AIR PARAMETERS

2.00	20.0	5.00	
Height of box (breathing zone) (m)	Width of box (m)	Wind speed (m/s)	

TPH Data for Unsaturated Zone Source

8.535E+03	100.
soil (mg/kg)	(g/mol)
TPH in	of TPH
Concentration of	Molecular weight
8.800E-02 9.800E-06 2.000E-03 1.750E+03 .000 58.9 .228 78.0 .877 Degradation rate unsat. zone (1/d).. Degradation rate sat. zone (1/d).... Diffusion coeff. in air (cm2/s).... Solubility (mg/1)..... KOC (ml/g)...... Henryⁿs Law Coefficient (-)..... Molecular Weight (g/mol)..... Density of chemical (g/cm3)..... Diffusion coeff. in water (cm2/s)...

Source Concentrations: Benzene

65.0 Source Conc. for unsaturated zone model (mg/kg)...

lbenzene	7.500E-02 7.800E-06 169. 363. 323 106. 867 3.000E-03	
CHEMICAL DATA INPUT: Ethy	Diffusion coeff. in air (cm2/s) Diffusion coeff. in water (cm2/s). Solubility (mg/l) KOC (ml/g) Henry"s Law Coefficient (-) Molecular Weight (g/mol) Density of chemical (g/cm3) Degradation rate sat. zone (1/d). Degradation rate unsat. zone (1/d).	

Source Concentrations: Ethylbenzene

256. Source Conc. for unsaturated zone model (mg/kg)...

CHEMICAL DATA INPUT: Toluene

111

Diffusion coeff. in air (cm2/s).... 8.700E-02 Diffusion coeff. in water (cm2/s)... 8.600E-06

526. 182.	.272.	92.1	.867	.000	3.300E-03
Solubility (mg/l)	Henry"s haw Coefficient (-)	Molecular Weight (g/mol)	Density of chemical (g/cm3)	Degradation rate sat. zone (1/d)	Degradation rate unsat. zone (1/d)

--

Source Concentrations: Toluene

470. Source Conc. for unsaturated zone model (mg/kg)...

CHEMICAL DATA INPUT: Xylenes (mixed)
Diffusion coeff. in air (cm2/s) 7.200E-02
Diffusion coeff. in water (cm2/s) 8.500E-06
Solubility (mg/1) 185.
KOC (m1/g)
Henry"s Law Coefficient (-)
Molecular Weight (g/mol) 106.
Density of chemical (g/cm3)
Degradation rate sat. zone (1/d)000
Degradation rate unsat. zone (1/d) 2.000E+03
Source Concentrations: Xylenes (mixed)

-

854. Source Conc. for unsaturated zone model (mg/kg)...

- - -- --

. .

1

1

Soil Concentration in the Vadose Source [mg/kg]

APPENDIX C

٠

Vadose zone model used to estimate outdoor air concentration

Title: Lea County, New Mexico Spill

Simulation time (years) 50

Vadose Zone Source Parameters

5.00	.000	20.0	20.0
Thickness of contamination (m)	Depth to top of contamination (m)	Length of source (m)	Width of source (m)

Unsaturated Zone Properties

<pre>in vadose zone (cm3/cm3) content (cm3/cm3)</pre>
rbon (g oc/g soil)
g/cm3)
cm/yr)
ity (m/d)
zone (m)

OUTDOOR AIR PARAMETERS

2.00	20.U	5.00
Height of box (breathing zone) (m)	Width of box (m)	Wind speed (m/s)

TPH Data for Unsaturated Zone Source

Concentration of TPH in soil (mg/kg).... 8.535E+03 Molecular weight of TPH (g/mol)...... 100.

8.800E-02	1.750E+03	.228	.877	.000
9.800E-06	58.9		.877	2.000E-03
Diffusion coeff. in air (cm2/s) Diffusion coeff. in water (cm2/s)	Solubility (mg/1)	Henry"s Law Coefficient (-)	Molecular Weight (g/mol)	Degradation rate sat. zone (1/d) Degradation rate unsat. zone (1/d)

~ . . -

Source Concentrations: Benzene

1

65.0 Source Conc. for unsaturated zone model (mg/kg)...

CHEMICAL DATA INPUT: Ethylbenzene	Diffusion coeff. in air (cm2/s) 7.500E-02 Diffusion coeff. in water (cm2/s) 7.800E-06 Solubility (mg/l)	rce Concentrations: Ethylbenzene
	Diff Solf Molec Degree	Source

Ì

256. Source Conc. for unsaturated zone model (mg/kg)...

Toluene CHEMICAL DATA INPUT:

1

Diffusion coeff. in air (cm2/s).... 8.700E-02 Diffusion coeff. in water (cm2/s)... 8.600E-06

526.	.281. 272	92.1	.867	.000	3.300E-03
Solubility (mg/1)	KOC (mL/g)	Molecular Weight (q/mol)	Density of chemical (g/cm3)	Degradation rate sat. zone (1/d)	Degradation rate unsat. zone (1/d)

. •

.

Source Concentrations: Toluene

470. Source Conc. for unsaturated zone model (mg/kg)...

I

.

CHEMICAL DATA INPUT: Xylene	s (mixed)
Diffusion coeff. in air (cm2/s) Diffusion coeff. in water (cm2/s)	7.200E-02 8.500E-06
Solubility (mg/l)	185. 206
Henry"s Law Coefficient (-)	.301
Molecular Weight (g/mol)	106.
Density of chemical (g/cm3)	.870
Degradation rate sat. zone (1/d)	.000
Degradation rate unsat. zone (1/d)	2.000E-03
Source Concentrations: Xylenes (mixed)	

1

1

Source Conc. for unsaturated zone model (mg/kg)...

854.

1 4 1

Soil Concentration in the Vadose Source [mg/kg]

. .