BEFORE THE OIL CONSERVATION DIVISION EXAMINER HEARING SEPTEMBER 09, 2021

CASE NO. 22150

CEDAR CANYON 21 FED COM #023H WELL CEDAR CANYON 28 FED COM #8H WELL CEDAR CANYON 29 FED COM #2H WELL

EDDY COUNTY, NEW MEXICO

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION OF OXY USA INC. FOR A CLOSED LOOP GAS CAPTURE INJECTION PILOT PROJECT, EDDY COUNTY, NEW MEXICO.

CASE NO. 22150

TABLE OF CONTENTS FOR SEPTEMBER 9, 2021 HEARING EXHIBITS

- **OXY Exhibit A:** Application of Oxy USA Inc. for Closed Loop Gas Capture Injection Pilot Project, Eddy County, New Mexico.
- OXY Exhibit B: Affidavit of Stephen Janacek, petroleum engineer
 - o OXY Exhibit B-1: Proposed Data Collection Plan for Cedar Canyon Project
 - OXY Exhibit B-2: Map of Wellbore Trajectories for Cedar Canyon Project Wells and Offsets in Second Bone Spring
 - o OXY Exhibit B-3: Map of Cedar Canyon 1/2 Mile AOR with Trajectories
 - OXY Exhibit B-4: GOR Gas Allocation Plan for CLGC Wells
 - o OXY Exhibit B-5: Well Test Allocation Method
 - OXY Exhibit B-6: Notice Letter & Notice of Publication
- OXY Exhibit C: Affidavit of Tony Troutman, petroleum geologist
- OXY Exhibit D: Affidavit of Xueying Xie, reservoir engineer

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION OF OXY USA INC. FOR A CLOSED LOOP GAS CAPTURE INJECTION PILOT PROJECT, EDDY COUNTY, NEW MEXICO.

CASE NO. 22150

APPLICATION

OXY USA Inc. ("OXY" or "Applicant") (OGRID No. 16696) through its undersigned attorneys, hereby files this application with the Oil Conservation Division for an order authorizing OXY to engage in a closed loop gas capture injection pilot project in the Bone Spring formation ("pilot project"). In support of this application, OXY states:

PROJECT OVERVIEW

OXY proposes to create a 480-acre, more or less, project area for this pilot project consisting of all of the S/2 N/2 of Section 21, and the N/2 N/2 of Sections 28 and 29, Township 24 South, Range 29 East, NMPM, Eddy County, New Mexico. *See Exhibit A* at 6.

2. The proposed project area is part of a larger area referred to as the Cedar Canyon area.

3. Within the proposed project area, OXY seeks authority to utilize the following producing wells to occasionally inject produced gas into the Bone Spring formation:

 The Cedar Canyon 21 Fed Com #023H well (API No. 30-015-44191) [Corral Draw; Bone Spring Pool (Pool Code 96238)], with a surface location 1824 feet FNL and 141 feet FWL (Unit E) in Section 21, and a bottom hole location 2177 feet FNL and 175 feet FEL (Unit H) in Section 21. BEFORE THE OIL CONSERVATION DIVISION Santa Fe, New Mexico Exhibit No. A

Submitted by: OXY USA Inc. Hearing Date: September 09, 2021 Case No. 22150

- The Cedar Canyon 28 Fed Com #8H well (API No. 30-015-43819) [Pierce Crossing; Bone Spring, East Pool (Pool Code 97473)], with a surface location 170 feet FNL and 319 feet FEL (Unit A) in Section 29, and a bottom hole location 448 feet FNL and 189 feet FEL (Unit A) in Section 28.
- The Cedar Canyon 29 Fed Com #2H well (API No. 30-015-42992) [Pierce Crossing; Bone Spring Pool (Pool Code 50371)], with a surface location 200 feet FNL and 319 feet FEL (Unit A) in Section 29, and a bottom hole location 456 feet FNL and 182 feet FWL (Unit D) in Section 29.

4. Injection along the horizontal portion of the wellbores will be at the following approximate true vertical depths:

- The Cedar Canyon 21 Fed Com #023H well: between 8,419 feet and 8,704 feet.
- The Cedar Canyon 28 Fed Com #8H well: between 8,597 feet and 8,710 feet.
- The Cedar Canyon 29 Fed Com #2H well: between 8,513 feet and 8,535 feet.

5. A map depicting the pipeline that ties the wells proposed for the pilot project into the gathering system and the affected compressor station is included in the attached *Exhibit A* at 5-6.

WELL DATA

6. Information on the well data, including well diagrams and well construction, casing, tubing, packers, cement, perforations, and other details for each proposed injection well are included in the attached *Exhibit A* at pages 8-10, 11-12, 17-18, and 23-24.

7. The top of the Bone Spring formation in this area is at approximately 6,620 feet total vertical depth and extends down to the top of the Wolfcamp formation at approximately 9,880 feet total vertical depth. *See Exhibit A* at 61.

8. The current average surface pressures under normal operations for the proposed injection wells range from approximately 680 psi to 775 psi. *See Exhibit A* at 29. The maximum achievable surface pressure (MASP) for the wells in the pilot project will be 1,250 psi. *Id*.

9. OXY plans to monitor injection and operational parameters for the pilot project using an automated supervisory control and data acquisition (SCADA) system with pre-set alarms and automatic shut-in safety valves that will prevent injection pressures from exceeding the MASP. *See Exhibit A* at 30 and 44-45.

10. The proposed maximum achievable surface pressure will not exert pressure at the top perforation in the wellbore of any injection well with a full fluid column of reservoir brine water in excess of 90% of the burst pressure for the production casing or production liner. *See Exhibit A* at 29. In addition, the proposed maximum achievable surface pressure will not exert pressure at the topmost perforation in excess of 90% of the formation parting pressure. *See Exhibit A* at 29.

11. Cement bond $\log s^1$ for each of the injection wells demonstrate the placement of cement in the wells proposed for this pilot project and that there is a good and sufficient cement bond with the production casing and the tie-in of the production casing with the next prior casing in each well. *See Exhibit A* at 13-16, 19-22, 25-28, respectively.

12. The wells proposed for injection in the pilot project have previously demonstrated mechanical integrity. *See Exhibit A* at 31. OXY will undertake new tests to demonstrate mechanical integrity for each of the wells proposed for this pilot project as a condition of approval prior to commencing injection operations.

¹ Electronic version of the cement bond logs will be submitted to the Division by email.

GEOLOGY AND RESERVOIR

13. Data and a geologic analysis confirming that the Bone Spring formation is suitable for the proposed pilot project is included in *Exhibit A* at pages 59-66. A general characterization of the geology of the Bone Spring formation and its suitability for the proposed injection, including identification of confining layers and their ability to prevent vertical movement of the injected gas is included in the analysis. *Id*.

14. Zones that are productive of oil and gas are located above and below the targeted injection interval. *See Exhibit A* at 60-65.

15. Reservoir modeling indicates anticipated horizontal movement of injected gas will be approximately 100 feet or less from each injection wellbore within the Bone Spring formation. *See Exhibit A* at 73.

16. The proposed average injection rate for each well is 1.8 MMSCFD with a maximum injection rate of 2.0 MMSCFD during injection. *See Exhibit A* at 29.

17. OXY has prepared calculations estimating the stimulated reservoir volume based on supporting empirical data and a reservoir model to evaluate potential effects on wells adjacent to the pilot project area. *See Exhibit A* at 68-78. OXY's analysis concludes that there will be no change in the oil recovery from each of its proposed injection wells or from any of the offsetting wells. *See id.* at 75.

18. Similarly, OXY has prepared an analysis of the potential effects on the reservoir caused by the proposed injection, including consideration of commingling fluids. *Exhibit A* at 68-78. OXY's analysis concludes that there will be no adverse effect on the reservoir as a result of the injection. *Id.* at 78.

19. OXY has also prepared an analysis evaluating the expected gas storage capacity for the proposed injection well relative to the gas injection volumes for an injection scenario lasting twenty days. *See* Exhibit A at 76. The analysis confirms that whether the capacity is estimated based on the fracture volume gas equivalent or the total gas equivalent volumes produced from the proposed injection zone, the anticipated gas injection volumes will be considerably less than the estimated volume capacity within each well.

20. The source of gas for injection will be from OXY's Cedar Canyon wells producing from the Delaware, Bone Spring, and Wolfcamp formations that are identified in the list of wells in *Exhibit A* at page 33-36. Each of OXY's proposed injection wells are operated by OXY and OXY holds 100% of the working interest in the wells.

21. OXY has prepared an analysis of the composition of the source gas for injection and a corrosion prevention plan. *See Exhibit A* at 37-42.

22. OXY has examined the available geologic and engineering data and found no evidence of open faults or other hydrologic connections between the injection zone and any underground source of drinking water. *See Exhibit A* at 66. OXY has also examined the available geologic and engineering data and determined that the total recoverable volume of hydrocarbons from the reservoir will not be adversely affected by the pilot project. *See Exhibit A* at 78.

AREA OF REVIEW

23. OXY has prepared maps depicting the surface hole location and trajectory of the proposed injection wells, the location of every well within a two-mile radius, leases within two miles, and the half-mile area of review. *See Exhibit A* at 47-50.

24. A tabulation of data for wells that penetrate the proposed injection interval or the confining layer within the area of review is included in *Exhibit A* at pages 51-54, along with well-

Released to Imaging: 9/8/2021 8:08:522 (AMM

5

bore schematics for wells that are plugged and abandoned or temporarily abandoned. *See Exhibit A* at 66-78.

OPERATIONS AND SAFETY

25. OXY will monitor each injection well's instantaneous rates and daily injection volumes, along with pressure in the well tubing, casing, and bradenheads using an automated supervisory control and data acquisition (SCADA) system. *See Exhibit A* at 44-45. Each injection well will also include automated safety devices, including automatic shut-in valves among other operational safety measures. *See Exhibit A* at 30. OXY will also monitor and track various operational parameters at the pilot project's central tank battery and central gas lift compressors. *See Exhibit A* at 44-45.

26. A copy of this application will be provided by certified mail to the surface owner on which each injection well identified herein is located, and to each leasehold operator and other affected persons within any tract wholly or partially contained within one-half mile of the completed interval of the wellbore for each of the proposed injection wells. A copy of the affected parties subject to notice is included in *Exhibit A* at 83-85, along with a map and list identifying each tract and affected persons given notice. *See Exhibit A* at 80-82.

27. Approval of this pilot project is in the best interests of conservation, the prevention of waste, and the protection of correlative rights.

WHEREFORE, OXY USA Inc. requests that this Application be set for hearing before an Examiner of the Oil Conservation Division on September 9, 2021, and that after notice and hearing this Application be approved.

Respectfully submitted,

HOLLAND & HART LLP

hill

By:

Michael H. Feldewert Adam G. Rankin Julia Broggi Kaitlyn A. Luck Post Office Box 2208 Santa Fe, NM 87504 505-998-4421 505-983-6043 Facsimile mfeldewert@hollandhart.com agrankin@hollandhart.com jbroggi@hollandhart.com kaluck@hollandhart.com

ATTORNEYS FOR OXY USA INC.

CASE ____:

Application of OXY USA Inc. for Closed Loop Gas Capture Injection Pilot Project, Eddy County, New Mexico. Applicant in the above-styled cause seeks an order authorizing it to engage in a closed loop gas capture injection pilot project ("pilot project") in the Bone Spring formation in the, within a 480-acre, more or less, project area for this pilot project consisting of all of the S/2 N/2 of Section 21, and the N/2 N/2 of Sections 28 and 29, Township 24 South, Range 29 East, NMPM, Eddy County, New Mexico, by occasionally injecting into the following wells:

- The Cedar Canyon 21 Fed Com #023H well (API No. 30-015-44191) [Corral Draw; Bone Spring Pool (Pool Code 96238)], with a surface location 1824 feet FNL and 141 feet FWL (Unit E) in Section 21, and a bottom hole location 2177 feet FNL and 175 feet FEL (Unit H) in Section 21.
- The Cedar Canyon 28 Fed Com #8H well (API No. 30-015-43819) [Pierce Crossing; Bone Spring, East Pool (Pool Code 97473)], with a surface location 170 feet FNL and 319 feet FEL (Unit A) in Section 29, and a bottom hole location 448 feet FNL and 189 feet FEL (Unit A) in Section 28.
- The Cedar Canyon 29 Fed Com #2H well (API No. 30-015-42992) [Pierce Crossing; Bone Spring (Pool Code 50371)], with a surface location 200 feet FNL and 319 feet FEL (Unit A) in Section 29, and a bottom hole location 456 feet FNL and 182 feet FWL (Unit D) in Section 29.

OXY seeks authority to utilize this producing well to occasionally inject produced gas into the Bone Spring formation at total vertical depths of between approximately 8,419 feet to 8,710 feet along the horizontal portion of each wellbore at surface injection pressures of no more than 1,250 psi. The source of the produced gas will be the Bone Spring and Wolfcamp formations. The subject acreage is located approximately 9 miles southeast of Loving, New Mexico. Received by OCD: 9/7/202117:06:49 PM1

New Mexico Closed Loop Gas Capture (CLGC) Oxy- Cedar Canyon

EXHIBIT A

Page 11 of 132

Occidental

DXY

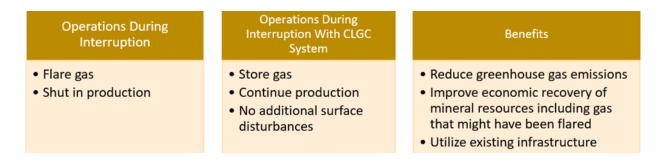
Released to Imaging: 9/8/2021 8:08:22 AM

Overview

General Project Description: Closed Loop Gas Capture Project Oxy- Cedar Canyon

About Cedar Canyon

The Cedar Canyon area has two, Third-Party gas purchasers: Enterprise and San Mateo. A majority of the gas is sold to Enterprise and the remainder is sold to San Mateo. Neither takeaway point has enough capacity to purchase all the produced gas in Cedar Canyon.


Summary of Requested Relief

- 1. Authority to operate a Closed Loop Gas Capture Project ("CLGC") consisting of three wells to prevent waste and reduce adverse impacts from temporary interruptions of gas pipeline capacity.
- 2. A 2-year duration of such authority with renewal by administrative approval.
- 3. Authority to, when applicable, place packers in CLGC wells as deep as possible but no more than 100 feet above the top of the injection zone.
- 4. Authority to add CLGC storage wells to the proposed project by administrative approval if the well is within the Area of Review previously completed.

Overview

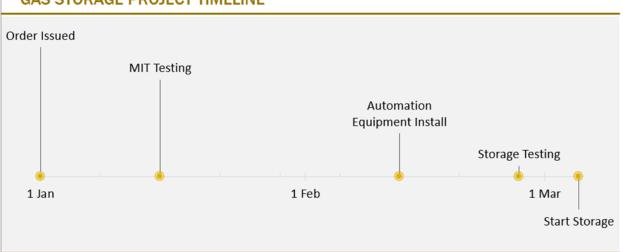
Oxy USA Inc. (Oxy) is proposing a CLGC project in the Cedar Canyon area. On occasion, third-party gas purchasers reduce takeaway capacity and cause interruptions that result in flaring or shut in production. During these interruptions, Oxy will utilize the capacity of the gas takeaway that is still operational. The remaining volume will utilize CLGC wells to capture gas and reduce flaring.

During the previous 12 months, Oxy experienced 7 interruptions where the third-party gas purchasers temporarily reduced takeaway capacity from this location, resulting in the flaring of at least 100 MMSCF of gas or the immediate shut-in of at least 17,000 BOPD. Approval of this application will significantly reduce such flaring or shut-in production in the future.

Proposed Operations

Oxy has an extensive high-pressure gas system in the Cedar Canyon area. It is used for gas lift, a type of artificial lift. Oxy plans to utilize the same system for gas storage operations. Very minimal equipment on surface will need to be installed prior to starting storage operations.

Enterprise and San Mateo are the third-party gas purchasers for the Cedar Canyon area. If an interruption occurs, Oxy will divert gas from the takeaway line back into the gas lift injection system. Gas will flow from the Central Gas Lift (CGL) Compressor Station through the flow meter, control valve, safety shutdown valve, wellhead and into the wellbore for storage. Gas will be injected down the casing/tubing annulus in all CLGC wells. Simultaneously, the CLGC well will be shut in by closing the electric choke upstream of the production flowline. After the interruption has ended, the electric choke will open and the CLGC well resumes production.

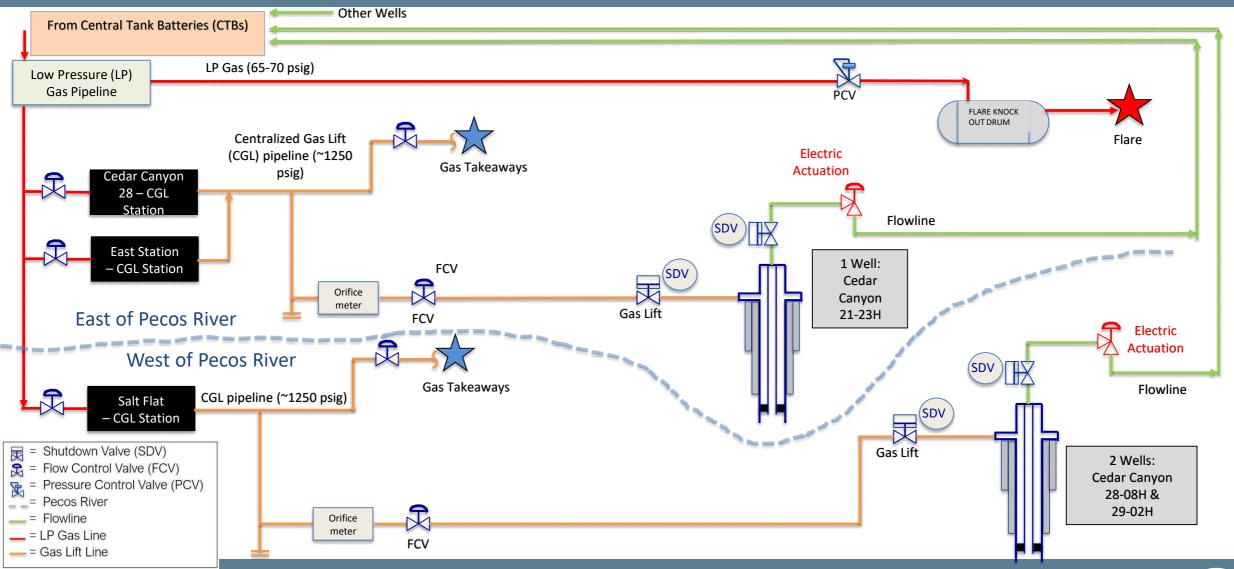

Wells

3 wells are proposed in this application.

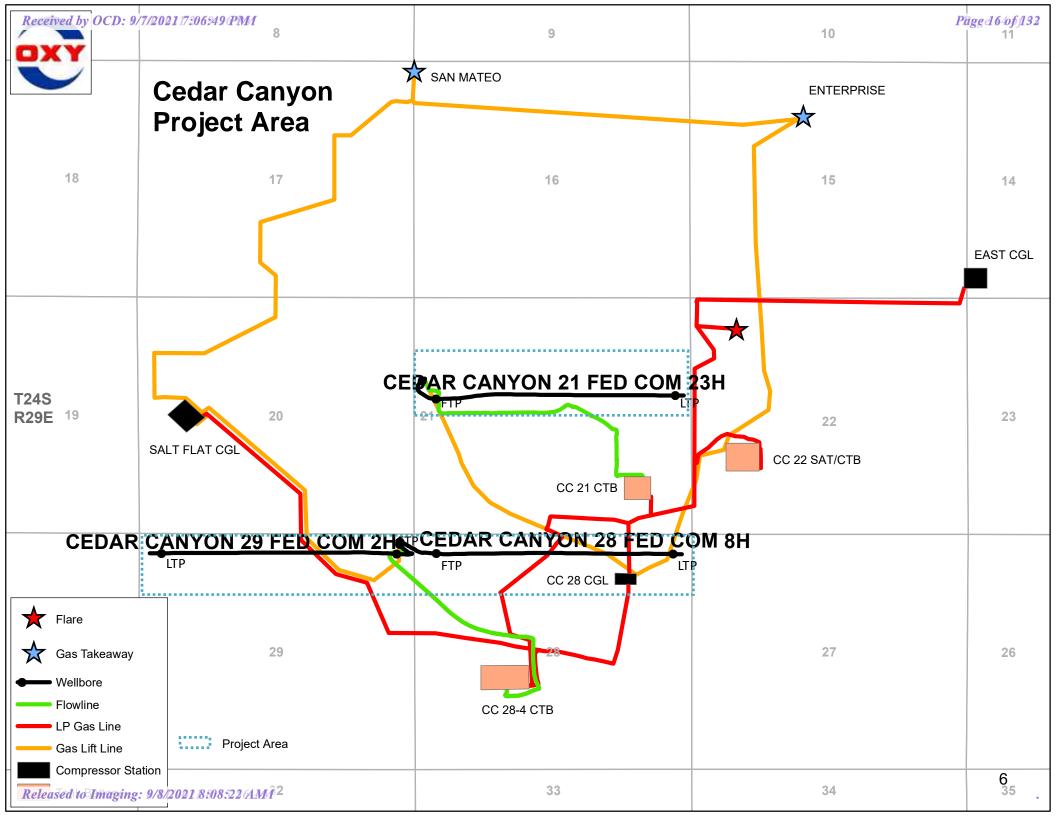
#	API 14	Well Name	Injection Down the
1	30015441910000	CC21-023H	Casing
2	30015438190000	CC28-008H	Casing
3	30015429920000	CC29-002H	Casing

Timeline

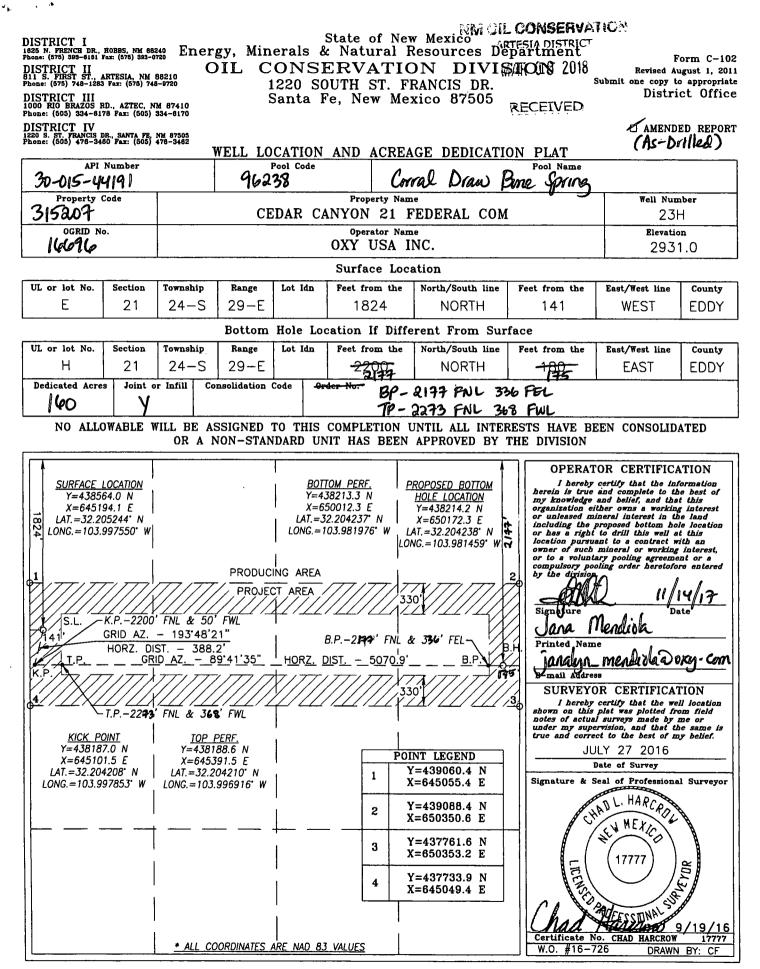
Since no new surface disturbances are required, this project can be implemented with minimal facility modifications. The timeline below assumes an order is issued on January 1 for illustration purposes.

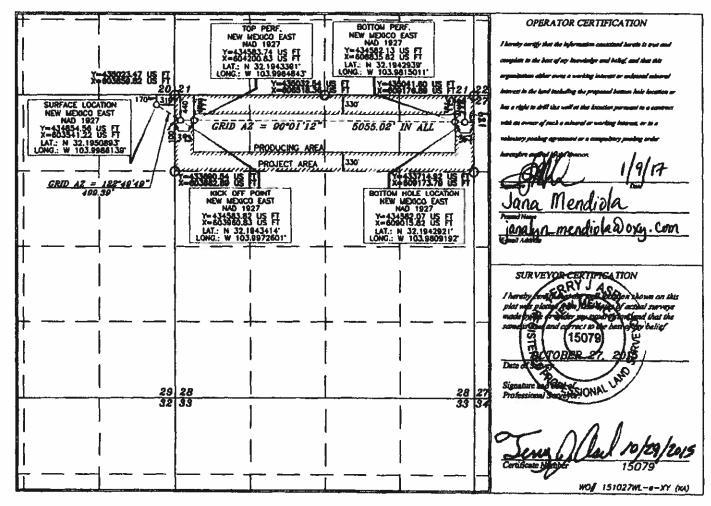


GAS STORAGE PROJECT TIMELINE


Pertinent Details

- Maximum Allowable Surface Pressure = 1250 psi
- Target Formation = Second Bone Spring
- Shallowest Perf TVD = 8419 ft TVD
- Deepest Perf TVD = 8710 ft TVD •


Cedar Canyon Gas Storage Process Flow Diagram



Injection Wellbores

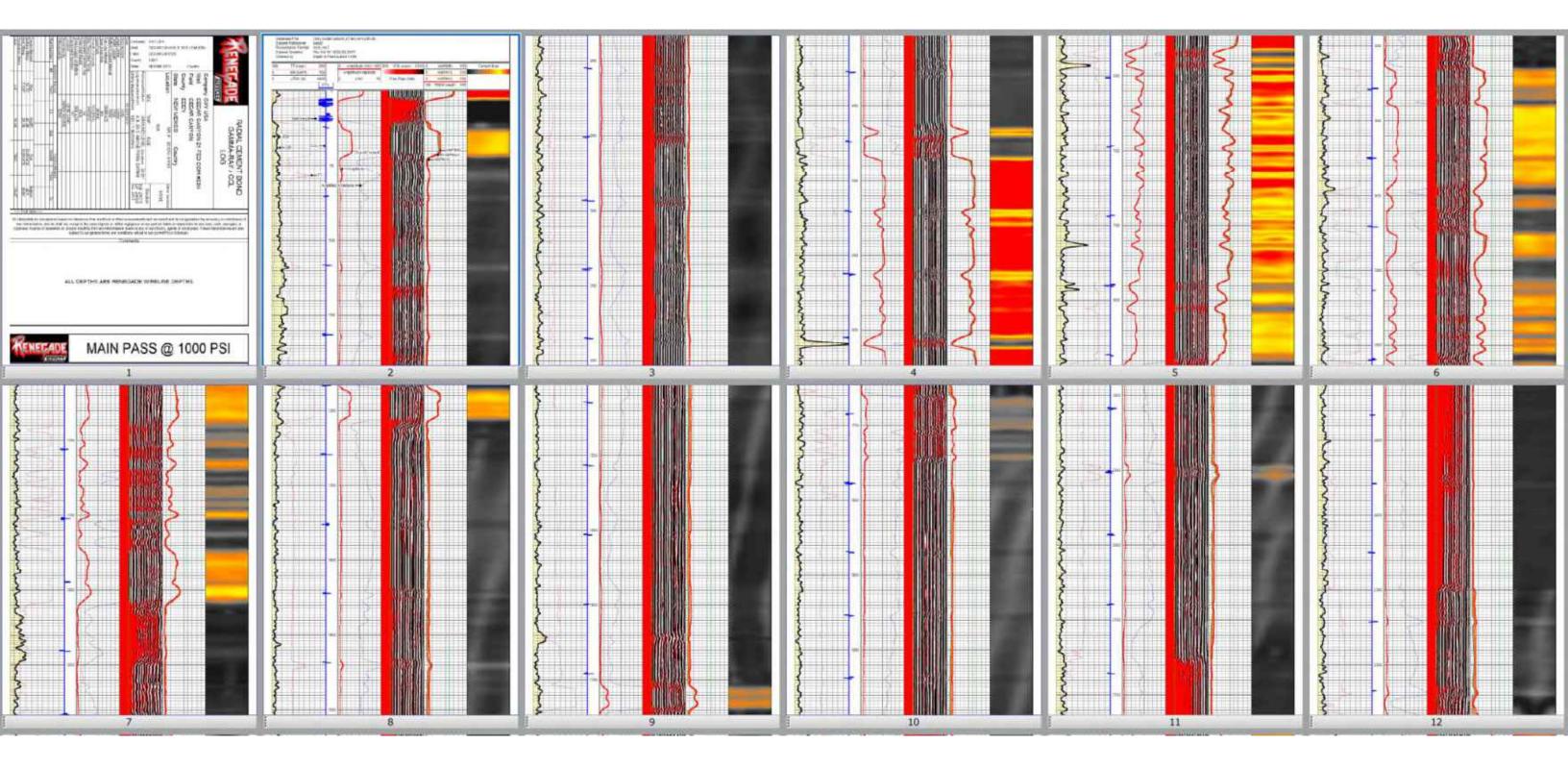
During I. (2023 H. French Dr. (2023 H. French Dr. 1987 et al. 2013 F. French Dr. 2013 F. French S. A. 2014 F. J. 2007 Hea Brunne R. Patriet IV. 1220 S. R. French D. Phane (2023 H. French D.	16) Par. (5 28) Par. (5 28) Par. (5 28) Par. (5 28) Th Par. (5 Dr. Supp. 1	75) 393-0] 1210 75) 741-97 141-97 141-97 15) 334-41 15, 104-97	na Mi na Mi na E	2814 C AR (F)	3 2017 3 2017	CONSE CONSE 1220 Sol Santa	Naturi RVA uth St Fe, N	TION DI t. Francis IM 8750.	rces Departn VISION Dr.		Submit	one cop	Form C-102 August 1, 2011 by to appropriate District Office NDED REPORT
200	API	Numbe			Pool-			Pince	Crossing	12 Pool Net	Spring	E.	
2020	2	120	<u> </u>		9647				, young	cone	wrine,	, Eas	
2024	rty Code				000		Property			6 A	· •	'	Well Namber
2171			ļ			AR CAN			EDERAL	com		ļ	8H
	D No.						Operator						Elevation
166	16					<u> </u>	Y US	SA INC.				2	949.3'
						Surfi	ice L	ocation					
UL or lat ao.	Section	Te	waship	[Range		Lot Ida	Feet from the	North/South line	Feet from the	: East/W	'est line	County
A	29	24	SOUTH	29	EAST, N.	<i>Ч.Р.М</i> .		170'	NORTH	319'	EAS	5 T	EDDY
	Bottom Hole Location If Different From Surface												
UL or lot so.	Section	Ťc	muship	<u> </u>	Range				North/South line		East/H	est line	County
A	28	24	SOUTH	29	EAST, N.	И.Р.И.		158	NORTH	1887	EAS	5 T	EDDY
Dedicated		Join	t or Infill	Coasoli	dation Code	Gedar No.*	BP- TP-	445 F 449 I	NL 3571 NL 393	FUL	<u> </u>		

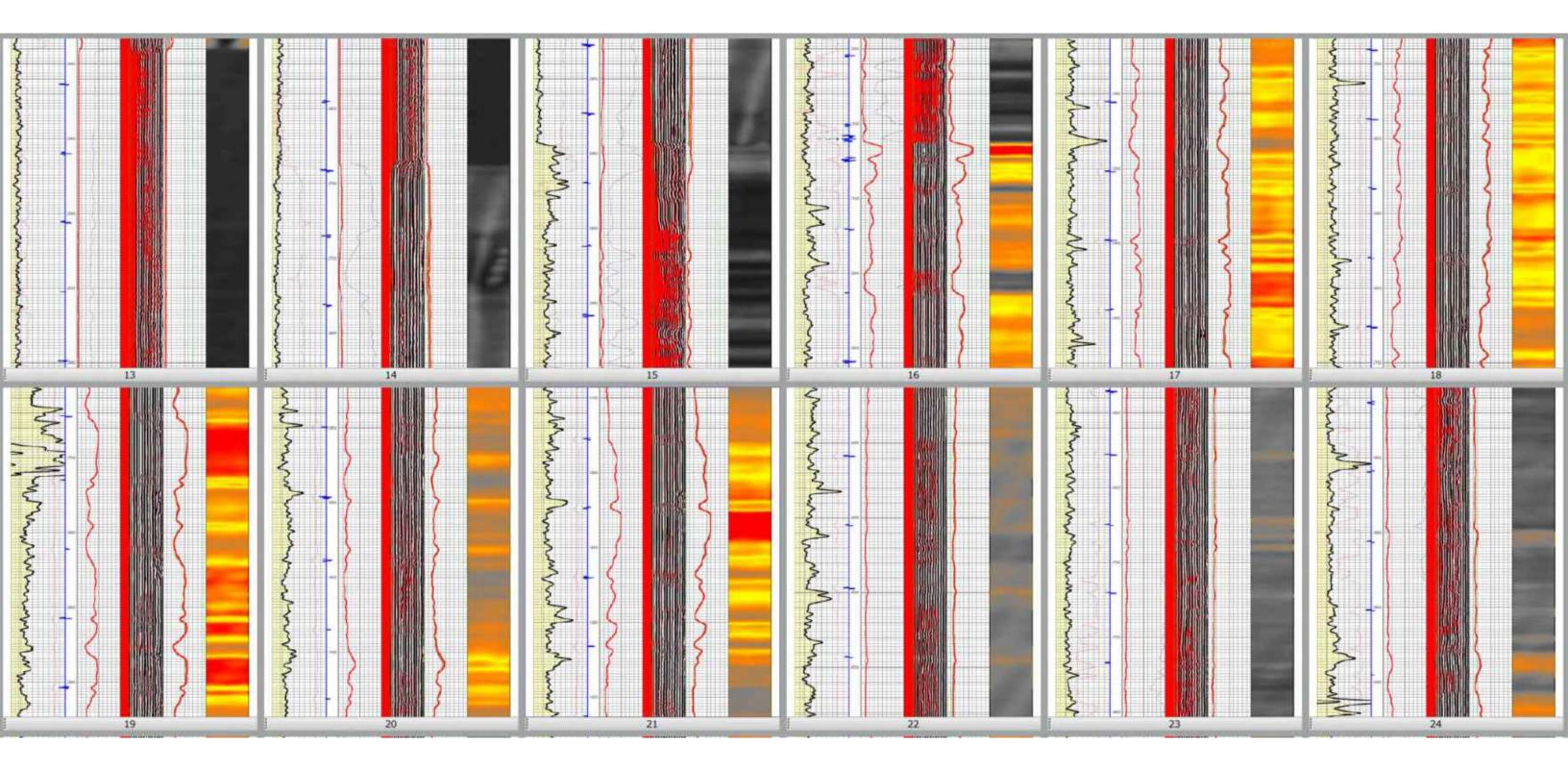
No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Received by OCD: 9/7/2021 7/206249 PMM

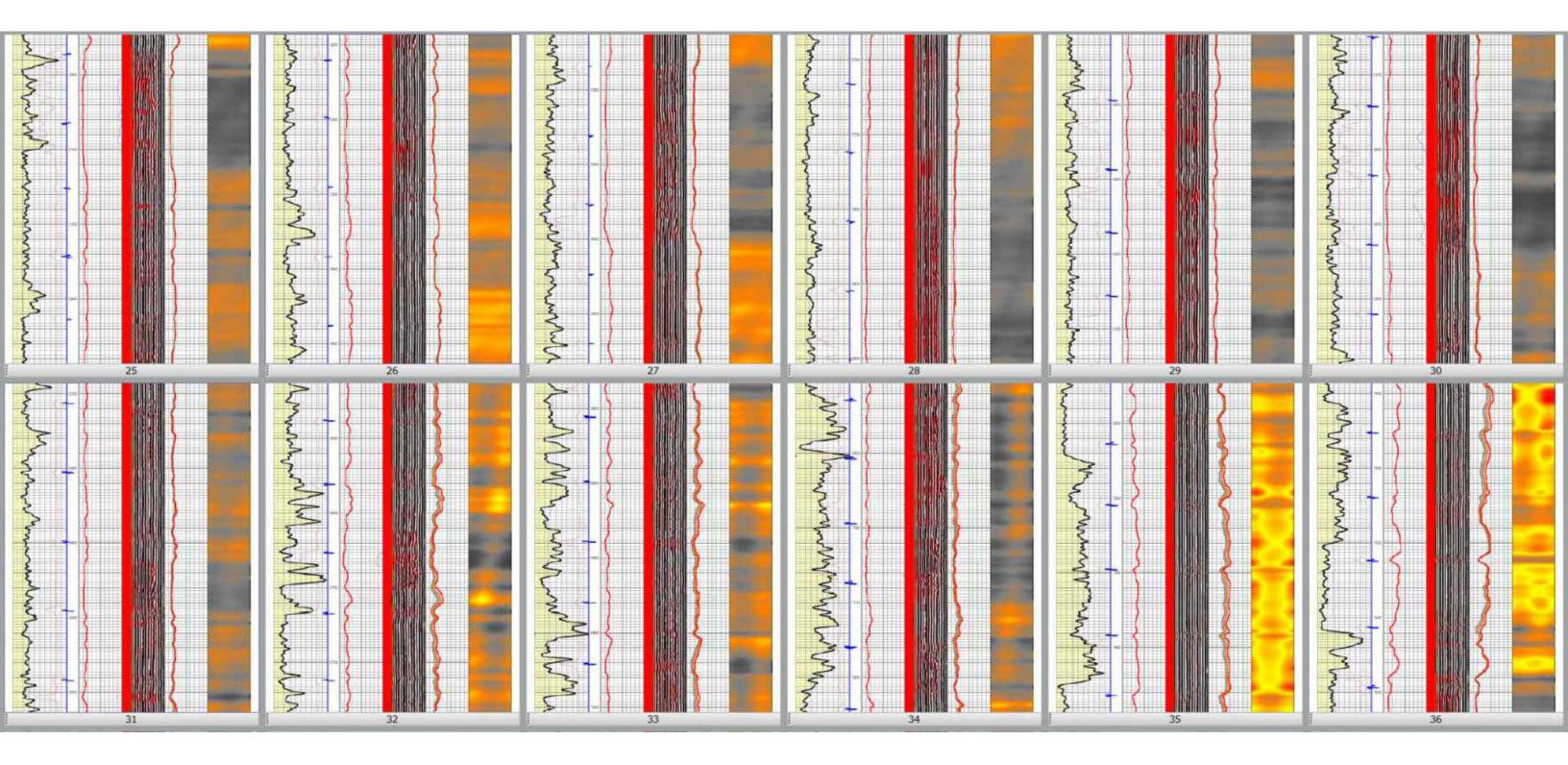
State of New Mexico Form C-102 <u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 Energy, Minerals & Natural Resources Department Revised August 1, 2011 Table: (575) 55-5701 Fac. (575) 555-6720 District I #11 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 Submit one copy to appropriate **OIL CONSERVATION DIVISION District Office** District III 1000 Rio Brusos Road, Aster, NM \$7410 1220 South St. Francis Dr. 1000 Rio Brasios Koat, Aztec, NM 87410 Phone: (SO5) 334-6178 Fax: (SO5) 334-6170 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (SO5) 476-3460 Fax: (SO5) 476-3462 Santa Fe, NM 87505 AMENDED REPORT (As-Drilled) WELL LOCATION AND ACREAGE DEDICATION PLAT API Number Pool Code Pool Name 50371 ierce Crossina 30-015-42992 Spnne Sone Property Code Property Name Well Number 314329 CEDAR CANYON "29" FEDERAL 2HOGRID No. Operator Name Elevation 6696 OXY USA INC. 2949.3 Surface Location UL or lot no. Section Township Range Lot Idn Feet from the North/South line Feet from the East/West line County 29 24 SOUTH 29 EAST, N.M.P.M. 200 NORTH 319' EAST EDDY A Bottom Hole Location If Different From Surface UL or lot no. Section Township Range Lot Ida Feet from the North/South line Feet from the East/West line County 24 SOUTH 29 EAST, N.M.P.M. 29 NORTH WEST EDDY D 183 TES. Onder the BP- 454 FNL Dedicated Acres Joint or Infill Consolidation Code 414 FWL ٨ TP- 458 FNL 368 FEL lbd No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division 200' X=603859.82 US H X=3389311:33 VS FF 3191 440 **OPERATOR CERTIFICATION** 28 GRID AZ = 269 58'47" 5055.20' IN ALL GRID AZ = 135*08'59' 339.67' माम Annakakanan kanan ka CING AREA 330 PROJECT AREA X=333716.18 US FI X=433590.54 US FI BOTTOM HOLE LOCATION NEW MEXICO EAST NAD 1927 Y=434582.01 US FT X=598725.73 US FT BOTTOM PERF. NEW MEXICO EAST NAD 1927 Y=434582.07 US FT X=598905.73 US FT SURFACE LOCATION NEW MEXICO EAST NAD 1927 Y=434824.56 US FT X=603541.29 US FT KICK OFF POINT NEW MEXICO EAST NAU 1927 Y=434583.75 US FT X=603780.84 US FT LAT .: N 32.1943803" LONG .: W 104.0141834" LAT.: N 32.1943790' LONG.: W 104.0136015' LAT.: N 32.1950068" LONG.: W 103.9986139" LAT.: N 32.1943428 LONG.: W 103.9978420 a) oxy. com TOP PERF. NEW MEXICO EAST NAD 1927 Y=434583.66 US FT X=603520.83 US FT SURVEYOR CERTIFICATION n on this I hereb atval surveys bud that the plat w lsurvers LAT.: N 32.1943448 LONG.: W 103.9986825 made بلعيه est d lie é õ SOFESSIONAL Signature and Professional Su WO # 151027WL-d-XY (Rev. A) (A.) Side 1

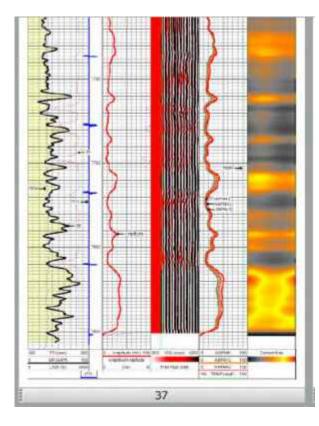
OPERATOR: OXY USA INC


WELL NAME & NUMBER: CEDAR CANYON 21 FEDERAL 23H API 30-015-44191


WELL LOCATION: <u>1824' FNL</u> , 141'FWL E			E	21	24S	29E
	FOOTAGE L	DCATION	UNIT LETTER	SECTION	TOWNSHIP	RANGE
	WELLBORE SCHEMAT	<u>TIC</u>		<u>WELL CO</u> Surface C	NSTRUCTION DATA asing	
	10 3/4" CSA 451' CMT TO SURFACE (CIRC)		Hole Size: <u>14.75</u> "		Casing Size: <u>10.75</u> "	
			Cemented with: <u>350</u>	SX.	or	ft ³
E			Top of Cement: SURFA	CE	Method Determined:	CIRC
a				Intermediate	e Casing	
			Hole Size: <u>9.875</u> "		Casing Size: 7.625	
			Cemented with: 1,661	SX.	or	ft ³
			Top of Cement: SURFA	CE	Method Determined:	CIRC
				Production	Casing	
			Hole Size: <u>6.75</u> "		Casing Size: 5.5" AN	ID 4.5"
	5/8" CSA 8,096'		Cemented with: <u>660</u>	SX.	or	$_$ ft ³
	MT TO SURFACE (CIRC)		Top of Cement: <u>7,891</u>		Method Determined:	CBL
		5 1/2" CSA 7,891' 4 1/2" CSA 7,891-13,347' TOC 7,891' (CBL)	Total Depth: <u>13,360' MD</u>	/ 8,708 TVD		
				Injection In	nterval	
			8,569' MD / 8,419'	TVD feet	to <u>13,200' MD / 8,</u>	704' TVD
	2BS Perfs @ 8,569 - 13,200'		(Perfe	orated or Open Ho	ble; indicate which)	

Released to Imaging: 9/8/2021 8:08:522 (AMM


Tub	bing Size: 2.875' 6.5# L80 EUE Lining Material: None
Тур	pe of Packer: 5.5" Watson 10K AS1X nicklel coated packer
Pac	eker Setting Depth: 7,859' MD / 7,819' TVD
Oth	her Type of Tubing/Casing Seal (if applicable):
	Additional Data
1.	Is this a new well drilled for injection?Yes XNo
	If no, for what purpose was the well originally drilled?
	PRODUCER - OIL
2.	Name of the Injection Formation:
3.	Name of Field or Pool (if applicable): CORRAL DRAW; BONE SPRING
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used.
	NO
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area:
	OVERLYING : BRUSHY CANYON FORMATION (DELAWARE) 5,096'
	UNDERLYING: WOLFCAMP FORMATION 10,234'


CC 21 #23H

14

Page 2640f 132

Side 1

OPERATOR: OXY USA INC

WELL NAME & NUMBER: CEDAR CANYON 28 FEDERAL COM 8H API 30-015-43819

WELL LOCATION: <u>170' FNL, 319' FEL</u>	A	29	24S	29E
FOOTAGE LOCATION	UNIT LETTER	SECTION	TOWNSHIP	RANGE
WELLBORE SCHEMATIC *Note- Diagram not to scale		<u>WELL CO</u> Surface O	DNSTRUCTION DATA Casing	<u>1</u>
10 3/4" CSA 405' CMT TO SURFACE (CIRC)	Hole Size: <u>14.75</u> "		Casing Size: 10.75	
	Cemented with: 46	57sx.	or	ft ³
	Top of Cement: SL	JRFACE	Method Determined:	CIRC
		<u>Intermediat</u>	e Casing	
	Hole Size: <u>9.875</u> "		Casing Size: 7.625	
	Cemented with: <u>1</u> ,	595 sx.	or	ft ³
	Top of Cement: SL	JRFACE	Method Determined	CIRC
		Production	<u>Casing</u>	
7 5/8" CSA 8,050' CMT TO SURFACE (CIRC)	Hole Size: <u>6.75</u> "		Casing Size: 5.5" A	ND 4.5"
	Cemented with: <u>58</u>	80sx.	or	ft ³
	Top of Cement: 7,0	050	Method Determined	CBL
5 1/2" X 4 1/2" CSA 13,455' TOC 7,050' (CBL)	Total Depth: 13,46	0' MD / 8,712 TVD		
	1	Injection]	Interval	
	<u>8,756' MD / 8</u>	,597' TVD feet	to <u>13,292' MD / 8</u>	5,710' TVD
2BS Perfs @ 8,756 - 13,292'		(Perforated or Open H	ole; indicate which)	

Released to Imaging: 9/8/2021 8:08:522 (AMM

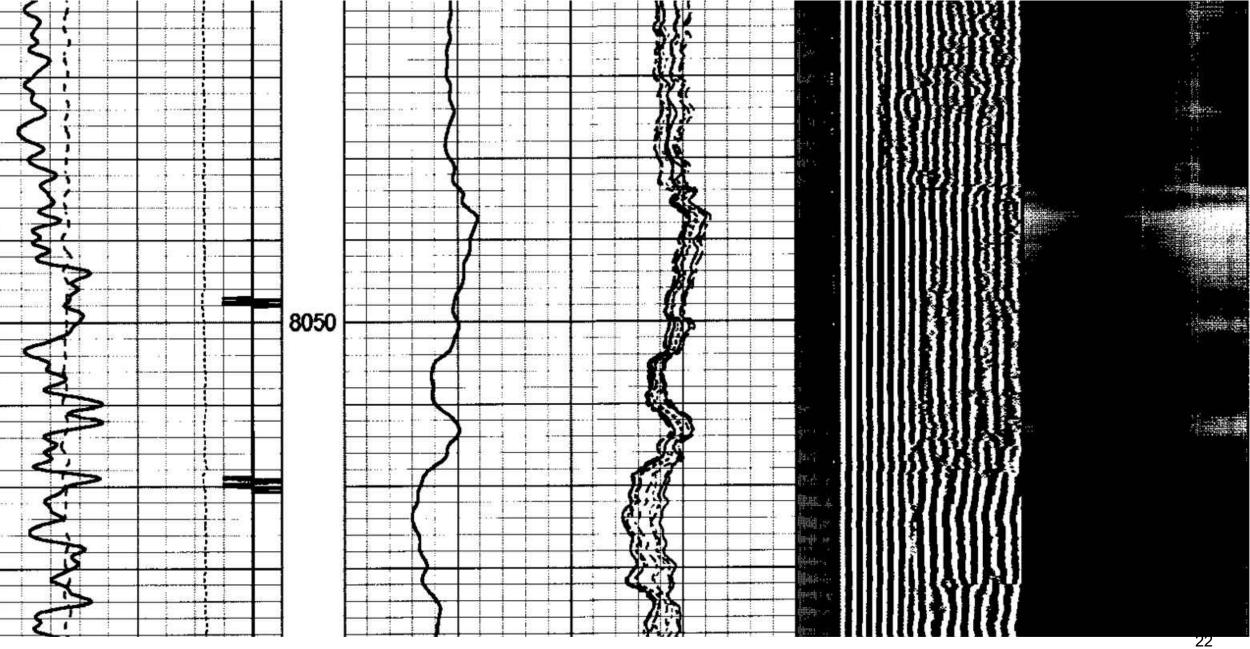
Tub	bing Size: 2.875' 6.5# L80 EUE Lining Material: None
Tyj	pe of Packer: 5.5" Weatherford 10K AS1X nicklel coated packer
Pac	eker Setting Depth: 8,477' MD / 8,428' TVD
Otł	ner Type of Tubing/Casing Seal (if applicable):
	Additional Data
1.	Is this a new well drilled for injection?Yes XNo
	If no, for what purpose was the well originally drilled?
	PRODUCER - OIL
2.	Name of the Injection Formation:
3.	Name of Field or Pool (if applicable): PIERCE CROSSING BONE SPRING, EAST
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used.
	NO
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area:
	OVERLYING : BRUSHY CANYON FORMATION (DELAWARE) 5,096'
	UNDERLYING: WOLFCAMP FORMATION 10,234'

		95				CB	32	
6)	Τ			NM OIL ART	CONSER	VATION	e the accuracy or correctness any loss, costs, damages, or These interpretations are also
	2	1			JAI	V12 20	17	8 4 6
DF	INF	1					" A IN	242
ERV	er Company				RE	CEIVED	17 ABIANA	586
mae 4	er oonsent					State Price		885
	Compar					395		for any for any es. These
- P	Well	Ced	Lego of the second					
	1.122							de de de
	Field	Edd	y Count	y				ge be
	County	Edd	У		State	2020.0112	Mexico	ot end do not guarant able or responsible fo agents or employees. Moe Schedule.
Eddy New Maxico	Location	n:	Lat: 3	2.1950068	0-015-429 438	19	Other Services	All interpretations are opinions based on inferences from electrical or other measurements and we carmot and do not guarantee the accuracy or corrects winterpretations are opinions based on inferences from electrical or other measurements and we carmot and do not guarantee the accuracy or corrects of any interpretation, and we shall not, except in the case of gross or withui negligence on our part, be liable or responsible for any loss, costs, damages, of any interpretation, and we shall not, except in the case of gross or withui negligence on our part, be liable or responsible for any loss, costs, damages, of any interpretation, and we shall not, except in the case of gross or within negligence on our part, be liable or responsible for any loss, costs, damages, openess incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are subject to our general terms and conditions set out in our current Price Schedule.
6 3			Long: -1	103.998613			1	2533
New	1	SEC	TWP	RG	E	-	Elevation	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2011	Permanent	Deturn	1000		Elevation	1	K.B. 2975	8850
County	Log Measur	ed From	KB				D.F. 2974 G.L. 2949	ther measurer mul negligen ion made by onditions set
8 8	Drilling Mea	sured From	n KB				0.0. 2010	in the second
		-	12/17/2016 ONE					opinions based on interences from electrical or other mea and we shall not, except in the case of gross or withul neg austained by anyone resulting from any interpretation mat sustained by anyone resulting to our general terms and condition COMM
			13445 1					8538
			8758 ft					8989
d Inter	val		8752 ft	-				188552
/ai	(Can		50 1					8655
18			6.75*					- S S S E
			Brine Water					6855
osity			8.4#					6260
d Tem			164 degF 7050					8253
ment	op		10:00					2582
ady on Bot	tom		11:00					
umber			120226					5.83
			Midland, TX					2025
9 S.			Tyler Anselr	n				A STREET
/			Jeff Cook	_	Tub	ing Record		1 2 2 2
- phone	Borehole Rec	rom	To	Size	Weight		m To	1 음종철
er	Bit F	IUIII						10 6 8
					_			855
								All Interpretations are of any interpretation, openses incurred or
			1 10	VFt	Top		Bottom	
brd	S	.75°	- 40	0.54	Surfa	20	405 t	to a la la
g	10							12 <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
String	5	.5*	2	2044	Surfa	0	8585 R	
								808
								the second se

A Schlumberger Company

D P D	atabase File ataset Pathname resentation Format ataset Creation harted by	pass12 scblpnr Sat Dec	17 1	28-8h.db 1:26:01 2016 scaled 1:240		94 						
400	Travel Time (usec)	200	0	Amplitude (I	m V)10 0	-5	AMPS1	150	Variable Density	1	Cement Map	8
9	Casing Collar	-1	1	Amplified Amp	olitude	-5	AMPS2	150	200 1200	0		100
0	Gamma Ray (GAPI)	150	0	(mV)	10	-5	AMPS3	150	1			
0	Line Tension (Ib)	5000	l		**********	-5	AMPS4	150		1		
						-5	AMPS5	150				
						-5	AMPS6	150	1			
						-5	AMPS7	150	1			
	2		8			-5	AMPS8	150	类 12		groups on we be ween	
											2	0

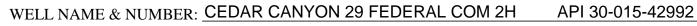
Released to Imaging: 9/8/2021 8:08:522 (AMM


Received by OCD: 9/7/202177206949 PMM

andias. -Ę ١ Т ΞIJ 設計 7050 AND : : . . ١ 4 ï 1 т : 11.00 1 1 ; 1 . . 1 . 1 1 . 1 1 ; 1 7100 1 1 21

Released to Imaging: 9/8/2021 8:08:522 (AMI

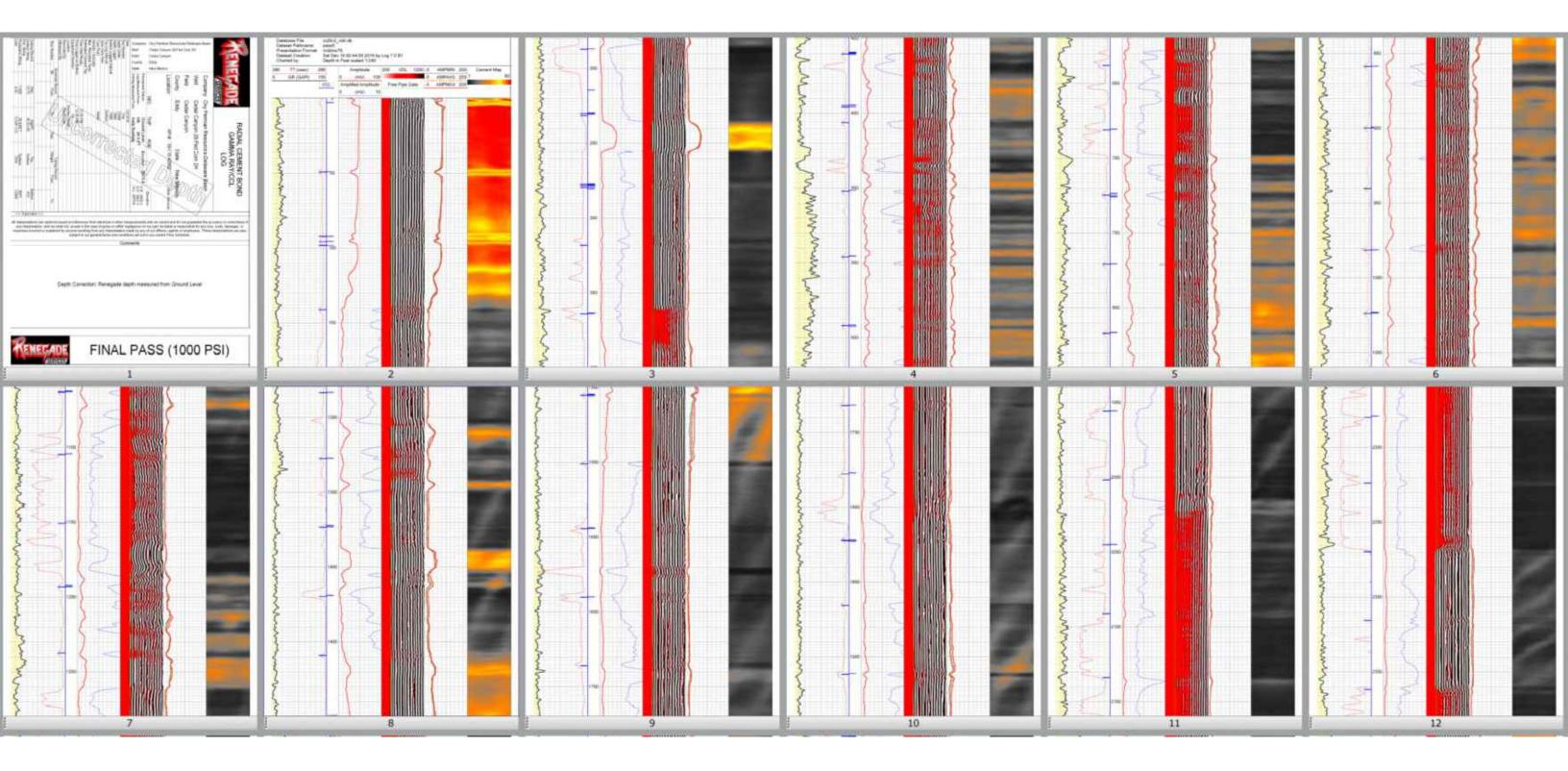
Page 31%f 132

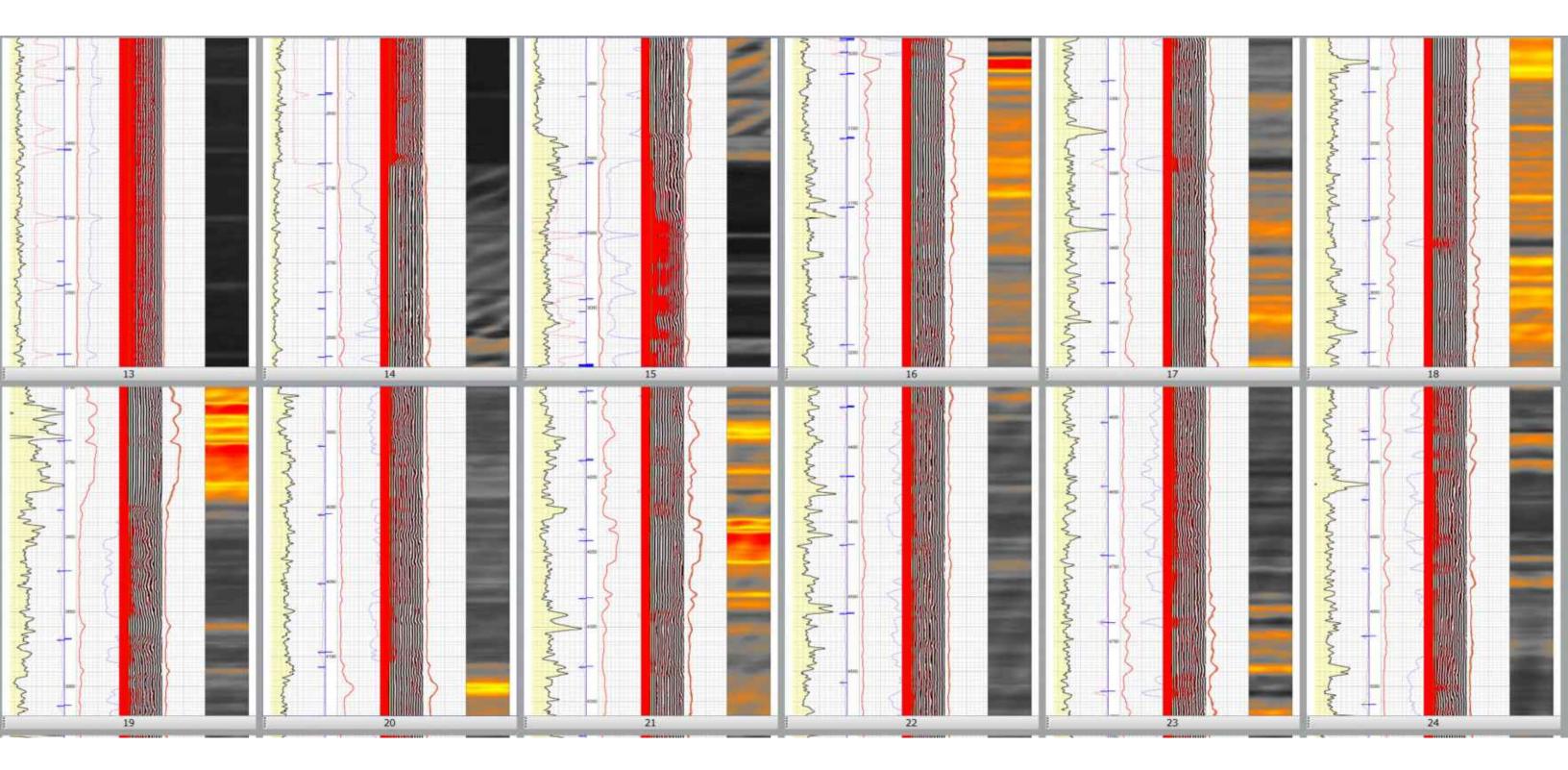

Received by OCD: 9/7/2021/7:06:49 PM

Page32(of 132

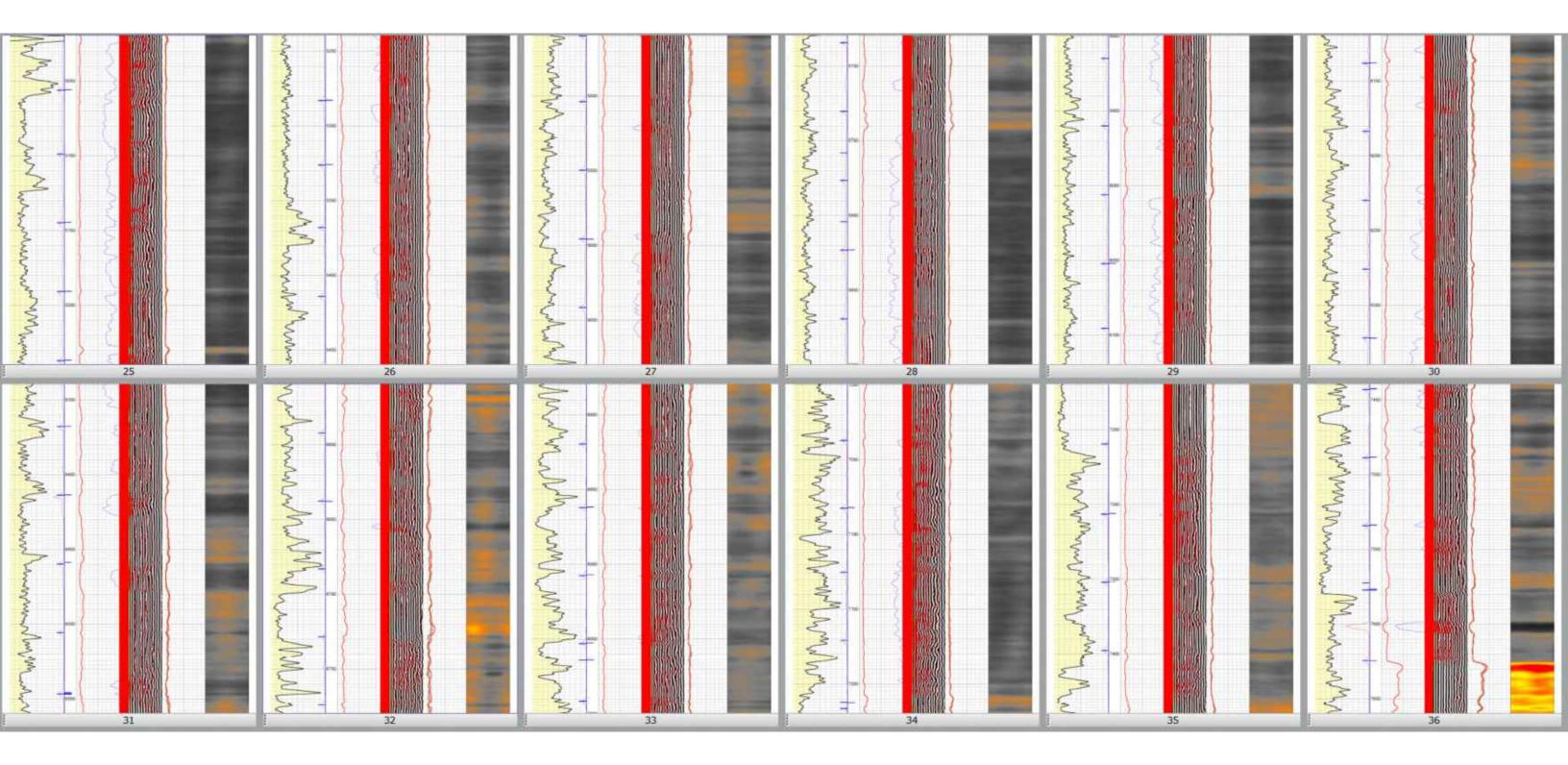
Side 1

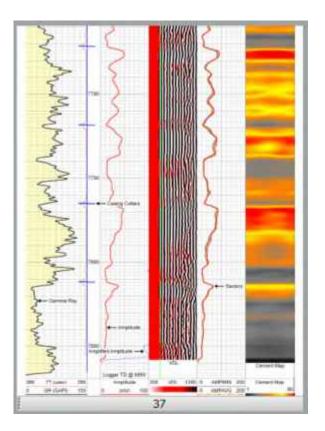
OPERATOR: OXY USA INC



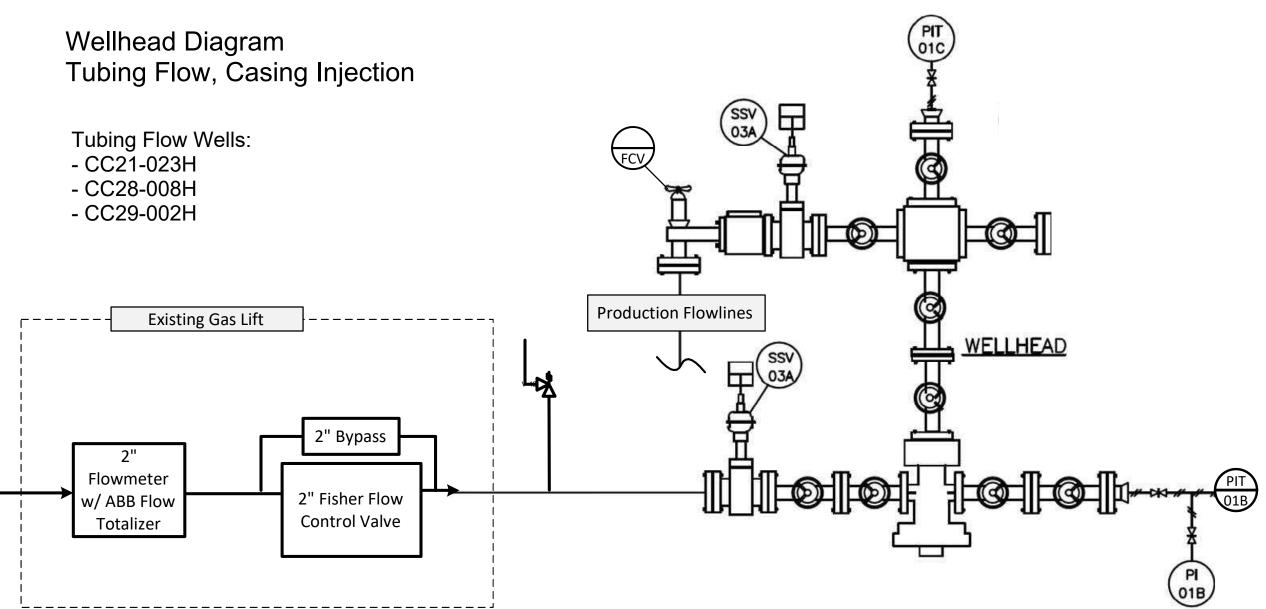

WELL LOCATION	: <u>200' FNL, 319' FEL</u>	Α		29	24S	29E	
	FOOTAGE LOCA	UN UN	IT LETTER	SECTION	TOWNSHIP	RANGE	
<u>WE</u>	*Note- Diagram not to scale			<u>WELL COl</u> Surface Ca	NSTRUCTION DATA asing		
	10 3/4" CSA 410' CMT TO SURFACE (CIRC)		Hole Size: 14.75"		Casing Size: 10.75"		
			Cemented with: <u>462</u>	SX.	or	$_{} ft^3$	
			Top of Cement: SURFAC	CE	Method Determined:		
				Intermediate	ate Casing		
			Hole Size: <u>9.875</u> "		Casing Size: 7.625		
			Cemented with: 2,963	SX.	or	ft ³	
			Top of Cement: SURFAC	CE	Method Determined:		
a				Production	Casing		
	/8" CSA 8,049' IT TO SURFACE (CIRC)		Hole Size: <u>6.75</u> "		Casing Size: 5.5" ANI	D 4.5"	
63			Cemented with: <u>580</u>	SX.	or	$_{} ft^3$	
		5 1/2" CSA 7,919	Top of Cement: 7,919		Method Determined:		
		4 1/2" CSA 7,919'-13,384' TOC 7,919' (Cir)	Total Depth: <u>13,384' MD</u>	/ 8,531 TVD			
				Injection In	terval		
			8,633' MD / 8,513' ⁻	FVDfeet	to <u>13,152' MD / 8,5</u>	35' TVD	
	2BS Perfs @ 8,633 - 13,152'		(Perfo	rated or Open Ho	le; indicate which)		

Released to Imaging: 9/8/2021 18:08:522 (AMM


Tubi	ng Size: 2.875' 6.5# L80 EUE Lining Material: None
Туре	e of Packer: 5.5" Watson 10K AS1X nicklel coated packer
Pack	ter Setting Depth: 7,903' MD / 7,877' TVD
Othe	er Type of Tubing/Casing Seal (if applicable):
	Additional Data
1.	Is this a new well drilled for injection?Yes XNo
	If no, for what purpose was the well originally drilled?
	PRODUCER - OIL
2.	Name of the Injection Formation:
3.	Name of Field or Pool (if applicable): PIERCE CROSSING BONE SPRING
	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used.
	NO
	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area:
	OVERLYING : BRUSHY CANYON FORMATION (DELAWARE) 5,065'
	UNDERLYING: WOLFCAMP FORMATION 10,234'


CC 29 #2H

26


Page38(0f.132

•

Max Allowable Surface Pressure (MASP) Table

				Max Achievable						MASP + Reservoir					Formation	MASP + Gas
		Proposed Max		Surface Pressure,			Burst	Brine		Brine Hydrostatic as a	Тор		Тор	Gas	Parting	Hydrostatic as a
		Allowable Surface	Current Average	Current	Proposed	Proposed Max	Calculation	Pressure	Casing or	percentage of Casing	Perforation	MASP	Perforation	Pressure	Pressure	percentage of
		Pressure (MASP)	Surface Pressure	Infrastructure	Average Injection	Injection Rate	Depth (FT	Gradient	Liner Burst	or Liner Burst	Depth (FT	Gradient	Depth (FT	Gradient	Gradient	Formation Parting
API10	Well Name	(PSI)	(PSI)	(PSI)	Rate (MMSCFPD)	(MMSCFPD)	TVD)	(PSI/FT)	(PSI)	Pressure (%)	TVD)	(PSI/FT)	TVD)	(PSI/FT)	(PSI/FT)	Pressure (%)
3001544191	CC21-023H	1250	775	1250	1.8	2	8,419	0.520	12,410	45%	8,419	0.148	8,419	0.200	0.650	54%
3001543819	CC28-008H	1250	740	1250	1.8	2	8,597	0.520	12,410	46%	8,597	0.145	8,597	0.200	0.650	53%
3001542992	CC29-002H	1250	680	1250	1.8	2	8,513	0.520	12,410	46%	8,513	0.147	8,513	0.200	0.650	53%

•

KEY

SSV – Safety Shutdown Valve PI – Pressure Indicator PIT – Pressure Indicating Transmitter FCV- Flow Control Valve

Mechanical Integrity Test (MIT) Summary Table

		Pressure Test		
API10	Well Name	Date	Details	
3001544191	CC21-023H	10/23/2017	1000 psi for 10 minutes	
3001543819	CC28-008H	12/12/2016	9500 psi for 30 minutes	
3001542992	CC29-002H	12/11/2016	1000 psi for 30 minutes	

Gas Analysis and Operations

CC Gas Source Well List

WELL	ΑΡΙ
CEDAR CANYON 15 FEDERAL COM 005H	30-015-42421
RIVER BEND 10 FEDERAL 001	30-015-33208
RIVER BEND 10 FEDERAL 002	30-015-20756
WIDTH CC 6 7 FEDERAL COM 017H	30-015-45629
WIDTH CC 6 7 FEDERAL COM 016H	30-015-45575
HEIGHT CC 6 7 FEDERAL COM 031Y	30-015-45770
HEIGHT CC 6 7 FEDERAL COM 032H	30-015-45554
HEIGHT CC 6 7 FEDERAL COM 033H	30-015-45561
HEIGHT CC 6 7 FEDERAL COM 311H	30-015-45630
LENGTH CC 6 7 FEDERAL COM 021H	30-015-45553
LENGTH CC 6 7 FEDERAL COM 022H	30-015-45565
LENGTH CC 6 7 FEDERAL COM 023H	30-015-45551
WIDTH CC 6 7 FEDERAL COM 015H	30-015-45576
WIDTH CC 6 7 FEDERAL COM 014H	30-015-45573
HEIGHT CC 6 7 FEDERAL COM 034H	30-015-45562
HEIGHT CC 6 7 FEDERAL COM 035H	30-015-45563
HEIGHT CC 6 7 FEDERAL COM 036H	30-015-45564
HEIGHT CC 6 7 FEDERAL COM 312H	30-015-45572
LENGTH CC 6 7 FEDERAL COM 024H	30-015-45552
LENGTH CC 6 7 FEDERAL COM 025H	30-015-45566
LENGTH CC 6 7 FEDERAL COM 026H	30-015-45567
SALT RIDGE CC 20 17 FEDERAL COM 021H	30-015-44945
SALT RIDGE CC 20 17 FEDERAL COM 023H	30-015-44947
MORNING FEDERAL 001H	30-015-37644
H BUCK STATE 005	30-015-35042
H BUCK STATE 010	30-015-34695
HARROUN 15 002	30-015-29763
CEDAR CANYON 15 001H	30-015-39857
HARROUN 15 008	30-015-30253
HARROUN 22 001	30-015-28639
HARROUN 10 001	30-015-30375
HARROUN 10 002	30-015-31709
HARROUN 10 003	30-015-32617
HARROUN 10 004	30-015-32618
HARROUN 15 007	30-015-29987
HARROUN 15 008	30-015-30253
HARROUN 15 014	30-015-32620
HARROUN 15 005	30-015-29310
HARROUN 15 015	30-015-33317
HARROUN 15 016A	30-015-33823
HARROUN 15 017	30-015-33822
HARROUN 22 003	30-015-33821
HARROUN 9 001	30-015-34997

HARROUN 9 003H	30-015-41488
CEDAR CANYON 15 002H	30-015-41032
CEDAR CANYON 15 003H	30-015-41594
CEDAR CANYON 15 004H	30-015-41291
CEDAR CANYON 22 002H	30-015-41327
REFRIED BEANS CC 15 16 STATE COM 012H	30-015-45215
REFRIED BEANS CC 15 16 STATE COM 013H	30-015-45216
REFRIED BEANS CC 15 16 STATE COM 014H	30-015-45217
WHOMPING WILLOW CC 15 16 STATE COM 044H	30-015-45218
H BUCK STATE 003	30-015-33820
H BUCK STATE 004H	30-015-34444
CEDAR CANYON 16 STATE 002H	30-015-41024
CEDAR CANYON 16 STATE 006H	30-015-41595
CEDAR CANYON 16 STATE 012H	30-015-42683
CEDAR CANYON 17 001H	30-015-42058
CEDAR CANYON 16 STATE 011H	30-015-42062
CEDAR CANYON 16 011H	30-015-39856
CEDAR CANYON 16 STATE 007H	
	30-015-41251
CEDAR CANYON 16 STATE 008H	30-015-41596
CEDAR CANYON 16 STATE 009H	30-015-42061
CEDAR CANYON 16 STATE 010H	30-015-42055
CEDAR CANYON 16 STATE 033H	30-015-43844
CEDAR CANYON 16 STATE 034H	30-015-43843
TAILS CC 10 3 FEDERAL COM 022H	30-015-47957
TAILS CC 10 3 FEDERAL COM 026H	30-015-47959
TAILS CC 10 3 FEDERAL COM 025H	30-015-47960
TAILS CC 10 3 FEDERAL COM 021H	30-015-47958
TAILS CC 10 3 FEDERAL COM 024H	30-015-47961
SALT FLAT CC 20 29 FEDERAL COM 031H	30-015-45080
SALT FLAT CC 20 29 FEDERAL COM 032H	30-015-45081
SALT FLAT CC 20 29 FEDERAL COM 033H	30-015-45082
SALT FLAT CC 20 29 FEDERAL COM 037H	30-015-46369
SALT FLAT CC 20 29 FEDERAL COM 034H	30-015-45048
SALT FLAT CC 20 29 FEDERAL COM 035H	30-015-45049
SALT FLAT CC 20 29 FEDERAL COM 036H	30-015-45050
SALT FLAT CC 20 29 FEDERAL COM 038H	30-015-46399
OXBOW CC 17 8 FEDERAL COM 031H	30-015-45083
OXBOW CC 17 8 FEDERAL COM 032H	30-015-45084
OXBOW CC 17 8 FEDERAL COM 033H	30-015-45085
OXBOW CC 17 8 FEDERAL COM 035H	30-015-46400
OXBOW CC 17 8 FEDERAL COM 037H	30-015-45086
OXBOW CC 17 8 FEDERAL COM 034H	30-015-46401
OXBOW CC 17 8 FEDERAL COM 036H	30-015-45088
OXBOW CC 17 8 FEDERAL COM 035H	30-015-45087
CEDAR CANYON 21 FEDERAL COM 022H	30-015-44190
CEDAR CANYON 21 FEDERAL COM 023H	30-015-44191
CEDAR CANYON 21 FEDERAL COM 021H	30-015-44181

•

CEDAR CANYON 21 FEDERAL COM 031H	30-015-44182
CEDAR CANYON 22 FEDERAL COM 005H	30-015-43758
CEDAR CANYON 21 22 FEDERAL COM 032H	30-015-44176
YVONNE 21 FEDERAL 001	30-015-28850
RIVERBEND FEDERAL 009	30-015-28861
CEDAR CANYON 22 001H	30-015-40668
CEDAR CANYON 21 22 FEDERAL COM 034H	30-015-44134
CEDAR CANYON 22 15 FEDERAL COM 034H	30-015-44055
GAINES 22 FEDERAL 001	30-015-35186
CEDAR CANYON 22 FEDERAL COM 006Y	30-015-43906
CEDAR CANYON 21 FEDERAL COM 005H	30-015-43749
CEDAR CANYON 27 FEDERAL COM 005H	30-015-43775
CEDAR CANYON 21 22 FEDERAL COM 033H	30-015-44133
CEDAR CANYON 23 002H	30-015-41194
CEDAR CANYON 23 24 FEDERAL COM 034H	30-015-44178
COYOTE 21 002	30-015-29864
GAINES 21 001	30-015-28638
GAINES 21 004	30-015-28816
CEDAR CANYON 22 15 FEE 031H	30-015-43809
CEDAR CANYON 22 15 FEE 032H	30-015-43808
VORTEC 27 001 CEDAR CANYON 27 STATE COM 004H	30-015-35041
CEDAR CANYON 27 STATE COM 004H	30-015-42063 30-015-43915
CEDAR CANYON 22 13 FEE 03311 CEDAR CANYON 27 STATE COM 010H	30-015-43673
MORGAN FEE COM 001H	30-015-39968
CEDAR CANYON 22 FEDERAL 021H	30-015-43642
CEDAR CANYON 23 24 FEDERAL 031H	30-015-44179
CEDAR CANYON 23 24 FEDERAL 032H	30-015-44180
CEDAR CANYON 22 FEDERAL COM 004H	30-015-43708
CEDAR CANYON 23 FEDERAL 003H	30-015-43290
CEDAR CANYON 23 FEDERAL 004H	30-015-43281
CEDAR CANYON 23 FEDERAL 005H	30-015-43282
CEDAR CANYON 23 FEDERAL COM 006H	30-015-44095
CEDAR CANYON 22 FEDERAL COM 005H	30-015-43758
GUACAMOLE CC 24 23 FEDERAL 011H	30-015-45870
GUACAMOLE CC 24 23 FEDERAL 012H	30-015-45871
CEDAR CANYON 23 001H	30-015-40667
CEDAR CANYON 20 FEDERAL COM 024H	30-015-44545
CEDAR CANYON 20 FEDERAL COM 025H	30-015-44519
CEDAR CANYON 20 FEDERAL COM 026H	30-015-44520
CEDAR CANYON 28 FEDERAL COM 008H	30-015-43819
CEDAR CANYON 28 27 FEDERAL COM 005H	30-015-43645
CEDAR CANYON 27 28 FEDERAL 042H	30-015-44435
CEDAR CANYON 28 FEDERAL COM 041H	30-015-44439
CEDAR CANYON 27 FEDERAL 006H	30-015-43232
CEDAR CANYON 27 FEDERAL 007H	30-015-43233
CEDAR CANYON 28 FEDERAL 006H	30-015-43234

CEDAR CANYON 28 FEDERAL 007H	30-015-43238
CEDAR CANYON 28 FEDERAL 009H	30-015-44016
CEDAR CANYON 29 FEDERAL 021H	30-015-43601
CEDAR CANYON 29 FEDERAL COM 002H	30-015-42992
CEDAR CANYON 29 FEDERAL COM 003H	30-015-42993
CEDAR CANYON 27 28 FEDERAL 043H	30-015-44437
CEDAR CANYON 27 28 FEDERAL 044H	30-015-44438
CEDAR CANYON 29 FEDERAL COM 024H	30-015-44521
CEDAR CANYON 29 FEDERAL COM 025H	30-015-44522
CEDAR CANYON 29 FEDERAL 026H	30-015-44523

•

Cedar Canyon Gas Analysis Summary

- Producing wells go to 3 Central Tank Batteries (CTBs).
 - Cedar Canyon 28-4 CTB
 - Cedar Canyon 21 CTB
 - Cedar Canyon 22 SAT/CTB
- There are 3 Compressor Gas Lift Stations (CGLs).
 - o Salt Flat CGL
 - o Cedar Canyon 28 CGL
 - o East CGL
- The high-pressure gas lift networks are split by the Pecos River. There is the East of Pecos network and the West of Pecos network.
 - East of Pecos- The Cedar Canyon 28 and East CGL's combine downstream in the same high-pressure gas lift network to feed wells collectively.
 - West of Pecos- The Salt Flat CGL is a separate high-pressure gas lift network.
- Gas analysis is provided for:
 - o Salt Flat CGL
 - o Cedar Canyon 28 CGL
 - o East CGL
 - 2nd Bone Spring production

Chandler Montgomery Occidental Petroleum 1502 W Commerce Dr. Carlsbad, NM 88220

Number: 6030-20080207-002A

Artesia Laboratory 200 E Main St. Artesia, NM 88210 Phone 575-746-3481

Aug. 26, 2020

Field: Salt Flat Station Name: Salt Flat Comp Outlet Station Number: 18799C Station Location: OXY Sample Point: Downstream Formation: Monthly County: Eddy Type of Sample: : Spot-Cylinder Heat Trace Used: N/A Sampling Method: : Fill and Purge Sampling Company: : SPL

Sampled By: Michael Mirabal Sample Of: Gas Spot Sample Date: 08/24/2020 08:35 Sample Conditions: 917 psia, @ 102 °F Ambient: 80 °F Effective Date: 08/24/2020 08:35 Method: GPA-2261M Cylinder No: 5030-00647 Instrument: 70104124 (Inficon GC-MicroFusion) Last Inst. Cal.: 08/10/2020 0:00 AM Analyzed: 08/26/2020 13:28:22 by PGS

Analytical Data

Components	Un-normalized Mol %	Mol. %	Wt. %	GPM at 14.65 psia	
Nitrogen	1.124	1.12836	1.452		
Carbon Dioxide	0.090	0.08992	0.182		
Methane	74.914	75.18483	55.422		
Ethane	12.999	13.04609	18.025	3.483	
Propane	6.585	6.60901	13.391	1.817	
Iso-Butane	0.824	0.82658	2.208	0.270	
n-Butane	2.009	2.01586	5.384	0.634	
Iso-Pentane	0.382	0.38368	1.272	0.140	
n-Pentane	0.414	0.41540	1.377	0.150	
Hexanes	0.184	0.18446	0.730	0.076	
Heptanes	0.084	0.08390	0.386	0.039	
Octanes	0.027	0.02740	0.144	0.014	
Nonanes Plus	0.005	0.00451	0.027	0.003	
	99.641	100.00000	100.000	6.626	
Calculated Physical	Properties	Total		C9+	
Calculated Molecular	0	21.76	5	128.26	
Compressibility Facto	or	0.9961			
Relative Density Real	l Gas	0.7541		4.4283	
GPA 2172 Calculation					
Calculated Gross B	TU per ft³ @ 14.65 ps	sia & 60°F			
Real Gas Dry BTU		1297.5		6974.4	
Water Sat. Gas Base	- • •	1275.4		6852.4	
Ideal, Gross HV - Dry		1292.5		6974.4	
Ideal, Gross HV - We	t	1269.9		6852.4	
Comments: H2S Fig Mcf/day	eld Content 0 ppm y 30262.8203				

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

CEDAR CANYON 28 CGL

Volumetrics US Inc.

3001 N Cameron St, Victoria, TX-77901 Phone: 361-827-4024

Company:	OXY USA INC	Work Order:	4000204555
Field/Location :	NMSW	Sampled by:	OXY/JE
Station Name :	CEDAR CANYON 28 TO ENTERPRISE CHECK	Sample Type :	SPOT-CYLINDER
Station Number :	14807C	Sample Temperature (F):	92
Sample Date:	11/17/20 1:05 PM	Sample Pressure (PSIG):	896
Analysis Date:	12/2/20 12:41 PM	Flow rate (MCF/Day):	23409
Instrument:	VARIAN- CP 4900 GC	Ambient Temperature (F):	56
Calibration/Verification Date:	12/2/2020	Sampling method:	FILL & EMPTY
Heat Trace used:	YES	Cylinder Number:	277

	NATURAL GAS ANALYSIS: GPA 2261							
Components	Un-Normalized Mol%	Normalized Mol%	GPM 14.650	GPM 14.730	GPM 15.025			
Hydrogen Sulfide	0.0000	0.0000						
Nitrogen	1.7289	1.7564						
Methane	74.5016	75.6862						
Carbon Dioxide	1.8606	1.8902						
Ethane	11.3167	11.4967	3.068	3.085	3.147			
Propane	5.4427	5.5292	1.520	1.529	1.559			
Isobutane	0.6853	0.6962	0.227	0.229	0.233			
N-butane	1.6639	1.6904	0.532	0.535	0.545			
Isopentane	0.3632	0.3690	0.135	0.135	0.138			
N-Pentane	0.4015	0.4079	0.148	0.148	0.151			
Hexanes Plus	0.4703	0.4778	0.208	0.209	0.213			
Total	98.4347	100.0000						

Hexanes plus split (60%-30%-10%)

Physical Properties (Calculated)	14.650 psia	14.730 psia	15.025 psia
Total GPM Ethane+	5.838	5.870	5.988
Total GPM Iso-Pentane+	0.490	0.493	0.503
Compressibility (Z)	0.9963	0.9963	0.9962
Specific Gravity (Air=1) @ 60 °F	0.7536	0.7536	0.7536
Molecular Weight	21.754	21.754	21.754
Gross Heating Value	14.650 psia	14.730 psia	15.025 psia
Dry, Real (BTU/Ft ³)	1241.1	1247.9	1273.0
Wet, Real (BTU/Ft ³)	1219.5	1226.2	1250.8
Dry, Ideal (BTU/Ft ³)	1236.5	1243.3	1268.2
Wet, Ideal (BTU/Ft ³)	1215.0	1221.7	1246.1

Temperature base 60 °F Comment:

FIELD H2S = 0 PPM

Verified byApproved byMostaq AhammadDeann FriendPetroleum ChemistDeann FriendLaboratory Manager

Released to Imaging: 9/8/2021 8:08:522 (AMM

Chandler Montgomery

Certificate of Analysis

Number: 6030-20080252-002A

Artesia Laboratory 200 E Main St. Artesia, NM 88210 Phone 575-746-3481

Sep. 01, 2020

Occidental Petroleum 1502 W Commerce Dr. Carlsbad, NM 88220 Field: Cedar Canyon Station Name: East Comp Station Enterprise Check Station Number: 14808C Station Location: OXY

Station Location:OXYSample Point:DownstreamFormation:MonthlyCounty:EddyType of Sample:Spot-CylinderHeat Trace Used:N/ASampling Method:Fill and PurgeSampling Company:SPL

Sampled By: Michael Mirabal Sample Of: Gas Spot Sample Date: 08/27/2020 11:07 Sample Conditions: 837 psig, @ 112 °F Ambient: 89 °F 08/27/2020 11:07 Effective Date: GPA-2261M Method: Cylinder No: 5030-01684 Instrument: 70104251 (Inficon GC-MicroFusion) Last Inst. Cal.: 08/31/2020 0:00 AM Analyzed: 09/01/2020 11:01:21 by PGS

Analytical Data

Components I	Un-normalized Mol %	Mol. %	Wt. %	GPM at 14.65 psia		
Nitrogen	2.046	2.061	2.511		GPM TOTAL C2+	6.175
Methane	73.024	73.556	51.329		GPM TOTAL C3+	3.278
Carbon Dioxide	3.203	3.226	6.175		GPM TOTAL iC5+	1.043
Ethane	10.773	10.851	14.192	2.897		
Propane	5.318	5.357	10.275	1.474		
Iso-butane	0.671	0.676	1.709	0.221		
n-Butane	1.702	1.714	4.333	0.540		
Iso-pentane	0.447	0.450	1.412	0.164		
n-Pentane	0.525	0.529	1.660	0.191		
Hexanes Plus	1.569	1.580	6.404	0.688		
	99.278	100.000	100.000	6.175		
Calculated Physical Pr	operties	То	otal	C6+		
Relative Density Real G	as	0.79	968	3.2176		
Calculated Molecular We	eight	22	.99	93.19		
Compressibility Factor		0.99	959			
GPA 2172 Calculation:						
Calculated Gross BTU	per ft3 @ 14.65 ps	sia & 60°F				
Real Gas Dry BTU		12	269	5113		
Water Sat. Gas Base BTU		12	247	5024		
Ideal, Gross HV - Dry at 14.65 psia		126	3.9	5113.2		
Ideal, Gross HV - Wet		124	1.8	5023.7		
Net BTU Dry Gas - real gas		11	53			
Net BTU Wet Gas - real	gas	11	33			

Comments: H2S Field Content 0 ppm 8237.1455 Mcf/day

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Chandler Montgomery Occidental Petroleum 1502 Carls

Sample Point:

Type of Sample: :

Heat Trace Used:

Sampling Company: : SPL

Formation:

County:

1502 W Commerce Dr. Carlsbad, NM 88220								
Field:	Cedar-Canyon							
Station Name:	Cedar Canyon 23 3H							
Station Number:	N/A							
Station Location: CTB								

Meter

Spot

Eddy

N/A

Sampling Method: : Fill and Purge

Spot-Cylinder

Certificate of Analysis

Number: 6030-21040299-002A

Artesia Laboratory 200 E Main St. Artesia, NM 88210 Phone 575-746-3481

Apr. 27, 2021

Sampled By: Chad Whitt Sample Of: Gas Spot Sample Date: 04/26/2021 Sample Conditions: 125.8 psig, @ 85.0 °F Ambient: 77 °F Effective Date: 04/26/2021 Method: GPA-2261M Cylinder No: 1111-001297 Instrument: 70104251 (Inficon GC-MicroFusion) Last Inst. Cal.: 04/26/2021 0:00 AM Analyzed: 04/27/2021 14:39:40 by EJR

Analytical Data

Components	Un-normalized Mol %	Mol. %	Wt. %	GPM at 14.65 psia	
Hydrogen Sulfide	NIL	NIL	NIL		
Nitrogen	1.689	1.71354	2.173		
Carbon Dioxide	1.008	1.02210	2.036		
Methane	74.585	75.65133	54.943		
Ethane	11.500	11.66445	15.878	3.114	
Propane	5.549	5.62790	11.235	1.548	
Iso-Butane	0.701	0.71132	1.872	0.232	
n-Butane	1.718	1.74286	4.586	0.548	
Iso-Pentane	0.401	0.40693	1.329	0.149	
n-Pentane	0.447	0.45329	1.481	0.164	
Hexanes	0.304	0.30804	1.202	0.126	
Heptanes	0.575	0.58271	2.643	0.268	
Octanes	0.075	0.07638	0.395	0.039	
Nonanes Plus	0.039	0.03915	0.227	0.022	
	98.591	100.00000	100.000	6.210	
Calculated Physical	Properties	Tota		C9+	
Calculated Molecular	Weight	22.09)	128.26	
Compressibility Facto	or	0.9961			
Relative Density Real	Gas	0.7654	Ļ	4.4283	
GPA 2172 Calculation	on:				
Calculated Gross B	TU per ft ³ @ 14.65 p	sia & 60°F			
Real Gas Dry BTU		1281.8	}	6974.4	
Water Sat. Gas Base	BTU	1259.9)	6852.4	
Ideal, Gross HV - Dry	at 14.65 psia	1276.8	}	6974.4	
Ideal, Gross HV - We	t	1254.4	ļ	6852.4	
Comments: H2S Fie Mcf/day	eld Content 0 ppm y 1553.5				

Report generated by: Eric Ramirez

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Existing Corrosion Prevention Plan

- Produced gas is processed through a gas dehydration unit to remove water.
- Corrosion inhibitor is added to the system downstream of the gas dehydration unit.
- Fluid samples are taken regularly and checked for Fe, Mn, and residual corrosion inhibitor in produced fluids.
- Continuously monitor and adjust the chemical treatment over the life of the well.

Oxy will continue the existing corrosion prevention plan in place for the gas lift system due to the similar nature of gas storage operations.

- Fluid samples will be taken prior to injection to establish a baseline for analysis.
- After a storage event, fluid samples will be taken to check for Fe, Mn, and residual corrosion inhibitor in the produced fluids.
- Continuously monitor and adjust the chemical treatment over the life of the project.

Page 52 of 132

NM GAS STORAGE OPERATIONAL PLAN

Operational Plan

WELLSITE CLGC

Oxy USA Inc. (Oxy) will monitor the following items on each Closed Loop Gas Capture (CLGC) well via SCADA system:

- Injection flow rate and volume
 - o Instantaneous Rate
 - Total Injected by Day (volume)
- Tubing Pressure
- Casing Pressure
- Bradenhead Pressures
- Safety devices
 - Pressure kills have an automated kill sequence that is initiated by SCADA system readings.
 - o Injection pressure kills on production stream for injection
 - Relief Valves for both production and gas storage/injection streams to prevent overpressure (not monitored via SCADA other than pressure trend)
 - Control of injection rate and pressures via control valve at each well injection stream
 - Control of production stream via automated choke valves to ensure controlled production and prevent over pressurization of flowline

CENTRAL TANK BATTERY (CTB)

Oxy will monitor the following items at each CTB via SCADA system:

- Production Rates
 - o Oil
 - o Gas
 - o Water
- Safety devices
 - Flares at CTBs
 - o Injection pressure kills on production/gas storage stream for injection
 - Emergency Shutdown (ESD) of wells that are local and remote for automatic shut downs to safe the system
 - o Control of injection rate and pressures via control valve at each well injection stream

CENTRAL GAS LIFT (CGL) COMPRESSOR(S)

Oxy will monitor the following items on each Central Gas Lift (CGL) Compressor Station via SCADA system:

- Safety devices
 - \circ $\;$ Discharge/injection pressure kills of each compressor and for the station
 - Relief Valves on 3rd stage of compressors, to prevent over pressurization (not monitored via SCADA other than pressure trend)
 - Station recycle valves (that recycle discharge pressure back to suction) if the pressure is getting too high for the compressor or station. (not all control valves are capable of

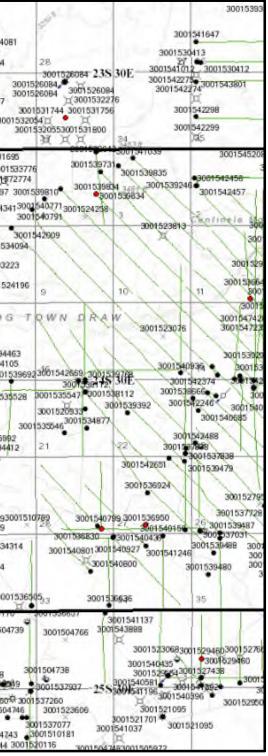
remote monitoring of valve position; but still monitored in some sense of the pressure trend for the station)

SUPERVISORY CONTROL AND DATA ACQUISTION (SCADA)

Oxy SCADA system consists of PLCs at each CTB, Wellsite, and Central Gas Lift compressor or station.

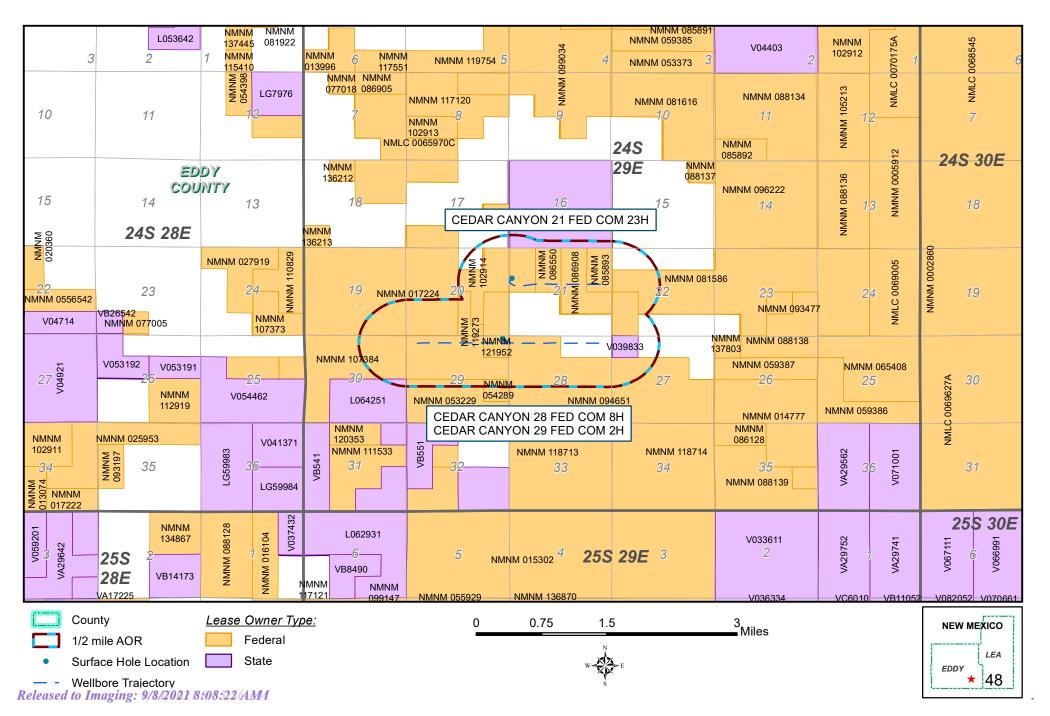
- The Programmable Logic Controller (PLCs) will take action immediately (within seconds or minutes) as programmed to automatically safe the system as required; for the system and certain device shut down(s).
- The High Alarms and High-High Alarms will be logged and registered in the SCADA system. Also the call center will take the High Alarm and make the physical phone call notification to the production techs to acknowledge the alarm & take action.

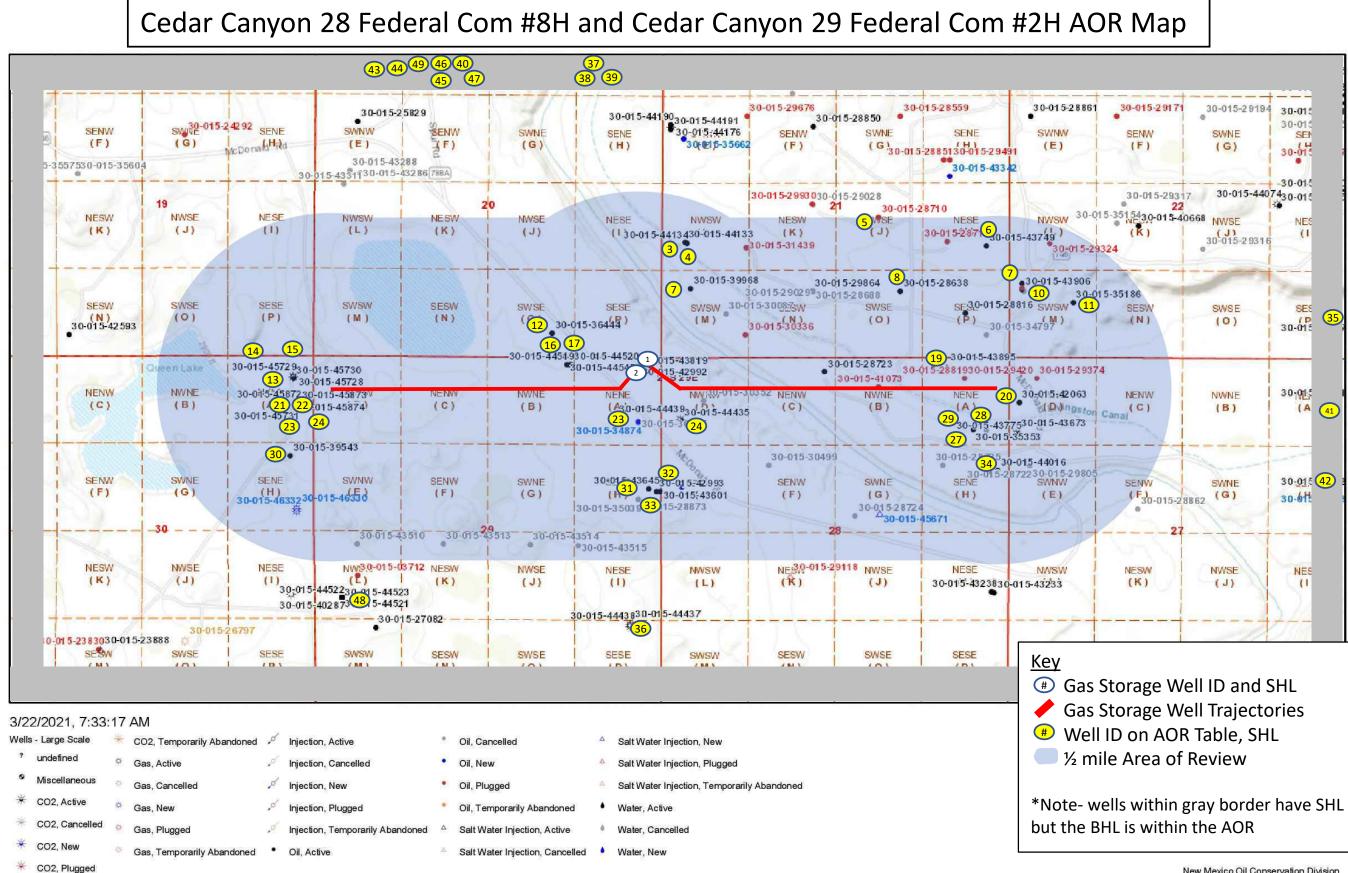
ENVIRONMENTAL/SPILL RESPONSE


Oxy will report and track any spill recordable or non-recordable via our CDR system

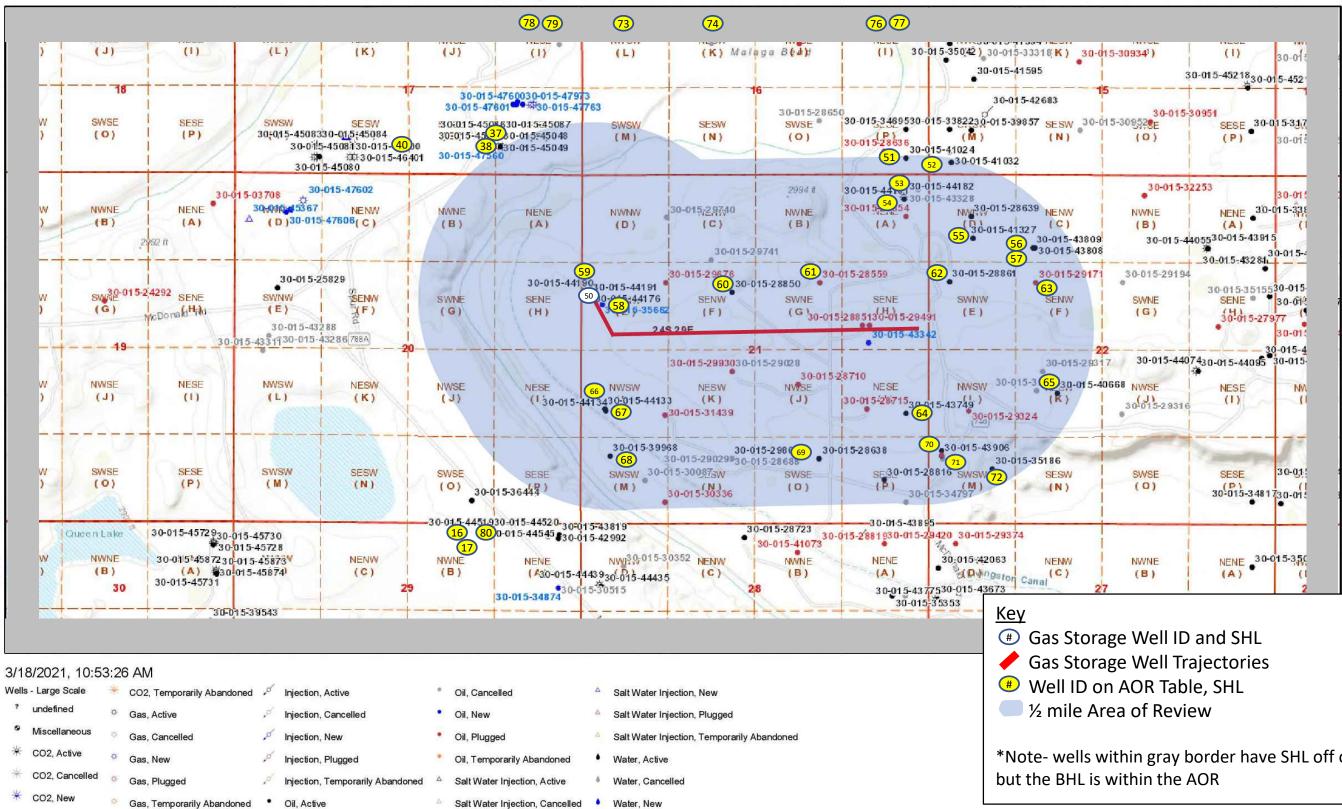
- Any spill or gas release will be reported by operations calling in to our Call Center to make the report of spill/release. The fluid type and release amount will be disclosed along with location details; and if it's a recordable or non-recordable spill.
- Liquids will be contained and isolated and vacuum trucks will be called in to recover the liquid and will also report the amount of liquid recovered on the same CDR spill form.
 - Additional reclamation will be coordinated to ensure proper recovery of contaminated soil and liquid.

Area of Review


Cedar Canyon 2 Mile Well Map


21643 3001643165 3001530055 3001545499-1 300154562	3001538404 300152369630010265643	30 3001 587249 3001 587249 31 526172 3001 531 910 3934 901 545 3001 547 848 001 544 288 3001 528 344 3001 547 848 3001 30 300 001 526 264 14,4 50,1,3,3,0,1,3,3,0,1,3,3,0,1,3,3,0,1,3,3,0,1,3,3,0,0,1,3,0,0,1,3,0,0,0,1,3,0,0,0,1,3,0,0,0,0	3001543857 3001335882 3001574649	3001535006 3001535006 3001535006 3001535006 3001535006 3001535006 3001535007 3001535007 300153600153600 300153600153600 300153600153600 300153600153600 3001535005 300153005 30015005 30015005 30015
application application <thapplication< th=""> application</thapplication<>	87 3001546115 3001576415 3001546115 3001576415 3001547107 3001547956 3001502497 3001547956 3001502497 3001547028 3001502497 3001547028 3001502497 3001523880 3001502497 30015223880 3001502489 3001522279 3001544514 3001544048 3001544514 3001524300 3001544514 3001544048 3001544514 3001544048 3001544514 3001544048 3001544514 3001544548 3001544571 3001544571 3001544571 3001544571 3001544571 3001543571 300154357 3001543571	300164642(z) 3001544789 3001544789 3001543780 001546450 3001543262 300152857 3001537212.21 300 5857 5857 30015377865001537212.21 300 30015377865001537252 30015377865001537252 8243001537148 3801544976 3001537865001537252 300153728530 3001537865001537252 901526863 3001524323 30015348976 30015376433001 30015376433001 9001529137 3001537644 3001528463 300154798 30015284663013 900153959300150058990 3001544798 30015284663013 30015284663013 30015284663013 900153959300150058990 3001528137 3001 30015284663013 3001544798	544096 30015461409 3007535108 3001537 77 3001526319 3001532514 300153 1528577 3001526319 300152514 300153 3001527907 3001525306 3001535109 3001533 3001527907 3001525306 3001532948 300153394 3001527495 3001533636 3001544471 300 3001527365 3001533636 2019746423 3001543 3001527365 3001546424 3001546423 3001543 3001520756 30015407223001546423 3001533098 3001526893 3001547548 3001520756 3001533098 3001547548 3001547548 3001547548 3001531710 3001533098 3001547548 3001547548	184 3001 31692 3001/531695 8297 30015 5522 3001/531412 3001/53373 30015351 5 3001/531412 3001/53373 30015351 5 3001/531412 3001/537774 3001537 3001/531412 3001/531697 3001/57774 3001537 3001/53161 3001/531697 3001 3001537 3001/53161 3001/531697 3001 1539292 301/535161 3001/531697 3001 143 3001 35614 3001/532052 3001 143 3001 35614 3001/532052 3001 146354 15001/532127 3001/5321253001/534094 3001/532126 3001/532126 3001/530126 3001/532127 3001/53212601/533223 3001/5332623 3001/5332623 14 3001/532126 3001/5332623 3001/5332623 3001/5332623 15 3001/532126 3001/533263 3001/533263 3001/533263
bit 3001535899 300154025 300154025 300154025 300154025 300154025 300154025 300154025 300154025 300154025 300154025 300154025 300154025 300154025 300154025 300154025 300154025 300154259 300154259 300154259 300154259 300154259 300154259 300154259 300154259 300154259 300152055 300152252 3001522529 300152259 300152259 300154259 30015210 5 300154374 300154374 3001522565 3001544259 3001543653 300154259	3001543946 3001543846 3001524945 3001543942 901543942 90154395 3001543324 901544129 90154365 3001543324 901544129 9015 3001543324 901544129 90154254 3001543324 901544129 90154254 3001543324 90154425 901544254 300154529 90154255 300154554 90154254 300154554 90154254 300154554 90154254 300154529 90154268 300154280 900154280 300154609 9001527205 3001510902 300154609 9001527205 3001510902 300154609 9001527205 3001510902 300154609 9001527205 3001510902 3001546089 30015274061	3001547189 31525688 5001526707 3001544054 301754606 4241 3001542058 3001542058 3 300 3001544205 3001544945 3001547548 3 300 300154255 3001544947 300154756300152709 3001524255 3001544947 300154756300152709 3001524292 3001547560 300152409 3001524292 3001547560 300152409 3001524292 3001547560 300152409 3001524292 3001547560 300152409 3001524292 3001547560 300152409 3001524292 3001547560 300152409 3001524292 300152529 300152408 3001524292 300152529 3001524568 3001524292 300152529 3001524568 3001552555 300152529 300152529 300152509 3001525575 300152529 300152529 300152529	3001531709 5001523249 3001531709 3001529249 3001542844300153262 3001529243 3001529243 3001529243 3001529243 3001529243 3001529303 3001529303 3001529303 3001528963 3001529303 3001528963 3001529303 3001528963 3001530042 001535948 30015300152930015293001529300152930015293001529300152930015293001529300152930015293001529300152930015293001529320 300153001529300152930015293001529320 3001527977001532930 300152291533001529315 30015229317 3001522915 30015229317 3001522915 30015335918	30015391.87 300152928 30015294196 0153509 300532928 3001523427 9001522327 01535037 3001532961 3001523627 9001522327 01535037 3001532961 300153246 7 07300153425 3001532961 300153246 3001534463 57 3001532961 3001534463 3001534463 57 3001535590 3001534463 3001534463 57 3001535590 3001539715 3001534463 59 3001535590 3001539715 300153528 69 300153549 3001533861 300153528 300153528 3001533861 3001533863 300 9300154203 3001533863 300 3001535992
3001536017 3001533852 300153533852 3001535533 3001535533 3001535270 3001535270 3001535270 3001535401 3001535401 30015255401 30015255401 30015255401 3001527544 3001527544 3001527544 3001527544 300152764 300152466 300152764 300152764 300152764 300152466 300152764 300152466 300152764 300152466 300152466 300152764 300152466 30015246 3001	3001547840 3001547840 3001528268 3001546182 3001531311 3001522962 3001528065 3001528065 3001528065 3001528064 3001528065 3001528064 3001528064	3001523888 3001523888 328838 3001526797 300154757 3001548151 3001526547 3001548151 3001526547 3001548151 3001526547 3001548151 3001548151 3001545183 3001545183 3001545183 30015454181 3001526841	00115291183001520152 26 3001525583 50 265 30015258821 30015298821 3001527381 3001533469B 3001527381 3001533469B 3001527923 3001527381 30015301693001 301527923 3001527381 30015301693001 34 35 3001534967 30015	1525583 300134309 3001534308 3001534308 3001535529 3001535529 3001535529 3001535629 3001535629 3001535629 3001535643 3001535643 3001535635 3001535635 3001535635 3001536 3001535635 3001536 3001535635 3001536 3001535635 3001536 3001535635 3001536 3001535635 3001536 3001535635 3001536 3001535635 3001536 3001535635 30015356 3001535635 30015356 3001535635 30015356 3001536 30015356 3001536 30015356 3
Key Well Trajectory ½ Mile Outline	a 3001544152369352980 300154541 03001543590 73 3001525164 3001530619 3001527 300152002 3001527933300152 533371 3001545022 01 300154113276 3001528 2 3001545094 001545011 300153830 30354113276 3001528 2 3001545094 001545011 300153830 30354113276 3001528 2 3001545094 001545011 300153830 3001533939 3001529892 2571 3001529892 2571 3001529892 2571 3001529892 3001534436	45173300130211 1 300 01545174 44 3001523002 3001525312 7984 3001524839 3001525748 895 3001534839 60	3001543718 3001543718 3001543718 300154768 300154712 3001547168 3001547168 3001547168 30015357873001535500 3001545238 3001545523 3001545523 3001545523 3001545523 3001545523 3001545523 3001545523 3001545523 3001545555 3001545555 3001545555 3001545555 3001545555 3001545555 3001545555 3001545555 3001545555 3001545555 3001545555 300155555 300155555 3001555555 3001555555 3001555555 30015555555 3	0 001540532 3001546539 3001547529 3001546539 3001546539 3001546539 3001546539 3001546539 30015547205300 1540588 001547205300 1540588 30015547418 3001537418 3001537418 3001537418 3001537418 3001537418 3001537418 3001537418 3001537418 3001537418 3001537418 300154739 3001554739 300154739 300154739 300154739 300154739 300154739 300154739 300154739 300154739 300154739 300154748 3001537257 3001537257 3001537257 3001537257 3001537257 3001537257 3001524746 300153729 3001524746 300153729 3001524746 300153729 3001524746 300153729 300154739 300154739 300154739 300154739 300154739 300154739 300154739 300154748 30015475748 30015475748 3

CEDAR CANYON NEW MEXICO



NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

*Note- wells within gray border have SHL off of the map,

Cedar Canyon 21 Federal Com #023H AOR

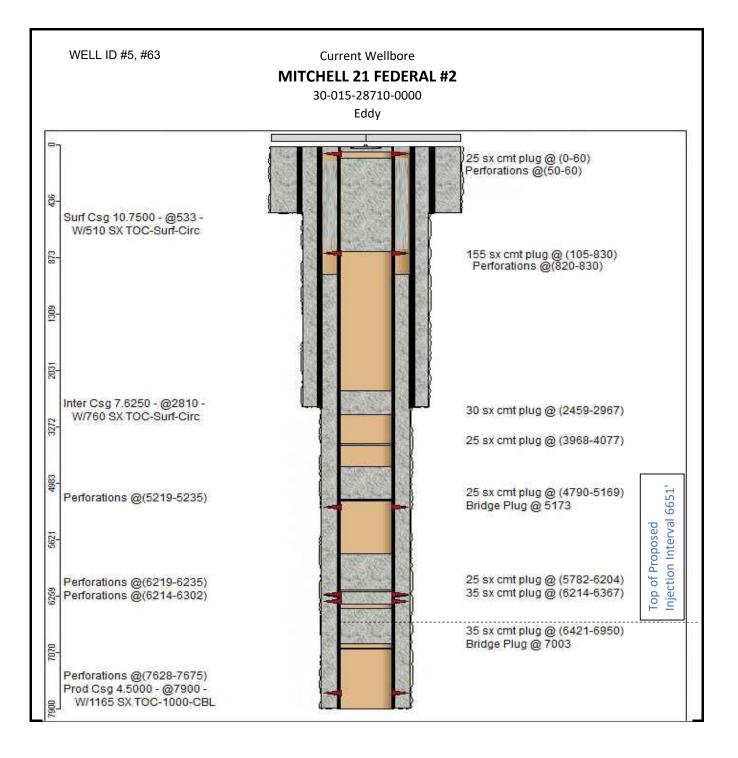
* CO2, Plugged

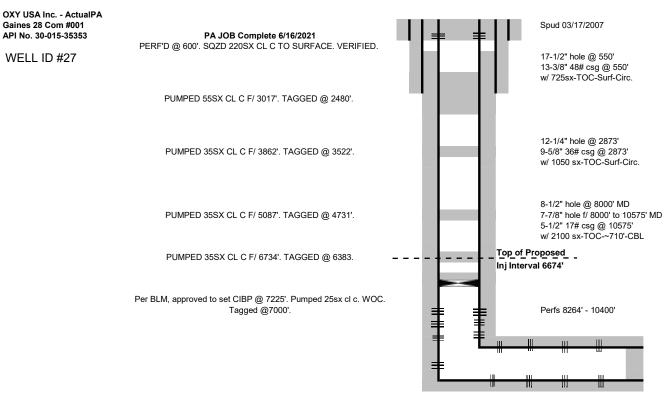
NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

*Note- wells within gray border have SHL off of the map,

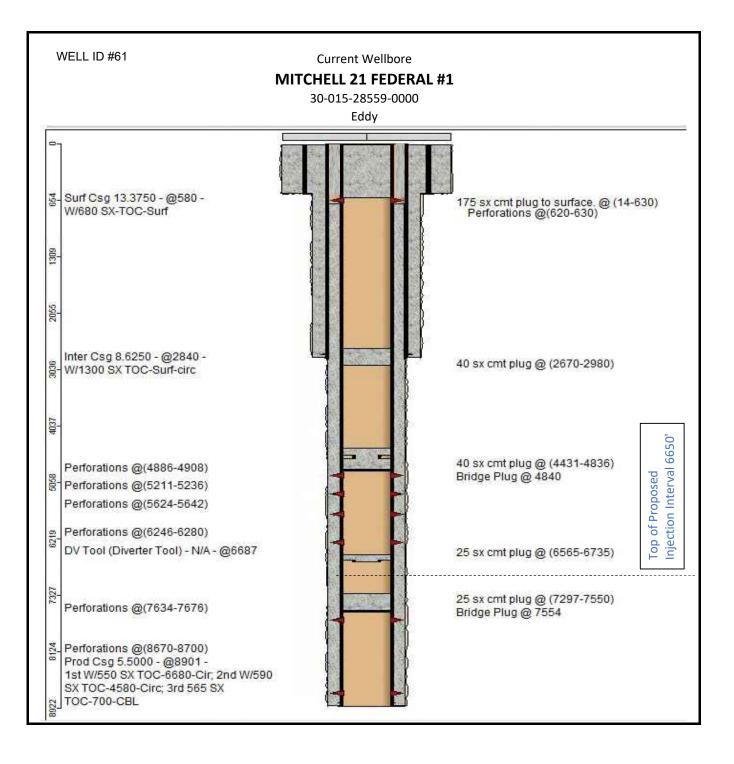
ell API NUMBER Current Operator	LEASE NAME	WELL NUMBEI	Well		Footage	es I N/S I	Footage:		ourface .ocation Uni	Locatio	Surface	Locatio	on	True Vertical Depth [ft]	Measure	ed HOLE t] SIZE [in			SX CMT		HOW MEASURE D	Current Completion [ft	Comment	Current Producing Pool
30-015-43819 OXY USA INC	CEDAR CANYON 28 FEDERAL COM	008H	Oil		e 170	N 3	-	E/VV L		29	245	29E	10/20/2016		13460	14.750					Circ		5.5" to 4.5" cross over at 8724 ft	[96473] PIERCE CROSSING; BONE SPRING, EAST
													,,			9.875	7.625	8050			Circ			[
																6.750	5.500	8724			CBL			
30-015-42992 OXY USA INC	CEDAR CANYON 29 FEDERAL COM	002H	Oil	Active	230	N	320	E A	1	29	24S	29E	10/21/2016	5 8531	13384	6.75 14.750	4.500	13445 410			CBL Circ	13152-8633	5.5" frac string	[50371] PIERCE CROSSING; BONE SPRING
30-013-42332 OXT 03A INC	CEDAR CANTON 23 FEDERAL COM	00211	OII	Active	230	N .	320	L /	1	29	243	ZJL	10/21/2010	0 0551	13304	9.875	7.625	8049			CBL	13132-0033	5.5 Hac string	[30371] FILKEL CROSSING, BONE SFRING
																6.750	5.5	7919	NA		NA			
																6.750	4.500	13384			Circ			
30-015-44134 OXY USA INC	CEDAR CANYON 21 22 FEDERAL CON	VI 034H	Oil	Active	e 1737	S S	399	W L		21	24S	29E	5/9/2017	9997	19980	17.500					Circ	9978-19797		[96473] PIERCE CROSSING; BONE SPRING, EAST
																12.250 8.500	9.625 5.500	9242 19968			Circ Circ			
30-015-44133 OXY USA INC	CEDAR CANYON 21 22 FEDERAL CON	V 033H	Oil	Active	e 1754	S 3	374	W L		21	24S	29E	5/10/2017	10002	19951	17.500		542		Surf	Circ	9908-19667		[96473] PIERCE CROSSING; BONE SPRING, EAST
																12.250	9.625	9183	2235	Surf	Circ			
																8.500	5.500	19842		Surf	Circ			
30-015-28710 OXY USA INC	MITCHELL 21 FEDERAL	002	Oil	PA	2110	S 1	1980	E J		21	24S	29E	1/12/1996	7900	7900	14.75	10.750 7.625	533 2810		Surf	Circ	NA		NA
																9.88 6.75	4.500	7900			Circ CBL			
30-015-43749 OXY USA INC	CEDAR CANYON 21 FEDERAL COM	005H	Oil	Active	e 1090	S 2	207	W	N	22	24S	29E	8/6/2016	8626	13545	14.750		430			Circ	8918-13313		[96238] CORRAL DRAW; BONE SPRING
																9.875	7.625	8138		Surf	Circ			
																6.750	5.500	8840			Circ			
30-015-39968 OCCIDENTAL PERMIAN LTD	MORGAN FEE COM	00111	0:1	Activit	1025	<u>د</u>	1EE	14/		21	245	205	4/10/2012	0607	10744	6.750 17.500	4.500 13.375	13531 400			Circ	0150 12000		
20-012-22200 OCCIDENTAL PERIMIAN LTD		001H	UII	ACCIVE	e 1035	S 4	400	W	VI	21	24S	29E	4/10/2012	000/	12741	17.500		400 3037			Circ Circ	9150-12600		[96238] CORRAL DRAW; BONE SPRING
																8.750	5.500	12741			Circ			
30-015-28638 OXY USA INC	GAINES 21	001	Oil	Active	e 990	S 1	1650	E C)	21	24S	29E	11/1/1995	7850	7850	14.750		523	625	Surf	Circ	7658-7683		[96238] CORRAL DRAW; BONE SPRING
																9.875	7.625				Circ			
30-015-43906 OXY USA INC	CEDAR CANYON 22 FEDERAL COM	006Y	Oil	Antivo	e 1040	S 2	207	w	4	22	24S	29E	9/27/2016	8950	13405	9.875 14.750	4.500	7850 435			CBL Circ	8610-13196		[96238] CORRAL DRAW; BONE SPRING
30-015-43906 OXY USA INC	CEDAR CANFON 22 FEDERAL COM	0061	UII	Active	2 1040	5 4	207	VV I	VI	22	245	29E	9/2//2016	8850	13405	14.750 9.875	7.625				Circ	8010-13190		[96238] CORRAL DRAW; BOINE SPRING
																6.750	5.500	8957			Circ			
																6.750	4.500	13397		Surf	Circ			
30-015-43758 OXY USA INC	CEDAR CANYON 22 FEDERAL COM	005H	Oil	Active	e 1120	S 2	207	W	N	22	24S	29E	8/6/2016	8819	13525	14.750	10.750	437		Surf	Circ	8939-13358		[96238] CORRAL DRAW; BONE SPRING
																9.875	7.625	7650			Circ			
																6.750 6.750	5.500 4.500	8921 13514			Circ Circ			
30-015-35186 OXY USA INC	GAINES 22 FEDERAL	001	Oil	Active	e 820	S S	990	W	N	22	24S	29E	11/15/2006	5 10752	10752	17.50	13.38	557		Surf	Circ	8110-10660		[96473] PIERCE CROSSING; BONE SPRING, EAST
																12.25	9.63	2902	1175	1846	Circ			
																8.50	5.50	10752			CBL			
30-015-36444 SMC OIL & GAS, INC.	QUEEN LAKE 20 FEDERAL	002H	Oil	Active	e 350	S 1	1650	E C)	20	24S	29E	8/20/2008	10802	10719	17.500	13.375 9.625	655 2800		Surf Surf	Circ Circ	7751-10603		[50371] PIERCE CROSSING; BONE SPRING
																8.500	5.500	10802		2300	Circ			
30-015-45728 Murchison Oil and Gas, LLC	ROCK RIDGE FEDERAL WCB	001H	Gas	Active	e 310	N S	300	E A	4	30	24S	29E	4/24/2019	10784	15450	16.000		352		Surf	Circ	10890-15355		[98220] PURPLE SAGE; WOLFCAMP (GAS)
																12.25	9.625	9536			Circ			
					222					20	2.46	205				8.500	5.500	15423		Surf	Circ	0050 4 4075		
30-015-45729 Murchison Oil and Gas, LLC	ROCK RIDGE FEDERAL WCXY	002H	Gas	Active	e 330	N S	300	E A	4	30	24S	29E	4/10/2019	9714	14433	16.000	13.375 9.625	373		Surf Surf	Circ Circ	9850-14375		[98220] PURPLE SAGE; WOLFCAMP (GAS)
																	5.500				Circ			
30-015-45730 Murchison Oil and Gas, LLC	ROCK RIDGE FEDERAL BSS	004H	Oil	Active	e 350	N S	300	E A	4	30	24S	29E	3/25/2019	8406	13060		13.375				Circ	8495-12999		[96671] PIERCE CROSSING; BONE SPRING, SOUTH
																12.250				Surf	Circ			
		02511	0.7	A -/ *	. 110	KI -	1200			20	240	205	F /47 /2040	0070	10202	8.500		13055			Circ	8005 400 10		
30-015-44519 OXY USA INC	CEDAR CANYON 20 FEDERAL COM	025H	OII	Active	e 110	N 1	1380	E E	5	29	24S	29E	5/17/2018	8671	16200	14.750 9.875	10.750 7.625			Surf Surf	Circ Circ	8605-16042	5.5" to 4.5" cross over at 8557 ft	[50371] PIERCE CROSSING; BONE SPRING
																9.875 6.75	5.500	8034 8557			CBL			
																6.750	4.500	16188			CBL			
30-015-44520 OXY USA INC	CEDAR CANYON 20 FEDERAL COM	026H	Oil	Active	e 110	N 1	1360	E E	3	29	24S	29E	5/20/2018	8662	16365	14.750					Circ	8662-16213	5.5" to 4.5" cross over at 8626 ft	[50371] PIERCE CROSSING; BONE SPRING
																9.875	7.625				Circ			
																6.75 6.750	5.500 4.500	8626 16353			CBL CBL			
30-015-43895 NGL WATER SOLUTIONS PERMIA	N MOUTRAY SWD	001	SWD	Active	e 140	N S	945	E A	4	28	24S	29E	10/3/2016	16036	16036	26.000					Circ	14905-16036		[96101] SWD; DEVONIAN
																17.500					Circ			
																	9.625				Circ			
20.045.42062.0000164.006		00.411	0.7	A -/ *	700	KI -	170		<u></u>	27	240	205	7/47/204-	0000	12500	8.500	7.875	14905			Circ	0110 12410		
30-015-42063 OXY USA INC	CEDAR CANYON 27 STATE COM	004H	UI	Active	e /UU	N 1	1/3	W	J	27	24S	29E	7/17/2014	8826	13288	14.750 10.625		464 3115		Surf Surf	Circ Circ	9110-12449		[96473] PIERCE CROSSING; BONE SPRING, EAST
																	8.625 5.500				Circ			
30-015-45872 Murchison Oil and Gas, LLC	ROCK RIDGE FEDERAL WCXY	005H	Gas	Active	e 745	N 2	250	E A	4	30	24S	29E	7/12/2019	9732	14538	16.000				Surf	Circ	9960-14485		[98220] PURPLE SAGE; WOLFCAMP (GAS)
																	9.625	9033			Circ			
20.045 45072 11 07 12 15		0000	~		- 705		250	_		22	2.40	205	c /20 /2017	0700	44.00		5.500				Circ	0075 4 4 4 5		
30-015-45873 Murchison Oil and Gas, LLC	ROCK RIDGE FEDERAL WCXY	006H	Gas	Active	e /65	N 2	250	E A	4	30	24S	29E	6/28/2019	9726	14438	16.000 12.250	13.375 9.625			Surf Surf	Circ Circ	9875-14400		[98220] PURPLE SAGE; WOLFCAMP (GAS)
																12.250 8.500		9023 14438			Circ			
																	5.500	1-1-10		0011				
30-015-45731 Murchison Oil and Gas, LLC	ROCK RIDGE FEDERAL BSS	007H	Oil	Active	e 785	N 2	250	E A	4	30	24S	29E	6/10/2019	8398	13140	16.000	13.375	370	400	Surf	Circ	8560-13085		[96671] PIERCE CROSSING; BONE SPRING, SOUTH

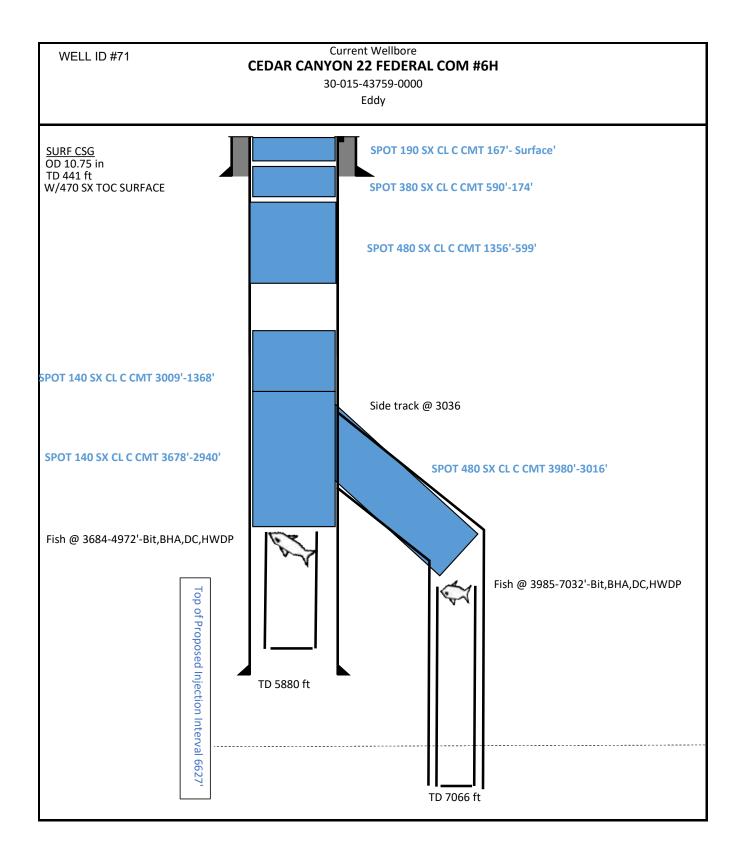
•


24 30-015-45874 Murchison Oil and Gas, LLC	ROCK RIDGE FEDERAL BSS	008H	Oil Active 805	N 250	ΕA	30	24S	29E	6/8/2019 8409	13216	16.000 12.250	9.625	2771	355 965	Surf Surf Surf	Circ Circ Circ	8665-13160		[98220] PURPLE SAGE; WOLFCAMP (GAS)
25 30-015-44439 OXY USA INC	CEDAR CANYON 28 FEDERAL COM	041H	Gas Active 934	N 305	E D	28	24S	29E	8/6/2018 10051	14778	8.500 14.750 9.875 6.75	5.500 10.750 7.625 5.500	13194 682 9368 10006	1000 1814	Surf Surf Surf 6100	Circ Circ Circ CBL	10582-14546	5.5" to 4.5" cross over at 10006 ft	[98220] PURPLE SAGE; WOLFCAMP (GAS)
26 30-015-44435 OXY USA INC	CEDAR CANYON 27 28 FEDERAL	042H	Oil Active 956	N 325	W D	28	24S	29E	8/5/2018 9982	20134	6.750 14.750 9.875	4.500	14755 670		6100 Surf Surf	CBL Circ Circ	9934-20031		[96473] PIERCE CROSSING; BONE SPRING, EAST
7 30-015-35353 OXY USA INC	GAINES 28 COM	001	Oil PA 1120	N 530	ΕA	28	24S	29E	3/17/2007 10575	10575	6.750 17.500 12.250			725	Surf Surf Surf	Circ Circ Circ	NA		NA
8 30-015-43673 OXY USA INC	CEDAR CANYON 27 STATE COM	010H	Gas Active 1154	N 121	W D	27	24S	29E	5/28/2016 10125	14880	14.750 9.875	7.625	500 9032	530 1640	710 Surf Surf	CBL Circ Circ	10136-14712	5.5" to 4.5" cross over at 10189 ft	[98220] PURPLE SAGE; WOLFCAMP (GAS)
29 30-015-43775 OXY USA INC	CEDAR CANYON 27 FEDERAL COM	005H	Oil Active 1154	N 151	W D	27	245	29E	5/28/2016 8819	13743		5.500 4.500 7.625 5.500	10189 14870 8886 13743	590 1500	6000 6000 Surf Surf	CBL CBL Circ Circ	9079-13583		[96473] PIERCE CROSSING; BONE SPRING, EAST
30 30-015-39543 Murchison Oil and Gas, LLC	ROCK RIDGE FEDERAL	003H	Oil Active 1520	N 350	E H	30	24S	29E	1/5/2012 7065	11522	17.500	13.375 9.625 5.500	515 2658	540 980	Surf Surf Surf Surf	Circ Circ Circ Circ	6956-11300		[96671] PIERCE CROSSING; BONE SPRING, SOUTH
31 30-015-43645 OXY USA INC	CEDAR CANYON 28 27 FEDERAL CON	И 005Н	Oil Active 1990	N 180	ΕH	29	24S	29E	12/21/2016 8733	18714	17.50 12.25 8.50	13.38 9.63 5.50	667 8190	735 2620	Surf 960 8055	Circ Circ Circ CBL	8626-18482		[96473] PIERCE CROSSING; BONE SPRING, EAST
32 30-015-42993 OXY USA INC	CEDAR CANYON 29 FEDERAL COM	003H	Oil Active 1990	N 210	ΕH	29	245	29E	12/23/2016 8563	13345	14.750		670	700 1215	Surf Surf Surf	Circ Circ Circ Circ	8582-13135		[50371] PIERCE CROSSING; BONE SPRING
33 30-015-43601 OXY USA INC	CEDAR CANYON 29 FEDERAL	021H	Oil Active 1989	N 150	ΕH	29	24S	29E	12/24/2016 8526	13480	14.750 9.875 6.750			610 2020	Surf Surf Surf	Circ Circ Circ Circ	8719-13274		[50371] PIERCE CROSSING; BONE SPRING
34 30-015-44016 OXY USA INC	CEDAR CANYON 28 FEDERAL	009H	Oil Active 1990	N 120	E H	29	24S	29E	1/15/2017 8708	13835	14.750 9.875 6.750		672	700 2140	Surf Surf Surf	Circ Circ Circ	9079-13637		[96473] PIERCE CROSSING; BONE SPRING, EAST
35 30-015-34817 OXY USA INC	VORTEC 22	001	Oil Active 330	S 330	E P	22	24S	29E	4/28/2006 10852	10852	17.500 12.250 7.625	13.375 9.625 5.5	555 2915	475 1075	Surf Surf 4190	Circ Circ CBL	8121-10730		[50371] PIERCE CROSSING; BONE SPRING
36 30-015-44437 OXY USA INC	CEDAR CANYON 27 28 FEDERAL	043H	Gas Active 1275	S 465	E P	29	245	29E	9/28/2017 10097	20270	17.500 12.250 8.500	13.375 9.625 5.500		965 3387 2312	Surf Surf Surf	Circ Circ Circ	10286-20110		[98220] PURPLE SAGE; WOLFCAMP (GAS)
37 30-015-45048 OXY USA INC	SALT FLAT CC 20 29 FEDERAL COM	034H	Gas Active 421	S 1271	E P	17	24S	29E	9/26/2019 9981	20456	17.500 9.875 6.75	13.375 7.625 5.500	419 9418 20447		Surf Surf 9299	Circ Circ Circ	10208-20185		[98220] PURPLE SAGE; WOLFCAMP (GAS)
38 30-015-45049 OXY USA INC	SALT FLAT CC 20 29 FEDERAL COM	035H	Oil Active 421	S 1236	E P	17	24S	29E	9/27/2019 9772	20220	17.500 9.875 6.75	13.375 7.625 5.500	420 9242 20011		Surf Surf Surf	Circ Circ Circ	9676-19857		[50371] PIERCE CROSSING; BONE SPRING
39 30-015-45050 OXY USA INC	SALT FLAT CC 20 29 FEDERAL COM	036H	Gas Active 421	S 1201	E P	17	24S	29E	9/29/2019 10010	20342	17.500 9.875 6.75	13.375 7.625 5.500	9535		Surf Surf 9291	Circ Circ Circ	10158-20135		[98220] PURPLE SAGE; WOLFCAMP (GAS)
40 30-015-46399 OXY USA INC	SALT FLAT CC 20 29 FEDERAL COM	038H	Gas Active 435	S 1835	W N	17	24S	29E	10/21/2019 9879	20489	9.875	13.375 7.625 5.500	9310	2839	Surf Surf 9210	Circ Circ CBL	10358-20335		[98220] PURPLE SAGE; WOLFCAMP (GAS)
41 30-015-35041 OXY USA INC	VORTEC 27	001	Oil Active 660	N 330	E A	27	24S	29E	10/1/2006 10848	10848	12.250	13.375 9.625 5.500	2898	1030	Surf Surf Surf	Circ Circ Circ	10770-8102		[96473] PIERCE CROSSING; BONE SPRING, EAST
42 30-015-35492 OXY USA INC	VORTEC 27	002	Oil Active 2010	N 380	ΕH	27	245	29E	8/31/2007 11376	11376	12.250	13.375 9.625 5.5	2920		Surf Surf 2400	Circ Circ CBL	7981-11180		[96473] PIERCE CROSSING; BONE SPRING, EAST
43 30-015-45080 OXY USA INC	SALT FLAT CC 20 29 FEDERAL COM	031H	Gas Active 252	S 1222	W M	17	24S	29E	10/31/2019 9796	20207	9.875	10.750 7.625 5.500	9300	2233	Surf Surf Surf	Circ Circ Circ	10088-20065		[98220] PURPLE SAGE; WOLFCAMP (GAS)
44 30-015-45081 OXY USA INC	SALT FLAT CC 20 29 FEDERAL COM	032H	Gas Active 252	S 1257	W M	17	24S	29E	11/1/2019 9973	20763	9.875	10.750 7.625 5.500	9212	2373	Surf Surf Surf	Circ Circ Circ	10648-20615		[98220] PURPLE SAGE; WOLFCAMP (GAS)
45 30-015-45082 OXY USA INC	SALT FLAT CC 20 29 FEDERAL COM	033H	Oil Active 252	S 1292	W M	17	24S	29E	11/2/2019 9763	19991	9.875	10.750 7.625 5.500	9163	2251	Surf Surf Surf	Circ Circ Circ	9847-19828		[50371] PIERCE CROSSING; BONE SPRING
46 30-015-44947 OXY USA INC	SALT RIDGE CC 20 17 FEDERAL COM	023H	Oil Active 2409	N 1352	W F	17	24S	29E	6/3/2018 8538	16290	9.875 6.750	10.750 7.625 5.500	8019 8626	1033	Surf	Circ Circ Circ	8460-16091		[50371] PIERCE CROSSING; BONE SPRING
47 30-015-46369 OXY USA INC	SALT FLAT CC 20 29 FEDERAL COM	037H	Gas Active 435	S 1765	W N	17	24S	29E	43758 9990	20363	14.750 9.875	4.500 13.375 7.625 5.500	500 9470	650 2755	Surf Surf Surf 9294	Circ Circ Circ Circ Circ	10209-20185		[98220] PURPLE SAGE; WOLFCAMP (GAS)
48 30-015-44521 OXY USA INC	CEDAR CANYON 29 FEDERAL COM	024H	Oil Active 1670	N 420	W L	29	24S	29E	11/11/2017 8600	13370	14.750 9.875		454 7938	526 1562	Surf Surf Surf	Circ Circ Circ Circ	8623-13221		[50371] PIERCE CROSSING; BONE SPRING


73 30-015-42061 OXY USA INC	CEDAR CANYON 16 STATE	009H	Oil	Active 224	N 350	W D	16	24S	29E	7/11/2015 9828	14485	7.625	5.5 8.625	10752 23 459 28				62	[11540] CEDAR CANYON; DELAWARE
72 30-015-35186 OXY USA INC	GAINES 22 FEDERAL	001	Oil	Active 820	S 990	W M	22	245	29E	11/15/2006 10752	10752			2902 11	75 184	6 Cir	с	0	[96473] PIERCE CROSSING; BONE SPRING, EAST
71 30-015-43759 OXY USA INC	CEDAR CANYON 22 FEDERAL COM	006H		PA 1060	S 207	W M	22	24S	29E	8/7/2016 7066	7066	6.75	4.500	13397 54 441 47) 710	0 СВ	L	Side track @ 3036 w/fish in hole	NA
70 30-015-43906 OXY USA INC	CEDAR CANYON 22 FEDERAL COM	006Y	Oil	Active 1040	S 207	W M	22	245	29E	9/27/2016 8850	13405		10.750 7.625 5.500	435 74 8163 13 8957 54	00 Sur	f Cir	с	6 5.5" to 4.5" cross over at 8957 ft	[96238] CORRAL DRAW; BONE SPRING
59 30-015-28638 OXY USA INC	GAINES 21	001	Oil	Active 990	S 1650	E O	21	245	29E	11/1/1995 7850	7850		10.750 7.625 4.500	523 62 2830 11 7850 12	90 Sur	f Cir	с		[96238] CORRAL DRAW; BONE SPRING
68 30-015-39968 OCCIDENTAL PERMIAN LTD	MORGAN FEE COM	001H	Oil	Active 1035	S 455	W M	21	24S	29E	4/10/2012 8687	12741	12.250	13.375 9.625 5.500	400 48 3037 10 12741 24	10 Sur	f Cir	с	U	[96238] CORRAL DRAW; BONE SPRING
												12.250 8.500	9.625 5.500	9183 22 19842 17	35 Sur 30 891	f Cir .8 Cir	c c	•	
57 30-015-44133 OXY USA INC	CEDAR CANYON 21 22 FEDERAL CO	М 033н	Oil	Active 1754	<u>ς 27</u> Λ	W L	21	245	29E	5/10/2017 10002	19951	8.500		9242 233 19968 173 542 633	35 911	.5 Cir	с	7 5.5" top liner at 8,918 ft	[96473] PIERCE CROSSING; BONE SPRING, EAST
66 30-015-44134 OXY USA INC	CEDAR CANYON 21 22 FEDERAL CO	M 034H	Oil	Active 1737	S 399	W L	21	245	29E	5/9/2017 9997	19980	6.75	5.500 13.375	11870 17	50 244	0 СВ	L	7 5.5" top liner at 9,115 ft	[96473] PIERCE CROSSING; BONE SPRING, EAST
55 30-015-40668 OXY USA INC	CEDAR CANYON 22	001H	Oil	Active 1980	S 1980	W K	22	24S	29E	10/27/2012 7905	11885	17.500	13.375	13531 56 465 54 3260 19) Sur	f Cir	c 8240-1169	2	[96238] CORRAL DRAW; BONE SPRING
-+ - JNI ACU 130 64/64-CTU-UC	CEDAR CANTON 21 FEDERAL COM	UUSH	01	ACUVE 1090	з 207	VV IVI	22	245	29E	0/0/2010 8026	13045			430 470 8138 11 8840 560	70 Sur	f Cir	с	ວ.ວ.ເບ 4.ວ ເເບຣຣ over at 8840 ft	[JUZDO] CUNNAL DRAW; BUNE SPRING
54 30-015-43749 OXY USA INC	CEDAR CANYON 21 FEDERAL COM	00511	0.1	Active 1000	C 207	W M	22	245	205	8/6/2016 8626	12545	6.75		2810 88 7900 11	55 100	00 CB	L		[96238] CORRAL DRAW; BONE SPRING
63 30-015-28710 OXY USA INC	MITCHELL 21 FEDERAL	002	Oil	PA 2110	S 1980	E J	21	24S	29E	1/12/1996 7900	7900	9.875 6.750 14.750	7.625 4.500 10.750	2850 82 7900 10 533 66	95 180	00 CB	L		NA
62 30-015-28861 OXY USA INC	RIVERBEND FEDERAL	009	Oil	Active 1650	N 330	W E	22	24S	29E	3/25/1996 7900	7900	14.750	5.500 10.750 7.625	8900 24 530 59 2850 82	5 Sur	f Cir	c 5225-5262		[96238] CORRAL DRAW; BONE SPRING
51 30-015-28559 OXY USA INC	MITCHELL 21 FEDERAL	001	Oil	PA 1650	N 1650	E G	21	245	29E	8/15/1995 8900	8900	6.750 17.500 11	4.500 13.375 8.625	7820 10 580 65 2840 15) Sur	f Cir	c NA		NA
30-015-28850 OXY USA INC	YVONNE 21 FEDERAL	001	Oil	Active 1800	N 2310	W F	21	245	29E	5/31/1996 7820	7820		10.750 7.625	500 520 2823 990	5 Sur	f Cir	c		[96238] CORRAL DRAW; BONE SPRING
59 30-015-44190 OXY USA INC	CEDAR CANYON 21 FEDERAL COM	U22H	Oil	Active 1764	N 141	W E	21	245	29E	8/10/2017 8713	13300	14.750 9.875 6.750	10.750 7.625 4.500	448 35 8108 16 13353 65	34 Sur	f Cir	с	8 4.5" top liner at 7922 ft	[96238] CORRAL DRAW; BONE SPRING
		0227	0.1	A	N 444		~~~	240	205	0/10/2017 0717	12200	7.875	5.500 5	9878 26 19936 26	19 827	'0 Ca	c		
8 30-015-44176 OXY USA INC	CEDAR CANYON 21 22 FEDERAL CO	M 032H	Gas	Active 1794	N 141	W E	21	24S	29E	8/9/2017 9979	19940	6.750 17.500 12.250	4.500 13.375 9.625	16053 470 451 580 9260 270) Sur	f Cir	c 9920-1977	1 5.5" to 5" cross over at 9878 ft	[98220] PURPLE SAGE; WOLFCAMP (GAS)
													7.625 5.500	9277 31 15898 47	597	′0 СВ	c L		
7 30-015-43808 OXY USA INC	CEDAR CANYON 22 15 FEE	032H	Oil	Active 1108	N 1633	W C	22	245	29E	7/16/2016 9926	16075	9.875 6.750 14.750	7.625 5.500 10.750	9188 19 16031 47 442 47	0 869	0 СВ	L	2 5.5" to 4.5" cross over at 15898 ft	[96473] PIERCE CROSSING; BONE SPRING, EAST
56 30-015-43809 OXY USA INC	CEDAR CANYON 22 15 FEE	031H	Oil	Active 1108	N 1603	W C	22	24S	29E	7/16/2016 9906	16050	14.375	5.500	12678 14 443 47) Sur	f Cir	c 10004-158	72	[96473] PIERCE CROSSING; BONE SPRING, EAST
55 30-015-41327 OXY USA INC	CEDAR CANYON 22	002H	Oil	Active 990	N 690	W D	22	24S	29E	6/8/2013 8813	12685	6.750 14.750 10.625	4.500 11.750 8.625	13496 70 389 41 3105 96	5 Sur	f Cir	c 8920-1252	0	[96473] PIERCE CROSSING; BONE SPRING, EAST
54 30-015-44181 OXY USA INC	CEDAR CANYON 21 FEDERAL COM	021H	Oil	Active 369	N 368	E A	21	24S	29E	7/30/2017 8550	13503		10.750 7.625	463 329 7885 199	9 Sur 51 Sur	f Cir	с	2	[96238] CORRAL DRAW; BONE SPRING
53 30-015-44182 OXY USA INC	CEDAR CANYON 21 FEDERAL COM	031H	Gas	Active 339	N 368	ΕA	21	245	29E	7/31/2017 9950	14734		10.750 7.625 4.500	456 674 9295 17 14724 71	73 Sur	f Cir	с	2	[98220] PURPLE SAGE; WOLFCAMP (GAS)
				A	NI	<u> </u>						10.625 7.875	5.500	3101 844 12960 144	50 296	60 СВ	c L		
32 30-015-41032 OXY USA INC	CEDAR CANYON 15	002H	Oil	Active 170	S 360	W M	15	245	29E	2/23/2013 8795	12960	8.750	9.625 5.500 11.750	2977 12 13240 22 334 28	10 503	ю св	L	0	[96473] PIERCE CROSSING; BONE SPRING, EAST
51 30-015-41024 OXY USA INC	CEDAR CANYON 16 STATE	002H	Oil	Active 230	S 330	E P	16	24S	29E	2/12/2013 8575	13240	6.750 16.000	4.500 13.375	13347 66 356 62	5 Sur	f Cir	c 8860-1300	0	[96473] PIERCE CROSSING; BONE SPRING, EAST
50 30-015-44191 OXY USA INC	CEDAR CANYON 21 FEDERAL COM	023H	Oil	Active 1824	N 141	W E	21	24S	29E	8/11/2017 8708	13360	9.875	10.750 7.625 5.5	451 35 8096 16 7891 NA	51 41	CB	L	0 5.5" frac string	[96238] CORRAL DRAW; BONE SPRING
												6.750 6.75	5.500 4.500	8621 10 16265 10	24 Sur 24 Sur	f Cir f Cir	c c		
				Active 2359	N 1302	W E	17	24S	29E	6/2/2018 8534		14.750 9.875	10.750 7.625	525 54 8074 15				•	

•


																6.75	5.500	14401	1780	2650	CBL	
74	30-015-42055 OXY USA INC	CEDAR CANYON 16 STATE	010H	Oil	Active 260) N	1470	W	С	16	24S	29E	5/10/2014	9856	14477	14.750	11.750	405	745	Surf	Circ	10262-14101
																10.625	8.625	3110	830	Surf	Circ	
																7.875	5.500	14477	1520	Surf	Circ	
76	30-015-43844 OXY USA INC	CEDAR CANYON 16 STATE	033H	Gas	Active 402	2. N	1123	E	А	16	24S	29E	42644	10034	14695	14.750	10.75	447	252	Surf	Circ	10100-14518 Lin
																9.875	7.625	9962	2514	45	TS	
																6.75	4.5	14678	542	9841	Circ	
77	30-015-43843 OXY USA INC	CEDAR CANYON 16 STATE	034H	Gas	Active 402	2. N	1083	E	А	16	24S	29E	10/2/2016	10038	14545	14.750	10.750	447	364	Surf	Circ	10125-14360
																9.875	7.625	9995	2325	Surf	Circ	
																6.75	4.500	14526	510	9862	Circ	
78	30-015-45086 OXY USA INC	OXBOW CC 17 8 FEDERAL COM	034H	Gas	Active 601	L S	1271	E	Р	17	24S	29E	9/30/2019	10064	20560	17.5	13.375	429	650	Surf	Circ	10204-20452
																9.875	7.625	9353	2579	Surf	Circ	
																6.75	5.500	20547	797	9243	CBL	
79	30-015-45088 OXY USA INC	OXBOW CC 17 8 FEDERAL COM	036H	Gas	Active 601	L S	1201	E	Р	17	24S	29E	10/2/2019	10138	20560	17.5	13.375	420	650	Surf	Circ	10199-20415
																9.875	7.625	9347	2470	Surf	Circ	
																6.75	5.500	20546	831	9151	CBL	
80	30-015-44545 OXY USA INC	CEDAR CANYON 20 FEDERAL COM	024H	Oil	Active 110) N	1420	E	В	29	24S	29E	5/14/2018	8631	16222	14.750	10.750	419	600	Surf	Circ	8365-16116
																9.875	7.625	8026	1566	Surf	Circ	
																6.75	5.500	8685	980	4874	CBL	
																6.75	4.500	16222	980	4874	CBL	


	[96473] PIERCE CROSSING; BONE SPRING, EAST
Liner top at 9841	[50373] PIERCE CROSSING; WOLFCAMP (ABOLISH)
	[50373] PIERCE CROSSING; WOLFCAMP (ABOLISH)
	[98220] PURPLE SAGE; WOLFCAMP (GAS)
	[98220] PURPLE SAGE; WOLFCAMP (GAS)
	[50371] PIERCE CROSSING; BONE SPRING

TD - 10575' MD/7613' TVD PBTD - 10513' MD/ 7614' V

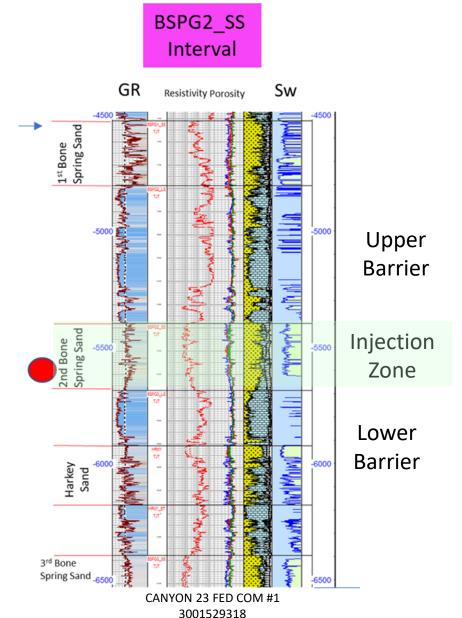
Geology

Received by OCD: 9/7/2021 7:06:49 PMI 2nd Bone Spring storage zone and permeability barriers

Proposed Storage Zone

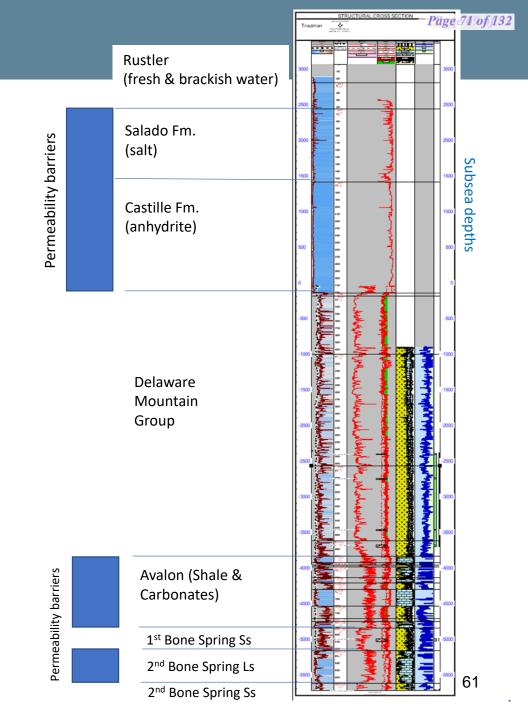
- 2nd Bone Spring Sand
 - Reservoir composed of tight siltstone. Core data indicates that the grain sizes range from coarse siltstone to very-finegrained subarkose (Folk, 1980) sandstone. Samples show evidence of moderate compaction. Minor amounts of illite and smectite clays are found throughout the samples ranging from 5% to 15%. Cements are Fe-calcite, Fe-dolomite, pore-bridging illite and some quartz overgrowths. Minor amounts of pyrite (<1%) are present. The resulting reservoir rock has porosity of 8-18% with an average porosity of 9.7%. Permeability measured by injection fall-off tests conducted within the reservoir ranges from 10 millidarcies to 0.003 millidarcies. Siliceous mudstone with natural permeability in the nano-darcy range

Adjacent Oil & Gas Production Zones


- Delaware Mountain Group Brushy Canyon
 - > Very fine-grained sandstone with permeability in the 100-10 millidarcy range
- 1st Bone Spring Sand
 - Reservoir composed of tight siltstone. Core data indicates that the grain sizes range from coarse siltstone to very-finegrained subarkose (Folk, 1980) sandstone. Samples show evidence of moderate compaction. Minor amounts of illite and smectite clays are found throughout the samples ranging from 5% to 15%. Cements are Fe-calcite, Fe-dolomite, with some quartz overgrowths. Minor amounts of pyrite (<1%) are present. The resulting reservoir rock has porosity of 8-18% with an average porosity of 11.7%. Permeability measured by injection fall-off tests conducted within the reservoir ranges from 0.02 millidarcies to 0.001 millidarcies.
- 3rd Bone Spring Sand
 - > Reservoir composed of tight siltstone. Core data indicates that the grain sizes range from coarse siltstone to very-finegrained subarkose (Folk, 1980) sandstone. Samples show evidence of moderate compaction. Minor amounts of illite and smectite clays are found throughout the samples ranging from 5% to 15%. Cements are Fe-calcite, Fe-dolomite, with some quartz overgrowths. Minor amounts of pyrite (<1%) are present. The resulting reservoir rock has porosity of 8-18% with an average porosity of 11.7%. Permeability measured by injection fall-off tests conducted within the reservoir ranges from 0.02 millidarcies to 0.001 millidarcies.

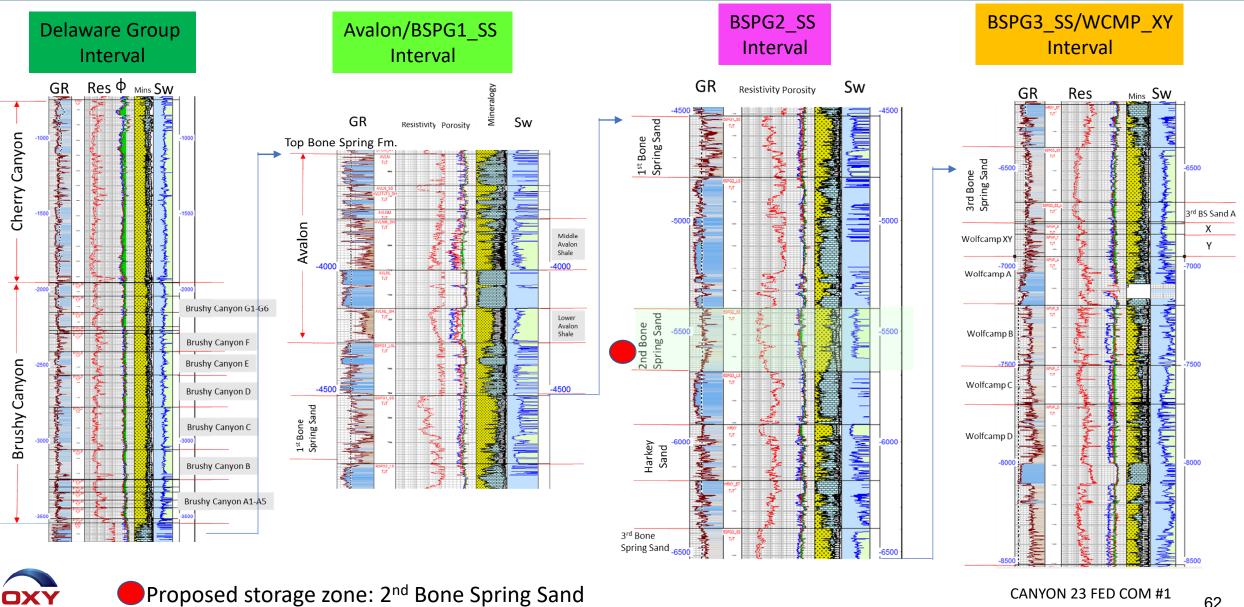
Confining Layers

Released to Imaging: 9/8/2021 8:08:22 (AMI


OXY

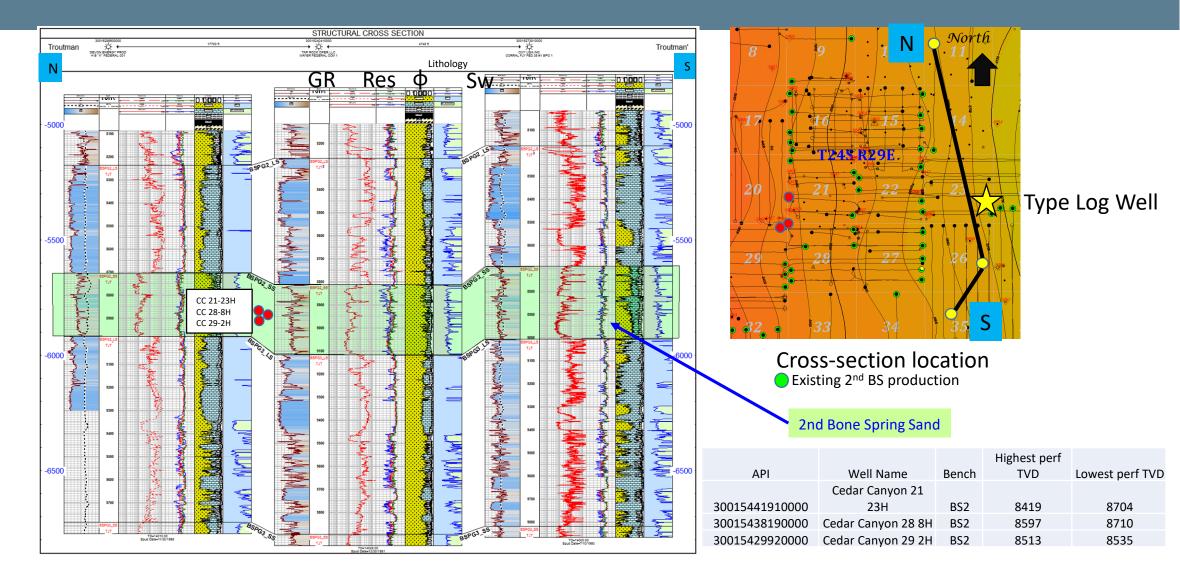
- Low-permeability barriers act as seals above and below the reservoir. These barriers consist of carbonate mudstone, dolomudstone, and shales that are ~970 ft. thick above and ~570 ft. thick below. Laterally the injection will be primarily contained by the reservoir volume that has been previously and partially depleted by the adjacent producing wells. The tight low-permeability reservoir and the production from the adjacent wells will be the primary constraints on the conformance of the injection to the project area and are expected to contain the injected gas.
- 2^{nd} Bone Spring Limestone is upper permeability barrier between 2^{nd} BS Sand and 1^{st} BS Sand. Tight dolomudstones and shale.
- 3rd Bone Spring Limestone lower permeability barrier between 2nd BS Sand and 3rd BS Sand. Tight dolomudstones and shale.
- Upper and Lower Avalon upper permeability barrier between 1st BS Sand and Delaware Mountain Group Brushy Canyon

Received by OCD: 9/7/2021 7:06:49 PM hyon freshwater aquifers


- The top of the Bone Spring Formation is at ~6,620 ft. (log depth) with over 1,200 ft. of carbonate mudstones and shales acting as additional permeability barriers to upward migration of injected gas.
- Above that the Delaware Mountain Group consists of connatewater bearing and hydrocarbon-bearing sands, with minor limestone and shale intervals and is over 3,700 ft. thick.
- Above that is the Castile Formation consisting of very low permeability anhydrite, gypsum, and calcite that acts as another 1,500 ft. thick barrier to upward movement of fluids.
- The Salado overlies the Castile and forms a 1,000 ft. thick barrier of salt. The top of the Salado is at 877 ft. and the deep aquifers found just above the Salado at the base of the Rustler are saline water.
- The top of Rustler Formation is at about 210 ft. The Rustler top is a continuous anhydrite layer that acts as another permeability barrier creating a perched aquifer above it that is the lowest level where fresh water is known in the area. Because of the thickness of multiple impermeable rock layers above the injection reservoir there is no possible path for migration upward into freshwater aquifers where they exist.
- An investigation of existing shallow water wells has not found any freshwater wells within a two mile radius of these injectors.

Received by OCD: 9/7/2021 7:06:49 PMI Canyon full type log:

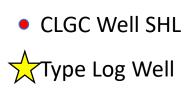
ОΧ

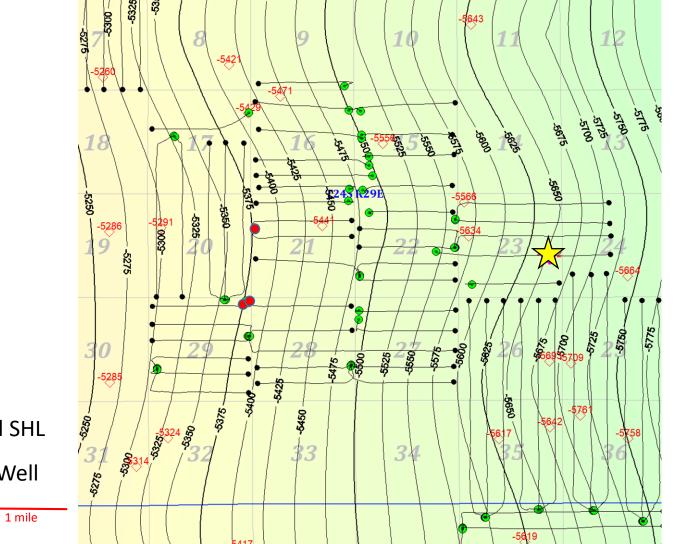

Released to Imaging: 9/8/2021 8508522 (AMI

CANYON 23 FED COM #1 3001529318

62

Second Bone Spring Sand Cross-section

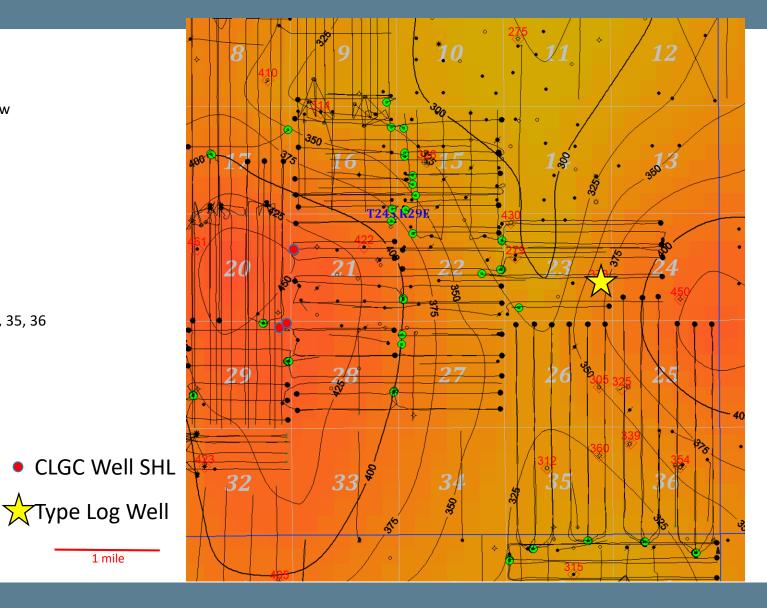




North

Cedar Canyon 2nd Bone Spring Sand Top Structure

- Posted depths show
 well control
- Depths are TVD subsea, contour interval 50 ft
- 2nd Bone Spring wells marked by green highlights
- Sections 8,9,10,
 17, 16, 15
 20, 21, 22, 23,
 29, 28, 27, 26, 25, 35, 36
 are Oxy operated



Received by OCD: 9/7/2021 7:06:49 PM1

Second Bone Spring Sand Isochore Map

- Posted depths show
 well control
- Depths are TVD subsea, contour interval 50 ft
- 2nd Bone Spring wells marked by green highlights
- Sections 8,9,10, 17, 16, 15 20, 21, 22, 23, 29, 28, 27, 26, 25, 35, 36 are Oxy operated

Closed Loop Gas Capture (CLGC) Project

Affirmative Statement 1

The operator examined the available geologic and engineering data and found no evidence of open faults or other hydrologic connections between the disposal zone and any underground source of drinking water.

man, eologist G

y Sic

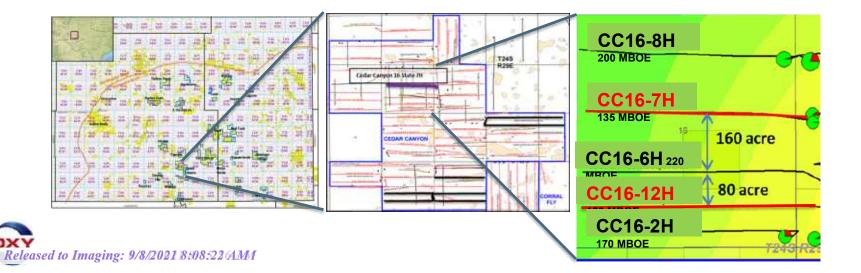
Xueying Xie, Reservoir Engineer

<u>6/10/2021</u> Date /

6/10/2021

Date

Received by OCD: 9/7/202117206949@PMM


Page 7750f 132

Reservoir Engineering

Received by OCD: 9/7/2021 7:06:49 PMI PIOJECT OVERVIEW- CC

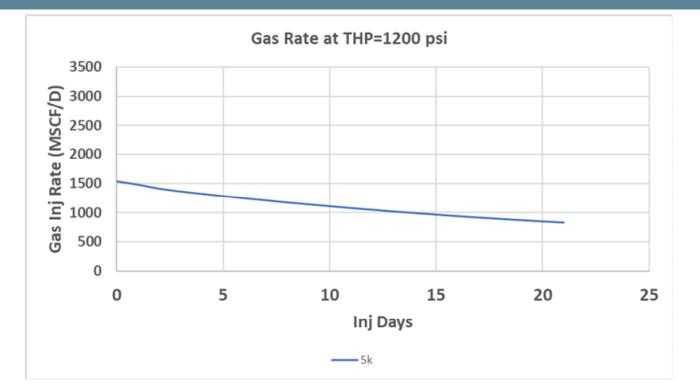
- Closed loop gas capture project (CLGC) IN Oxy's NM assets
- Produced gas injection into 2nd Bone Springs in NM
- Gas injection into horizontal wells of 5,000' lateral length
- Purpose of Modeling
 - >Review potential effects on wells adjacent to the CLGC area
 - >Quantify movement of the injected gas
 - >Utilize data from Cedar Canyon Huff and Puff Projects- project located a few miles away

- Uses Cedar Canyon Sec 16 2nd BSS (as shown in layout below)
- Gas Injection pilot (EOR) was implemented in CC16-7H well in 2017
- Reservoir model is history matched for primary production and gas injection pilot
- Model is also tuned to capture injection gas breakthrough in offset wells that was observed during pilot period
- Gas injection pilot wells are 4 wells per section; model is adjusted to simulate the effect of closer wells (6 wps)

Received by OCD: 9/7/2021 7:06:49 PM Section-16 Reservoir Model

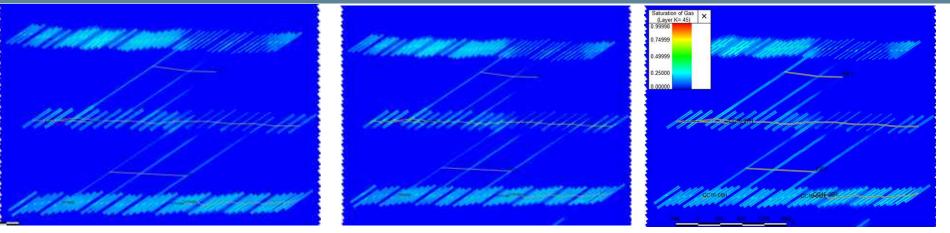
Page 80 of 132

				CC16-02H
Location:	Lea County,NM		Structure & Permeability 1,177,400 Grids	CC16-02H CC16-12H CC16-06H CC16-08H
Model Acreage:	640		56 Layers	CC18-07H CC10-00H
Pay Horizon:	2 nd Bone Springs Sand			
Lithology:	Sandstone interbedded	with Limes	stone	
Trap Type:	Stratigraphic			
Nominal Depth:	8400 ft			
Gas Cap (at discovery):	No			
Primary Drive Mechanism:	Solution Gas Drive		Hist	tory Match
Gross Pay:	320 ft]	× FOPRH FOPR 20001	KitWPT_IMI FINIA FINIAN KItWPT_IMI FINIA FINIAN X FWPRH 20001
Net Pay:	320 ft		011 Date	a Water Rate ∧ × ×
Avg Porosity:	<mark>6.8%</mark>	2		
Initial Sw:	50%	Model	1 [≈] 1000- ¥ \/ ¥ \	
Permeability:	0.001md (matrix)			
Initial Reservoir Pressure:	4500 psi	<u>n</u>	05/13 11/13 06/14 01/15 07/15 02/16 08/16	× > 03/11 08/13 11/13 06/14 01/15 07/15 02/16 08/16 03/11
Reservoir Temperature:	150 F	Inputs	FGPR FGPR FGR8	ша, на сен кало — жана сси кало 6000 — Сок кало Сок
Oil Gravity:	42 API	S	Gas Rate	Gas Injection Pressure
Boi:	1.63 RB/STB			
Rsi:	1480 SCF/STB			
Original Oil in Place:	28 MMSTB			
Released to Imaging: 9/8/2021	85085226AMA		05/13 11/13 06/14 01/15 07/15 02/16 08/16	03/1 06/17 00/17 00/17


Received by OCD: 9/7/2021 7:06:42 PM imulation Process

- Run primary production for all wells for additional period (post history match) Base Case
- Inject gas in injection well at 2MMSCFPD for 7 days
- Produce the injection well post injection Injection Case
- Observe the effect on oil, gas rate/recovery in injection well and offset wells by comparing Base and Injection cases

Page 81 of 132

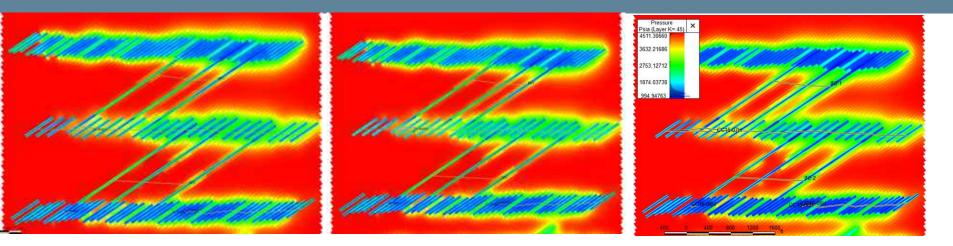

Received by OGD: 9/7/2021 7:06:49 PMR ate

For a 5k well, 1.5 MMSCFPD is the max injection rate at THP of 1200 psi. Injection rate declines to about 50% of its initial value in 3 weeks. There is not a major increase in rate if THP is increased to 1250 psi.

OX

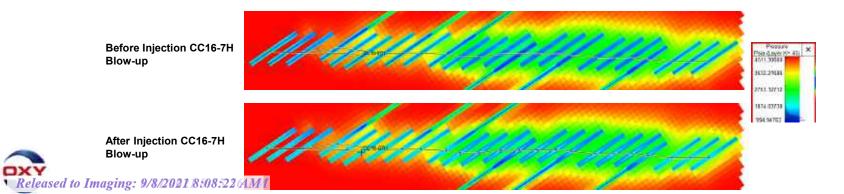
Received by OCD: 9/7/2021 7:06:49 PM/Profile

Before injection


After 1 week of injection (3 MMSCFPD)

After 16 months production

- Gas is stored within fractures.
- All injection cases indicate horizontal gas movement of 100 ft or less into the fractures.



Before injection

DXY

After 1 week of injection (3 MMSCFPD)

After 16 months production

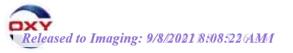
Summary of Cases

Case	Injection Description*	WPS	Oil recovery effect in injected well (MBO)	Oil recovery effect in offset wells (MBO)	Gas breakthrough in Offset well
1	Single Well	4	No change	No change	No
2	Single Well**	6	No change	No change	No
3	Single Well	8	No change	No change	No
4	Single Well (Multiple injection and production cycles)	6	No change	No change	No
5	Single well***	6	No change	No change	No
6	Multiple Adjacent Wells	4	No change	No change	No
7	Multiple Adjacent Wells	6	No change	No change	No
8	Multiple Adjacent Wells	8	No change	No change	No

*All injection at 2MMSCF/DAY for 7 days except cases 2 and 5 **Injection at 3MMSCF/DAY for 7 days ***Injection at 3MMSCF/DAY for 21 days

Received by OCD: 9/7/2021 7:06:49 PMP acities - CC

		Gas Storage Capacity with 1200 psi WHP Injection			
ΑΡΙ	Well Name	Fracture volume gas equavalent, mmscf	Total prod gas equivalent, mmscf		
30015438190000	CEDAR CANYON 28 FEDERAL 008H	165	1224		
30015429920000	CEDAR CANYON 29 FEDERAL 002H	144	1221		
30015441910000	CEDAR CANYON 21 FEDERAL 023H	102	885		


Gas storage capacity is high for each well

٠

- Even just stored gas in fractures, the capacity is over 100 mmscf
- The expected gas injection volume for each well during each event could be up to 60 mmscf, this is way below the storage capacity

- Frac height:
 - 2BSS: Based on Nimitz
 - XH = 285',
 - Xf = 300-400'
- SRV
 - SRV= 2*Xf*Xh*Well length

API_NO14	Well_NAME	SRV, ft^3
30015441910000	CC21-023H	923,884,500
30015438190000	CC28-008H	904,932,000
30015429920000	CC29-002H	901,540,500

Closed Loop Gas Capture (CLGC) Project

Affirmative Statement 2

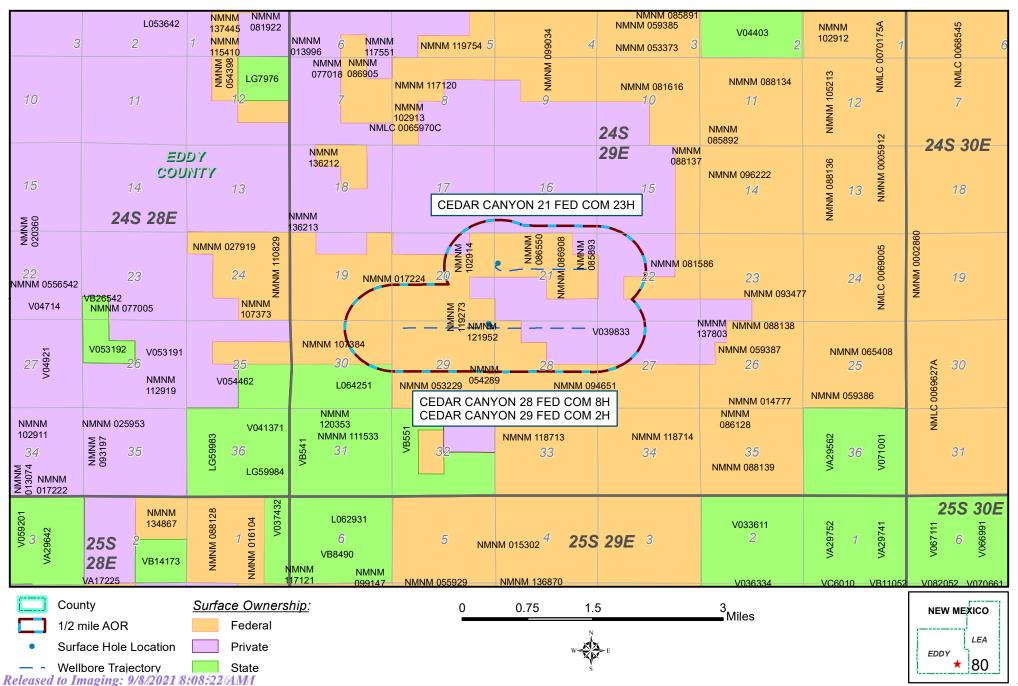
The operator examined the available geologic and engineering data and determined 1) the total recoverable volume of hydrocarbons from the reservoir will not be adversely affected by the project and 2) the gas composition will not damage the reservoir.

Xneying Xu

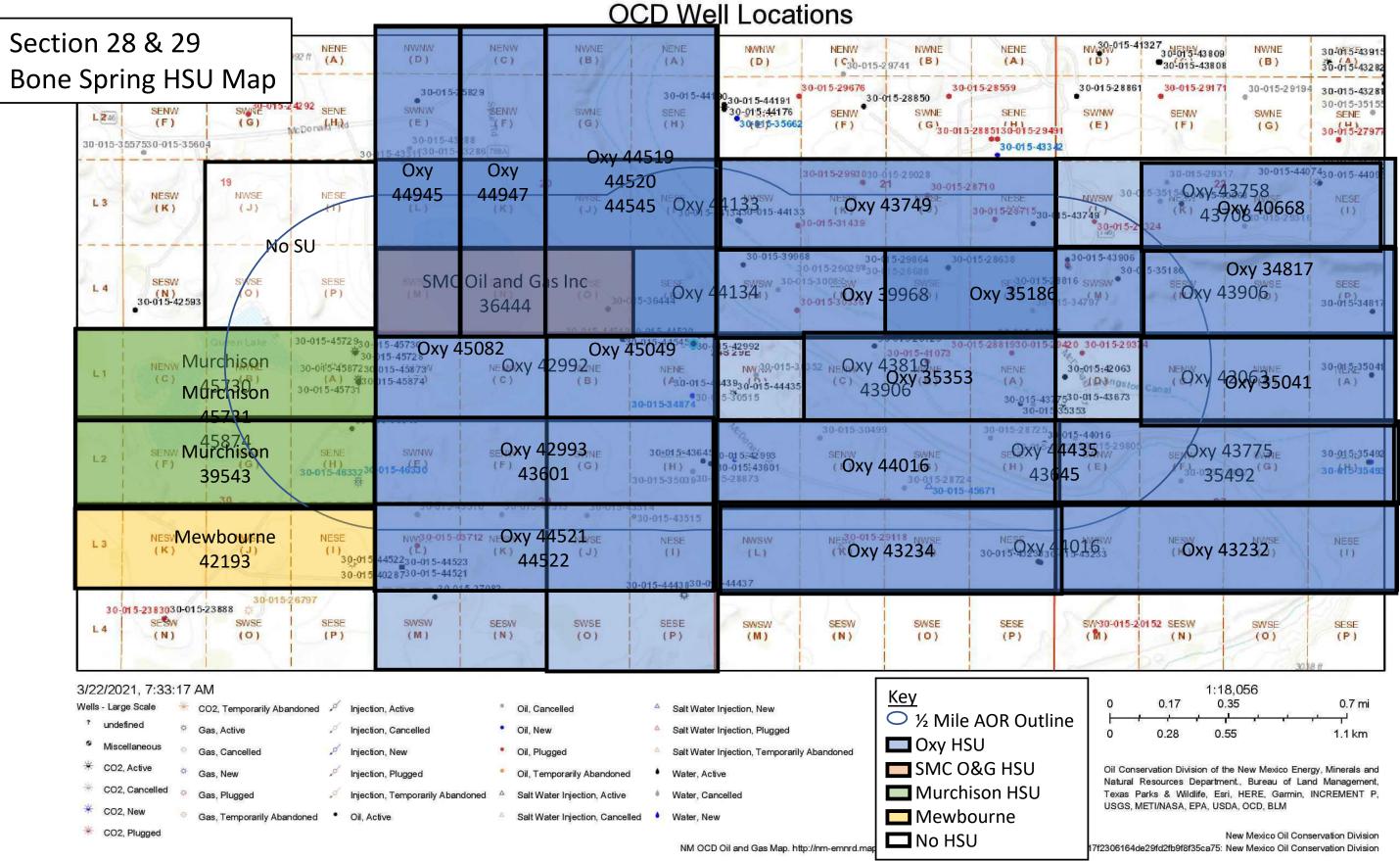
6/9/2021

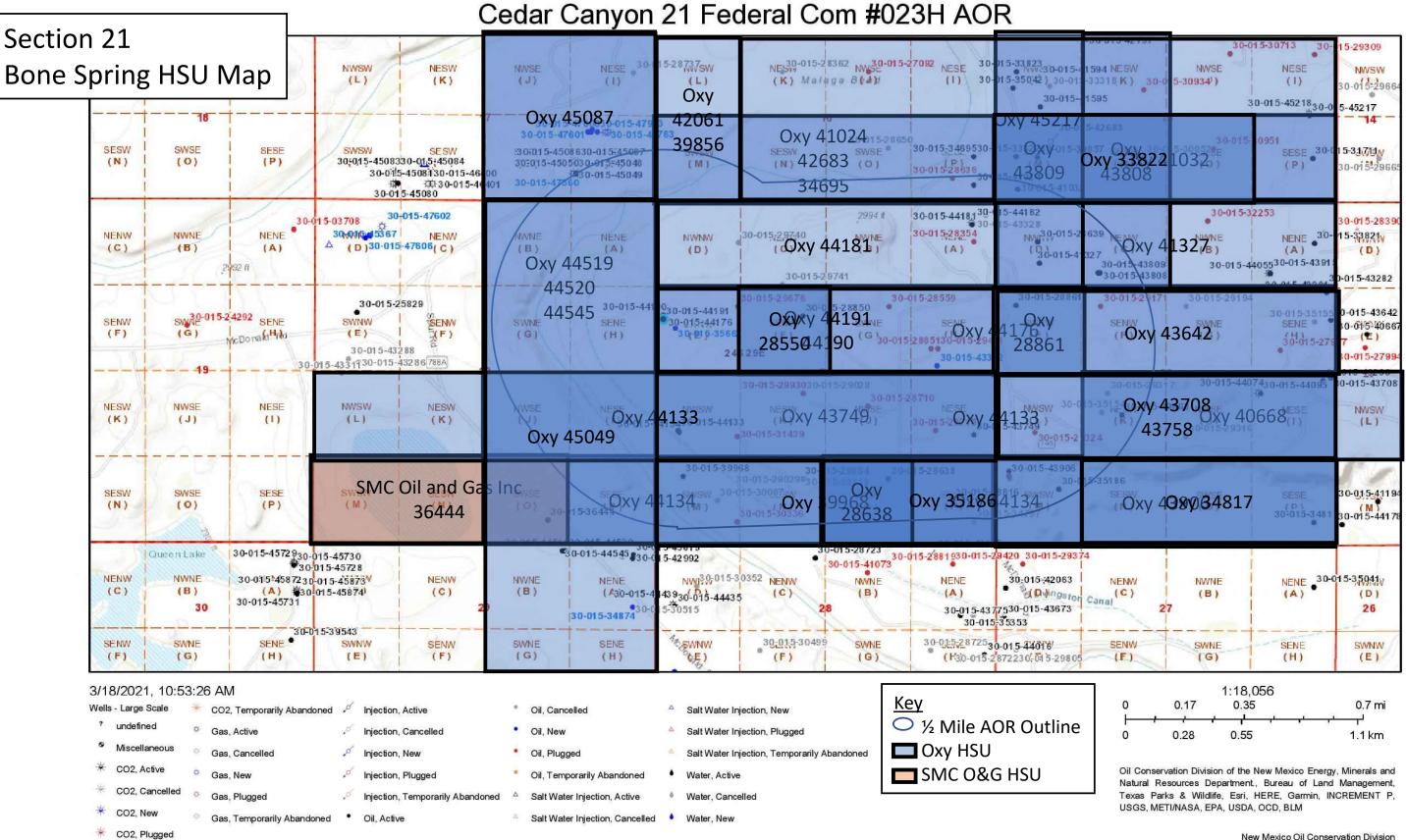
Xueying Xie, Reservoir Engineer

Date


Notice

.




CEDAR CANYON NEW MEXICO

SURFACE OWNERSHIP MAP

M:\Land\New_Mexico\New_Mexico_SE\Comm_Boundary_Ownership\MXD\NMGasStorage_CedarCanyon.mxd

New Mexico Oil Conservation Division NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

Cedar	Canyon	Notice	List
ccuui	cunyon	Notice	LIJU

Cedar Canyon Notice List Name	Street	City	State	Zip Code	Merged	
	Surface Own	er			Bureau of Land Management	
Bureau of Land Management	620 E. Greene St.	Carlsbad	NM	88220	620 E. Greene St. Carlsbad, NM 88220	
Leasehold Operators						
Mewbourne Oil Co.	P.O. Box 5270	Hobbs	NM	997/1	Mewbourne Oil Co. P.O. Box 5270	
Mewbourne on co.	P.O. DOX 5270			88241	Hobbs, NM 88241	
Murchison Oil and Gas, U.C.	7250 Dallas Parkway Suite 1400	Plano	тх	75024	Murchison Oil and Gas, LLC	
Murchison Oil and Gas, LLC	7250 Dallas Parkway Suite 1400	Plano	17	75024	7250 Dallas Parkway Suite 1400 Plano, TX 75024	
		Midland	ту	79710	SMC OIL & GAS, INC.	
SMC OIL & GAS, INC.	PO BOX 50907	wiidiand	ТХ	/9/10	PO BOX 50907 Midland, TX 79710	
	Affected Perso	ons				
Palag Family Trust	D.O. Doy 111900	Anchorago		00504	Balog Family Trust	
Balog Family Trust	P.O. Box 111890	Anchorage	AK	99504	P.O. Box 111890 Anchorage, AK 99504	
					Basin Operating Co.	
Basin Operating Co.	#648 Petroleum Bldg	Roswell	NM	88201	#648 Petroleum Bldg	
					Roswell, NM 88201 Branex Resources Inc.	
Branex Resources Inc.	P.O. Box 2990	Ruidoso	NM	88355	P.O. Box 2990	
					Ruidoso, NM 88355	
Centennial NM Partners	P.O. Box 1837	Roswell	NM	88201	Centennial NM Partners P.O. Box 1837	
	1.0. Box 1007	noswen		00201	Roswell, NM 88201	
			_		Chevron USA Inc.	
Chevron USA Inc.	6301 Deauville	Midland	тх	79706	6301 Deauville Midland, TX 79706	
					David J. Sorenson	
David J. Sorenson	P.O. Box 1453	Roswell	NM	88202	P.O. Box 1453	
					Roswell, NM 88202	
DEVON ENERGY PRODUCTION CO.	333 West Sheridan Avenue	Oklahoma City	ОК	73102	DEVON ENERGY PRODUCTION CO 333 West Sheridan Avenue	
DEVON ENERGY PRODUCTION CO.					Oklahoma City, OK 73102	
					Elk Oil Co.	
Elk Oil Co.	P.O. Box 310	Roswell	NM	88202	P.O. Box 310	
					Roswell, NM 88202	
EMG Oil Properties	1000 W. 4th St.	Roswell	NM	88201	EMG Oil Properties 1000 W. 4th St.	
					Roswell, NM 88201	
Enorgov Co	100 N. Donney honig	Deswell		00201	Energex Co	
Energex Co	100 N. Pennsylvania	Roswell	NM	88201	100 N. Pennsylvania Roswell, NM 88201	
					Gail Balog	
Gail Balog	25812 S. Darford Dr.	Sun Lakes	AZ	85248	25812 S. Darford Dr.	
					Sun Lakes, AZ 85248 Hutchings Oil Co.	
Hutchings Oil Co.	P.O Box 1216	Albuquerque	NM	87102	P.O Box 1216	
					Albuquerque, NM 87102	
Mitchell Exploration Inc.	P.O Box 2415	Midland	тх	79702	Mitchell Exploration Inc. P.O Box 2415	
					Midland, TX 79702	
				00000	Murphy Petro Corp	
Murphy Petro Corp	P.O. Box 2545	Roswell	NM	88202	P.O. Box 2545 Roswell, NM 88202	
			╞──┤		Pabo Oil & Gas LLC	
Pabo Oil & Gas LLC	P.O. Box 1675	Roswell	NM	88202	P.O. Box 1675	
		ļ	<u> </u>		Roswell, NM 88202	

•

[]					
Paloma Blanca Well Service Inc.	P.O. Box 6251	Roswell	NM	88202	Paloma Blanca Well Service Inc. P.O. Box 6251 Roswell, NM 88202
Permian Hunter Corp	215 W. 100 S	Salt Lake	UT	84101	Permian Hunter Corp 215 W. 100 S
Pete T. Balog	25812 S. Darford Dr.	Sun Lakes	AZ	85248	Salt Lake, UT 84101 Pete T. Balog 25812 S. Darford Dr.
	25612 5. Burrora Dr.		~~	05240	Sun Lakes, AZ 85248 Phelps J. White III
Phelps J. White III	P.O. Box 874	Roswell	NM	88202	P.O. Box 874 Roswell, NM 88202
PXP Producing Co LLC	717 Texas St. Ste 2100	Houston	тх	77002	PXP Producing Co LLC 717 Texas St. Ste 2100 Houston, TX 77002
State Land Office	308 Old Santa Fe Trail	Santa Fe	NM	87501	State Land Office 308 Old Santa Fe Trail Santa Fe, NM 87501
Scott Exploration Inc.	200 W. 1st St. #648	Roswell	NM	88201	Scott Exploration Inc. 200 W. 1st St. #648 Roswell, NM 88201
Scott Invst Corp	200 W. 1st St. #648	Roswell	NM	88201	Scott Invst Corp 200 W. 1st St. #648 Roswell, NM 88201
Siete Oil & Gas Corp	P.O. Box 2523	Roswell	NM	88202	Siete Oil & Gas Corp P.O. Box 2523 Roswell, NM 88202
Slash Exploration LP	P.O. Box 1973	Roswell	NM	88202	Slash Exploration LP P.O. Box 1973 Roswell, NM 88202
Slash Four Enterprises Inc.	P.O. Box 1433	Roswell	NM	88202	Slash Four Enterprises Inc. P.O. Box 1433 Roswell, NM 88202
Strata Production Co	P.O. Box 1030	Roswell	NM	88202	Strata Production Co P.O. Box 1030 Roswell, NM 88202
The Toles Co LLC	P.O. Box 1300	Roswell	NM	88202	The Toles Co LLC P.O. Box 1300 Roswell, NM 88202
Walker Valorie Trst	P.O. Box 102256	Anchorage	AK	99510	Walker Valorie Trst P.O. Box 102256 Anchorage, AK 99510
1 Timothy 6 LLC	P.O. Box 30598	Edmond	ок	73003	1 Timothy 6 LLC P.O. Box 30598 Edmond, OK 73003
BLM	620 E. Greene St.	Carlsbad	NM	88220	BLM 620 E. Greene St. Carlsbad, NM 88220
COG OPERATING LLC	600 W. Illinois Ave	Midland	тх	79701	COG OPERATING LLC 600 W. Illinois Ave Midland, TX 79701
Devon Energy Production Company LP	PO BOX 843559	DALLAS	тх	75284	Devon Energy Production Company LP PO BOX 843559 DALLAS, TX 75284
EOG Y RESOURCES, INC.	104 S 4TH ST	ARTESIA	NM	88210	EOG Y RESOURCES, INC. 104 S 4TH ST ARTESIA, NM 88210
Lonsdale Resources LLC	2626 Cole Ave Ste 300	Dallas	тх	75204	Lonsdale Resources LLC 2626 Cole Ave Ste 300 Dallas, TX 75204

•

Maduro Oil & Gas LLC	3102 Maple Avenue Suite 400	Dallas	ТΧ	75201	Maduro Oil & Gas LLC 3102 Maple Avenue Suite 400 Dallas, TX 75201
MRC Permian Co.	5400 LBJ Fwy Ste 1500	Dallas	ТΧ	75240	MRC Permian Co. 5400 LBJ Fwy Ste 1500 Dallas, TX 75240
NGL WATER SOLUTIONS PERMIAN, LLC	865 NORTH ALBION STREET SUITE 400	DENVER	CO	80220	NGL WATER SOLUTIONS PERMIAN, LLC 865 NORTH ALBION STREET SUITE 400 DENVER, CO 80220
POGO PRODUCING CO	P.O. Box 10340	Midland	ТΧ	79702	POGO PRODUCING CO P.O. Box 10340 Midland, TX 79702
Prime Rock Resources Asset Co LLC	203 W. Wall St. Suite 1000	Midland	тх	79701	Prime Rock Resources Asset Co LLC 203 W. Wall St. Suite 1000 Midland, TX 79701
PROBITY SWD, LLC	PO BOX 7307	Midland	тх	79708	PROBITY SWD, LLC PO BOX 7307 Midland, TX 79708
Tap Rock Resources LLC	523 Park Point Dr. Ste 200	Golden	CO	80401	Tap Rock Resources LLC 523 Park Point Dr. Ste 200 Golden, CO 80401
Winchester Energy LLC	PO BOX 13540	Oklahoma City	ОК	73113	Winchester Energy LLC PO BOX 13540 Oklahoma City, OK 73113
WPX Energy Permian LLC	25061 Network PL	Chicago	IL	60673	WPX Energy Permian LLC 25061 Network PL Chicago, IL 60673
XTO ENERGY, INC	XTO ENERGY, INC 6401 Holiday Hill Rd. Building #5		тх	79707	XTO ENERGY, INC 6401 Holiday Hill Rd. Building #5 Midland, TX 79707
XTO Holdings LLC P.O. Box 840780		Dallas	ТΧ	75284	XTO Holdings LLC P.O. Box 840780 Dallas, TX 75284

•

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION OF OXY USA INC. FOR A CLOSED LOOP GAS CAPTURE INJECTION PILOT PROJECT, EDDY COUNTY, NEW MEXICO.

CASE NO. 22150

AFFIDAVIT OF STEPHEN JANACEK

I, Stephen Janacek, of lawful age and being first duly sworn, declare as follows:

1. My name is Stephen Janacek and I am employed by OXY USA Inc. ("OXY") as a petroleum engineer.

2. I have previously testified before the New Mexico Oil Conservation Division as an expert witness in petroleum engineering.

3. I am familiar with the application filed by OXY in this case, and the Division guidance and requirements regarding closed loop gas capture injection projects (CLGC Project) such as this one. I also prepared exhibits in support of this application from pages 3 through 58 and 80 through 85 in *Exhibit A* to OXY's application in this case.

4. In this case, OXY seeks an order approving the 480-acre, more or less, project area for this pilot project consisting of all of the S/2 N/2 of Section 21, and the N/2 N/2 of Sections 28 and 29, Township 24 South, Range 29 East, NMPM, Eddy County, New Mexico. *See Exhibit A* to the Application, at 6. The proposed project area is part of a larger area referred to as the Cedar Canyon area. A locator map identifying the general location of OXY's proposed Cedar Canyon CLGC Project is included in *Exhibit A* at page 6.

5. OXY requests an initial project duration of two years. OXY also requests the ability to administratively extend the project without the need for a hearing.

Santa Fe, New Mexico Exhibit No. B Submitted by: OXY USA Inc. Hearing Date: September 09, 2021 Case No. 22150

Released to Imaging: 9/8/2021 8:08:22 AM

6. Within the proposed project area, OXY seeks authority to utilize the following producing wells to occasionally inject produced gas into the Bone Spring formation, as identified on the project locator map, included at page 6 of Exhibit A:

- The Cedar Canyon 21 Fed Com #023H well (API No. 30-015-44191) [Corral Draw; Bone Spring Pool (Pool Code 96238)], with a surface location 1824 feet FNL and 141 feet FWL (Unit E) in Section 21, and a bottom hole location 2177 feet FNL and 175 feet FEL (Unit H) in Section 21.
- The Cedar Canyon 28 Fed Com #8H well (API No. 30-015-43819) [Pierce Crossing; Bone Spring, East Pool (Pool Code 97473)], with a surface location 170 feet FNL and 319 feet FEL (Unit A) in Section 29, and a bottom hole location 448 feet FNL and 189 feet FEL (Unit A) in Section 28.
- The Cedar Canyon 29 Fed Com #2H well (API No. 30-015-42992) [Pierce Crossing; Bone Spring Pool (Pool Code 50371)], with a surface location 200 feet FNL and 319 feet FEL (Unit A) in Section 29, and a bottom hole location 456 feet FNL and 182 feet FWL (Unit D) in Section 29.

7. Injection along the horizontal portion of the wellbores will be at the following approximate true vertical depths:

- The Cedar Canyon 21 Fed Com #023H well: between 8,419 feet and 8,704 feet.
- The Cedar Canyon 28 Fed Com #8H well: between 8,597 feet and 8,710 feet.
- The Cedar Canyon 29 Fed Com #2H well: between 8,513 feet and 8,535 feet.
- 8. OXY seeks authority to add CLGC wells to the proposed project by

administrative approval if the well is within the Area of Review previously completed.

9. A summary overview of the pilot project is located at pages 3-4 of *Exhibit A*.

A process flow diagram of the closed loop gas capture system is in the Attached 10. *Exhibit A* at page 5. This diagram reflects the current and proposed system to be used for gas storage. OXY will utilize the existing gas lift infrastructure so no changes are shown. During normal operations, produced fluids flow from the wells down the green flowline to the Central Tank Batteries (CTBs). The source wells, which consist of all wells connected to the CTBs, produce from the Bone Spring and Wolfcamp formations. Oil, water, and gas are separated out and leave the CTBs. Oil is sold through the Lease Automatic Custody Transfer (LACT) at each CTB, water is sent to a disposal well, and gas enters the red, Low Pressure Gas Pipeline. Gas can then be sold to the Enterprise Primary Gas Takeaway, sold to the San Mateo Secondary Takeaway, flared, or delivered to the Centralized Gas Lift (CGL) Stations for compression and re-injection as gas lift gas. After the gas goes through the CGL Stations, the pressure increases to a maximum of 1250 psig in the orange Centralized Gas Lift (CGL) Pipeline. Then it flows back to the wells with gas lift systems. The flow of fluids is similar yet different during a gas storage event. A gas storage event is initiated when gas cannot be sold to Enterprise or San Mateo and the source wells are not shut-in. The major changes are to the Gas Takeaways (which cease taking gas) and the CLGC wells (which cease producing and become CLGC wells). Since gas cannot be sold, it will begin to build up in the Low-Pressure Gas Pipeline as wells continue to produce oil, water, and gas. Once the pressure in the Low-Pressure Gas Pipeline increases to a certain point, the CLGC wells will be activated in a cascade fashion. CLGC wells are activated by closing the Shutdown Valve (SDV) at the wellhead. If the pressure in the Low-Pressure Gas Pipeline does not decrease, an additional CLGC well will be activated. Additional CLGC wells will be activated in this cascade system. When the interruption ends and gas can once again be

sold to Enterprise or San Mateo, the gas storage event ends. The Shutdown Valves open and the CLGC wells produce down the flowline to a test separator at the CTB for measurement.

11. A map depicting the pipeline that ties the CLGC wells for the pilot project into the gathering system and the affected compressor stations is included in the attached *Exhibit A* at page 6. The colors and components of the system are the same as the process flow diagram in the attached *Exhibit A* at page 5 with some additional items. The black lines represent the wellbore trajectories of the CLGC wells. The First Take Point (FTP) and Last Take Point (LTP) are labeled on the well trajectory. The project area is outlined with a dashed, dark-blue line, which is based on each CLGC well's horizontal spacing unit as shown on the attached *Exhibit A* at pages 8-10. Gas source wells are not on this map.

12. Data for each CLGC well, including well diagrams and well construction, casing, tubing, packers, cement, perforations, and other details for each proposed injection well are included in the attached *Exhibit A* at pages 11-12, 17-18, and 23-24. All wells have gas lift systems which inject down the casing and produce up the tubing with a packer in the hole.

13. OXY proposes to place packers as deep as possible but no higher than 100 feet above the top of the Bone Spring formation.

14. Cement bond logs for each of the CLGC wells demonstrate the placement of cement in the CLGC wells for this pilot project, and that there is a good and sufficient cement bond with the production casing and the tie-in of the production casing with the next prior casing in each well.

15. The current average surface pressures under normal operations for the CLGC wells range from approximately 680 psi to 775 psi. *See Exhibit A* at 29. The maximum allowable surface pressure (MASP) for the wells in the pilot project will be 1,250 psi. *Id*.

16. Assuming a full fluid column of reservoir brine water, the proposed maximum allowable surface pressure will not exert pressure at the top perforation in the wellbore of any injection well with a full fluid column of reservoir brine water in excess of 90% of the burst pressure for the production casing or production liner. *See Exhibit A* at 29. In addition, the proposed maximum allowable surface pressure will not exert pressure at the topmost perforation in excess of 90% of the formation parting pressure. *See Exhibit A* at 29.

17. OXY plans to monitor injection and operational parameters for the pilot project using an automated supervisory control and data acquisition (SCADA) system with pre-set alarms and automatic shut-in safety valves that will prevent injection pressures from exceeding the MASP. *See Exhibit A* at 44-45. The wellhead diagram for all CLGC wells is found in *Exhibit A* at30. Injection starts at the flowmeter where the injection rate is measured and moves through the following components: first, the injection flow control valve which controls the injection pressure, the casing safety shutdown valve (SSV), which can open and close automatically, the casing-tubing annulus, the tubing, the tubing SSV, which can open and close automatically and is also closed when a CLGC well is activated, and finally another flow control valve (FCV), which controls flowline pressure. Pressure Indicating Transmitters (PITs) are located on the casing valve and tubing valves. PITs capture pressure data that is stored in the SCADA system and then used to automatically control the SSVs and FCVs.

18. The proposed average injection rate for each CLGC well is 1.8 MMSCFD with a maximum injection rate of 2.0 MMSCFD during injection. *See Exhibit A* at 29.

19. The wells proposed for the CLGC project have previously demonstrated mechanical integrity. *See Exhibit A* at 31. OXY will undertake new tests to demonstrate

mechanical integrity for each of the wells proposed for this pilot project as a condition of approval prior to commencing injection operations.

20. The source of gas for injection will be from OXY's Cedar Canyon wells producing in the Bone Spring and Wolfcamp formations that are identified in the list of wells in *Exhibit A* at page 33-36. Each of OXY's proposed injection wells are operated by OXY and OXY holds 100% of the working interest in the wells.

21. OXY has prepared an analysis of the composition of the source gas for injection and a corrosion prevention plan. *See Exhibit A* at 37-42. *Exhibit A* at 37 is a summary of the gas analyses included in the application and the components in the system. Source wells flow to multiple CTBs. From there gas flows to the CGL Stations. Gas analyses have been provided for the CGL Stations and the formation for gas injection. The gas analyses for the CGL Stations are similar to the gas analyses for the zones for gas injection. H2S is not found in any of the gas analyses. CO2 is found in all the analyses at various amounts.

22. Since CO2 is already present in this system, OXY intends to continue with its existing Corrosion Prevention Plan in these CLGC wells outlined at page 42 of *Exhibit A*. In the existing Corrosion Prevention Plan, produced gas is processed through a gas dehydration unit to remove water. Then corrosion inhibitor is added to the system of each well downstream of the gas dehydration unit. Fluid samples are taken regularly and checked for iron, manganese, and residual corrosion inhibitor in the produced fluids. The process allows OXY to continuously monitor and adjust the chemical treatment over the life of the well to minimize corrosion. Additionally, fluid samples will be taken prior to gas injection to establish a baseline for analysis. After a CLGC event, fluid samples will be taken to check for iron, manganese, and

residual corrosion inhibitor in the produced fluids in the CLGC wells. OXY will continue to monitor and adjust the chemical treatment over the life of the project.

23. Using an automated supervisory control and data acquisition (SCADA) system, OXY will monitor a multitude of rates and pressures to allow for efficient and safe operation, proper allocation and reporting of volumes, and immediate response to unexpected events. *See Exhibit A* at 44-45. Each CLGC well will also include automated safety devices, including automatic shut-in valves among other operational safety measures. OXY will also monitor and track various operational parameters at the pilot project's central tank battery and central gas lift compressor. *See Exhibit A* at 44-45.

24. OXY proposes a Data Collection Plan for the Cedar Canyon CLGC Project as seen in its Data Collection Plan, attached as **Exhibit B-1**, to collect and report data pertinent to CLGC operations. The plan is similar to the data collection process outlined in the Injection Order R-21747 but proposes some changes. Consistent with Order R-21747, the Data Collection Plan will apply to the wells listed in the table in the Exhibit. The spatial relationship of these wells is illustrated in the map that I have attached to this affidavit as **Exhibit B-2**. This map shows the proposed Cedar Canyon CLGC wells (black lines) and any offset wells in the same correlative zone (red lines). There are three proposed CLGC wells in the Second Bone Spring. In the OXY Data Collection Plan for Cedar Canyon, there are some changes to the reporting requirements. First, to lessen the administrative burden of these requirements, OXY proposes status updates every 12 months instead of every 3 months. Second, the recovery analysis required for each involved CLGC well and for each well related to each involved CLGC well will be required only if the change in production casing pressure or production volume is related to the CLGC event. These wells are on gas lift most of the time, and changes in casing pressure

or production volumes are not unusual for artificially lifted wells. Third, because the CLGC wells and the involved CLGC wells are being produced pursuant to an approved commingling permit, OXY will attempt to collect the data at the requested resolution, but we need the flexibility to substitute well tests when equipment constraints prevent such high resolution. Fourth, some allowance needs to be incorporated into the requirements for interruptions that occur with less than 24 hours' notice. Lastly, OXY shall not be required to install additional facilities or measurement equipment to collect the data described. These changes create an achievable Data Collection Plan for Cedar Canyon. If a data collection plan is required as outlined in the Injection Order R-21747, additional well testing equipment will be required which will severely impact our ability to pursue this project due to the additional capital costs.

25. I also conducted an analysis of the half-mile area of review and two-mile area surrounding each of the proposed CLGC wells. A map depicting wells and their trajectories within the half-mile area of review and two-mile radius around the injection wells is located at page 47 of *Exhibit A*. A map identifying each surface tract by ownership type within the half-mile area of review and two-mile area surrounding each of the proposed injection wells is located at page 48 of *Exhibit A*. Finally, a map depicting all wells identified with completed laterals all or partially within the half-mile area of review is located at pages 49-50 of *Exhibit A*. It assigns a well identification number to each well within the area of review that may be cross referenced in the following well data tabulation chart on pages 51-54 of *Exhibit A*. The well data tabulation chart provides detailed information for identification, location, drilling, casing, cement, current completion, and current producing pool of each well. Additionally, I have prepared a map of the half-mile area of review reflecting each of the injection well trajectories, which is attached as **Exhibit B-3**.

26. Wellbore schematics for the four wells that penetrate the top of the proposed injection interval and have been plugged and abandoned are included at pages 55-58 in *Exhibit A*. Review of the wellbore diagrams indicate adequate casing, cement, and cement plug placement to sufficiently contain gas within the injection interval.

27. To properly determine gas production from each CLGC well, OXY will apply a GOR Gas Allocation Method that is similar to the method used by EOG Resources, Inc. in Order No. R-21747. *See* Gas Allocation, attached as **Exhibit B-4**. Per existing commingling permits,¹ gas sales are allocated by well test. Following a storage event, the GOR Gas Allocation Method will be used to differentiate between native gas (owned by the owners of the CLGC well) and recovery of previously stored gas (owned by the owners of the source wells). I believe it is a fair and reasonable method for allocating gas production after a storage event.

28. The Gas Allocation Plan will utilize the Tapered Testing Methodology as outlined in **Exhibit B-5**. The Tapered Testing Methodology is designed based on the Division's current approach to well testing requirements for surface commingling permits that utilize allocation by well testing. OXY believes that such well testing requirements can be accomplished with existing equipment and connections and allow us to accurately measure and interpolate well tests for allocation and reporting purposes, as provided in OXY's **Exhibit B-5**.

29. Working with OXY's in-house land department, I also prepared a list of affected parties required to receive notice of this application. The map on page 80-82 of *Exhibit A* reflects that the Bureau of Land Management is the surface owner with respect to each proposed CLGC well. The map depicts the area of review and identifies the designated operator for each tract that falls within the half-mile area of review for each of the wells within the Bone Spring formation.

¹ PLC-750.

30. Pages 83-85 of *Exhibit A* identify all leasehold operators and other affected persons within any tract wholly or partially contained within one-half mile of the completed interval of the wellbore for each of the proposed injection wells entitled to notice in accordance with Division regulations, including the Bureau of Land Management as the surface owner where each CLGC well is located.

31. Parties entitled to notice were identified based on a determination of the title of lands and interests as recorded in the records of Eddy County or from a review of New Mexico Oil Conservation Division and Bureau of Land Management operator records as of the time the application was filed or from OXY's internal records (division orders).

32. It is my opinion that OXY undertook a good faith effort to locate and identify the correct parties and valid addresses required for notice within the half-mile area of review. To the best of my knowledge the addresses used for notice purposes are valid and correct. There were no unlocatable parties for whom we were unable to locate a valid address.

33. I provided the law firm of Holland & Hart LLP a list of names and addresses of the affected parties identified on pages 83-85 for purposes of providing notice.

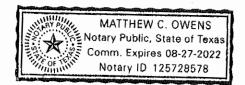
34. As reflected on **Exhibit B-6**, notice of this application was provided in accordance with 19.15.26.8(B)(2) NMAC. Notice was also published in the Hobbs Daily News.

35. **OXY Exhibits B-1** through **B-6** were either prepared by me or compiled under my direction and supervision.

FURTHER AFFIANT SAYETH NOT.

Stephen Janacek

STATE OF TEXAS COUNTY OF Collin


SUBSCRIBED and SWORN to before me this <u>7</u> day of <u>September</u>, 2021 by STEPHEN JANACEK.

NOTARY PUBLIC-

Released to Imaging: 9/8/2021 8:08:22 AM

My Commission Expires:

08-27-2022

Data Collection Plan for Cedar Canyon CLGC Project

CLGC Well Name	Completion Reservoir	Involved Well(s) (North Side)	Involved Well (South Side)	
CC 21-023H	Second Bone Spring	Cedar Canyon 21 Fed Com 22H	Cedar Canyon 21 Fed Com 5H	
CC 28-008H	Second Bone Spring	Morgan Fee Com 1H	Cedar Canyon 28 Fed Com 9H	
		Salt Ridge CC 20-17 Fed Com 21H		
		Salt Ridge CC 20-17 Fed Com 23H		
CC 29-002H	Second Bone Spring	Cedar Canyon 20 Fed Com 24H	Cedar Canyon 29 Fed Com 21H	
		Cedar Canyon 20 Fed Com 25H		
		Cedar Canyon 20 Fed Com 26H		

A map is attached showing the CLGC wells and the offsets in the Second Bone Spring Formation. The CLGC well trajectories are black and the offset well trajectories are red.

Applicant shall provide to the OCD Engineering Bureau at ocd.engineer@state.nm.us, project status updates every twelve (12) months after the approval of this Order and a summary report no later than three (3) months after the cessation of the pilot project or upon request from OCD. Status updates shall include a summary of the actions taken and problems and solutions identified and implemented. The summary report(s) shall include:

a. a summary of all project-related activity;

b. a review regarding any problems and solutions identified and implemented;

c. for each period of injection, a summary of the results, including for each CLGC Well in which injection occurred ("involved CLGC Well"):

i. average and maximum injection flow rates;

ii. injection duration; and

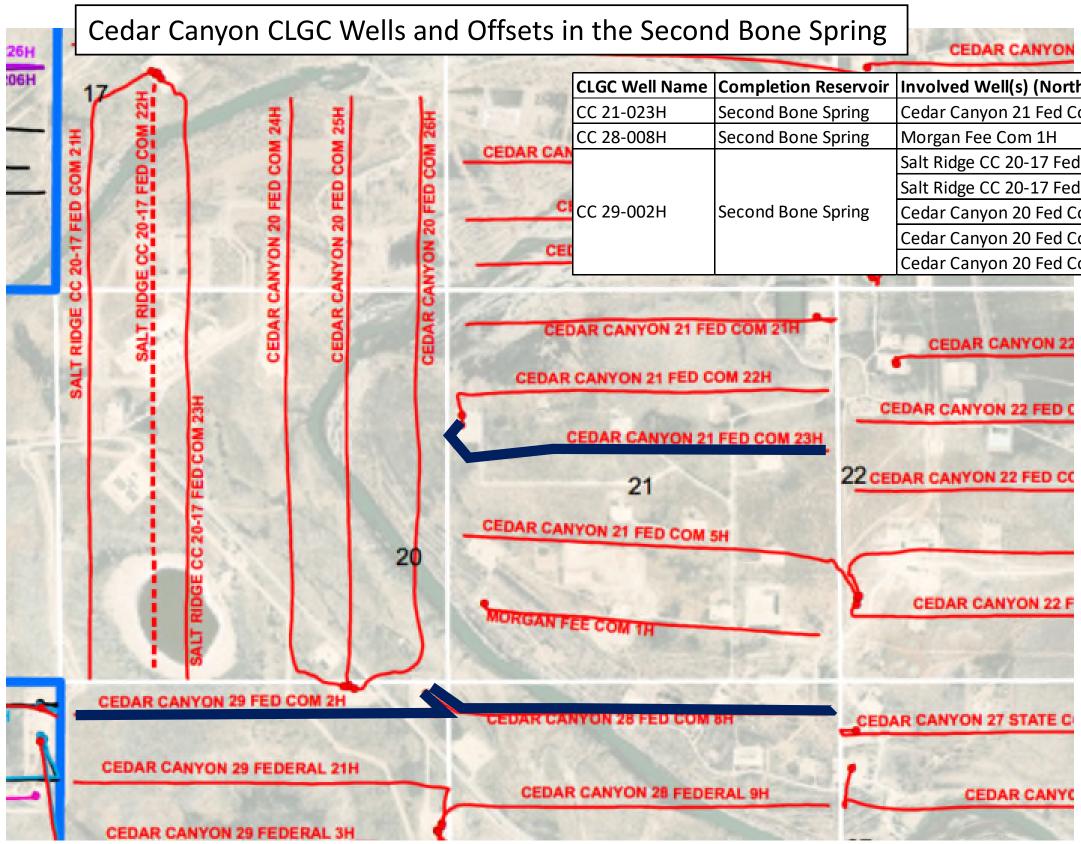
iii. total injected volume.

d. for each period of injection, the following data graphed and tabulated with a resolution of at least: one (1) data point per hour beginning twenty-four (24) hours before the injection (provided adequate notice is received beforehand), four (4) data points per hour during the injection, and one (1) data point per hour ending twenty-four (24) hours after the injection:

i. for each involved CLGC Well, the oil and gas production and injection flow rates and annulus pressure of all casing strings; and

ii. for each well related to each involved CLGC Well, the oil and gas production and injection flow rates and production casing pressure.

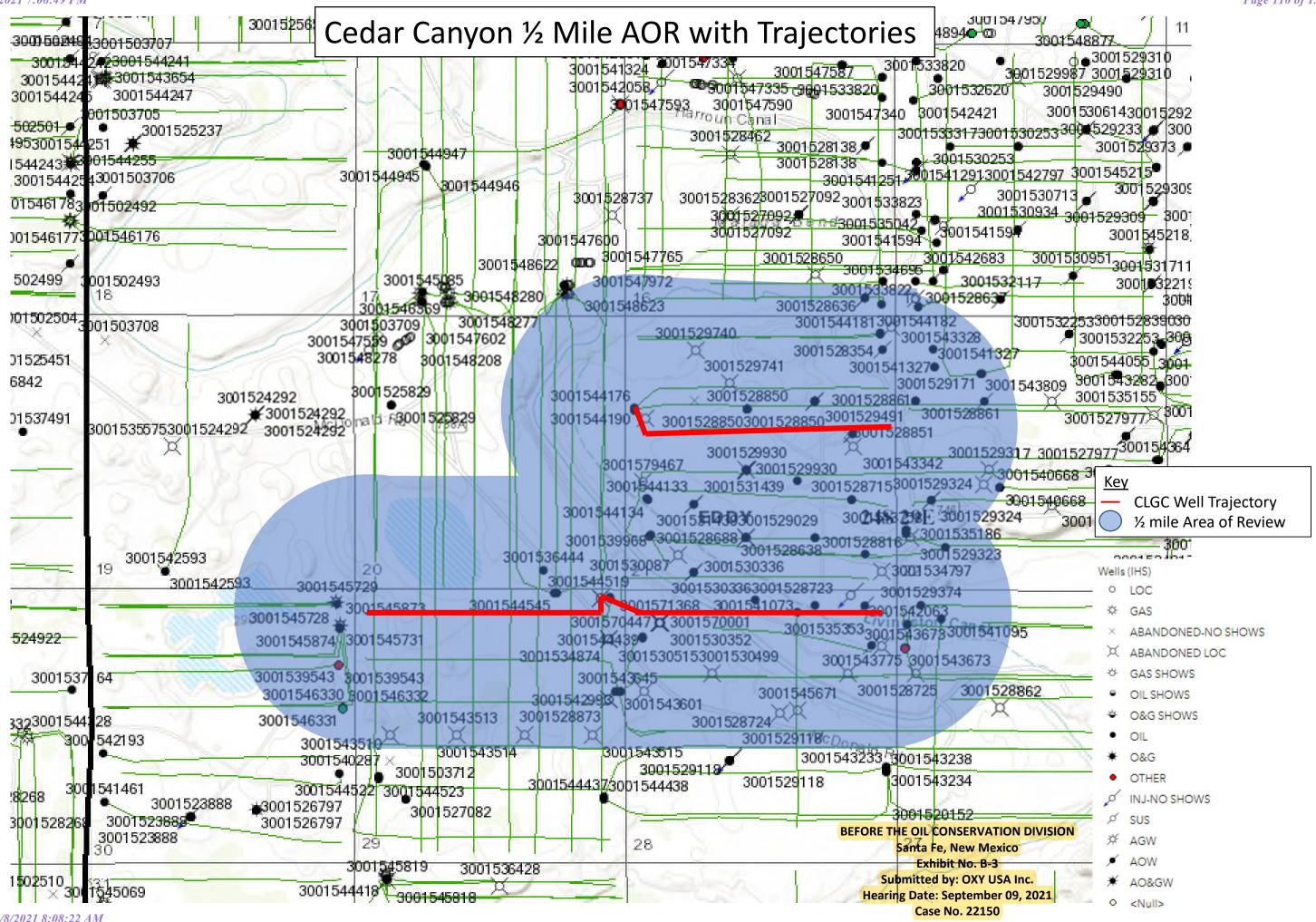
iii. for situations where equipment constraints do not allow for data collection at the resolution specified above or injection periods lasting more than twenty-four (24) hours, periodic well tests may be substituted, provided such well tests are conducted by


BEFORE THE OIL CONSERVATION DIVISION Santa Fe, New Mexico Exhibit No. B-1 Submitted by: OXY USA Inc. Hearing Date: September 09, 2021 Case No. 22150 separating and metering the oil and gas production from each well for a minimum of six (6) hours.

e. for each period of injection, a recovery profile for each involved CLGC Well and for each well related to each involved CLGC Well which experienced a change in production casing pressure or production volume related to the injection during or immediately following the injection. The volume of recovered gas shall be determined by taking the difference between the gas production following the injection and baseline production. The baseline production shall be determined by using well tests to create a production curve that estimates what the production would have been had injection not occurred. The production curve shall be calculated by interpolating daily production for each day using the known daily production obtained by well tests conducted prior to the start of injection and shall use a method of interpolation that is at minimum as accurate as maintaining a constant rate of change for each day's production between the known daily production. The recovery profile shall include:

i. a summary of the results, including the volume and percent of total production recovered and the duration of time required to achieve that recovery; and

ii. a tabulation of daily oil and gas production and baseline production totals; beginning a week before the injection and ending when either the gas production is near equal to its baseline production or Applicant conducts another period of injection on an involved CLGC Well.


f. If any of the CLGC wells or the involved CLGC wells are being produced pursuant to an approved commingling permit, applicant shall not be required to install additional facilities or measurement equipment to collect the data described above in subparagraphs (d) or (e) above.

Involved Well (South Side)
Cedar Canyon 21 Fed Com 5H
Cedar Canyon 28 Fed Com 9H
Cedar Canyon 29 Fed Com 21H

A map is provided instead of a gun barrel view because there are different horizontal orientations.

Key CLGC Well Offset Well Offset Planned Well BEFORE THE OIL CONSERVATION DIVISION Santa Fe, New Mexico Exhibit No. B-2 Submitted by: OXY USA Inc. Hearing Date: September 09, 2021 Case No. 22150 Received by OCD: 9/7/2021 7:06:49 PM

Released to Imaging: 9/8/2021 8:08:22 AM

GOR Gas Allocation Plan for CLGC Wells

Application

The following methodology will apply to CLGC wells on a well by well basis. The application will start after a CLGC storage event and will end after 100% of the Storage Gas Injection Inventory is recovered. Afterwards, Gas Allocation will revert to previous accounting procedures.

Overview

During a CLGC storage event, a portion of the combined gas streams from source wells will be stored in a CLGC well. After a storage event, the wellhead gas produced from a CLGC well will consist of three components: Gas Lift Gas, Native Gas, and Storage Gas Production. Both Native Gas and Storage Gas Production are produced from the reservoir, and the combined production is Reservoir Gas.

Wellhead Gas Produced = Gas Lift Gas + Native Gas + Storage Gas Production

Gas Lift Gas is measured continuously for each well. This methodology applies a Gas-Oil-Ratio (GOR) Calculation to determine the Native Gas (owned by the owners of the CLGC well) and Storage Gas Production (owned by the owners of the source wells).

A Well Test Allocation Method will be utilized after a storage event. In the example below, the well tests values are highlighted. The values between are interpolated.

Example

The following data is a simulated, 1-Day storage event.

- 2000 mscf is injected over 24 consecutive hours.
- The well is produced back immediately following a storage event.
- The data has been truncated at 24 days because it is included for illustration purposes.

The input and calculated values for an example well are listed below:

Values	Description
Wellhead Gas Produced, mscf/d	Wellhead gas, measured with well test
Gas Lift Gas, mscf/d	Gas Lift Gas injection, measured with flow meter
	Reservoir Gas, the difference between Wellhead Gas and
Reservoir Gas, mscf/d	Gas Lift Gas, calculated
Oil, bbl/d	Oil production, measured with well test
Water, bbl/d	Water production, measured with well test
	Gas Oil Ratio (GOR), engineer calculation based on
GOR, scf/bbl	previous oil and gas well tests before a storage event
	Minimum of Reservoir Gas or Native Gas Production
Native Gas- GOR Calc, mscf/d	using GOR, calculated
Storage Gas Injection, mscf/d	Storage Gas Injection, measured with flow meter

BEFORE THE OIL CONSERVATION DIVISION Santa Fe, New Mexico Exhibit No. B-4 Submitted by: OXY USA Inc. Hearing Date: September 09, 2021 Case No. 22150

Released to Imaging: 9/8/2021 8:08:22 AM

•

Storage Gas Injection Inventory, mscf	Storage Gas Injection Inventory, cumulative amount of storage gas injection minus storage gas production, calculated
	Storage Gas Production, difference between Reservoir
Storage Gas Production, mscfd	Gas and Calculated Native Gas Production, calculated

Column	1	2	3	4	5	6	7	8	9	10
Calculation or		Flow		Well	Well	Engineer	MIN		8-10 +	
measurement	Well Test	Meter	1-2	Test	Test	Analysis	(3,4*6/1000)	Flow Meter	9_PreviousRow	IF(9>0, 3-7,0)
	Wellhead									
	Gas	Gas Lift	Reservoir				Native Gas-	Storage Gas	Storage Gas	Storage Gas
	Produced,	Gas,	Gas,	Oil,	Water,	GOR,	GOR Calc,	Injection,	Injection	Production,
Day	mscf/d	mscf/d	mscf/d	bbl/d	bbl/d	scf/bbl	mscf/d	mscf/d	Inventory, mscf	mscfd
-90	626	500	126	63	103	2,005	126	0	0	0
-60	625	500	125	62	101	2,032	125	0	0	0
-30	624	500	124	60	99	2,053	124	0	0	0
1	623	500	123	59	96	2,081	123	0	0	0
2	0	0	0	0	0	2,050	0	2000	2000	0
3	850	500	350	45	80	2,050	92	0	1743	257
4	741	500	241	50	86	2,050	102	0	1604	139
5	713	500	213	52	88	2,050	107	0	1498	106
6	685	500	185	54	91	2,050	111	0	1424	73
7	675	500	175	55	92	2,050	113	0	1362	62
8	665	500	165	56	93	2,050	115	0	1313	50
9	661	500	161	57	93	2,050	116	0	1267	45
10	657	500	157	57	94	2,050	117	0	1227	40
11	653	500	153	57	94	2,050	117	0	1192	35
12	649	500	149	58	95	2,050	118	0	1161	31
13	647	500	147	58	95	2,050	118	0	1133	28
14	645	500	145	58	95	2,050	119	0	1106	26
15	643	500	143	58	95	2,050	119	0	1082	24
16	641	500	141	58	95	2,050	119	0	1060	22
17	640	500	140	58	95	2,050	119	0	1038	21
18	639	500	139	58	94	2,050	119	0	1018	20
19	639	500	139	58	94	2,050	119	0	998	20
20	638	500	138	58	94	2,050	119	0	980	19
21	637	500	137	58	93	2,050	119	0	962	18
22	636	500	136	58	93	2,050	119	0	945	17
23	635	500	135	58	93	2,050	119	0	930	16
24	634	500	134	58	92	2,050	119	0	915	15

Well Test Allocation Method

Following an injection period, the allocation of oil and gas production shall be based on the production life of each CLGC well as measured for three periods: (a) the initial production period shall be measured from the end of the injection period until the peak gas production rate is reached; (b) the plateau period shall be measured from the end of the initial production period to the peak decline rate; and (c) the decline period shall be measured from the end of the end of the plateau period until the plateau period until the vell has recovered the previously-injected volume.

During the initial production period, the oil and gas production for each CLGC well shall be allocated using daily well tests or separated and metered individually prior to commingling.

During the plateau period, the oil and gas production for each CLGC well shall be allocated using a production curve calculated from a minimum of three (3) well tests per month. The production curve shall be calculated by interpolating daily production for each day using the known daily production obtained by well tests and shall use a method of interpolation that is at minimum as accurate as maintaining a constant rate of change for each day's production between the known daily production values.

During the decline period, the oil and gas production for each CLGC well shall be allocated using a production curve calculated from a minimum well testing frequency as follows: (a) a minimum of three (3) well tests per month when the decline rate is greater than 22% per month; (b) a minimum of two (2) well tests per month when the decline rate is between 22% and 10% per month; and (c) a minimum of one (1) well test per month when the decline rate is less than 10% per month. The production curve shall be calculated by interpolating daily production for each day using the known daily production obtained by well tests and shall use a method of interpolation that is at minimum as accurate as maintaining a constant rate of change for each day's production between the known daily production values.

Applicant shall conduct a well test by separating and metering the oil and gas production from each well for either (a) a minimum of twenty-four (24) consecutive hours; or (b) a combination of nonconsecutive periods that meet the following conditions: (i) each period shall be a minimum of six (6) hours; and (ii) the total duration of the nonconsecutive periods shall be a minimum of eighteen (18) hours.

BEFORE THE OIL CONSERVATION DIVISION Santa Fe, New Mexico Exhibit No. B-5 Submitted by: OXY USA Inc. Hearing Date: September 09, 2021 Case No. 22150 7

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION OF OXY USA INC. FOR A CLOSED LOOP GAS CAPTURE INJECTION PILOT PROJECT, EDDY COUNTY, NEW MEXICO.

CASE NO. 22150

AFFIDAVIT

STATE OF NEW MEXICO)
) ss.
COUNTY OF SANTA FE)

Adam G. Rankin, attorney in fact and authorized representative of OXY USA Inc, the Applicant herein, being first duly sworn, upon oath, states that the above-referenced Application has been provided under the notice letters and proof of receipts attached hereto.

Adam G. Rankin

SUBSCRIBED AND SWORN to before me this 7th day of September, 2021 by Adam G.

Rankin.

Notary Public

My Commission Expires:

anuary 28, 2023

BEFORE THE OIL CONSERVATION DIVISION Santa Fe, New Mexico Exhibit No. B6 Submitted by: OXY USA Inc. Hearing Date: September 09, 2021 Case No. 22150

Adam G. Rankin Phone (505) 988-4421 agrankin@hollandhart.com

August 20, 2021

<u>VIA CERTIFIED MAIL</u> CERTIFIED RECEIPT REQUESTED

TO: ALL AFFECTED PARTIES

Re: Application of OXY USA Inc. for Closed Loop Gas Capture Injection Pilot Project, Eddy County, New Mexico. <u>Cedar Canyon 21 Fed Com #023H well, Cedar Canyon 28 Fed Com #8H well,</u> <u>Cedar Canyon 29 Fed Com #2H well</u>

Ladies & Gentlemen:

This letter is to advise you that OXY USA Inc. has filed the enclosed application with the New Mexico Oil Conservation Division.

During the COVID-19 Public Health Emergency, state buildings are closed to the public and hearings will be conducted remotely. The hearing will be conducted on September 9, 2021 beginning at 8:15 a.m., until it is concluded. To participate in the electronic hearing, see the instructions posted on the OCD Hearings website: https://www.emnrd.nm.gov/ocd/hearing-info/.

You are not required to attend this hearing, but as an owner of an interest that may be affected by this application, you may appear and present testimony. Failure to appear at that time and become a party of record will preclude you from challenging the matter at a later date. Parties appearing in cases are required by Division Rule 19.15.4.13.B to file a Pre-hearing Statement four business days in advance of a scheduled hearing. This statement must be filed online or in person at the Division's Santa Fe office and should include: the names of the parties and their attorneys; a concise statement of the case; the names of all witnesses the party will call to testify at the hearing; the approximate time the party will need to present its case; and identification of any procedural matters that are to be resolved prior to the hearing.

If you have any questions about this matter, please contact Stephen Janacek, at (713) 497-2417, or Stephen_Janacek@OXY.com.

Sincerely,

Adam G. Rankin ATTORNEY FOR OXY USA INC.

Oxy - Closed Loop Gas Capture Cedar Canyon Case No. 22150 Postal Delivery Report

TrackingNo	ToName	DeliveryAddress	City	State	Zip	USPS_Status
						Your item was delivered to the front desk, reception area, or mail room at 3:23 pm
9402811898765800082897	Chevron USA Inc.	6301 Deauville	Midland	ТХ	79706-2964	on August 24, 2021 in MIDLAND, TX 79706.
9402811898765800082804	Centennial NM Partners	PO Box 1837	Roswell	NM	88202-1837	Your item was delivered at 12:25 pm on August 24, 2021 in ROSWELL, NM 88201.
9402811898765800082828	Branex Resources Inc.	PO Box 2990	Ruidoso	NM	88355-2990	Your item was delivered at 11:39 am on August 25, 2021 in RUIDOSO, NM 88345.
						Your package is moving within the USPS network and is on track to be delivered to
9402811898765800082866	Basin Operating Co.	648 Petroleum Bldg	Roswell	NM	88201	its final destination. It is currently in transit to the next facility.
9402811898765800082316	XTO Holdings LLC	PO Box 840780	Dallas	тх	75284-0780	Your item was delivered at 7:55 pm on August 24, 2021 in DALLAS, TX 75266.
9402811898765800082859	Balog Family Trust	PO Box 111890	Anchorage	AK	99511-1890	Your item was delivered at 9:41 am on August 30, 2021 in ANCHORAGE, AK 99515.
			0			Your item was delivered to the front desk, reception area, or mail room at 2:17 pm
9402811898765800082170	XTO Energy, INC	6401 Holiday Hill Rd Bldg 5	Midland	тх	79707-2157	on August 23, 2021 in MIDLAND, TX 79707.
9402811898765800082132		25061 Network Pl	Chicago	IL	60673-1250	Your item was delivered at 4:29 am on August 24, 2021 in CHICAGO, IL 60680.
						Your item was delivered at 4:09 pm on August 23, 2021 in OKLAHOMA CITY, OK
9402811898765800082187	Winchester Energy LLC	PO Box 13540	Oklahoma City	ок	73113-1540	
						Your item has been delivered to an agent for final delivery in GOLDEN, CO 80401 on
9402811898765800082149	Tan Bock Resources LLC	523 Park Point Dr Ste 200	Golden	со	80401-9387	August 23, 2021 at 12:47 pm.
5102011050705000002115			Golden		00101 3307	This is a reminder to arrange for redelivery of your item or your item will be
9402811898765800082194		PO Box 7307	Midland	тх	79708-7307	returned to sender.
5402011050705000002154			Wildiana		/ 5/08 / 50/	Your item was delivered to an individual at the address at 12:53 pm on August 23,
0402911909765900092101	Prime Rock Resources Asset Co LLC	203 W Wall St Ste 1000	Midland	тх	70701 4525	2021 in MIDLAND, TX 79701.
5402811858705800082101	FTIME ROCK RESOURCES ASSET CO LEC	203 W Wall St Ste 1000	Iviluiariu	1	79701-4323	Your package will arrive later than expected, but is still on its way. It is currently in
9402811898765800082163	ROCO Braducing CO	PO Box 10340	Midland	тх	70702 7240	transit to the next facility.
9402811898763800082163		PO B0x 10340	Iviluiallu	1^	79702-7540	Your package will arrive later than expected, but is still on its way. It is currently in
040201100070500002150	NCI Weister Calutions Dormion, LLC	OCE Albies St Ste 400	Denver	60	80220 4800	
9402811898765800082156	NGL Wwater Solutions Permian, LLC	865 Albion St Ste 400	Denver	CO	80220-4809	transit to the next facility. Your item was delivered to the front desk, reception area, or mail room at 11:11 and
040201100070500002110	MBC Dormion Co	5400 Lbi Fund Sta 1500	Delles	TV	75240 1017	
9402811898765800082118	MRC Permian Co.	5400 Lbj Fwy Ste 1500	Dallas	TX	75240-1017	on August 23, 2021 in DALLAS, TX 75240.
0.40004.4000765000000675					75204 4264	Your item was delivered to an individual at the address at 12:00 pm on August 23,
9402811898765800082675	Maduro Oil & Gas LLC	3102 Maple Ave Ste 400	Dallas	TX	75201-1261	2021 in DALLAS, TX 75201.
0.40004.400076500000004.4		DO D 50007				Your item was picked up at a postal facility at 10:27 am on August 23, 2021 in
9402811898765800082811	SMC OII & Gas, Inc.	PO Box 50907	Midland	TX	/9/10-090/	MIDLAND, TX 79705.
						Your item was delivered to the front desk, reception area, or mail room at 12:12 pm
9402811898765800082637	Lonsdale Resources LLC	2626 Cole Ave Ste 300	Dallas	ТХ	75204-1094	on August 23, 2021 in DALLAS, TX 75204.
						Your item was delivered to the front desk, reception area, or mail room at 8:24 am
9402811898765800082682	-	104 S 4th St	Artesia	NM		on August 23, 2021 in ARTESIA, NM 88210.
9402811898765800082644	Devon Energy Production Company LP	PO Box 843559	Dallas	ТХ	75284-3559	Your item was delivered at 7:55 pm on August 24, 2021 in DALLAS, TX 75266.
						We attempted to deliver your package at 5:54 pm on August 23, 2021 in MIDLAND,
						TX 79701 but could not access the delivery location. We will redeliver on the next
9402811898765800082699	COG OperatingLLC	600 W Illinois Ave	Midland	TX	79701-4882	business day.
						Your item was delivered to an individual at the address at 3:48 pm on August 23,
9402811898765800082606	BLM	620 E Greene St	Carlsbad	NM		2021 in CARLSBAD, NM 88220.
9402811898765800082620	1 Timothy 6 LLC	PO Box 30598	Edmond	ОК	73003-0010	Your item was delivered at 12:05 pm on August 23, 2021 in EDMOND, OK 73003.
			Anchorage	AK	99510-2256	Your item was delivered at 10:33 am on August 30, 2021 in ANCHORAGE, AK 99501
9402811898765800082668	Walker Valorie Trst	PO Box 102256	Anchorage			
9402811898765800082668 9402811898765800082651		PO Box 102256 PO Box 1300	Roswell	NM	88202-1300	Your item was delivered at 11:11 am on August 24, 2021 in ROSWELL, NM 88201.
	The Toles Co LLC		0	NM NM		Your item was delivered at 11:11 am on August 24, 2021 in ROSWELL, NM 88201. Your item was delivered at 11:34 am on August 23, 2021 in ROSWELL, NM 88201.
9402811898765800082651	The Toles Co LLC Strata Production Co	PO Box 1300	Roswell		88202-1030	5 . .
9402811898765800082651 9402811898765800082613	The Toles Co LLC Strata Production Co	PO Box 1300 PO Box 1030	Roswell Roswell	NM	88202-1030	Your item was delivered at 11:34 am on August 23, 2021 in ROSWELL, NM 88201.
9402811898765800082651 9402811898765800082613	The Toles Co LLC Strata Production Co Slash Four Enterprises Inc.	PO Box 1300 PO Box 1030	Roswell Roswell	NM	88202-1030 88202-1433	Your item was delivered at 11:34 am on August 23, 2021 in ROSWELL, NM 88201. Your item was delivered at 10:23 am on August 25, 2021 in ROSWELL, NM 88201.

.

.

Oxy - Closed Loop Gas Capture Cedar Canyon Case No. 22150 Postal Delivery Report

						Your package will arrive later than expected, but is still on its way. It is currently in
9402811898765800082989	Siete Oil & Gas Corp	PO Box 2523	Roswell	NM		transit to the next facility.
540201105070500002505		10 00x 2020	noswen			Your package is moving within the USPS network and is on track to be delivered to
9402811898765800082996	Scott Invst Corn	200 W 1st St Ste 648	Roswell	NM		its final destination. It is currently in transit to the next facility.
3402011030703000002330		200 W 13t 5t 5t 040	Nosweil		00203 4077	Your package is moving within the USPS network and is on track to be delivered to
9402811898765800082903	Scott Exploration Inc	200 W 1st St Ste 648	Roswell	NM	88203-4677	its final destination. It is currently in transit to the next facility.
340201103070300002303		200 W 13t 5t 5t 040	Nosweil		00203 4077	Your item was picked up at a postal facility at 6:49 am on August 24, 2021 in SANTA
9402811898765800082927	State Land Office	308 Old Santa Fe Trail	Santa Fe	NM	87501	FE, NM 87501.
540201105070500002527			Sunta i c		07501	Your item departed our NORTH HOUSTON TX DISTRIBUTION CENTER destination
						facility on August 30, 2021 at 8:16 pm. The item is currently in transit to the
9402811898765800082965	PXP Producing Co LLC	717 Texas St Ste 2100	Houston	тх	77002-2753	
						Your item was returned to the sender on August 23, 2021 at 12:10 pm in ROSWELL,
						NM 88201 because the address was vacant or the business was no longer operating
9402811898765800082958	Phelps J. White III	PO Box 874	Roswell	NM	88202-0874	at the location and no further information was available.
5 1020110507 0500002550						Your item arrived at the SANTA FE, NM 87504 post office at 8:23 am on August 27,
9402811898765800082910	Pete T. Balog	25812 S Dartford Dr	Sun Lakes	AZ		2021 and is ready for pickup.
5 1020110507 0500002510					00210 0727	We attempted to deliver your item at 11:33 am on August 24, 2021 in SALT LAKE
						CITY, UT 84101 and a notice was left because an authorized recipient was not
9402811898765800082774	Permian Hunter Corp	215 W 100 S	Salt Lake City	UT	84101-1302	
	· · · · · · · · · · · · · · · · · · ·			-		This is a reminder to arrange for redelivery of your item or your item will be
9402811898765800082736	Paloma Blanca Well Service Inc.	PO Box 6251	Roswell	NM		returned to sender.
						Your item was picked up at the post office at 4:02 pm on August 24, 2021 in HOBBS,
9402811898765800082231	Mewbourne Oil Co.	PO Box 5270	Hobbs	NM	88241-5270	NM 88240.
9402811898765800082781	Pabo Oil & Gas LLC	PO Box 1675	Roswell	NM	88202-1675	Your item was delivered at 12:39 pm on August 24, 2021 in ROSWELL, NM 88201.
9402811898765800082743		PO Box 2545	Roswell	NM		Your item was delivered at 11:34 am on August 23, 2021 in ROSWELL, NM 88201.
						This is a reminder to arrange for redelivery of your item or your item will be
9402811898765800082798	Mitchell Exploration Inc.	PO Box 2415	Midland	тх	79702-2415	returned to sender.
						Your item was delivered at 9:55 am on August 23, 2021 in ALBUQUERQUE, NM
9402811898765800082705	Hutchings Oil Co.	PO Box 1216	Albuquerque	NM	87103-1216	87103.
						Your item arrived at the SANTA FE, NM 87504 post office at 11:56 am on August 28,
9402811898765800082767	Gail Balog	25812 S Dartford Dr	Sun Lakes	AZ	85248-6717	2021 and is ready for pickup.
						Your package is moving within the USPS network and is on track to be delivered to
9402811898765800082750	Energex Co	100 N Pennsylvania Ave	Roswell	NM	88203-4620	its final destination. It is currently in transit to the next facility.
						Your item was delivered to an individual at the address at 11:19 am on August 23,
9402811898765800082712	EMG Oil Properties	1000 W 4th St	Roswell	NM	88201-3038	2021 in ROSWELL, NM 88201.
9402811898765800082873	Elk Oil Co.	PO Box 310	Roswell	NM	88202-0310	Your item was delivered at 12:21 pm on August 25, 2021 in ROSWELL, NM 88201.
						Your item was delivered at 9:35 am on August 23, 2021 in OKLAHOMA CITY, OK
9402811898765800082835	Devon Energy Production Company LP	333 W Sheridan Ave	Oklahoma City	ок	73102-5010	•
9402811898765800082880		PO Box 1453	Roswell	NM	88202-1453	Your item was delivered at 11:27 am on August 23, 2021 in ROSWELL, NM 88201.
						Your item was delivered to an individual at the address at 3:48 pm on August 23,
	Bureau of Land Management	620 E Greene St	Carlsbad	NM	88220-6292	2021 in CARLSBAD, NM 88220.

Carlsbad Current Argus.

Affidavit of Publication Ad # 0004880590 This is not an invoice

HOLLAND AND HART POBOX 2208

SANTA FE, NM 87504

I, a legal clerk of the **Carlsbad Current Argus**, a newspaper published daily at the City of Carlsbad, in said county of Eddy, state of New Mexico and of general paid circulation in said county; that the same is a duly qualified newspaper under the laws of the State wherein legal notices and advertisements may be published; that the printed notice attached hereto was published in the regular and entire edition of said newspaper and not in supplement thereof on the date as follows, to wit:

08/24/2021

Legal Clerk

Subscribed and sworn before me this August 24, 2021.

State of WI, County of Brown NOTARY PUBLIC

1-7-2

My commission expires

KATHLEEN ALLEN Notary Public State of Wisconsin

Ad # 0004880590 PO #: # of Affidavits1

This is not an invoice

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION SANTA FE, NEW MEXICO

The State of New Mexico, Energy Minerals and Natural Resources Department, Oil Conservation Division ("Division") hereby gives notice that the Division will hold that the Division will hold public hearings before a hearing examiner on the following case. During the COVID-19 Public Health Emergency, state buildings are closed to the public and Division hearing will be Division hearings will be conducted remotely. The public hearing for the fol-lowing case will be electron-ic and conducted remotely. The hearing will be conducted on Thursday, September 9, 2021, beginning at 8:15 a.m. To participate in the electronic hearing, see the instructions posted below. The docket may be viewed at https://www.emnrd.nm.g ov/ocd/hearing-info/ or ob-tained from Marlene Salvidrez, at Marlene.Salvidr ez@state.nm.us. Documents filed in the case may be viewed at http://ocdimage.e viewed at http://ocdimage.e mnrd.state.nm.us/imaging/C aseFileCriteria.aspx. If you are an individual with a dis-ability who needs a reader, amplifier, qualified sign lan-guage interpreter, or other form of auxiliary aid or serv-ice to attend or participate in a hearing, contact Mar-lene Salvidrez at Marlene.Sa lvidrez@state.nm.us. or the lvidrez@state.nm.us, or the New Mexico Relay Network at 1-800-659-1779, no later than August 29, 2021.

Persons may view and participate in the hearings through the following link:

https://nmemnrd.webex.com /nmemnrd/onstage/g.php?M TID=e379adae1410a8aecfd0 fe5582b1917ea Event number: 146 427 9260 Event password: HxJBs523k3Y

Join by video: 1464279260@ nmemnrd.webex.com Numeric Password: 857180 You can also dial 173.243.2.68 and enter your meeting number Join by audio: 1-844-992-4726 United States Toll Free Access code: 146 427 9260

STATE OF NEW MEXICO TO: All named parties and persons having any right, title, interest or claim in the following case and notice to the public.

(NOTE: All land descriptions herein refer to the New Mexico Principal Meridian whether or not so stated.)

To: All affected parties, including: Bureau of Land Management; Mewbourne Oil Co.; Murchison Oil and Gas, LLC; SMC OlL & Gas, Inc.; Balog Family Trust; Basin Operating Co.; Branex Resources Inc.; Centennial NM Partners; Chevron USA Inc.; David J. Sorenson; his heirs and devisees; Devon Energy Production Co., LP; Elk Oil Co.; EMG Oil Properties; Energex Co; Gail Balog, her heirs and devisees; Hutchings Oil Co.; Mitchell Exploration Inc.; Murphy Petro Corp; Pabo Oil & Gas LLC; Paloma Blanca Well Service Inc.; Permian Hunter Corp; Pete T. Balog, his heirs and devisees; Phelps J. White III, his heirs and devisees; PXP Producing Co LLC; State Land Office; Scott Exploration Inc.; Strata Production Co; The Toles Co LLC; Walker Valorie Trst; 1 Timothy 6 LLC; BLM; COG Operating LLC; EOG Y Resources, INC.; Lonsdale Resources LLC; Maduro Oil & Gas LLC; MRC Permian Co.; NGL Water Solutions Permian, LLC; POGO Producing Co; Prime Rock Resources Asset Co LLC; Probity SWD, LLC; Tap Rock Resources LLC; Winchester Energy LLC; WPX Energy Permian LC; XTO Energy, INC; and XTO Holdings LLC.

Case No. 22150: Application of OXY USA Inc. for Closed Loop Gas Capture Injection Pilot Project, Eddy County, New Mexico. Applicant in the above-styled cause seeks an order authorizing it to engage in a closed loop gas capture injection pilot project ("pilot project") in the Bone Spring formation in the, within a 480-acre, more or less, project area for this pilot project consisting of all of the S/2 N/2 of Section 21, and the N/2 N/2 of Sections 28 and 29, Township 24 South, Range 29 East, NMPM, Eddy County, New Mexico, by occasionally injecting into the following wells:

wells: • The Cedar Canyon 21 Fed Com #023H well (API No. 30-015-44191) [Corral Draw; Bone Spring Pool (Pool Code 96238)], with a surface location 1824 feet FNL and 141 feet FWL (Unit E) in Section 21, and a bottom hole location 2177 feet FNL and 175 feet FEL (Unit H) in Section 21.

• The Cedar Canyon 28 Fed Com #8H well (API No. 30-015-43819) [Pierce Crossing; Bone Spring, East Pool (Pool Code 97473)], with a surface location 170 feet FNL and 319 feet FEL (Unit A) in Section 29, and a bottom hole location 448 feet FNL and 189 feet FEL (Unit A) in Section 28.

tion 28. • The Cedar Canyon 29 Fed Com #2H well (API No. 30-015-42992) [Pierce Crossing; Bone Spring (Pool Code 50371)], with a surface location 200 feet FNL and 319 feet FEL (Unit A) in Section 29, and a bottom hole location 456 feet FNL and 182 feet FWL (Unit D) in Section 79.

OXY seeks authority to utilize this producing well to occasionally inject produced gas into the Bone Spring formation at total vertical depths of between approximately 8,419 feet to 8,710 feet along the horizontal portion of each wellbore at surface injection pressures of no more than 1,250 psi. The source of the produced gas will be the Bone Spring and Wolfcamp formations. The subject acreage is located approximately 9 miles southeast of Loving, New Mexico.

#4880590, Current Argus, August 24, 2021

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION OF OXY USA INC. FOR A CLOSED LOOP GAS CAPTURE INJECTION PILOT PROJECT, EDDY COUNTY, NEW MEXICO.

CASE NO. 22150

AFFIDAVIT OF TONY TROUTMAN

I, Tony Troutman, of lawful age and being first duly sworn, declare as follows:

1. My name is Tony Troutman. I work for OXY USA, Inc. ("OXY"), as a petroleum geologist.

2. I have previously testified before the New Mexico Oil Conservation Division as an expert witness in petroleum geology.

3. I am familiar with the application filed by OXY in this case for approval of a closed loop gas capture injection pilot project in the Bone Spring formation, and I have conducted a geologic study of the lands in the subject area that is included in *Exhibit A* to OXY's application. My analysis and conclusions are summarized at pages 59-66 of the Exhibit.

4. A general characterization of the geology of the Bone Spring formation and its suitability for the proposed injection, including identification of confining layers and their ability to prevent vertical movement of the injected gas is included in my analysis. *See Exhibit A* at 59-66.

5. Page 62 of *Exhibit A* depicts a type log for the project area, showing the proposed injection zone, adjacent oil and gas zones, and confining layers. The proposed injection zone is the 2nd Bone Spring Sand, a sub-unit of the larger Bone Spring Formation. Adjacent oil and gas zones are the overlying First Bone Spring Sand and Brushy Canyon Eperpartien and underlying 2rd Bone Conservation.

DIVISION Santa Fe, New Mexico Exhibit No. C Submitted by: OXY USA Inc. Hearing Date: September 09, 2021 Case No. 22150

Released to Imaging: 9/8/2021 8:08:22 AM

Spring Sand. Confining layers that will prevent migration of injected gas into adjacent oil and gas zones are the overlying 2nd Bone Spring Lime and underlying 3rd Bone Spring Lime.

6. Page 63 is a cross-section map depicting the location of three representative wells used to construct a cross-section across the pilot project area. The structure map in the upper right indicates that the 2nd Bone Spring Sand dips to the east and the cross-section illustrates that it maintains a consistent thickness across the project area. There is no evidence of faults, pinch-outs, or other potential pathways for out-of-zone migration indicated by the cross-sections or structural mapping.

7. Page 64 is a structure map on the top of the 2nd Bone Spring Sand that shows the structure gently dipping to the east. There is no evidence of faults, pinch-outs, or other potential pathways for out-of-zone migration indicated by the structure map.

8. Page 65 is a thickness map and reflects that the 2nd Bone Spring Sand maintains a consistent thickness across the pilot project area of between about 400-450 feet. There is no evidence of faults, pinch-outs, or other potential pathways for out-of-zone migration indicated by the thickness map.

9. In this proposed CLGC Project, the Cedar Canyon 21 Fed Com #023H well, the Cedar Canyon 28 Fed Com #8H well, and the Cedar Canyon 29 Fed Com #2H well will inject into the 2nd Bone Spring Sand at an average true vertical depth of approximately 8,500 feet across the length of the well's horizontal wellbore. The proposed injection interval is an unconventional reservoir composed of very fine-grained quartz-rich and brittle siltstone. *See Exhibit A* at 60. Low-permeability barriers to fluid flow exist within the Bone Spring Formation above and below the 2nd Bone Spring Sand. Below the 2nd Bone Spring Sand is the 3rd Bone Spring Lime, a low permeability, approximately 750-foot thick carbonate-rich interval which provides isolation from

the underlying productive 3rd Bone Spring Sand. Above the 2nd Bone Spring Sand, the 2nd Bone Spring Lime consists of carbonate mudstone and dolomudstone that has very low permeabilities and an average thickness of 500 feet and provides isolation from the overlying productive 1st Bone Spring Sand and Brushy Canyon Formation. Above the Bone Spring Formation is the Delaware Mountain Group and impermeable anhydrite, gypsum, and salt layers of the Castile, Salado, and Rustler Formations. Due to the thickness of multiple impermeable rock layers above the injection reservoir there is little possibility for migration upward into freshwater aquifers where they exist.

10. Laterally, the injection will be contained in the reservoir volume that has been previously and partially depleted by the CLGC wells. The low-permeability reservoir will be the primary constraint on movement of the injection gas and is expected to contain the injected gas within the pilot project area. *See Exhibit A* at 66.

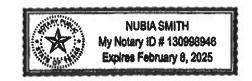
11. My analysis concludes that the 2^{nd} Bone Spring Sand in this area is suitable for the proposed CLGC Project and that there are geologic barriers that will contain the proposed injection within the 2^{nd} Bone Spring Sand. *See Exhibit A* at 66.

12. I have examined the available geologic and engineering data and found no evidence of open faults or other hydrologic connections between the injection zone and any underground source of drinking water. *See Exhibit A* at 66.

13. In my opinion, the granting of OXY's application in this case is in the best interest of conservation, the prevention of waste, and protection of correlative rights.

FURTHER AFFIANT SAYETH NOT.

utman Tor


STATE OF TEXAS COUNTY OF RAUS

SUBSCRIBED and SWORN to before me this $\int \int \int day of SWORN, 2021 by Tony Troutman.$

NOTARY PUBLIC

My Commission Expires:

02-08-2025

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION OF OXY USA INC. FOR A CLOSED LOOP GAS CAPTURE INJECTION PILOT PROJECT, EDDY COUNTY, NEW MEXICO.

CASE NO. 22150

AFFIDAVIT OF XUEYING XIE

I, Xueying Xie, of lawful age and being first duly sworn, declares as follows:

1. My name is Xueying Xie and I am employed by Oxy USA Inc. ("OXY") as a reservoir engineer.

2. I have previously testified before the New Mexico Oil Conservation Division as an expert witness.

3. I am familiar with the application filed by OXY in this case and the Division guidance regarding closed loop gas capture injection (CLGC) projects such as this one. I have conducted an engineering study of the reservoir to evaluate the potential effects of the proposed temporary injection on the reservoir and future production. The conclusions I have drawn from my analysis are summarized in pages 66-78 in *Exhibit A* attached to OXY's application.

4. I have examined the available geologic and engineering data and found no evidence of open faults or other hydrologic connections between the injection zone and any underground source of drinking water. *See Exhibit A* at 66.

5. The CLGC project will inject produced gas into horizontal wells with 5000 ft laterals and into the productive zone of the 2nd Bone Spring Sand formation. We applied simulation modeling techniques to investigate gas movement in the injection zone and any potential impacts on production performance of the CLGC wells and direct offset wells. The BEFORE THE OIL CONSERVATION DIVISION

Santa Fe, New Mexico Exhibit No. D Submitted by: OXY USA Inc. Hearing Date: September 09, 2021 Case No. 22150

Released to Imaging: 9/8/2021 8:08:22 AM

model utilized data from our Cedar Canyon Section 16 Gas EOR Project ("CC 16 EOR Project") for verification. The CC 16 EOR Project began in 2017. It is located only 1-2 miles away from the Cedar Canyon CLGC project area. The bottom left box of page 70 shows the reservoir properties and conditions of the Bone Spring formation at the CC 16 EOR Project. In general, the 2nd Bone Spring reservoir in the EOR project and the CLGC project in the Cedar Canyon area have very similar reservoir properties. The section, location, and well layout for the CC 16 EOR Project are shown on page 69. In this EOR project, Cedar Canyon 16-7H injected produced gas for five months in 2017 at a rate of 7 mmscf/d. After the five months of EOR gas injection, the final surface tubing head pressure was 4100 psi and bottom hole pressure was about 5000 psi. The simulation model incorporated both the primary production history of wells in the CC 16 EOR Project area and the EOR gas injection history with gas communication occurring between the EOR injection well and offset producing wells. During the first three months of EOR gas injection, there was no observed gas communication. However, after three months of EOR gas injection, there was gas communication in offset producers and the model was able to predict it. This gives us confidence in the ability of the model to predict impacts on offset wells resulting from CLGC operations.

6. The reservoir model is a full section model with five wells. The top right of page 70 shows the 3D model grid. It has 56 layers and over a million cells. The four plots in the bottom right show history match results of all five wells in the CC 16 EOR project area. The dots represent historical field data and the curves are modeling results. The first three plots show the primary production match from 2013 to 2017 for all five wells in the section. The green plot shows oil rate match, the blue plot shows water rate match, and the red plot shows gas rate

match. The bottom right plot shows gas injection bottom hole pressure match of EOR gas injection in 2017. The model shows a good match for all rates and pressure.

7. With the high EOR gas injection rates and injection pressures in the CC 16 EOR Project, the reservoir simulation model was created to capture the gas communication between injection wells and the offset producers. This modeling improved our understanding of the complexity of connected fractures based on actual field response. The model was used to simulate the effects of CLGC operations in the Cedar Canyon areas, since the reservoirs have similar properties. We believe the model should be able to predict communication caused by CLGC operations because it was "tuned" based on actual gas communication between wells. First, we created a base case for normal production without any gas injection. Then we ran numerous gas injection cases to simulate CLGC operations and compared those with the base case to determine the impact on well production rate and recovery in both CLGC wells and offset wells. To further validate our injection rate assumptions, we integrated the reservoir model with a Prosper wellbore model to predict the injection rate at a wellhead injection pressure of 1200 psi. The results are shown on the plot of page 72. For a 5000 ft lateral length well (representative of our proposed Cedar CanyonCLGC wells), 1.5 (rounded to 2) mmscf/day is the predicted max injection rate. It declines to about 50% of the initial value after three weeks. Despite the injection rate decline over time, Oxy ran all cases in the model with flat injection rates to simulate worstcase scenarios. The results of these model runs are shown on page 75 and discussed more fully below.

8. Reservoir modeling indicates the horizontal movement of injected gas is anticipated to be approximately 100 feet or less from each CLGC wellbore within the Bone Spring formation. *See Exhibit A* at 73. This is illustrated by comparing gas

saturation pre-injection and post-injection. The top left plot on page 73 shows preinjection gas saturation. The wellbores are depicted as east-west lines, and the numerous hydraulic fractures created in each wellbore are shown as NE-SW angled lines. The blue color shows no gas while the cyan color shows gas exists in the fractures. A warmer color indicates a higher gas saturation. The middle plot shows gas saturation after one week of injection. The gas injected into the middle well and the fractures near wellbore show a warmer color. The bottom plots have a magnified view of the CLGC well gas saturation for a clearer comparison. We can clearly see that the fractures near wellbore in the injection case have a warmer color than those of the preinjection case. Additionally, further away from the CLGC wellbore, there is no gas saturation change in the factures even though there are connected fractures between wells. This is because the injected gas volume during CLGC operations is too small to move very far away from the CLGC wellbore. And even when we have fracture communication between wells, there is not very high conductivity for immediate gas communication as was observed in our CC 16 EOR project which had a much higher injection rate and pressure. The gas storage injection in Cedar Canyon will occur at a much lower rate (< 2mmscf/d) for a shorter period of time with much lower tubing head pressure (1200psi) compared with CC 16 EOR Project in 2017, so it is not unexpected that the model shows no gas communication. Finally, after a long period of production following a gas storage event, the gas saturation in the near wellbore of CLGC wells is restored to pre-injection values as shown in the plot on the upper right of page 73. This is because the majority of injected gas has been recovered.

9. The pressure map plots of page 74 tell the same story as the gas saturation map plots. With gas injection, the pressure increases only in the fractures nearest the wellbore within 100 feet of the CLGC well.

10. We modeled all possible CLGC scenarios including different well spacing (from 4-8 Wells Per Section, or "WPS"), single well injection, multi-well injection, and a worst case with a higher injection rate and a longer injection period than historical upsets. The modeling results are summarized in the table on page 75 and in each case show no impact. Cedar Canyon wells have well spacing of 4-6 WPS, and the model scenarios even tested narrower spacing of 8 WPS which still shows no impact. For the injection parameters, all possible scenarios—including the worst-case gas storage scenario—have much lower injection volumes and injection pressures compared to CC 16 EOR Project. In conclusion, the analysis indicates that there will be no change in the oil recovery from each of its proposed injection wells or from any of the offsetting wells because of CLGC operations. *See id.* at 75.

11. As a cross-check of the model results, I prepared an analysis of the expected gas storage capacity in the fracture network of the CLGC well relative to the gas injection volumes for the worst-case injection scenario lasting twenty days. *See Exhibit A* at 76. My analysis confirms that whether the capacity is estimated based on the fracture volume gas equivalent, or the total gas equivalent volumes produced from the proposed injection zone, the anticipated gas injection volumes will be considerably less than the estimated volume capacity for gas storage within the project area.

12. Fracture dimensions are predicted by a fracture model software package called Gohfer, which is based on reservoir geo-mechanical properties and actual well

hydraulic fracturing procedure history matching. The fracture dimensions for a a 2nd Bone Spring Sand well are shown at page 77. The table on the right show Stimulated Reservoir Volume (SRV) for each individual CLGC well, which is around 900 million cubic feet.

13. In my analysis, examining the available geologic and engineering data, I have determined that the total recoverable volume of hydrocarbons from the reservoir will not be adversely affected by the pilot project and that the gas composition of the injected gas will not damage the reservoir. *See Exhibit A* at 78.

14. Pages 66 through 78 of **Exhibit A** were either prepared by me or compiled under my direction and supervision.

FURTHER AFFIANT SAYETH NOT.

-		0
	Xwyji bas Xueying Xie	
STATE OF TEXAS COUNTY OF Harins SUBSCRIBED and SW XUEYING XIE. My Commission Expires. 64/68/2023	VORN to before me this <u>JH</u> day of <u>Syptember</u> 2021, by	
	7	