STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION COMMISSION

APPLICATION OF GOODNIGHT MIDSTREAM PERMIAN LLC FOR APPROVAL OF A SALTWATER DISPOSAL WELL, LEA COUNTY, NEW MEXICO.

COMM. CASE NO. 24123

APPLICATIONS OF GOODNIGHT MIDSTREAM PERMIAN LLC FOR APPROVAL OF SALTWATER DISPOSAL WELLS, LEA COUNTY, NEW MEXICO.

DIV. CASE NOS. 23614-23617

APPLICATION OF GOODNIGHT MIDSTREAM PERMIAN, LLC TO AMEND ORDER NO. R-22026/SWD-2403 TO INCREASE THE APPROVED INJECTION RATE IN ITS ANDRE DAWSON SWD #1, LEA COUNTY, NEW MEXICO.

DIV. CASE NO. 23775

APPLICATIONS OF EMPIRE NEW MEXICO LLC TO REVOKE INJECTION AUTHORITY, LEA COUNTY, NEW MEXICO.

DIV. CASE NOS. 24018-24020, 24025

EMPIRE NEW MEXICO LLC'S NOTICE OF SUPPLEMENTAL EXHIBITS

Empire New Mexico, LLC, through its undersigned counsel, submits the following supplemental exhibits that were admitted into the record during the hearing in these matters on April 11, 2025.

Respectfully submitted,

By: /s/ Dana S. Hardy

Dana S. Hardy
Jaclyn M. McLean
Timothy B. Rode
HARDY MCLEAN LLC
125 Lincoln Ave., Suite 223
Santa Fe, NM 87505
(505) 230-4410
dhardy@hardymclean.com
jmclean@hardymclean.com
trode@hardymclean.com

Sharon T. Shaheen

SPENCER FANE LLP

P.O. Box 2307

Santa Fe, NM 87504-2307

(505) 986-2678

sshaheen@spencerfane.com

Ernest L. Padilla **PADILLA LAW FIRM, P.A.**P.O. Box 2523

Santa Fe, NM 87504
(505) 988-7577

padillalawnm@outlook.com

Corey F. Wehmeyer **SANTOYO WEHMEYER, P.C.** IBC Highway 281 N. Centre Bldg. 12400 San Pedro Avenue, Suite 300 San Antonio, Texas 78216 (210) 998-4190 cwehmeyer@swenergylaw.com

Attorneys for Empire New Mexico, LLC

CERTIFICATE OF SERVICE

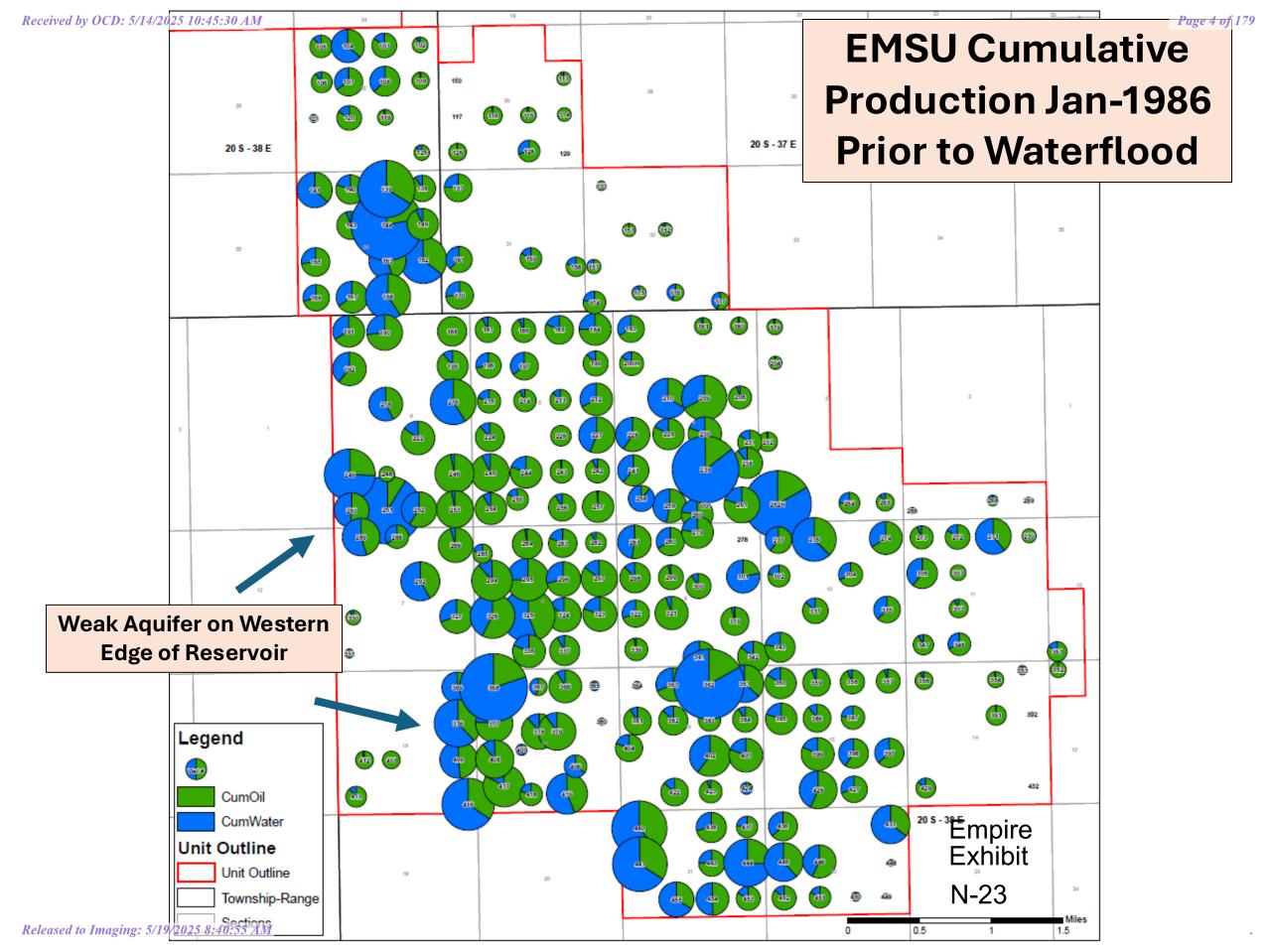
I hereby certify that a true and correct copy of the foregoing was served on the following counsel of record by electronic mail on May 14, 2025.

/s/ Dana S. Hardy

Mathew M. Beck Peifer, Hanson, Mullins & Baker, P.A. P.O. Box 25245 Albuquerque, NM 87125-5245 mbeck@peiferlaw.com

Attorneys for Rice Operating Company and Permian Line Company, LLC

Christopher Moander
Jesse Tremaine
Office of General Counsel
New Mexico Energy, Minerals and Natural
Resources Department
1220 South St. Francis Drive
Santa Fe, NM 87505
Chris.Moander@emnrd.nm.gov
Jessek.tremaine@emnrd.nm.gov


Attorneys for Oil Conservation Division

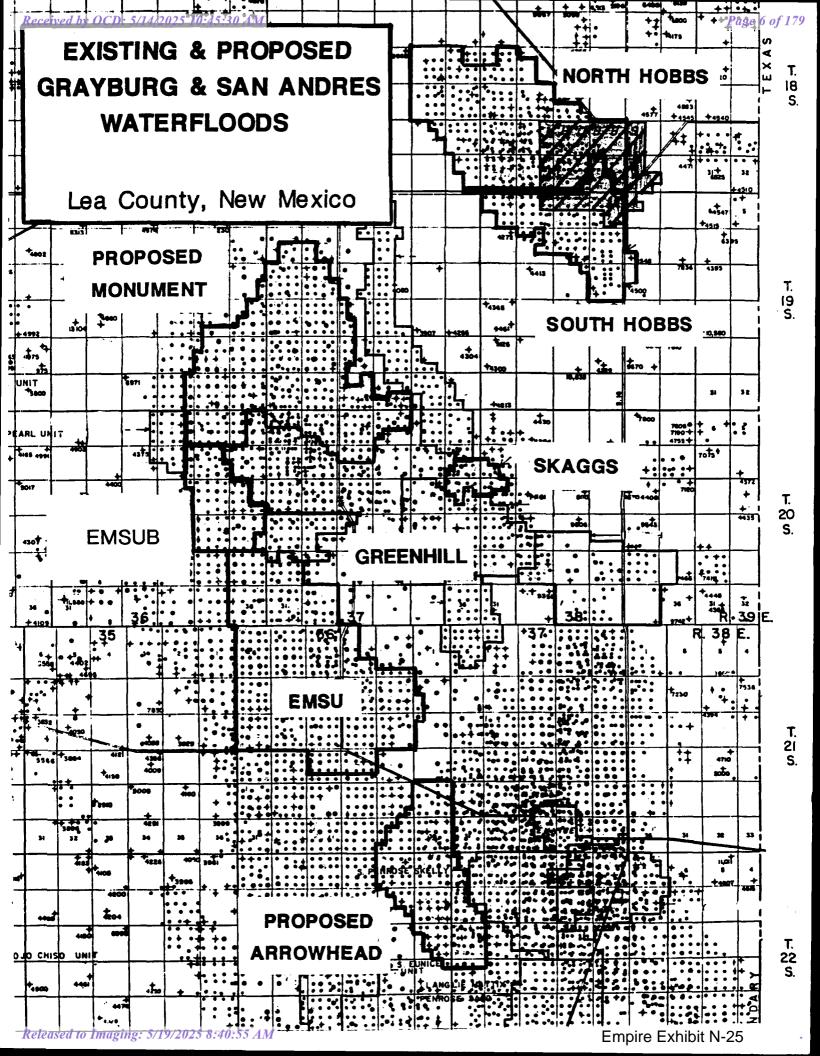
Miguel A. Suazo
Sophia Graham
James Parrot
Beatty & Wozniak, P.C.
500 Don Gaspar Ave.
Santa Fe, NM 87505
msuazo@bwenergylaw.com
sgraham@bwenergylaw.com
jparrot@bwenergylaw.com

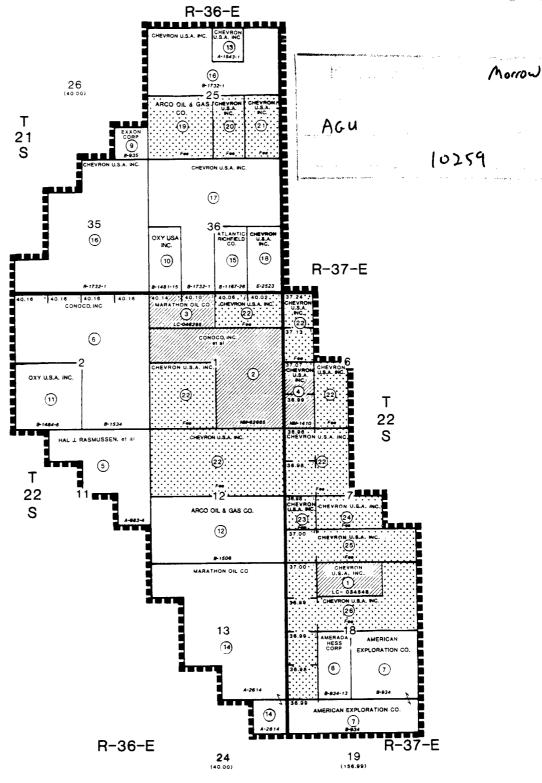
Attorneys for Pilot Water Solutions SWD, LLC

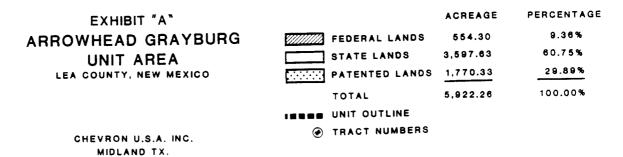
Michael H. Feldewert
Adam G. Rankin
Paula M. Vance
Nathan Jurgensen
Holland & Hart LLP
P.O. Box 2208
Santa Fe, NM 87504
mfeldewert@hollandhart.com
agrankin@hollandhart.com
pmvance@hollandhart.com
nrjurgensen@hollandhart.com

Attorneys for Intervenor Goodnight Midstream, LLC

Evidence of Communication Between San Andres & Grayburg 179

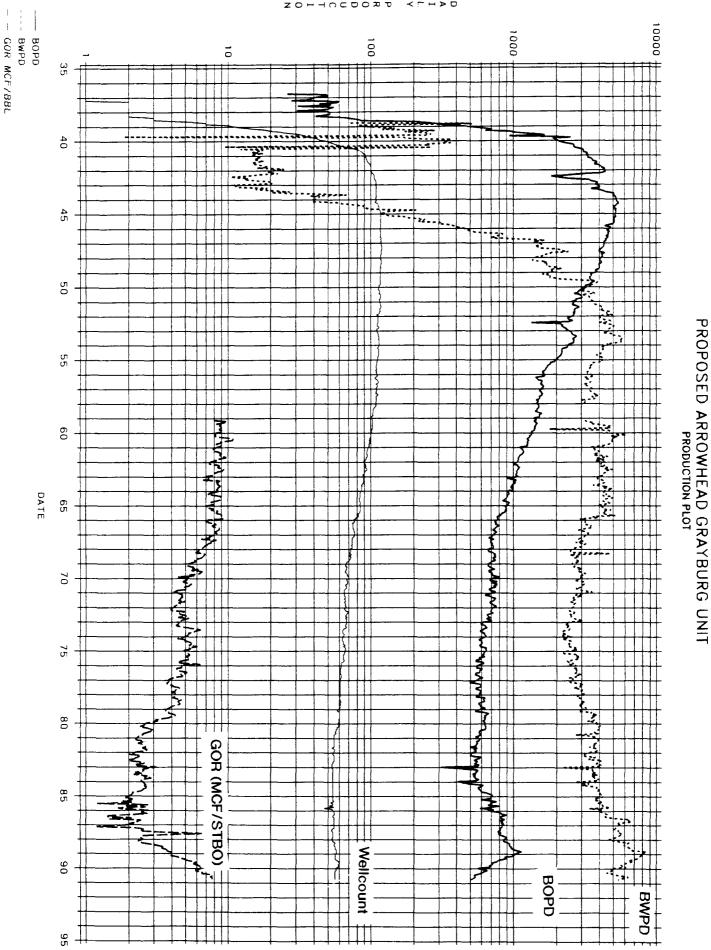

Figure 9.15. Grayburg Formation Arrowhead Grayburg Unit (AGU) with bottom water and four beds of high porosity-permeability dolograinstone that are each 0.5 m (1.5 ft) thick. These high perm streaks pulled water up-dip into the reservoir by a drop in reservoir pressure during field production. To avoid high water production these beds were not utilized as part of Released to Imaging: \$19/2025 8:40:55 AM


Page 1001 - Dr. Robert Lindsay PhD


In a few well locations in Arrowhead there was also a problem with Upper San Andres Formation bottom-water production that ascended up into the Grayburg Formation strata via vertical plumes of water along swarms of narrow, short-spaced fractures (Figure 9.15).

Page 1004 – Dr. Robert Lindsay PhD


These plumes of vertically-oriented Upper San Andres Formation bottom-water only affected small areas in the unit and in most cases only affected one well, though mapped as if the bottom-water was affecting a larger area (Figure 9.15). Similar vertically-oriented plumes of Upper San Andres Formation bottom-water were also encountered in individual wells further north in Eunice Monument South Unit (EMSU) and Eunice Monument South Unit Expansion Area B (EMSUB).


NOTE. UNLESS OTHERWISE INDICATED, THE VARIOUS SECTIONS ON THIS PLAT CONTAIN 640.00 AC

DLL 2/91

(Not To Scale)

Mosoow

AGU

10259

Technical Committee Report Proposed Arrowhead Grayburg Unit Lea County, New Mexico

September 1989

Technical Committee Report
Proposed Arrowhead Grayburg Unit
Lea County, New Mexico

September 1989

TABLE OF CONTENTS

		Page
I.	Introduction	1
II.	Conclusions	2
III.	Recommendations	3
IV.	Reservoir Information	
	Pool History	4 4 7 8
٧.	Proposed Unit Boundaries	
	Discussion Vertical Limits Horizontal Limits Excluded Wells Objections	10 10 11 12 12
VI.	Secondary Recovery Potential	14
VII.	Capital Requirements	
	Surface Facilities	16 16 17 17 17 20
VIII.	Economics	21
IX.	Equity Parameters	22

LIST OF FIGURES

Figure	
1	Original Charge for the Technical Committee
2	General Location Map
2 3	Proposed Unit Boundaries
4	Land Base Map
5	Arrowhead Pool Limits Diagram
6	Structure Map - Top of the Grayburg Formation
7	Type Log - Chevron's H. Leonard (NCT-C) No. 20
8	Percent Dolomite Map - Grayburg Zones 1-5
9	Historic Production Plot - Rate vs Time
10	Cumulative Oil Contour Map - Study Area
11	Cumulative Oil Contour Map - Proposed Unit Area
12	Cumulative Water Production Contour Map
13	Cumulative Water-Oil Ratio Contour Map
14	Current Oil Production Rate Contour Map
15	Current Water Production Rate Contour Map
16	Current Gas Production Rate Contour Map
17	Current Producing Water-Oil Ratio Contour Map
18	Current Producing Gas-Oil Ratio Contour Map
19	Stick Diagram Reference Map
20	Completion Stick Diagram A
21	Completion Stick Diagram B
22	Completion Stick Diagram C
23	Completion Stick Diagram D
24	Completion Stick Diagram E
25	Tentative 5-Spot Pattern Well Location Map
26	Predicted Performance
27	Production Gathering Facilities Design
28	Injection Distribution Facilities Design
29	Electrical Distribution System Design

LIST OF TABLES

<u>Table</u>	
1	Pertinent Reservoir Data
2	Tract Definitions
3	Total Capital Investment Requirements
4	Cost Estimate - Surface Facilities
5	Cost Estimate - D&C of a Producing Well
6	Cost Estimate - D&C of an Injection Well
7	Cost Estimate - D&C of a Water Supply Well
8	Cost Estimate - Workovers
9	Capital Investment Schedule
10	Completion Data - Current Completions
11	Completion Data - Historic Completions
12	Production and Expense Schedule - Primary Case
13	Production and Expense Schedule - Waterflood Case

LIST OF APPENDICES

- A. Equity Parameters by Tract and by Owner
- B. Tract Decline Curves and Remaining Primary Reserves Computations
- C. Ownership Information by Tract
- D. Minutes of Technical Committee Meetings
- E. Cross Sections and Base Map

I. INTRODUCTION

This report presents the information that Working Interest Owners charged the Technical Committee to develop concerning unitization and waterflooding of the Arrowhead Grayburg Pool (Figure 1). It includes: (1) recommended Unit boundaries, (2) a secondary recovery plan of action and performance prediction, and (3) parameters for use in negotiating Unit participation.

II. CONCLUSIONS

- 1) Secondary recovery potential is sufficient to economically justify unitizing and waterflooding the Arrowhead Grayburg Pool for the purpose of increasing ultimate recovery.
- 2) The proposed Unit has produced 30.8 MMSTBO as of January 1, 1989, which is 17.6% of the estimated 175.4 MMSTBO OOIP. Ultimate primary oil production is expected to reach 36.1 MMSTBO, or 20.6% OOIP.
- 3) Incremental reserves for waterflooding are estimated to be 15.0 MMSTBO. This value represents a secondary to ultimate primary recovery ratio of 50% for the "swept" portion of the Unit, and an overall S/P ratio of 41.6%.
- 4) A total investment of \$28.2 MM will be required to install surface production and injection facilities, drill and equip new and replacement wells to develop the recommended waterflood pattern, perform remedial work on existing wells, and install new pumping equipment.
- 5) Incremental economics of the secondary recovery case to the base case of continued primary recovery indicate a discounted cash flow rate-of-return of 20% with a 10% discounted present-worth-profit of \$24.6 MM.

III. RECOMMENDATIONS

- 1) The 5,922 acre area outlined in Figures 2, 3, and 4 should be unitized for the purpose of increasing ultimate recovery.
- 2) A waterflood project should be initiated in the proposed Unit.
- 3) The vertical limits of the unitized interval should extend from -150 ft from sea level or the top of the Grayburg formation, whichever is shallower, to a depth of -1,500 ft from sea level. The top of the Grayburg formation for unitization purposes is defined as that point at 3,671 ft in the Chevron Harry Leonard (NCT-C) No. 20 (located 660 ft FNL and 990 ft FWL of Section 36, T-21-S, R-36-E, Lea County, New Mexico) as recorded by the Gearhart Compensated Neutron Log measured from the Kelly Drive Bushing elevation of 3,532 ft and dated February 25, 1985.
- 4) The parameter tables (Appendix A) should be used by the Working Interest Owners for negotiation of an equitable participation formula.
- 5) A wellbore dedication incentive method, such as wellbore penalties or a wellbore inventory adjustment, should be adopted by the Working Interest Owners. The value of each useable wellbore should be set at \$80,000 for use in the wellbore dedication incentive.

IV. RESERVOIR INFORMATION

POOL HISTORY

The Arrowhead Pool, located in Lea County, New Mexico (Figure 3), was discovered on May 24, 1938 by Continental's #1 State J-2 well (located in Section 2, T-22-S, R-36-E). Original reservoir pressure as reported by the Annual Report of the New Mexico Engineering Committee was 1,460 psi. The pool was subsequently developed on 40-acre spacing, with the majority of the wells being drilled and completed during the late 1930's and early 1940's. Completions were typically open-hole and included both the Queen and Grayburg formations. The wells initially flowed, but by the late 1940's and early 1950's, reservoir pressure had dropped, and artificial lift was installed. Peak oil production rate for the pool was 172,300 barrels per month in March of 1944.

In 1953, the New Mexico Oil Conservation Commission created the Eumont and Arrowhead Gas Pools. These pools overlie the existing Arrowhead and Penrose Skelly Oil Pools. The Commission defined the vertical limits of the Eumont and Arrowhead Gas Pools to include the Yates, Seven Rivers, and Queen formations, and contracted the vertical limits of the Arrowhead and Penrose Skelly Oil Pools to include only the Grayburg formation (Figure 5).

In 1956, the Commission subsequently ordered that wells which had completion intervals open across the top of the Grayburg formation (open in both the Arrowhead and Eumont Pools) be identified to the Commission for reclassification. As a result of this action, only a few wells within the proposed Unit were reclassified from the Arrowhead Pool to the Eumont Pool. The Commission did not order remedial work to isolate the two pools but did order that future wells be completed in such a manner as to prevent communication between the oil and gas pools. It is estimated that 40 to 50 of the wells in the proposed Unit have completion which currently or historically have intervals simultaneously open in both the Queen and Grayburg formations.

GEOLOGY

The Arrowhead Pool is located on a northwest-southeast trending structural high (Figure 6), adjacent to and on strike with the Eunice Monument South Unit (EMSU). The productive interval, which is comprised of the Penrose (lowest member of the Queen formation) and the Grayburg formation, is similar in the two areas and consists of interbedded carbonates and siliciclastics deposited during a

period of overall sea level regression. These carbonates have been extensively dolomitized and form the primary reservoir in the Arrowhead Pool. There are a limited number of modern wireline logs and no core data available for the Arrowhead area.

Due to the similarities between these logs and those of the EMSU, the reservoirs are believed to be very comparable, and many of the ideas and conclusions generated from studies of the EMSU can be cautiously applied to the Arrowhead.

There has been a large quantity of data gathered and evaluated for the EMSU. Fifty-four new wells have been drilled, 17 were cored and 19 had Repeat Formation Test (RFT) data taken. Over 230 of the existing wells have also been relogged with modern porosity tools. These data are being used to characterize and evaluate the reservoir.

When the Arrowhead project is implemented, data acquisition will proceed with a program similar to that of the EMSU. There will be over 50 wells redrilled, of which six will be cored, and several will have RFT data taken. Existing wells without modern logs will be relogged using modern porosity tools. Once implementation is completed, the Arrowhead will have an extensive data base for reservoir characterization and management.

From the ongoing EMSU study, it was determined that the dolomites range from mudstones to colitic grainstones indicating a wide range of depositional energies. The majority of the pay in the EMSU consists of packstones and grainstones with intercrystalline, intergranular, and moldic porosity. The six Grayburg zones that have been defined in the EMSU are also recognized in the Arrowhead (Figure 7).

Dolomite porosity development in the Arrowhead, based on wireline logs, is similar to that of the EMSU and is typical of a progradational depositional environment. On the western flank of the structure, reservoir-quality dolomite porosity extends into the upper Grayburg formation and Penrose. Moving updip to the east, the Penrose becomes sandy, and the dolomites in the upper Grayburg become tight. In the eastern portion of the pool, reservoir-quality dolomite porosity is found in Grayburg Zones 5 and 6.

A percent dolomite map (Figure 8) of Grayburg Zones 1 thru 5 was constructed to demonstrate this decrease in dolomite porosity to the east. It is an indirect way of determining the limits of dolomite porosity development and productivity of the reservoir, made necessary by the limited amount of

wireline porosity data available. A lower percentage of dolomite indicates areas of relatively low wave energy. Carbonate sediments in this environment tend to be fine-grained muds, resulting in non-reservoir mudstones. A higher percentage of dolomite indicates a higher energy environment which is more prone to grainstone deposition.

As in the EMSU, the siliciclastics present in the Grayburg formation are believed to be tight and nonproductive. total volume of siliciclastic material increases in an easterly direction with an accompanying decrease in net These siliciclastics, for the most part, are not true sandstones but sandy dolomites, usually consisting of less siliciclastic material, predominantly quartz. than 50% These quartz grains are subangular and very uniform in They are believed to have been initially deposited by eolian processes and subsequently reworked within the marine shoreline environment. The porosity associated with siliciclastics is secondary and caused by dissolution of feldspar grains. This secondary moldic porosity is poorly connected, resulting in non-effective porosity. In the EMSU these siliciclastics intervals have been found to be good vertical permeability barriers, and they should act as barriers in the Arrowhead reservoir as well.

The Arrowhead Pool is a predominantly solution gas drive reservoir that consists of the lower Penrose and Grayburg Zones 1 thru 5. Siliciclastics and tight mudstones which act as vertical permeability barriers are found throughout the reservoir, separating it from the active aquifer present in the Lower Grayburg (Zone 6) and San Andres. Based on the study of production data and individual well completion intervals, the original gas-oil contact (GOC) in the Arrowhead reservoir is believed to have been approximately -150 feet from sea level. This contact has not changed significantly through time.

The original oil-water contact (OWC) in the Arrowhead is not known. Recent analysis of drill cuttings and core data on the western edge of the EMSU has resulted in an estimated original OWC in Grayburg Zones 1 thru 5 of -550 feet from sea level. After a vigorous well deepening and testing program in the EMSU, oil production has been established below -500 feet in Zone 5, substantiating this contact. Due to the close proximity of the Arrowhead to the EMSU, as well as the similarities of the reservoirs, the Arrowhead should have had a comparable original OWC in Grayburg Zones 1 thru 5.

The present OWC is also difficult to determine due to the limited number of recent deep tests in the Arrowhead reservoir. It is believed that the individual Grayburg zones on the western edge have each developed their own distinct OWC's because of different completion and production histories.

PRODUCTION HISTORY

Cumulative oil production for the proposed Unit was 30.8 MMSTBO on January 1, 1989. This value includes production classified as Arrowhead Grayburg, Penrose Skelly, Eumont Oil, Langlie Mattix, and Eunice Southwest San Andres. A total of 138 wells have produced from 134, 40-acre proration units within the proposed Unit. The average cumulative oil production has been 230 MSTBO per proration unit. Figure 9 indicates the historic production performance for the proposed Unit. Figures 10 through 18 present contour maps of cumulative and current production rates for oil, gas, water, water-oil ratio and gas-oil ratio for the proposed Unit.

Remaining primary reserves, calculated from individual tract decline curves, are 5.2 MMSTBO and 16.1 BCF gas. Ultimate primary oil recovery is expected to total 36.1 MMSTBO, which is 20.6% of the estimated OOIP.

Sufficient modern log data are not available to calculate an accurate volumetric OOIP for the Arrowhead Grayburg Pool. log to core transforms and characterizations developed for the EMSU can be applied to the proposed Unit because of the similarities between the two fields. Estimates of reservoir parameters utilizing the EMSU similarities are: porosity = 8%, Hnet = 85 ft, Swi = 25%, and Boi = 1.2 RB/STB. The OOIP calculated for the 5,320 acres that have produced from the proposed Unit, using the estimated reservoir parameters, is 175.4 MMSTBO. A summary of pertinent reservoir data is shown in Table 1.

Although the Arrowhead Pool has produced a significant volume of water, which could indicate a water-drive type recovery, solution gas drive is believed to be the predominant recovery mechanism. This conclusion is based on the pressure depletion of the pool and on the lack of an identifiable water production trend.

At discovery, reservoir pressure was reported to be 1,460 psi. In 1964, the last date pressure records were reported to the State for the Arrowhead Pool, the reservoir pressure had declined to 450 psi. Cumulative oil production at the

end of 1964 was 24.1 MMSTBO, or 67% of the expected ultimate primary production. The corresponding loss from original reservoir pressure at that time was 69%. If a water-drive mechanism exists, it is not of sufficient strength to maintain reservoir pressure and is probably not significantly affecting primary oil recovery.

Cumulative water production has been 54.8 MMBW (excluding production in 1958 when water records were not kept). Water producing rates and cumulatives vary significantly with location, and no single source of the water production is apparent. Figures 12 and 13 indicate cumulative water and cumulative water-oil ratio, respectively, for wells in the proposed Unit.

A portion of the water production is probably attributable to communication of Zones 4 and 5 with the Lower Grayburg and San Andres aquifers. Although siliciclastics between each zone generally prevent vertical communication, in some localized areas of the field they do not act as permeability barriers. When the barriers break down in the lower Grayburg members, the prolific San Andres aquifer can influx into the oil productive horizons resulting in large volumes of water production.

Other water production may be attributable to completions in the Penrose (Lower Queen) which has been found to be influenced by a water drive in the EMSU. Additional portions of the water production can be attributed to casing leaks, which have been identified in 36 wells.

Localized areas of high water production consist of less than five proration units. In most cases, wells adjacent to high water production areas have produced significantly less water. The change in water production appears to be independent of completion depth, both subsea and stratigraphically, and no clear water production trend is identifiable.

Based on the lack of uniform water production and the relationship of pressure depletion to recovery, solution gas drive is thought to be the predominant primary recovery mechanism with water influx having only a minor effect on recovery. The Arrowhead Grayburg Pool is therefore a good candidate for waterflooding with respect to primary recovery mechanism.

CURRENT STATUS

The proposed Unit includes all currently active Arrowhead Grayburg wells and several wells classified as Eumont, Langlie Mattix, Penrose Skelly, and Eunice San Andres Southwest.

The current production rate for the proposed Unit is 33,025 BOPM, 251,600 BWPM, and 128,714 MCFPM gas. There are a total of 57 actively producing wells completed in the proposed unitized interval, and 12 wells are shut-in or temporarily abandoned. Other historic completions have either been plugged back to a different horizon or have been permanently abandoned. Seven of the currently active wells are simultaneously producing from beyond the proposed vertical limits of the Unit and will require remedial work to isolate the unitized interval prior to the effective Unit date.

V. PROPOSED UNIT BOUNDARIES

The proposed limits of the Unit are as follows:

Vertical Limits:

Defined as the top of the Grayburg formation (defined in Chevron's Harry Leonard (NCT-C) No. 20 well, located 660 ft FNL and 990 ft FWL, Section 36, T-21-S, R-36-E, at a depth of 3,671 feet on Gearhart's Compensated Density and Compensated Neutron Log dated 02/25/85), or -150 feet from sea level (whichever is shallower), to -1,500 feet from sea level.

Horizontal Limits:

As outlined in Figure 3. Individual tracts are identified by location, operator, and lease in Table 2.

DISCUSSION

In August 1953, the New Mexico Oil Conservation Commission redefined the Eunice Monument and Arrowhead Pools and created the Eumont and Arrowhead Gas Pools. The Eunice and Monument Oil Pools were combined, and the vertical limits were redefined as the top of the Grayburg to the base of the San Andres, while the Arrowhead Oil Pool was redefined to consist only of the Grayburg formation (Figure 5). of the wells in both the Eunice Monument and Arrowhead Oil Pools had completion intervals open across the top of the Grayburg formation into the newly defined Eumont Pool and therefore outside of their defined pool. Some of these wells were reclassified, but most remained in their designated pool. This redefinition of pools in 1953 created complications in the choice of vertical limits for the EMSU as well as the proposed Arrowhead Unit.

VERTICAL LIMITS

The top of the proposed Arrowhead Unit is defined as the top of the Grayburg formation or -150 feet from the sea level, whichever is shallower. Several of the wells in the proposed Unit have completions that extend above the defined pool, into the Penrose (Eumont Pool). This situation also occurred at the EMSU and was successfully addressed by defining the Unit's upper limit as the top of the Grayburg or -100 feet, avoiding an excessive number of workovers to isolate the two pools. This -100 feet datum is the estimated gas-oil contact (GOC) at the EMSU. The estimated GOC for the Arrowhead Pool, as indicated by completion information, appears to be structurally lower at -150 feet. Typical completion intervals in the Arrowhead

Pool are shown in stick diagrams A-E, in Figures 19 thru 24.

The base of the proposed Unit is -1,500 feet from sea level. This depth ranges between 100 feet to 150 feet above the base of the San Andres formation (top Glorieta). This will include most of the San Andres formation within the Unit which will be an excellent source of make-up injection water. It is desirable to include the water supply in the unitized interval to avoid complications that could arise if the water supply wells produce hydrocarbons. By including the water supply in the unitized interval, hydrocarbon revenue and operating expenses associated with the operation of water supply wells will be shared equitably by the Owners. A subsea depth was chosen rather than a formation pick due to the lack of deep well control and the ease with which it can be applied.

HORIZONTAL LIMITS

The horizontal limits of the proposed Unit reflect the structural and stratigraphic components that define this combination trap. The western extent can be defined structurally, whereas the northern and eastern extent of the pool are defined by stratigraphy.

To the west of the proposed Unit, the entire Grayburg is structurally low and wet. Here the productive interval is confined to sandstones in the Queen formation. This flood is targeting the porous dolomites, and therefore, the proposed Unit boundary to the west was limited to areas where oil production was primarily from dolomites within the Grayburg and lower Penrose. From test information, cumulative production data, and cross sections, it has been determined that the productive limit of the Grayburg to the west is at -325 feet. Therefore, all 40-acre proration units on the western flank where the top of the Grayburg is at -325 feet or shallower will be included in the proposed Unit (Figure 6).

The proposed Unit is limited to the south by an existing Langlie Mattix waterflood. The Langlie Mattix Pool is defined from the base of the Grayburg formation to a point 100 feet above the base of the Seven Rivers formation. This waterflood is confined to the Penrose which is within the vertical limits of the proposed Arrowhead Unit. The Arrowhead Unit boundary will be directly offset by two active injectors in this waterflood, and a lease line injection agreement should be obtained upon unitization.

The eastern and northern boundaries of the proposed Unit were delineated using the percent dolomite map (Figure 8), cumulative production map (Figure 10), and cross The percent dolomite map provides an indirect sections. determining limits of dolomite porosity for development and reservoir productivity. The best cumulative production has been from areas of 60% dolomite or greater. Where dolomite content is less than 60%, the reservoir quality is probably not adequate to be effectively The 60% dolomite contour on the percent waterflooded. dolomite map was used to define the eastern and northern boundaries of the proposed Unit.

EXCLUDED WELLS

There are five Arrowhead Grayburg Pool wells that were not included in the proposed Unit. These wells are listed below, along with the reasons for exclusion.

American Exploration's #7 and #43 'M' State

Located to the south in Section 19, T-22-S, R-37-E. These wells are within the active Langlie Mattix waterflood.

Adobe Oil's #1 State

Located to the east in Section 17, T-22-S, R-37-E. Dolomite content of only 53% (below the 60% cutoff). Cumulative production of only 3,505 BO.

Marathon's #15 McDonald State 'AC'

Located to the west in Section 14, T-22-S, R-36-E. Produced from the upper and middle Penrose sands (not the targeted dolomites). Estimated top of the Grayburg is -342 feet (below the -325 feet structural cutoff).

Wood, McShane & Tham's #13 'M' State

Located to the southeast in Section 20, T-22-S, R-37-E. Too far removed from the proposed Unit. Dolomite content of 52% (below the 60% cutoff). Cumulative production of only 9,459 BO.

OBJECTIONS

Zia Energy, Inc., owner of the deeper rights in Tract 8a, (Figure 4) has indicated opposition to the inclusion of its acreage in the proposed Unit. The Zia 'M' State No. 49

well, in the SE/4 of Section 18, T-22-S R-37-E, currently produces from Grayburg Zone 5 and the Lower Grayburg, classified as Eunice San Andres Southwest. Daily production averages less than 1 BOPD, 180 MCFGPD, and 600 BWPD. Consideration of Zia's desire to be excluded from the Unit should be addressed by the Working Interest Owners.

VI. SECONDARY RECOVERY POTENTIAL

Due to the absence of quantitative reservoir data, a rigorous conventional secondary recovery analysis cannot be performed. However, based on the geologic and production history similarities between the two fields, EMSU recovery predictions should be applicable to the proposed Arrowhead Unit.

The original EMSU prediction was based on a statistical average of West Texas and Southeast New Mexico carbonate waterflood performance. The EMSU Technical Committee identified typical ranges of performance indicators including: S/P (secondary to ultimate primary) recovery ratios, time to peak response, and peak oil production rate as a percentage of water injection rate. The same typical performance indicators have been applied to predict waterflood performance for the proposed Arrowhead Unit.

To derive a secondary performance prediction for the Unit, the performance indicators used by the EMSU are applied to the proposed waterflood area. This development area is based on the utilization of all currently active wells within the proposed unitized interval. Additionally, proration units that do not have available wells, but where sufficient reserves are believed to exist to justify the drilling of a new well, will be developed. Sufficient reserves to justify drilling are estimated to be 70,000 STBO, which may include additional primary as well as secondary reserves based on the S/P ratio. The proposed development pattern is an 80 acre 5-spot which is the same pattern used at the EMSU. The total project will consist of 52 injectors and 75 producers (Figure 25).

Cumulative production from the enclosed waterflood patterns as of 12/31/88 (including reductions of individual well cumulatives to reflect partial waterflood patterns) was 25.6 MMSTBO. This value represents 83% of the proposed Unit's total production. To determine secondary recovery potential, the S/P ratio used by the EMSU, 50%, is applied to 83% of the proposed Unit's ultimate expected primary recovery of 36.1 MMSTBO. The resulting incremental secondary recovery potential is calculated to be 15.0 MMSTBO. This value could be affected by the additional primary and secondary recovery generated by development of undrilled locations and undeveloped pay in existing wells. Additionally, the S/P ratio of 50% may be conservative. Recent review of Grayburg and San Andres waterfloods indicate that the typical S/P is in excess of 60%.

Injection rates for the proposed waterflood are expected to average 450 BWPD/well with a total injection rate of 23,400 BWPD. This rate is estimated based on the ratio of 85 ft net thickness in the Arrowhead Pool compared to the 134 ft at the EMSU, multiplied by the 700 BWPD per well average injection rate experienced in the EMSU.

Peak oil production rate for the proposed Unit is estimated to be 5,850 BOPD, based on 25% of the anticipated injection rate. Initial oil response is expected to occur three years after initial injection with peak response occurring after six years. The time to response is based on the EMSU performance indicator of initial response at one-half fill-up, peak response at fill-up (ignoring the effects of production during fill-up), and an estimated current gas saturation of 18%. The producing gas-oil ratio is expected to decrease from the current level of 3,000 scf/STBO to 450 scf/STBO as reservoir pressure increases. Figure 26 indicates the anticipated secondary recovery response.

The performance prediction does not include an initial loss in oil production resulting from the conversion of producing wells to water injectors. This is based on the net producing well count increase from 57 to 75. Although several of the currently active wells that are tentatively designated to be water injection wells in the proposed Unit produce higher than average oil rates, the loss from conversion is expected to be offset by the addition of new wells. The increase in the well count may actually result in a higher than current oil production rate.

VII. CAPITAL REQUIREMENTS

Total capital requirements to install and implement an 80-acre 5-spot waterflood in the Arrowhead Grayburg Pool are estimated to be \$28.2 MM. Cost breakdowns and an investment schedule are shown in Tables 3 through 9.

SURFACE FACILITIES

Surface facilities costs are expected to total \$9.0 MM. The facilities will include the production gathering system, water injection system, and an electrical distribution system. Cost estimates are based on the tentative well count of 75 producers, 52 injectors, and 2 water supply wells. The production gathering system is designed to handle 500 barrels of fluid per day per well, and the injection system will allow 500 barrels of water per day per injection well at a maximum surface pressure of 1,800 psi.

The production gathering system will consist of five satellite batteries, each with production testing, gas separation and sales capabilities. Oil and water will be transferred to a central battery for separation and oil sales. Fiberglass production flowlines and transfer lines will be utilized, making the system compatible with CO₂ in anticipation of future enhanced recovery operations. The injection system will consist of lined steel and high pressure fiberglass trunk lines distributing the water to metering manifolds. Each metering manifold will connect to four or five injection wells through high pressure fiberglass lines. A cost breakdown for the surface facilities is indicated on Table 4. Figures 27 through 29 present schematics of the surface facility designs.

DRILL AND COMPLETION COSTS

The total capital requirement estimate includes \$11.45 MM to drill and complete 52 new wells, (34 producers, 16 injectors tors, and 2 water supply wells). The 52 new wells requirement is based on the availability of 57 currently active wells, eight currently shut-in or inactive wells, and an assumed additional 10 wells made available as a result of a wellbore dedication incentive, for the 129 total tentative well locations, including two water supply wells (Figure 25). The actual drill and completion cost requirements are dependent on the total number of useable wells dedicated to the Unit.

Drill and completion costs per well, including equipment, are estimated to be \$220 M for producers, \$200 M for injectors, and \$385 M for water supply wells. Tables 5 through 7 indicate typical cost breakdowns for each type of well.

WORKOVER COSTS

Total workover requirements for producers and injectors are estimated to be \$6.9 MM. To estimate workover cost, it was assumed that all wells dedicated to the Unit will require some remedial work. Each of the 67 currently available wells (active and inactive) that may be used in the proposed Unit were evaluated to determine the scope of workover activity that may be desired. The workover activities considered included: deepening, adding perfs, running liners, and adding cement behind pipe. All wells were assumed to require a basic workover including cleaning-out and acidizing. The average workover cost for the wells evaluated was estimated to be \$60,000. The average cost was applied to the 67 available wells and the 10 assumed additional wells. An additional expense of \$27,000 per water injection conversion was included for 36 wells, and a cost of \$35,000 per pumping unit upgrade was included for 40 wells. Table 8 indicates the cost of each workover component.

The workover cost estimate assumes that the majority of the wells will be deepened to Zone 5 and that many liners will need to be run. If early drilling and workover activities indicate that deepenings do not contribute to additional oil production and reserves or that liners are not necessary, this type of activity will cease, reducing workover expenses by as much as \$750 M.

TESTING & CORING

The total capital requirement includes \$500,000 for the gathering of reservoir information. This cost will include the coring and core analysis on six wells, pressure testing, and reservoir fluid PVT analysis. The data will be used to build an accurate reservoir model. The model can then be used to refine the secondary recovery prediction and optimize future oil recovery through reservoir management.

WELLBORE DEDICATION INCENTIVE

The drilling, completion, and workover cost estimates assume that a wellbore dedication incentive method will be used and that 10 additional wellbores will be made available to the Unit as a result of the incentive. The additional wells are currently shut-in or producing with marginal economics from other horizons. Securing these additional wells will enhance project economics for the Working Interest Owners as a whole by reducing total well costs by more than \$1.2 MM.

The use of a wellbore dedication incentives is a common practice in modern units. The wellbore penalty method is probably the most widely used incentive. An alternative method is a wellbore inventory adjustment. Both methods are fair and equitable, but the method which is financially best for an individual owner depends on: (1) working interest participation, (2) the number of useable wellbores individually owned and contributed to the Unit, and (3) the number of wellbores dedicated to the Determining which method is best for the majority of the Working Interest Owners cannot be done until these factors established. Technical The Committee is recommending a particular method but does recommend that a wellbore dedication incentive method be adopted by the Working Interest Owners.

A description of two dedication incentive methods is as follows:

WELLBORE PENALTY: One useable wellbore will be demanded from each proration unit that has historically produced from the unitized interval. Individual Owners will be charged their proportionate share of a wellbore penalty equal to the useable wellbore value for each demand well not contributed. Special allowances can be incorporated for proration units in which all wells were permanently plugged and abandoned prior to a certain date or that produced less than a specific cumulative oil.

WELLBORE INVENTORY: Useable wellbores dedicated to the Unit will be inventoried with a value equal to the "useable wellbore value", and an investment adjustment will be made for each owner based on his proportionate share of the value of all wellbores dedicated and the value of the wellbores he individually contributes.

Useable wellbores are defined for wells with different current status as follows:

(1) Currently active wells will be accepted as useable if no zones other than the unitized interval are open and the wellbore passes a casing integrity test (500 psi for 30 minutes) upon first entry by the Unit operator. If zones above the unitized interval are open, the non-unitized zones must be cement squeezed to isolate the unitized interval, pressure tested to 500 psi for 30 minutes, and cement in the production casing drilled-out; or, if open-hole, a liner must be run and set with cement to the top of the unitized interval, and the casing tested above the unitized interval to 500 psi for 30 minutes.

- (2) Currently closed-in or TA'd wells will be accepted as useable if no zones other than the unitized interval are open (as above) and the well is free of scale, junk, and debris to the depth of deepest production from the unitized interval prior to being closed-in (PBTD from workovers in the unitized interval prior to shut-in). The well must pass a casing integrity test upon first entry by the Unit operator.
- (3) Currently P&A'd or recompleted wells that have previously produced the unitized interval will be accepted as useable if they are restored to the unitized interval's last producing completion interval, are not open in non-unitized zones, are free of junk, scale and debris down to the PBTD prior to cessation of production, and pass a casing integrity test upon first entry by the Unit operator.
- (4) Alternate wells from existing wellbores will be accepted as useable if all non-unitized zones have been abandoned (deeper zones plugged back with a CIBP or cement retainer capped with 35 ft of cement and pressure tested to 500 psi; shallower zones squeeze cemented, pressure tested and cement drilled-out in the production casing), they penetrate the unitized interval, have sufficient casing size (5½") to be deepened or have at least 4½" casing set through Zone 5 of the Grayburg formation, are adequately cemented, and pass a casing integrity test upon first entry by the Unit operator.
- (5) Newly drilled wells will be accepted as useable if they are drilled to the base of Zone 5, cased to TD with $5\frac{1}{2}$ " or larger casing, are cemented from TD to surface, and pass a casing integrity test.

Tables 10 and 11 indicate completion information for wells that are currently or have historically produced from the proposed unitized interval.

The intent of the useable wellbore definition is to insure all wellbores that are dedicated to the Unit are in reasonably good physical condition and can be used by the Unit in ways consistent with its purpose. All wells dedicated to the Unit will be subject to a casing integrity test. If a well is determined to be not useable upon first entry by the Unit operator, the contributor of the well will be given the option of:

(1) Withdrawal of the wellbore from the Unit, subject to a wellbore penalty or inventory adjustment.

- (2) Repair of the wellbore by the contributor without the removal of liability (wellbore penalty or inventory adjustment) if the wellbore does not meet the useable wellbore definition on the subsequent entry by the Unit operator.
- (3) Repair of the wellbore by the Unit operator at the contributor's expense for up to \$80,000. The Unit operator may elect to not accept a non-useable wellbore for repair if repair cost estimates exceed the value of a useable wellbore.

INVESTMENT SCHEDULE

It is estimated that the full-scale waterflood can be installed in 1.5 project years. During the first year, 46 new wells will be drilled, 100% of the surface facilities will be constructed, one water supply well will be drilled, and 75% of the workovers will be completed. During the next one-half year, the remaining wells will be drilled and workovers completed. Tangible expenses for upgrading pumping capacities on producing wells will occur during the first five years of the project as increasing reservoir pressure dictates.

A detailed project investment schedule is indicated in Table 9.

VIII. ECONOMICS

Economic analysis of the proposed waterflood indicates that the project is profitable for the Unit as a whole. Incremental economics of the waterflood, compared to the base case of remaining primary, indicate a 20% discounted cash flow rate-of-return and a 10% discounted present-worth-profit of \$24.6 MM for the \$28.2 MM investment. Assumptions used for the economic analysis are:

- 1) The base case consists of 57 wells producing 965 BOPD, with remaining reserves of 4.7 MMSTBO as of 7/1/90.
- 2) Incremental oil recovery will total 15.0 MMSTBO.
- 3) The GOR for the incremental case will decline from the current level of 3,000 SCF/STBO to 450 SCF/STBO as the reservoir pressure increases. The base case GOR is held flat at 3,000 SCF/STBO.
- 4) Base case operating expenses are \$35/producing well day held flat for the remaining life. Operating expenses for the proposed case will escalate to \$83/producing well day (including overhead), over the first several years, and decline as injection terminates near the end of the project life.
- 5) Oil and gas prices are held flat at \$18.00/BO and \$1.80/MCF.
- 6) Royalty burdens of 1/8 are assumed for all tracts.
- 7) Estimated drilling and construction overhead charges of \$450,000 were included in the investment.

Economics for individual Working Interest Owners will vary depending on actual royalty burdens, proportionate share of remaining primary and project production, actual investments including wellbore penalties or inventory adjustments, and oil and gas price forecast methods used.

Tables 12 and 13 indicate base case and waterflood case production and expense schedules.

IX. EQUITY PARAMETERS

The Technical Committee was charged to determine the following parameters for Unit participation negotiations:

- 1) Cumulative Oil Production
- 2) Remaining Primary Oil and Gas Reserves
- 3) Ultimate Primary Oil Reserves
- 4) Current Oil and Gas Production Rates
- 5) Gross Acreage
- 6) Useable Wellbores

Subsequently, the Technical Committee has elected to eliminate the parameter Useable Wellbores from the list.

Actual wellbores that will be contributed to the Unit will not be known until after the effective Unit date, and a wellbore will not be determined as useable until after it is contributed. Therefore, the Unit participation allocations would probably have to be reallocated once it is known which wellbores dedicated to the Unit are "useable". The Technical Committee determined that value for useable wellbores will be more appropriately addressed by using a wellbore dedication incentive.

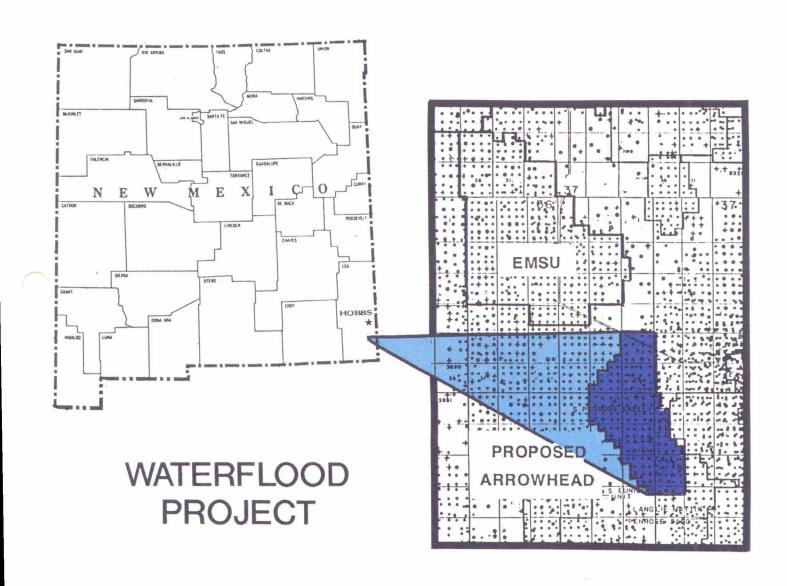
The equity parameter, Gross Acreage, has been addressed in two different ways: Gross Acre-ft and Surface Acres. The Working Interest Owners should determine what percentage of each term should be included in the participation formula.

The parameter, Gross Acre-ft, was introduced to allow for allocation of ownership on tracts where there is a change in ownership with depth. This term is based on gross thickness and acreage owned in both the hydrocarbon productive interval and aquifer (San Andres) portion of the Unit.

The parameter, Surface Acres, was introduced with allocation of ownership limited to the hydrocarbon productive interval only. Since the actual oil-water contact is not specifically known, this term is based on ownership from the top of the Unit to 325 ft below the top of the Grayburg formation. This term includes the hydrocarbon producing interval across the unit area but excludes the majority of the aquifer ownership.

Appendix A indicates allocations of equity parameters by Tract and by Owner. Appendix C indicates the ownership information used for the allocation of ownership on each tract.

Cumulative oil production is based on values through 12/31/88. No adjustment of cumulative oil production was made for wells with completions simultaneously producing the unitized interval and the non-unitized interval. It is assumed that all production from the non-unitized interval in these wells was gas since the top of the Unit is at the estimated gas-oil contact.


Current oil and gas production rates are based on reported production for the fourth quarter of 1988. Remaining oil and gas reserves are calculated using decline rates based on analysis of individual tract production, applied to appropriate initial production rates for 01/01/89, and extrapolated to an economic limit of 2 BOEG/day per well (Appendix B). Ultimate primary oil recovery is the summation of cumulative and remaining oil reserves.

PROPOSED ARROWHEAD GRAYBURG UNIT CHARGES FOR THE TECHNICAL COMMITTEE MAY 5, 1988

- 1) Determine the horizontal and vertical boundaries for the proposed Unit, and prepare a base-map indicating the boundaries and Tract numbers within the Unit.
- 2) Develop a plan of secondary recovery for the Unit, including a cost estimate, and a prediction of secondary recovery production rates and reserves.
- 3) Prepare a tabulation of equity parameters to be used for Tract participation negotiations. The parameters should include:
 - a) Cumulative Oil Production
 - b) Remaining Primary Oil & Gas Reserves
 - c) Ultimate Primary Oil Reserves
 - d) Current Oil & Gas Production Rates
 - e) Gross Acreage
 - f) Useable Wellbores

PROPOSED ARROWHEAD GRAYBURG UNIT

Lea County, New Mexico

Proposed Arrowhead Grayburg Unit STUDY AREA

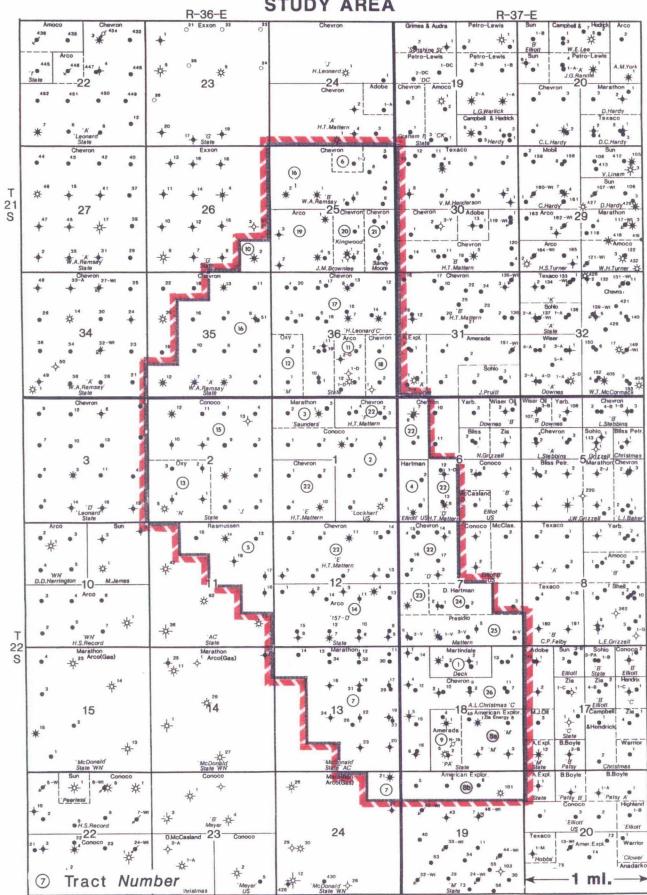
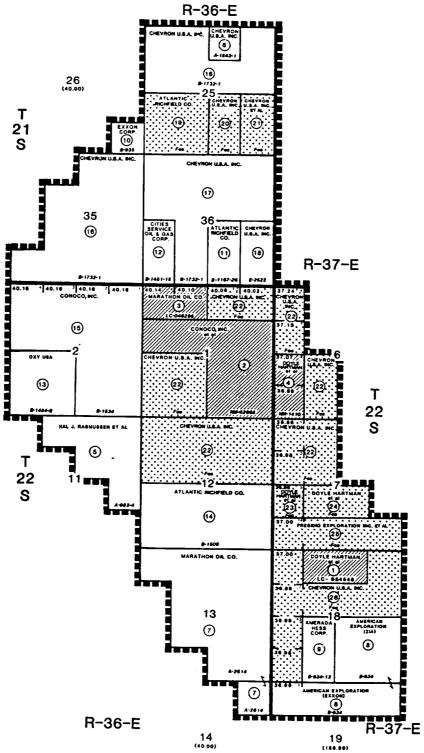
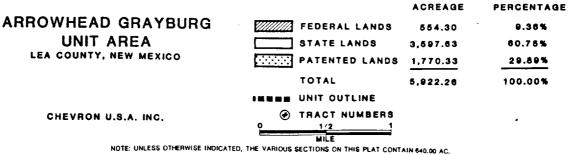
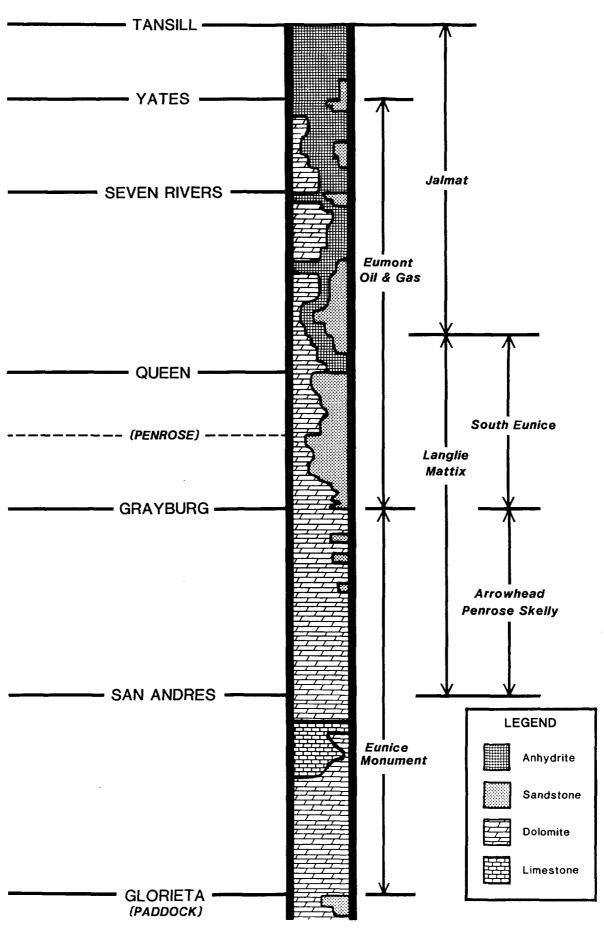
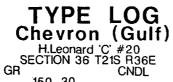
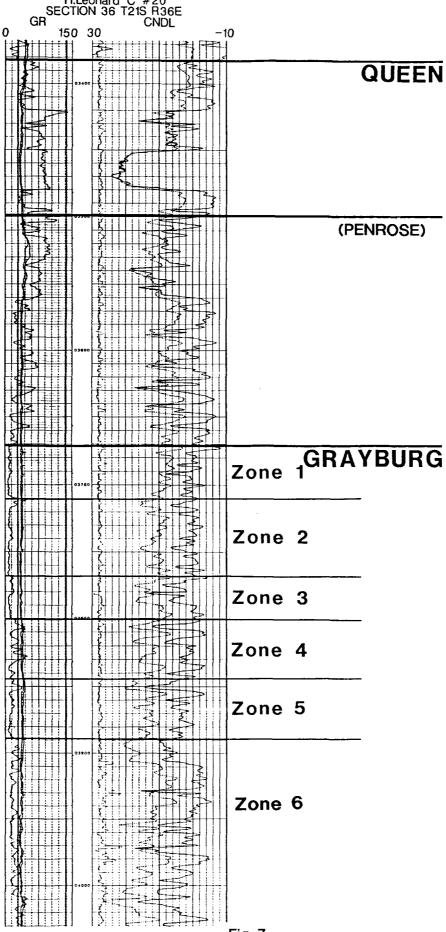





Fig. 3

POOL LIMITS ARROWHEAD STUDY AREA


Released to Imaging: 5/19/2025 8:40:55 AM


Fig. 5

Received by OCD: 5/14/2025 10:45:30 Proposed Arrowhead Grayburg Unit Study Area STRUCTURE T/GRAYBURG

R-36-E R-37-E 23, ****** -284 EST T 21 S 26 T 22 S O-WI CONOCO #- Kence 1 mi. C.i. = 20'

Fig. 6

Study Area

% DOLOMITE MAP (GRAYBURG ZONES 1-5)

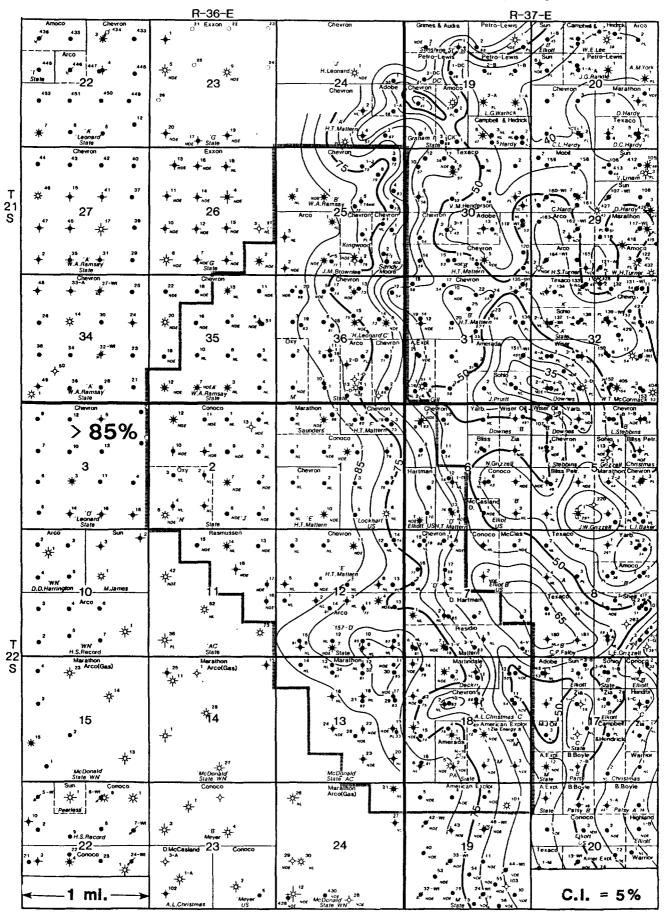
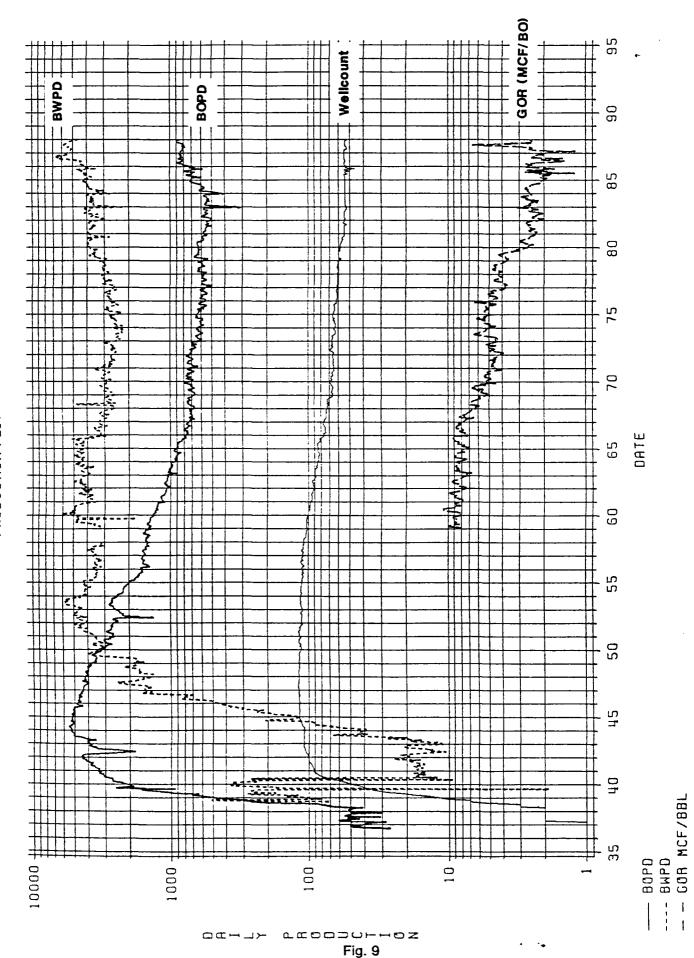



Fig. 8

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT

sed Arrowhead Grayburg Uni Study Area CUMULATIVE OIL (MBO)

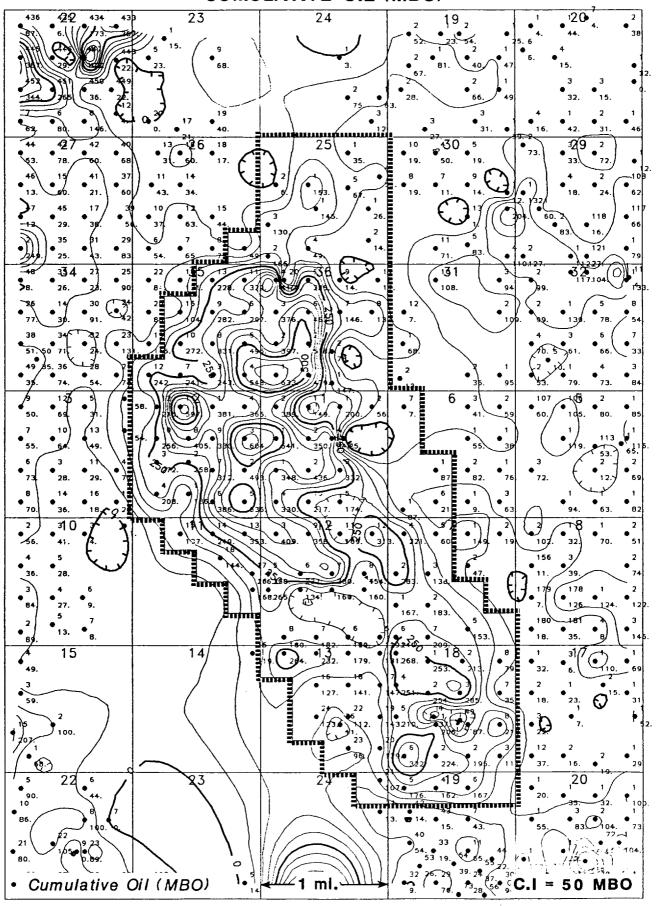


Fig. 10

CUMULATIVE OIL (MBO)

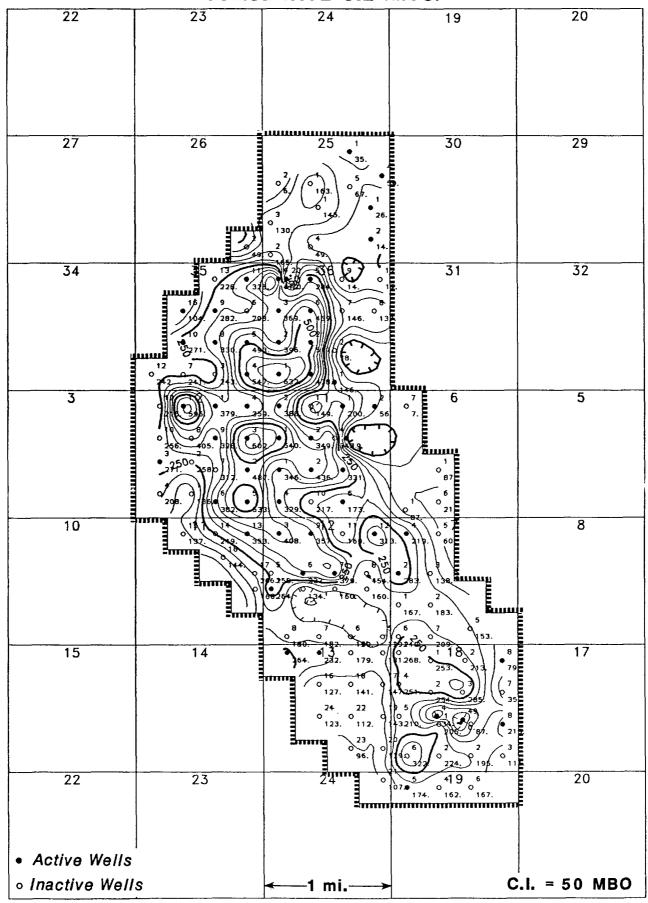


Fig. 11

CUMULATIVE WATER (MBW)

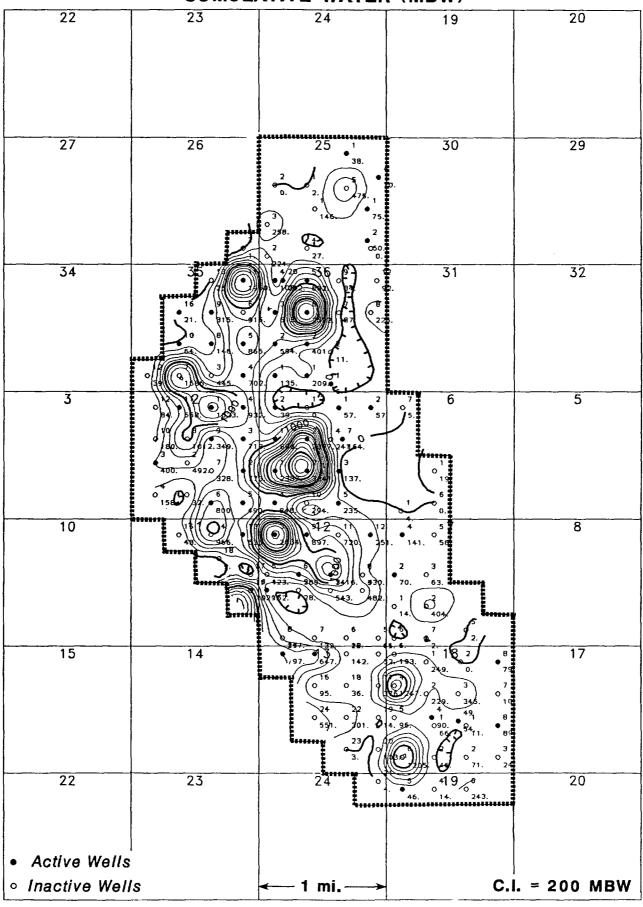


Fig. 12

CUMULATIVE WOR

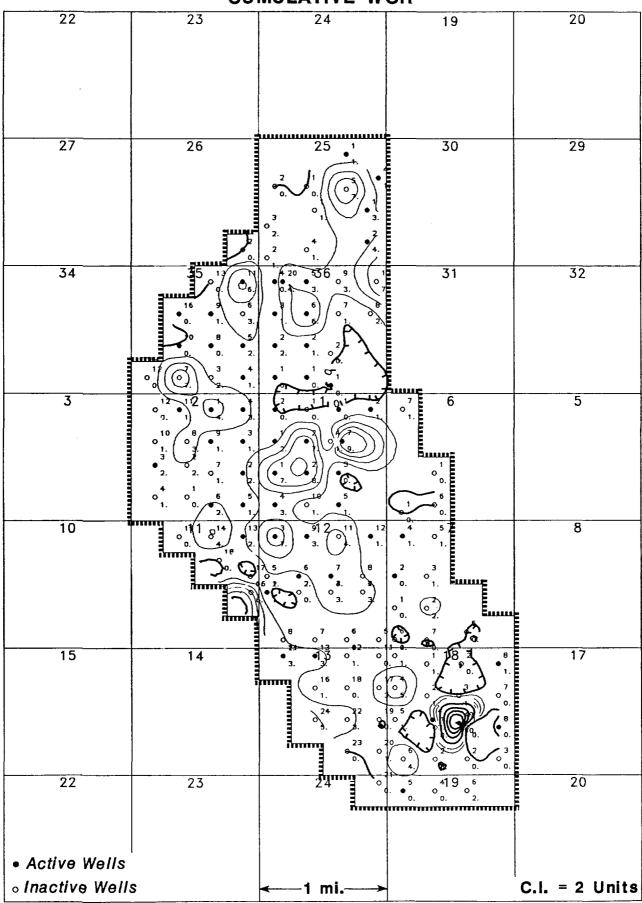


Fig. 13

CURRENT OIL PRODUCTION (BOPD)

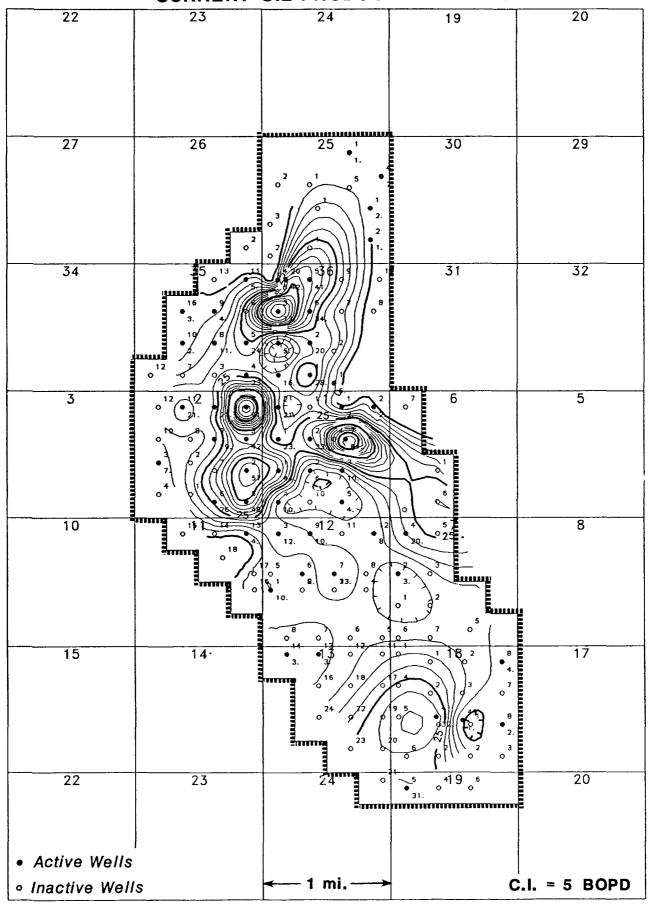


Fig. 14

CURRENT WATER PRODUCTION (BWPD)

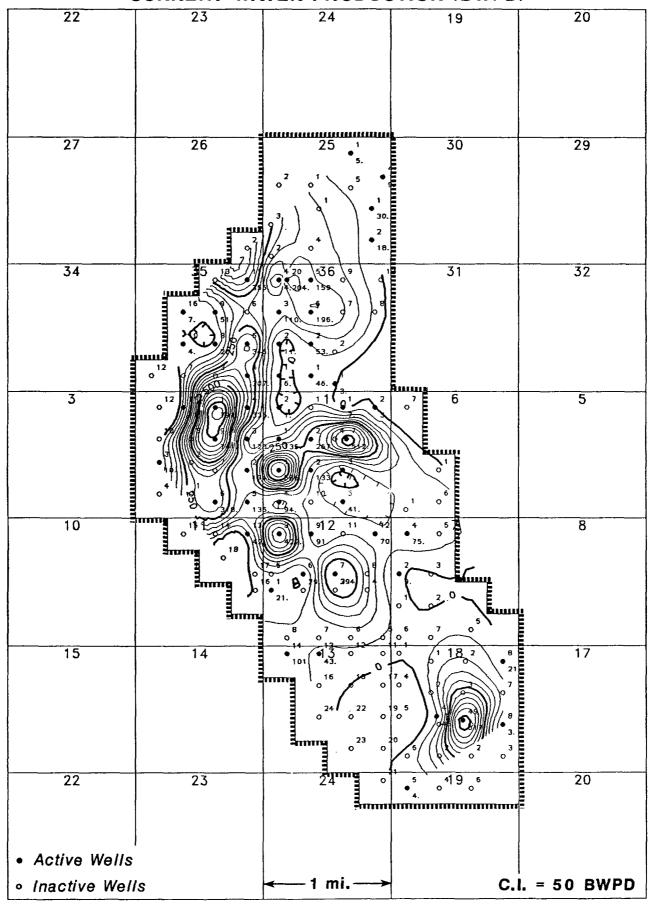


Fig. 15

CURRENT GAS PRODUCTION (MCFPD)

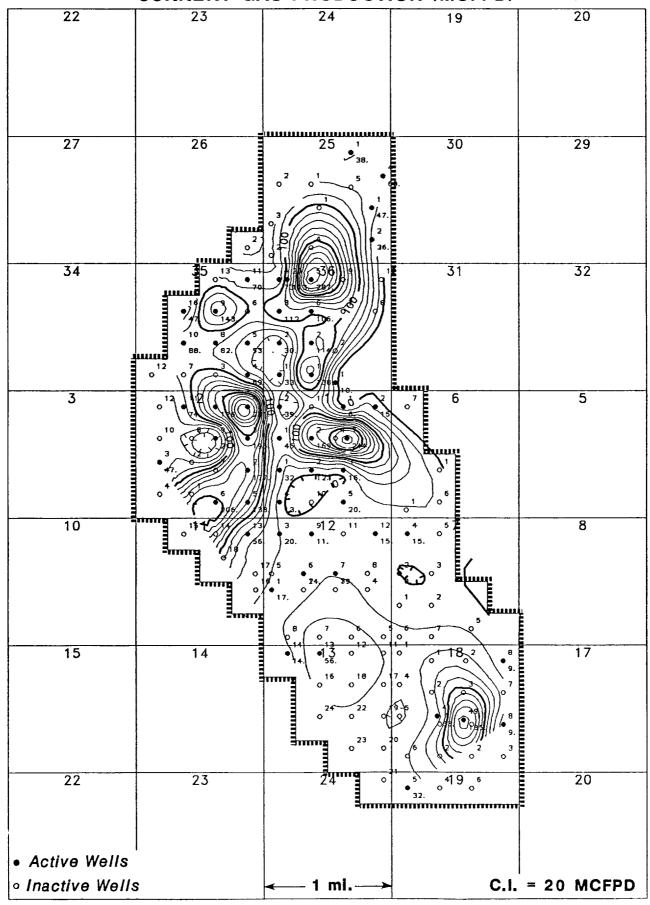


Fig. 16

Unit Area Current Producing Water-Oil Ratio

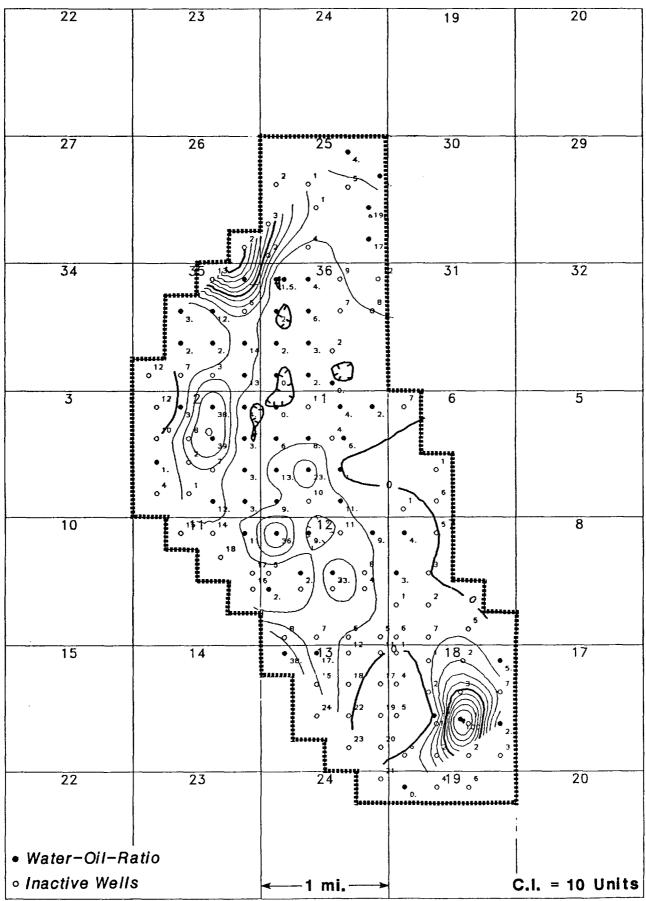


Fig. 17

Current Producing GOR (MCF/STBO)

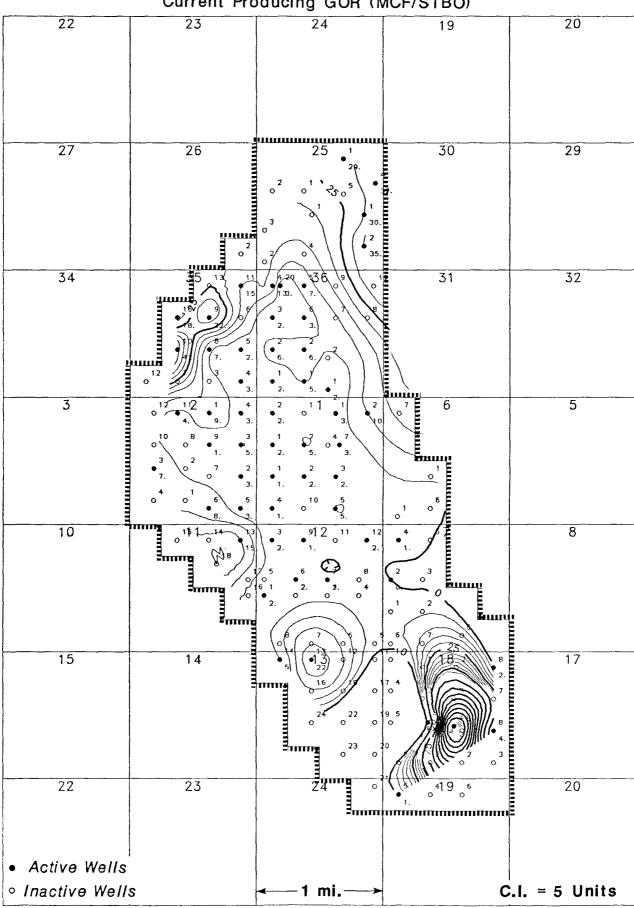


Fig. 18

Proposed Arrowhead Grayburg Unit STICK DIAGRAM INDEX MAP

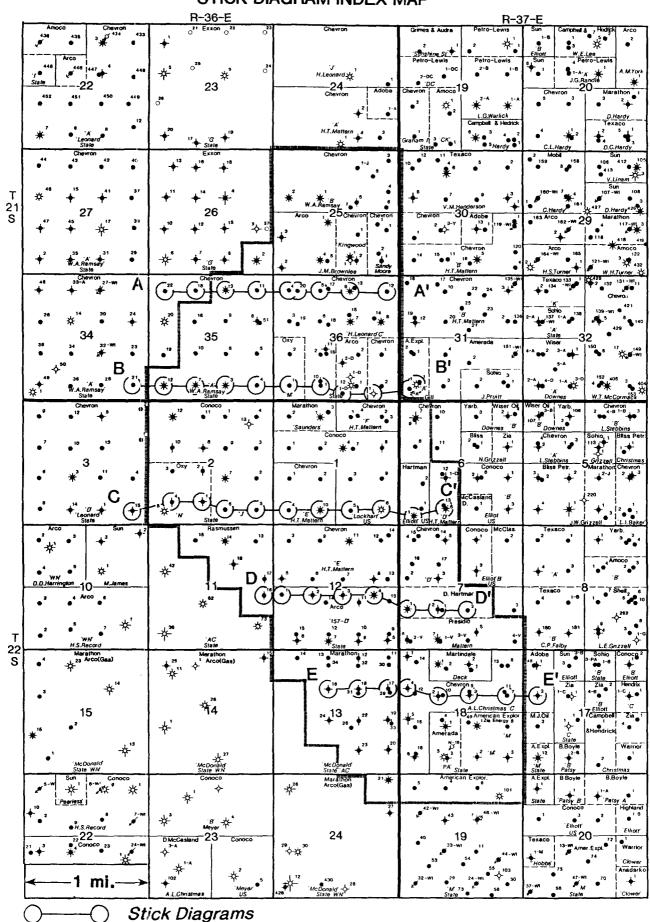
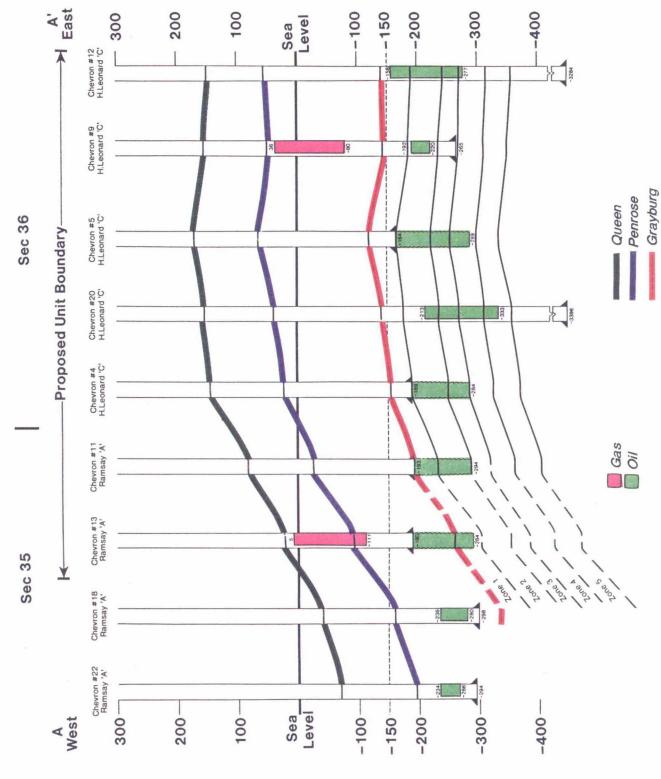



Fig. 19

PROPOSED ARROWHEAD GRAYBURG UNIT TYPICAL COMPLETION INTERVAL

Stick Diagram 'A' (Index Map - Fig. 19)



Fig. 21

PROPOSED ARROWHEAD GRAYBURG UNIT TYPICAL COMPLETION INTERVAL

Stick Diagram 'C' (Index Map - Fig. 19)

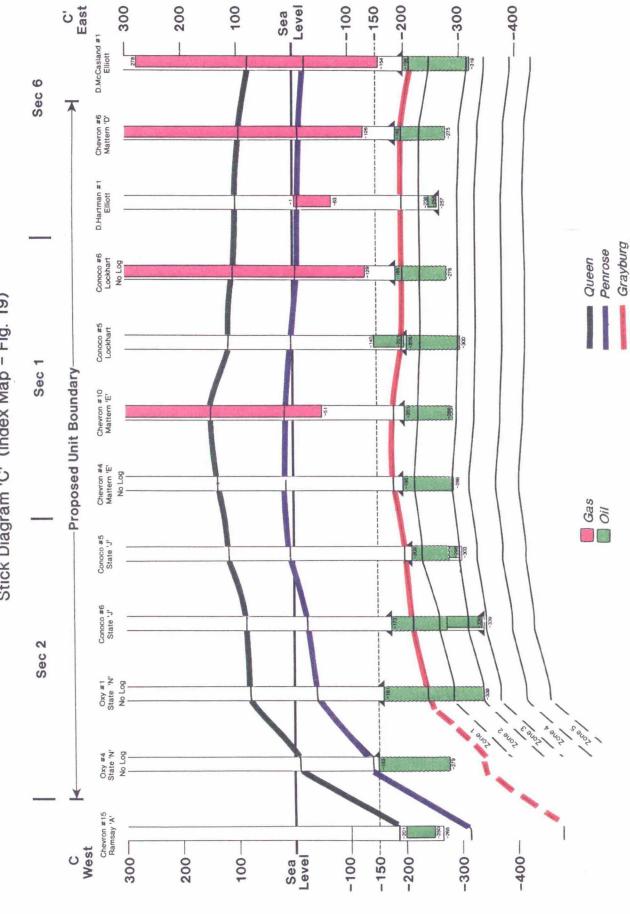


Fig. 22

PROPOSED ARROWHEAD GRAYBURG UNIT TYPICAL COMPLETION INTERVAL

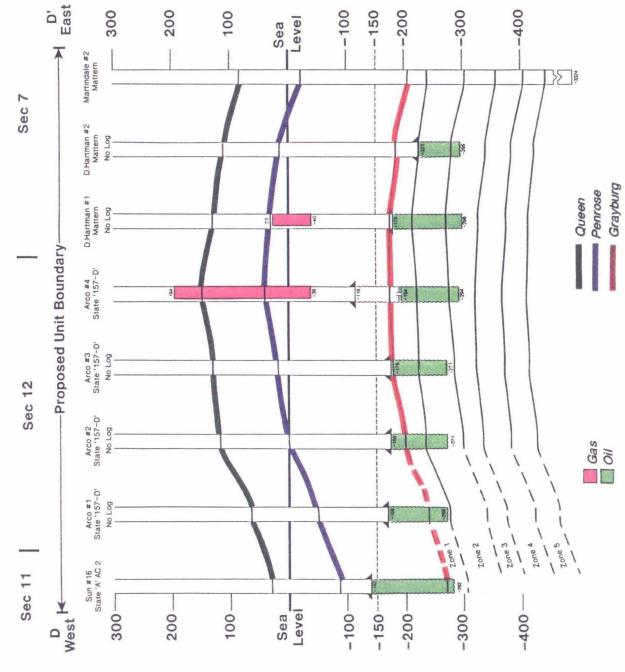
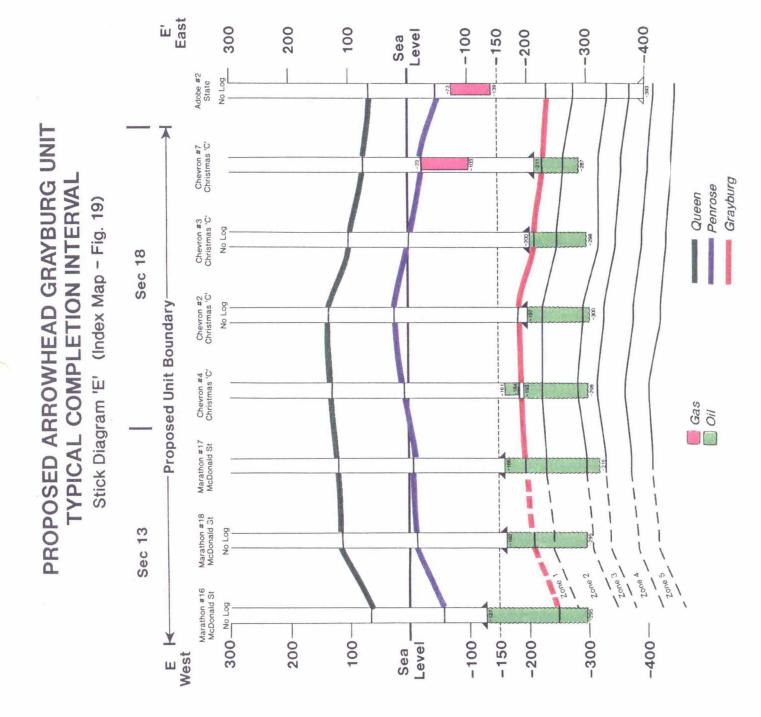
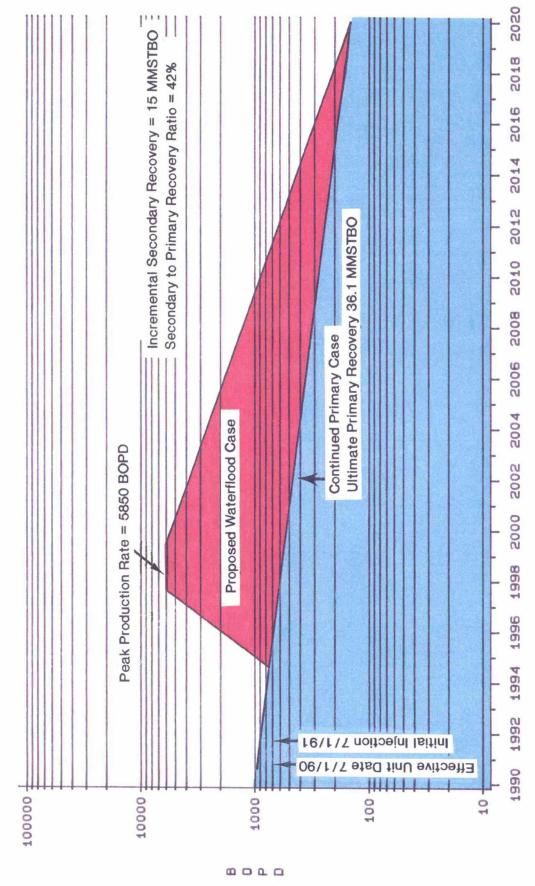
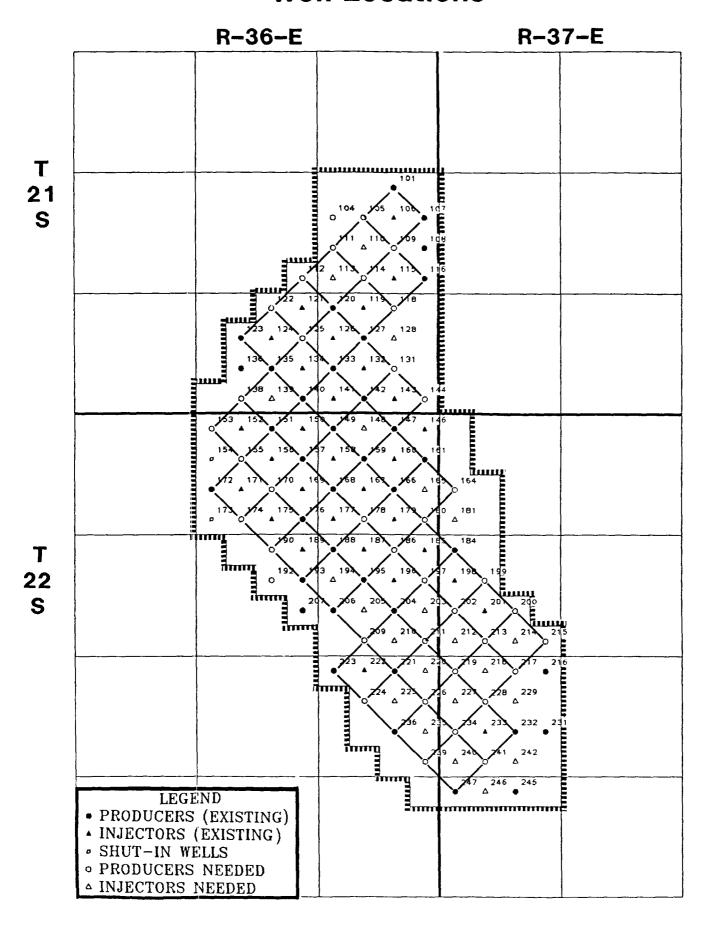


Fig. 23


Fig. 24

DATE

PROPOSED ARROWHEAD GRAYBURG UNIT RECOVERY PREDICTION

Proposed Arrowhead Grayburg Unit Well Locations

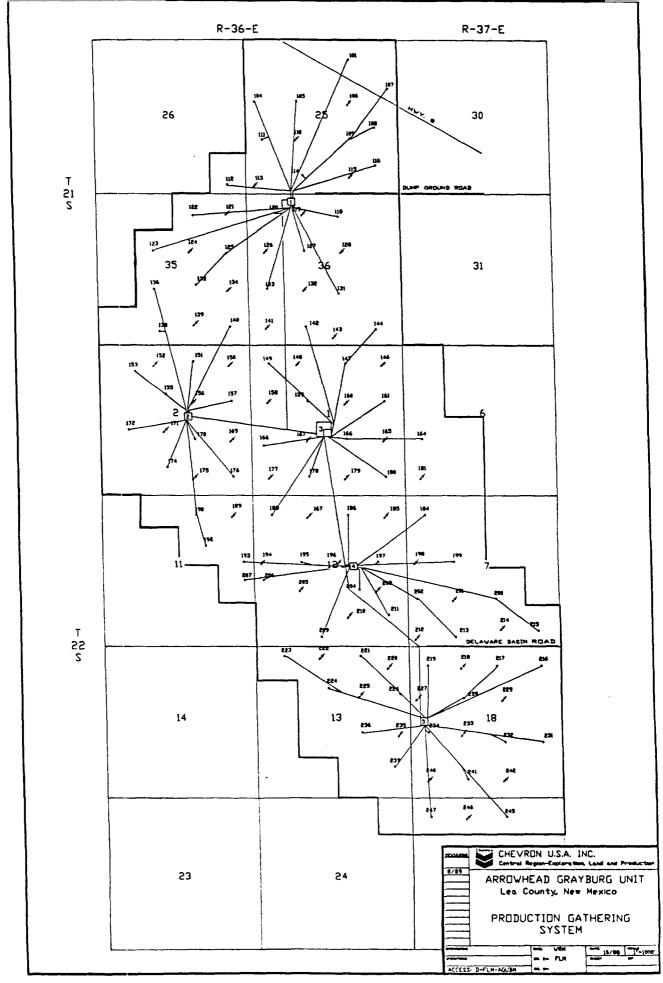


Fig. 27

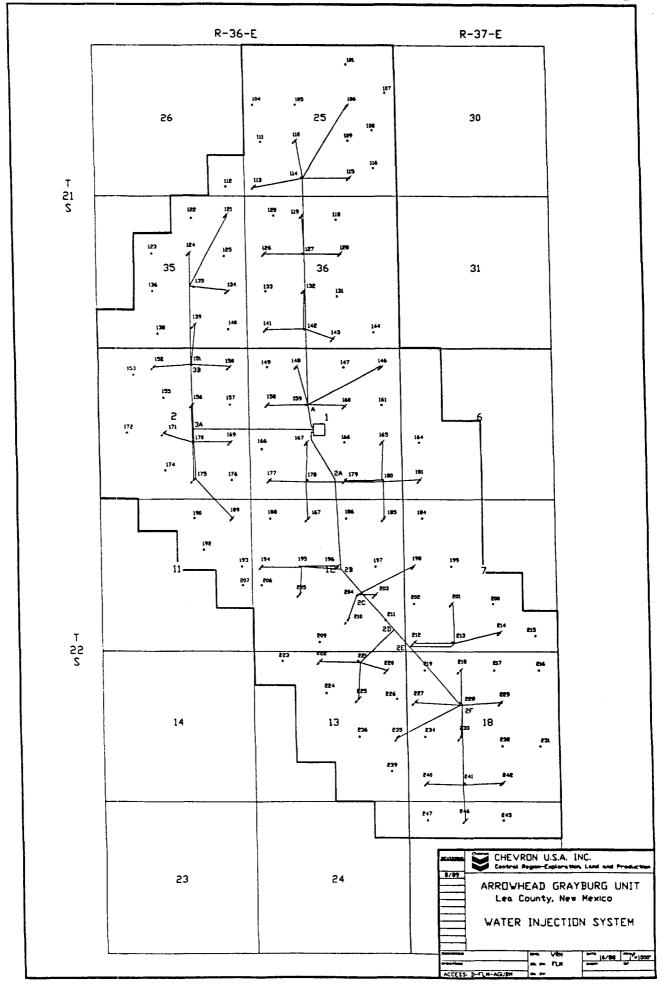


Fig. 28

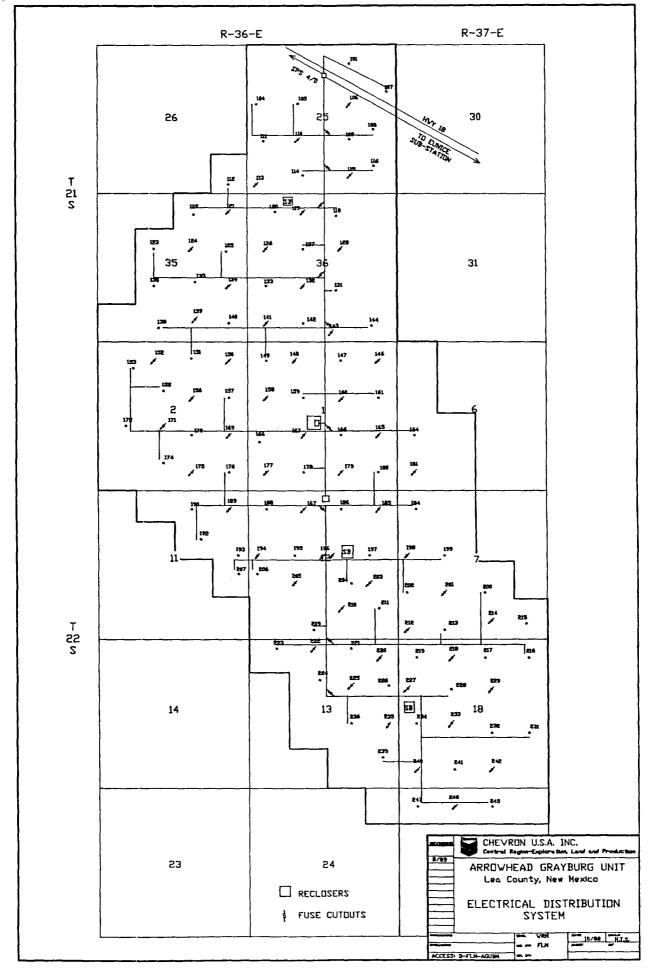


Fig. 29

TABLE 1

PROPOSED ARROWHEAD GRAYBURG UNIT PERTINENT RESERVOIR DATA

Pool Discovery Well: Continental State J-2 No. 1

Discovery Date: 5-24-38

Producing Formation: Grayburg

Lithology: Dolomite

Average Porosity: 8%

Average Net Thickness: 85 ft

Swi: 25%

Initial Reservoir Pressure (250 S.S.): 1460 psi

Reservoir Temperature: 90° F

Oil Gravity (API): 34°

Cumulative Oil Recovery (12-31-88): 30.8 MMSTBO

Predicted Ultimate Primary Recovery: 36.1 MMSTBO

OOIP: 175.4 MMSTBO

TABLE 2
PROPOSED ARROWHEAD GRAYBURG UNIT
TRACT DEFINITIONS

RANGE	37-E 36-E 36-E	37-E	36-E	36-E	37-E 37-E	37-E	36 - E	36−E	36−E	36−E	3 € −E	36E	36-E	36-E	3 6− E	36 - E	36-E	3 6- E	36-E/37-E	37~E	37-E	37-E	37-E
TOWNSHIP	22-s 22-s 22-s	22-S	22-5 21-5	22-S	22 - 5 22 - 5	22-S	21-S	21 - S	21-S	22-S	22-S	22-S	21-S	21 - S	21-S	22-S	22-S	22-S	22 - S	22-S	22 - S	22-S	22-S
SECTION	18 1	9	11 25	13,24	18 19	18	26	36	36	2	12	2	25,35	36	36	25	25	25	1,12 / 6,9	7	7	7	18
LEASE	Elliott B 6 Lockhart B 1 C. J. Saunders	Ruby Crosby	State A Graham State (NCT-J)	McDonald State	New Mexico M State New Mexico M State	State PA	New Mexico G State	State D DE	State M	State N	State 157 D	State J 2	W A Ramsay (NCT-A & B)	Harry Leonard (NCT-C)	State 36	Brownlee	Kingwood	Sandy	H. T. Mattern (NCT-D, E, & F)	Mattern	Mattern	Mattern	A. L. Christmas (NCT-C)
OPERATOR	Chevron Conoco Marathon	Chevron	Hal Kasmussen Chevron	Marathon	American Exploration (Zia)	Amerada Hess	Exxon	Arco	Oxy USA	Oxy USA	Arco	Conoco	Chevron	Chevron	Chevron	Arco	Chevron	Chevron	Chevron	Chevron	Chevron	Presidio Exploration	Chevron
TRACT	H 2 m	4 ι	ი 9	7	8a 8h) o	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

TABLE 3
PROPOSED ARROWHEAD GRAYBURG UNIT
TOTAL CAPITAL INVESTMENT REQUIREMENTS

	INTANGIBLES	TANGIBLES	TOTAL		
D&C New Producers	\$ 3,740,000	\$ 3,740,000	\$ 7,480,000		
D&C New Injectors	1,760,000	1,440,000	3,200,000		
D&C Water Supply Wells	340,000	430,000	770,000		
Producing Well Workovers	2,098,000	1,445,000	3,543,000		
Injection Well Workovers	2,272,000	1,041,000	3,313,000		
Testing and Coring	500,000	0	500,000		
Surface Facilities	0	8,950,000	8,950,000		
Construction and Drilling Overhead	450,000	0	450,000		
	\$11,160,000	\$17,046,000	\$28,206,000		

Released to Imaging: 5/19/2025 8:40:55 AM

TABLE 4 PROPOSED ARROWHEAD GRAYBURG UNIT SURFACE FACILITIES COST ESTIMATE

Satellite Batteries	\$1,000,000
Central Battery and Water Injection Plant	2,420,000
Production Gathering System	1,600,000
Water Injection System	1,580,000
Electrical Distribution System	800,000
Road Construction	350,000
Damages	300,000
Miscellaneous	900,000
Water Supply Dismantling & Restoration Control & Data System Surveying Engineering and Inspection	
	\$8,950,000

TABLE 5
PROPOSED ARROWHEAD GRAYBURG UNIT
DRILLING AND COMPLETION COST ESTIMATE
PRODUCING WELL

	Intangible	Tangible	Total
Contract Drilling - Day Rate Drlg Rig 1 day @ \$4,000 Compl Rig 4 days @ \$1,500	\$ 10,000	\$ 0	\$ 10,000
Contract Drilling - Footage Rate 4000 feet @ \$10.00	40,000	0	40,000
Drilling Supervision 8 days @ \$500	4,000	0	4,000
Drilling Fluids	2,000	0	2,000
Well Supplies & Non-Salvageable Materials	2,000	0	2,000
Transportation Costs	2,000	0	2,000
Drill Pipe, Bits and Tools	1,000	0	1,000
Subsurface Contract Rentals and Services	15,000	0	15,000
Formation Treatment	4,000	0	4,000
Other Subsurface Costs	4,000	0	4,000
Logging	8,000	0	8,000
Casing & Tubing 1350 ft 8-5/8" @ \$12.00 4000 ft 5½" @ \$8.00 4000 ft 2-7/8" IPC @ \$4.25	0	65,000	65,000
Wellhead, Rods, TAC	0	15,000	15,000
Cement Services	12,000	0	12,000
Site Preparation	6,000	0	6,000
Pumping Unit, Motor, Controls	0	30,000	30,000
Total	\$110,000	\$110,000	\$220,000

TABLE 6
PROPOSED ARROWHEAD GRAYBURG UNIT
DRILLING AND COMPLETION COST ESTIMATE
INJECTION WELL

	Intangible	Tangible	<u>Total</u>
Contract Drilling - Day Rate Drlg Rig 1 day @ \$4,000 Compl Rig 4 days @ \$1,500	\$ 10,000	\$ 0	\$ 10,000
Contract Drilling - Footage Rate 4000 feet @ \$10.00	40,000	0	40,000
Drilling Supervision 8 days @ \$500	4,000	0	4,000
Drilling Fluids	2,000	0	2,000
Well Supplies & Non-Salvageable Materials	2,000	0	2,000
Transportation Costs	2,000	0	2,000
Drill Pipe, Bits and Tools	1,000	0	1,000
Subsurface Contract Rentals and Services	15,000	0	15,000
Formation Treatment	4,000	0	4,000
Other Subsurface Costs	4,000	0	4,000
Logging	8,000	0	8,000
Casing & Tubing 1350 ft 8-5/8" @ \$12.00 4000 ft 5½" @ \$8.00 4000 ft 2-3/8" IPC @ \$6.00	0	72,000	72,000
Wellhead, Packer	0	15,000	15,000
Cement Services	12,000	0	12,000
Site Preparation	6,000	0	6,000
Misc. Surface Equipment	0	3,000	3,000
Total	\$100,000	\$ 90,000	\$200,000

TABLE 7
PROPOSED ARROWHEAD GRAYBURG UNIT
DRILLING AND COMPLETION COST ESTIMATE
WATER SUPPLY WELL

	Intangible	Tangible	Total
Contract Drilling - Day Rate Drlg Rig 2 days @ \$4,000 Compl Rig 4 days @ \$1,500	\$ 14,000	\$ 0	\$ 14,000
Contract Drilling - Footage Rate 5000 feet @ \$13.00	65,000	0	65,000
Drilling Supervision 16 days @ \$500	8,000	0	8,000
Drilling Fluids	5,000	0	5,000
Well Supplies & Non-Salvageable Materials	2,000	0	2,000
Transportation Costs	5,000	0	5,000
Drill Pipe, Bits and Tools	3,000	0	3,000
Subsurface Contract Rentals and Services	15,000	0	15,000
Formation Treatment	4,000	0	4,000
Other Subsurface Costs	4,000	0	4,000
Logging	12,000	Ó	12,000
Casing & Tubing 1350 ft 11-3/4" @ \$15.00 4000 ft 8-5/8" @ \$12.00 4000 ft 5½ IPC @ \$10.00	0	110,000	110,000
Wellhead	0	20,000	20,000
Cement Services	25,000	0	25,000
Site Preparation	8,000	0	8,000
Pumping Unit, Motor, Controls, Submersible Pump	0	85,000	85,000
Total	\$170,000	\$215,000	\$385,000

TABLE 8

PROPOSED ARROWHEAD GRAYBURG UNIT

WORKOVER COST ESTIMATE

	Intangibles	Tangibles	Total
Basic Workover			
Cased - hole	\$25,000	\$ 0	\$25,000
Open - hole	35,000	0	35,000
Additional Procedures			
Deepening	\$12,000	\$ 0	\$12,000
Liner	27,000	3,000	30,000
Add Perfs	8,000	0	8,000
Cement Squeeze	23,000	0	23,000
WI Conversion	0	27,000	27,000
Upgrade Pumping Equipment	0	35,000	35,000

TABLE 9
PROPOSED ARROWHEAD GRAYBURG UNIT
CAPITAL, INVESTMENT SCHEDULE

TOTAL	\$24,307,000 3,059,000 280,000 280,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$28,206,000
DRILLING AND CONSTRUCTION OVERHEAD	\$300,000 150,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$450,000
SURFACE FACILITY CONSTRUCTION	000,000	\$8,950,000
RS AND SIONS TANGIBLE	\$1,094,500 551,500 280,000 280,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$2,486,000
WORKOVERS AND CONVERSIONS INTANGIBLE TANGI	\$3,277,500 \$1,092,500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$4,370,000 \$
COMPLETION	\$4,955,000 655,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$5,610,000
DRILLING AND COMPLETION INTANGIBLE TANGIBLE	\$5,730,000	\$6,340,000
YEAR	128422222222222222222222222222222222222	TOTAL

3509

3528 3492

ŗ

GRAHAN STATE

HCDOMBLO HEDOMALD

STRIE 'A' AC

RASHUSSEN

68

HARATHOM

149

160 COHOCO

S COMOCO

LOCKHART

SHUNDERS

3489 3506 3553 3521

3502

B . B. è

LOCKHART 'B'

ISS CONDCO

HELL S

159 CONOCO DOCHOO 991

LOCKHART LOCKHART LOCKHART 3440 3424

3427

H STATE H STATE

ZIR ENERGY

233

ВH 88 Ð

HHERICHM

243

245 HHERICHH

HÄRHTHÖN

HHERICAN

231

HARATHON

222 223

CHEUROM

101

9

H STATE H STATE

3411

3509 3544 3555 3539 3507 3567 3539

STATE 'D' DE

STRIE 'H' STHIE 'H' STATE 'N'

133 OSY USA

123327

172 DXP USA

206 HRCO

141 OSP USB

143 ARCO

STATE "PA"

RHERROR HESS

233

3436

3563 3513

3554

STATE *157-0*

STATE 'J-2' STRIE "J-2" STATE '3-2" STRTE 'J-2' STRTE "J-2" STATE "J-2"

151 CONOCO ISS CONDCD COMOCO CONOCO COMOCO

2

157

ស្តីស្

20 2

> \mathbf{c} ß ω. 3

3549

STATE "3-2" STATE 'J-2'

COMUCO

9

COMOCO

3533

3569

HE REMSERY "H"

3570

3579 3566 3588

AF KHHSAP "A" HE MEHISHE "H"

HR RANSAY "A"

CHEVRON

9

CHEURON

COMOCO

SS 1 Ξ 3. 99 Š å

CHEVRON CHEVRON CHEURON CHEURON 3574

RHMSRY 'B'

CHEVRUN

I23 CHEVRON

HH RHHSHY "H" KHHSBY "H"

3541

3572

11

----OPERATOR

UNIT

LEHSE

DATUM

HELL Proposed Arrowhead Grayburg Unit Completion Data for Existing Wells

T0P L	Sans I	!	•	1	•	•		•	•	•	•	'	ı		•	•	1	•	•	•	•	٠	•		'	ı	•	,	i	•	1	ı	'	•	1	ŀ
0 0 0	SUBSEH	-297	-297	-256	-247	-289	-289	-333	-282	-363	~285	-283	-261	-261	-279	-288	-252	-283	-232	-288	-273	-310	-277		-282	100 N	₽82-	-316	-308	-281	-279	066-	-253	-295	-320	12.95
BOTTOM	CUMPLETION	3820	3825	3800	3788	3800	3830	3866	3818	3888	3740	3755	3790	3770	3780	3790	3739	3760	3780	37.55	3786	3799	3636		3802	3755	3760	3779	3791	3610	3835	394a	95.50	3740	3746	3740
0.0000000000000000000000000000000000000			-191	-195	-189	-164	-189	-213	-180	140	-215	-209	-196	~186	-184	-198	-182	-178	-197	-213	-192	-163	-206		-142	1.45	11	-164	-251	-171	-152	-108	-193	-223	-28	-202
TOP	CURPLEITUR	3700	3719	3739	3730	3675	3730	3746	3716	3666	3670	3675	3725	3692	3685	3700	3669	3655	3685	3680	3705	3652	3625		3662	3665	3619	3627	3724	3700	3708	3662	3730	3668	3454	3647
LINER LINER Star Dottom C																																			3454	
LINER	31 CE																																		ម ម	
SETTING		3700	3719	3739	3730	3675	3730	3746	3726	3666	3670	3675	3725	3632	3685	3700	3669	3655	3682	3680	3705	3900	3700		3662	3665	3619	3627	3724	3700	3708	3700	3897	3668	3414	3647
CASING	7710	9	S. 53	ស	ຜູ	មា មា	5.5	S. S.	ທີ່	ហ	5. 5.	សួ	œ	œ	9	œ	ທີ	ວີ	S. S.	ທຸ	œ	ស	ທຸ		r-	r=	S.	د در	4. N	ທຸ	S.		4. N	S	6,675	ທີ່
LAST		3820	3625	3800	3788	3800	3830	4120	3883	3908	3740	3755	3790	3770	3780	3790	3739	3760	3780	3755	3786	3860	3697		3802	3755	3760	3779	3781	3610	3835	3803	3855	3740	3746	3240
Ë	- !! - !!	3820	3825	3840	3825	3800	3830	6930	38/39	3930	3740	3755	3790	3770	3780	3730	3765	3760	3780	3755	3802	3800	3700		3802	3790	3760	3779	3781	3810	3832	394 4	3900	3740	3746	3740
HELLEN		3523	3528	3544	3541	3511	3541	3533	3236	3526	3455	3466	3529	3203	3501	3502	3467	3477	3488	3467	3513	3489	3419		3520	3520	3476	3463	3473	3529	3226	ವರ್ಣ ನಿರ್ವ	3537	3445	3426	요 소 진
- 14	F ::		N	'n	য়	មា	ம	50	-	(V	CU.	T	-	CJ.	ĺΩ	Ŧ	ம	r-	on	15	,~	€.	ග		16	-1	15	17	13 13	N	Ŧ	10	ហ	C)	ម	യ
- B		H LEOMARD "C"		LEONARD				H LEONARD °C'	SANDY	SANDY	HATTERN	HATTERN	HATTERN	HT MHITERN 'E'	HT HHITERM 'E'		HHTTERN	HT HHTTERN "E"	HT HALTERN 'E'	HALTERN			AL CHRISTHAS 'C'		STRTE '8' AC 2	STATE 'A' AC 2	HCDOMRLD	HCDONHLD	HCDOHMLD	STRIE "H"		STHIE "J2"	WE KHHSEY '8'	HATTERN	HATTERM	HHTTERM
HMIT OPERATOR	18					_		120 CHEVRON		_	198 CHEVRON		_	167 CHEVRON	188 CHEVRON		_	196 CHEVRON		165 CHEVRON	147 CHEVRON	146 CHEURON	216 CHEVROM	E HELLS	207 RASHUSSEN	193 RHSHUSSEN	221 NHRHTHON	_								212 PRESIDIO
5/ 1			<u>'</u> _ 5 8:	≧				17	51	21	8	83	23	22	22	55	25	55	23	8	25	얺	8	INRCTIVE HELLS	ស	ųγ	r _	۲	~	£	13	15	91	4	52	S S

Table 11

Proposed Arrowhead Grayburg Unit Historic Completion Data for Recompleted and P&A'd Wells

F Z	ii																																							
SUBSEA	11 11 11 11	-233	-300	~287	-291	-255	~250	088~	-247	-283	-295	-235	-300	-292	-275	-275	-275	-293	-291	-290	-288	-295	-282	-288	-285	-339	-271	-271	-294	12.00 14.00 16.00	-266	~218	-271	-291	-307	-246	-234	-198	-284	
BOTTON COMPLETION		3735	3728	3800	3830	3722	3790	3851	3780	3735	3790	3775	3757	3750	3716	3745	3762	3715	3720	3700	3714	3724	3724	3816	3811	3878	3759	3745	3750	3726	3741	3700	3777	3822	3861	3820	3810	3758	3870	
SUBSER	11 11 11 11	-202	-210	-214	-161	-238	- 140	149	-142	- 180	-127	-162	-263	-224	-62	-85	-66	-187	- 188	-151	-152	-211	~198	-198	-183	-161	-168	-176	-116	-127	-127	-168	-168	-277	-293	-217	-174	-158	-133	
TOP COMPLETION	\$7 EV. OF THE \$7 SA	3638	3638	3727	3700	3705	3680	3710	3675	3632	3622	3642	3720	3682	9503	3552	3553	3609	36.17	3561	3578	36.40	3640	3726	37.15	3700	3655	3650	3572	3569	3602	3650	3674	3808	3847	3791	3750	3718	3785	
LINER BOTTOM	11								3905																									3825	3866	3820				
LINER SIZE	11 11 11 11								₩.																									T	Ŧ	र				
SETTING DEPTH	11 11 11 11	3638	3638	3727	3700	3723	3680	3710	3660	3632	3622	3642	3720	3682	3503	3553	3553	3609	3617	3600	3578	36.40	3640	3828	3715	3700	3626	3650	3572	3569	3602	3650	3674	3715	3704	36.80	3750	3750	3785	
CASING SIZE	tt († !! !!	5.5	5.5	ທີ	N.	S.	r-	r-	۲-	r-	a.	T.	r.	A, 5.	a. C	a. N	4,5	r-	ស	S. 53	ນ	i.	in in	S. 5	ري س	ທ	r <u>-</u>	r	r-	r-	5.5	n,	5,5	មា	υ. Ω	S. 50	ယ	ហ	ហ ហ	
LAST PBTD	11	3735	3728	3800	3830	3723	3730	3851	3800	3735	3790	3778	3757	3750	3716	ଧ?କ୍ଷ	3762	3715	3720	3700	3714	3724	3724	3828	3811	3878	3759	3745	3750	3726	3741	3700	3777	3825	3866	3850	3810	3758	3870	
12	1) 11	3735	3780	3800	3830	3724	3740	3826	3902	3735	3790	3738	3757	3750	3716	3745	3762	3715	3720	3710	3714	3724	3724	3828	3611	3878	3759	3745	3750	3726	3741	376.1	3777	3825	3866	3850	3810	3850	3870	
DATUR	11 11 11	3436	3428 3428	3513	3539	3467	9840	3561	3533	3452	3435	3480	3457	3458	3441	3470	3487	3422	3429	3410	3426	3429	3442 42	3528	3526	3539	3483	क ट्रिक इस	3456	94 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	3475	(a) (b) (c)	3506	3531	3554	3574	3576	3560	3536	1
STATUS		្ន	PH	%	<u>~</u>	글	္ထ	<u>ှ</u>	Æ	2	Æ	Æ	Œ	Ŧ	⊋	Æ	Ŧ	<u>မ</u>	Æ	Æ	ွှ	РЯ	T.	2	F	£	E.	PH	몵	£	Æ	2	Ŧ	3	PH	<u>ှ</u>	<u>ာ</u>	Ŧ	<u>ှ</u>	
HELL	11	-	ભ	य	-		7	12	13	11	16	19	13	50	23	8	ći T	-	N	m	4	-	M	N	N		N	m	T	io.	٩	P=	œ	۲-	ω	2	n	ع	r-	
LERSE	# 1	RUBY CROSBY	RUBY CROSBY	LOCKHART 'B'	SHUNDERS	ELLIOTT	9	呈	STRIE 'R' AC 2	HCDONALD	HCDOMHI.D	нсоомяго	HCDGHALD	нспомягр	нсооинсо	нсоонаго	HCLOWARLD	H STATE	M STATE	H STATE	H STATE	STATE 'PA'		, O			STHTE *157-0*							STATE "J-2"	STATE 'J-2'	STAFE "J-2"	MA RAMSAY "H"	HA EAHSAY 'A'	ин кинзак "н"	
OPERATOR	***************************************	HURTHON	HERTHHN	_			_			нявнтиси				_	HHEHTHOM	HHKHTHON		AHERI CAH	HHERI CHII									iRCO					ARCO	COMOCO	COMOCO				СПРУКОМ	
UNIT	![!! !!	218	23	160	148	180	130	×	192	550	क (प (प	T N	100 100 100 100 100 100 100 100 100 100	60 80 80 80 80 80 80 80 80 80 80 80 80 80	х	x	x	838	242	x	245	୍ ଅଧ୍ୟ ଆ	241	112	131	174	205	204	203	211	210	803	x	130	155	153	133	125	<u> </u>	
r.	11	7	-	Ċ.	'n	•	un.	ſ٦)	ß	۲-	r -	r -	~	~	۲–	<u>`</u>	Γ —	Œ	æ	æ	88	ው	グ	2	11	n	দু	ጟ	4	Ţ	Ŧ	Ŧ	Ţ	5	2	15	16	9	16	

Released to Imaging: 5/13/2025 8:40:55 AM

Table 11
Proposed Arrowhead Grayburg Unit
Historic Completion Data for Recompleted and P&A'd Wells

<i>(14/</i> 20 INO 401	25 35 35 35 35 35 35 35 35 35 35 35 35 35	10:4	/5:: - 12 <u>5</u> :-	3 <u>0</u> 351-	<i>AN</i> 061-	M_JET	-137	-150	-146	-142	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150	-150
,		11 11 11 11 11	275	-284	-536	.293	-238	-293	-220	-278	-320	-292	-307	-278	-313	-301	-274	-252	-307	-277	-275	-252	-297	-273	-297	-182	-300	-298	-238	235	-292	275
			1	ľ	•	•	٠			·																		•		٠	•	
BOTTOR	COMPLETION	!! !! !! !! !! !! !!	3865	3845	3860	3822	3805	3780	3730	3743	3867	3807	3845	3800	3775	3750	3723	3722	3786	3785	3736	3756	3775	3725	3735	3636	3730	3720	3740	3745	3740	3700
		11 11 11 11 11 11 11	-171	-180	-183	-184	-205	-213	-192	-159	-183	208	-217	-163	€1	-192	-178	-185	123 883 883	-182	-193	-201	-202	-263	-202	-161	-191	-200	-193	-215	-217	~199
TOP	COMPLETION	1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	3761	3741	3747	3746	3712	3700	3702	3674	3730	3723	3755	3691	3420	3641	3627	3655	3712	3690	3654	3705	3680	3715	3640	3615	3627	3622	3635	3665	3665	3624
		## ## ## ## ## ## ## ## ## ## ## ## ##								6766														3733								
										4														ক.								
	S12E	11 11 11 11																														
SETTING	DEPTH	11 14 14 11 11	3761	3741	3747	3746	3712	3700	3775	9999	3730	3723	3755	3691	3420	3641	3637	3655	3790	3630	9654	3705	3680	3631	3640	3640	3627	3622	3635	3665	3665	3624
CASING	SIZE	11 11 11 11	ري دي	ر ا	សួ	ທຸ	8.8	ហ	ហ	Γ-	r-	5. 5.	υ. Ω	г Э	so.	ທ	n N	n n	ស	υ Ω	ທີ່	S. 53	ທີ່	in in	in S	ທຸ	ທຸ	in in	υ .υ	ស	ທີ່	n n
LAST	PBTD	## ## ##	3865	3845	3860	3852	3802	3780	3740	6766	3867	3807	3845	3800	3775	3750	3723	3722	3790	3785	3736	3756	3775	3733	3735	3638	3730	3720	3740	3745	3740	3700
	2	11	3865	3845	3860	3882	3802	3780	3775	6800	3867	3807	3845	3800	3795	3750	3745	3745	3790	3785	3750	3790	3775	3750	3735	3730	3730	3720	3740	3745	3740	3700
	DATUM		3590	3561	3564	3562	3507	3487	3510	3515	3547	3515	3538	3522	3462	0449 0449	0.4 0.4 0.4	3470	3479	3508	3461	3504	3478	3452	0408 0408	3454	3430	3422	34. 20.	3450	3448	04 10 10
	STATUS	11 [] []	3 2	RC	RC	SC Sc	8 C	RC	RC	BC.	RC	PA	æ	%	F	P.H	Æ	2	80 0	P.A	£	Œ.	<u>2</u>	2	ည္မ	SC C	P.	P.	£	£	£	<u>ာ</u>
		11 11 11 11	12	13	-	હ્ય	۵	0	ਹਾ	12	-	N	m	Ŧ	-	ñΤ	ហ	ω	r-	មា	0	10	11		ř-	-	W			មា	۵	
			ия камѕар "я"	HA RAMSAY 'A'		HA RAMSAP 'B'	H LEUNARD 'C'	H LEONARD 'C'	H LEUNARD 'C'	H LEONARD 'C'	BECHMLEE	BECHMLEE	BROHMLEE	BROHMLEE	HT HATTERM 'D'	HI HATTERN 'D'	HT HATTERN 'D'	HT HALLERN 'D'	HT HATTERN 'D'	HT HHITTERN 'E'	HATTERN '		HT HATTERN 'E'	HATTERN	HATTERN	AL CHRISTHAS 'C	HL CHRISTHRS 'C	AL CHRISTHAS 'C	AL CHRISTHAS *C	AL CHRISTHAS 'C	CHRISTHAS	AL CHRISTHAS "C
	OPERATOR		CHEVRON	CHEVRON	CHEVRON	CHEWRON	CHEVRON	CHEURON	CHEWRON	CHEVRON	ARCO	HRCO	HRCO	ARCO	CHEURON	CHEURON	CHEVRON	CHEVRON	CHEURON	CHEVRON	CHEVRON	CHEVRON	CHEVRON	няктиям	PRESTO10	CHEVRON	CHEVRON	CHEVRON	CHEVRON	CHEVRON	CHEVRON	CHEVROM
	UNIT	l (i i l t !)	×	122	105	104	128	×	118	×	110	113	111	114	×	×	×	×	×	194	197	178	186	202	213	219	228	229	223	234	240	×
. 5/10	5	II II II = (91	9	<u>1</u>	91	17	13	12	Ξ	3	13	13	13	걿	22	22	23	22	얺	23	엃	얺	g	53	3	93	8	93	8	58	8

** Indicates completions that extend beyond the proposed unit boundaries.

TABLE 12
PROPOSED ARROWHEAD GRAYBURG UNIT
PRODUCTION AND EXPENSE SCHEDULE
REMAINING PRIMARY CASE

YEAR	OIL PRODUCTION (BOPY)	GAS PRODUCTION (MCFPY)	OPERATING COSTS (\$/YEAR)	ABANDONMENT COSTS (\$/YEAR)
1 2	341,494 320,219	1,053,850 988,196	\$728,175 728,175	\$ 0
3	300,269	926,631	728,175	0
4	281,563	868,902	728,175	0
5	264,021	814,769	728,175	0
6	247,573	764,009	728,175	0
7	232,149	716,411	728,175	0
8	217,686	671,779	728,175	ő
9	204,124	629,927	728,175	Ŏ
10	191,407	590,683	728,175	ő
11	179,483	553,883	728,175	ŏ
12	168,301	519,376	728,175	ŏ
13	157,816	487,019	728,175	Ö
14	147,984	456,678	728,175	ŏ
15	138,764	428,227	728,175	ő
16	130,119	401,548	728,175	ő
17	122,013	376,532	728,175	Ö
18	114,411	353,074	728,175	Ō
19	107,284	331,077	728,175	0
20	100,600	310,451	728,175	0
21	94,333	291,110	728,175	0
22	88,456	272,974	728,175	0
23	82,945	255,968	728,175	0
24	77,777	240,021	728,175	0
25	72,932	225,068	728,175	0
26	68,388	211,046	728,175	0
27	64,128	197,898	728,175	0
28	60,132	185,569	728,175	0
29	56,386	174,008	728,175	0
30	52,873	163,167	728,175	570,000
	4,685,630	14,459,851	\$21,845,250	\$570,000

TABLE 13
PROPOSED ARROWHEAD GRAYBURG UNIT
PRODUCTION AND EXPENSE SCHEDULE
WATERFLOOD CASE

YEAR	INVESTMENTS (\$)	OIL PRODUCTION BOPY	GAS PRODUCTION (MCFPY)	OPERATING COSTS \$/YEAR	ABANDONMENT COSTS \$/YEAR
1	\$24,307,000	341,494	1,051,802	\$1,564,900	\$ 0
2	3,059,000	320,219	912,624	1,942,530	0
3	280,000	300 , 269	600,538	2,079,400	0
4	280,000	281,563	366,032	2,216,280	0
5	280,000	391,645	176,240	2,284,718	0
6	0	777 , 815	350,017	2,284,718	0
7	0	1,545,045	695 , 270	2,284,718	0
8	0	2,135,250	960,863	2,284,718	0
9	0	2,135,250	960,863	2,284,718	0
10	0	1,953,845	879,230	2,284,718	0
11	0	1,630,484	733,718	2,284,718	0
12	0	1,360,639	612,288	2,284,718	0
13	0	1,135,453	510,954	2,284,718	0
14	0	947,535	426,391	2,284,718	0
15	0	790 , 718	355,823	2,284,718	0
16	0	659 , 854	296,934	2,284,718	0
17	0	550,649	247,792	2,284,718	0
18	0	459,516	206,782	2,284,718	0
19	0	383,466	172,560	2,284,718	0
20	0	320,003	144,001	2,284,718	0
21	0	267,042	120,169	2,284,718	0
22	0	222,847	100,281	2,284,718	0
23	0	185,966	83,685	2,284,718	0
24	0	155,188	69,835	2,284,718	0
25	0	129,505	58 , 277	1,828,000	0
26	0	108,072	48,632	1,523,000	0
27	0	90,186	40,584	1,218,500	0
28	0	75 , 260	33,867	1,218,500	430,000
29	0	62,804	28,262	1,218,500	430,000
30	0	52,410	23,585	1,218,500	430,000
	\$28,206,000	19,769,992	11,267,899	\$61,722,470	\$1,290,000

Proposed Arrowhead Grayburg Unit Value of Equity Parameters by Tract

GROSS HCRE-FT	108,000.00	433, 320, 00	109,849.20	99,981,00	324,000.00	54,600.00	702,000.00	41,840.00	174,160.00	211,936.50	108,000.00	54,000.00	108,040.00	111,800.00	216,000.00	432,000.00	650,068.00	1,030,680.00	546,560.00	108,000.00	216,000.00	108,920.00	108,040.00	1,172,486.74	49,923.00	108,000.00	211,950.00	415,746.00	8,015,900.44
SURFACE	80.00	320.00	80.24	74.06	240.00	40.00	520.00	107.21	52,79	156.99	80.00	40.00	80.00	80.00	160.00	320.00	480.64	760.00	400.00	80.00	160.00	80.00	80.00	868,39	36.98	80.00	157.00	307.96	5,922.26
REMAINING GAS RESERVES (1-1-89)	i	2,414,487	93,251		59,722	82,481	278,119	8,363	518,590	177,886	201,706		32,263	352,954	354,274	42,557	4,901,223	1,454,192	3,616,881	0	0	0	216,329	984,392	0	0	0	352,364	16,142,034
CURRENT 6 GRS RRTE (40-1988)	0.0	15,143.0	1,207.7	0.0	1,729.3	1,175.3	2,154.0	270.7	5,660.0	2,996	1,636.0	0.0	309.3	1,935.7	1,453.0	513,3	38,861.0	18,775.3	28,858.0	0.0	0.0	0.0	2,542.3	5,256.3	0.0	0.0	0.0	267.3	128,714.2
CURRENT 01L RHTE (40-1988)	0.0	4,593.3	647.0	0.0	111.7	40.0	160.0	62.3	20.7	937.7	0.786	0.0	192.0	635.7	207.3	313.0	9,937.0	2,293.7	4.	0.0	0.0	0.0	79.7	4,210.7	0.0	0.0	0.0	136.0	33,024.5
ULTIMRTE PRIMRRY OIL RECOVERY	465,366	2,508,225	593, 181	36,936	1,262,677	38,292	2,004,749	609,377	2,374	680,602	583,470	49,446	245,866	1,157,880	926,278	1,386,110	6,470,742	4,035,932	4,206,613	0	489,027	0	46,526	5,465,763	167,424	183,025	603,349	1,749,393	36,068,673
RESERVE (1-1-89	0		56,757	0	5,878	3,190	24,046	2,084	2,291	178,065	120,566	0		129, 193	53, 154		1,617,565	185, 177	1,309,041	0	0	0		692,746	0	0	0	45, 455	5,229,986
= =	465,366	1,759,082	536,424	36,986	1,256,799	35,102	1,980,703	607,293	. 83	502,537	462,904	49,446	224,314	1,028,637	873,124	1,358,847	4,853,177	3,900,755	2,897,572	0	489,027	Ō	39,706	4,773,017	167,424	183,025	603, 349		30,838,687
TRACT		7	m	प	ហ	æ	~		SA LOWER	93 93	Ω,	10	11	12	m	7	15	16	17	8	51	20	21	22	53	54	22		TOTAL

Proposed Arrowhead Grayburg Unit Equity Parameters Percent of Total by Tract

	GRUSS HURE-FI	1.347322	5,405756	1,370391	1.247283	4.041966	0.631146	8.757594	0.521963	2,172682	2,643951	1.347322	0.673661	1.347821	1.394728	2.694644	5,389288	8,109731	12,857944	6.818448	1,347322	2,694644	1.358799	1.347821	14.627012	0.622800	1.347322	2,644120	5,186517	100.00000
SURFACE	#CKT	1.350836	5,403343	1.354888	1,250536	4.052507	0.675418	8.780432	1.810289	0.891383	2,650346	1.350336	0.675418	1.350836	1.350336	2,701671	5,403343	8,115821	12.832939	6.754178	1.350336	2,701671	1.350836	1.350336	14,663152	0.624424	1.350836	2.651015	5.200042	100.00000
REMAINING GAS RESERVES	(1-1-89)	0.000000	14.957762	0.577691	0.000000	0.369978	0.510970	1.722949	0.051809	3.212668	1,102005	1.249570	0,000000	0.199869	2,186552	2,194730	0.263641	30,363107	9,008728	22,406600	0.00000	0.00000	0.00000	1.340159	6.098314	0.00000	0.00000	0.000000	2.182897	100.00000
CURRENT GAS RATE	(444-1988)	0,000000	11.764825	0,938280	0.000000	1,343519	0.913108	1.673475	0.210311	4,397339	0,751044	1,271033	0,000000	0.240300	1.503874	1.128858	0.398790	30,191696	14,586813	22,420215	0,000000	0.000000	0.000000	1.975151	4.083699	0,000000	0.000000	0,000000	0.207669	100.0000
CURRENT OIL RATE	(46-1988)	0.00000	13,908765	1.959152	0.000000	0.338234	0.121122	0.484489	0.188648	0.062681	2.839407	2,988690	0.00000	0.581387	1.924935	0.627716	0.947781	30,089782	6.945450	22.588381	0.000000	0.00000	0.00000	0.241336	12,750231	0,000000	0.00000	0.00000	0.411815	100.0000
ULTIMATE PRIMARY	OIL RECUVERY	1,290222	6,954026	1.644583	0.241168	3,500758	0.106164	5,558145	1.689491	0.006582	1.886962	1.617664	0.137083	0.681661	3,210210	2,568096	3.842975	17,940061	11.328202	11.662788	0,000000	1.355822	0.00000	0,128993	15,153768	0.464181	0.507435	1.672778	4.850173	100.00000
급	(68-1-1)	0.000000	14,323996	1,085223	0.000000	0.112390	0,060994	0.459772	0.039847	0.043805	3,404694	2,305283	0.00000	0.412085	2,470236	1.016332	0.521282	30,928668	3,540679	25,029532	0,000000	0,000000	0.000000	0,130402	13,245657		0.000000	0.00000	0,869123	100,00000
≓	(12-31-88)	1.509033	5,704140	1.739451	0.282068	4.075397	0.113825	6.422786	1.969257	0.000269	1,629567	1.501050	0.160338	0.727379	3, 335703	2.831262	4.406306	15,737301	12,648901	9,395899	0.000000	1.585758	0.000000	0.128754	15,477368	0.542902	0.593492	1.956468	5.525326	100.00000
	HX !!	-	N	ñЭ	যা	ហ	ű	٧.		SA LOWER	8	₫ħ	10	11	12	m T	14	Ð.	16	77	<u>0</u>	υ <u>τ</u>	22	21	22	23	24	25	56	TOTAL

Proposed Arrowhead Grayburg Unit Value of Equity Parameters by Owner

GROSS RCRE-FT 	108,000.00 85,593.79	108,330.00	784,020.25	10,041.16	601.49	3,702,960.54	758, 398, 00 127, 327, 65	19,247.58	17,576.51	222, 182.71	601.49	12,855.96	811,849.20	27,318.91	4,000.00	44,560.86	1,202.97	327,800.00	115,176.64	20,077.00	40,500.00	127,327.66	601.49	12, 152. 43	44, 195.54	2,510.93	283,500.00	174,160.00	8,015,900.44
SURFACE ACRES	80.00 213.46	80.00	640.00	10.73	1.13	2783.54	560,64 43,45	36, 19	0.00	90.74	1.13	0.00	600.24	0.00	12.25	16.05	2.26	240.00	39,91	21.45	30.00	43, 45	1.13	3.54	104.67	0.00	210.00	52.79	5,922.26
REMAINING GRS RESERVES (1-1-89)	201,706 186,249	603,622	678,442	13,521	0	7,296,740	5,504,845	0	0	0	0	0	371,370	0	0	0	0	707,228	0	0	7,465	0	0	0	0	0	52,257	518,590	16,142,034
CURRENT GHS RHTE (40-1988)	1,636.0	3,785.8	4,608.4	0.0 158.9	0.0	60,501.4	42,646.8 0.0	0.0	0.0	0.0	0.0	0.0	3,361.7	0.0	0.0	0.0	0.0	3,388.7	0.0	0.0	216.2	0.0	0.0	0.0	0.0	0.0	1,513.1	5,660.0	128,714.2
CURRENT 01L RATE (40-1988)	987.0 1,000.0	1,148.3	1,653.3	່ເ	0.0	15,363.1	11,085.3 0.0	0.0	0.0	0.0	0.0	0.0	807.0	0.0	0.0	0.0	0.0	843.0	0.0	0.0	14.0	0.0	0.0	0.0	0.0	0.0	2.79	20.7	33,024.5
ULTIMATE PRIMARY OIL RECOVERY	583,470 1,289,979	627,056	2,748,059	27,910	3,612	16,545,315	7,097,798 162,470	115,568	,	49,446	3,612	0	2,597,930	0	0	70,495	7,223	2,084,158	147,160	52,802	157,835	162,470	3,612	15,312	402,253	0	1,104,842	2,374	36,068,673
REMAINING OIL RESERVES (1-1-89)	120,566	187,286	236, 101	0 426	0	2,429,289	1,804,851	0	0	0	O	0	80,803	0	0	0	0	182,347	0	0	735	0	0	0	0	0	5,143	2,291	5, 229, 986
	462,904 1,109,830	439,771	2,511,959	27,910	3,612	14,116,027	5,292,948 162,470	115,568	0	49,446	3,612	0	2,517,127	0	0	70,495	7,223	1,901,811	147,160	55,802	157,100	162,470	3,612	15,312	402,253	0	1,099,699	83	30,838,687
	AMERICAN	AMOCO	ARCO	BRUMN	BURR .	CHEVRON	CONOCO	DAVIDSON	ENRON	EXXON	FLETCHER	HANNIFIN	MARATHON	MCBRIDE	MOORE	MUSSETT	NERMYR	۵X۲	ряка мія	PRESIDIO	RASMUSSEN	SUMMERS	SUTTON	VETETO	MAL SH	WESTWAY	WILLIAMS	ZIA	TOTAL

Proposed Arrowhead Grayburg Unit Equity Parameters Percent of Total by Owner

6R055 ACRE-FT 0.2506 1.3473 1.0678 1.3514 9.7808 0.1253 0.0142 0.075 46.1952 9.4612 1.5884 0.2401 0.2193 2.7718 0.0499 0.03408 0.0499 0.0559 0.0150 4.0894 1.4369 0.05513 0.0075 0.0313 3.5367 2.1727
SURFACE RCRES 0.0000 1.3508 3.6044 1.3508 10.8067 0.1811 0.0191 0.0191 0.0000 1.5321 0.0000 1.5321 0.0000 0.2710 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00
RESERVES (1-1-89) (1-1-89) (1-1-89) (1.2496 1.2496 1.1538 3.7394 4.2030 0.0000
CURRENT 6R5 RRTE (40-1988) 1.2710 0.0000 0.1234 0.0000 0.0
CURRENT OIL RATE (40-1988) 3.0281 3.4772 5.0064 0.0000
ULTIMBRY OIL RECOVERY 1.6177 3.5765 1.6177 3.5765 1.7385 7.6190 0.0774 0.0081 0.0100 45.8717 19.6786 0.0200 0.03204 0.00206
REMRINING OIL RESERVES (1-1-89) (1-1-89
CUMULATIVE 01L (12-31-88) 1.5010 3.5988 1.4260 8.1455 0.0905 0.0117 45.7738 17.1633 0.0117 0.0000 0.0000 0.0226 0.0000 0.0226
OWNER

Proposed Arrowhead Grayburg Unit Value of Equity Parameters by Owner

GROSS ACRE-FT	108,000.00	41,840.00 43,753.79	85,593.79	108,330.00	108,330.00 27,690.25 432,000.00 216,000.00	764,020.25	365.64 8,322.16 546.78 806.59	10,041.16	1,137.50	134.06 140.85 195.01 131.56	601.49
SURFACE ACRES GR ====================================	80.00	107.21 106.25	213.46	80.00	80.00 80.00 320.00 160.00	640.00	0.98 6.16 1.46 2.12	10.73	3.48	0.31 0.36 0.14 0.31	1.13
REMAINING GAS RESERVES (1-1-89)	201,706	8,363 177,886	186,249	603,622	603,622 32,263 42,557 0	678,442	0000	0	13,521	0000	0
CURRENT R GAS RATE (40-1988)	1,636.0	270.7 966.7	1,237.4	3,785.8	3,785.8 309.3 513.3	4,608.4	0.0000	0.0	158.9	0.000	0.0
CURRENT 01L RATE (40-1988)	967.0	62.3 937.7	1,000.0	1,148.3	1,148.3 192.0 313.0 0.0	1,653.3	0.0000	0.0	5.0	0.0000	0.0
ULTIMATE PRIMARY OIL RECOVERY	583,470	609,377 680,602	1,289,979	627,056	627,056 245,866 1,386,110 489,027	2,748,059	27,910 0	27,910	2,908	1,818 425 654 715	3,612
REMAINING OIL RESERVES (1-1-89)	120,566	2,084 178,065	180,149	187,286	187,286 21,552 27,263 0	236, 101	0000	0	426	0000	0
R CUMULATIVE OIL (12-31-88) ===================================	462,904	607,293 502,537	1,109,830	439,771	439,771 224,314 1,358,847 489,027	2,511,959	27,910 0	27,910	2,482	1,818 425 654 715	3,612
MI ====================================	100.0000	100.0000 100.0000		25.0000	25.0000 100.0000 100.0000 100.0000		0.0000 16.6700 0.0000 0.0000		6.2500	0.3906 0.4883 0.3906 0.3906	\$40 All the case of the case o
TRACT	თ	88(U)*	.0TAL	7	2 * 11 19	OTAL	4 W 4 7 7 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	OTAL	21*	- 4 m 4	OTAL
OWNER ===== ABBY	AMERADA	AMERICAN	COMPANY TOTAL	AMOCO	ARCO	COMPANY TOTAL	BROWN	COMPRINY TOTAL	BRYANT	BURR	COMPANY TOTAL

Proposed Arrowhead Grayburg Unit Value of Equity Parameters by Owner

	ACRE-FT	69.66	0.00	7.35	8.8	0.00	00.00	9			الا. ت:	486.74	.6.07	972.19	6.00	0.54	0.00 8.00	8.00	96.68	3,37	7.83	6.48	7.65	0.00	4,507.20	0.38	0.00	7.58
	GROSS ACF	12,199.69	108,33	12,817.35	54,60	1,030,680.00	546,560.00	108,000,00	00000	00.026,001		1,172,48	17,746.07	11,97	415,746.(3,702,960.54	108,330.00 650,068.00	758,398.00	27.579.	25,17	25,94	48,626.48	127,327.65	4.290.0	4,50	6,24	4,210.0	19,247.
SUPFACE		28.44	90.00	32.91	40.00	760.00	400.00	80.00	00.00	96.00	04.25	008.39	13.15	28.44	307.96	2783.54	80.00 480.64	560.64	11,33	8,28	10.32	13.52	43.45	10,00	11.57	4.62	10.00	36.19
REMAINING GAS RESERVES	(1-1-89)		603,622	0	82,481	1,454,192	3,616,881	· `			202,000	964,592	0	0	352,364	7,296,740	603,622 4,901,223	5,504,845	0	0	0	0	0	0	0	0	0	0
CURRENT 1	(40-1966)		3,785.8	0.0	1,175.3	18,775.3	28,858.0	0.0	•	0,000	7,383.4	5,256.3	0.0	0.0	267.3	60,501.4	3,785.8 38,861.0	42,646.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CURRENT OIL RATE	(40-1988)	0.0	1,148.3	0.0	40.0	2,293.7	7,459.7	0.0		100		4,210.6	0.0	0.0	136.0	15,363.1	1,148.3 9,937.0	11,085.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ULTIMATE	OIL RECOVERY	165,423	627,056	38,651	38,292	4,085,932	4,206,613	, ,	• •	ָּרָ רָלָ רָלָי		5,465,763	59,514	65,060	1,749,393	16,545,315	627,056 6,470,742	7,097,798	65,927	10,873	26,525	59,144	162,470	58,171	13,592	20,928	22,878	115,568
REMAINING OIL RESERVES	(1-1-89)	0	187,286	0	3,190	185,177	1,309,041	,	· c	ָר מיני	100 C	927,740	0	0	45,455	2,429,289	187,286 1,617,565	1,804,851	0	0	0	0	0	0	0	0	0	0
F CUMULATIVE OIL	(12-31-88)	165,423	439,771	38,651	35, 102	3,900,755	2,897,572		· C	500 FC	1776 10	4,773,017	59,514	65,060	1,703,938	14,116,027	439,771 4,853,177	5,292,948	65,927	10,873	26,525	59,144	162,470	58,171	13,592	20,928	22,878	115,568
ن		35,5469	25.0000	44.4336	100.0000	100.0000	100.000	100,0000	100 000	0000.001	90.000	100.000	35,5469	35.5469	100,0000		25.0000 100.0000	1	14.1667	12,5000	14,4930	9.8024		12,5000	15,6250	12,5000	12.5000	
		¥ •	7	*	9	16	17	133	2	*	170	77	23	4 * *	56	Ĕ	2 15	Ä	*	4 *	24*	22*	4	*	4 -	23	24*	AL.
	OWNER	CHESTON														COMPANY TOTAL	CONOCO	COMPANY TOTAL	DRSCO				COMPRNY TOTAL	DAVIDSON				COMPRNY TOTAL

Proposed Arrowhead Grayburg Unit Value of Equity Parameters by Owner

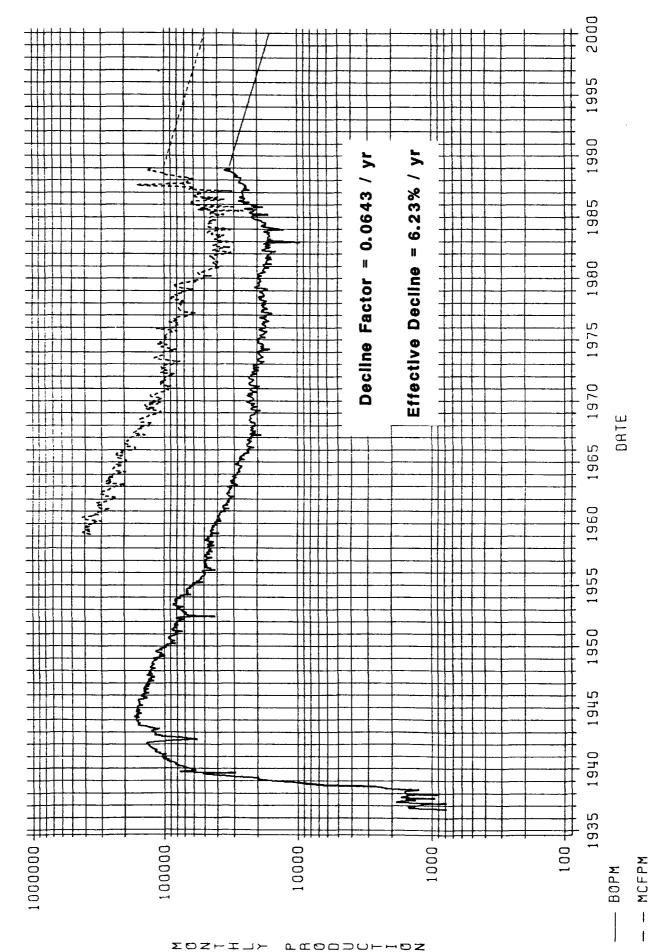
GROSS ACRE-FT	168,182.71 54,000.00	222, 182.71	134.06 140.85 195.01 131.56	601.49	12,855.96	109,849.20 702,000.00	811,849.20	27,318.91	4,000.00	8,100.00 5,335.12 11,676.52	44,560.86
SURFACE ACRES GROSS	50.74 16	90.74 2	0.31 0.36 0.14 0.31	1.13	0.00	80.24 10 520.00 70	600,24 8	0.00	12,25	0.00 0.00 4.64	1
REMAINING GAS RESERVES (1-1-89)	00	0	0000	0	0	93,251 278,119	371,370	0	0	0000	
CURRENT RE GAS RATE (40-1988)	0.0	0.0	0.000	0.0	0.0	1,207.7 2,154.0	3,361.7	0.0	0.0	0000	0.0
CURRENT 01L RATE (40-1988)	0.0	0.0	0.0000	0.0	0.0	647.0 160.0	807.0	0.0	0.0	0000	0.0
ULTIMBTE PRIMBRY 01L RECOVERY ====================================	49,446	49,446	1,818 425 654 715	3,612	0	593,181 2,004,749	2,597,930	0	0	34,902 0 11,936	70,495
REMAINING OIL RESERVES (1-1-89) (====================================	00	0	0000	0	0	56,757 24,046	80,803	0	0	0000	0
RI CUMULATIVE OIL (12-31-88) ===================================	49,446	49,446	1,818 425 654 715	3,612	0	536,424 1,980,703	2,517,127	0	0	34,902 0 11,936	70,495
MI ======= 0.0000	0.0000		0.3906 0.4683 0.3906 0.3906		0.000	100.0000 100.0000		0,0000	0.000	7.5000 0.0000 6.5217	
TRACT ====================================	86(L)* 10	F	4 4 6 5 4 × 4 × 4	H.	*::	e ~	H H	*	21*	- 4 4 4 * * * * *	
OWNER ===== ENRON	EXXON	COMPRNY TOTAL	FLETCHER	COMPRNY TOTAL	HANNIFIN	MARATHON	COMPANY TOTAL	MCBRIDE	MOORE	MUSSETT	COMPANY TOTAL

Proposed Arrowhead Grayburg Unit Value of Equity Parameters by Owner

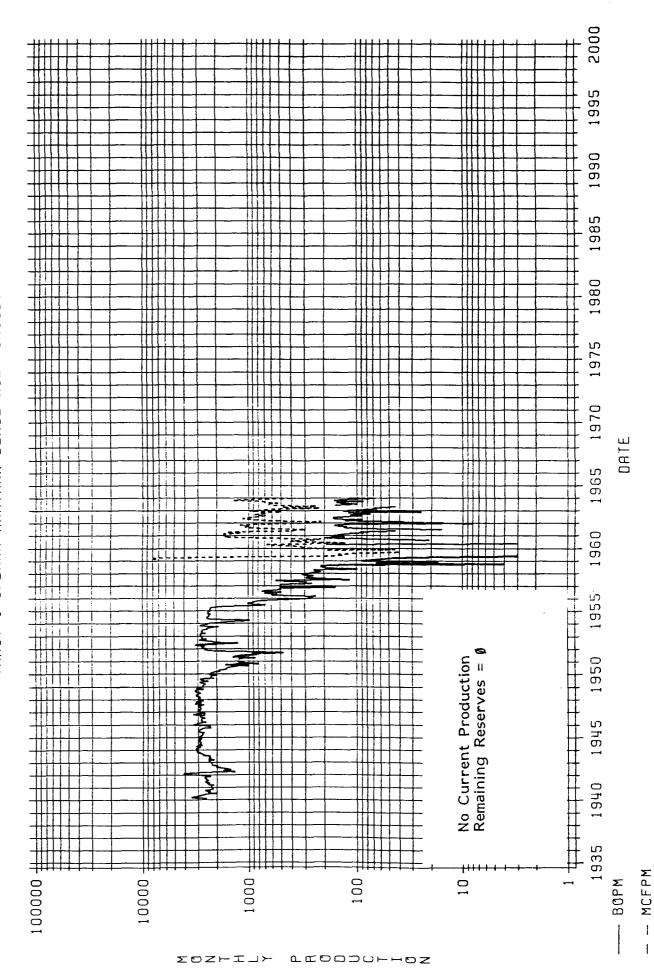
<u> </u>	268.13 281.70 390.02 263.13	.97	0.00	9.00	96.9	1.52	3.04 5.12	5.64	731.27 639.34 093.22 613.17	2.00	0.00	99.99	. ee	48	99.
GROSS ACRE-FT	, -	1,202.97	111,800.00 216,000.00	327,800.00	24,946.	23,111	23,353.04 43,765.12	115,176.64	731.27 16,639.34 1,093.22 1,613.17	20,077.00	40,500.00	27,579,99	25,94	48,626.48	127,327.66
SURFACE ACRES		2.26	80.00 160.00	240.00	10.17	8.28	9,29 12.17	39.91	1.95 12.33 2.93 4.24	21.45	30.00	11.33	10,32	13,52	43,45
REMAINING GAS RESERVES (1-1-89)	0000	0	352,954 354,274	707,228	0	o	00	0	0000	0	7,465	00	- C	0	0
CURRENT 6 6AS RATE (40-1988)	0.000	0.0	1,935.7 1,453.0	3,388.7	0.0	0.0	0.0	0.0	0.000	0.0	216.2	0.0	0.0	0.0	0.0
CURRENT OIL RATE (40-1988)	0.000	0.0	635.7 207.3	843.0	0.0	0.0	0.0	0.0	0.000	0.0	. 14.0	0.0		0.0	0.0
PRIM REIM	3,636 849 1,308 1,430	7,223	1,157,880 926,278	2,084,158	59,182	10,873	23,873 53,231	147,160	55,802 0	55,802	157,835	65,927	26,525	59,144	162,470
ING 0	0000	0	129, 193 53, 154	182,347	0	0	00	0	0000	0	735	00	-	. 0	0
	3,636 849 1,308 1,430	7,223	1,028,687 873,124	1,901,811	59,182	10,873	23,873 53,231	147,160	55,802 0	52,802	157,100	65,927	10,013 26,52	59,144	162,470
	0.7813 0.9676 0.7813 0.7813		100,0000 100,0000] 	12.7174	12,5000	13.0435 8.8221		0.0000 33.3300 0.0000		12.5000	14.1667	14, 3000	9.8024	
	23 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	긆	13	H.	*	ব্ য *	24 * 25 *	7F.	4 62 22 * * * *	Æ	Ŋ	* * *** *	, 4C	25.	AL.
OUNER	NERMYR	COMPANY TOTAL	٥٨٪	COMPANY TOTAL	PARA MIA			COMPANY TOTAL	PRES1010	COMPANY TOTAL	RASMUSSEN	SUMMERS			COMPANY TOTAL

Proposed Arrowhead Grayburg Unit Value of Equity Parameters by Owner

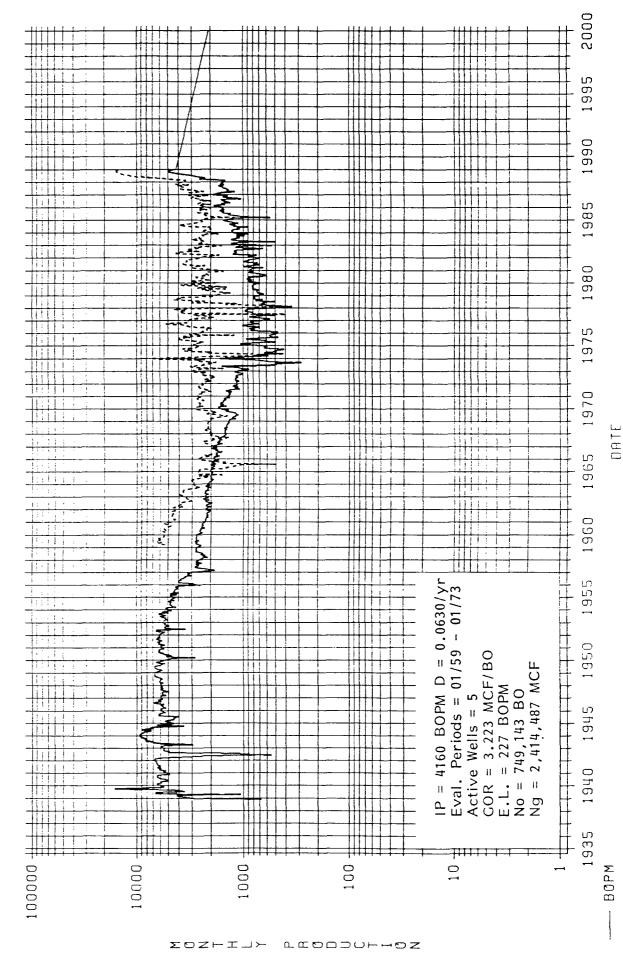
OUNER ===== SUTTON	TRACT ************************************	MI 0.3906 0.4883 0.3906 0.3906	CUMULATIVE OIL (12-31-83) ====================================	REMAINING OIL RESERVES (1-1-89) ====================================	ULTIMATE PRIMARY OIL RECOVERY ====================================	CURRENT 01L RATE (40-1968) ====================================	CURRENT F GRS RATE (40-1988) ===================================	REMAINING GAS RESERVES (1-1-89) ====================================	SURFACE ACRES ======== 0.31 0.14 0.14	GROSS ACRE-FT 134.06 140.85 195.01
COMPRINY TOTAL	TRL		3,612	0	3,612	0.0	0.0	0	1.13	601.49
VETET0	* * * * \$2 * * * *	1.4493 0.0000 1.4493 0.9802	6,745 0 2,653 5,914	6000	6,745 0 2,653 5,914	0.0.0	00000	0000	1.16 0.00 1.03 1.35	2,633.09 2,061.92 2,594.78 4,862.65
COMPANY TOTAL	ITAL		15,312	0	15,312	0.0	0.0	0	3.54	12,152.43
WALSH	25 *	66.6700	402,253	0	402,253	0.0	0.0	0	104.67	44,195.54
иезтину	11 *	0.0000	0	0	0	0.0	0.0	0	00.00	2,510.93
WILLIAMS	Ŋ	87.5000	1,099,699	5,143	1,104,842	5.76	1,513.1	52,257	210.00	283,500.00
ZIA	88(L)	100.0000	83	2,291	2,374	20.7	5,660.0	518,590	52.79	174,160.00
TOTAL	A desired and the second and the sec		30,838,687	5,229,986	36,068,673	33,024.5	128,714.2	16,142,034	5,922.26	5,922.26 8,015,900.44

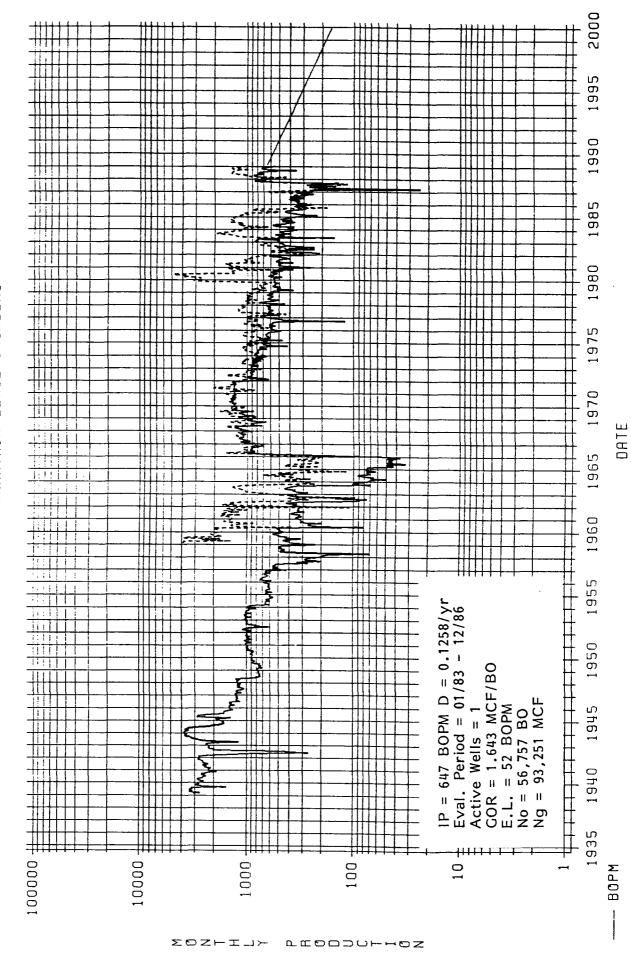

* Working interests are different for production and acreage equities. Indicated WI is for production equity. Consult ownership information tables (Appendix C) for detail. A shape shape shapes are different for production and acreage equities. Indicated WI is for production equity. Consult ownership information tables (Appendix C) for detail. A shape shape shapes are different for production and acreage equities. Indicated WI is for production equity.

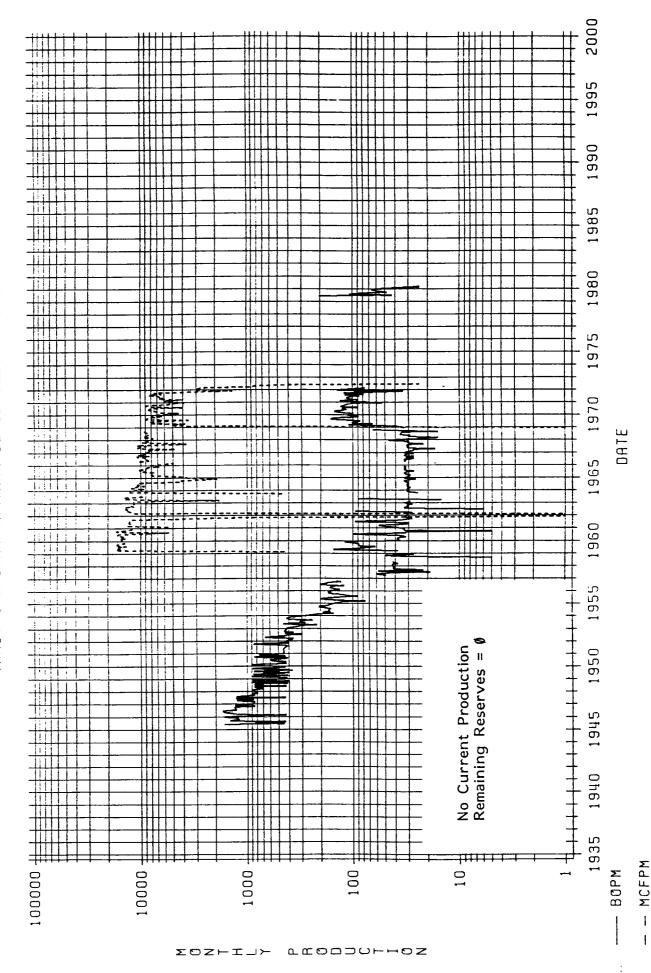
PROPOSED ARROWHEAD GRAYBURG UNIT REMAINING RESERVES

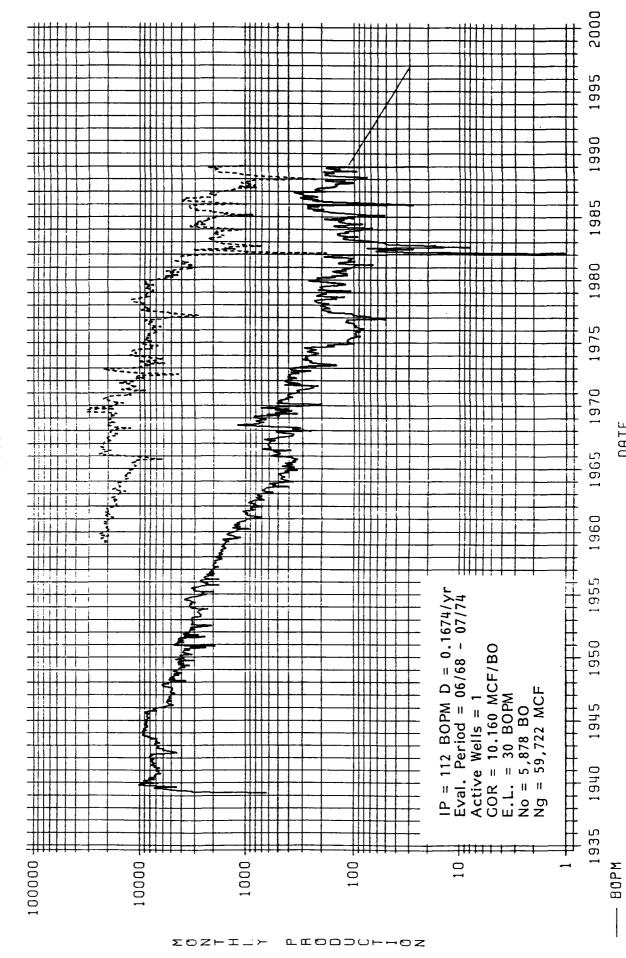

	I.P.	E.L.		REMAINING		REMAINING
	BOPM OR	BOPM OR	DECLINE	OIL	GOR	GAS
TRACT	MCFPM	MCFPM	FACTOR	RESERVES	(MCF/BO)	RESERVES
						
1	0	0	0.0000	0	0	0
2	4160	227	0.0630	749,143	3.223	2,414,487
3	647	52	0.1258	56 , 757	1.643	93,251
4	0	0	0.0000	0	0	0
5	112	30	0.1674	5 , 878	10.160	59,722
* 6	987	433	0.0806	3,190	25.853	82,481
7	160	56	0.0519	24,046	11.566	278,119
8A Upper	62	43	0.1094	2,084	4.013	8,363
* 8A Lower	6461	575	0.1362	2,291	226.398	518,590
8B	929	55	0.0589	178,065	0.999	177,886
9	1117	51	0.1061	120,566	1.673	201,706
10	0	0	0.0000	0	0	0
11	302	52	0.1392	21,552	1.497	32,263
12	614	94	0.0483	129,193	2.732	352,954
13	300	36	0.0596	53,154	6.665	354,274
14	306	52	0.1118	27,263	1.561	42,557
15	9669	368	0.0690	1,617,565	3.030	4,901,223
16	2147	269	0.1217	185,177	7.853	1,454,192
17	7496	329	0.0657	1,309,041	2,763	3,616,881
18	0	0	0.0000	0	0	0
19	0	0	0.0000	0	0	0
20	0	0	0.0000	0	0	0
* 21	2228	912	0.0730	6,820	31.721	216,329
22		630	0.0590	692,746	1.421	984,392
23		0	0.0000	0	0	0
24	0	0	0.0000	0	0.	0
25	0	0	0.0000	0	0	0
26	134	34	0.0264	45,455	7.752	352,364
TOTAL				5,229,984		

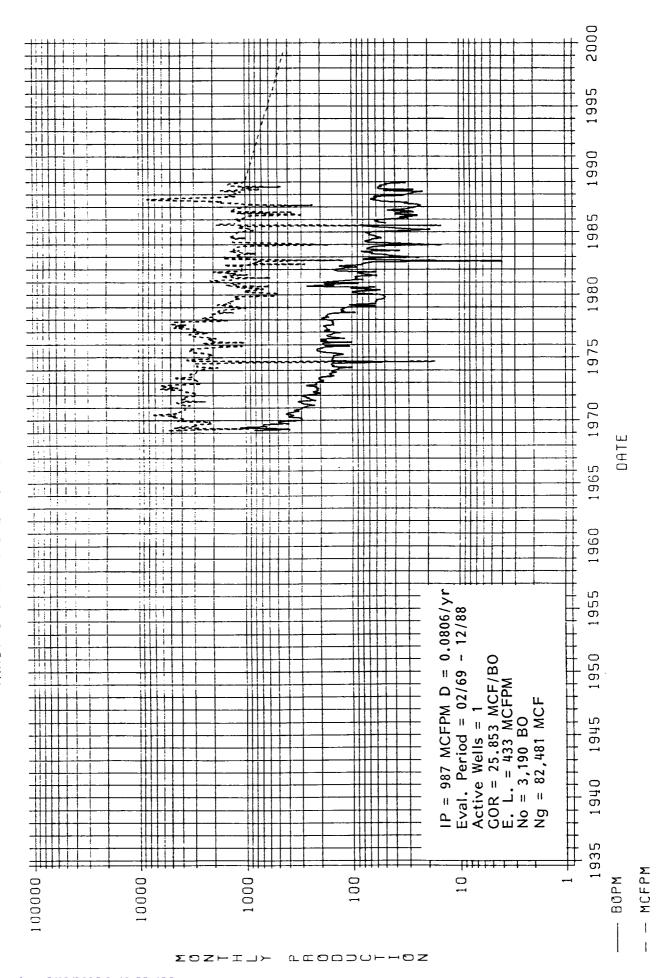
^{*} Denotes reserves based on gas decline.

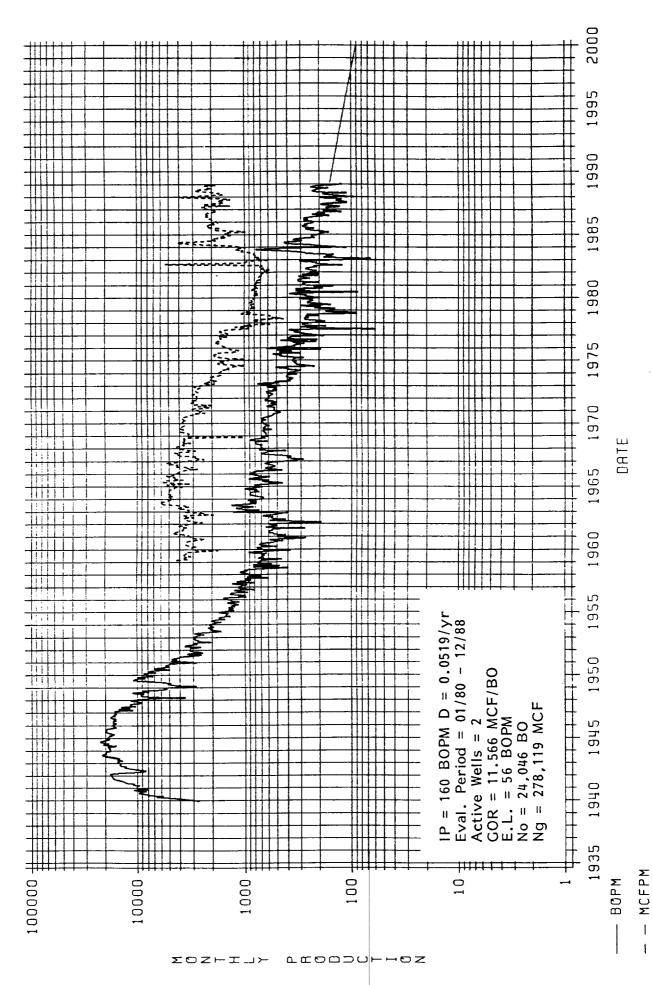

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT = UNIT TOTAL

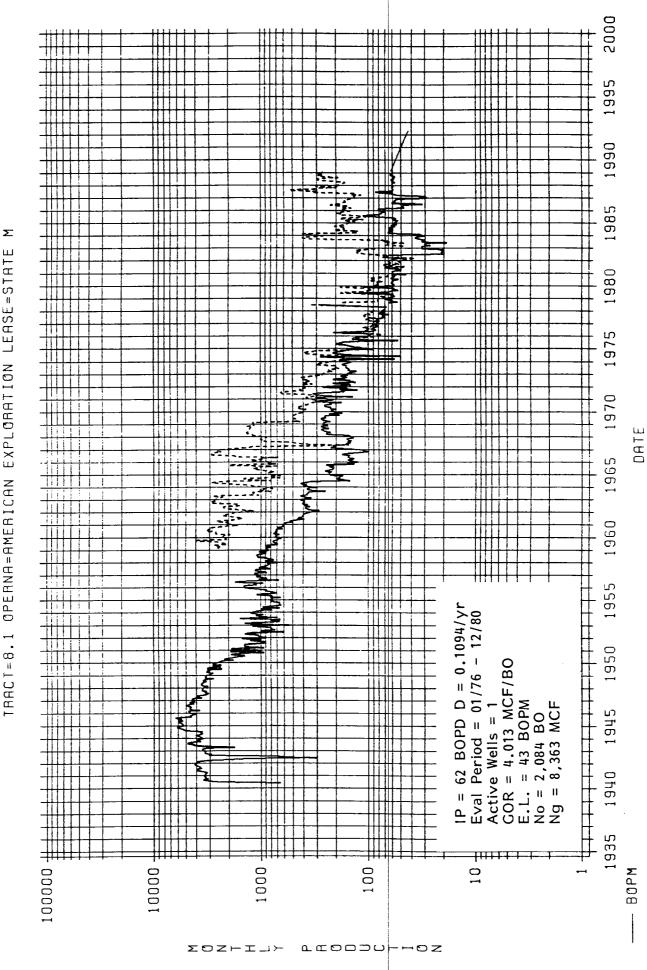

PROPOSED ARROWHEAD GRAYBURG UNIT PROPUCTION PLOT TRACT=1 OPERNA=HARTMAN LEASE=RUBY CROSBY

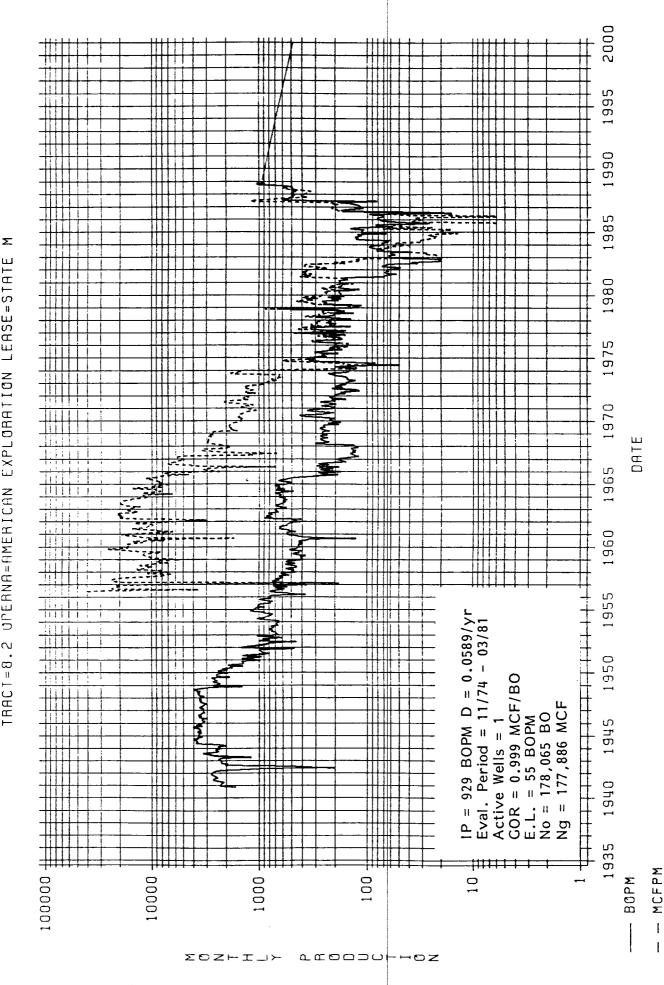

PROPOSED ARROWHEAD GRAYBURG UNIT PROPUSED PRODUCTION PLOT 18ACT = 2 UPERNA=CONGCO LEHSE=LOCKHART B FED

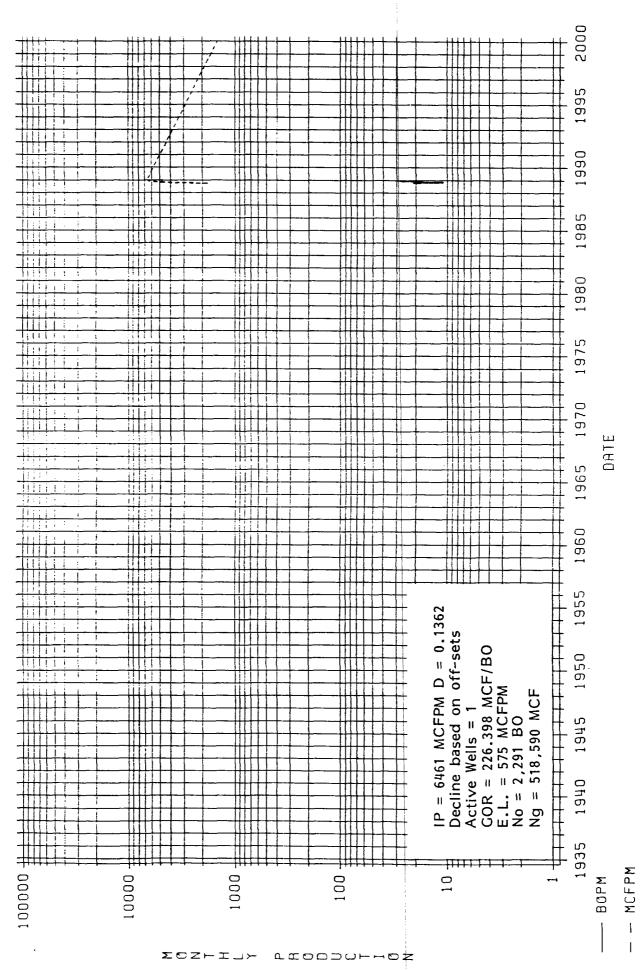

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=3 GPERNA=MARATHON LEASE=SAUNDERS

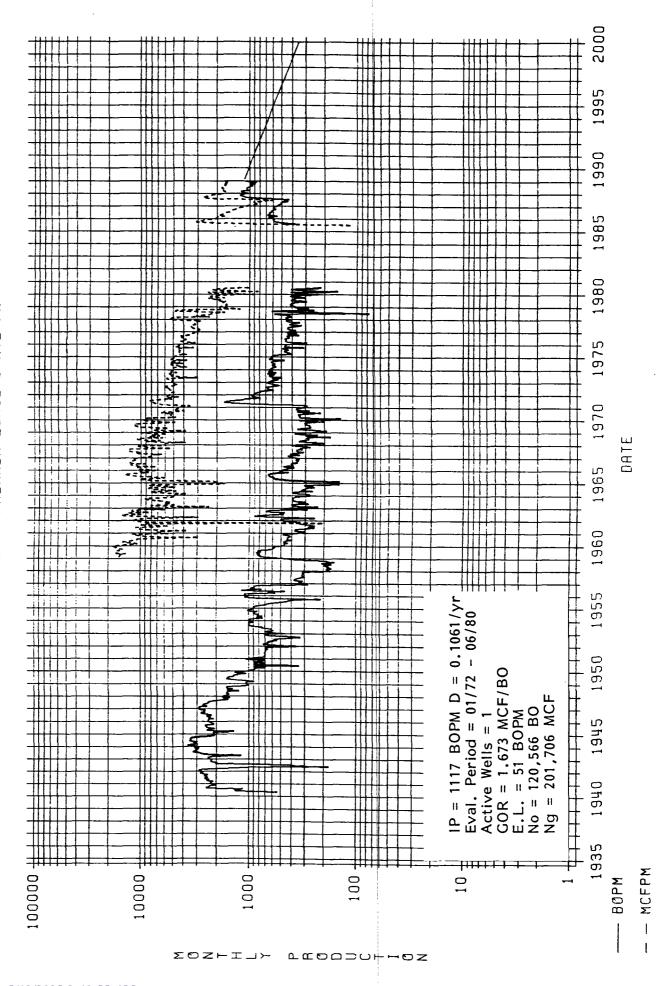

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=4 UPERNA=HARIMAN LEASE=ELLIGIT U.S.

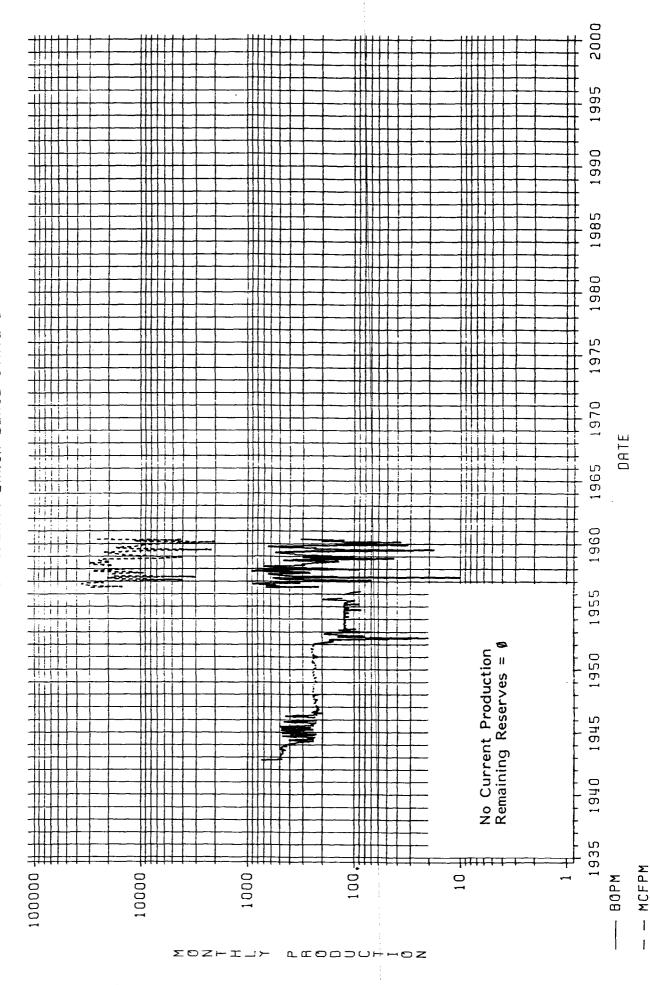

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=5 OPERNA=BRSMUSSEN LEASE=STATE AC

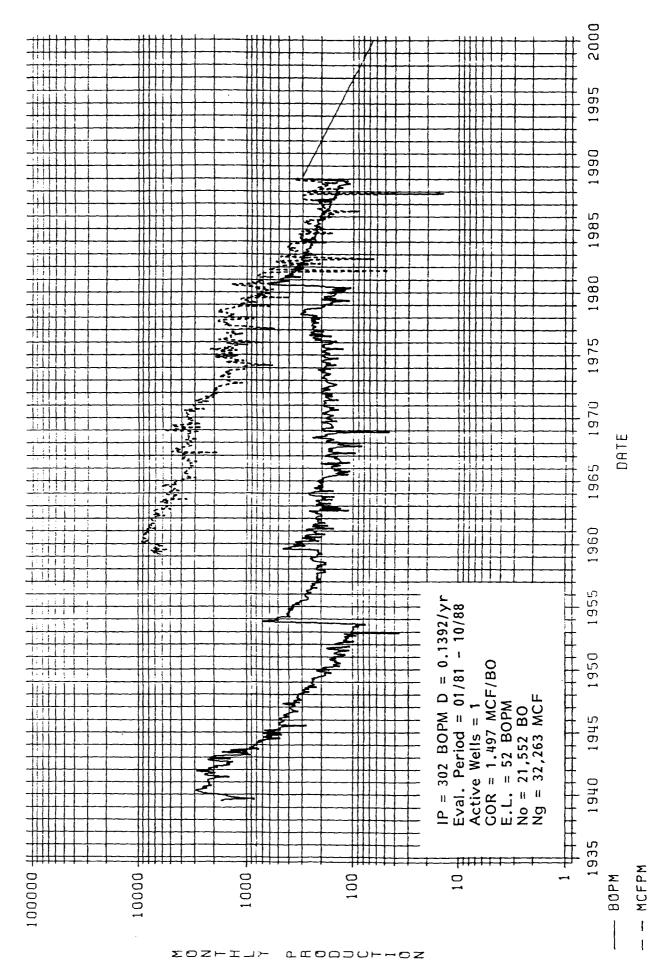

PROPOSED ARROWHEAD GRAYBURG UNIT PROPUSION PLOT TRACT=6 OPERNA=CHEVRON LEASE=GRAHAM STATE J

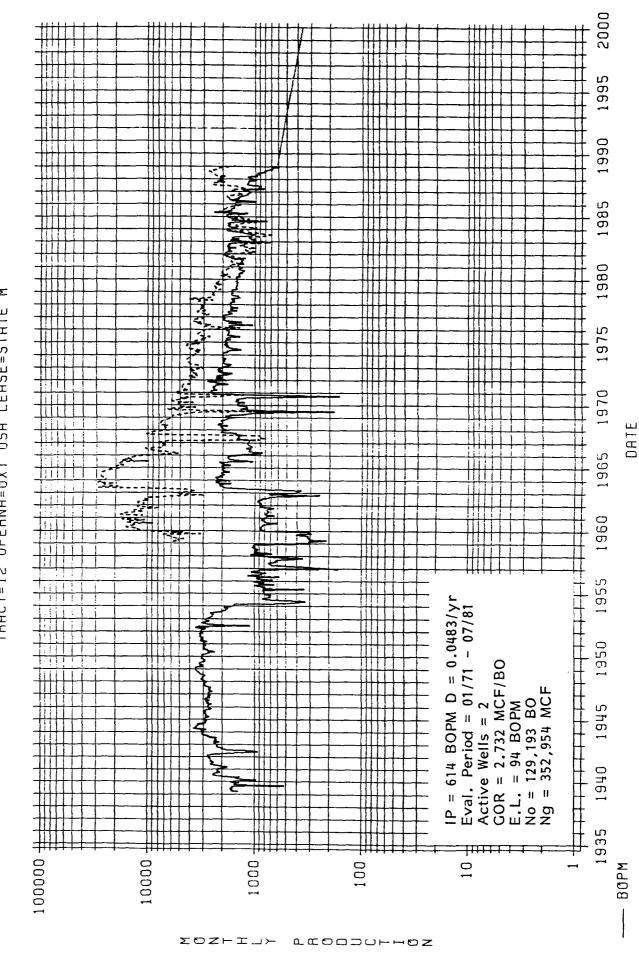

PROPOSED ARROWHEAD GRAYBURG UNIT Production Plot tract=7 @perna=marathon lease=mcdonald state


PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT

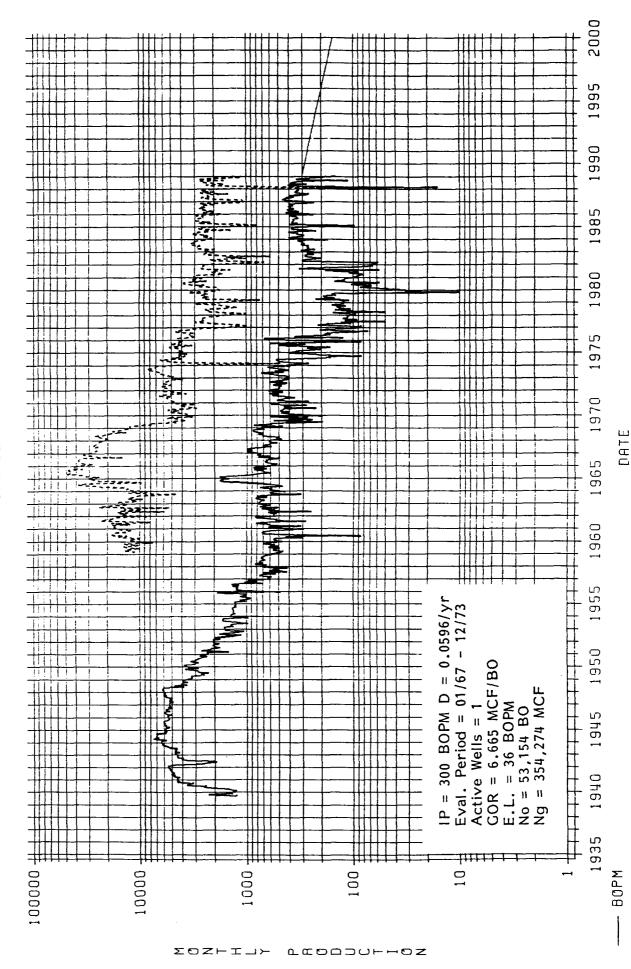

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT


PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=8.3 OPERNA=ZIA ENERGY LEASE=STATE M

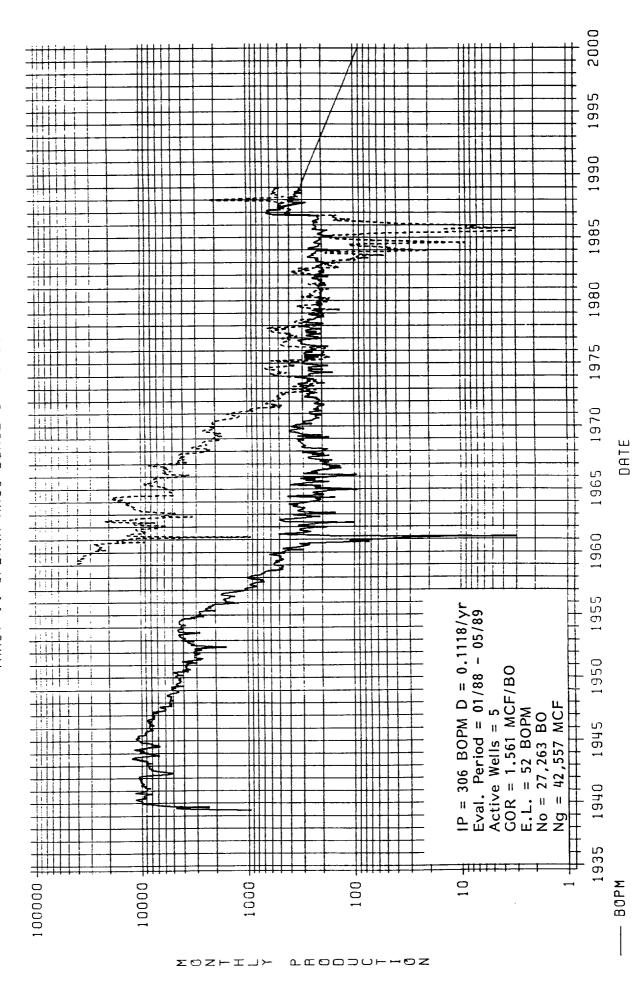

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=9 OPERNA=AMERADA LEASE=STATE PA


PROPOSED ARROWHEAD GRAYBURG UNIT PROPUCTION PLOT TRACT=10 OPERNA=EXXON LEASE=STATE G

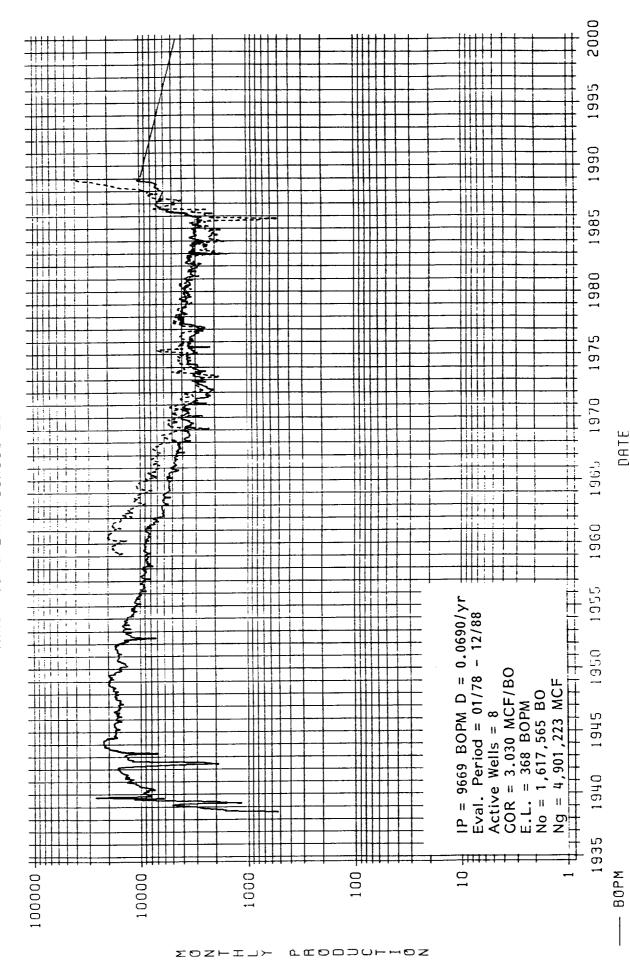
PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=11 @PERNA=HRC0 LEHSE=STATE D DE

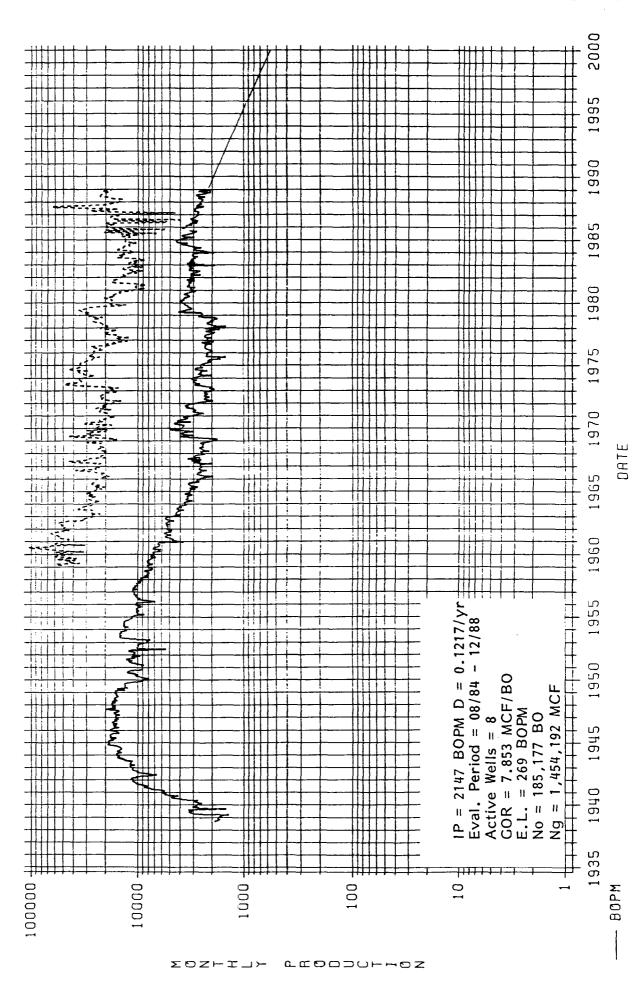


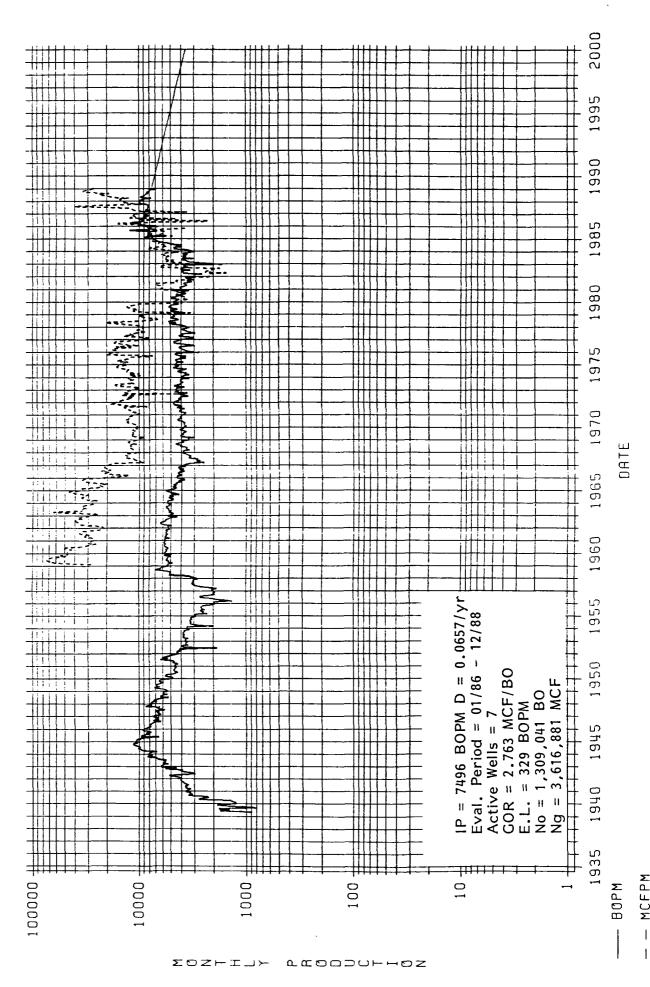
PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=12 OPERNA=OXY USA LEASE=STATE M

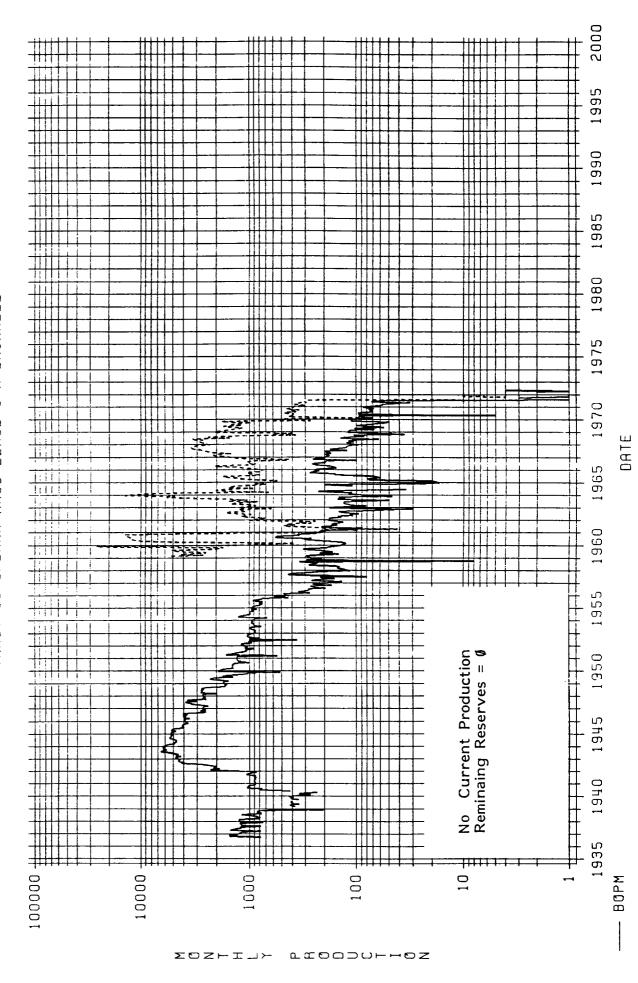


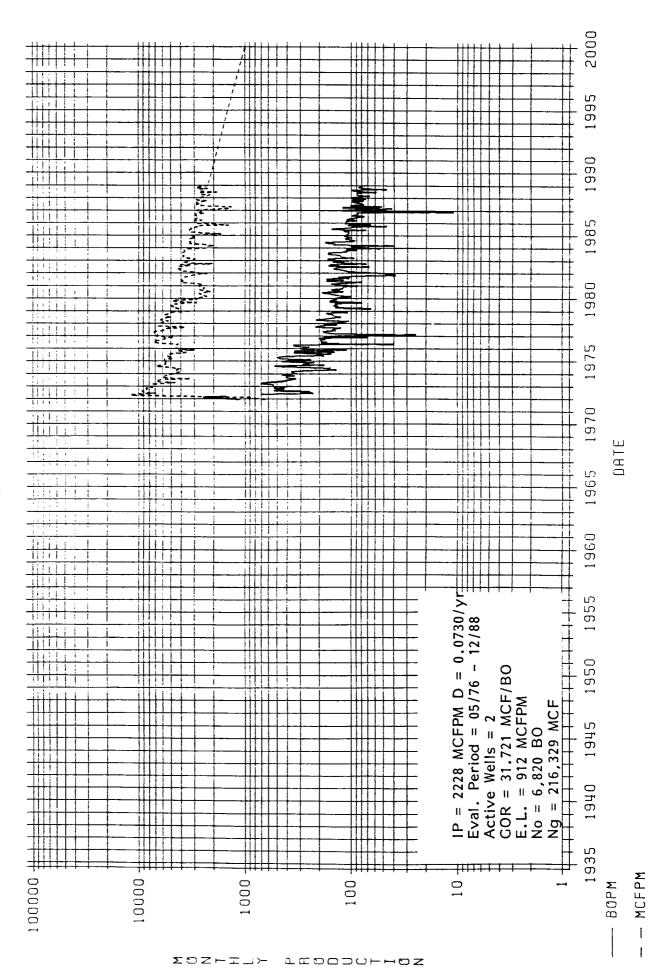
ł

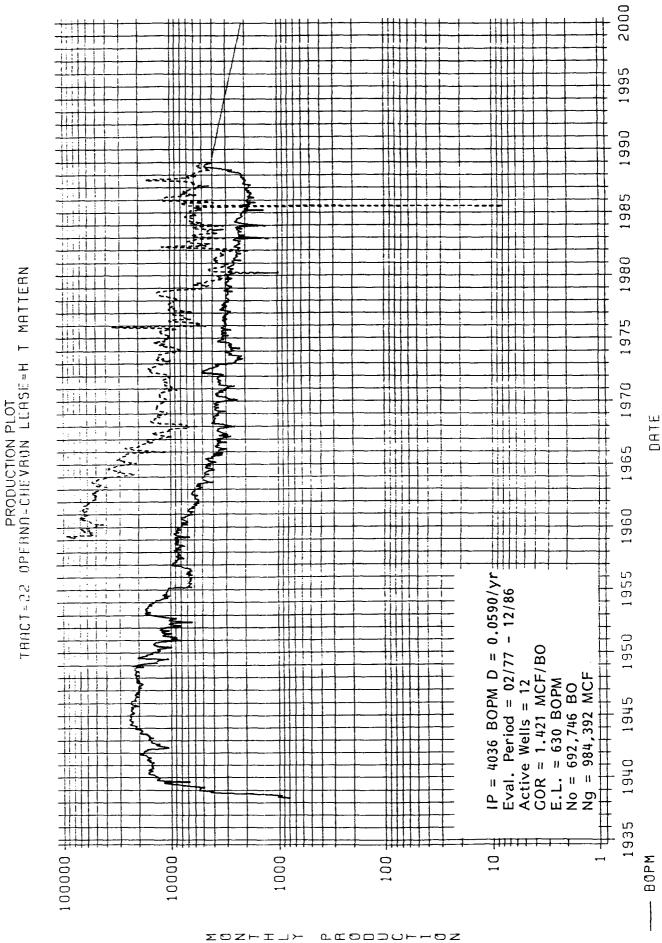

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=13 OPERNA=OXY USA LEASE=STATE N

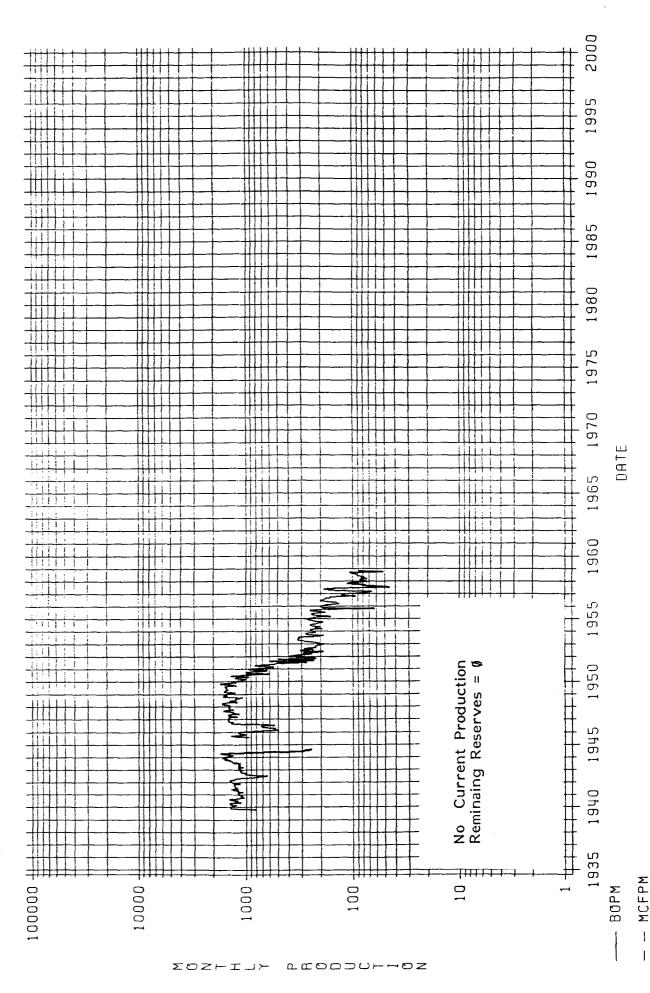

PROPOSED ARROWHEAD GRAYBURG UNIT PROPUSTION PLOT TRAC1=14 OPERNA=ARCO LEASE=STATE 157-D

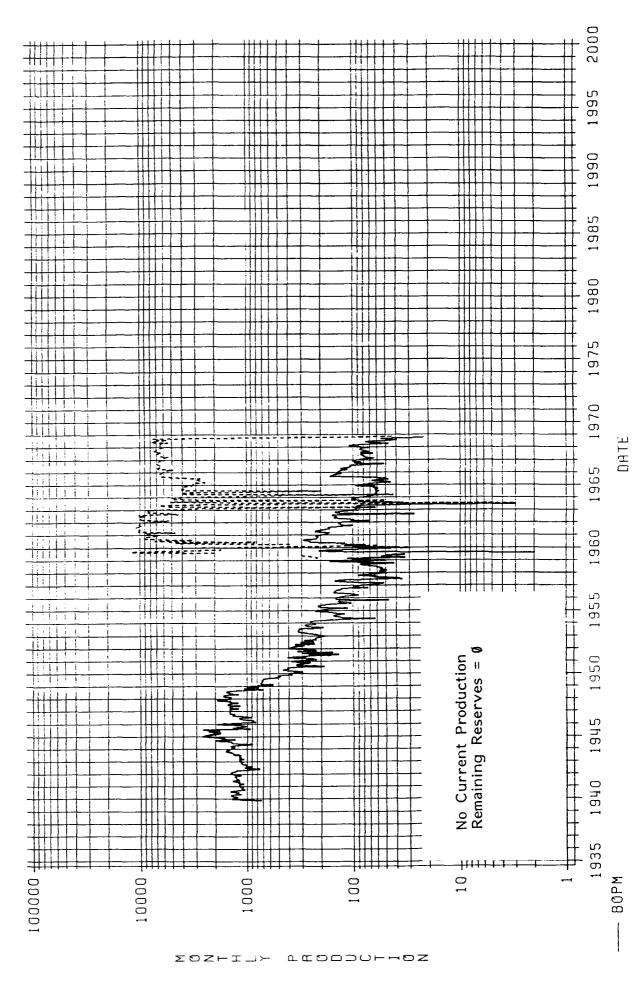

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT THACT=15 OPERNA=CONOCO LEASE=STATE J


PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT = 16 OPERNA = CHEVRON LEASE = M A RAMSAY

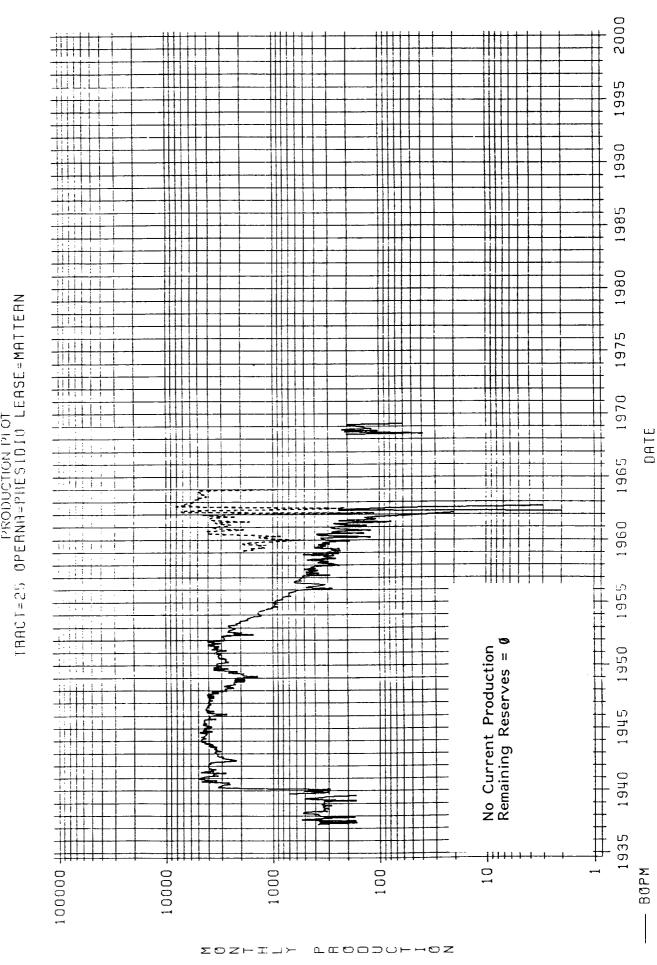

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=17 OPERNA=CHEVRON LEASE=H LEONARD C


PROPOSED ARROWHEAD GRAYBURG UNIT PROPOSE PRODUCTION PLOT TRACT = 19 @PERNA=ARCO LEASE = J M BROWNLEE

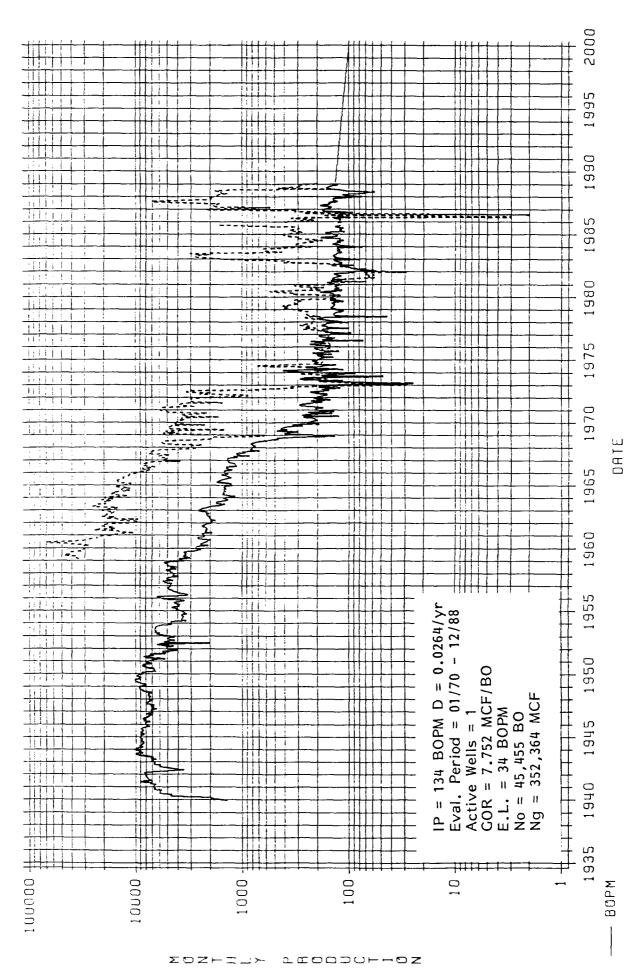

PROPOSED ARROWHEAD GRAYBURG UNIT PROPUCTION PLOT
TRACT=21 OPERNA-CHEVRON LEASE=SANDY


PROPOSED ARROWHEAD GRAYBURG UNIT

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=23 OPERNA=HARIMAN LEASE=MATTERN



PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT 18ACT=24 OPERNA=HARIMAN LEASE=MATTERN


1

PROPOSED ARROWHEAD GRAYBURG UNIT PRODUCTION PLOT TRACT=25 OPERNA-PHES1010 LEASE=MATTERN

1

PROPOSED ARROWHEAD CRAYBURG UNIT PROPUSION PLOT TEACT=26 OPERNR=CHEVRON LEASE=A L CHRISTMAS C

Operator: Chevron U.S.A.

Lease: Ruby Crosby

Description: NE4 NW4 & NW4 NE4

Sec. 18, T-22-S, R-37-E,

Lea County, NM

Acreage: 80 acres

WI	Owners:	3435' to 4000'	Chevron U.S.A.* James A. Davidson Ruth Sutton Larry Nermyr James E. & Laveta T. Burr Jack Fletcher Dasco Energy Para Mia Jack Mussett Burton Veteto Louise C. Summers	35.546875% 12.500000% 0.390625% 0.781250% 0.390625% 0.390625% 14.166670% 12.717370% 7.500000% 1.449300% 14.166700% 100.000040%
		4000'-6800'+	Para Mia Burton Veteto Jack Mussett Dasco Energy Louise C. Summers	27.934800% 2.898600% 7.500000% 30.833300% 30.833300% 100.000000%

Cumulative Oil	Production	(12-31-87)	465,366	во
Oil Production			-	во
Cumulative Oil	Production	(12-31-88)	465.366	BO

Comments: *Ownership limited to the proposed unitized interval only.

Operator: Conoco Inc.

Lease: Lockhart B 1 Federal

Description: S2 N2 & SE4,

Sec. 1, T-22-S, R-36-E,

Lea County, NM

Acreage: 320 acres

WI Owners: Conoco Inc. 25%

Chevron U.S.A. 25%
Amoco Production Co. 25%
ARCO Oil & Gas 25%

100%

Cumulative Oil Production (12-31-87) 1,718,511 BO Oil Production 1988 40,571 BO Cumulative Oil Production (12-31-88) 1,759,082 BO

Operator: Marathon Oil Company

Lease: C. J. Saunders

Description: N2 NW4

Sec. 1, T-22-S, R-36-E,

Lea County, NM

Acreage: 80.24 acres

WI Owners: Marathon Oil Company 100%

Cumulative Oil Production (12-31-87) 528,238 BO Oil Production 1988 8,186 BO Cumulative Oil Production 536,424 BO

Operator: Chevron U.S.A.

Lease: Elliott B 6

Description: W2 SW4

Sec. 6, T-22-S, R-37-E,

Lea County, NM

74.06 acres Acreage:

WI Owners: Surface to 3650'

Chevron U.S.A.*	44.43359375%
James A. Davidson	15.62500000%
Ruth Sutton	0.48828125%
Larry Nermyr	0.97656250%
James E. & Laveta T. Burr	0.48828125%
Jack Fletcher	0.48828125%
Presidio Oil Co.	25.00000000%
Trust U/D Donaldson Brown	12.50000000%
	100.000000008

3650' to 4000'	Chevron U.S.A.	44.43359375%
	James A. Davidson	15.62500000%
	Ruth Sutton	0.48828125%
	Larry Nermyr	0.97656250%
	James E. & Laveta T. Burr	0.48828125%
	Jack Fletcher	0.48828125%
	Para Mia	12.50000000%
	Dasco Energy	12.50000000%
	Louise C. Summers	12.50000000%
		100.000000008

4000' to 6900' Para Mia 27.934800% Burton Veteto 2.898600% Jack Mussett 7.500000% Dasco Energy 30.833300% Louise C. Summers 30.833300% 100.000000%

Cumulative Oil Production (12-31-87) 86,986 BO Oil Production 1988 Cumulative Oil Production (12-31-88) 86,986 BO

*Ownership limited to the proposed unitized interval Comments: only.

Operator: Hal J. Rasmussen Operating, Inc.

Lease: State A AC 2

Description: NE4 & NE4 NW4 & NE4 SE4

Sec. 11, T-22-S, R-36-E,

Lea County, NM

Acreage: 240 acres

WI Owners: Hal J. Rasmussen 12.5%

The Williams Partnership 87.5% 100.0%

 Cumulative Oil Production (12-31-87)
 1,255,146 BO

 Oil Production 1988
 1,653 BO

 Cumulative Oil Production (12-31-88)
 1,256,799 BO

Operator: Chevron U.S.A.

Lease: Graham State (NCT-J)

Description: NW4 NE4

Sec. 25, T-21-S, R-36-E,

Lea County, NM

Acreage: 40 acres

WI Owners: Chevron U.S.A. 100%

Cumulative Oil Production (12-31-87) 34,585 BO Oil Production 1988 517 BO Cumulative Oil Production (12-31-88) 35,102 BO

Comments: Production classified as Penrose Skelly Grayburg.

Operator: Marathon Oil Company

Lease: McDonald State

Description: E2 & E2 NW4 & NW4 NW4 & NE4 SW4

Sec. 13, & NE4 NE4

Sec. 24, T-22-S, R-36-E,

Lea County, NM

Acreage: 520 acres

WI Owners: Marathon Oil Co. 100%

Cumulative Oil Production (12-31-87) 1,978,513 BO Oil Production 1988 2,190 BO Cumulative Oil Production (12-31-88) 1,980,703 BO

Tract No. 8a (Upper)

Operator: American Exploration Co.

Lease: New Mexico M State

Description: SE4

Sec. 18, T-22-S, R-37-E,

Lea County, NM

Acreage: 160 acres

WI Owners: Surface to the Top of the San Andres

American Exploration 100%

 Cumulative Oil Production (12-31-87)
 606,576 BO

 Oil Production 1988
 717 BO

 Cumulative Oil Production (12-31-88)
 607,293 BO

Comments: 'M' State No. 8 classified as Langlie Mattix.

Tract No. 8a (Lower)

Operator: Zia Energy

Lease: New Mexico M State

Description: SE4

Sec. 18, T-22-S, R-37-E,

Lea County, NM

Acreage: 160 acres

WI Owners: Below the Top of the San Andres

Zia Energy 100%

Cumulative Oil Production (12-31-87) 0 BO Oil Production 1988 83 BO Cumulative Oil Production (12-31-88) 83 BO

Comments: 'M' State No. 49 classified as Eunice, San Andres, Southwest

Tract No. 8b

Operator: American Exploration Co.

Lease: New Mexico M State

Description: N2 N2

Sec. 19, T-22-S, R-37-E,

Lea County, NM

Acreage:

156.99 acres

WI Owners: Surface to the Top of the San Andres

American Exploration 100%

Below the Top of the San Andres

Exxon 100%

Cumulative Oil Production (12-31-87) 494,726 BO Oil Production 1988 7,811 BO Cumulative Oil Production (12-31-88) 502,537 BO

Comments: Production classified as Arrowhead Grayburg and Langlie Mattix.

Operator: Amerada Hess Corp.

Lease: State PA

Description: E2 SW4

Sec. 18, T-22-S, R-37-E,

Lea County, NM

Acreage: 80 acres

WI Owners: Amerada Hess Corp. 100%

Cumulative Oil Production (12-31-87) 450,799 BO Oil Production 1988 12,105 BO Cumulative Oil Production (12-31-88) $\overline{462,904}$ BO

Operator: Exxon

Lease: New Mexico G State

Description: SE4 SE4

Sec. 26, T-21-S, R-36-E,

Lea County, NM

Acreage: 40 acres

WI Owners: Exxon 100%

Cumulative Oil Production (12-31-87) 49,446 BO Oil Production 1988 0 BO Cumulative Oil Production (12-31-88) 49,446 BO 49,446 BO

Operator: ARCO Oil & Gas

Lease: State D DE

Description: W2 SE4

Sec. 36, T-21-S, R-36-E,

Lea County, NM

Acreage: 80 acres

WI Owners: Surface to 4000' ARCO Oil & Gas 100.000%

 Below 4000'
 McBride Oil & Gas
 24.000%

 Hanson-McBride Pet. Co.
 10.000%

 Abby Corporation
 25.000%

 Barbara Hannifin
 16.000%

 ENRON
 21.875%

 Westway Petroleum
 3.125%

 100.000%

 Cumulative Oil Production (12-31-87)
 222,586 BO

 Oil Production 1988
 1,728 BO

 Cumulative Oil Production (12-31-88)
 224,314 BO

Operator: OXY U.S.A.

Lease:

State M

Description: W2 SW4

Sec. 36, T-21-S, R-36-E,

Lea County, NM

Acreage:

80 acres

WI Owners:

OXY U.S.A.

100%

 Cumulative Oil Production (12-31-87)
 1,018,763 BO

 Oil Production 1988
 9,924 BO

 Cumulative Oil Production (12-31-88)
 1,028,687 BO

Operator: OXY U.S.A.

Lease:

State N

Description: SW4

Sec. 2, T-22-S, R-36-E,

Lea County, NM

Acreage:

160 acres

WI Owners:

OXY U.S.A.

100%

Cumulative Oil Production (12-31-87) 870,010 BO Oil Production 1988 3,114 BO Cumulative Oil Production (12-31-88) $\overline{873,124}$ BO

Operator: ARCO Oil & Gas

Lease: State 157 D

Description: S2

Sec. 12, T-22-S, R-36-E,

Lea County, NM

Acreage: 320 acres

WI Owners: ARCO Oil & Gas 100%

Cumulative Oil Production (12-31-87) 1,354,846 BO Oil Production 1988 4,001 BO Cumulative Oil Production (12-31-88) 1,358,847 BO

Released to Imaging: 5/19/2025 8:40:55 AM

Operator: Conoco Inc.

Lease: State J 2

Description: N2 & SE4

Sec. 2, T-22-S, R-36-E,

Lea County, NM

Acreage: 480.64 acres

WI Owners: Conoco Inc. 100%

Cumulative Oil Production (12-31-87) 4,759,163 BO Oil Production 1988 94,014 BO Cumulative Oil Production (12-31-88) 4,759,163 BO 4,853,177 BO

Operator: Chevron U.S.A.

Lease: W. A. Ramsay (NCT-A & B)

Description: NW4 & NE4 NE4 & S2 NE4, Sec. 25,

& E2 & SE4 NW4 & NE4 SW4 & S2 SW4

Sec. 35, T-21-S, R-36-E,

Lea County, NM

Acreage: 760 acres

WI Owners: Chevron U.S.A. 100%

Cumulative Oil Production (12-31-87) 3,871,847 BO Oil Production 1988 28,908 BO Cumulative Oil Production (12-31-88) 3,900,755 BO

Operator: Chevron U.S.A.

Lease: Harry Leonard (NCT-C)

Description: N2 & E2 SW4

Sec. 36, T-21-S, R-36-E,

Lea County, NM

Acreage: 400 acres

WI Owners: Chevron U.S.A. 100%

 Cumulative Oil Production (12-31-87)
 2,797,952 BO

 Oil Production 1988
 99,620 BO

 Cumulative Oil Production (12-31-88)
 2,897,572 BO

Released to Imaging: 5/19/2025 8:40:55 AM

Operator: Chevron U.S.A.

Lease: State 36

Description: E2 & SE4,

Sec. 36, T-21-S, R-36-E,

Lea County, NM

Acreage:

80 acres

WI Owners:

Chevron U.S.A.

100.00%

Cumulative Oil Production (12-31-87) 0 BO Oil Production 1988 0 BO Cumulative Oil Production (12-31-88) 0 BO

Operator: ARCO Oil & Gas

Lease: J. M. Brownlee

Description: SW4

Sec. 25, T-21-S, R-36-E,

Lea County, NM

Acreage:

160 acres

WI Owners:

ARCO Oil & Gas

100%

Cumulative Oil Production (12-31-87) 489,027 BO Oil Production 1988 0 BO Cumulative Oil Production (12-31-88) 489,027 BO

Operator: Chevron U.S.A.

Lease: Kingwood

Description: W2 SE4, Sec. 25, T-21-S, R-36-E,

Lea County, NM

Acreage: 80 acres

Chevron U.S.A. WI Owners: 100.00%

Cumulative Oil Production (12-31-87) 0 BO Oil Production 1988 0 BO Cumulative Oil Production (12-31-88) 0 BO

Operator: Chevron U.S.A.

Lease:

Sandy

Description:

E2 SE4,

Sec. 25, T-21-S, R-36-E,

Lea County, NM

Acreage:

80 acres

WI Owners:

Top of the Grayburg to 3900'

 Chevron U.S.A.
 93.75%

 John Bryant
 6.25%

 100.00%

100.00%

3900'-3950' J. H. Moore

3950'-6250' Chevron U.S.A. 100.00%

Cumulative Oil Production (12-31-87) 38,777 BO Oil Production 1988 929 BO Cumulative Oil Production (12-31-88) 39,706 BO

Comments: Production classified as Penrose Skelly Grayburg

Operator: Chevron U.S.A.

Lease: H. T. Mattern (NCT-D, E, & F)

Description: N2 NE4 & SW4 Sec. 1,

& N2 Sec. 12, T-22-S, R-36-E, & W2 NW4 & E2 SW4 Sec. 6,

& NW4 Sec. 7, T-22-S, R-37-E,

Lea County, NM

Acreage: 868.39 acres

WI Owners: Chevron U.S.A. 100%

Cumulative Oil Production (12-31-87) 4,729,801 BO Oil Production 1988 43,216 BO Cumulative Oil Production (12-31-88) 4,773,017 BO

Operator: Chevron U.S.A.

Lease:

Mattern

Description: NW4 SW4

Sec. 7, T-22-S, R-37-E,

Lea County, NM

Acreage:

36.98 acres

WI Owners:

Presidio Oil Co.	33.330000%
Trust U/D Donaldson Brown	16.670000%
Chevron U.S.A.*	35.546875%
James A. Davidson	12.500000%
James E. Burr	0.390625%
Larry E. Nermyr	0.781250%
Jack Fletcher	0.390625%
Ruth Sutton	0.390625%
	100.000000%

Cumulative Oil	Production	(12-31-87)	167,424	во
Oil Production	1988		•	ВО
Cumulative Oil	Production	(12-31-88)	167,424	ВО

*Ownership limited to the proposed unitized interval Comments: only.

Tract No. 24

Operator: Chevron U.S.A.

Lease: Mattern

Description: NE4 SW4 & NW4 SE4

Sec. 7, T-22-S, R-37-E,

Lea County, NM

Acreage: 80

80 acres

WI Owners: Surface to 3620'

Presidio	Oil Co.		33.330	8000
Trust U/	D Donaldson	Brown	16.670	8000
Chevron	U.S.A.*		35.546	875%
James A.	Davidson		12.500	8000
James E.	Burr		0.390	625%
Larry Ne	rmyr		0.781	250%
Jack Fle	tcher		0.390	625%
Ruth Sut	ton		0.390	625%
			100.000	8000

3620'-4000'	Chevron U.S.A.	35.5468750%
	James A. Davidson	12.5000000%
	James E. Burr	0.3906250%
	Larry Nermyr	0.7812500%
	Jack Fletcher	0.3906250%
	Ruth Sutton	0.3906250%
	Para Mia	13.0434780%
	Dasco Energy	14.4927535%
	Louise C. Summers	14.4927535%
	Burton Veteto	1.4492750%
	Jack Mussett	6.5217390%
		99.9999990%

4000' to 6500'+	Para Mia	26.0869560%
	Dasco Energy	28.9855070%
	Louise C. Summers	28.9855070%
	Burton Veteto	2.8985500%
	Jack Mussett	13.0434780%
		99.9999980%

Cumulative Oil	Production	(12-31-87)	183,025	во
Oil Production	1988		U	ВО
Cumulative Oil	Production	(12-31-88)	183,025	ВО

Comments: *Ownership limited to the proposed unitized interval only.

Tract No. 25

Operator: Presidio Oil Co.

Lease:

Mattern

Description:

S2 S2

Sec. 7, T-22-S, R-37-E,

Lea County, NM

Acreage:

157.00 acres

WI Owners:

Surface to 3610'*

 Mary Walsh
 66.67000000%

 Presidio Oil Co.
 22.22000000%

 Trust U/D Donaldson Brown
 11.11000000%

 100.00000000%

 3610'-4000'
 Mary Walsh
 66.67000000%

 Para Mia
 8.82265741%

 Dasco Energy
 9.80266437%

 Louise C. Summers
 9.80266437%

 Burton Veteto
 0.98026643%

 Jack Mussett
 3.92078895%

 99.99904153%

 4000' to 6800'+
 Para Mia
 26.47061930%

 Dasco Energy
 29.41093420%

 Louise C. Summers
 29.41093420%

 Burton Veteto
 2.94109340%

 Jack Mussett
 11.76354320%

 99.99712430%

Cumulative Oil Production (12-31-87) 603,349 BO Oil Production 1988 0 BO Cumulative Oil Production (12-31-88) $\overline{603,349}$ BO

Comments: *Ownership changes at 3630' in SE SE, 3620' in SW SE, 3635' in SE SW, 3610' in SW SW.

Tract No. 26

Operator: Chevron U.S.A.

Lease: A. L. Christmas (NCT-C)

Description: W2 W2 & SE4 NW4 & SW4 NE4 & E2 NE4

Sec. 18, T-22-S, R-37-E,

Lea County, NM

Acreage: 307.96 acres

WI Owners: Chevron U.S.A. 100%

 Cumulative Oil Production (12-31-87)
 1,702,534 BO

 Oil Production 1988
 1,404 BO

 Cumulative Oil Production (12-31-88)
 1,703,938 BO

Comments: Production classified as Arrowhead and Eumont for Well No. 1.

FIRST TECHNICAL COMMITTEE MEETING PROPOSED ARROWHEAD GRAYBURG UNIT AUGUST 4, 1988

A Technical Committee meeting for the proposed Arrowhead Grayburg Unit was held at 9:30 a.m. on August 4, 1988, at Chevron's Division office in Hobbs, New Mexico. Fifteen attendees, representing 11 companies and 90.8% of the cumulative oil produced as of 12-31-87, were present and are shown on the attached list.

Mr. T. A. Etchison, Chevron, welcomed the attendees and briefly reviewed the agenda for the meeting. He then reviewed the events of the Working Interest Owners' meeting held on May 5, 1988. Mr. Etchison recommended that the voting procedure of 75% cumulative oil as of 12-31-87 for approval, as adopted by the Working Interest Owners, be used by the Technical Committee. Mr. Etchison asked if there was any objection and there was none. He also emphasized that the Technical Committee was a working group and that votes by the Technical Committee representatives would not be binding on the WIO's.

Mr. Etchison then reviewed the charges for the Technical Committee as set by the Working Interest Owners. He pointed out that due to variations in ownership with depth on several tracts, the acreage equity parameter could be more readily handled if it were to be changed to be gross acre-ft. Mr. Don Jacks, Exxon, asked if the variations in ownership occurred within the limits of the Grayburg, and Mr. Etchison responded yes. Mr. Etchison then asked if there was any objection to changing the equity parameter of "Gross Acreage" to "Gross Acre-ft" and there was none.

Mr. Etchison then presented a tentative timetable for the Technical Committee study (attached). He stated that a completed Technical Committee report to the WIO's could be ready as early as April of 1989, but to do this, all parties' dedicated efforts will be needed. He stressed that the timetable was tentative, and that the Technical Committee proceedings may take longer. He also pointed out that it is planned to postpone the calculation of the Unit equity parameter table until the other charges were nearly complete.

Mr. R. A. Smith, Chevron, presented the geological information used by Chevron to select the proposed Unit boundaries. He stated that the proposed vertical limits extend from -150's.s. or the top of the Grayburg formation to -1500's.s. Mr. Smith stated that these boundaries minimize the number of workovers required to isolate Penrose production in wells that produce from the Queen and Grayburg formation. It was also pointed out that -150's.s. appeared

to be the gas-oil contact. He noted that this was the same approach used in the EMSU. Mr. Smith stated that extending the Unit to -1500' s.s. would include the greater part of the San Andres formation, to within 100' of the Glorietta. The purpose for inclusion of the San Andres was to ensure adequate water supply and to simplify accounting should a water supply well produce hydrocarbons.

Mr. Smith then continued by defining the method used to establish the areal boundaries. He stated that the western edge was defined structurally by -325' s.s. The eastern boundaries were defined by a percent dolomite evaluation of the pay interval. Mr. Smith stated that wells with less than 60% dolomite (greater than 40% sand) would have poor pay quality and probably not be waterfloodable. This was reenforced by an iso-cumulative oil production map which indicated that cumulative oil production is related to percent dolomite.

Mr. Jay Vashler, Conoco, asked if the San Andres was being included for water supply only. Mr. Etchison responded that there had been some discrepancies on the call for the top of the San Andres, and that the entire oil column would be evaluated for waterflooding. The major part of the San Andres which is not oil productive will be unitized solely for water supply. Ms. Cindy Ellis, ARCO, questioned if Chevron planned to waterflood the Queen formation where it is included in the western portion of the Unit. She expressed concern about damage to the Eumont gas interval, and stated that the top of the Grayburg may be a better unit boundary. Bryan Cotner, Chevron, pointed out that it would be impossible to allocate production to the Grayburg for wells that have produced both Queen and Grayburg, supporting the proposed boundary at -150' s.s. which does not require He remarked that excluding water injection an allocation. from the Queen to protect gas reserves above the Unit could be handled in operation of the waterflood. After brief additional discussion, Mr. T. A. Etchison sought approval of the boundaries as proposed by Chevron to be the area subject to the Technical Committee report. There was no objection. The Unit boundaries for the Technical Committee report are shown on the attached plat, and have vertical limits of a depth of -150 ft. s.s. or the top of the Grayburg formation, whichever is shallower, to a depth of -1500 ft. s.s.

Mr. Bryan Cotner then reviewed information packets distributed to attendees. He asked each committee representative to review the cumulative oil and ownership data for accuracy, and to contact him if there was a discrepancy. He also stated that the cumulatives were based on the New Mexico Oil & Gas Engineering Committee reports.

Mr. Etchison then requested that the Unit area operators complete wellbore data sheets supplied. The information is to be used to construct wellbore diagrams and to estimate drilling and recompletion costs for the proposed Unit. Representatives were asked to complete the forms for any

wells that they operate in, or within a 1/2 mile radius beyond, the areal boundaries of the Unit.

Mr. Steve Burke, Chevron, then distributed Division Order and Payee List data sheets to be completed by the Unit area operators. Mr. Burke stated that the ownership sheets would be used to verify and correct information that Chevron has already compiled, and to obtain addresses of the royalty owners.

After several comments and questions concerning the proposed unit boundaries the meeting was adjourned at 11:00 a.m.

If you have any questions, additions or corrections concerning the above minutes, please contact Mssrs. T. A. Etchison or B. C. Cotner at (505) 393-4121.

BCC:bdw

PROPOSED ARROWHEAD GRAYBURG UNIT FIRST TECHNICAL COMMITTEE MEETING HOBBS, NEW MEXICO AUGUST 4, 1988

LIST OF ATTENDEES

Bryan Cotner Chevron Reservoir Eng. Randy Smith Chevron Geologist John Lawrence OXY U.S.A., Inc Reservoir Eng. David Mussett Jack Mussett	J
John Lawrence OXY U.S.A., Inc Reservoir Eng.	I
	I
David Mussett Jack Mussett	1 •
David Mussett Dack Mussett	1 •
Don Jacks Exxon Joint Int Reservoir Eng.	
Greg Cielinski Sun E & P Reservoir Eng.	
Jerry Hoover Conoco Sr. Res. Eng.	<u> </u>
Jay Vashler Conoco Engineer	
George Ricks DASCO	
Don Bratton Zia Engineer	
Bob Anthony Amerada Hess Oper. Engineer	<u>er</u>
Tom Zapatka Marathon Oper. Engineer	<u>er</u>
Ted Etchison Chevron Sr. Pet. Eng.	<u>:</u>
Steve Burke Chevron Land Rep.	
Cindy Ellis ARCO Engineer	
	

SECOND TECHNICAL COMMITTEE MEETING PROPOSED ARROWHEAD GRAYBURG UNIT

October 27, 1988

A Technical Committee meeting for the proposed Arrowhead Grayburg Unit (AGU) was held at 9:30 a.m. on October 27, 1988. Nineteen attendees representing 11 companies and 88% of the cumulative oil production as of 12-31-87 were present and are shown on the attached list.

Mr. T. A. Etchison, Chevron, welcomed the attendees and briefly reviewed the agenda for the meeting. He reviewed the events of the First Working Interest Owners' meeting, the First Technical Committee meeting, and the charges for the Technical Committee. Mr. Etchison then reviewed the responses to the wellbore and Division Order information requests that have been received by Chevron. He stated that the wellbore information that Chevron has received represents 75% of the wellbores within the proposed unit.

Mr. Bryan Cotner, Chevron, reviewed the secondary recovery prediction originally presented at the May 5, 1988 Working Interest Owners' meeting. He reiterated that the prediction was based on the same analogies used by the Eunice Monument South Unit (EMSU) and that the resulting incremental secondary recovery for the AGU is estimated to be 17 MMSTBO.

Mr. Cotner then discussed the basis of the tentative well locations for the proposed unit. He stated that the initial plan would call for an 80-acre 5-spot consisting of 74 producers and 52 injectors. Future adjustments to the pattern may be made based on experience in the EMSU or based on possible pulse testing work in the AGU. The tentative locations utilize all actively producing wells within the unit, and any "new drills" will have to be thought to have sufficient reserves to justify drilling. The reserves will be based on both primary and secondary potential. Cotner gave examples of several wells that were plugged-back out of the Grayburg while producing at rates that would be commercial to produce today. Some of the wells were abandoned because they stopped flowing or because they started producing moderate amounts of water. When asked if the offsetting producers would have produced the remainder of the reserves left in the plugged-back well, Mr. Cotner made reference to the recent Conoco recompletion of the Lockhart 'B' No. 7 which is producing around 80 BOPD, and which is on the same proration unit as the No. 4 which was plugged back in 1974.

Mr. Cotner stated that 69 of the 124 tentative locations will come from existing completions, requiring 55 additional

wells to come from plugbacks, re-entries, or redrills. Because of the significant need for additional wells, some method of wellbore dedication incentive should be used. He estimated that 5 to 10 additional wellbores would be contributed with an incentive, reducing total unit costs by approximately \$1.5MM.

Mr. Russell Miller, Chevron, gave an overview of the surface production and injection facilities based on the tentative well locations and preliminary performance predictions. production gathering system will consist of five production testing satellite batteries and one central treating and sales battery. The production gathering system will consist of 270,000 feet of low pressure fiberglass pipe, including 2" and 3" flowlines and 6" liquid transfer lines. injection system will consist of 15 injection manifolds, 106,000 feet of 2" through 4" high pressure fiberglass pipe, and 18,000 feet of 6" lined steel trunk line. The water injection plant will initially consist of de-staged vertical cam pumps, with stages added as pressure require-The electrical distribution system will ments dictate. consist of 25 miles of new electrical lines. estimated that 18 batteries would be dismantled. Mr. Miller estimated total surface facilities costs at \$8.95MM and that construction could be complete within one year of commence-The original cost estimate presented to the Working Interest Owners was \$9.2MM.

Mr. Etchison outlined recent production tests in Tract 8a located in the SE/4 of Section 18, T-22-S, R-37-E. Energy has completed the State No. 49 'M' in Grayburg Zone 5 and lower Grayburg (as defined by Chevron) classified as Eunice, S.W. San Andres. Zia's ownership begins at the top of Zone 5. The well has produced at rates as high as 3.5 BOPD + 305 MCFPD + 752 BWPD. It is currently producing 1 BOPD + 150 MCFPD + 500 BWPD. Mr. Etchison stated that this being brought to the attention of the Technical Committee for informational purposes. After discussion concerning the consequences of deleting Zia's acreage from the unit, Mr. Don Bratton of Zia Energy said that they were testing the interval to determine its value, and their participation in the unit would be dependent on whether or not they would have fair compensation for their gas value. If not, they would seek removal from the unit.

Mr. Etchison then discussed the need and complexity of defining useable wellbores. He stated that, generally, wells currently producing or plugged-back wells that are restored to their previously producing environments would be considered as useable. He stated that new or alternate wells would have to be compatible with the needs of the unit, in terms of depth and ability to be worked on. The

topic will be discussed at the next Technical Committee meeting at which time Chevron will propose a set of definitions.

Mr. Etchison then discussed the drawbacks of the use of wellbores as an equity parameter in participation negotiations, and recommended that it be removed from the equity parameters to be calculated. He proposed that a wellbore dedication incentive, such as wellbore penalties, would be more appropriate than the use of useable wellbores in the participation formula. A wellbore value of between \$100M and \$120M was presented as the probable value to be used in the incentive method. After a brief discussion concerning wellbore penalties, Chevron moved that useable wellbores be removed from the equity parameter list, and that the Technical Committee recommend a wellbore dedication incentive method. The motion was seconded by Conoco and passed with 80.2% voting for, 8.2% voting against, and 11.6% not voting (absent). Following the vote there was additional discussion concerning wellbore penalties and wellbore inventories as methods of incentive. It was decided that various wellbore dedication incentive scenarios will be discussed at the next meeting.

Mr. Etchison asked if there were any other items for discussion. Mr. Don Bratton asked if a cut-off date for production that is to be used for equity calculations had been considered. Mr. Etchison commented that a cut-off date has been delayed until as late in the Technical Committee proceedings as possible as current production and remaining reserves will be the last equity parameters addressed.

Mr. Etchison then re-capped the accomplishments of the meeting and stated that the next meeting was tentatively scheduled for late January or early February 1989. He said items for discussion at the next meeting would include: defining useable wellbores, wellbore contribution incentives, estimates of drilling and workover costs for the unit, an updated secondary recovery prediction, and equity parameter calculations. The meeting adjourned at 11:15 a.m.

If you have any questions, additions or corrections concerning the minutes, please contact Mr. T. A. Etchison or Mr. B. C. Cotner at (505) 393-4121.

PROPOSED ARROWHEAD GRAYBURG UNIT SECOND TECHNICAL COMMITTEE MEETING HOBBS, NEW MEXICO October 27, 1988

LIST OF ATTENDEES

NAME		COMPANY	TITLE
Bryan Cotn		Chevron	Reservoir Engineer
Ted Etchis	on	Chevron	Sr. Petr. Engineer
Randy Smit	h	Chevron	Geologist
Bob Anthon	У	Amerada Hess	Operations Engineer
Jay Vashle	r	Conoco	Engineer
Jerry Hoov	er	Conoco	Sr. Reservoir Engr.
Cindy Elli	s	Arco	Sr. Reservoir Engr.
David Muss	ett	J. D. Mussett	Geologist
Bob Hogan		American Exploration	Engineer
Tom Zapatk	a	Marathon	Engineer
Chris Gros		Chevron	Sr. D&C Engineer
Greg Cieli	nski	Sun	Reservoir Enginer
Gary Greer		Amerada Hess	District Engineer
Russel Mil	ler	Chevron	D&C Engineer
Don Bratto	n	Zia	Engineer
George Ric		DASCO	
Ron Hender		Presidio Oil Co.	Operations Engineer
Jim Hefley		Amerada Hess Corp.	Unit Manager
Bruce Mail	ey	Amerada Hess Corp.	Unit Engineer

PROPOSED ARROWHEAD GRAYBURG UNIT SECOND TECHNICAL COMMITTEE MEETING HOBBS, NEW MEXICO October 27, 1988

Motion made by T. A. Etchison, Chevron, to delete "useable wellbores" from the equity parameters, and instead, the Technical Committee should make a recommendation to the Working Interest Owners concerning a wellbore dedication incentive program. Motion seconded by Jerry Hoover, Conoco. Votes were as follows:

WI OWNER	% CUM OIL	FOR	AGAINST	ABSENT
Amerada Hess	1.48150010	x		
American Exploration	3.61930490	X		
Amoco Production	1.41192318			X
Arco Oil & Gas	8.20310777		X	
Trust U/D D Brown	0.09172169			X
John Bryant	0.00796476			X
James Burr	0.01186883			X
Chevron U.S.A. Inc.	44.70374102	X		
Conoco Inc.	17.05237598	X		
DASCO Energy	0.53393472	X		
James Davidson	0.37980264			X
Jack Fletcher	0.01186898			X
Doyle Hartman	1.08006370			X
Marathon Oil Company	8.23815463	X		
Jack Mussett	0.23168061	X		
Larry Nermyr	0.02373766			X
Oxy U.S.A.	6.20723958			X
Para Mia Inc.	0.48361360			X
Presidio	0.18338836	X		
R. L. Summers Est.	0.53393516			X
Sun E & P Company	4.12489586	X		
Ruth Sutton	0.01186940			X
Burton Veteto	0.05031918			X
Mary F. Walsh	1.32195842			X
Zia Energy	0.0000000	X		

TOTAL 99.99997073% 80.16897618% 8.20310777% 11.62788678%

Motion carried.

Third Technical Committee Meeting Proposed Arrowhead Grayburg Unit February 24, 1989

The Third Technical Committee meeting for the proposed Arrowhead Grayburg Unit (AGU) was held at 9:30 a.m., February 24, 1989. Fourteen attendees representing nine companies and 89.9% of the cumulative oil production as of 12/31/87 were present and are shown on the attached list.

Mr. T. A. Etchison, Chevron, welcomed attendees and briefly reviewed the agenda for the meeting. He reviewed the charges for the Technical Committee, as set by the Working Interest Owners, and discussed accomplishments to date. Mr. Etchison then pointed out a typographical error on the interim voting interest tabulation (cumulative oil 12/31/87) that was attached to the letter to Exxon dated Jan. 20, 1989. Copies of the letter were mailed to all WIO's. The erroneous table indicates that Enron has cumulative oil of 49,446 BO and 0.16% voting interest, and that Exxon has Ø cumulative and Ø% interest. The table should have indicated that Enron has Ø cumulative oil and percent interest and Exxon has 49,446 BO cumulative which equates to 0.16223508% interest.

Mr. B. C. Cotner, Chevron, then reviewed the original secondary recovery prediction presented at the WIO's meeting in May 1988. He stated that the prediction was based on the same analogy that was used for the Eunice Monument South Unit (EMSU) prediction, which assumes a secondary to primary ratio of 0.5. The original prediction assumed an incremental secondary recovery of 17 MMSTBO based on an ultimate primary recovery of 34 MMSTBO. Mr. Cotner then presented a tentative 80-acre 5-spot well location map which is based on currently active wells completed in the unitized interval, and all additional locations that can be justified to secondary and additional drill based on primary recovery potential. He stated that the secondary recovery potential for the additional locations is estimated based on 50% of the ultimate primary recovery from the "swept" area, assuming no areal sweep beyond the confines of the peripheral patterns.

Mr. Cotner stated that the revised secondary recovery prediction based on the "swept" area obtained from the tentative well locations is 15 MMSTBO. He then presented an updated recovery prediction curve and referred to the predicted recovery table in the information packet.

Mr. Cotner then presented well cost estimates. He stated that of the 129 tentative wells, 67 would come from existing completions and that 62 additional wells will be required. The first case he presented assumed that all 62 additional wells would be "new-drills". In addition to the drill and completion costs for the new wells, there will be workover expenses for the existing wells, including some deepenings, liners, water injection conversions,

and upgrading of pumping equipment. Mr. Cotner said that estimates of workover requirements were based on the wellbore data supplied by the operators or obtained from the New Mexico OCD well He then presented a probable case estimate that is based on 10 additional wells being dedicated to the unit, reducing the number of "new-drills" to 52. The total well cost for the high case is estimated to be \$20,038 M with a total project cost of \$28,988 M. For the probable case the total well cost is estimated to be \$18,806 M and the total project cost is estimated to be \$27,756 M. Mr. Cotner said the \$1.2 MM savings from having 10 additional wells dedicated to the unit indicates the benefit of some type of wellbore dedication incentive. He then presented investment schedules which assumed that the project will be installed over 1 1/2 years and that the pumping equipment upgrades will occur during the first five years.

Mr. Cotner then proposed a definition of useable wellbores which would accept all active producing wells that are limited to production from the unitized interval. Other wells would be accepted if they meet specific criteria. All wells will be required to pass a casing integrity test to be acceptable. Etchison stated that the intention of the definition was to insure that the WIO's well costs are not unnecessarily increased by the contribution of wellbores in substandard condition. Ms. Cindy Ellis, Arco, asked if the definition that was presented will be incorporated in the Unit operating agreement. responded that the useable wellbore definition in the Unit agreement will reflect the intent of the definition he presented, but may be worded differently. Mr. John Lawrence, OXY U.S.A., asked if the proposed definition was the same as used by the EMSU. Mr. Etchison stated that the EMSU agreement was less specific. When Mr. Etchison asked for a motion to accept the definition, Mr. Jerry Hoover, Conoco, suggested that it be tabled until the next meeting to allow further evaluation by the Technical Committee members.

Mr. Cotner then presented a proposed wellbore valuation of \$80,000, based on anticipated workover costs for existing wells compared to the cost to drill and complete a new well. Mr. Hoover, Conoco, suggested that voting on acceptance of \$80,000 as the wellbore value also be postponed until the next meeting.

Cut-off dates for production equity parameters were then discussed. Mr. Etchison moved that 12/31/88 be used for the cut-off date for cumulative oil. Jerry Hoover, Conoco, seconded the motion, and it passed unanimously. Mr. Etchison then moved that remaining reserves be calculated from 1/1/89. Jerry Hoover, Conoco, seconded. After a brief discussion the motion passed unanimously. Mr. Etchison then proposed that current oil and gas rates be based on the monthly averages for 1988. After discussing the effect of workovers over the last couple of years, it was recommended that production from December 1988 be used. George Ricks, Dasco, recommended that data for different scenarios,

including monthly average for the last 1 year, the last six months, and for December be presented. He suggested that the WIO's will decide which current rate should be used for equity negotiations. Mr. Etchison stated that current oil and gas rates based on December 1988 production, the last six months of 1988, and the monthly average for 1988 will be presented at the next meeting.

Mr. Cotner then reviewed the vertical limits of the proposed unit and presented a map that indicates the subsea depth of top of the unit for each proration unit. He then reviewed tracts that have changes in ownership with depth within the proposed unitized interval. He also reviewed tabulated data of gross-acre feet by tract and proration unit.

Mr. Etchison then recapped the events of the meeting. He stated that the next meeting would be in late April or early May, at which time we would try to establish remaining oil and gas reserves for each tract and finalize a wellbore definition and value. The meeting adjourned at 11:00 a.m.

If you have any additions or corrections to the minutes, please contact B. C. Cotner at (505) 393-4121.

Proposed Arrowhead Grayburg Unit Third Technical Committee Meeting February 24, 1989

Name	List of Attendees Company	Title				
Bryan C. Cotner	Chevron U.S.A. Inc.	Reservoir Engineer				
Randy A. Smith	Chevron U.S.A. Inc.	Geologist				
T. A. Etchison	Chevron U.S.A. Inc.	Sr. Petroleum Engr.				
John Lawrence	OXY U.S.A., Inc.	Reservoir Engineer				
Craig Kent	Marathon	Production Engineer				
Bob Hogan	American Exploration	Reservoir Engineer				
Cindy Ellis	ARCO	O/A Engineer				
Bob Anthony	Amerada Hess Corp.	Oper. Engineer				
Don Bratton	Zia Energy	Engineer				
George Ricks	Dasco Energy					
Jay Vashler	Conoco	Engineer				
Jerry Hoover	Conoco	Sr. Reservoir Engr.				
Russell Miller	Chevron U.S.A. Inc.	D&C Engineer				
John Ladd	Chevron U.S.A. Inc.	Sr. D&C Engineer				

Fourth Technical Committee Meeting Proposed Arrowhead Grayburg Unit May 25, 1989

The Fourth Technical Committee Meeting for the proposed A.G.U. (Arrowhead Grayburg Unit) was held at 9:30 a.m., May 25, 1989 at the Chevron office in Hobbs, New Mexico. Fourteen attendees representing 9 companies and 89.9% of the voting interest (cumulative oil production as of 12/31/87) were present and are shown on the attached list.

Introduction.

Mr. T. A. Etchison, Chevron, welcomed attendees and briefly reviewed the agenda for the meeting. He reviewed the charges for the Technical Committee, as set by the Working Interest Owners (WIO's) and discussed which charges had been accomplished to date.

Useable Wellbore Definition and Wellbore Value

Mr. Etchison reviewed the need for a wellbore dedication incentive to decrease the total capital investment for the Unit. He referred to a wellbore penalty method and a wellbore inventory method. He proposed that the Technical Committee not recommend a specific method to the WIO's, but that it be recommended that a dedication incentive be used. After a brief discussion of the differences between the wellbore penalty method and the wellbore inventory method, Mr. Etchison reviewed the \$80,000 useable wellbore value and useable wellbore definition proposed at the Third Technical Committee meeting.

Mr. Etchison clarified that operators dedicating wellbores determined to be not "useable" by the Unit operator, would be liable for \$80,000 of the expense, plus their proportionate share (working interest) of the Unit's expense, to make the well "useable". It was also stated that operators would have the option to repair their wells at their own expense and risk, but they would still be obligated for the first \$80,000 if the well was still not "useable" when dedicated to the Unit.

Mr. Etchison then made the motion: A useable wellbore, for wellbore dedication incentives, will be defined based on the criteria presented at the Fourth Technical Committee meeting (attached), and the value of a useable wellbore will be \$80,000. Ms. Cindy Ellis, Arco, seconded the motion. The motion passed with 88.41% approval.

Gross Acre-ft

Mr. Etchison reviewed the equity parameter Gross Acre-ft. He stated that the unitized interval has been defined as the top of the Grayburg formation or -150 feet from sea level He stated (fsl), whichever is shallower, to -1500 ft fsl. that the purpose of including depths to -1500 ft was to include the water supply aquifer, so, if in event the water supply wells were to produce hydrocarbons, the revenues from those hydrocarbons could be properly distributed. Etchison stated that Chevron had received several comments from Technical Committee members expressing concerns about the allocation of acreage equity for the proposed Unit. They were concerned about a disproportionate share of the acreage equity being proportioned to owners having rights below the limits of commercial production.

Mr. Etchison presented an alternative to the Gross Acre-ft parameter, based on surface acres, and allocated to owners based on rights from the top of the Unit to 325 ft below the top of the Grayburg formation. He then reviewed the allocation of acreage equity under Gross Acre-ft and the new proposal.

Chevron made a motion to replace the Gross Acre-ft equity parameter with surface acres and to base ownership in tracts with a vertical split in ownership on rights from the top of the Unit to 325 ft below the top of the Grayburg. There was no second.

Further discussion of the proposal included the question of proper treatment of the San Andres aquifer if it is determined to be commercially productive of hydrocarbons. Mr. Etchison stated that the Unit should include the water supply horizon, but if it is subsequently determined to be commercially productive of hydrocarbons, the Unit orders and boundaries can be amended.

During the discussions concerning the inclusion of the San Andres formation as a water supply source within the boundaries of the Unit, Mr. Don Bratton, Zia Energy, discussed production from the Eunice San Andres Southwest in the State M. No. 49. He suggested that the base of the Unit be defined as the top of the San Andres formation and that Chevron situate the water-supply wells on their own acreage to handle the production of hydrocarbons from water supply wells. He stated that Zia would prefer to be excluded from the Unit.

Mr. George Ricks, Dasco, made the motion to add the acreage parameter of Surface Acres, with allocation of ownership as Mr. Etchison presented, to the equity parameter list (in addition to Gross Acre-ft). Mr. Bob Hogan, American Exploration, seconded the motion. The motion passed with 89.9% approval.

Cumulative Oil

Mr. Etchison referred to the cumulative oil data provided in the information packets distributed at the meeting. He mentioned that cumulative oil through 12-31-88 was listed by well, by tract and by owner (based on ownership take-off information). There were no objections to the data, as presented.

Current Oil & Gas Rates

Mr. Etchison referred to the current oil and gas production rate tables that indicate production based on on: 1) all of 1988, 2) last one-half of 1988, 3) last quarter 1988, and 4) December 1988. He stated that the gas rate tables mailed with the announcement of the meeting contained a typographical error that has since been corrected. Mr. Etchison proposed that the Committee choose one value of current rate to supply in the Technical Committee Report.

Chevron moved that the last one-half of 1988 average monthly rates be used. There was no second. Mr. Etchison then suggested that each time period for current rate be voted on, and the one with the greatest percentage approval would be used in the report. Current oil rates based on the average active monthly production for the last quarter 1988 were selected with 81.68% approval. (The voting summary is attached).

Mr. Bob Hogan, American Exploration, moved that the current gas rate also be based on the last-quarter 1988 average active monthly gas production, (same as current oil). Mr. Donald Price, Marathon, seconded the motion. The motion carried with 81.68% approval.

Remaining Oil and Gas Reserves

Mr. Bryan Cotner, Chevron, presented estimates of remaining oil and gas reserves for each tract. He reviewed the assumptions made in Chevron's estimations of remaining reserves. He noted that inactive tracts (no current production), were assumed to have no remaining reserves. Mr. Cotner suggested that the Committee review each tract and adjust the decline or make whatever change in the general assumptions necessary to equitably determine remaining reserves for that tract.

The finalized remaining oil and gas reserves are shown in the attached table and were accepted with approval by 89.36% of the voting interest.

Other Business

Mr. Etchison stated that the meeting completed the basic work charged to the Technical Committee. He said that Chevron would use the work from the four Technical Committee meetings to compile the Technical Committee Report. Additionally, he stated that an updated secondary recovery performance prediction based on EMSU simulation may also be included in the report. He estimated that the report would be finished during late summer, at which time it would be distributed to the Technical Committee members with a letter ballot for acceptance. Once 75% of the voting interest in the Technical Committee accepts the report, the second WIO's meeting will be called. Mr. Etchison stated that there will only be another Technical Committee meeting if it is necessary to accept the report. The meeting adjourned at 3:00 p.m.

If you have any additions or corrections to the minutes, please contact B. C. Cotner at (505)393-4121.

BCC/sad 05309/01

Proposed Arrowhead Grayburg Unit Fourth Technical Committee Meeting May 25, 1989

List of Attendees

Name	Company	<u>Title</u>					
Randy A. Smith	Chevron USA	Geologist					
Ted A. Etchison	Chevron USA	Sr. Petroleum Engineer					
Bryan C. Cotner	Chevron USA	Reservoir Engineer					
Bruce Mailey	Amerada	Unit Engineer					
Bob Anthony	Amerada	Operating Engineer					
Don Bratton	Zia	Engineer					
Jay Vashler	Conoco	Production Engineer					
Jerry Hoover	Conoco	Sr. Reservoir Engineer					
Donald Price	Marathon	Production Engineer					
George Ricks	DASCO	-					
Cindy Ellis	Arco	O/A Engineer					
John. J. Lawrence	Oxy	Reservoir Engineer					
Bob Hogan	AEC	Engineer					
John Prindle	Chevron USA	NOJV Coordinator					

Arrowhead Grayburg Unit Useable Well Definition

(1) Active Wells (Producing 12-88)

Will be accepted as useable if no zones other than the unitized interval are open. If zones above the unitized interval are open, the owners must squeeze the non-unit zone, drill out the cement in the production casing, or set a liner to the top of the unitized interval*, and pressure test the casing above the unitized interval to 500 psi for 30 minutes.

(2) Closed in or TA'd Wells

Will be acceptable as useable if no zones other than the unitized interval are open (as above) and the well is free of scale, junk, and debris to a depth of the deepest production from the unitized interval prior to being closed-in. (PBTD from workovers in the unitized interval prior to shutting in.)

(3) Re-entries of P&A'd or Recompleted Wells That Previously Produced the Unitized Interval.

Will be accepted as useable if they have been restored to the previous unitized interval producing condition (completion interval, depth), are not open in non-unitized zones, and are free of scale, junk and debris down to the PBTD prior to the cessation of production from the unitized interval.

(4) Alternate Wells from Existing Wellbores

Will be accepted as useable if all non-unitized formations have been abandoned, (deeper zones plugged back with CIBP, or cement retainer, shallower zones cement squeezed and pressure tested), they penetrate the unitized interval, and have sufficient casing size (5 1/2") to be deepened or have at least 4 1/2" casing set through Zone 5 of the Grayburg formation, and are adequately cemented.

(5) Alternate Wells (new)

Will be accepted if they are drilled to a depth equivalent to the base of Zone 5, cased to TD with 5 1/2" or larger casing, and cemented from TD to surface.

The intent of the useable wellbore definition is to insure that all wellbores that are dedicated are in reasonably good physical condition and can be used in ways consistent with the purpose of the Unit. All wells dedicated will be subject to a casing integrity test. Any well failing a casing integrity test upon the initial entry by the Unit operator, will be repaired or replaced at Working Interest Owner's expense, not to exceed \$80,000.

* If a well requires a liner to isolate the unitized interval, the Unit operator may assume the responsibility to set it, if doing so is consistent with the proposed workovers for the well.

PROPOSED ARROWHEAD GRAYBURG UNIT EQUITY PARAMETERS

GROSS ACRE-FT		108,000.00	433,320.00	109, 849.20	99,981.00	324,000.00	54,600,00	702,000.00	41,639.96	174, 160.04	211,936.50	106,000.00	54,000.00	108,040.00	111,800.00	216,000.00	432,000.00	650,068.00	1,030,680.00	546,560.00	106,000.00	216,000.00	108,920.00	108,040.00	1,172,48.74	49,923.00	108,000.00	211,950.00	415,746.00		6,015,900.4
SURFINCE RORES		80.00	320.02	80.24	7.8	240.00	40.00	520.00	107.06	\$2.8	156.99	80.08	6.8	80.08	80.00	160.00	320.02	480. 2	760.00	6 0.8	8.8	160.8 8.08	80.0	8.8	868.39	% 8.	8 .8	157.00	307.96		5,922.28
REMAINING GPS RESERVES (1-1-89)	2	0	2,414,487	93,251	0	59.722	82,481	278,119	6,363	518,590	177,886	201,708		32,263	352,954	354,274	42,557		1,454,192	3,616,881	•	0	0	216,329	384,392	0	0	0	352,364		16, 142, 034
_ 듀왕		0.0	15,143.0	1,207.7	0.0	1.779.3	L K	2,154.0	270.7	5.660.0	7.996	1,636.0	0.0	309.3	1,935.7	1,453.0	513.3	38,861.0	18,775.3	28,828.0	0.0	0.0	0.0	2,542.3	5,256.3	0.0	0.0	0.0	267.3	***************************************	128,714.2
CURRENT 01L RATE (4th Q- 1988)	E 08	0.0	4.593.3	647.0		111.7	- 67	2.67	E 29	2.2	937.7	987.0	0.0	192.0	635.7	207.3	313.0	9,937.0	2,293.7	7,459.7	0.0	0.0	0.0	7.62	4,210:7	0.0	0.0	0.0	136.0		33,024.5
ULTIMATE PRIMARY RECOVERY	STB0	465.366		593, 181	86,98	25, 55,		20,232		•	680,602		49,446	· w	1.157,880	926,278	1.386,110	6, 470, 742	4,085,932	4,206,613		489,027	0	46.526	5, 465, 763	167	٠.				36,068,673
REPRINING OIL RESERVES (1-1-89)	STBO		749 143	5 X X	3	C 070	ָה בּיב היים היים	2,190 24,046	400,0	, v	178,065	120,566	0	21.552	129, 193	53,154	27.263	1,617,565	165,177	1,309,041	0	0	0	6.820	692,746	0	0	0	45, 455		2,229,986
R CUMULATIVE DIL (12-31-88)	STB0	776 377	750 037	4,133,002	727,000	96, 256	1,000,09	30,102	20,000,	667,100	26. CE	462,904	49,446	224,314	1 028 687	873, 124	1.358.847	4.853.177	3,900,755	2,897,572		489, 027		39.706	4.773,017	167,424	183,025	603,349	1.703.938		30,838,687
	TRACT		• 0	7 n	n 4	rı	n •	0 1				3 0	, 5	2 =	: 2	. E.	7	. 2	9	2	<u> </u>	2 9	3 8	3 %	3 :	3 E	7	; K	8 8		TOTAL

Motion by Chevron:

Accept Useable Wellbore Definition and Establish the Useable Wellbore Value of \$80,000.

Seconded by Arco.

WIOwner	% CUM OIL	VOTE	% FOR
ABBY CORPORATION	0.0000000		0
AMERADA HESS	1.47909659	Abstain	0
AMERICAN EXPLORATION	3.61343311	For	3.6134331
AMOCO PRODUCTION	1.40963254		0
ARCO OIL & GAS	8.18979945	For	8.1897994
TRUST U/D D BROWN	0.09157289		0
JOHN BRYANT	0.00795184		0
JAMES BURR	0.01184958		0
CHEVRON USA	44.63121587	For	44.631215
CONOCO INC	17.02471104	For	17.024711
DASCO ENERGY	0.53306849	For	0.5330684
JAMES DAVIDSON	0.37918647		0
ENRON	0.0000000		0
EXXON COMPANY	0.16223508		0
JACK FLETCHER	0.01184973		0
HANNIFIN	0.0000000		0
HANSON OPERATING CO.	0.0000000		0
HANSON-MCBRIDE	0.0000000		0
DOYLE HARTMAN	1.07831153		0
MARATHON OIL CO.	8.22478945	For	8.2247894
J H MOORE	0.0000000		0
JACK MUSSETT	0.23130474		0
LARRY NERMYR	0.02369915		0
OXY U.S.A.	6.19716926	For	6.1971692
PARA MIA INC.	0.48282901		0
PRESIDIO	0.18309084		0
HAL RASMUSSEN	0.51477548		0
L. C. SUMMERS	0.53306893		0
RUTH SUTTON	0.01184958		0
BURTON VETETO	0.05023755		0
MARY F. WALSH	1.31981374		0
WESTWAY	0.0000000		0
WILLIAMS PARTNERS.	3.60342836		0
ZIA ENERGY	0.0000000	Against	0
	99.9999703		88.41419

Motion by Dasco:

Add Surface Acres allocated based on Owership from the Top of the Unit to 325 ft. Below the Top of the Grayburg Formation to the List of Equity Parameters.

Seconded by American Exploration.

WIOwner	% CUM OIL	VOTE	FOR	AGAINST
ABBY CORPORATION AMERADA HESS			0	0
AMERADA HESS	1.47909659	For	1.4790965	0
AMERICAN EXPLORATION	3.61343311	For	3.6134331	0
AMILI 1) PRIMME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 411464754		51	0
ARCO OIL & GAS	8.18979945	For	8.1897994	0
TRUST U/D D BROWN	0.09157289		0	0
JUMN BRIANI	0.00795184		0	0
JAMES BURR	0.01184958		0	0
CHEVRON USA	44.63121587	For	44.631215	0
CONOCO INC	17.02471104	For	17.024711	0
DASCO ENERGY	0.53306849	For	0.5330684	0
JAMES DAVIDSON	0.37918647		0	0
ENRON	0.0000000		0	0
EXXON COMPANY	0.16223508 0.01184973		0	0
JACK FLETCHER	0.01184973		0	0
HANNIFIN	0.00000000		0	0
HANSON OPERATING CO.	0.0000000		0	0
HANSON-MCBRIDE	0.0000000		0	0
	1.07831153		0	0
MARATHON OIL CO.	8.22478945	For	8.2247894	0
J H MOORE	0.0000000		0	0
JACK MUSSETT	0.0000000 0.23130474 0.02369915 6.19716926		0	0
LARRY NERMYR	0.02369915		0	0
OXY U.S.A.	6.19716926	For	6.1971692	0
PARA MIA INC.	0.48282901		0	0
PRESIDIO	0.18309084		0	0
HAL RASMUSSEN	0.51477548		0	0
L. C. SUMMERS	0.53306893		0	0
RUTH SUTTON	0.01184958		0	0
BURTON VETETO	0.05023755		0	0
MARY F. WALSH	1.31981374		0	0
WESTWAY	0.0000000		0	0
WILLIAMS PARTNERS.			0	0
ZIA ENERGY	0.0000000		0	0
	99.9999703		89.89328	0.00000

Motion: Current oil rate based on average monthly for all of 1988.

WiOwner	% CUM OIL	VOTE	FOR	AGAINST
				0
AMERADA HESS	0.00000000 1.47909659 3.61343311	For	1.4790965	0
AMERICAN EXPLORATION AMOCO PRODUCTION	3.61343311	Against	0	3.6134331142
AMOCO PRODUCTION	1.40963254	•	0	0
ARCO OIL & GAS	3.61343311 1.40963254 8.18979945	Against	0	8.189799454
TRUST U/D D BROWN	8.18979945 0.09157289 0.00795184 0.01184958 44.63121587 17.02471104 0.53306849 0.37918647 0.00000000	_	0	0
JOHN BRYANT	0.00795184		0	0
JAMES BURR	0.01184958		0	0
CHEVRON USA	44.63121587	For	44.631215	0
CONOCO INC	17.02471104	Against	0	17.024711041
DASCO ENERGY	0.53306849	Abstain	0	0
JAMES DAVIDSON	0.37918647		0	0
ENRON	0.0000000		0	0
EXXON COMPANY	0.16223508		0	0
JACK FLETCHER	0.01184973		0	0
HANNIFIN	0.00000000		0	0
JAMES DAVIDSON ENRON EXXON COMPANY JACK FLETCHER HANNIFIN HANSON OPERATING CO. HANSON-MCBRIDE DOYLE HARTMAN MARATHON OIL CO. J H MOORE	0.0000000		0	0
HANSON-MCBRIDE	0.0000000		0	0
DOYLE HARTMAN	1.07831153		0	0
MARATHON OIL CO.	8.22478945 0.00000000 0.23130474 0.02369915 6.19716926 0.48282901 0.18309084	For	8.2247894	0
J H MOORE	0.0000000		0	0
JACK MUSSETT	0.23130474		0	0
LARRY NERMYR	0.02369915		0	0
OXY U.S.A.	6.19716926	For	6.1971692	0
PARA MIA INC.	0.48282901		0	0
PRESIDIO	0.18309084		0	0
HAL RASMUSSEN	0.51477548		0	0
L. C. SUMMERS	0.53306893		0	0
RUTH SUTTON	0.01184958		0	0
BURTON VETETO	0.05023755		0	0
MARY F. WALSH	1.31981374		0	0
WESTWAY	0.18309084 0.51477548 0.53306893 0.01184958 0.05023755 1.31981374 0.00000000		0	0
WILLIAMS FARINGES.	3.00372030		0	0
ZIA ENERGY	0.0000000		0	0
	99.9999703		60.53227	28.82794

Motion: Current Oil rate based on the last-half 1988 average monthly.

WI Owner	% CUM OIL	VOTE		AGAINST
ABBY CORPORATION AMERADA HESS AMERICAN EXPLORATION AMOCO PRODUCTION ARCO OIL & GAS TRUST U/D D BROWN	0.0000000		0	0
AMERADA HESS	1.47909659	Against	0	1.47909659
AMERICAN EXPLORATION	3.61343311	Against	0	3.61343311
AMOCO PRODUCTION	1.40963254	•	0	0
ARCO OIL & GAS	8.18979945	Against	0	8.18979945
TRUST U/D D BROWN	0.09157289		0	0
JOHN BRYANT	0.00795184		0	0
JAMES BURR	0.01184958		0	0
CHEVRON USA	44.63121587	For	44.631215	0
CONOCO INC	17.02471104	Against	0	17.02471104
DASCO ENERGY	1.40963254 8.18979945 0.09157289 0.00795184 0.01184958 44.63121587 17.02471104 0.53306849 0.37918647 0.00000000 0.16223508 0.01184973 0.00000000 0.00000000 0.00000000 1.07831153	Abstain	0	0
JAMES DAVIDSON	0.37918647		0	0
ENRON	0.0000000		0	0
EXXON COMPANY	0.16223508		0	0
JACK FLETCHER	0.00000000 0.16223508 0.01184973		0	0
HANNIFIN	0.00000000		0	0
HANSON OPERATING CO. HANSON-MCBRIDE DOYLE HARTMAN MARATHON OIL CO. J H MOORE JACK MUSSETT LARRY NERMYR	0.00000000		0	0
HANSON-MCBRIDE	0.00000000		0	0
DOYLE HARTMAN	1.07831153		0	0
MARATHON OIL CO.	8.22478945 0.00000000 0.23130474 0.02369915 6.19716926 0.48282901 0.18309084 0.51477548 0.53306893 0.01184958 0.05023755 1.31981374 0.00000000	Against	0	8.22478945
J H MOORE	0.0000000		0	0
JACK MUSSETT	0.23130474		0	0
LARRY NERMYR	0.02369915		0	0
OXY U.S.A.	6.19716926	Against	0	6.19716926
PARA MIA INC.	0.48282901		0	0
PRESIDIO	0.18309084		0	0
HAL RASMUSSEN	0.51477548		0	0
L. C. SUMMERS	0.53306893		0	0
RUTH SUTTON	0.01184958		0	0
BURTON VETETO	0.05023755		0	0
MARY F. WALSH	1.31981374		0	0
WESTWAY	0.0000000		0	0
WILLIAMS PARTNERS.	3.60342836		0	0
ZIA ENERGY	0.0000000		0	0
	99.9999703		44.63122	44.72900

Motion: Current oil rate based on last quarter 1988 average monthly.

WI Owner	% CUM OIL	VOTE		AGAINST
ABBY CORPORATION	0.00000000		0	0
AMERADA HESS	1.47909659	Against	0	1.47909659
AMERICAN EXPLORATION	3.61343311	For	3.6134331	0
AMOCO PRODUCTION	1.40963254		0	0
ARCO OIL & GAS	8.18979945	For	8.1897994	0
	0.09157289		0	0
JOHN BRYANT	0.00795184		0	0
JAMES BURR	0.00795184 0.01184958 44.63121587		0	0
CHEVRON USA	44.63121587	For	44.631215	0
CONOCO INC	17.02471104	For	17.024711	0
DASCO ENERGY	0.53306849	Abstain	0	0
JAMES DAVIDSON	0.37918647		0	0
ENRON	0.0000000		0	0
EXXON COMPANY	0.16223508		0	0
JACK FLETCHER	0.01184973		0	0
HANNIFIN	0.00000000		0	0
HANSON OPERATING CO.	0.0000000		0	0
HANSON-MCBRIDE	0.0000000		0	0
DOYLE HARTMAN	1.07831153		0	0
MARATHON OIL CO.	8.22478945	For	8.2247894	0
J H MOORE	0.0000000		0	0
	0.23130474		0	0
LARRY NERMYR	0.02369915		0	0
OXY U.S.A.	0.02369915 6.19716926	Against	0	6.19716926
PARA MIA INC.	0.48282901		0	0
	0.18309084		0	0
HAL RASMUSSEN	0.51477548		0	0
L. C. SUMMERS	0.53306893		0	0
RUTH SUTTON	0.01184958		0	0
BURTON VETETO	0.01184958 0.05023755 1.31981374		0	0
MARY F. WALSH	1.31981374		0	0
WESTWAY	0.00000000		0	0
WILLIAMS PARTNERS.	3.60342836		0	0
ZIA ENERGY	0.0000000		0	0
	99.9999703		81.68395	7.67627

Motion: Current oil rate based on December 1988 production.

WI Owner	% CUM OIL	VOTE	FOR	AGAINST
ARRY CORPORATION	0 0000000		٥	0
AMERADA HESS	1.47909659	For	1.4790965	0
AMERICAN EXPLORATION	3.61343311	For	3.6134331	0
AMOCO PRODUCTION	1.40963254		0	0
ARCO OIL & GAS	8.18979945	For	8.1897994	0
				0
JOHN BRYANT	0.09157289 0.00795184 0.01184958 44.63121587 17.02471104		0	0
JAMES BURR	0.01184958		0	0
CHEVRON USA	44.63121587	For	44.631215	0
CONOCO INC				17.0247110
DASCO ENERGY	0.53306849	Abstain	0	0
JAMES DAVIDSON	0.37918647		0	0
ENRON	0.00000000		0	0
EXXON COMPANY	0.16223508 0.01184973		0	0
JACK FLETCHER	0.01184973		0	0
HANNIFIN	^ ^^^^		0	0
HANNIFIN HANSON OPERATING CO. HANSON-MCBRIDE DOYLE HARTMAN MARATHON OIL CO.	0.00000000		0	0
HANSON-MCBRIDE	0.00000000		0	0
DOYLE HARTMAN	1.07831153		0	0
MARATHON OIL CO.	8.22478945	Against	0	8.22478945
J II MOONL	0.0000000		U	0
	0.23130474		0	0
LARRY NERMYR	0.02369915		0	•
OXY U.S.A.	0.02369915 6.19716926 0.48282901	Against	0	6.19716926
				0
	0.18309084		0	0
	0.51477548		0	0
	0.53306893		0	0
	0.01184958		0	0
BURTON VETETO	0.05023755		0	0
MARY F. WALSH	1.31981374		0	0
WESTWAY	0.0000000		0	0
MARY F. WALSH WESTWAY WILLIAMS PARTNERS.	3.60342836		0	0
ZIA ENERGY	0.00000000		0	0
	99.9999703		57.91355	31.44667

Motion by American Exploration:

Use last quarter average active monthly gas production for current gas production rate (same as current oil). Seconded by Marathon.

WI Owner	% CUM OIL	VOTE	FOR	AGAINST
APPY COPPODATION	0 0000000			
AMERADA HESS	1.47909659	Against	0	1.47909659
AMERICAN EXPLORATION	3.61343311	For	3.6134331	0
AMOCO PRODUCTION	1 40963254		^	0
ARCO OIL & GAS	8.18979945	For	8.1897994	0
TRUST U/D D BROWN	0.09157289 0.00795184 0.01184958 44.63121587 17.02471104 0.53306849 0.37918647 0.00000000 0.16223508 0.01184973 0.00000000 0.00000000 1.07831153 8.22478945		0	0
JOHN BRYANT	0.00795184		0	0
JAMES BURR	0.01184958		0	0
CHEVRON USA	44.63121587	For	44.631215	0
CONOCO INC	17.02471104	For	17.024711	0
DASCO ENERGY	0.53306849	Abstain	0	0
JAMES DAVIDSON	0.37918647		0	0
ENRON	0.0000000		0	0
EXXON COMPANY	0.16223508		0	0
JACK FLETCHER	0.01184973		0	0
HANNIFIN	0.0000000		0	0
HANSON OPERATING CO.	0.0000000		0	0
HANSON-MCBRIDE	0.0000000		0	0
DOYLE HARTMAN	1.07831153		0	0
DOYLE HARTMAN MARATHON OIL CO.	8.22478945	For	8.2247894	0
J H MOORE JACK MUSSETT LARRY NERMYR OXY U.S.A. PARA MIA INC. PRESIDIO	0.0000000		0	0
JACK MUSSETT	0.23130474		0	0
LARRY NERMYR	0.02369915		0	0
OXY U.S.A.	6.19716926	Against	0	6.19716926
PARA MIA INC.	0.48282901		0	0
PRESIDIO	0.18309084		0	0
HAL RASMUSSEN	0.51477548 0.53306893 0.01184958 0.05023755 1.31981374 0.00000000		0	0
L. C. SUMMERS	0.53306893		0	0
RUTH SUTTON	0.01184958		0	0
BURTON VETETO	0.05023755		0	0
MARY F. WALSH	1.31981374		0	0
WESTWAY	0.0000000		0	0
WILLIAMS PARTNERS.	3.60342836		0	0
ZIA ENERGY	0.0000000		0	0
	99.9999703		81.68395	7.67627

Motion: Establish Remaining Oil & Gas Reserves as Specified on the Attached Table.

WI Owner	% CUM OIL	VOTE		AGAINST
ABBY CORPORATION	0.0000000		0	
	1.47909659			(
AMERICAN EXPLORATION	3.61343311	For	3.6134331	(
AMOCO PRODUCTION	1.40963254		0	(
ARCO OIL & GAS	8.18979945	For	8.1897994	(
TRUST U/D D BROWN	0.09157289		0	
JOHN BRYANT	0.00795184 0.01184958 44.63121587		0	(
JAMES BURR	0.01184958		0	(
CHEVRON USA	44.63121587	For	44.631215	(
CONOCO INC	17.02471104	For	17.024711	(
DASCO ENERGY	0.53306849		0	(
JAMES DAVIDSON	0.37918647		0	(
ENRON	0.0000000		0	(
	0.16223508		0	(
JACK FLETCHER	0.01184973		0	(
HANNIFIN	0.0000000		0	(
HANSON OPERATING CO.	0.0000000		Ô	(
	0.0000000		0	Č
	1.07831153		Ô	Č
MARATHON OIL CO.	8.22478945	For	8.2247894	Č
J H MOORE	0.0000000		0	Č
JACK MUSSETT	0.23130474		0	Č
LARRY NERMYR	0.02369915		0	Ċ
OXY U.S.A.	0.0000000 0.23130474 0.02369915 6.19716926 0.48282901	For	6.1971692	Ċ
PARA MIA INC.	0.48282901		0	(
PRESIDIO	0.18309084		0	(
HAL RASMUSSEN	0.51477548		0	(
L. C. SUMMERS	0.53306893		0	(
RUTH SUTTON	0.01184958		0	(
BURTON VETETO	0.05023755		0	(
MARY F. WALSH	1.31981374		0	Ċ
	0.00000000		0	Ò
WILLIAMS PARTNERS.			ō	Č
ZIA ENERGY	0.0000000		0	Ò
	99.9999703		89.36021	0.00000

Proposed Arrowhead Grayburg Unit Remaining Reserves

TRACT 1P (12-88)						REMAINING	1988	REMAINING
1 0 0 0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0		TRACT	I P	E.L.	DECLINE	OIL	GOR	GAS
1 0 0 0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0			(12-88)		FACTOR	RESERVES	(MCF/BO)	RESERVES
2 4160 227 0.0630 749,143 3.223 2,414,487 3 647 52 0.1258 56,757 1.643 93,251 4 00 0 0.0000 0 0 0 5 112 30 0.1674 5,878 10.160 59,722 * 6 987 433 0.0806 3,190 25.853 82,481 7 100 56 0.0619 24,046 11.566 278,119 8A UPPER 62 43 0.1094 2,084 4.013 8,363 * 8A LOWER 6461 575 0.1362 2,291 226.398 518,590 8B 929 55 0.0589 178,065 0.999 177,886 9 1117 51 0.1061 120,566 1.673 201,706 10 0 0 0 0.0000 0 0 0 11 302 52 0.1392 21,552 1.497 32,263 12 614 94 0.0483 129,193 2.732 352,954 13 300 36 0.0596 53,154 6.665 354,274 14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 21 2228 912 0.0730 6,820 31,721 216,329 22 4036 630 0.0590 692,746 1.421 984,392 23 0 0 0 0.0000 0 0 0 0 24 0 0 0.0000 0 0 0 0 25 0 0 0 0.0000 0 0 0 0 26 134 34 0.0264 45,455 7.752 352,364		=======	======	======	======	\$\$: : : : : : :	=========	=======
2 4160 227 0.0630 749,143 3.223 2,414,487 3 647 52 0.1258 56,757 1.643 93,251 4 00 0 0.0000 0 0 0 5 112 30 0.1674 5,878 10.160 59,722 * 6 987 433 0.0806 3,190 25.853 82,481 7 100 56 0.0619 24,046 11.566 278,119 8A UPPER 62 43 0.1094 2,084 4.013 8,363 * 8A LOWER 6461 575 0.1362 2,291 226.398 518,590 8B 929 55 0.0589 178,065 0.999 177,886 9 1117 51 0.1061 120,566 1.673 201,706 10 0 0 0 0.0000 0 0 0 11 302 52 0.1392 21,552 1.497 32,263 12 614 94 0.0483 129,193 2.732 352,954 13 300 36 0.0596 53,154 6.665 354,274 14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 21 2228 912 0.0730 6,820 31,721 216,329 22 4036 630 0.0590 692,746 1.421 984,392 23 0 0 0 0.0000 0 0 0 0 24 0 0 0.0000 0 0 0 0 25 0 0 0 0.0000 0 0 0 0 26 134 34 0.0264 45,455 7.752 352,364								
3 647 52 0.1258 56.757 1.643 93.251 4 0 0 0 0.0000 0 0 0 0 5 112 30 0.1674 5.878 10.160 59.722 * 6 987 433 0.806 3.190 25.853 82.481 7 150 56 0.0519 24.046 11.566 278.119 8A UPPER 62 43 0.1094 2.084 4.013 8.363 * 8A LOWER 6461 575 0.1362 2.291 226.398 518.590 8B 929 55 0.0589 178.065 0.999 177.886 9 1117 51 0.1061 120.566 1.673 201.706 10 0 0 0.0000 0 0 0 11 302 52 0.1392 21.552 1.497 32.263 12 614 94 0.0483 129.193 2.732 352.954 13 300 36 0.0596 53.154 6.665 354.274 14 306 52 0.1118 27.263 1.561 42.557 15 9669 368 0.0690 1.617.565 3.030 4.901.223 16 2147 269 0.1217 185.177 7.853 1.454.192 17 7496 329 0.0657 1.309.041 2.763 3.616.881 18 0 0 0 0.0000 0 0 0 0 19 0 0 0.0000 0 0 0 0 19 0 0 0.0000 0 0 0 0 20 0 0 0.0000 0 0 0 0 0 22 0 0 0 0.0000 0 0 0 0 0 0 24 0 0 0.0000 0 0 0 0 0 0 25 0 0 0 0.0000 0 0 0 0 0 0 26 0 134 34 0.0264 45.455 7.752 352.364			=			0		
## 10			4160		0.0630	•	3,223	
* 6 987 433 0.0806 3,190 25.853 82.481 7 150 56 987 120			647			56,757		93,251
* 6 987			0			•		· ·
7		5			0.1674	•		•
8A UPPER 62 43 0.1094 2,084 4.013 8,363 X BA LOWER 6461 575 0.1362 2,291 226.398 518,590 8B 929 55 0.0589 178,065 0.999 177,886 9 1117 51 0.1061 120,566 1.673 201,706 10 0 0 0.0000 0 0 0 11 302 52 0.1392 21,552 1.497 32,263 12 614 94 0.0483 129,193 2.732 352,954 13 300 36 0.0596 53,154 6.665 354,274 14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 17 7496 329 0.0657 1,309,041 2.763 1,454,192 18 0 0 0.0000	*	6	987	433	0.0806			
* 8A LOWER 6461 575 0.1362 2,291 226.398 518,590 8B 929 55 0.0589 178,065 0.999 177,886 9 1117 51 0.1061 120,566 1.673 201,706 10 0 0.0000 0 0 0 0 0 11 302 52 0.1392 21,552 1.497 32,263 12 614 94 0.0483 129,193 2.732 352,954 13 300 36 0.0596 53,154 6.665 354,274 14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7	160	56	0.0519	24,046		
8B 929 55 0.0589 178,065 0.999 177,886 9 1117 51 0.1061 120,566 1.673 201,706 10 0 0 0.0000 0 0 0 11 302 52 0.1392 21,552 1.497 32,263 12 614 94 0.0483 129,193 2.732 352,954 13 300 36 0.0596 53,154 6.665 354,274 14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 21 2228 912 0.0730 6,820 31.72		8A UPPER	62	43	0.1094	2,084	4.013	8,363
9 11117 51 0.1061 120,566 1.673 201,706 10 0 0 0.0000 0 0 0 0 11 302 52 0.1392 21,552 1.497 32,263 12 614 94 0.0483 129,193 2.732 352,954 13 300 36 0.0596 53,154 6.665 354,274 14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 21 2228 912 0.0730 6,820 31.721	×	8A LOWER	6461	575	0.1362	2,291	226.398	518,590
10 0 0 0.0000 0 0 0 0 11 302 52 0.1392 21,552 1.497 32,263 12 614 94 0.0483 129,193 2.732 352,954 13 300 36 0.0596 53,154 6.665 354,274 14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 21 2228 912 0.0730 6,820 31.721 216,329 23 0 0 0.0000 0 0 <t< td=""><td></td><td>8 B</td><td>929</td><td>55</td><td>0.0589</td><td>178,065</td><td>0.999</td><td>177,886</td></t<>		8 B	929	55	0.0589	178,065	0.999	177,886
11 302 52 0.1392 21,552 1.497 32,263 12 614 94 0.0483 129,193 2.732 352,954 13 300 36 0.0596 53,154 6.665 354,274 14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 21 2228 912 0.0730 6,820 31.721 216,329 23 0 0 0.0000 0 0 0 24 0 0 0.0000 0 0 0 <td></td> <td>9</td> <td>1117</td> <td>5 1</td> <td>0.1061</td> <td>120,566</td> <td>1.673</td> <td>201,706</td>		9	1117	5 1	0.1061	120,566	1.673	201,706
12 614 94 0.0483 129,193 2.732 352,954 13 300 36 0.0596 53,154 6.665 354,274 14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 19 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 21 2228 912 0.0730 6,820 31.721 216,329 23 0 0 0.0000 0 0 0 24 0 0 0.0000 0 0 0		10	0	0	0.0000	0	0	0
13 300 36 0.0596 53,154 6.665 354,274 14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 19 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 21 2228 912 0.0730 6,820 31.721 216,329 22 4036 630 0.0590 692,746 1.421 984,392 23 0 0 0.0000 0 0 0 24 0 0 0.0000 0 0 0		11	302	52	0.1392	21,552	1.497	32,263
14 306 52 0.1118 27,263 1.561 42,557 15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 19 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 21 2228 912 0.0730 6,820 31.721 216,329 22 4036 630 0.0590 692,746 1.421 984,392 23 0 0 0.0000 0 0 0 24 0 0 0.0000 0 0 0 25 0 0 0.0000 0 0 0 0		1 2	614	9 4	0.0483	129,193	2.732	352,954
15 9669 368 0.0690 1,617,565 3.030 4,901,223 16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 19 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 20 0 0 0.0000 0 0 0 0 21 2228 912 0.0730 6,820 31.721 216,329 22 4036 630 0.0590 692,746 1.421 984,392 23 0 0 0.0000 0 0 0 24 0 0 0.0000 0 0 0 25 0 0 0.0000 0 0 0 26 134 34 0.0264 45,455 7.752 352,364 </td <td></td> <td>13</td> <td>300</td> <td>36</td> <td>0.0596</td> <td>53,154</td> <td>6.665</td> <td>354,274</td>		13	300	36	0.0596	53,154	6.665	354,274
16 2147 269 0.1217 185,177 7.853 1,454,192 17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 0 19 0 0 0.0000 0 0 0 0 0 20 0 0 0.0000 0 0 0 0 0 0 20 0 0 0.0000 0		1 4	306	52	0.1118	27,263	1.561	42,557
17 7496 329 0.0657 1,309,041 2.763 3,616,881 18 0 0 0.0000 0 0 0 0 19 0 0 0.0000 0 0 0 0 20 0 0 0.0000 0 0 0 0 21 2228 912 0.0730 6,820 31.721 216,329 22 4036 630 0.0590 692,746 1.421 984,392 23 0 0 0.0000 0 0 0 24 0 0 0.0000 0 0 0 25 0 0 0.0000 0 0 0 26 134 34 0.0264 45,455 7.752 352,364		15	9669	368	0.0690	1,617,565	3.030	4,901,223
18 0 0 0.0000 0 0<		16	2147	269	0.1217	185,177	7.853	1,454,192
19 0 0 0.0000 0 0 0 0 20 0 0 0.0000 0 0 0 0 21 2228 912 0.0730 6,820 31.721 216,329 22 4036 630 0.0590 692,746 1.421 984,392 23 0 0 0.0000 0 0 0 24 0 0 0.0000 0 0 0 25 0 0 0.0000 0 0 0 26 134 34 0.0264 45,455 7.752 352,364		17	7496	329	0.0657	1,309,041	2.763	3,616,881
20 0 0 0.0000 0 0 0 21 2228 912 0.0730 6,820 31.721 216,329 22 4036 630 0.0590 692,746 1.421 984,392 23 0 0 0.0000 0 0 0 24 0 0 0.0000 0 0 0 25 0 0 0.0000 0 0 0 26 134 34 0.0264 45,455 7.752 352,364		18	0	0	0.0000	0	0	0
* 21 2228 912 0.0730 6,820 31.721 216,329 22 4036 630 0.0590 692,746 1.421 984,392 23 0 0 0.0000 0 0 0 24 0 0 0.0000 0 0 0 25 0 0 0.0000 0 0 0 26 134 34 0.0264 45,455 7.752 352,364		19	0	0	0.0000	0	0	0
22 4036 630 0.0590 692,746 1.421 984,392 23 0 0 0.0000 0 0 0 24 0 0 0.0000 0 0 0 25 0 0 0.0000 0 0 0 26 134 34 0.0264 45,455 7.752 352,364		20	0	0	0.0000	0	0	0
23 0 0 0.0000 0 0 0 0 24 0 0 0.0000 0 0 0 0 25 0 0 0.0000 0 0 0 0 26 134 34 0.0264 45,455 7.752 352,364	*	2 1	2228	912	0.0730	6,820	31.721	216,329
24 0 0 0.0000 0 0 0 0 25 0 0 0.0000 0 0 0 0 26 134 34 0.0264 45,455 7.752 352,364		22	4036	630	0.0590	692,746	1.421	984,392
25 0 0 0.0000 0 0 0 0 26 134 34 0.0264 45,455 7.752 352,364		23	0	0	0.0000	0	0	0
26 134 34 0.0264 45,455 7.752 352,364		2 4	0	0	0.0000	0	0	0
26 134 34 0.0264 45,455 7.752 352,364		2.5	0	0	0.0000	0	0	0
2 x 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			134	3 4	0.0264	45,455	7.752	352,364
TOTAL 5,229,984 16,142,035						=======================================		=========
		TOTAL				5,229,984		16,142,035

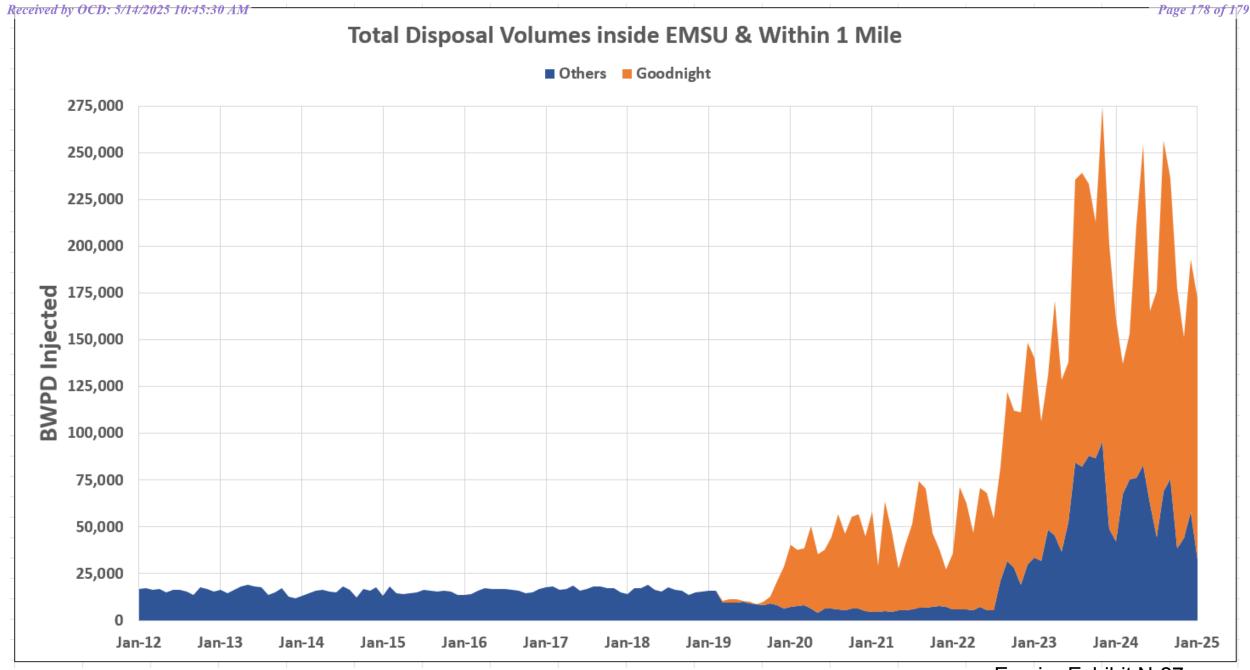
^{*} Denotes Tracts based on Gas Decline

Received by OCD: 5/14/2025 10:45:30 AM

Evidence of Communication Between San Andres & Grayburg

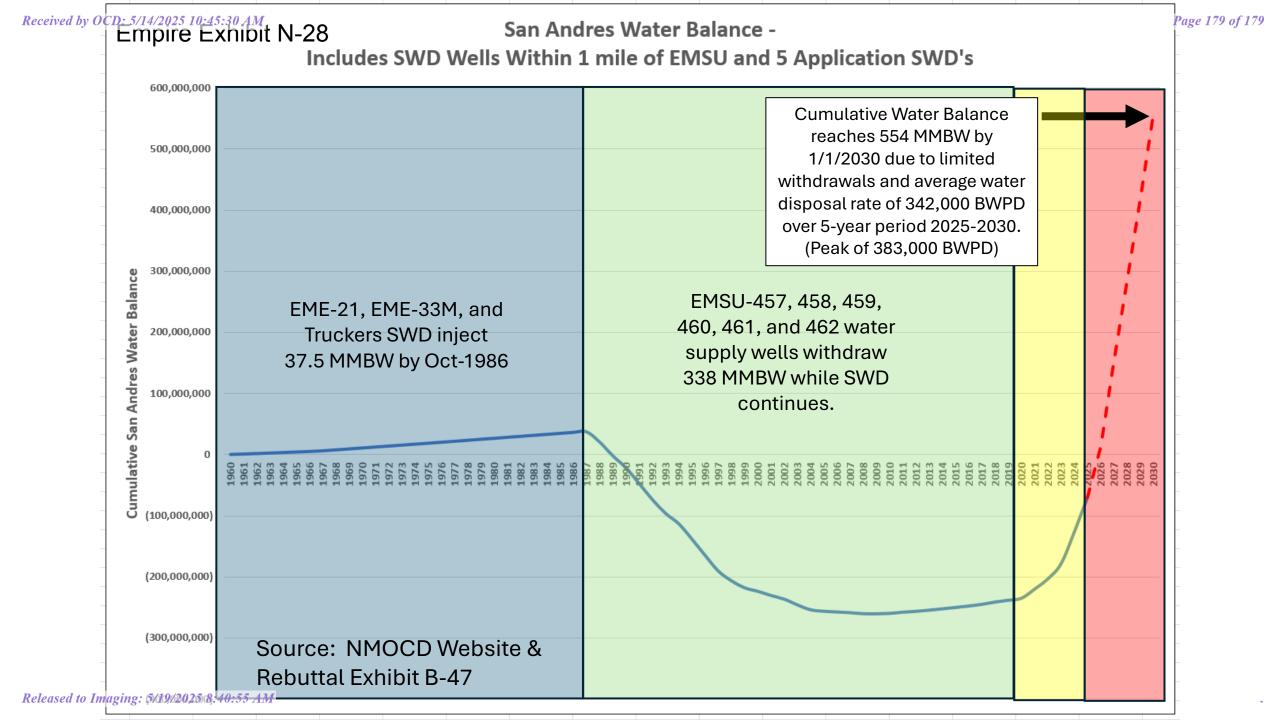
 1996 Chevron paper "Utilization of Geological Mapping Techniques to Track Scaling Tendencies in the Eunice Monument South Unit Waterflood, Lea County, New Mexico"

During the time of primary production prior to unitization and initiating the waterflood in the Eunice Monument field, barium sulfate scale deposition was experienced in a number of producing wells. Although the drilling was confined to the Penrose and Grayburg formations, apparently some San Andres water was finding its way into the wellbore of these wells and resulted in a barium sulfate scale, barite, deposition problem.


Technical Committee Repo Lea County, New Mexico

Proposed Arrowhead Graybur, Although the Arrowhead Pool has produced a significant volume of water, which could indicate a water-drive type recovery, solution gas drive is believed to be the predominant recovery mechanism. This conclusion is based on the pressure depletion of the pool and on the lack of an identifiable water production trend.

September 1989


A portion of the water production is probably attributable to communication of Zones 4 and 5 with the Lower Grayburg and San Andres aquifers. Although siliciclastics between each zone generally prevent vertical communication, in some localized areas of the field they do not act as permeability When the barriers break down in the lower Grayburg members, the prolific San Andres aquifer can influx into the oil productive horizons resulting in large volumes of water production.

Source: NMOCD Website

Released to Imaging: 5/19/2025 8:40:55 AM

Empire Exhibit N-27

