GROUND WATER INVESTAGATION

CAUDILL RANCH

GROUND WATER INVESTIGATION

Prepared by David G. Boyer

Hydrogeologist, Environmental Bureau

New Mexico Oil Conservation Division

Santa Fe, New Mexico

August 6, 1991

EXECUTIVE SUMMARY

In November and December 1990, the Oil Conservation Division (OCD) investigated a citizen complaint of a contaminated livestock well on the Caudill Ranch in eastern Chaves County. The OCD visited the ranch, measured well water levels, and collected water samples from several wells. In February, 1991, OCD obtained production and injection water samples from a nearby oil production facility. After analyses of water samples for both inorganic and organic substances, the OCD found that a stock water well was contaminated with a calcium chloride salt while the production brine from the oil wells was a sodium chloride salt. The domestic water well was unaffected.

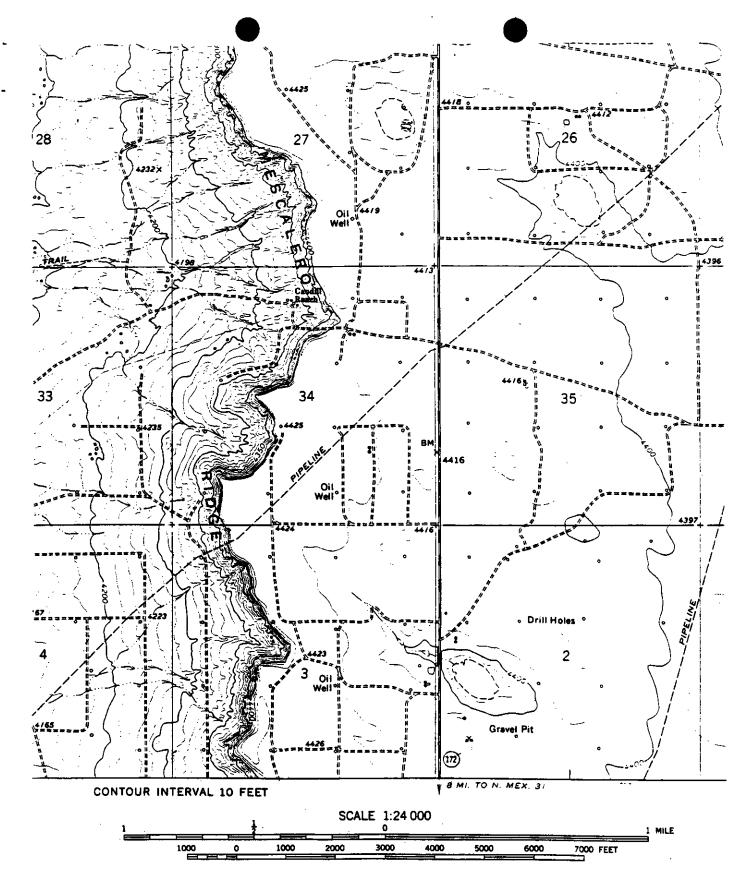
The OCD has concluded that the contamination was from a source other than brine from oil production activities. The contamination likely occurred as a result of a spill or improper disposal of calcium chloride fluids or solids which are commonly used in the oilfield industry. Calculations using water levels in the wells indicate that contaminants from an unknown source were likely discharged into the drainage adjacent to the ranch road.

INTRODUCTION

The Caudill Ranch is located in eastern Chaves County approximately 20 miles north of Maljamar (Map 1). The ranch headquarters is located in the NE/4 NW/4 of Section 34, Township 13 East, Range 31 South, about 0.6 miles west of New Mexico Highway 172 and at the base of the topographic feature called the Mescalero Ridge, known locally as the Caprock. The Caprock is the western edge of the Ogallala formation which is the major ground water aquifer for Lea County and eastern New Mexico.

In October, 1990, Mr. E. P. Caudill, the ranch owner, visited OCD's Hobbs office regarding a stock water well at his ranch headquarters. A sample of the water from stock well had been collected on October 24 and analyzed for chlorides by the State Engineers Office in Roswell. The result showed 2622 milligram per liter (ppm) or greater than 10 times the recommended drinking water standard of 250 ppm. Several subsequent analyses in late October and November, 1990, showed chlorides ranging between 1562 and 6035 ppm (Table 1). A sample from the nearby well in domestic use showed 99 ppm chlorides.

Because of the proximity of the fresh water wells to oil and gas production operations and a salt water disposal well, the OCD Environmental Bureau was requested to investigate the problem to determine a possible source and whether the contamination could impact the other nearby fresh water wells.


HYDROGEOLOGICAL SETTING

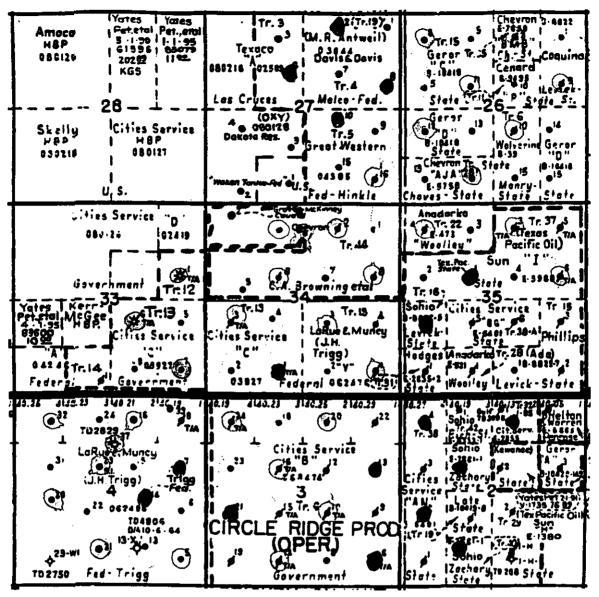
The Caudill Ranch headquarters is 800 feet west and 120 feet lower than the Mescalero Ridge. This feature is the western-most surface expression of the Ogallala formation of eastern New Mexico. The Ogallala, of Pliocene age, consists mostly of fine to very-fine sand with minor quantities of clay, silt, coarse sand, and gravel. Lower zones contain increasing amounts of coarser material. Immediately west of the caprock feature, the Ogallala has eroded and forms alluvial sediments that are thickest near the caprock.

Table 1

Chloride Analyses - Caudill Stock Well

Date	Time .	Chloride Value (mg/l)	Analysis by:
10.04.00		2 (22	
10-24-90	**	2622	State Engineer - Roswell
10-31-90		1562	OCD - Hobbs Office
11-1-90		1695	City of Hobbs
11-5-90		6035	OCD - Hobbs Office
11-13-90	11:20 AM	2343	OCD - Hobbs Office
(pumping well)	2:15 PM	1562	OCD - Hobbs Office
11 14 00	10.15 AM	2760	OCD Halla Offic
11-14-90	10:15 AM	2769	OCD - Hobbs Office
(pumping well)	2:40 PM	3195	OCD - Hobbs Office
11-16-90		2059	OCD - Hobbs Office
11-19-90		1740	OCD - Hobbs Office
11-29-90		1600	ANA-LAB, Kilgore, Texas

Map 1. Location of Caudill Ranch Study Area


Underlying the Ogallala and outcropping at surface where the Ogallala is absent are rocks of the Dockum group. Near-surface sediments of these Triassic age rocks are predominantly composed of reddish shales and other fine grained materials. Lower rocks are mainly sandstones but contain some shales and limestones. Thickness of the sandstones reaches 600 feet while the overlying fine-grained rocks are reported to be up to 1200 feet thick. When not exposed at the surface, the rocks are overlain by alluvium up to 40 feet thick.

The Ogallala formation is the principal aquifer for southeast New Mexico and supplies large quantities of water to wells in east central Lea County. However, on its western edge near the Caudill Ranch saturated thickness of the aquifer is less than thirty feet. For example, 1986 State Engineer Office measurement of a well a mile southeast of the ranch house (T13S, R31E, Sec 35.143412) shows a water level of 171.6 feet and a total well depth of 198 feet for a water depth of 26 feet. Since most wells are completed only to the top of the Dockum redbeds, this is likely the effective saturated thickness of ground water at this location unless the depth of the well has decreased due to siltation.

To the west of the caprock escarpment, the alluvium immediately thins. Well depths at the Caudill Ranch near the caprock are less than 80 feet with saturated thickness less than 20 feet as reported by the State Engineer. Further to the west, usable ground water is generally limited to thin, perched zones on top of the redbeds or to the sandstone zones of the Dockum group.

OCD OIL WELL INVESTIGATION

Oil production occurs in the vicinity of the ranch headquarters. Produced with the oil is a salt brine which is injected for both secondary recovery of oil and water disposal. Water disposal occurs in formations which are beneath any fresh water in the area. Four oil companies operate within 1 mile of the study area: Circle Ridge Production Company, La Rue & Muncy, Dakota Resources Inc., and Grover-McKinney Oil Company (Map 2). In Section 34, Grover-McKinney operates in the N/2 of the NW/4, La Rue & Muncy in the SE/4, and Circle Ridge operates in the remainder of the section. No Dakota Resources wells are located in this section.

- 1 Caudill House Well
 - 2 Caudill Stock Well
- Salt Water Disposal Well
- Water Injection Well (secondary recovery)
- Wells Temporarily Abandoned, or Plugged and Abandoned

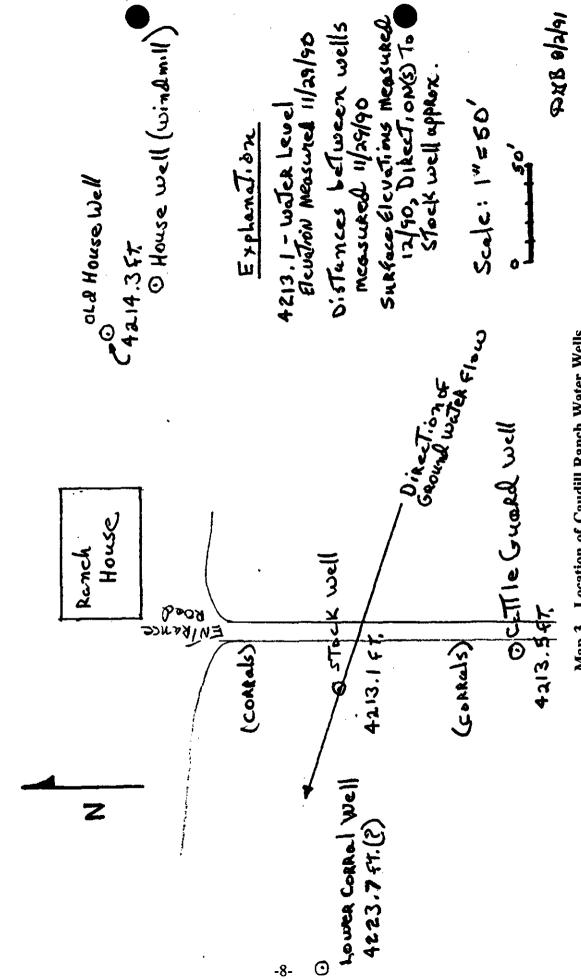
40-ACRE TRACTS WITHIN A SQUARE-MILE SECTION

D	С	В	Α
E	F	G	Н
اد	K	L	
Δ	N	0	Р

Map 2. Location of Oil and Gas Wells

Of the 16 oil wells in this section, eight are production wells (unit letters A, D, E, G, I, K, M, O), six are water injection wells (B, F, H, J, L, P), one is a salt water disposal well (C) and one listed as temporarily abandoned (N). Of the four wells closest to the ranch headquarters, two are water injection (B, F), one salt water disposal (C) and one production (G).

Tests were run on surface casing (Bradenhead tests) of all wells within one mile of the area on November 15, 16 and 20, 1990 and no test failures were reported. Pressure tests are conducted at least every five years on injection wells in the area. One test did reveal a problem on the Circle Ridge Rock Queen Unit Injection Well 34-2 (unit letter B). Although the casing had a leak, the packer was holding and injection fluids were reaching only the intended formation. This well was repaired and injection recommenced in September, 1990.


GROUND WATER INVESTIGATION

On November 29, 1990, David Boyer of OCD Santa Fe and Eddie Seay of the OCD Hobbs District Office visited the ranch to measure water levels, and sample the water wells. During the visit the ranch foreman, Mr. Ron Kenmore, pointed out the locations of the various wells (Map 3) and discussed the contamination problem which he said first was noticed in the summer of 1989 in the Stock well.

Table 2 provides current information on the Caudill Ranch water wells. In addition, Mr. Kenmore provided historical information on the use of the wells which is summarized below:

Stock Well - Located in the east corral, hand dug, at least 80 years old. Originally about 76 feet deep, 5 feet wide on the surface. Well cased with 50 feet of corrugated pipe, then open hole.

House Well - East of ranch house, windmill temporarily inoperative at time of visit. Domestic supply well supplemented by two other wells on top of caprock and east of highway.

Map 3. Location of Caudill Ranch Water Wells

Table 2

Caudill Ranch Water Wells

OCD Name	SEO Location	Depth	Water Level/ Date	Use	Distance and Direction From Stock Well	Comment
Stock Well	T13S,R31E, Sec. 34.124231	96 feet	60.1 ft/11-90	Stock	1	Windmill(sumersible pump available)
House Well	T13S,R31E, Sec. 34.124242	i	I	Domestic	250 feet(est.), northeast	Windmill, temporarily in- operative at time of visit
Old House Well	T13S,R31E, Sec. 34.124224	78 feet	71.8 ft/11-90	Unused	219 feet, northeast	Open cased hole 6 feet north of pump house
Cattle Guard Well	i	76 feet	66.7 ft/11-90	Abandoned	94.5 feet, south	Covered wellbore several feet west of cattle guard
Lower Corral Well	I	61 fæt	53.2 ft/11-90	Unused	146 feet, west	Open cased hole beneath metal windmill frame

Old House Well - Unused domestic well six feet north of pump house with pressure tank.

Cattle Guard Well - Abandoned open hole well covered by plate and several inches of dirt on west wide of cattle guard at entrance to ranch. Age may be greater than 50 years.

Lower Corral Well - Located under windmill frame in lower corral 146 feet west of stock well. Drilled approximately 1975 but not used because of little water.

Water level measurements were taken in November on all wells except the House windmill which was inaccessible for measuring. In December the ranch was revisited and well surface elevations measured so that a water level map could be drawn. All distances were measured with a hundred foot tape. One well, the lower corral well, had a calculated elevation higher than the contaminated stock well although it is topographically lower. This well was not resurveyed and the elevation was not used in the calculation of ground water flow direction. Map 3 shows only the relative locations of the wells, since elevations but not directions were surveyed.

The results of the mapping show generally westerly (18° N of west) ground water movement at a downward gradient of 0.0085 or about one foot drop per 120 feet. This contrasts with the generally southeasterly direction of ground water flow found on top of the caprock. The two opposite flow directions indicate that a ground water divide occurs on top of the caprock, probably within a mile east of the caprock edge. Since water flows in both directions from this divide, the only source of recharge water is the several playa depressions along, and just east, of the escarpment. Since the playas are the source of recharge, it is important that they be protected from contamination, and that fluids from any surface spill of brine water be immediately recovered.

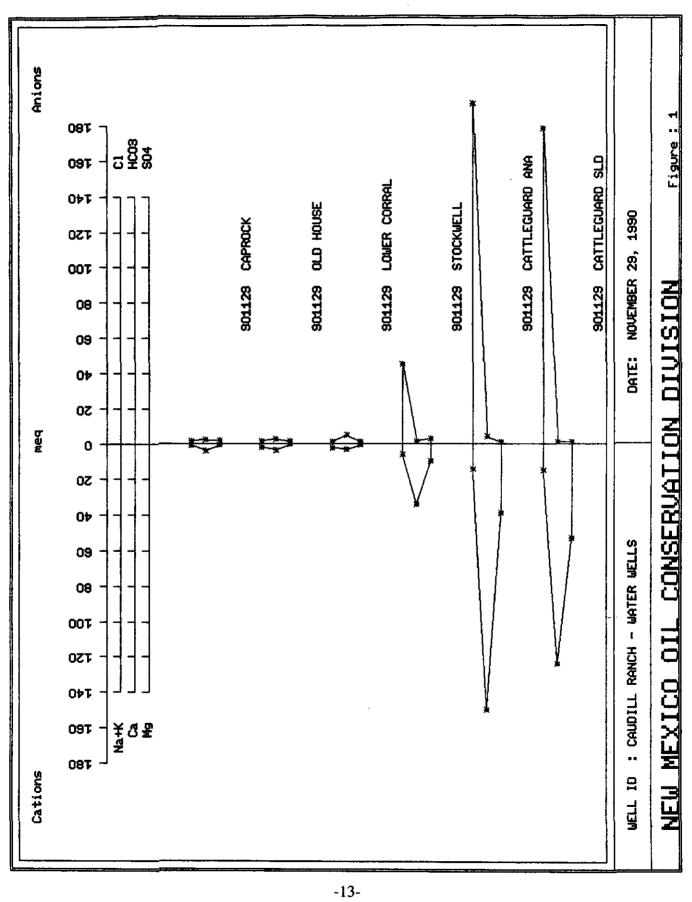
WATER QUALITY STUDY

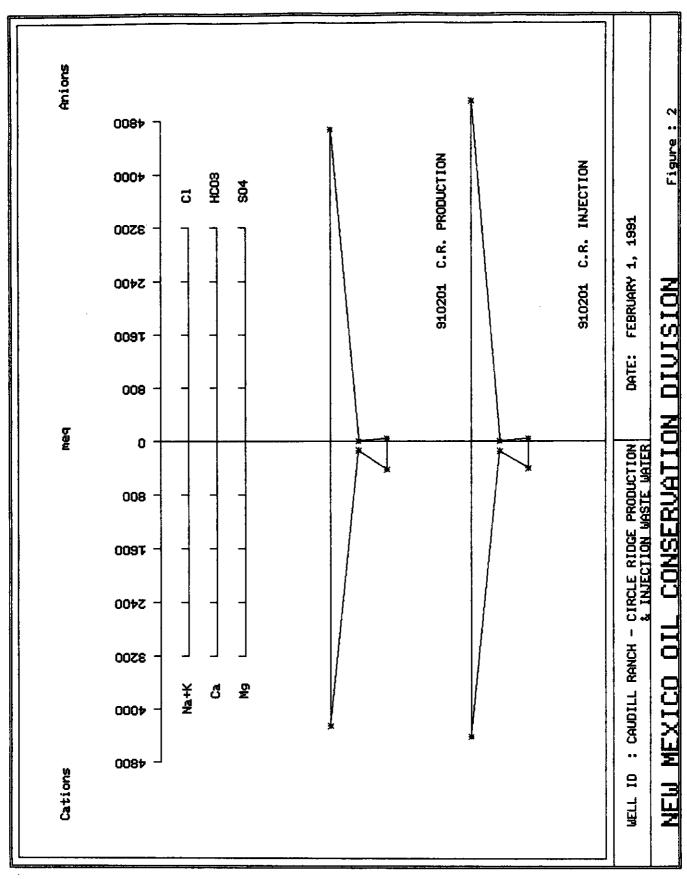
During the site visit on November 29, 1990, OCD sampled all wells which were accessible for obtaining a water sample. Although the domestic water well windmill pump was temporarily inoperative during this visit, OCD had obtained a sample the previous month. Results of the water well sampling program are shown on Table 3. Analyses of Circle Ridge production and injection water taken in February 1991, and are also shown on Table 3. Copies of the complete analyses are provided in the Appendix.

Examination of the chemical analysis results shows the Stock well and Cattle Guard well to be contaminated with elevated levels of sodium, calcium, chloride and total dissolved solids. The Circle Ridge samples also contain these contaminants but at much higher concentrations. However, when the contaminated well water and Circle Ridge water is compared, the relative proportions of sodium and calcium are reversed. This is shown in Figures 1 through 3.

Natural waters are composed of equal amounts of positively and negatively charged particles called "ions". Ions with positive charges are called "cations" and include sodium, potassium, calcium, magnesium, and the heavy metals (such as iron) which are usually present only in trace amounts. Negatively charged ions are called "anions" and include chloride, sulfate, carbonate/bicarbonate, plus other anions such as nitrate usually only present in small amounts. Cations and anions are present in equal amounts in water. To be complete, a laboratory analysis should include a calculation comparing positive and negative ions. This is done by converting the element weight in water (milligrams per liter or parts per million) to chemical equivalents in water (milliequivalents per liter), adding cation and anion concentrations separately, and then comparing the totals.

Figures 1 and 2, which are commonly referred to as "Stiff diagrams", graphically compare the totals. The figures show that three different types of water are present in the vicinity of the Caudill Ranch. In Figure 1, the upper three analyses do not show any one type of chemical constituent predominant over another. The lower three analyses, one from the stock well and

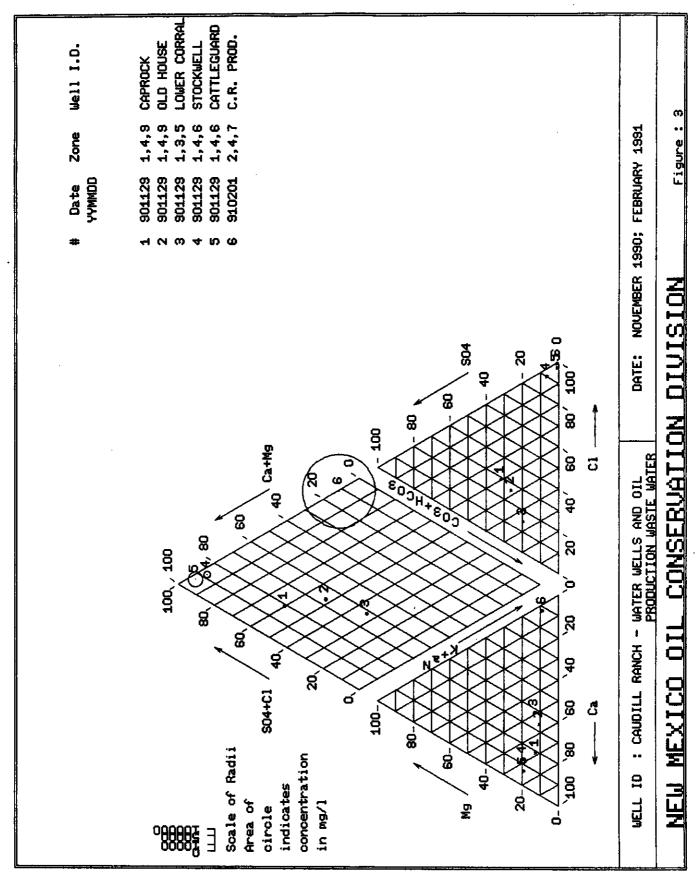

Table 3 - Results of Water Well Chemical Analyses¹


OCD Name	Sample Date	Sodium (mg/l)	Calcium (mg/l)	Chloride (mg/l)	Total Dissolved Solids (mg/l)	Organics ⁵ (type and concentration)
Stock Well	11-29-90	140	069	1600	2950	SN
Old House Well ²	11-29-90	53	78	09	400	NS
Cattle Guard Well NMSLD ³ ANA-LAB	11-29-90	336 320	2480	6300	11274	NS NS
Lower Corral Well	11-29-90	2	74	40	200	NS
Top Caprock Water (from Pipe to Tank)	11-29-90	27	88	09	400	SN
House Water (from pumphouse) NMSLD ³ ANA-LAB	11-29-90	NS NS	NS NS	NS NS	NS NS	ND ND
Circle Ridge Production Water Injection Water	2-1-91 2-1-91	96,000	2800	165,000	290,000	SN NS
Field Blank	11-28-90	NS	NS	NS	NS	ND
EPA Drinking Water Standard	i	None	None	250	200	Various levels for differing compounds but none should be present.

1. Analyses by ANA-LAB, Kilgore, Texas unless otherwise shown.

Domestic water well ("House Well") had an inoperative windmill pump on date of sampling; chlorides on 10-31-90 were 99.4 ppm (OCD sampling).

Domestic water well ("House Well") had an inoperative white in the control of the c



two from the cattle guard well, show high levels of chlorides and low levels of the other anions (bicarbonate and sulfate). Calcium and magnesium are the predominant cations with sodium and potassium being only a minor component. However, Figure 2 is a Stiff diagram of Circle Ridge waters and shows that while chlorides are again predominant, sodium and potassium are about 10 times greater than calcium and magnesium. When compared together, the figures show that the contaminated well water is of a different composition than the Circle Ridge salt water.

Figure 3 presents this information using another graphical method called a "Trilinear Diagram". This method first plots relative concentrations of cations and anions in separate triangles and then projects the plotted points to an upper block where the cation and anion values are combined into a single point. For the six waters identified in the figure, the left and right triangles show different characteristics of the water. Looking only at the right triangle, waters 4, 5 and 6 could be interpreted to be similarly contaminated, in this case with chloride. However, the left triangle shows waters 4 and 5 (the Stock and Cattle Guard wells) to be at an opposite corner of the triangle from water 6 and not too much different from the composition of waters 1, 2 and 3. When the points are projected into the upper field, three different types of waters are identified. Waters 1, 2 and 3 are in the center of the field indicating that their relative chemical proportions are generally balanced. Waters 4 and 5 are in the upper center corner and water 6 (the Circle Ridge water) stands alone in the right corner. Waters 4 and 5 are calciummagnesium chloride waters while Circle Ridge water is sodium-potassium chloride water. The concentrations of the chemicals are indicated by the radius of the circle around each point. The figure graphically shows that waters are different and not from the same source, nor a mixture from several sources.

In addition to the analyses discussed above, a sample was taken of the water combined from several sources and used for domestic purposes. An organic analysis was performed to show whether petroleum hydrocarbons are present in the water, mostly likely from a leak or spill. The sample was analyzed for dissolved concentrations benzene, toluene, ethylbenzene and xylenes, all common constituents in crude oil. None of these chemicals were detected in either of the samples sent to the State Scientific Laboratory or to OCD's contract laboratory, ANA-LAB.

LOCATION OF THE CONTAMINATION

The water quality study determined that salt water brine did not cause the contamination. When that possibility is excluded, a surface source for the problem can be postulated. Using the water level data, direction of ground water movement, and other available information, the possible location and maximum age of ground water contamination can be estimated.

Published data (Hart and McAda) list a range of hydraulic conductivities (K) for the Ogallala sediments of between 25 and 135 feet per day with an average of 50 feet per day. Porosity (n) of well-sorted, sandy material ranges between 0.25 and 0.50. Using this information and the ground water gradient (I) determined from water level measurements, seepage velocity (V) of the water is calculated using the formula V = KI/n. The velocities range between 0.43 and 4.6 feet per day, with the most likely velocity being about 1 foot per day.

From the apparent direction of water movement, it can be concluded that any discharges to the drainage along the road would have a likely impact on the wells nearest the drainage. A discharge of liquids would move very quickly downward though the sandy alluvium to ground water, especially since no caliche cap is present. However, a spill of calcium chloride salt solids would require sufficient rain or runoff water to dissolve the salt before vertical percolation could occur.

The nearby drainage extends only to the top of the caprock, a distance of about 1000 feet from the Stock well. The maximum time for ground water from that distance to reach the wells, assuming the slowest seepage velocity, is 6.4 years. Based on the ranch foreman's recollection that bad water was first noticed in the summer of 1989, a discharge of liquids would likely have occurred no earlier than 1983. However, if the release was non-liquid salt, no date can be assigned because of the uncertainty of the time necessary to dissolve the salt, and the travel time required to move the salt downward through the unsaturated alluvial sediments.

CONCLUSIONS

Examination of the chemical analyses of the water samples shows that the contamination is not from salt water produced with the crude oil. Since the characteristics are greatly different from either the natural water or salt water, some suggestions can be made as to the possible source of the contamination.

Calcium chloride is a common chemical that is routinely used in the oil industry. When drilling oil wells, it is usually added as an accelerant to cement which is circulated downhole to cement casing. Less commonly, it is also used as a downhole drilling fluid in place of sodium or potassium chloride. If the chemical was used in the vicinity of the Caudill Ranch, the most likely scenario for it to get into the ground water would be as a result of a spill or illegal disposal of unused fluid or solid salt into the drainageway adjacent to the ranch road. Because the salts don't chemically decompose, they remain in the soil until moved downward with subsequent rainfall or runoff.

Although the date, location, and volume of spilled material is unknown, the fact that higher concentrations of the chemical were found in the Cattle Guard well, lends credence to the hypothesis that the discharge occurred along the ranch road. Since the saturated thickness of the water zone is only several feet in this area, a spill upgradient of the water wells could do severe damage to water quality. Without further investigation, it is unknown whether the bulk of the contamination plume has reached and moved past the wells, or whether the contamination will remain or even increase in severity.

Since the House well is upgradient of the Stock well and out of the apparent path of any contamination, it should remain unaffected by this incident. However, because of the limited saturated thickness of the aquifer, the domestic supply could be threatened by future spills, especially if such spills occur near the west edge of the caprock and in the vicinity of the major arroyos. Likewise production spills, especially from corrosion of lines and tanks, should be

prevented and water from any such spills kept from reaching nearby caprock playas which are the source of recharge for the aquifer.

RECOMMENDATIONS

The quality of water in both the Stock well and the House windmill should be monitored on a routine basis over the next several years. Both wells should have water samples taken four times each year. The samples should have specific conductance (conductivity) and temperature measured at the time of collection, and then be analyzed for chlorides. The water supplying the ranch house should be tested for petroleum hydrocarbons in the event it develops a taste or odor problem.

The monitoring of the Stock well for chlorides and conductivity will effectively determine the level of contamination and show any improvement in water quality. If a party potentially responsible for the contamination can be identified, the ranch owners and/or OCD may wish to pursue legal action on the matter.

REFERENCES

Ash, S. R., 1963, Ground-Water Conditions in Northern Lea County, New Mexico: U. S. Geological Survey Hydrologic Investigations Atlas HA-62, scale 1:250,000, 2 sheets.

Hart, D. L., Jr., and McAda, D. P., 1985, Geohydrology of the High Plains Aquifer in Southeastern New Mexico: U. S. Geological Survey Hydrologic Investigations Atlas HA-679, 2 sheets.

New Mexico State Engineer Office, Roswell, 1990, Annual Observation Well Water Levels - New Mexico (computer listing).

New Mexico State Engineer Office, Roswell, 1987, Water Quality in Southeastern New Mexico (computer listing).

Nicholson, A., Jr., and Clebsch, A., Jr., 1961, Geology and Ground-Water Conditions in Southern Lea County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Ground Water Report 6, 123 p.

APPENDIX

Water Quality Analyses, Caudill Ranch

Analytical Chemistry • Utility Operations • Equipment Sales

01/28/91

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: #9011291440 Caudill Stockwell

Collected By: Boyer/OCS

Date & Time Taken: 11/29/90 1440

Lab Sample Num	nber: 177423	Receive	1: 12	2/03/90	Client:	SNM1
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Alkalinity	110	mg/l	0800	12/19/90	EPA Method 310.1	DG
Cation-Anion Balance	50.50/ 50.76	meq/meq	1500	01/18/91		NT
Carbonate	< 0.5	mg/l	1300	01/10/91	APHA Method 263	DG
Chloride	1600	mg/l	0900	12/13/90	EPA Method 325.3	DG
Specific Conductance	5.0	Micromhos	1620	12/12/90	EPA Method 120.1	GS
Bicarbonate	100	mg/l	1300	01/10/91	APHA Method 263	DG
Sulfate	160	mg/l	1500	01/08/91	EPA Method 375.4	HG
Total Dissolved Solids	2950	mg/l	1000	01/09/91	EPA Method 160.1	BC
На	7.3	su	1200	12/11/90	EPA Method 150.1	CSL
Dissolved Calcium	690	mg/l	1030	12/13/90	EPA Method 6010	NT
Dissolved Iron	<.1	mg/l	1030	12/13/90	EPA Method 6010	NT
Dissolved Potassium	4.5	mg/l	2100	12/21/90	EPA Method 6010	GK
Dissolved Magnesium	120	mg/l	1030	12/13/90	EPA Method 6010	NT
Dissolved Sodium	140	mg/l	1030	12/13/90	EPA Method 6010	NT

Quality Assurance for the SET with Sample 177423

Description Result Units Dup/Std Value Spk Conc. Percent Time Date

Alkalinity

Analytical Chemistry • Utility Operations • Equipment Sales

Quality Assurance for the SET with Sample 177423

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	By
	Standard	2245	mg/l	2358		105	0800	12/19/90	DG
177411	Duplicate	230	mg/l	230		100	0800	12/19/90	DG
177411	Spike		mg/l		2	98	0800	12/19/90	DG
	•			Chlor	ride				
	Standard	71	mg/l	71		100	0900	12/13/90	DG
177466	Duplicate	93	mg/l	91		102	0900	12/13/90	DG
177466	Spike		mg/l		1000	101	0900	12/13/ 9 0	DG
			Spe	ecific Co	onductanc	e			
	Standard	1441	Micromhos	1413		102	1620	12/12/90	GS
177411	Duplicate	507	Micromhos			102	1620	12/12/90	GS
				Sulfa	ate				
	Standard	96	mg/l	100		104	1500	01/08/91	HG
177423	Duplicate	140	mg/l	170		119	1500	01/08/91	HG
				$\mathbf{p}^{_{\mathbf{l}}}$	Ŧ				
	Standard	Calibrate	SU	7.0			1200	12/11/ 9 0	CSL
	Standard	Calibrate	SU	4.0			1200	12/11/90	CSL
	Standard	6.0	SU	6.0		100	1200	12/11/90	CSL
			D:	issolved	Calcium				
	Blank	.2	mg/l				1030	12/13/90	NT
	Standard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	NT
177411	Duplicate	72	mg/l	72		100	1030	12/13/90	NT
				Dissolv	ed Iron				
	Blank	<.1	mg/l				1030	12/13/90	NT
	Standard	1.0	mg/l	1.0		100	1030	12/13/90	HT
	Standard	5.1	mg/l	5.0		102	1030	12/13/90	NT
177411	Duplicate	<.1	mg/l	<.1	_	100	1030	12/13/90	NT
			Di	ssolved	Potassium	1			
	Blank	<.04	mg/l				2100	12/21/90	GK
	Standard	.53	mg/l	.50		106	2100	12/21/90	GK
	Spike		mg/l		.50	99	2100	12/21/90	GK
			Di	ssolved	Magnesium	ı			
	Blank	<.1	mg/l				1030	12/13/90	NT
	Standard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	NT
177411	Duplicate	27	mg/l	27		100	1030	12/13/90	NT
			1	Dissolve	d Sodium				
	Blank	<1	mg/l				1030	12/13/90	NT
•	Standard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	NT
177411	Duplicate	6.0	mg/l	5.6		107	1030	12/13/90	NT

C. H. Whiteside, Ph.D., President

Analytical Chemistry • Utility Operations • Equipment Sales

01/28/91

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: #9011291525 Caudill Old House

Collected By: Boyer/OCS

Date & Time Taken: 11/29/90 1525

Other:

pH 6.5 Temp. 15.5 Cond. 430

Lab Sample Number: 177420 Received: 12/03/90 Client: SNM1

Jer: 1//420	Yece14e	u. 12	2/03/90	CITEIL	BIMI
RESULTS	UNITS	TIME	DATE	METHOD	ВУ
200	mg/l	0800	12/19/90	EPA Method 310.1	DG
6.97/ 6.71	meq/meq	1500	01/18/91		NT
2	mg/l	1300	01/10/91	APHA Method 263	DG
60	mg/l	0900	12/13/90	EPA Method 325.3	DG
662	Micromhos	1620	12/12/90	EPA Method 120.1	GS
180	mg/l	1300	01/10/91	APHA Nethod 263	DG
80	mg/l	1500	01/08/91	EPA Method 375.4	HG
400	mg/l	1000	01/09/91	EPA Method 160.1	8C
7.5	s u	1200	12/11/90	EPA Method 150.1	CSL
78	mg/l	1030	12/13/90	EPA Nethod 6010	NT
.2	mg/l	1030	12/13/90	EPA Method 6010	NT
1	mg/l	2100	12/11/90	EPA Method 6010	GK
9	mg/l	1030	12/13/90	EPA Method 6010	NT
53	mg/l	1030	12/13/90	EPA Method 6010	NT
	RESULTS 200 6.97/ 6.71 2 60 662 180 80 400 7.5 78 .2 1	RESULTS UNITS 200 mg/l 6.97/6.71 meq/meq 2 mg/l 60 mg/l 662 Micromhos 180 mg/l 80 mg/l 400 mg/l 7.5 SU 78 mg/l .2 mg/l 1 mg/l 9 mg/l	RESULTS UNITS TIME 200 mg/l 0800 6.97/ 6.71 meq/meq 1500 2 mg/l 1300 60 mg/l 0900 662 Micromhos 1620 180 mg/l 1300 80 mg/l 1500 400 mg/l 1000 7.5 SU 1200 78 mg/l 1030 .2 mg/l 1030 1 mg/l 2100 9 mg/l 1030	RESULTS UNITS TIME DATE 200 mg/l 0800 12/19/90 6.97/6.71 meq/meq 1500 01/18/91 2 mg/l 1300 01/10/91 60 mg/l 0900 12/13/90 662 Micrombos 1620 12/12/90 180 mg/l 1300 01/10/91 80 mg/l 1500 01/08/91 400 mg/l 1000 01/09/91 7.5 SU 1200 12/11/90 78 mg/l 1030 12/13/90 1 mg/l 1030 12/13/90 1 mg/l 2100 12/11/90 9 mg/l 1030 12/13/90	RESULTS UNITS TIME DATE METHOD 200 mg/l 0800 12/19/90 EPA Method 310.1 6.97/6.71 meq/meq 1500 01/18/91 2 mg/l 1300 01/10/91 APHA Method 263 60 mg/l 0900 12/13/90 EPA Method 325.3 662 Micromhos 1620 12/12/90 EPA Method 120.1 180 mg/l 1300 01/10/91 APHA Method 263 80 mg/l 1500 01/08/91 EPA Method 375.4 400 mg/l 1000 01/09/91 EPA Method 160.1 7.5 SU 1200 12/11/90 EPA Method 500.1 78 mg/l 1030 12/13/90 EPA Method 6010 1 mg/l 2100 12/13/90 EPA Method 6010 9 mg/l 1030 12/13/90 EPA Method 6010

Quality Assurance for the SET with Sample 177420

Sample # Description Result Units Dup/Std Value Spk Conc. Percent Time Date By

Alkalinity

Analytical Chemistry • Utility Operations • Equipment Sales

Quality Assurance for the SET with Sample 177420

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
	Standard	2245	mg/l	2358		105	0800	12/19/90	DG
177411	Duplicate	230	mg/l	230		100	0800	12/19/90	DG
177411	Spike		mg/l		2	98	0800	12/19/90	DG
	•			Chlor	ide				
	Standard	71	mg/l	71		100	0900	12/13/90	DG
177466	Duplicate	93	mg/l	91		102	0900	12/13/90	DG
177466	Spike		mg/l		1000	101	0900	12/13/90	DG
	•		8p	ecific Co	nductanc	e			
	Standard	1441	Micromho	s 1413		102	1620	12/12/90	GS
177411	Duplicate	507	Micromho:	s 499		102	1620	12/12/90	GS
				Sulfa	te				
	Standard	96	mg/l	100		104	1500	01/08/91	HG
177423	Duplicate	140	mg/l	170		119	1500	01/08/91	HG
				PH					
	Standard	Calibrate	SU	7.0			1200	12/11/90	CSL
	Standard	Calibrate	SU	4.0			1200	12/11/ 9 0	CSL
	Standard	6.0	su	6.0		100	1200	12/11/90	CSL
			D	issolved (Calcium				
	Blank	.2	mg/l				1030	12/13/90	NT
	Standard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	NY
177411	Duplicate	72	mg/l	72		100	1030	12/13/90	NT
				Dissolve	d Iron				
	Blank	<.1	mg/l				1030	12/13/90	NT
	Standard	1.0	mg/l	1.0		100	1030	12/13/90	NT
	Standard	5.1	mg/l	5.0		102	1030	12/13/90	NT
177411	Duplicate	<.1	mg/l	<.1		100	1030	12/13/90	NT
			Di	ssolved P	otassium	l			
	Blank	<-04	mg/l				2100	12/11/90	GK
	\$tandard	.51	mg/l	.50		102	2100	12/11/90	GK
177411	Duplicate	.86	mg/l	.86		100	2100	12/11/90	GK
177412	Spike		mg/l		.50	107	2100	12/11/90	GK
			Di	ssolved M	agnesium	ı			
	Blank	<.1	mg/l				1030	12/13/90	NT
	Standard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	NT
177411	Duplicate	27	mg/l	27		100	1030	12/13/90	NT
				Dissolved	Sodium				
	Blank	<1	mg/l				1030	12/13/90	NT
	Standard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	NT
177411	Duplicate	6.0	mg/l	5.6		107	1030	12/13/90	NT

C. H. Whiteside, Ph.D., President

SCIENTIFIC LABORATORY 700 CAMINO DE SALUD, ALBUQUE Water Chemistry Section - Telephor	DIVISION RQUE, NM 87106 ne: (505) 841-2555	Request		Oate Received:	
2 User 7 10 13 12 10	3 Request ID No.:		12064-B	Priority Code #:	Gell EID-SLD Coordinator)
S Facility Card, // Rance	h	6 County:		7 City:	8 State
9 Sample CaTTLE	GUARIS L	ELL.			<u> </u>
First L	OIYIER Molt	Date:	/// /25 (YY/MM/DD)		24 hr. clock 20 pm = 1500 hrs.
11 Codes: Submitter WSS 1 13 Report Name To: David G. Boyer	Phone #: (505) 8:	inization 27–5812	12 Latkud Longitude	(DDDMMSS)	2 Digit 1D (fi needed)
Address New Mexico Oil Conser	vation Division		15 Sample Purpos	Sampling in Grab Composite Composite	TOrmation:
P. O. 2088 Chy, State Zip Santa Fe, New Mexico	87504-2088		- Compliance - Check - Monitoring - Special	☐- Flow F	roportioned Aliquot plit w/Permittee
16 Field Data: PH: 6.5 , Conductivity: 900	W) umbos @ / 7.5°C Te	mperature:	. Chlorine C. Residual:	<u> </u>	Flow:
17 Sample Source:	consisting of:	P. R.	ved with Sulfurio	red Acid (H2SO4); Filh	÷
21 Analyses Requested: Please chec Group Analyses:	Trate as N)	59) SWQB SS A 68) SWQB NPS 69) SWQB Nutrio 67) Major Anions	nion - Cation G Anion, Cation, ent Analysis G s & Cations Surface Biolog Total Cherr Cyani Nutrients Amme	iroup + Physical + TS roup + and Waste Wa gical Oxygen D Suspended So ical Oxygen D Organic Carbo de E: e + Nitrite (as l onia (as N)	ter: Demand dids emand on
- Carbonate (as CO3) - Chloride (as CI) - Fluoride (as F) - Sulfate (as SO4)			Nitrite	Kjeldahl (as N) I (as N) I (as N) Iphosphate (as Phosphorus (a	i P)
☑- Ion Charge Balance	•				
Remarks:	<u> </u>			· · · · · · · · · · · · · · · · · · ·	*.
			· · · · · · · · · · · · · · · · · · ·	·	3

SCIENTIFIC LABORATORY DIVISION

P.O. Box 4700 Albuquerque, NM 87196-4700 700 Camino de Salud, NE [505]-841-2500

WATER CHEMISTRY SECTION [505]-841-2555

January 9, 1991

Request ID No. 012064

ANALYTICAL REPORT SLD Accession No. WC-90-4109

Distribution

() User 70320

(■) Submitter 995

(X) SLD Files

To: D.G. Boyer

Auto. Assign from WSS Table VM OCD
by Update Program (cron)

when was > 99 & dtout<800000

-WSS's Field Off, NM 87106

NM OCD From: Box Z088 Water Chemistry Section Scientific Laboratory Div. 700 Camino de Salud, NE Albuquerque, NM 87106

87504-2088

Re: A water, Nonpres/No sample submitted to this laboratory on November 30, 1990

DEMOGRAPHIC DATA

COLLECTION

By: Boy . . .

LOCATION
Cattle Guard Well

On: 29-Nov-90 At: 14:27 hrs.

In/Near: Chaves County

ANALYTICAL RESULTS

<u>Analysis</u>	<u>Value</u>	D. Lmt.	<u>Units</u>
calcium	2480.00		mG/L
magnesium	644.00		mG/L
potassium	18.00		mG/L
sodium	336.00		mG/L
hardness	8850.00		mG/L
bicarbonate	79.50		mG/L
carbonate	0.00		mG/L
chloride	6300.00		mG/L
sulfate	56.90		mG/L
Ion Balance	106.00		%
conductance	16719.00		uS/cm
рH	6.97		pH units
total diss resid	11274.00		mG/L

Reviewed By

John A. Finney

01/09/91

Supervisor, Water Chemistry Section

RECEIVED

JAN 15 1991

OIL CONSERVATION DIV. SANTA FE

Analytical Chemistry • Utility Operations • Equipment Sales

01/28/91

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: #9011291427 Cattle Guard

Collected By: Boyer/OCS

Date & Time Taken: 11/29/90 1427 On Site Data: Caudill Cattle Guard Well

Other:

pH 6.5 Temp. 17.5 Cond. 9000

Lab Sample Number: 177422 Received: 12/03/90 Client: SNM1

rap sample Num	Der: 1//422	Kecetae	u: 12	1/03/90	Client	. SIMIL
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Alkalinity	280	mg/l	0800	12/19/90	EPA Method 310.1	DG
Cation-Anion Balance	202.6/ 197.8	meq/meq	1500	01/18/91		NT
Carbonate	< 0.5	mg/l	1300	01/10/91	APHA Method 263	DG
Chloride	6800	mg/l	0900	12/13/90	EPA Method 325.3	DG
Specific Conductance	17	Micromhos	1620	12/12/90	EPA Method 120.1	GS
Bicarbonate	260	mg/l	1300	01/10/91	APHA Method 263	DG
Sulfate	69	mg/l	1500	01/08/91	EPA Method 375.4	HG
Total Dissolved Solids	11000	mg/l	1100	01/09/91	EPA Method 160.1	ВС
рн	6.9	SU	1200	12/11/90	EPA Method 150.1	CSL
Dissolved Calcium	3000	mg/l	1030	12/13/90	EPA Method 6010	NT
Dissolved Iron	<.1	mg/l	1030	12/13/90	EPA Method 6010	NT
Dissolved Potassium	14	mg/l	2100	12/11/90	EPA Method 6010	GK
Dissolved Magnesium	470	mg/t	1030	12/13/90	EPA Method 6010	NT
Dissolved Sodium	320	mg/l	1030	12/13/90	EPA Method 6010	NT

Quality Assurance for the SET with Sample 177422

Sample # Description Result Units Dup/Std Value Spk Conc. Percent Time Date By

Analytical Chemistry • Utility Operations • Equipment Sales

Quality Assurance for the SET with Sample 177422

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	By
	Standard	2245	mg/l	2358		105	0800	12/19/90	DG
177411	Duplicate	230	mg/l	230		100	0800	12/19/90	DG
177411	Spike		mg/l		2	98	0800	12/19/90	DG
•				Chlor	ide				
	Standard	71	mg/l	71		100	0900	12/13/90	DG
177466	Duplicate	93	mg/l	91		102	0900	12/13/90	DG
177466	Spike		mg/l		1000	101	0900	12/13/90	DG
			S	pecific Co	nductano	:e			
	Standard	1441	Micromb	ios 1413		102	1620	12/12/90	GS
177411	Duplicate	507	Micromh	ios 499		102	1620	12/12/90	GS
				Sulfa	te				
	Standard	96	mg/l	100		104	1500	01/08/91	HG
177423	Duplicate	140	mg/l	170		119	1500	01/08/91	HG
	-		To	tal Dissol	ved Soli	ds			
	Standard	80	MG/L	100		122	1100	01/09/91	BC
179052	Duplicate	10	MG/L	12		118	1100	01/09/91	BC
178511	Duplicate	3100	mg/l	3000		103	1100	01/09/91	BC
179052	Duplicate	10	mg/l	12		118	1100	01/09/91	BC
				pН					
	Standard	Calibrate	SU	7.0			1200	12/11/90	CSL
	Standard	Calibrate	SU	4.0			1200	12/11/90	CSL
	Standard	6.0	SU	6.0		100	1200	12/11/90	CSL
				Dissolved	Calcium		•		
	ßlank	.2	mg/l				1030	12/13/90	NT
	\$tandard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	NT
177411	Duplicate	72	mg/l	72		100	1030	12/13/90	NT
				Dissolve	d Iron				
	Blank	<.1	mg/l				1030	12/13/90	NT
	Standard	1.0	mg/l	1.0		100	1030	12/13/90	NT
	Standard	5.1	mg/l	5.0		102	1030	12/13/90	NT
177411	Duplicate	<.1	mg/l	<.1		100	1030	12/13/90	NT
	-		D	issolved P	otassiu	n.			
	Blank	<.04	mg/l				2100	12/11/90	GK
	\$tandard	.51	mg/l	.50		102	2100	12/11/90	GK
177411	Duplicate	.86	mg/l	.86		100	2100	12/11/90	GK
177412	Spike		mg/l		.50	107	2100	12/11/90	GK
			E	issolved M	lagnesiur	n			
	Blank	<.1	mg/l				1030	12/13/90	NT
	Standard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	TK
177411	Duplicate	27	mg/l	27		100	1030	12/13/90	NT
				Dissolved	l Sodium				

Analytical Chemistry • Utility Operations • Equipment Sales

Quality Assurance for the SET with Sample 177422

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
	Blank	<1	mg/l				1030	12/13/90	NT
	\$tandard	10	mg/l	10		100	1030	12/13/90	NT
	\$tandard	50	mg/l	50		100	1030	12/13/90	NT
177411	puplicate	6.0	mg/l	5.6		107	1030	12/13/90	NT

C. H. Whiteside, Ph.D., President

Analytical Chemistry • Utility Operations • Equipment Sales

01/28/91

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: #9011291451 Lower Corral Well

Collected By: Boyer/OCS

Date & Time Taken: 11/29/90 1451

On Site Data: Caudill Ranch

Other:

pH 6.5 Temp. 16.5 Cond. 550

Lab Sample Number: 177421 Received: 12/03/90 Client: SNM

	Lab sample Number	177421	Received: 1		/03/90	Client	: SNM1
-	PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
	Alkalinity	360	mg/l	0800	12/19/90	EPA Method 310.1	DG
	Cation-Anion Balance	7.54/ 7.83	meq/meq	1500	01/18/91		NT
	Carbonate	1	mg/l	1300	01/10/91	APHA Method 263	DG
	Chloride	40	mg/l	0900	12/13/90	EPA Method 325.3	DG
	Specific Conductance	698	Micromhos	1620	12/12/90	EPA Method 120.1	GS
	Bicarbonate	300	mg/l	1300	01/10/91	APHA Method 263	DG
	Sulfate	70	mg/l	1500	01/08/91	EPA Method 375.4	HG
	Total Dissolved Solids	500	mg/l	1000	01/09/91	EPA Method 160.1	BC
	рH	7.4	su	1200	12/11/90	EPA Method 150.1	CSL
	Dissolved Calcium	74	mg/l	1030	12/13/90	EPA Method 6010	NT
	Dissolved Iron	<.1	mg/l	1030	12/13/90	EPA Method 6010	NT
	Dissolved Potassium	3	mg/l	2100	12/11/90	EPA Method 6010	GK
	Dissolved Magnesium	12	mg/l	1030	12/13/90	EPA Method 6010	NT
	Dissolved Sodium	64	mg/l	1030	12/13/90	EPA Method 6010	NT

Quality Assurance for the SET with Sample 177421

Sample # Description Result Units Dup/Std Value Spk Conc. Percent Time Date

Analytical Chemistry • Utility Operations • Equipment Sales

Quality Assurance for the SET with Sample 177421

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
	Standard	2245	mg/l	2358		105	0800	12/19/90	DG
177411	Duplicate	230	mg/l	230		100	0800	12/19/90	DG
177411	Spike		mg/l		2	98	0800	12/19/90	DG
111411	OP I NO			Chlo	_	,,		, .,,	
	Standard	71	mg/i	71		100	0900	12/13/90	DG
177466	Duplicate	93	mg/l	91		102	0900	12/13/90	DG
177466	Spike		mg/l		1000	101	0900	12/13/90	DG
,				ecific Co	onductano				
	Standard	1441	Micromhos			102	1620	12/12/90	GS
177411	Duplicate	507	Micromhos			102	1620	12/12/90	GS
*****		_		Sulfa	ate				
	Standard	96	mg/l	100		104	1500	01/08/91	HG
177423	Duplicate	140	mg/l	170		119	1500	01/08/91	HG
	•			pl	ī				
	Standard	Calibrate	SU	7.0			1200	12/11/90	CSL
	Standard	Calibrate	SU	4.0			1200	12/11/90	CSL
	Standard	6.0	SU	6.0		100	1200	12/11/90	CSL
			D	issolved	Calcium				
	Blank	.2	mg/l				1030	12/13/90	NT
	Standard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	NT
177411	Duplicate	72	mg/l	72		100	1030	12/13/90	NT
				Dissolv	ed Iron				
	Blank	<.1	mg/l				1030	12/13/90	NT
	Standard	1.0	mg/l	1.0		100	1030	12/13/90	NT
	Standard	5.1	mg/l	5.0		102	1030	12/13/90	NT
177411	Duplicate	<.1	mg/l	<.1		100	1030	12/13/90	NT
			Di	ssolved 1	Potassium	1			
	Blank	<.04	mg/l				2100	12/11/90	GK
	Standard	.51	mg/l	.50		102	2100	12/11/90	GK
177411	Duplicate	.86	mg/l	.86		100	2100	12/11/90	GK
177412	Spike		mg∕t		.50	107	2100	12/11/90	GK
			Di	ssolved 1	Magnesiw	n			
	Blank	<.1	mg/l				1030	12/13/90	NT
	Standard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	NT
177411	Duplicate	27	mg/l	27		100	1030	12/13/90	NT
				Dissolve	d Sodium				
	Blank	<1	mg/l				1030	12/13/90	NT
	Standard	10	mg/l	10		100	1030	12/13/90	NT
	Standard	50	mg/l	50		100	1030	12/13/90	NT
177411	Duplicate	6.0	mg/l	5.6		107	1030	12/13/90	NT

C. H. Whiteside, Ph.D, President

Analytical Chemistry • Utility Operations • Equipment Sales

01/28/91

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

sample Identification: #9011291513 Caudill Top Water

Collected By: Boyer/OCS

Date & Time Taken: 11/29/90 1513
On Site Data: Water From Top Of Coprock

Other:

pH 6.5 Temp. 11oC Cond 350

Lab Sample Number: 177419 Received: 12/03/90 Client: SNM

Lad sample Numi	per: 1/7419	Receive	1: 12	:/03/90	client client	
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	ВУ
Alkalinity	140	mg/l	0800	12/19/90	EPA Method 310.1	DG
Cation-Anion Balance	6.44/ 6.27	meq/meq	1500	01/18/91		NT
Carbonate	1	mg/l	1300	01/10/91	APHA Method 263	DG
Chloride	60	mg/l	0900	12/13/90	EPA Method 325.3	DG
Specific Conductance	627	Micromhos	1620	12/12/90	EPA Method 120.1	GS
Bicarbonate	140	mg/l	1300	01/10/91	APHA Method 263	DG
Sulfate	90	mg/l	1500	01/08/91	EPA Method 375.4	HG
Total Dissolved Solids	400	mg/l	1000	01/09/91	EPA Method 160.1	ВС
рH	7.8	\$ U	1200	12/11/90	EPA Method 150.1	CSL
Dissolved Calcium	88	mg/l	1030	12/13/90	EPA Method 6010	NT
Dissolved Iron	<.1	mg/l	1030	12/13/90	EPA Method 6010	NT
Dissolved Potassium	2	mg/l	2100	12/11/90	EPA Method 6010	GK
Dissolved Magnesium	10	mg/l	1030	12/13/90	EPA Method 6010	NT
Dissolved Sodium	27	mg/l	1030	12/13/90	EPA Nethod 6010	NT

Quality Assurance for the SET with Sample 177419

Sample # Description Result Units Dup/Std Value Spk Conc. Percent Time

Date

Analytical Chemistry • Utility Operations • Equipment Sales

Quality Assurance for the SET with Sample 177419

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
	Standard	2245	mg/l	2358		105	0800	12/19/90	DG
177411	puplicate	230	mg/l	230		100	0800	12/19/90	DG
177411	\$pike		mg/l		2	98	0800	12/19/90	DG
				Chlor:	ide				
	Standard	71	mg/l	71		100	0900	12/13/90	DG
177466	Duplicate	93	mg/l	91		102	0900	12/13/90	DG
177466	\$pi ke		mg/l		1000	101	0900	12/13/90	DG
			8	pecific Co	nductanc	e			
	\$tandard	1441	Micromh	os 1413		102	1620	12/12/90	GS
177411	Duplicate	507	Micromh	os 499		102	1620	12/12/90	GS
				Sulfa	te				
	\$tandard	96	mg/l	100		104	1500	01/08/91	HG
177423	Duplicate	140	mg/l	170		119	1500	01/08/91	HG
				pН					
	\$tandard	Calibrate	SU	7.0			1200	12/11/90	CS
	\$tandard	Calibrate	SU	4.0			1200	12/11/90	cs
	Standard	6.0	SU	6.0		100	1200	12/11/90	CS
			1	Dissolved (Calcium				
	₿lank	.2	mg/l				1030	12/13/90	NT
	\$tandard	10	mg/l	10		100	1030	12/13/90	NT
	\$tandard	50	mg/l	50		100	1030	12/13/90	NT
177411	puplicate	72	mg/l	72		100	1030	12/13/90	NT
				Dissolve	d Iron				
	ßlank	<.1	mg/l				1030	12/13/90	NT
	Standard	1.0	mg/l	1.0		100	1030	12/13/90	NT
	Standard	5.1	mg/l	5.0		102	1030	12/13/90	NT
177411	puplicate	<.1	mg/l	<.1		100	1030	12/13/90	NT
			D	issolved P	otassium	l			
	ßlank	<.04	mg/l				2100	12/11/90	GK
	Standard	.51	mg/l	.50		102	2100	12/11/90	GK
177411	puplicate	.86	mg/l	.86		100	2100	12/11/90	GK
177412	Spike		mg/l		.50	107	2100	12/11/90	GK
			D	issolved M	agnesium	1			
	ßlank	<.1	mg/l				1030	12/13/90	ЯT
	\$tandard	10	mg/l	10		100	1030	12/13/90	NT
	\$tandard	50	mg/l	50		100	1030	12/13/90	NT
177411	Duplicate	27	mg/l	27		100	1030	12/13/90	NT
				Dissolved	Sodium				
	ßlank	<1	mg/l				1030	12/13/90	NT
	\$tandard	10	mg/l	10		100	1030	12/13/90	NT
	\$tandard	50	mg/l	50		100	1030	12/13/90	NT
177411	puplicate	6.0	mg/l	5.6		107	1030	12/13/90	NT

C. H. Whiteside, Ph.D., President

ORGANIC CHEMISTRY ANALY I LEQUE	SI FORM				1	-	
SCIENTIFIC LABORATORY DIVISION				20	D No.	٠	
700 CAMINO DE SALUD N.E., ALBUQUERQUE, NM				Da			
Organic Chemistry Section - Telephone: (505) 841-	2570 R	equest		Re	celved:		
2 User 3 Requi	est ii	No.	012065-C	4	Priority	131	emi EID-27D [# .1, 아.소.
Code #: 7 0 3 2 0 ID No		6 Cour		=	Code #:	لكا	Coordinator
Seculty Caudill Ranch	}-	6 Cou	•	ــــــــــــــــــــــــــــــــــــــ	Oity.		8 State
		-n	aks			·- <u>-</u>	NM
9 Sample	0	α Δ	11				
Location: 17 10 1 10 S 10 1 10 14 17 15 1A	1-1P111M	(Ib)	140 1412 14	<u></u>		<u></u>	<u> </u>
10 Collected By: SAUGE IRIOIYIER		On: 3	0/11/129		At: / 5	5121	2 hrs
By: AUC IXIUY KR		7 11	Date: (YY/MM/DD)	_	Time	24 hr. cloc	*
11 Codes:			12 Latitu	de	(DDMMSS)	00 pm = 150	Ohre.
1 1 1 1 1 1 1 1 1 1 1	1 1 1	1.1		1	1 1	1 1	
Submitter WSS #	Organiza	ation	Longitude	, 6	DDMMSS)		2 Digit ID
	hone #:			١		1 11	1
To: David G. Boyer (<u>(505) 827-</u>	<u>-5812</u>	15		Sampling In	formatio	n:
New Mexico Oil Conservation Divi	sion		Semple Purpo		D-Grab - Composit		Composite
P. O. Box 2088		-	- Check	08	☐- Flow F	roportion	- Time Penoc
City, State Zip Santa Fe, New Mexico 87504-2088			Monitorin	9	□- Sample S	plit w/Per	mittee
to Field			Chlorine		- Chain of C	Sustody .	
Data: pH: 6.5, Conductivity: 350 umhos@1	/°C, Tempe		C, Residua	<u> :</u>	mg/l,	Flow:	
17 Sample Source:	18 Field Notes Sample #:	7			 		
☐-Stream ☐-Well; Depth:	1151	A3	16 (0, 7	4	154		
☐-Lake ☐-Spring ☐-Distribution		,,, 0	re sees	11	101		
□-Pool ☑-Point-of-Entry							
☐-WWTP ☐-Other:					<u>·</u>		
19 Sample Type: Water, -Soll, -Food,	20 Preservat		irvation; Sample store	d at	room temperal	tura	
☐-Wastewater, ☐-Other This form accompanies a single sample consisting of:	TO Block	Sample (stored in an ice bath (Not !	Frazen)		
- septum viai(s) (volume = 40m/)	☐-P-TS		Preserved with Sodius Preserved with Hydro				rine residua
- glass jugs (volume =	Other						·
- (volume =)	Ļ						
21 Analyses Requested: Please check the appropria	te box(es) bel	ow to inc	dicate the type of	ana	lytical scree	n(s)	~
required. Whenever possit						(0)	
Valetile Coreans	. 64		atila Cara ana .				
Volatile Screens:	26		atile Screens:				•
(753) Aliphatic Headspace (1-5 Carbons)			3) Acid Extractab				
(754) Aromatic & Halogenated Purgeables (EPA 6	01 & 602)		51) Aliphatic Hydri				-
- (765) Mass Spectrometer Purgeables (EPA 624) - (766) SDWA Total Tribalomethanes (EPA 501.1)		•	i5) Base/Neutral i6) Base/Neutral/		•	•	227N)
- (774) SDWA VOC's i [8 Regulated +] (EPA 502.2)			is) Herbicides, Ct				02101
- (775) SDWA VOC's II [EDB & DBCP] (EPA 504)			i9) Herbicides, Tri				
Other Specific Compounds or Clas	.coc.	<u> </u>	(0) Organochlorin	e Po	esticides		
D STORY OF STREET			(i) Organophosp				
」片:	·		67) Polychlorinate				
│ ├ 			34) Polynuclear Ai 32) SDWA Pestick				
		U-1/6	A) UDITA F BOILK	169	u i ici uicius	•	
Remarks:							
			•				
			·				
	 		<u> </u>	- :			
		 -		<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
k			,				

SCIENTIFIC LABORATORY DIVISION

P.O. Box 4700 Albuquerque, NM 87196-4700 700 Camino de Salud, NE [505]-841-2500

ORGANIC CHEMISTRY SECTION [505]-841-2570

December 14, 1990

Request ID No. 012065

ANALYTICAL REPORT SLD Accession No. OR-90-3310

Distribution

(__) User 70320

(I) Submitter 260

(X) SLD Files

To: David Boyer

NM Oil Consv. Div. State Land Office Bldg. P.O. Box 2088

Santa Fe, NM 87504-2088

From: Organic Chemistry Section

Scientific Laboratory Div. 700 Camino de Salud, NE Albuquerque, NM 87106

Santa FC, NWI 6/304-2000

Re: A water, Purgeable sample submitted to this laboratory on November 30, 1990

DEMOGRAPHIC DATA

COLLECTION LOCATION On: 29-Nov-90 *By:* Boy . . . House Water Pump House At: 15:22 hrs. In/Near: Chaves County ANALYTICAL RESULTS: Aromatic & Halogenated Purgeable [EPA-601/2] Screen {754} Parameter_ Value Note MDL Units Halogenated Purgeables (33) 0.00 N 1.00 ppb See Laboratory Remarks for Additional Information Notations & Comments: MDL = Minimal Detectable Level. A = Approximate Value; N = None Detected above Detection Limit; P = Compound Present, but not quantified; T = Trace (<Detection Limit); U = Compound Identity Not Confirmed. Evidentiary Seals: Not Sealed ; Intact: No , Yes & Broken By: _ Date:

Laboratory Remarks:

One late eluting compounds in the C3 substituted benzene region at approximately 3 ppb detected by the photoionization detector, but not identified.

QUALITY CONTROL SUMMARY FOR VOLATILES SCREEN

METHOD BLANK: A laboratory method blank was analyzed along with this sample to assure the absence of interfering contaminants from lab reagents, instruments, or the general laboratory environment. Unless listed below, no contaminants were detected in this blank above the reported detection limit.

COMPOUND DETECTED None detected

CONCENTRATION (PPB)

RECEIVED

DEC 27 1990

(Continued on page 2.)

OIL CONSERVATION DIV. SANTA FE

ANALYTICAL REPORT SLD Accession No. OR-90-3310 Continuation, Page 2 of 2

SURROGATE RECOVERIES:

% RECOVERY CONCENTRATION SURROGATE Fluorobenzene 25.0 ppb 88.0 2-Bromo-1-chloropropane 15.0 98.0 ppb

The % recoveries for compounds in the batch SPIKE RECOVERY: spike were from 80% to 120% with the exception of the compounds

listed below:

CONCENTRATION COMPOUND Vinyl chloride

% RECOVERY 52.4

Analyst: ,

Gary C. Eden Analyst, Organic Chemistry

Date

Reviewed By: _ Richard F. Meyerhein

25.0 ppb

Supervisor, Organic Chemistry Section

BECEIVED

OIL CONSERVATION DIV.

Analytical Chemistry • Utility Operations • Equipment Sales ...

01/18/91

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: #9011291522 Caudill House

Collected By: Boyer/OCS

Date & Time Taken: 11/29/90 1522

On Site Data: Caudill House Water

Lab Sample Number: 177418 Received: 12/03/90 Client: SNM1

Lab Sample Number	: 177418	Receive	ed: 12	2/03/90	Client	: SNM1
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	ВУ
Benzene	<.2	ppb	0800	01/03/91	EPA Method 8020	KB
Ethyl benzene	<.4	ppb	0800	01/03/91	EPA Method 8020	КВ
Toluene	<.2	ppb	0800	01/03/91	EPA Method 8020	КВ
Xyl enes	<.2	ppb	0800	01/03/91	EPA Method 8020	КВ
Acrolein	ND(100) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Acrylonitrile	ND(100) *	ug/l	2304	12/19/90	EPA Nethod 8240	PM
Benzene	ND(4.4) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Bromoform	ND(4.7) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Bromomethane	ND(10) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Carbon Tetrachloride	ND(2.8) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Chlorobenzene	ND(6.0) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Chloroethane	ND(10) *	ug/l	2304	12/19/90	EPA Method 8240	PM
2-Chloroethylvinyl ether	ND(10) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Chloroform	ND(1.6) *	ug/l	2304	12/19/90	EPA Method 8240	РМ
Chloromethane	ND(10) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Dibromochloromethane	ND(3.1) *	ug/l	2304	12/19/90	EPA Method 8240	PM

Continued

Analytical Chemistry • Utility Operations • Equipment Sales

177418 Continued Page 2

PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Bromodichloromethane	ND(2.2) *	ug/l	2304	12/19/90	EPA Method 8240	PM
1,1-Dichloroethane	ND(4.7) *	ug/l	2304	12/19/90	EPA Method 8240	PM
1,2-Dichloroethane	ND(2.8) *	ug/l	2304	12/19/90	EPA Method 8240	PM
1,1-Dichloroethene	ND(2.8) *	ug/l	2304	12/19/90	EPA Method 8240	PM
trans-1,2-Dichloroethene	ND(1.6) *	ug/l	2304	12/19/90	EPA Method 8240	PM
1,2-Dichloropropane	ND(6.0) *	ug/l	2304	12/19/90	EPA Method 8240	PM
cis-1,3-Dichloropropene	ND(5.0) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Ethyl benzene	ND(7.2) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Methylene Chloride	ND(2.8) *	ug/l	2304	12/19/90	EPA Method 8240	PM
1,1,2,2-Tetrachloroethane	ND(6.9) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Tetrachloroethene	ND(4.1) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Toluene	ND(6.0) *	ug/l	2304	12/19/90	EPA Method 8240	PM
1,1,1-Trichloroethane	ND(3.8) *	ug/l	2304	12/19/90	EPA Method 8240	PM
1,1,2-Trichloroethane	ND(5.0) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Trichloroethene	ND(1.9) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Vinyl Chloride	ND(10) *	ug/l	2304	12/19/90	EPA Method 8240	PM
trans-1,3-Dichloropropene	ND(10) *	ug/l	2304	12/19/90	EPA Method 8240	PM
Xylenes	ND(10) *	ug/l	2304	12/19/90	EPA Method 8240	PM

^{*} Reported detection limits are EPA published detection limits. Actual limits may vary with matrix. Quality Assurance for the SET with Sample 177418

Sample # Description

Result

Units

Dup/Std Value Spk Conc.

Percent

Time

Date

Benzene

Analytical Chemistry • Utility Operations • Equipment Sales

Quality Assurance for the SET with Sample 177418

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
	Blank	<5	ppb				0800	01/03/91	KB
	Standard	97	ppb	100		103	0800	01/03/91	KB
177418	Duplicate	<.2	ppb	<.2		100	0800	01/03/91	KB
177418	Spike		ppb		50	117	0800	01/03/91	KB
				Ethyl be	nzene				
	Blank	<5	ppb				0800	01/03/91	KB
	Standard	109	ppb	100		109	0800	01/03/91	ΚВ
177418	Duplicate	<.4	ppb	<.4		100	0800	01/03/91	ΚВ
177418	Spike		ppb		50	104	0800	01/03/91	KB
				Tolue	ne				
	Blank	< 5	ppb				0800	01/03/91	KB
	Standard	104	ppb	100		104	0800	01/03/91	KB
177418	Duplicate	<.2	ppb	<.2		100	0800	01/03/91	KB
177418	Spike		ppb		50	119	0800	01/03/91	KB
				Xylen	es				
	Blank	<5	ppb	_			0800	01/03/91	K8
	Standard	113	ppb	100		112	0800	01/03/91	KB
177418	Duplicate	<.2	ppb	<.2		100	0800	01/03/91	KB
177418	\$pî ke		ppb		50	94	0800	01/03/91	КВ

C/H. Whiteside, Ph.D.,

President

Analytical Chemistry • Utility Operations • Equipment Sales

03/15/91

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: CIRCLE RIDGE PRODUCTION

Collected By: EWS

Date & Time Taken: 02/01/91

On Site Data:

G-34-13-31

Other:

PRODUCTION WATER TRACT 44

Lab Sample Number: 181403 Received: 02/11/91 Client: SNM1

Lab Sample Num	ber: 181403	Receive	d: 02	1/11/91	Client:	SNM1
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	ВУ
Alkalinity	54	mg/l	1100	02/13/91	EPA Method 310.1	ВС
Bromide	550	mg/l	1100	03/03/91		ES
Cation-Anion Balance	4800/4700	meq/meq	0800	03/14/91		SK
Carbonate	<.5	mg/l	0900	02/27/91	APHA Method 263	ВС
Chloride	165,000	mg/l	0945	02/18/91	EPA Method 325.3	SW
Specific Conductance	>50,000	Micromhos	1020	02/15/91	EPA Method 120.1	GS
Fluoride	<1	mg/l	1315	02/21/91	EPA Method 340.1	GS
Bicarbonate	50	mg/l	0900	02/27/91	APHA Method 263	BC
Sulfate	2000	mg/l	0815	02/19/91	EPA Method 375.4	DG
Total Dissolved Solids	290,000	mg/l	1100	02/25/91	EPA Method 160.1	BC
Hq	6.1	SU	1600	02/14/91	EPA Method 150.1	LW
Dissolved Calcium	2800	mg/t	0830	02/15/91	EPA Method 215.1	GK
Dissolved Iron	.47	mg/l	0830	02/15/91	EPA Method 236.1	GK
Dissolved Potassium	2500	mg/l	0830	02/15/91	EPA Method 258.1	GK
Dissolved Magnesium	5200	mg/l	0830	02/15/91	EPA Method 242.1	GK

Continued

Analytical Chemistry • Utility Operations • Equipment Sales

181403 Continued

Page 2

PARAMETER	t	RES	BULTS	UNITS	TIME	DATE	ME	THOD	ВУ
Dissolved Sod	ium	96,	,000	mg/l	0830	02/15/91	EPA	Method 273.1	GK
	Quality 2	\ssurar	nce for	the SET	with sam	ple 18140	3		
Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	By
				Alkali	nity				
	Standard	2088	mg∖l	2358	-	112	1100	02/13/91	ВС
181397	Duplicate	210	mg\l	210		100	1100	02/13/91	ВС
181397	Spike		mg\l		100	99	1100	02/13/91	ВС
181397	Spike		mg∖l		100	99	1100	02/13/91	ВС
				Bromi	.de				
	Blank	<5	ppm				1100	03/03/91	ES
	Standard	96	ppm	100		104	1100	03/03/91	E\$
181403	Duplicate	572	ppm	527		108	1100	03/03/91	ES
				Chlor	ide				
	Standard	70	mg∕l	71		101	0945	02/18/91	SW
181594	Duplicate	23	mg/l	23		100	0945	02/18/91	SW
181594	Spike		mg/l		100	100	0945	02/18/91	SW
			sp	ecific Co	nductanc	e			
	Standard	1423	Micromho	s 1413		101	1020	02/15/91	GS
181397	Duplicate	1681	Micromho			100	1020	02/15/91	GS
				Fluor	ide				
181397	Spike		mg/l		.5	96	1315	02/21/91	GS
				Sulfa	ite				
	Standard	50	mg/l	50		100	0815	02/19/91	DG
181509	Duplicate	32	mg/l	32		100	0815	02/19/91	DG
181511	Duplicate	47	mg/l	47		100	0815	02/19/91	DG
			Tot	tal Dissol	ved Soli	ds			
	Blank	0.0000	g				1100	02/25/91	BC
	Standard	96	mg/l	100		104	1100	02/25/91	BC
182090	Duplicate	212	mg/l	174		120	1100	02/25/91	BC

I hereby certify that these results were obtained using the methods specified in this report.

C. H. Whiteside, Ph.D., President

Analytical Chemistry • Utility Operations • Equipment Sales

POIS: AIG NO

03/15/91

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: CIRCLE RIDGE PRODUCTION

Collected By: EWS

Date & Time Taken: 02/01/91

On Site Data:

D-26-13-31

Other:

INJECTING WATER DRICKY QUEEN UNIT.

Lab Sample Number: 181402 Received: 02/11/91 Client: SNM1

	Lab sample Number:	181402	Received	: .02	/11/91	Client:	SNM1
_	PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
	Alkalinity	65	mg/l	1100	02/13/91	EPA Nethod 310.1	ВС
	Bromide	950	mg/l	1100	03/03/91		ES
	Cation-Anion Balance	4970/5130	meq/meq	0800	03/14/91		SK
	Carbonate	<.5	mg/l	0900	02/27/91	APRA Method 263	ВС
	Chloride	180,000	mg/l	0945	02/18/91	EPA Method 325.3	SW
	Specific Conductance	>50,000	Micromhos	1020	02/15/91	EPA Method 120.1	GS
	fluoride	<1	mg/l	1315	02/21/91	EPA Method 340.1	GS
	Bicarbonate	60	mg/l	0900	02/27/91	APHA Method 263	ВС
	Sulfate	2000	mg/l	0815	02/19/91	EPA Method 375.4	DG
	Total Dissolved Solids	280,000	mg/l	1100	02/25/91	EPA Method 160.1	BC
	рН	6.2	SU	1600	02/14/91	EPA Method 150.1	LW
	Dissolved Calcium	3000	mg/l	0830	02/15/91	EPA Method 215.1	GK
	Dissolved Iron	.46	mg/l	0830	02/15/91	EPA Method 236.1	GK
	Dissolved Potassium	2200	mg/l	0830	02/15/91	EPA Method 258.1	GK
	Dissolved Magnesium	5000	mg/l	0830	02/15/91	EPA Method 242.1	GK

Continued

Analytical Chemistry • Utility Operations • Equipment Sales

181402 Continued

Page 2

PARAMETE	R	RES	BULTS	UNITS	TIME	DATE	ME'	THOD	BY
Dissolved Soc	lium	100	,000	mg/l	0830	02/15/91	EPA	Method 273.1	GK
	Quality 2	Assurar	ce for	the SET	with Sam	ple 18140	2		
Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
				Alkali	nity				
	Standard	2088	mg\l	2358	<u>-</u>	112	1100	02/13/91	ВС
181397	Duplicate	210	mg\l	210		100	1100	02/13/91	BC
181397	Spike		mg\l		100	99	1100	02/13/91	BC
181397	Spike		mg∖l		100	99	1100	02/13/91	ВС
				Bromi	đe				
	Blank	<5	ppm				1100	03/03/91	ES
	Standard	96	ppm	100		104	1100	03/03/91	ES
181403	Duplicate	572	ppm	527		108	1100	03/03/91	ES
				Chlor	ide				
	Standard	70	mg/l	71		101	0945	02/18/91	SW
181594	Duplicate	23	mg/l	23		100	0945	02/18/91	SW
181594	Spike		mg/l		100	100	0945	02/18/91	SW
		•	_	ecific Co	nductanc	e			
	Standard	1423	Micromhos	s 1413		101	1020	02/15/91	GS
181397	Duplicate	1681	Micrombos		• -	100	1020	02/15/91	GS
				Fluor	ide				
181397	Spîke		mg/l		.5	96	1315	02/21/91	GS
				Sulfa	te				
	Standard	50	mg/l	50		100	0815	02/19/91	DG
181509	Duplicate	32	mg/l	32		100	0815	02/19/91	DG
181511	Duplicate	47	mg/l	47		100	0815	02/19/91	DG
			Tot	al Dissol	ved Soli	ds			
	Blank	0.0000	g				1100	02/25/91	BC
	Standard	96	mg/l	100		104	1100	02/25/91	BC
182090	Duplicate	212	mg/l	174		120	1100	02/25/91	BC

I hereby certify that these results were obtained using the methods specified in this report.

C. H. Whiteside, Ph.D., President

Analytical Chemistry • Utility Operations • Equipment Sales

01/18/91

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: #9011281240 Field Blank

Collected By: Boyer/OCS

Date & Time Taken: 11/28/90 1240

ab Sample Number: 177415 Received: 12/03/90 Client: SNM1

Lab Sample Numl	ber: 177415	Receive	ed: 12	2/03/90	Client:	SNM1
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Benzene	<.2	ppb	0800	01/03/91	EPA Method 8020	КВ
Ethyl benzene	<.4	ppb	0800	01/03/91	EPA Method 8020	КВ
Toluene	<.2	ppb	0800	01/03/91	EPA Method 8020	KB
Xylenes	<.2	ppb	0800	01/03/91	EPA Method 8020	KB
Acrolein	ND(100) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Acrylonitrile	ND(100) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Benzene	ND(4.4) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Bromoform	ND(4.7) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Bromomethane	ND(10) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Carbon Tetrachloride	ND(2.8) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Chlorobenzene	ND(6.0) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Chloroethane	ND(10) *	ug/l	2221	12/19/90	EPA Method 8240	PM
2-Chloroethylvinyl ether	ND(10) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Chloroform	ND(1.6) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Chloromethane	ND(10) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Dibromochloromethane	ND(3.1) *	ug/l	2221	12/19/90	EPA Method 8240	P M
Bromodichloromethane	ND(2.2) *	ug/l	2221	12/19/90	EPA Method 8240	PM

Continued

Analytical Chemistry • Utility Operations • Equipment Sales

177415 Continued

Page 2

PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
			2224	40.40.40		
1,1-Dichloroethane	ND(4.7) *	ug/l	2221	12/19/90	EPA Method 8240	PM
1,2-Dichloroethane	ND(2.8) *	ug/l	2221	12/19/90	EPA Method 8240	PM
1,1-Dichloroethene	ND(2.8) *	ug/l	2221	12/19/90	EPA Method 8240	PM
trans-1,2-Dichloroethene	ND(1.6) *	ug/l	2221	12/19/90	EPA Method 8240	PM
1,2-Dichloropropane	ND(6.0) *	ug/l	2221	12/19/90	EPA Method 8240	PM
cis-1,3-Dichloropropene	ND(5.0) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Ethyl benzene	ND(7.2) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Methylene Chloride	ND(2.8) *	ug/l	2221	12/19/90	EPA Method 8240	PM
1,1,2,2-Tetrachloroethane	ND(6.9) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Tetrachloroethene	ND(4.1) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Toluene	ND(6.0) *	ug/l	2221	12/19/90	EPA Method 8240	PM
1,1,1-Trichloroethane	ND(3.8) *	ug/l	2221	12/19/90	EPA Method 8240	PM
1,1,2-Trichloroethane	ND(5.0) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Trichloroethene	ND(1.9) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Vinyl Chloride	ND(10) *	ug/l	2221	12/19/90	EPA Method 8240	РМ
trans-1,3-Dichloropropene	ND(10) *	ug/l	2221	12/19/90	EPA Method 8240	PM
Xylenes	ND(10) *	ug/l	2221	12/19/90	EPA Method 8240	PM

^{*} Reported detection limits are EPA published detection limits. Actual limits may vary with matrix. Quality Assurance for the SET with Sample 177415

Sample #	Description	Result	Units	Dup/Std Value		Percent	Time	Date	Ву
				Benze	ne				
	Blank	<5	ppb				0800	01/03/91	KB
	Standard	97	ppb	100		103	0800	01/03/91	KB

Analytical Chemistry • Utility Operations • Equipment Sales

Quality Assurance for the SET with Sample 177415

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
177418	Duplicate	<.2	ppb	<.2		100	0800	01/03/91	KB
177418	Spike		ppb		50	117	0800	01/03/91	KB
			* -	Ethyl be	nzene				
	Blank	<5	ppb	**			0800	01/03/91	KB
	Standard	109	ppb	100		109	0800	01/03/91	KB
177418	Duplicate	<.4	ppb	<.4		100	0800	01/03/91	KB
177418	Spike		ppb		50	104	0800	01/03/91	KB
	·			Tolue	ne				
	Blank	<5	ppb				0800	01/03/91	KB
	Standard	104	ppb	100		104	0800	01/03/91	KB
177418	Duplicate	<.2	ppb	<.2		100	0800	01/03/91	KB
177418	Spike		ppb		50	119	0800	01/03/91	ΚВ
			• •	Xylen	es				
	Blank	<5	ppb	-		•	0800	01/03/91	KB
	Standard	113	ppb	100		112	0800	01/03/91	KB
177418	Duplicate	<.2	ppb	<.2		100	0800	01/03/91	КВ
177418	Spike		ppb		50	94	0800	01/03/91	KB

C. H. Whiteside, Ph.D., President

STATE OF NEW MEXICO

ENERGY. MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING

August 7, 1991

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

Mr. Robert Love, Attorney P. O. Box 1099 Hobbs, New Mexico 88240

RE: CAUDILL RANCH GROUND WATER INVESTIGATION

Dear Mr. Love:

Enclosed for your use is the final report on our Caudill Ranch Ground Water Investigation. I appreciate your patience during the past several weeks while I was completing the report.

As I previously told you by phone, the water quality results show calcium chloride versus sodium chloride contamination. The former is not associated with oil well salt water production or disposal activities, but may be due to improper handling or disposal of common oil field chemicals by a service company. The specific circumstances relating to spill location, date, and responsible party remain unknown, but I believe the discharge occurred in the drainageway adjacent to the ranch road between the cattleguard and the top of the caprock.

If you have any questions on the report, or if you need further information, please contact me at 827-5812.

Sincerely,

David G. Boyer, Hydrogeologist Environmental Bureau Chief

DGB/sl

Attachment

cc: E. P Caudill (w/report)

Ken Fresquez, State Engineer Office Roswell (w/report)

Sandra Porenta, BLM - Roswell (w/report)

STATE OF NEW MEXICO

OIL CONSERVATION DIVISION HOBBS DISTRICT OFFICE

'91 JAN " AM 9 10

<51)

(i)

THE DIVISION

- IL 60.,334

GARREY CARRUTHERS
GOVERNOR

January 2, 1991

POST OFFICE BOX 1980 HOBBS, NEW MEXICO 88241-1980 (505) 393-6161

Bureau of Land Management Roswell Resource Area P.O. Box 1857 Roswell, NM 88202

Attn: Sandra Porenta

Dear Ms. Porenta:

The Oil Conservation Division ran bradenhead surveys on all wells within a 1 mile radius from the contaminated well and found 1 bad well. The LaRue & Muncy (attached is a map showing what area was tested). This well has been shut in for sometime because of problems.

During the past years pressure tests were run on the injection wells in the area. This is where the problem on 34~2 was found while it was determined the packer was holding, the casing did have problems and was repaired as your letter indicated.

The new T.A. program will eventually take care of the wells such as the LaRue & Muncy well, which will eliminate a lot of speculation on problems.

Dave Boyer a Hydrologist and Bureau Chief of our Environmental Bureau is now doing a study of the area and will be in charge of the problem. I have sent him a copy of your letter and we went ahead and tested all wells including Federal wells within a 2 mile radius of the contaminated well.

We greatly appreciate your cooperation with this problem.

Yours very tryly,

JERRÝ SEXTON

District I Supervisor

JS/sad

cc: Mr. Caudill

Dave Boyer

Enclosure

OPERATOR: GROVER-MCKINNEY OIL CO. Number of wells to be tested 2

Meet OCD Field Inspector at: 9:30 am November 15, 1990

At the Caudill SWD #1-C, 34-13-31

Wells to be tested:

LEASE WELL # S-T-R PRESS LIMIT

Caudill SWD 1-C 34-13-31 574

Caudill 2-D

Steve Painter--Pumper 915-683-4215

OPERA	TOR:		LARUE & M	UNCY	Number	of	wells	to be	tested 4
Meet	OCD	Field	Inspector	at: 1:00	PM No	vembe	er 15,	1990	3

Wells to be tested:

LEASE	WELL #	S-T-R	PRESS LIMIT
Federal V	1-P	34-13-31	
п	2-0	**	
	3-J	11	
U	4-I	11	

Phone 746-6651

OPERA'	TOR:	DAKOTA RE	SOURCES	<u>INC.</u> Number	of wells to be teste	d4
Meet (OCD Fie	eld Inspec	tor at:	10:30 AM,	November 15, 199Ø	
		At your	Wakan	Tanka Federa	l Tank Battery	
			•			
Wells	to be	tested:				
LEASE		WE	<u>LL #</u>	S-T-R	PRESS LIMIT	
Wakan	Tanka	Federal	1-N	27-13-31		

Steve Painter--Pumper 915-687-0501

2-M 3-K 4-L

OPERATOR: CIT	RCLE R	IDGE PR	OD CO.Number	of wells to be te	sted <u>36</u>
Meet OCD Field 1	Inspec	tor at:			
Wells to be test	ted:				
<u>LEASE</u>	WE	<u>LL #</u>	S-T-R	PRESS LIMIT	
Drickey Qu Ut Ti	r 6	16-F	3-14-31		
н		18-C	11		
•1		2Ø-B	11		
•		24-D	11		
" Tı	r 12	1-H	33-13-31		
" Tı	r 13	1-N	34-13-31		
H		2-M	*1		
11		3-L	*1		
ıı		4-K	••		
*1		5-I	33-13-31		
п		6-J	u		
11		7-P	11		
н		8-0	**		
" Т1	r 37	2-E	35-13-31		
Rock Queen Ut Se	ec 26	3-C	26-13-31		
**		4-D	11		
п		5-E	n		
11		6-F	u		
11		11-K	••		
13		12-L			
11		13-M	11		
··		14-N	"	•	
" Se	ec 27	1-A	27-13-31		
11		3-C			
n		7-G			
11		9-J			
n		15-0	,,		
н		16-P	11		

Rock	Qu	Ut	Sec	34	1-A	34-13-31
11					2-B	**
*1					5-E	**
"					6-F	· ·
11					7-G	•
"					8-H	U
n.			Sec	35	3-C	35-13-31
					4-D	14

GENERAL INFORMATION

Mr. Caudill came into our office on Tuesday, October 30, complaining about a water well which had high chlorides and was bad.

A copy of the water analysis from the State Engineer's Office showed 2622 ppm Cl. In addition, a copy of lab results obtained from the EID office showed high bacteria in the well. Copies of both are within.

The location of the water well is just below the Caprock Area in Sec.34-T13S-R31E, Chaves County. The well is approximately 150 yards SE of Grover McKinney Oil Co. - Caudill SWD #1, NE/NW Sec.34-T13S-R31E (SWD #359). No water analyses were obtained for application.

The house well is located approximately 50 yards to the NE of the bad water well, which is located in the corral and used for livestock.

Well #1 - House well was drilled with water well riggers cased properly and is powered by a windmill.

Well #2 - Bad well; was an old hand-dug well, with only short conductor pipe and 10 to 15 ft. in diameter at base. Both wells are 65 to 70 ft. deep.

Well #2 is powered by both windmill and submergible pump. Due to the limited amount of water in the area the submergible pump will pump off in approximately 3 hours and take 5 to 6 hours to regenerate, pumping at a rate of approximately 1/2 gallon per minute.

These water wells are located within oil producing area, with production and water injection on all sides. Four companies operate within 1 mile of this area - Circle Ridge, LaRue & Muncy, Dakota Resources, and Grover McKinney Oil Co. A map was constructed of the area, and wells were prepared for bradenhead tests, testing all wells within 1 mile of the area. Bradenhead tests were run on the 15th, 16th and 20th of November, with no bad wells encountered.

A STATE OF THE STA

Caudill Water Wells
November, 1990
Page 2
The well is located in the corral and down gradient from the house approximately 40 yards. The house is said to have two cesspools.

The water system for the house and livestock are also connected to two wells on top of the Caprock - one with a windmill and one with a submergible pump. The water there tested good. Considering the low volumes of water, it takes all wells to maintain 180 head of cattle.

Enclosed is: a copy of map, list of Chlorides, and copies of analyses from EID and State Engineer.

Caudill Water Wells November, 1990 Page 3

WATER ANALYSIS - CAUDILL Sec.34-T13S-R31E

1985	State Engineer 50 mg/L Cl	tested house well only.
10/31/90	House Well Stock Well	
11/1/90	Stock Well	1695 ppm Cl Hobbs City Lab Nitrates 8.8 mg/L
11/5/90	Stock Well Pump well over	
11/13/90	(While pumping 11:20 AM 2:15 PM	
11/14/90	(While pumping 10:15 AM 2:40 PM	
11/16/90		2059 ppm Cl Sec. 35 approx. 1 mile East top of Caprock.
11/19/90	Stock Well Nitrates Bacteria Count	
HORRS CITY LAR	÷	

HOBBS CITY LAB

10/24/90	State Engineer Office Analysis	2622 ppm Cl
10/15/90	Copies of EID analysis and recommon to treat well.	mendations

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

			
Telephone Personal Time 10	7/5	Date	11/27/80
Originating Party		<u>0</u> 1	ther Parties
Bill Olson - OCD Santa Free	Edd	'e Sa	y - OCD Habbs
Subject			
EP. Cottel Ruch Grand Wa	ten Cons	Kmins	tion
Discussion	·		
	langs ter	very C	lay, Bustanial count in
in water high, Cl = 1500 -	<u> </u>		as against Circle Ridge
Cotte have been in ongoing	1)	ate in	Lt. up on caprock
and supplies water for 5	ranches		
F.P. Cottel well faction see	34 T	/3.5	R31E unite
Conclusions or Agreements			
Dave Doyer will need with him	at Ho	bbs of	Tice Thrus myoning
11/29/90. Eddie said he world	do to	site w	
			
Distribution	Signed Be	II S	Don
		_	

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

		<u> </u>
Telephone Personal	Time	Date 11/15/90
Originating Party	4	Other Parties
Bill Olson - OCD Sa		oftel
Subject	(Runh)	676-4472 Hom 392-5676
FOCUL DIC	round Water Con	Emphation
Discussion ()		//
Viscusser Conta	mindia at stack	vell.
	ms/0 1985	<u> </u>
	22 mg/l in 1990)
	90 proposion "	
They believe Circle Ridge	inject on well or	esponsible. She was told
well De was short down	1 11 11 1	par cause well was heading
~~1	extin well is up	on aprock above then
The 13 also x product	In well in the co	5 1/1/
· · · · · · · · · · · · · · · · · · ·	ant but in service	
conclusions or Agreements	. / ~ 1111	and want with them onsite to
- Investi	sate. I told her	that past agreements 67w
Circle Ridge and Cottele	are private agreen	
ho anthority. I suggest	/ / /	K with horak thidge to on water
	y also have a well	150 any from contamination
03 - 4 - 4 - 4 - 4 - 11 - 11 - 1 - 1 - 1 -	77 6. 7	well water onto sound hope, that
other well doesn't get	contaminated Signed	BUV Wan
06B		

Telephone Personal	Time		Date //	1/14/90	
Originating Party	,		Other	<u>Parties</u>	
Bill Olon - OCD So	into te	E.P.	Cottel	- Rench	Diver
		(Ranch)6	76-4472	(Honne)	392-5676
Subject E.P. Cottel Ramh Gran	nd Water	Conta	milation		
Discussion	<u> </u>	·			
No anime			.		
					
					
Conclusions or Agreements					
					
	<u></u>		. -		
					
			- A-		
<u>Distribution</u>	Si	gned	Bill ()	Isan	

STATE OF NEW MEXICO OIL CONSERVITION DIVISION

					
Telephone	Personal	Time		Date	11/14/90
	Originating Party			<u>0t</u>	ther Parties
	ene Roberts 96-5354		Bi11	0/50	n - OCD Santa Fe
Subject	76-035 /		<u> </u>		
E.C. Co	Hel Ranch	Ground Wa	ter Ci	ntamin	nation
Discussion (Eoblan with	high chlorida	z , jh	E.P. C.	ottel Ranch stock well
of the	caprode.	F.P. Cotts	1 T - 7 T	eves	Circle Ricke Oil Co.
injection	well 15 respon	1 20/6	hlorid.	: H	mell = 2622 mg/l
_65 measu	ed by SBO av	m och ce	·are	NECT P	res UK In pls!
In the p.	est Circle Ril	ge has provis	dal wa-	to to	ranch, but the
\overline{I}	currenty gets		· /	m.	She reguestral & D
I told her	11 1 11/	a supply the	that (firely R	ide meetin well has
	ed the well OC		7 3	m supp	7 - 1 - 7 -
Conclusions or	Agreements Was a	private sirce	mant b1	Er Circ	le lige + F.P. Gottel an
OCD has a	s anthority over	1 1 5	Boyon n	-H = H	estigate veek at 10/26.
F.P. Cotte	Ranch) 676-4	472 Rance	7 -	vill call	on Kenemore
Live -office (Home 392 -		TOI CIV	30	or remember
Distribution			gned /	7001	<u> </u>
D6B			W	VV W	Tion

1190 St. Francis Drive Santa Fe, New Mexico 87503

GARREY CARRUTHERS
Governor

DENNIS BOYD
Secretary

MICHAEL J. BURKHART Deputy Secretary

ENVIRONMENTAL IMPROVEMENT DIVISION James Murray State Office Building 2120 N. Alto Drive Hobbs, NM 88240 (505) 397-5250

TO WHOM IT MAY CONCERN:

Interpretation of laboratory results of ML Ranch, Lea Co

Taken 10/15/92

Based on criteria specified out in the New Mexico Regulations
Governing Water Supplies by personnel of the Environmental
Improvement Division.

Coliform bacteria count of sample complies with the regulations.

Excessive coliform bacteria count of sample does <u>not</u> comply with the regulations. Please contact local EID office.*

Not valid, please contact local EID office.*

DATE

*Environmental Improvement Division 2120 N. Alto St. Hobbs, NM 88240

(505) 397-5250

1190 St. Francis Drive Santa Fe. New Mexico 87503

GARREY CARRUTHERS
Governor

DENNIS BOYD
Secretary

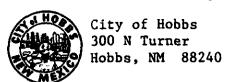
MICHAEL J. BURKHART Deputy Secretary

ENVIRONMENTAL IMPROVEMENT DIVISION James Murray State Office Building 2120 N. Alto Drive Hobbs, NM 88240 (505) 397-5250

TO WHOM IT MAY CONCERN:

90-0 Well#2
Interpretation of laboratory results of ML Ranchy Lea. Go
+4ken 10/15/90

Based on criteria specified out in the New Mexico Regulations
Governing Water Supplies by personnel of the Environmental
Improvement Division.


Coliform	bacteria	count	of	sample	complies	with	the
 regulation	ons.						

Excessive coliform bacteria count of sample does <u>not</u> comply with the regulations. Please contact local EID office.*

Not valid, please contact local EID office.*

*Environmental Improvement Division 2120 N. Alto St.

Hobbs, NM 88240 (505) 397-5250

Time Test Started 1:30 Dat QCT 1 5 1990

Time Test Ended 1:25 Date OCT 1 6 1990

MICROBIOLOGICAL WATER	REPORT

R__IME

OCT 161990

HOBBS OFFICE

			·		•
SAMPLE IDENTIFICAT	ION		RESULTS OF CO	LIFORM TEST	ring
Quality Control No.	County		Coliform	per 100 ml	
9050	LEA		Presumptive	Confirmed	Completed
Water Supply System Name	WSS Code No.	TEST	24 hrs	48 hrs	48-72 hrs
ML RANCH			-		<u> </u>
COLLECTION INFORMAT	ION	MF	36		<u> </u>
Date Collected Time Collecte	d Collected By	MPN			
Mo. Day Yr. On Am	RONNIE	MEN			
E. Pollection	Point ML		Non-Colifor	m per 100 m	nl
10-15-90 E. Collection Coreal Winds	11/21 #2	no.	n-coliforms	41 00	olonies
TYPE OF SYSTEM	THE WELL E				71011105
Check One		FO.	R INTERPRETAT	TON OF PEC	וז דיכ
[] Public Non- [] Sw	imming Pool		EASE CALL THE		
Community			PROVEMENT DIV		
[] Public Community M Pr	ivate Well	39	<i>1</i> -5250. /		\supset
•	1		, /,		/
Disinfected [] Yes []	~	1	> /	1 /0/	
Residual: mg/1 (Or Corn	e dring	8m
	for fecal test)		cteriologist		7
	cesc)	"	// /	\ 2	
REASON FOR SAMPLI	NG	<u></u>	, ()		
Check One		- [1	Unsatisfacto	rv Sample	
[] Routine Sample M Spec	ial Sample	.,	V	,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
.[] Check Sample [] Moni	tor Sample	:			
	·				
TESTING REQUIRED					
Check One					
M Potability (MF)-Sample	required for				
Safe Drinking Water Act					
[] MPN					
L		ļ			
SEND REPORT AND BILL TO THE	FOLLOWING				
NAME E. P CAUDICE, I	NC_		A FEE OF \$1	0.00 PLUS T	AX IS
COMPANY COMPANY			CHARGED FOR	EACH TEST.	
ADDRESS FOR	Ray 205				

OFFICE USE ONLY

SAMPLE ID Field Call Paus &

DATE SAMPLED (1-19-90 TIME SAMPLED 8:30

SAMPLED BY Eddie Seay

State Oil Com

RECEIVED BY POD DATE (1-19-90 TIME AM

REPORT TO Eddie Say

ANALYTE RESULTS

Aliteate 4.2 mg/f

Pacteria Count 7200 Non-coliforn / 3 coliforn

IF YOU HAVE ANY QUESTIONS LET ME KNOW.

ROZ

STATE OF NEW MEXICO

STATE ENGINEER OFFICE

*********** Carl L. Slingerland
STATE ENGINEER

ROSWELL

ROSWELL, NEW MEXICO 88202

622-6521

October 29, 1990

E. P. Caudill East Star Route, Box 205 Lovington, New Mexico 88260

Dear Mr. Caudill:

Please be advised that the analysis of water sample collected from your well has yielded the following results:

LOCATION	CHLORIDE CONTENT (p.p.m.)	SPECIFIC CONDUCTANCE (mic.at 25C)	DATE COLLECTED
13.31.34.12A231 NWłswineiseineinwi	2622	7890	10-24-90

The total dissolved solids content of the above cited water sample can be approximated by multiplying the specific(electrical) condutance by 0.65. Chloride content results may be expressed as mg/L sodium chloride by multiplying the mg/L chloride by 1.65.

Very truly yours,

Ken Fresquez

Field Engineering Unit

KF/lc
cc: Santa Fe

Ken Presence 622-6521 Mary Naney 124-621 Which well toked by SED Hond dug well" Boyno Ron Kenmore-Former 676-472 130x101 Malfamar 8836t epentol 50 st correcte

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

JED DIVISION

1. CO. Jan.

OIL CONSERVATION DIVISION

8 1	NOISION	LABORATORY	r samptile Bertheris	B B0	Rats Alm	9 27		No.	O Priore	<u> </u> -
PROJ. NO. PROJECT NAME	· NM		Ğ						2007	
SAMPLERS: figuremal			o.		るる			- ;		
Boyers/c	8 P		÷ CON:	V		*	\	. B EX	REMARKS	
) A 11ME	STATE	STATION LOCATION	LAINERS					-		
of all ochile	Hay 90	9011281010	3	X	7	-				
	12	90 11 28 11 50	3	×	×	-				-
	Ballan 3	901128 1235	•	\dashv	×	+				1
		9011 a 8 10 55	3	×/-	×					T
9/11/28 1240	Rlank	9011281240	_	×,	+	-				T
911128 1625	Sections	901138 1L25	-	7		+				1
911138 1545	Lines Band	9011291545	-	×,		+				<u> </u>
11129	Candill Ha	Hans 9011291522	4	 		+				T
67.11	П	901129 1513	-	<u> </u>		+				T
11/20	Court Il old	Hause 9011291575	2	<u>*</u>		+	•			T
	سمر الرامريهي	P1851108 James 2819	-	*		+		- 		T
95/11	Cand II Cath	Trees Pouseis	-	7		+			-	T
56/11	=	Staking 9011291990	-	거		+				T
				+		+				Τ
				1	1 1 1	1			: (Signatural	<u> </u>
Relinquished by: fSpeedure	9316 / Yima	Received by: 15.gassure)			SEALS INTACT	INTACT	C) YES	O YES 🗀 NO		
Retinquished by: 15.gnowed	Date / Time	Received by: 15.gnesure)					•		: Signatural	
Relicquished by: (Signewool	Date / Time	Received for Laboratory by:	y by:	٥	Date / Time	Asmarks	2		l	<u></u> -
Desirabules:	Original Accompanies	Dissibution: Original Accompanis Inipmani; Copy to Coordinator Fiste Files	100 F.114 F.des							7

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

	LABORATORY	SAMPLE RECORD
PROJ. NO. PROJECT NAME		01
SAMPLEAS: 15 GALINAIL		OF COM-
DATE TIME	10N LOCATION	TAIMENS
4011291427	1/Colle Cua	
0511.9511.08	T OZ	4
12,35	~ M~//	
Relinquished by: 15.protures	Date Time Received by: 15:pnesser	SEALS INTACT TYES TO NO
Relinquished by: (Signeture)	Date / Time Received by: (Signature)	farmangs) :
Relinquished by: (Symotore)	Date / Time Received for Laboratory by:	by: Date Time Remarks
Distribution: (Distribution: Drignal Accompanies Brigmant; Copy to Cuerdinator Field Files	te feated felten

STATE OF NEW MEXICO
ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT
OIL CONSERVATION DIVISION

<3W

: (Signature) : 15:pnonvol REMARKS 7423 22419 77420 7742 7171 7741 77 DYES D NO Remarks SEALS INTACT Date /Time LABORATORY SAMPLE RECORD 8/6/21 CON. ġ ğ Janue Branch 3 3 Received for Laboratory by: 1Signature) ANSO 9011291515 THI SCHOL Dans Hars 9011291520 90 Hagiera Accived by: 15-pnowol 901129 1490 Received by: (Signature) 90 11 28 11 50 9011281545 9011281235 901129 1513 9011281625 9011281240 9011 88 10 55 9011281010 STATION LOCATION Stockurd Date / Time Date / Time Date / Time Ballan 3 Wood Band Spannas Land Blonk God PROJECT NAME 10.55 1335 6741 1150 1522 1513 535 1545 0101 1625 145 DATE TIME 1440 Relinquished by: Isoperures Relinquished by: 15.protores Relinquished by: 15-gnasures SAMPLERS: Isopoours PROJ. NO. 9/11/138 स्याम् 11,29 29 911128 9 till 199

Distribution: Ortynal Accompanies Bilipment; Copy to Coordinator Fisty Files

2600 DUDLEY ROAD — KILGORE, TEXAS 75662 — 903/984-0551

Analytical Chemistry • Utility Operations • Equipment Sales

03/14/91

Environmental Bureau NM Oil D. PO Box 2088
Santa Fe, NM 87504

Sample Identification: CIRCLE RIDGE PRODUCTION

Collected By: EWS

Date & Time Taken: 02/01/91

On Site Data:

G-34-13-31

Other:

PRODUCTION WATER TRACT 44

Lab Sample Number: 181403 Received: 02/11/91 Client: SNM1

rap sample Nump	er: 181403	Receive	d: 02	2/11/91	Client	SNM1
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	вч
Alkalinity	54	mg/l	1100	02/13/91	EPA Method 310.1	BC
Bromîde	550	mg/l	1100	03/03/91		ES
Cation-Anion Balance	4800/4700	meq/meq	0800	03/14/91		SK
Carbonate	<.5	mg/i	0900	02/27/91	APHA Method 263	ВС
Chloride	165,000	mg/l	0945	02/18/91	EPA Method 325.3	sw
Specific Conductance	>50,000	Micromhos	1020	02/15/91	EPA Method 120.1	GS
Fluoride	<1	mg/l	1315	02/21/91	EPA Method 340.1	GS
Bicarbonate	50	mg/l	0900	02/27/91	APHA Method 263	BC
Sulfate	2000	mg/l	0815	02/19/91	EPA Method 375.4	DG
Total Dissolved Solids	290,000	mg/l	1100	02/25/91	EPA Method 160.1	BC
рН	6.1	SU	1600	02/14/91	EPA Method 150.1	LW
Dissolved Calcium	2800	mg/l	0830	02/15/91	EPA Method 215.1	GK
Dissolved Iron	.47	mg/l	0830	02/15/91	EPA Method 236.1	GK
Dissolved Potessium	2500	mg/l	0830	02/15/91	EPA Method 258.1	GK
Dissolved Magnesium	5200	mg/l	0830	02/15/91	EPA Method 242.1	GK

Continued

2600 DUDLEY ROAD — KILGORE, TEXAS 75662 — 903/984-0551

Analytical Chemistry • Utility Operations • Equipment Sales

181403 Continued

Page 2

PARAMETE	R	RES	BULTS	UNITS	TIME	DATE	ME	THOD	ВУ
Dissolved So	díum	96,	,000	mg/l	0830	02/15/91	EPA	Method 273.1	GK
	Quality 7	Assurai	nce for	the SET	with Sam	ple 18140	3		
Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
				Alkali	nity				
	Standard	2088	mg∖l	2358	-	112	1100	02/13/91	ВС
181397	Duplicate	210	mg\l	210		100	1100	02/13/91	BC
181397	Spike		mg\l		100	99	1100	02/13/91	BC
181397	Spike		mg\l		100	99	1100	02/13/91	BC
	•		-	Bromi	.de			•	
	Blank	<5	ppm		•		1100	03/03/91	ES
	Standard	96	ppm	100		104	1100	03/03/91	ES
181403	Duplicate	572	ppm	527		108	1100	03/03/91	ES
	•			Chlor	ide			-	
	Standard	70	mg/l	71		101	0945	02/18/91	SW
181594	Duplicate	23	mg/l	23		100	0945	02/18/91	SW
181594	Spike		mg/l		100	100	0945	02/18/91	SW
	•		81	pecific Co	nductanc	e			
	Standard	1423	Micromho	os 1413		101	1020	02/15/91	GS
181397	Duplicate	1681	Micromho	os 1677		100	1020	02/15/91	GS
	•			Fluor	ide				
181397	Spike		mg/l		.5	96	1315	02/21/91	GS
	·			Sulfa	te				
	Standard	50	mg/l	50		100	0815	02/19/91	DG
181509	Duplicate	32	mg/l	32		100	0815	02/19/91	DG
181511	Duplicate	47	mg/l	47		100	0815	02/19/91	DG
	÷		Tot	tal Dissol	ved Soli	đs			
	Blank	0.0000	g				1100	02/25/91	ВС
	Standard	96	mg/l	100		104	1100	02/25/91	ВС
1820 9 0	Duplicate	212	mg/l	174		120	1100	02/25/91	ВС
	•							-	

I hereby certify that these results were obtained using the methods specified in this report.

C. H. Whiteside, Ph.D., President

2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 903/984-0551

Analytical Chemistry • Utility Operations • Equipment Sales

03/14/91

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: CIRCLE RIDGE PRODUCTION

Collected By: EWS

Date & Time Taken: 02/01/91

On Site Data:

D-26-13-31

Other:

INJECTING WATER DRICKY QUEEN UNIT.

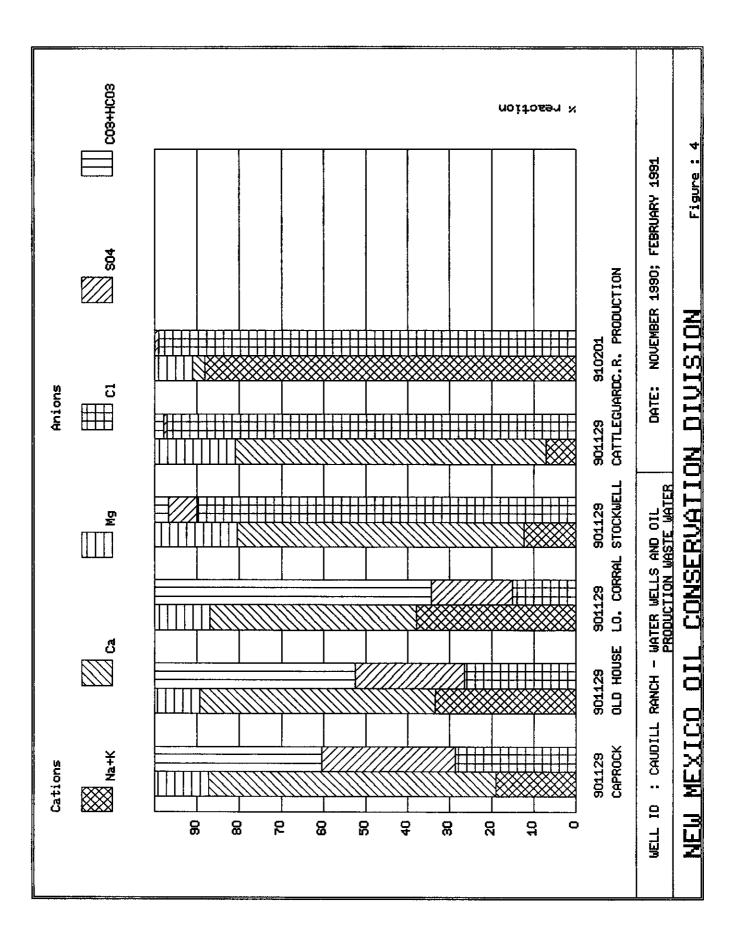
Lab Sample Number: 181402 Received: 02/11/91 Client: SNM1

ngo pampie num	Der. 101402	VeceTA6	u. 02	1/11/91	CITERU	.: PINIT
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	ву
Alkalinity	65	mg/l	1100	02/13/91	EPA Method 310.1	ВС
Bromide	950	mg/l	1100	03/03/91		ES
Cation-Anion Balance	4970/5130	meq/meq	0800	03/14/91		SK
Carbonate	<.5	mg/l	0900	02/27/91	APHA Method 263	ВС
Chloride	180,000	mg/l	0945	02/18/91	EPA Method 325.3	SW
Specific Conductance	>50,000	Micromhos	1020	02/15/91	EPA Method 120.1	GS
Fluoride	<1	mg/l	1315	02/21/91	EPA Method 340.1	GS
Bicarbonate	60	mg/l	0900	02/27/91	APHA Method 263	ВС
Sulfate	2000	mg/l	0815	02/19/91	EPA Method 375.4	DG
Total Dissolved Solids	280,000	mg/l	1100	02/25/91	EPA Method 160.1	ВС
Н	6.2	SU	1600	02/14/91	EPA Method 150.1	LW
Dissolved Calcium	3000	mg/l	0830	02/15/91	EPA Method 215.1	GK
Dissolved Iron	.46	mg/l	0830	02/15/91	EPA Method 236.1	GK
Dissolved Potassium	2200	mg/l	0830	02/15/91	EPA Method 258.1	GK
Dissolved Magnesium	5000	mg/l	0830	02/15/91	EPA Method 242.1	GK

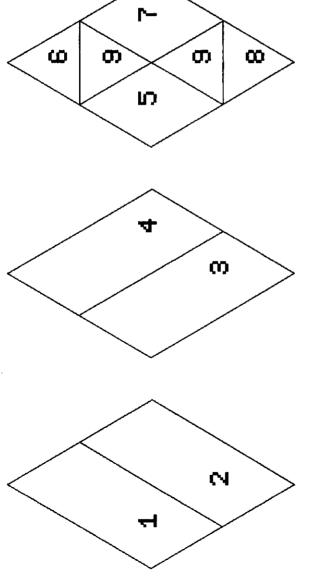
Continued

2600 DUDLEY ROAD — KILGORE, TEXAS 75662 — 903/984-0551

Analytical Chemistry • Utility Operations • Equipment Sales


181402 Continued

Page 2


PARAMETER		RES	ULTS	UNITS	TIME	DATE	ME	THOD	BY
Dissolved So	dium	100	,000	mg/l	0830	02/15/91	EPA	Method 273.1	GK
	Quality 1	Assurar	ce fo	r the SET	with Sam	ple 18140	2		
Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
				Alkali	nity				
	Standard	2088	mg\t	2358		112	1100	02/13/91	ВС
181397	Duplicate	210	mg\l	210		100	1100	02/13/91	ВС
181397	Spike		mg\l		100	99	1100	02/13/91	ВС
181397	Spike		mg\l		100	99	1100	02/13/91	ВС
	•			Bromi	đe				
	Blank	<5	ppm				1100	03/03/91	ES
	Standard	96	ppm	100		104	1100	03/03/91	ES
181403	Duplicate	572	ppm	527		108	1100	03/03/91	ES
	•		• • •	Chlor	ide				
	Standard	70	mg/l	71		101	0945	02/18/91	SW
1815 94	Duplicate	23	mg/l	23		100	0945	02/18/91	SW
1815 9 4	Spike		mg/l		100	100	0945	02/18/91	SW
	·		8	pecific Co	nductanc	e			
	Standard	1423		os 1413		101	1020	02/15/91	GS
181397	Duplicate	1681	Micromh	os 1677		100	1020	02/15/91	GS
	•			Fluor	ide				
181397	Spike		mg/l		.5	96	1315	02/21/91	GS
	•			Sulfa	te				
	Standard	50	mg/l	50		100	0815	02/19/91	DG
181509	Duplicate	32	mg/l	32		100	0815	02/19/91	DG
181511	Duplicate	47	mg/l	47		100	0815	02/19/91	DG
	·		To	tal Dissol	ved Soli	đs			
	Blank	0.0000	g				1100	02/25/91	ВС
	Standard	96	mg/l	100		104	1100	02/25/91	BC
182090	Duplicate	212	mg/l	174		120	1100	02/25/91	ВС
182090	Duplicate	212	mg/l	174		120	1100	02/25/91	B

I hereby certify that these results were obtained using the methods specified in this report.

C. H. Whiteside, Ph.D., President

Subdivisions of the Piper Diagram diamond shaped field

ZONE GROUNDWATER CHARACTERISTICS

es	
Alkalies	
^	
earths	
ine	
Alkaline	
_	
↤	

earths
Alkaline
^
Alkalies

Ø

있 ^	
ry salinity>	
(secondar	
hardness	
Joncarbonate	
د ص	

×

⁹ No cation-anion pair exceeds 50 %

HOME PHONE: (505) 392-2236 Office Phone: (505) 393-6161 EDDIE W. SEAY
FIELD REPRESENTATIVE
SUPERVISOR

P.D. BDX 1980 HDB85, NM 88241—1980

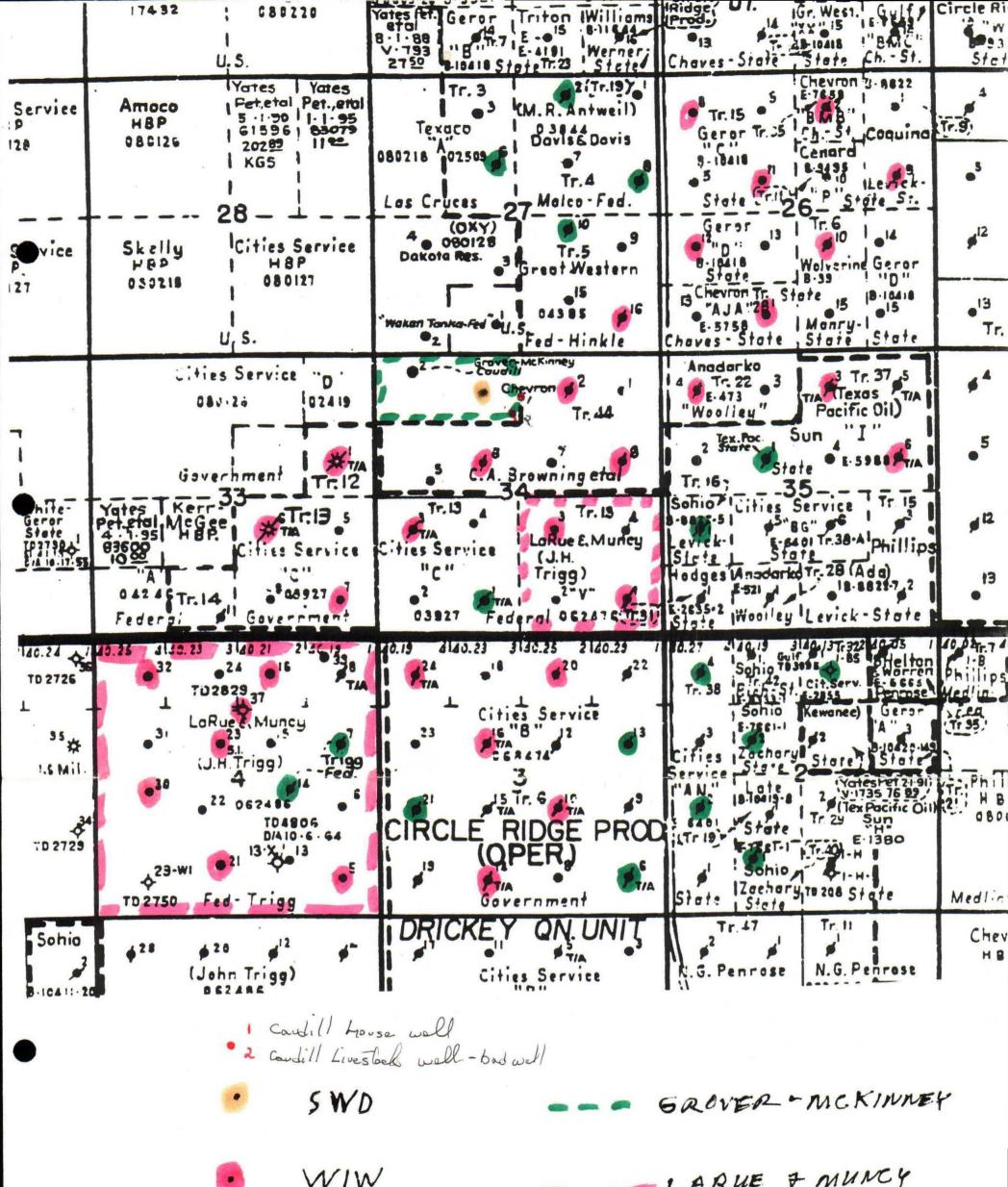
Memo

From
EDDIE W. SEAY
Field Representative
Supervisor

To Dave Boyer

Lower corral well - 4276.9

Bad corral well - 4273.2


Cattle Guard well - 4280.2

Abandon House well - 4286.1

House well - 4289.1

Elevations from Caudill water study

Oil Conservation Division PO Box 1980, Hobbs, New Mexico 88241-1980

- LARUE 7 MUNCY WIW

WIW T/A

WIW PAA

00	ATION	SASIN NAM	BNMO		TITUD	nı
CHAVES	OSLL	T 4 T	13 S 31 E35.143412 TX. PACIFI	C COAL & OIL	4412.70	198.
UNIQUE NUMBE	R IS 059000010501	1:ASD. OWD WELL. DIAM 5	IN. FILE# L-2849.			
DATE	WATER LEVEL	DATE WATER	DATE WATER LEVEL DAT	WATERLE	ATE WAT	f" In
196 196 197	0241	. 17 1965 173.50 . 14 1969 173.24 . 56 1981 172.02	SEP. 15 1965 176.58A JAN. 06 1970 174.37 APR. 15 1986 171.63	173.54 JAN. 173.58 JAN.	04 1967 13 1972	73.55 74.35
TNUO	RMATE O	BASIN NAME	LOCATION		TITUD	DEPTH
CHAVES	SALZ	ROSWELL ARTESIAN	14 S 17 E26.334244 JIH	tet-torrest Henderson	5691.60	70.0
UNIQUE NUMBER	IS 056000006316	SIUNUSED WELL WITH 7" C	ASING.			į
DATE	WATER LEVEL	DATE WATER LEV	DATE WATER LEVEL DATE	WATER LEVEL D	ATE WATE	ER LEVEL
11	ら 8 3 3	• 15 1988 54.83V				;
C I	ORMATION	BASHN NAME	CATION		TTUD	BEPTH
CHAVES	YESO	•	14 S 17 E28.24114 JIM	A	5775.	ŧ
UNIQUE NUMBER	IS 0560000006317	STOCK WELL WITH 6" CA	SING. "MCCARTY WELL"			
DATE	WATER LEVEL	DATE WATER LEVE	ATE WATER LEVEL DAT	TER LEVEL D	m EAT	RLEVEL
JUL. 14 1961	133.44			6 6 7 8 8 8	1 1 2 1 4 1 1	
OUNT	RMATIO	ASHN NAME	OCATION OWNE		TITUD	OEPTH
CHAVES	SALM	ROSWELL ARTESIAN	14 S 17 E35.24133 JIM VANDEW	₽RT	5641.20	64
UNIQUE NUMBER	IS 05G000006318	:UNUSED WELL WITH 6" C	ASING.			
Þ	ATER L	DATE WATER LEVEL	DATE WATER LEVEL DATE	WATER LEVEL D	ATE WATE	R LEVEL
JUL. 12 1961				1		

WATER LEVEL) : [11111111111		1) -		
	DATE	ATER LEV	7	rin RD r-	DATE	WATER LEVEL		n 0 - n n	DATE
					A PUMP.	CK WALL WITH PISTON	2618:STOC	IS 05 G0 0001	UNIQUE NUMBER
0.0	<u>~</u>		חמור	34.124231 C	3 S 31 E	TUM-LOVHOBBS	-4	061	HAVES
OR DEPTH	ALTITU		EN III		LOCATIO		TION SA	FORMA	COUNTY
1 72.58	. 06 19	74.29	.PR. 27 197	Б Б		56 72.7 50 7/.2	0/	74.74 73.34	PR. 21 196 PR. 15 198
WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	1		WATER LEVE	DATE
					-	CK WELL DIAM. 6 IN.	12617:STOC	IS 05600001	UNIQUE NUMBER
0	4295.		UDILL RA	34.12422	13 S 31 E	TUM-LOVHOSBS	4	190	HAVES
DE DEPTH	III.	} } 6 6 8 8 8 8 8	2 m 2 m 1 m			SIN NAME	TION BA	TORMA.	COUNTY
								- 11	
81 97.62	B. 06 19	98.03	R • 15	99.75	70	1966 100.23	FEB. 15	120.85A	R. 21 196
WATER LEVEL	DATE	E A I M	1 1 1 1 1 1 1 1 1 1 1 1 1	WATE	DATE	WATER LE		WATER LEVE)
					A BOMP.	IN WELL WITH PISTON	12616:5700	IS 05G00001	UNIQUE NUMBER
0	4380.		. W. TU	25.22222 J	13 S	TUM-LOVHOB	-4	061	HAVES
	$I \subseteq I$					ISHN NAME	TION	FORMA	COUNTY
								116.38	R. 03
WATER LEVEL	DATE	WATER FEETING		WATER LEVEL	DATE	WATER LEVEL	L	WATER LEVE	DATE
					JGGED IN 1966.	ISED SHOT HOLE PLUG	12615:UNCA	IS 05 G0 0001	UNIQUE NUMBER
00	4		TATE OF NEW M	13.12122	13 S 3	TUM-LOVHOBB	4	061	HAVE
אדקאם ספידא	ALTITU	• • • • • • • • • • • • • • •		10	LOCATION	SIN NAME	TION 3A	FORMAT	COUNTY

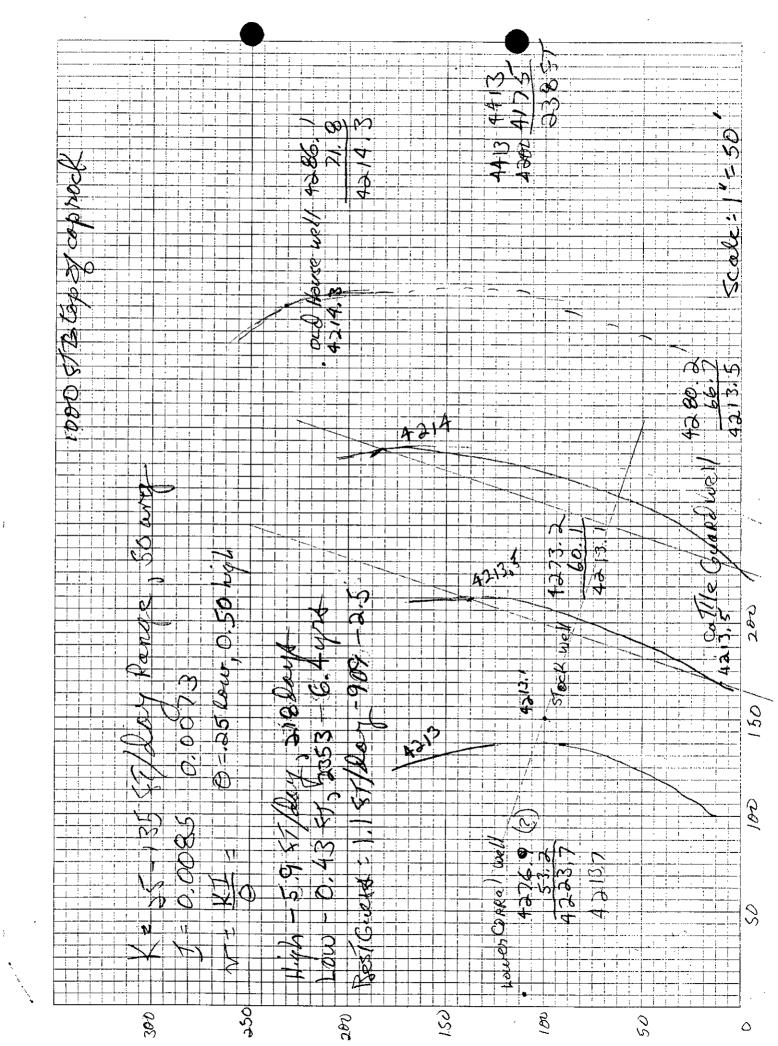
Page No. 319 05/07/87

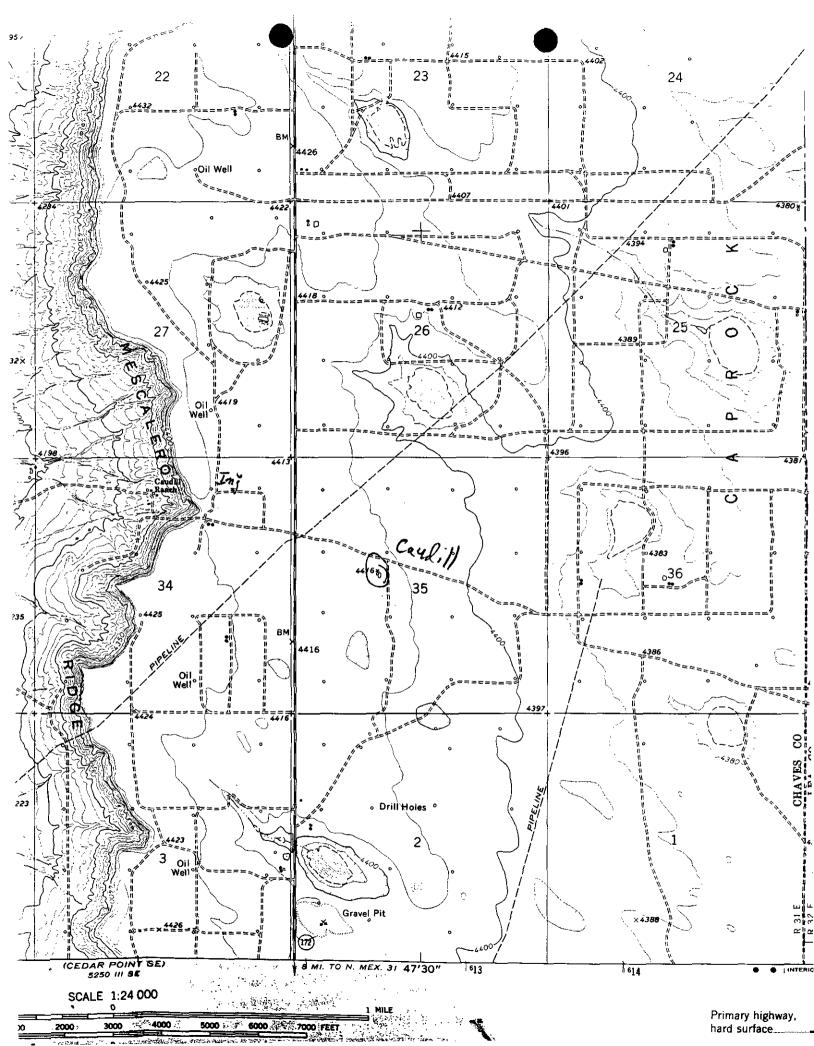
WATER QUALITY IN SOUTHEASTERN NEW MEXICO LISTED BY LOCATION

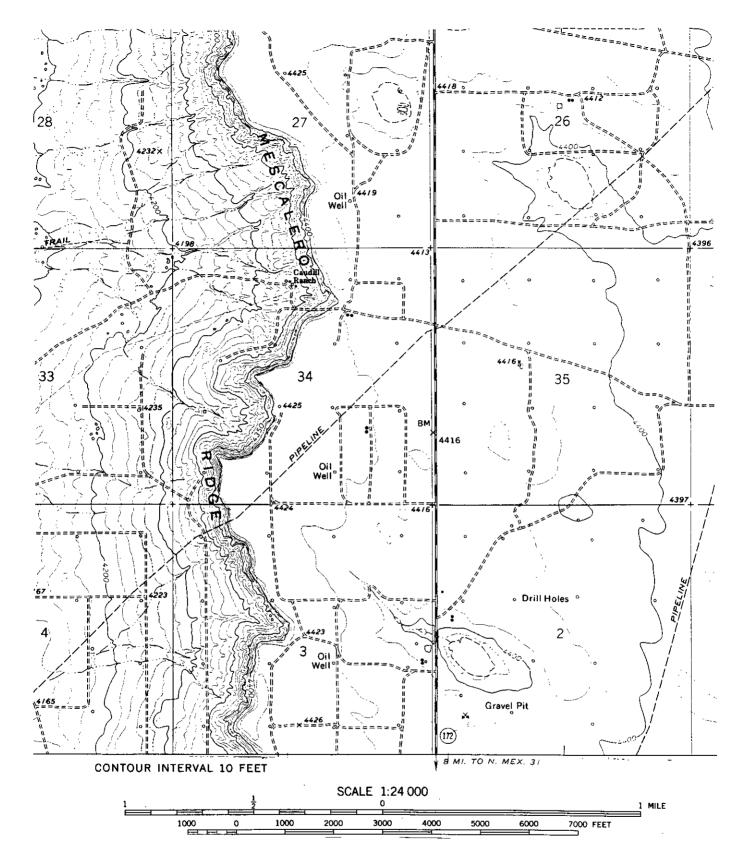
Card Source Date	0683 0196 1185	0285	0.685 U	0 68 3 0683	1284	0485		1284	1284	1284	1284	1284	0385
Addì. Data			><			}	*						
o.						1 1			-h	٠.			
Ref.									92820 1	L 03836			
Š.	വവവ	ro.				l			6 X2 6 X2	6 X3		7 7	
File	0332 0332 0332 0332 0332 0332 0332 0332	03355				1			03836	03B36 03836		07377	
يا م	0 RA 0 RA 66 RA	65 RA	0 RA	0 03	65 L	64 L	0	64 L 64 L	64 L 62 L	62 L 64 L	64 L 64 L	63 L 64 L	00
íemp. deg. F													
Conduct. K × 10e6	.8854 0 9608	8000	3180	00	891	.: 641.	850	932 941	684 696	470 562	639 652	891 900	1495
	0000	10	120	300 150	100 145	50=	110	76	52	12	56 61	66 67	138 269
Chlorides mg/liter	2160 1700 2450	1610		13	, 	11							7 7
ن	~ 7.5				- -	if	_					5.5	
Cltr	DNR SED SED	USG	เรล	ONR	3E0	.:5E0	SEO	SEC	SEO	SEO	SEO	SEO	SEO
Pt. of Cltn.	900	a	۵.	BLR507 BLR290	0P 0P	i .	۵.	90	9 G	90	9 9	a.a.	⊢ a.
á.		2 DP	2 DP			9 00	2 DP					9 DP	9 YT 90 8
Date	/ 5/00 / 7/21 / 8/01	/ 9/22	/ 5/02	/ 8/15 / 8/15	/10/25	1. 4/09.	/05/02	79/11/14 84/11/28	79/11/14 84/11/28	79/11/14 64/11/28	79/11/1484/11/27	/11/09	79/11/09 85/ 2/18
	74 78 85	70	57	74	79	80	61					79.	
# Se	IRR IRR IRR	R	STK	01L 01L	S TK	DOM	DOM	STX XTX	STK	STK	ss co XX	STX XTX	WOO WOO
E CE	8AL 8AL 8AL	DAL	PAT	PAT PAT	706 706	T06.:	106	106 706	706 706	706 706	106 T06	706 706	706 T06
_													
NAG													
Location	** 135.26E.34.433143 138.26E.34.433143 135.26E.34.433143 135.26E.34.433143	** 135,26E.34,433314 135,26E.34,433314	** 135.27E.30.41221 135.27E.30,41221	** 135.30E,20,243224 135.30E,20,243224 135.30E,20,243224	** 135.31E.01.33444 135.31E.01.33444 135.31E.01.33444		** 135,31E,34,2100 135,31E,34,2100	** 135,32E.02,343344 135,32E.02,343344 135,32E.02,343344	** 135,32E,08,31113 135,32E,08,31113 135,32E,08,31113	** 135.32E.20.411213 135.32E.20.411213 135.32E.20.411213	** 135,32E,35,14113 135,32E,35,14113 135,32E,35,14113	** 135.33E,02.33343 135.33E,02.33343 135.33E,02.33343	** 135,33E.04.113113 135,33E.04.113113 136,33E.04.113113
						411;							

S. Commercial Street, Section 2017

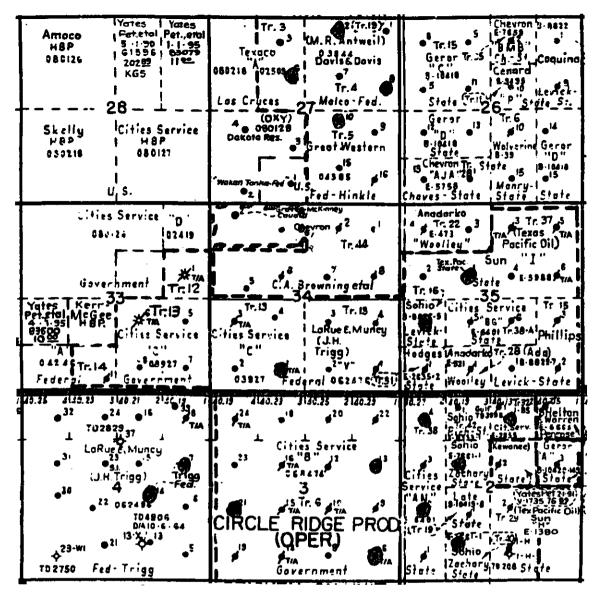
OIL CONSERVATION DIVISION RELIED NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS 190 NOV 26 AM 10 53


	0.0 2.0	<u> </u>									
WAME OF						ADDRESS					
OPERATOR	Circle Ri	dge Prod	uction,	Inc.	11.7.7	P. O.	Box_75			NM 88241	
REPORT	FIRE	BREAK	SHIL	_ L ,	LEAK		, ,	100	IER*		
OF TYPE OF	DRLG	r KUD	TALK	Τp	I X	GÁSO	TOIL	┵	OTHER*		
FACILITY	WELL	1	x BTTY	, ,	ÎNÊ	PLNT	RFY	ļ			
TANE OF	THE C.C.	1.1		`			<u></u>			······································	
FACILITY	Rock Qu	een Unit	Tract :	30 #5			_				_
LOCATION							SEC.		11.2.	RGE.	COLLLIY
TER SECT!	ON OR FOO	TAGE DES	CRIPTIC:		//4 NW/4	···	30		13s	32	Lea
DISTANCE				- ·							
EST_TOWN		ENT LAND	HARK	27	miles n	orth of I					
DATE AND						DATE AN					
OF OCCURE				37 NE	 	OF DISC		10	:30 A.	M. of 10	/15/90
WAS INCHED	1			OT RE		IF YES,		_			
NOTICE GI	KERY 1	Х		UIRED		DATE	Don	n <u>a</u> P	itzer		
	- •	_					R 11:	10 A	.M. of	10/15/9	o
TYPE OF	ames Davi	<u>s</u>		· · · ·		QUANTIT				VOLUME	RE
FLUID LOS	T oil &	water				OF LOSS		bls	fluid	COVERED	See below
DID ANY F	LUIDS REA		s INC)	IQUANTIT					*	
A WATERCO	URSE?	l x			280	bbls wat	er. 5	bbl	s oil		
IF YES, D	ESCRIBE F	ULLY**									
1	Ran into	a lake b	eđ, no d	other	outlet	to water	cours	e.			
:	Site insp	ection m	ade by I	Eddie	Seay wi	th OCD at	t 1:30	P.M			
DESCRIBE (CAUSE OF	DOODLESS (NUD DEME	DIAL	ACTION T	VE 24*					
	Hunter ra									rom lake	
1	oed, cove	red othe	r areas.	. Pla	ced fe	nce arou	nd lak	e be	d.		
DESCRIBE A	AREA AFFE	CTED AND	CLEARUP	ACTI	ON TAKEN	**					
	also bod		a	F 1-	c		n: -	.1 .2			
	Lake bed										a
	immediate contamina								α το σ	ontain	
									<u> </u>		
DESCRIPTIONS AREA	Jii	FARMING	ا	RAZIN	ն X	URBAN	1	OTHE	K*		
OF AREA SURFACE		SANDY	SANDY		ICLAY	ROCKY		WET		DRY	SHOW
CONDITIONS		SMITH	LOAM		JULA I	KOCKI	x	MEI	- 1	ואט	311011
DESCRIBE (OUDITIONS		1 11:G	TEMPERA	TURE, PR		ATIO	N. F1C)**	
					(,			•	,	• ,	
1	Ory & war	m									
I HEREBY (HEORMAT	ION A	BOVE 15	TRUE AND	COMPL	ETE	TO THE	BEST OF	MY
KNOWLEDGE	AND BELI	EF									
1	Above inf	ormation	based o	on dat	a furni	shed by 1	Eddie	Seay	& Jame	es Davis	•
SIGMED	Down	a Holler			דוד	LE Ager	nt			DATE	11/20/90
*SPECIFY	W U W		CH ADDI	TIOUAL		IF RECES				UNIL	11/20/30
SELLIE		7(11)		1 1 (1) (4)	- 3007 (1.3	TE NELE:	3.374K T				

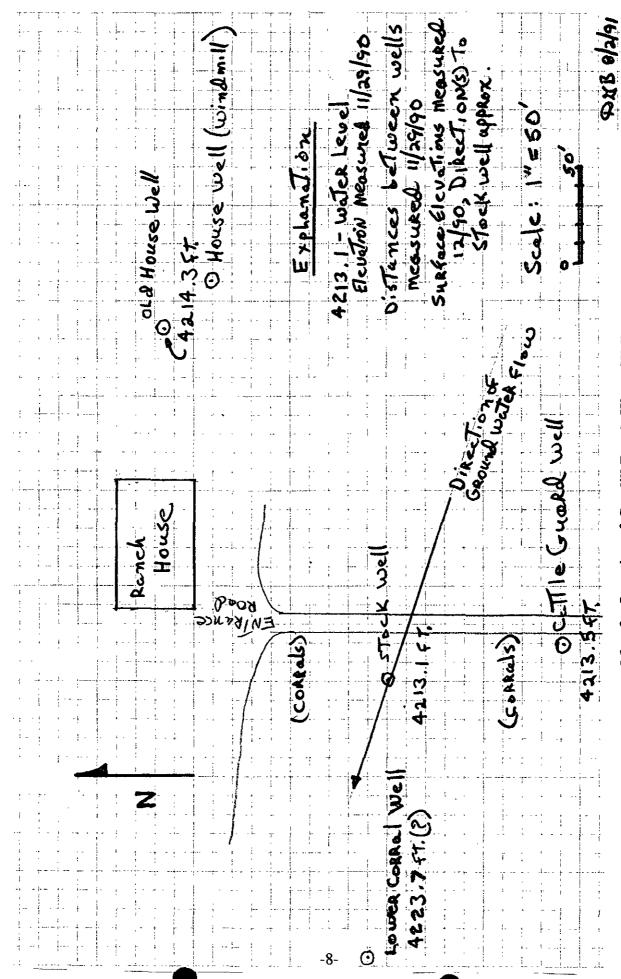

OIL CONSERVATION DIVISION


wiset a Division

NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS 9 17


RAME OF	-			L L	ADDRESS		•		
OPERATOR CI	ircle Rid				P. O. Bo	x 755, H	obbs, NM	88241	
REPORT OF	FIRE	BREAK	SPILL	LEAK	BLOWOU	T OT	HER*		
TYPE OF FACILITY	DRLG WELL				GÁSÓ PLNT	OIL RFY	OTHER*	· · · · · · · · · · · · · · · · · · ·	
WARE OF		<u> </u>				·			
FACILITY	Rock Que	en Unit				1 × 5 ×	15.00	1005	122.
LOCATION OF TER SECTION				SW/4 NE	/4	SEC. 26	TWP.	RGE. 31E	Chaves
DISTANCE AT				34/ 4 ND/		<u> </u>	1 135	1 210	Chaves
EST TOWN OF	R PROMINE			6 miles					
DATE AND HO		of 3/11/	Q 1		OF DISC		m 3/12/9) 1	
OF OCCURENCE WAS IMMEDIA	TE TYPE	S [NO	INOT R	F =	IF YES,	JACKI VA	M 3/12/3	<u> </u>	
NOTICE GIVE		x	QUIRE		то иной	Eddie	Seay		
3 Y					DATE		. / /	· · · · · · · · · · · · · · · · · · ·	
WHOM JE	ames Davis	5			QUANTITY		3/12/91	VOLUME RE	
FLUID LOST	200 во,	200 BW			OF LOSS		bls	COVERED	250 bbls
DID ANY FLO	JIUS REACH		NO	QUANTIT					
A WATERCOU	<u> </u>		X						
IF YES, DES	SCRIBE FUL	LI^^							
DESCRIBE CA	MEE OF DE	MOLEN AND	DENEDIAL	ACTION T	VE HAR				
DESCRIBE CH	NUSE OF PA	ODLEH AND	KEHEDIAL	ACTION 1	HNCH				
H-	iah wind 1	olow water	lea off	senarato	r: renlac	emes her			
	rg write i	Jion water	icg OII	separaco	., repido	.cu same.			
DESCRIBE AN	EA AFFECT	EN AND CLE	AUTID ACT	ION TAKEN	**	·		 .	
		are ground me with du:	_	lor years	salt wat	er leaks	•		
G.C	Mered 241	ME WICH QU.	L C •						
DESCRIPTION	IFA	RMING	GRAZ II	NG	URBAN	TOTIN	ER*		
OF AREA				Х			 	·	
SURFACE CONDITIONS	SA		ANDY .0AM	CLAY	ROCKY	WET	10	RY	SHOW
DESCRIBE CE	HERAL CON			(TEMPERA		CIPITATIO	ON, ETC.)**	
				•			•	•	
Wi	indy, warı	n							
I HEREBY CE			RMATION A	ABOVE 15	TRUE AND	COMPLETE	TO THE	BEST OF M	Y
KNOWLEDGE A	ND BELIEF								
	11	. 1			7	lacent.		•	/10/01
SIGNED	Wa	uni Lak	10-1	TITI	.Ε	lgent		DATE 3/	18/91
KSDECTEV		**ATTACU	ACO 1 T T O	CUECTO	TE UCCES				

Map 1. Location of Caudill Ranch Study Area



- 1 Caudill House Well
 - 2 Caudill Stock Well
- Salt Water Disposal Well
- Water Injection Well (secondary recovery)
- Wells Temporarily Abandoned, or Plugged and Abandoned

40-ACRE TRACTS WITHIN A SQUARE-MILE SECTION

D	С	В	Α
Е	F	G	Ξ
L	K	J	ı
Ŋ	N	0	Р

Map 2. Location of Oil and Gas Wells

Map 3. Location of Caudill Ranch Water Wells

```
Records
           Organize
                       Go To
                                Exit
            CIRCLE RIDGE
OPERATOR
FACILITY
             FL
TYPE
CAUSE
            LK
UNIT_LTR
             Α
SEC
             34
             13S
TWP
RGE
             31E
             CHAVES
COUNTY
             01/06/90
DATE
                25
OVS
                5
OVR
                20
OVL
WVS
WVR
WVL
MVS
MVR
MVL
CLEANUP
            N
```

Edit ¤C:\dbase\roger\SPILL90 ¤Rec 12/80 ¤File ¤ ¤ Caps

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

August 7, 1991

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

Mr. Robert Love, Attorney P. O. Box 1099 Hobbs, New Mexico 88240

RE: CAUDILL RANCH GROUND WATER INVESTIGATION

Dear Mr. Love:

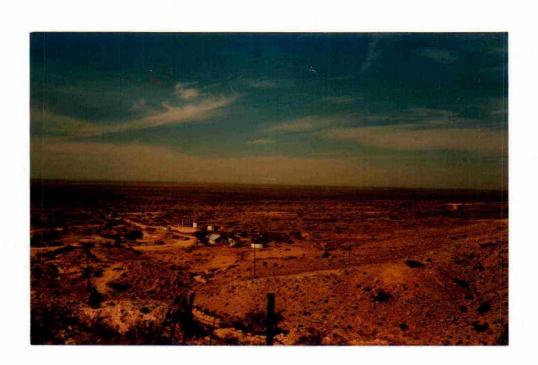
Enclosed for your use is the final report on our Caudill Ranch Ground Water Investigation. I appreciate your patience during the past several weeks while I was completing the report.

As I previously told you by phone, the water quality results show calcium chloride versus sodium chloride contamination. The former is not associated with oil well salt water production or disposal activities, but may be due to improper handling or disposal of common oil field chemicals by a service company. The specific circumstances relating to spill location, date, and responsible party remain unknown, but I believe the discharge occurred in the drainageway adjacent to the ranch road between the cattleguard and the top of the caprock.

If you have any questions on the report, or if you need further information, please contact me at 827-5812.

Sincerely,

David G. Boyer, Hydrogeologist Environmental Bureau Chief


DGB/sl

Attachment

cc: E. P Caudill (w/report)

Ken Fresquez, State Engineer Office Roswell (w/report)

Sandra Porenta, BLM - Roswell (w/report)

