SPILL REPORT

CERTIFICATE OF WASTE STATUS

NON-EXEMPT WASTE MATERIAL

Originating Location: TNM Sites 3, 3A, 3B, 3C+ 4 Monument and La Count g Source: Crude Oil Pipeline SP:LL

Disposal Location: C+C Land Form Inc. 2 miles South of Monument NM

As a condition of acceptance for disposal, I hereby certify that this waste is a non-exempt waste as defined by the Environmental Protection Agency's July 1988 Regulatory Determination. To my knowledge, this waste will either be analyzed pursuant to the provisions of 40 CFR Part 261 to verify the nature as non-hazardous or has been verified non-hazardous due to "Knowledge of Process." I further certify that to my knowledge no "hazardous or listed wastes" pursuant to the provisions of 40 CFR Part 261, Subparts C and D, has been added or mixed with the waste so as to make the resultant mixture a "hazardous waste" pursuant to the provisions of 40 CFR, Section 261.3 (b).

I, the undersigned as the agent for the <u>Texas New Mexico Pipeline Co.</u> concur with the status of the waste from the subject site.

NAME John A. Savoie
TITLE/AGENCY Senior Tech
ADRESS P.D. BOX 1030
SIGNATURE de Sauce
DATE 4-2-3-97

APR 2 3 1997

Department Originated 8/8/ Submit Origin Plus 1 Control of the appropria District Off
OLID WASTE
4. Generator TexAS N.M. P. peline Company
5. Originating Site $3, 34, 36, 34 \neq 4$
6. Transporter Turner Trucking
8. State New mexico
panied by necessary chemical analysis to of origin. No waste classified hazardous by or transport.
N. m. D. C. D
APR 23
FRECEIVE
or at the end of the haui) cy
DATE: 4-15-97
HONE NO
······································
a /33/57
<u>7/L</u> DATE: <u>4/23/57</u>
DATE:

OCT 03 1997

Environmental Bureau Oil Conservation Division

COMPREHENSIVE ASSESSMENT REPORT

TEXAS - NEW MEXICO PIPELINE COMPANY MONUMENT SITE NO. 4 LEA COUNTY, NEW MEXICO

San Antonio, Texas 78238 (210) 680-3767 (210) 680-3763 FAX

COMPREHENSIVE ASSESSMENT REPORT

MONUMENT SITE NO. 4 LEA COUNTY, NEW MEXICO

PREPARED FOR:

TEXAS - NEW MEXICO PIPELINE COMPANY

P.O. Box 1030 Jal, New Mexico 88252

Mr. Tony Savoie

PREPARED BY:

KEI

E. Michael Chapa Associate Scientist

J. Michael Hawthorne, P.G., REM

J. Michael Hawthorne, P.G., REN Senior Geologist

KEI Job No. 610057

EXECUTIVE SUMMARY	1
INTRODUCTION	2
SUBSURFACE INVESTIGATION SENSITIVE RECEPTOR SURVEY/MIGRATION PATHWAY EVALUATION FIELD ACTIVITIES SOIL ASSESSMENT LABORATORY ANALYSES	2
WASTE MANAGEMENT	4
QA/QC PROCEDURES DECONTAMINATION OF EQUIPMENT SOIL SAMPLING LABORATORY PROTOCOL	4
CONCLUSIONS	5
RECOMMENDATIONS	5
FIGURES FIG. 1 - Site Location Map FIG. 2 - Site Details FIG. 3 - Log and Details of Soil Boring B4-1	
TABLES GENERAL NOTES TABLE I - Summary of Laboratory BTEX/TPH Results - Soil	
APPENDIX A - STATE OF NEW MEXICO WELL REGISTRATIONS APPENDIX B - SOIL ASSESSMENT Certified Laboratory Reports - Soil Chain-of-Custody Documentation	

EXECUTIVE SUMMARY

This report summarizes the results of subsurface assessment activities conducted at Monument Site No. 4, located in Lea County, New Mexico. Activities were performed in general accordance with the work plan submitted with the Phase I - Preliminary Site Characterization Report prepared for the site and approved by the State of New Mexico Oil Conservation Division.

Field activities associated with the subsurface assessment consisted of collecting composite samples from the sidewalls, floor and associated stockpile of the on-site excavation and advancing one soil boring within the excavation for the collection of native soil samples for laboratory analysis. A sensitive receptor survey/migration pathway evaluation was also conducted.

Results of the assessment included the following:

- Soil analytical results indicated the presence of xylenes and total petroleum hydrocarbons (TPH) at concentrations noted within the report.
- Observed impact to soils from petroleum hydrocarbons extended from the ground surface to approximately 16 feet below ground surface.

Recommended remediation activities to be conducted pursuant to final site closure include:

- Excavate soils with TPH impact exceeding the State of New Mexico Oil Conservation Division regulatory closure concentration of 100 mg/kg.
- Conduct off-site landfarming of excavated soil.

INTRODUCTION

This report summarizes the results of the subsurface assessment activities conducted in response to suspected crude oil impact at Monument Site No. 4, located in Lea County, New Mexico. Site No. 4 consisted of an open excavation approximately 6 feet wide, 30 feet long, and 4 feet deep and an associated soil stockpile. A site location map is presented as FIG. 1.

A scope of work for the subsurface assessment was prepared based upon field observations obtained during a preliminary investigation of surface site conditions. The proposed work plan was presented in the Phase I - Preliminary Site Characterization report dated June 21, 1996, and was approved by the State of New Mexico Oil Conservation Division in a letter dated August 16, 1996. The general scope of work for the subsurface investigation included:

- A sensitive receptor survey, migration pathway evaluation and registered water well search.
- Collecting composite samples from the floor and sidewalls of the excavation and from the soil stockpile.
- A single soil boring advanced within the excavation.

SUBSURFACE INVESTIGATION

SENSITIVE RECEPTOR SURVEY/MIGRATION PATHWAY EVALUATION

Receptor Survey

A sensitive receptor survey/migration pathway evaluation was conducted at the site. No potential receptors were identified within a 500-foot radius of the site. Adjacent properties consisted of an inactive crude oil pumping unit and storage tank to the north, range land with two crude oil pumping units to the east, and vacant range land to the south and west.

A search of State of New Mexico water well registrations indicated one registered water well within a 1/2-mile radius of the site. A copy of the well registration is presented in APPENDIX A. An approximate location of the well is presented on FIG. 1.

Migration Pathway Evaluation

Potential manmade migration pathways identified during the survey included a TNMPL crude oil pipeline extending north to south through the approximate center of the site; a pipeline of undetermined ownership extending from northwest to southeast approximately 20 feet south of the excavation; a Texaco Products gas line extending from east to west approximately 50 feet north of the excavation; an ENRON Gas pipeline extending from the northwest to southeast approximately 45 feet southwest of the excavation; and a Warren Gas pipeline extending from the northeast to the southwest approximately 80 feet west of the excavation.

Approximate locations of the identified manmade potential migration pathways are presented on FIG. 2.

Ground water was not observed during the subsurface assessment. Surface drainage at the site is to the southeast.

FIELD ACTIVITIES

Soil Borings

On March 6, 1997, Soil Boring B4-1 was advanced utilizing a direct-push hydraulic sampling system. The boring was advanced within the excavation for the purposes of delineating vertical hydrocarbon impact above closure concentrations. Field observations obtained during the soil boring advancement included the following:

- Ground water was not observed during advancement of B4-1.
- Phase-separate hydrocarbons (PSH) was not identified during the advancement of B4-1.
- Hydrocarbon impact above closure concentrations in vadose zone soils appears to be limited to surficial soils within the excavation.

Upon completion of sampling activities, the soil boring was backfilled to the ground surface with a cement/bentonite grout. The approximate location of the soil boring is presented on FIG. 2.

Excavation Composite Samples

On March 21, 1997, a KEI field technician obtained composite samples of the excavation floor, sidewalls and associated stockpile. Each of the samples consisted of a five-part composite collected from evenly distributed sections of the respective sample location.

SOIL ASSESSMENT

The subsurface profile was classified in general accordance with the Unified Soil Classification System by visually observing soil samples obtained during drilling. In general, one soil type was encountered. A general description, approximate thickness, and head-space results of the soil type are discussed as follows:

Soil Type 1

The soil consisted of a tan gravel. The moist gravel was mixed with silt and sand and was calcareous (caliche). The gravel was encountered from the ground surface to the maximum depth investigated, approximately 16 feet below ground surface (bgs). The head-space readings from samples of this soil type were below instrument detection levels (ND).

A graphic log indicating the subsurface soil profile, depths at which soil samples were obtained, head-space results, laboratory results, and the soil boring details is presented on FIG. 3.

LABORATORY ANALYSES

Soil

Soil samples selected for laboratory analysis were express mailed to Xenco Laboratories in San Antonio, Texas for determination of TPH concentrations by EPA METHOD 418.1 and BTEX concentrations by EPA Method SW846-8020.

Analytical results indicated the following range of constituent concentrations for the excavation composite and soil boring samples:

RANGE OF CONCENTRATIONS
32.5 to 785 mg/kg
ND to 0.025 mg/kg
ND

A complete summary of analytical results for soil samples is presented in TABLE I. Copies of the certified laboratory reports and chain-of-custody documentation for soils are presented in APPENDIX A.

WASTE MANAGEMENT

No wastes were generated during the assessment activities.

QA/QC PROCEDURES

DECONTAMINATION OF EQUIPMENT

Cleaning of drilling equipment was the responsibility of the drilling company. In general, the cleaning procedures consisted of using high pressure steam to wash the drilling and sampling equipment prior to drilling and prior to starting each hole. Prior to use, the sampling equipment was cleaned with Liqui-Nox detergent and rinsed with distilled water.

SOIL SAMPLING

Samples of the subsurface soils were obtained utilizing a direct-push continuous sampling device. Representative soil samples were divided into two separate portions using clean, disposable gloves and clean sampling tools. One portion of the soil sample was placed in a disposable sample bag. The bag was labeled and sealed for head-space analysis using a photo-ionization detector (PID) calibrated to a 100 ppm isobutylene standard. Each sample was allowed to volatilize for approximately 30 minutes at ambient temperature prior to conducting the analysis.

The other portion of the soil sample was placed in a sterile glass container equipped with a Teflon-lined lid furnished by the analytical laboratory.

Excavation composite samples were hand collected by KEI field personnel wearing disposable neoprene gloves and utilizing clean stainless-steel hand tools. Any sampling equipment utilized was decontaminated between sampling points with a Liqui-Nox detergent wash and a distilled water rinse.

Each sample container was filled to capacity to limit the amount of head-space present, was labeled and placed on ice in an insulated cooler. Upon selection of samples for analysis, the cooler was sealed for shipment to the laboratory. Proper chain-of-custody documentation was maintained throughout the sampling process.

LABORATORY PROTOCOL

The laboratory was responsible for proper QA/QC procedures. These procedures are either transmitted with the laboratory reports or are on file at the laboratory.

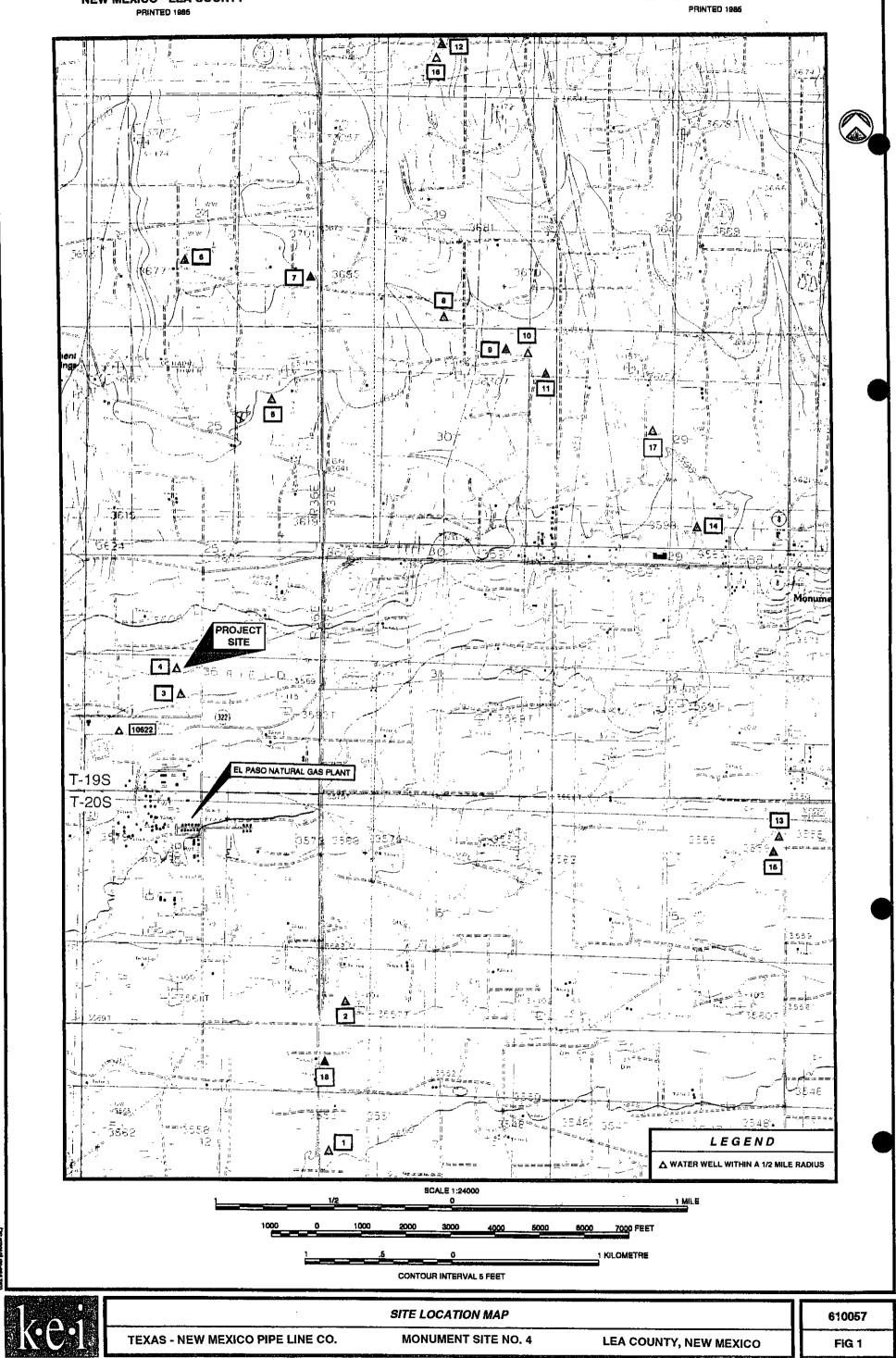
CONCLUSIONS

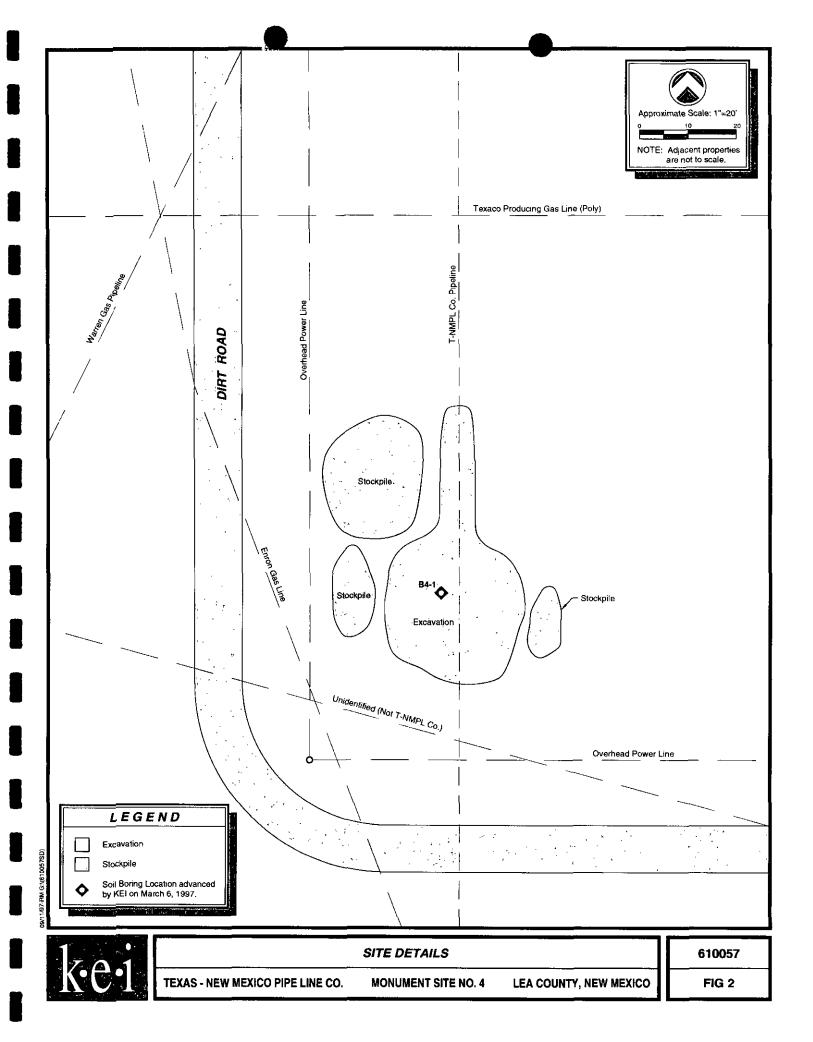
The following conclusions are based on the field observations, drilling activities, and soil laboratory results:

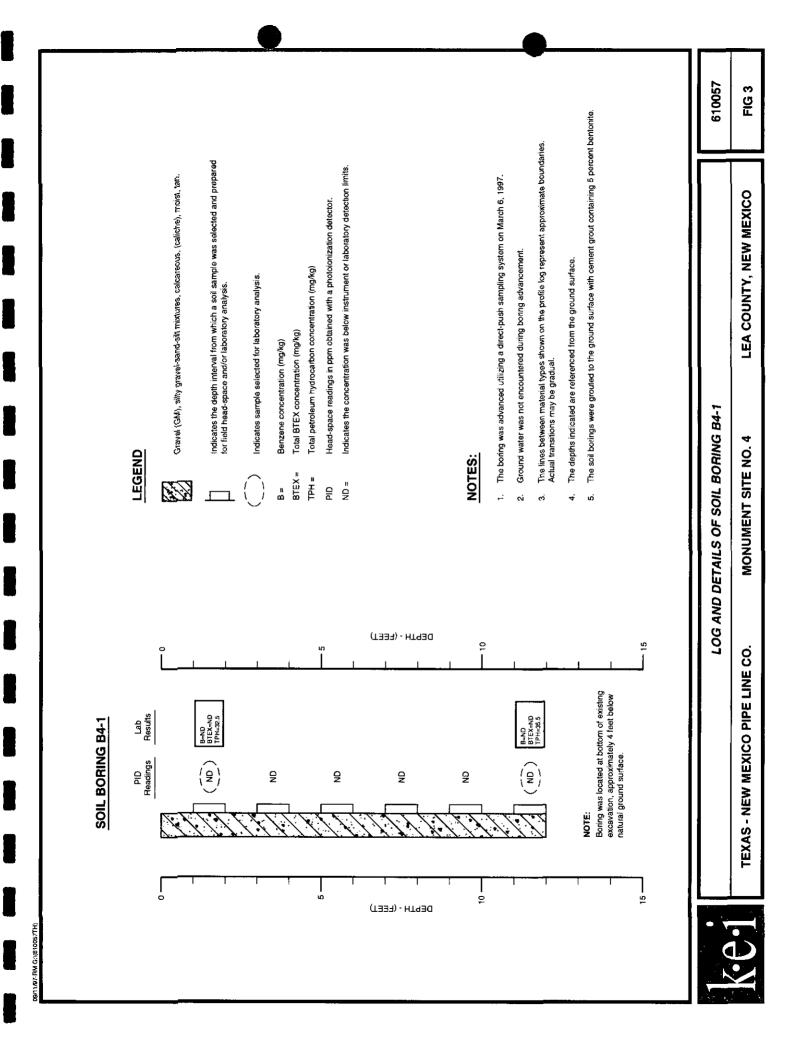
- Petroleum hydrocarbon impact above closure concentrations is limited to surficial soils within the excavation and to soils contained in the on-site stockpiles.
- Vadose zone soils greater than 1.5 feet below the bottom of the excavation floor do not appear to be impacted above State of New Mexico Oil Conservation Division regulatory closure concentrations.

RECOMMENDATIONS

Recommendations for remediation of impacted soil at the site include the following:


- Excavate soils exceeding TPH closure concentration of 100 mg/kg.
- Conduct off-site landfarming of excavated soil.




.*

MONUMENT SOUTH QUADRANGLE

NEW MEXICO - LEA COUNTY

GENERAL NOTES

ND - Indicates constituent was not detected above the method detection limit.

N/A - Indicates depth of sample is not applicable or not available.

Depths for soil boring samples are referenced from the bottom of the excavation, approximately 4 feet below natural ground surface. All other depths are referenced from the ground surface.

Method detection limit

Benzene -	0.020 to 0.050 mg/kg
Toluene -	0.020 to 0.050 mg/kg
Ethylbenzene -	0.020 to 0.050 mg/kg
Xylene -	0.060 to 0.150 mg/kg
BTEX -	0.120 to 0.300 mg/kg
TPH -	10 mg/kg

Laboratory testing method

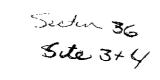

BTEX	-	EPA Method SW846-8020
TPH	-	EPA Method 418.1

TABLE I

SUMMARY OF LABORATORY BTEX/TPH RESULTS - SOIL MONUMENT SITE NO. 4 LEA COUNTY, NEW MEXICO

SAMPLE LOCATION	SAMPLE DATE	DEPTH (feet)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL- BENZENE (mg/kg)	XYLENES (mg/kg)	TOTAL BTEX (mg/kg)	TPH (mg/kg)
B4-1	03/06/97	1-2	ND	ND	ND	ND	ND	32.5
B4-1	03/06/97	11-12	ND	ND	ND	ND	ND	35.5
EXCAVATION FLOOR	03/21/97	4	ND	ND	ND	ND	ND	213
EXCAVATION								
SIDEWALL	03/21/97	N/A	ND	ND	ND	ND	ND	319
STOCKPILE	03/21/97	N/A	ND	ND	ND	0.025	0.025	785

I

10607 10607 10007 100	2		· · ·	•	•		•	-1	, 	L.	. 🦦	- 41 - 12	•			с. Г 8 К	Ĺ	N 1	Ŀ	نه	, 	<u> </u>	ر) م ع		U			۵Ę				1
III III III III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		10634 L	10812 L	4.04739	L 01844	10521 [10630 L 01941	. C . 01843	10528 1 01842	10627 L 01840 E L	1 01840 22	۲ 01269	10220	10622 1	10621 1 12671	10620 L 04715	- 10619 L	10618 [L 00000	-	L 10245	21560 - 1	10614 L	1061200212	10412 1	10611 L	10610	1000 2010 2010 2010 2010 2010 2010 2010			10695 L	10603 L
R1 Description Feature Secrete Feature Secretee Feature Secrete	01241				01540	01843				1.2 2					Î									08286				States and	51250	03715		
	91	36	9	68	2	ទ	2	2	91	8	ន	10	10	99	E	99	67 .	F	10	02		3	3 0	2	2	3	я. Я	1	10	6	97	9
							i			7. j										•				. 1	2			`				
			I		1	1				^ ,								- 1	977							1	1					
	8	305				RE	· .				ļ	316	HOT		ł	arc	•	EXP	324	040	202		090	INN S	IRR	107	ţ, Ŗ	. '	IRR 5		105	i
	¢i	19	1	19	19	1	19	19	1	5	19	6L	· 19	19			. 19		191	13		· . 19	191			19	151	1. 1		6	::	 34
					1		JÆ				JE .	•		1					35E									36€	36E	1	1	h
		2	4			10						1				•		ម		l	Ł			*			72			8		
]			410	Į	2311]	21.54		1		442	ļ			340]												
1 11.1 11.1 11.1 11.1 11.1 11.1 3 25.4 12 12.1 11.1 11.1 11.1 3 25.7 12 12.1 12.1 12.1 12.1 12.1 3 657 5 1000000000000000000000000000000000000					1		`				ł		•																			
							,			۰.											ĺ				•							
F. C.T. MANUSCH LUNCTION L.M. L.M. L.M. L.M. 6.5 MARKET LUNCTION 1.00 0 0 0 6.5 MARKET LUNCTION 1.00 0.00 0 0 6.5 MARKET LUNCTION 1.00 1.00 0 0 6.5 MARKET LUNCTION 1.00 0.00 0 0 6.5 MARKET LUNCTION 0.00 0.00 0 0 0 6.5 MARKET LUNCTION 0.00 0.00								1	2		ł										Í											
NUMERAL LARGE LARGE ENDERT 1.00 1.00 0.00 <th< td=""><td></td><td></td><td>1</td><td></td><td></td><td>79</td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			1			79			2						1																	
NUME NUME NUME NUME NUME NUME Rev ENNETT 0.00 0.00 0 0 R 0.00 0.00 0 0 0 0 R 0.00 0.00 0 0 0 0 0 R 0.00 0.00 0 0 0 0 0 R 0.00 0.00 0 0 0 0 0 R 0.00 0.	-			-				-														,			-,							
1:00 0 0 0 1:00 0 0 1:00 <t< td=""><td>HOPPS COUNTRY CLUP</td><td>50Y SCOUTS OF AMERICA</td><td>BUT SCUUTE OF PARTIES</td><td>BOY SCOUTS OF AMERICA</td><td>HOBBS COUNTRY CLUB</td><td>RUBBS COUNTRY LLUB</td><td>HOBBS COUNTRY CLUB</td><td>HORRS COUNTRY CLUB</td><td>HEERS COUNTRY CLUB</td><td>HOSES COUNTRY CLUB</td><td>KOBBS COUNTRY CLUB</td><td></td><td>GULF DIL CORP</td><td>CLIMAX DHENICAL CO</td><td>CLIMAN CHEMICAL CO</td><td>CLIMAX CHEMICAL CO</td><td>RUSICK T E</td><td>CLIMAL URENIERE SE</td><td></td><td>BOURE CECAR DRS CO</td><td>RISIN FATE L</td><td>KLEIN FAYE L</td><td>HAMON JAKE</td><td>NASSEL LLANSHER & RUNDA</td><td>MASSEY CLARENCE & NORMA</td><td>037 4612</td><td>TURNER FRANK K</td><td>JCRDAX E R</td><td>HUSHES LARRY ESNNETT</td><td>NUSALE LEANI BEANEII</td><td>AUGULENI UNDEUS</td><td></td></t<>	HOPPS COUNTRY CLUP	50Y SCOUTS OF AMERICA	BUT SCUUTE OF PARTIES	BOY SCOUTS OF AMERICA	HOBBS COUNTRY CLUB	RUBBS COUNTRY LLUB	HOBBS COUNTRY CLUB	HORRS COUNTRY CLUB	HEERS COUNTRY CLUB	HOSES COUNTRY CLUB	KOBBS COUNTRY CLUB		GULF DIL CORP	CLIMAX DHENICAL CO	CLIMAN CHEMICAL CO	CLIMAX CHEMICAL CO	RUSICK T E	CLIMAL URENIERE SE		BOURE CECAR DRS CO	RISIN FATE L	KLEIN FAYE L	HAMON JAKE	NASSEL LLANSHER & RUNDA	MASSEY CLARENCE & NORMA	037 4612	TURNER FRANK K	JCRDAX E R	HUSHES LARRY ESNNETT	NUSALE LEANI BEANEII	AUGULENI UNDEUS	
	73.01	6,00	0110	0.00	0.00	0.00	0.0	0.00	0.00	27.16	0.00	0,00	0.00	0.60		0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0, 00	40.00	0.03	00.00	5.00	5.00	4.1.97		
	219.03	3.00	2.95	ن. ور	0.00	О. Л	0 O	0.06	0.U	81.46	0.00	10.5	0.00	3.00	0.0	3.00	3.00	10. 1	0.00	0.00	5.50	9.06	0.00	0. VQ	120.00	3.00	90.00	6.00	0.00	69. W		4 <u>.</u> .
			1			2 2		1	ð]				5			0 1								}			
)		ſ					ς Ξ.		- - 											USED FUX SIJUSI ALSU			50次 11 41 11 11 11 12 12	AL SHARES							
	(33) •	<u>ម ពេ</u>	G		<u>6 7 </u>	8 <u>8</u> 3	<u> </u>	<u>។ ត្រូ</u>	line) U	<u>5 5 8</u> U	<u>8 8 5</u> (<u>ة ة</u> ب	144 U	<u>53</u>	<u>स्त्र</u> ७		<u>'ਜ਼ਾਦ</u> (<u>४</u> ३ ७		1 <u>88</u>	18 4 L	<u>ققة</u> نيا	186	Fa U	<u>مَ = ة م</u> استا	<u>0 00 4</u>			-) 			ڻ د

ļ

K.E.I. Consultants, Inc. Project Name: TNMPL Monument

Project ID: 610057 2-4 Project Manager: Ann Baker Project Location: Site 4

Date Received in Lab: Mar 7, 1997 10:10 by CB Date Report Faxed: Mar 12, 1997

XENCO contact: Carlos Castro/Edward Yonemoto

Analysis Requested	Lab ID: Field ID: Depth:	170563-001 B4-1 1-2'	170563-002 B4-1 11-12'				
BTEX Analyzed by EPA 8020		Da	te Analyzed	 Analytical 	Results	ppm (mg/L	- mg/Kg)
		Mar 10, 1997	Mar 11, 1997				
Benzene		< 0.020	< 0.020			· · · · · · · · · · · · · · · · · · ·	
Toluene		< 0.020	< 0.020				
Ethylbenzene		< 0.020	< 0.020				<u></u>
m,p-Xylenes		< 0.040	< 0.040				
o-Xylene		< 0.020	< 0.020				
Total BTEX		< 0.120	< 0.120				
TPH Analyzed by EPA 418.1		Da	te Analyzed	- Analytical	Results	ppm (mg/L	- mg/Kg)
•		Mar 11, 1997	Mar 11, 1997				
Total Petroleum Hydrocarbons		32.5	35.5				

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

SBA Award of Excellence 1994. Certified by AR, KS, OK & Accredited by A2LA

Houston - Dallas - San Antonio

Certificate Of Quality Control for Batch: 17A25A74

SW- 846 5030/8020 BTEX

Date Validated: Mar 11, 1997 11:00 Date Analyzed: Mar 10, 1997 22:18 QA/QC Manager: Edward H. Yonemoto, Ph.D.

MATRIX SPIKE / MATRIX SPIKE DUPLICATE AND RECOVERY

Analyst: CB Matrix: Solid

						· · · ·					
	(M)	19]	[0]	ē	[5]	Matrix	E	ତ୍ର	E	Ε	E
	Sample	Matrix Spike	Matrix Spike	Matrix	Method	Limit	gc	8	ပ္ပ	Matrix Spike	
170563- 001	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
rarameter	mqq	wdd	mqq	mqq	mqq	%	%	%	%	%	<u></u>
Benzene	< 0.020	1.762	1.798	2.000	0.020	25.0	2.0	88.1	89.9	65-135	
Toluene	< 0.020	1.784	1.842	2.000	0.020	25.0	3.2	89.2	92.1	65-135	
Ethylbenzene	< 0 020	1.856	1.934	2.000	0.020	25.0	4.1	92.8	96.7	65-135	
m.p-Xylenes	< 0.040	3.740	3.940	4.000	0.040	25.0	5.2	93.5	98.5	65-135	
o-Xylene	< 0.020	1.808	1.928	2.000	0.020	25.0	6.4	90.4	96.4	65-135	

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100°(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100°(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Houston - Dallas - San Antonio

Fonemoto, Ph.D. **GA/OC Manager** Edwart

0	C I
	<u>ori</u>
	L U
	o lo e
Lo.	a de la composición d La composición de la c

Certificate Of Quality Control for Batch: 17A25A75

SW- 846 5030/8020 BTEX

Date Validated:Mar 11, 199716:30Date Analyzed:Mar 11, 199709:38QA/QC Manager:Edward H. Yonemoto, Ph.D.

Matrix: Solid

Analyst: CB

			MATR	IX SPIKE /	MATRIX S	PIKE DUPL	ATRIX SPIKE / MATRIX SPIKE DUPLICATE AND RECOVERY	RECOVERY			
	(v)	[8]		[0]	(E)	Matrix	[1]	<u>ច</u>	ΗI	Ξ	
where a sample is	Sample	Matrix Spike	Matrix Spike	Matrix	Method		оc	ç	о О	Matrix Spike	
170563- 002	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
randeter	mqq	bpm	mdd	mqq	mqq	%	%	%	%	%	
Benzene	< 0.020	1.866	1.784	2.000	0.020	25.0	4.5	93.3	89.2	65-135	
Toluene	< 0.020	1.884	1.810	2.000	0.020	25.0	4.0	94.2	90.5	65-135	
Ethylbenzene	< 0.020	1.872	1.800	2.000	0.020	25.0	3.9	93.6	0.06	65-135	
m.p-Xylenes	< 0.040	3.840	3.680	4.000	0.040	25.0	4.3	96.0	92.0	65-135	
o-Xylene	< 0.020	1.882	1.812	2.000	0.020	25.0	3.8	94.1	9.06	65-135	

Spike Relative Difference [F] = 200°(B-C)/(B+C) Matrix Spike Recovery [G] = 100°(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100°(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Houston - Dallas - San Antonio

emoto, Ph.D. QAVQC Manager Edward

Certificate Of Quality Control for Batch: 17A30A81

EPA 418.1 Total Petroleum Hydrocarbons

Date Validated: Mar 11, 1997 11:00

Analyst: HL

Date Analyzed: Mar 11, 1997 09:21

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			BLANK SPI	KE ANALYS			
	[A]	(B)	[C]	[D]	(E)	(F)	[G]
· ·	Blank	Blank Spike	Blank	Method	QC	LIMITS	
Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
			Amount	Limit	Recovery	Range	
	ppm	ppm	ppm	ppm	%	%	
Total Petroleum Hydrocarbons	< 7.50	179	198	7.50	90.6	65-135	<u></u>

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Certificate Of Quality Control for Batch: 17A30A81

EPA 418.1 Total Petroleum Hydrocarbons

Date Validated: Mar 11, 1997 11:00

Analyst: HL

Date Analyzed: Mar 11, 1997 09:37

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		MATRIX	UPLICATI	Ε ΔΝΔΙ Υς		
Q.C. Sample ID	[A] Sample	[B] Duplicate	[C] Method		[E] LIMITS	
170562- 001	Result	Result	Detection	Relative	Relative	Qualifier
Parameter	ppm	ppm	Limit ppm	Difference %	Difference %	
Total Petroleum Hydrocarbons	17500	17800	375	1.7	30.0	

Relative Difference [D] = 200*(B-A)/(B+A) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edwand H. Conemoto, Ph.D. QA/QC Manager

ANALYTICAL CHAIN OF CUSTODY REPORT

Ì

CHRONOLOGY OF SAMPLES

K.E.I. Consultants, Inc.

Project Name: TNMPL Monument

Project ID: 610057 2-4

Project Manager: Ann Baker Project Location: Site 4

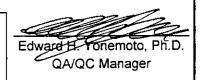
XENCO COC#: 1-70563

Date Received in Lab: Mar 7, 1997 10:10 by CB

XENCO contact : Carlos Castro/Edward Yonemoto

								Da anti-	Date and Time	
Ē	Field ID	Lab. ID	Method	Lab. ID Method Method		Around	nits Turm Sample Addition Around Collected Requested	Addition	Extraction	Analysis
84-1(1-2')		170563-001 BTEX	atex	SW-846		Standard	ppm Standard Mar 6, 1997 09:30		Mar 10, 1997 by CB	Mar 10, 1997 by CB Mar 10, 1997 22:01 by CB
		•	HdT	EPA 418.1	mqq	Standard	ppm Standard Mar 6, 1997 09:30		Mar 11, 1997 by HL	Mar 11, 1997 by HL Mar 11, 1997 08:40 by HL
B4-1(11-12')		170563-002 BTEX	BTEX	SW-846	mdd	Standard	ppm Standard Mar 6, 1997 09:40		Mar 11, 1997 by CB	Mar 11, 1997 by CB Mar 11, 1997 09:38 by CB
			TPH	EPA 418.1	bpm	Standard	ppm Standard Mar 6, 1997 09:40		Mar 11, 1997 by HL	Mar 11, 1997 by HL Mar 11, 1997 09:43 by HL

-


[33]			H	< € #1	ONLY	E C		-	N	0	4	u	ø	•	۵	a	ę	L K		Services
Page 1 of 1 Lab Batch #1705/e3	Contractor COC # 6005	Quee : P.Q. No: 7239		/ Turn-around		_	Podso H Sumarks											highwat TPH Render		Precision Analytical Services
ECORD T FORM							/////											Remarks peull us ith highers t		-
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST FORM	No coolera this shipment	of Airbill No.	.L			<u> </u>	Trans Art KR	<u> </u>	XXV									BATE THAT 3/7/57 10.05	3/47 10:10	* Pre-scheduling is recommended
CHAIN O AND ANA!	1680-3767	Tx 78238	1 Hertnett	$ \mathcal{Q} $	24	Uni Dies Ker Unknown	Waste Oil PTT No: Tank No: Sample Description	R4-1, 1-2'	B4-1, 11-12'	1								Burley		+ Pre-scheduling
Houston, Texas 77082 Fax (713) 589-0695	Phone (2/0)		Project Director	ð.	1010057		Container W Size Type te Other IT P.G	9	X 5									1.00 Uni	1000 FRANCI 21147	
Meadowylen Suite L 569-0692	Consultants	h 36 100.	Monument		SieyFried	RIZATION	Υ Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω	1-2' 1 4.2	11-12 X 4.2									ר ק <i>\</i> ש ר ק אש	3/1/4/ 19/1/2/	(lab),
	Z37	5309 WURDACH Str 100,	TIMPL N	Site	Brian		Date	3/6A7 0930 1	♦ 09:40									که الایتینیا کاردندگریزیرا	Spaler	Pirk (Contractor), Yellow & White (Lab)
	Contractor	Add SBC	Project Name	Project Location	Sempler Signature		Field ID	1-	11=12						ę			Belloquished by Bright Shee	(fr	Pink (Contra

		K.E.I. Cons Project Nam	-				
Project ID: 610057.02.04							
Project Manager: Paul Hartnett			Date R	Received in L	.ab: Mar 2	25, 1997 10:0	0 by CC
Project Location: Monument			Date	e Report Fa	xed: Mar 2	28, 1997	
				XENCO CON	tact: Carlo	os Castro/Edw	ard Yonemot
	Lab ID:	170700-001	170700-002	170700-003	Ì		
Analysis Requested	Field ID:	Excav. F.	Ex.SideWal	Stockpile			1
	Depth:	Surface	Surface	Surface			
BTEX Analyzed by EPA 8020	!	Da	te Analyzed	- Analytica	Results	ppm (mg/	L - mg/Kg)
		Mar 26, 1997	Mar 26, 1997	Mar 26, 1997			
Benzene		< 0.020	< 0.050	< 0.020			
Toluene		< 0.020	< 0.050	< 0.020			
Ethylbenzene		< 0.020	< 0.050	< 0.020			
m,p-Xylenes	. <u> </u>	< 0.040	< 0.100	< 0.040			
o-Xylene	··	< 0.020	< 0.050	0.025			
Total BTEX		< 0.120	< 0.300	0.025			
TPH Analyzed by EPA 418.1		Da	te Analyzed	- Analytica	Results	ppm (mg/	L - mg/Kg)
		Mar 26, 1997	Mar 26, 1997	Mar 26, 1997			
Total Petroleum Hydrocarbons		213	319	785	·		

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

SBA Award of Excellence 1994. Certified by AR, KS, OK & Accredited by A2LA

1

SW- 846 5030/8020 BTEX

Date Validated: Mar 26, 1997 18:00 Date Analyzed: Mar 26, 1997 10:46 Analyst: CB

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			BLANK SPIP				· ·
	[A]	[8]	[C]	[D]	(E)	[F]	[G]
	Blank	Blank Spike	Blank	Method	QC	LIMITS	
Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifie
			Amount	Limit	Recovery	Range	
	ppm	ррт	ppm	ppm	%	%	
Benzene	< 0.0010	0.1080	0.1000	0.0010	108.0	65-135	
Toluene	< 0.0010	0.1090	0.1000	0.0010	109.0	65-135	<u>.</u>
Ethylbenzene	< 0.0010	0.1080	0.1000	0.0010	108.0	65-135	<u> </u>
m,p-Xylenes	< 0.0020	0.2210	0.2000	0.0020	110.5	65-135	
o-Xylene	< 0.0010	0.1080	0.1000	0.0010	108.0	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, Ph.D. AVQC Manager

.

Certificate Of Quality Control for Batch : 17A25B00

SW- 846 5030/8020 BTEX

Date Validated: Mar 26, 1997 18:00 Date Analyzed: Mar 26, 1997 11:21 QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: CB

Matrix: Solid

	· · · · · · · · · · · · · · · · · · ·		MATF	RIX SPIKE /	MATRIXS	PIKE DUPI	ATRIX SPIKE / MATRIX SPIKE DUPLICATE AND RECOVERY	RECOVERY			
	[M]	[8]	ຍ	ē	E	Matrix	E	[0]	Ĥ	Ξ	
	Sample	Matrix Spike	Matrix Spike	Matrix	Method	Limit	gc	g	g	Matrix Spike	
200 -669021	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	mqq	mqq	mqq	mqq	mqq	%	%	%	%	%	
Benzene	< 0.020	1.932	1.848	2.000	0.020	25.0	4.4	9996	92.4	65-135	
Toluene	< 0.020	1.920	1.810	2.000	0.020	25.0	5.9	96.0	90.5	65-135	
Ethylbenzene	< 0.020	1.952	1.852	2.000	0.020	25.0	5.3	97.6	92.6	65-135	
m.p-Xylenes	< 0.040	3.960	3.760	4.000	0.040	25.0	5.2	66	94.0	65-135	
o-Xylene	< 0.020	1.938	1.844	2.000	0.020	25.0	5.0	96.9	92.2	65-135	

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Edward H. Yonemoto, Ph.D. Cervoc Manager

Certificate Of Quality Control for Batch : 17A30B11

EPA 418.1 Total Petroleum Hydrocarbons

Date Validated: Mar 26, 1997 17:00

Analyst: HL

Date Analyzed: Mar 26, 1997 11:15

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			BLANK SPI	KE ANALYS	SIS		
	[A]	[B]	[C]	[D]	(E)	(F)	[G]
	Blank	Blank Spike	Blank	Method	QC	LIMITS	1
Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
			Amount	Limit	Recovery	Range	
	ppm	ppm	ppm	ppm	%	%	
Total Petroleum Hydrocarbons	< 7.50	171	198	7.50	86.5	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

4 Yonemoto, Ph.D. QA/QC Manager

Certificate Of Quality Control for Batch : 17A30B11

EPA 418.1 Total Petroleum Hydrocarbons

Date Validated: Mar 26, 1997 17:00 Date Analyzed: Mar 26, 1997 11:21

Matrix: Solid Analyst: HL

Ċ.
£
Yonemoto,
Ξ
Edward
C Manager:
QA/Q(

			MATRIX	RIX SPIKE / MATR	SPIKE / MATRIX SPI	PIKE DUPL	ATRIX SPIKE / MATRIX SPIKE DUPLICATE AND RECOVER	RECOVERY			
	[A]	[8]	5	Ē		Matrix	[1]	ତ	Ξ	E	5
ver sample up	Sample	Matrix Spike	Matrix Spike	Matrix	Method	Limit	ac	g	ac	Matrix Spike	_
170699- 00Z	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spìke	M.S.D.	Recovery	Qualifier
Demotor	,		Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	mqq	mqq	μdd	mqq	mqq	*	%	*	*	*	
Total Petroleum Hydrocarbons	20.00	190	198	198	7.50	30.0	4.1	86.0	90.1	65-135	
								1	1		

All results are based on MDL and validated for QC purposes Spike Relative Difference [F] = 200°(B-C)(B+C) Matrix Spike Recovery [G] = 100°(B-A)[D] N.D. = Below detection limit or not detected M.S.D. Recovery [H] = 100*(C-A)/[D] M.S.D. = Matrix Spike Duplicate

Houston - Dallas - San Antonio

Edward H. 4 Onemoto, Ph.D. COA/OC Manager

ANALYTICAL CHAIN OF CUSTODY REPORT CHRONOLOGY OF SAMPLES

K.E.t. Consultants, Inc.

Project Name: 610057.02.04

Project ID: 610057.02.04

Project Manager: Paul Hartnett Project Location: Monument

XENCO COC#: 1-70700

Date Received in Lab: Mar 25, 1997 10:00 by CC

XENCO Contact : Carlos Castro/Edward Yonemoto

							Da	Date and Time		
Fleid ID	Lab.ID	Method Name	Method	Units	Around	Collected	Addition	Units Tum Sample Addition Addition Areaction Extraction	Analysis	
Excavation Floor	170700-001 BTEX	втех	SW-846	mqq	Standard	ppm Standard Mar 21, 1997 11:00		Mar 26, 1997 by CB	Mar 26, 1997 13:03 by CB	
	HdL	TPH	EPA 418.1	mqq	Standard	ppm Standard Mar 21, 1997 11:00		Mar 26, 1997 by HL	Mar 26, 1997 11:33 by HL	
3 Excavation Sidewall	170700-002 BTEX	BTEX	SW-846	mqq	Standard	ppm Standard Mar 21, 1997 11:15		Mar 26, 1997 by CB	Mar 26, 1997 13:20 by CB	i
1 • • • • • • • • • • • • • • • • • • •	тен	тен	EPA 418.1	шdd	Standard	Standard Mar 21, 1997 11:15		Mar 26, 1997 by HL	Mar 26, 1997 11:36 by HL	
5 Stockpile	-003	BTEX	SW-846	шdd	Standard	ppm Standard Mar 21, 1997 11:30		Mar 26, 1997 by CB	Mar 26, 1997 13:37 by CB	
	1	ТРН	EPA 418.1	mqq	Standard	ppm Standard Mar 21, 1997 11:30	· · · · · · · · · · · · · · · · · · ·	Mar 26, 1997 by HL	Mar 26, 1997 11:42 by HL	;

Hauston - Dallas - San Antonio

Page / of 7 Lab Batch # $(70700-5A$		P.O. No:		- 74800 BB	•	Remarks		N	Ø	4	l)	Ø	×	α	0	P			Precision Analytical Services
Table states risk Meadwylen Srite L Huston, Texas 77082 CHAIN OF CUSTODY RECORD (70) 589-0682 Fax (773) 589-0655 AND ANALYSIS REQUEST FORM	No coolers this shipment: Carrier:	Suite 100	084 POUL HOREWETT N	Hender Jaulle 610057.02.04	TON Preservative Uni Disa Kar Unknown R a w c	Field ID Date Time 7 0 4 Container H 7 0 8 25 Type 56 Other H 7 7 8 55 Type 56 Other	OH ZIGALLOUTTN N YOCK Composite Hole XX		04 - 1130 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -								Verywind by Some DATE TIME ROOME & Same DATE TIME Reach	Received For Laboratory by 335/97 10:00 (via UPS)	e scheduling is recommended