Casa Mo.

1763

Application, Transcript,
5 mall Exhibits, Etc.

BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION OF NEW MEXICO FOR THE PURPOSE OF CONSIDERING:

> CASE NO. 1763 Order No. R-1517

APPLICATION OF SOUTHWESTERN HYDROCARBON COMPANY FOR AN ORDER ABOLISHING THE SAWYER-SAN ANDRES AND SOUTH SAWYER-SAM ANDRES OIL POOLS IN LEA COUNTY, NEW MEXICO, AND CREATING THE SAWYER-SAN ANDRES GAS POOL, OR IN THE ALTERNATIVE FOR AN ORDER EXTENDING THE SOUTH SAWYER-SAN ANDRES OIL POOL AND REMOVING ALL GAS-OIL RATIO LIMITATIONS. OR FOR AN ORDER COMBINING THE SAWYER-SAN ANDRES AND THE SOUTH SAWYER-SAN ANDRES OIL POOLS AND REMOVING ALL GAS-OIL RATIO LIMITATIONS.

ORDER OF THE COMMISSION

BY THE COMMISSION:

This cause came on for hearing at 9 o'clock a.m. on September 30, 1959, at Santa Fe, New Mexico, before Daniel S. Nutter, Examiner duly appointed by the Oil Conservation Commission of New Mexico, hereinafter referred to as the "Commission," in accordance with Rule 1214 of the Commission Rules and Regulations.

NOW, on this day of October, 1959, the Commission, a quorum being present, having considered the application, the evidence adduced, and the recommendations of the Examiner, Daniel S. Nutter, and being fully advised in the premises,

FINDS:

- (1) That due public notice having been given as required by law, the Commission has jurisdiction of this cause and the subject matter thereof.
- (2) That the applicant, operator of a well located in the NE/4 NW/4 of Section 5, Township 10 South, Range 38 East, NMPM, Lea County, New Hexico, seeks an order abolishing the Sawyer-San Andres and South Sawyer-San Andres Oil Pools and creating the Sawyer-San Andres Gas Pool, or in the alternative for an order extending the South Sawyer-San Andres Oil Pool and removing all gas-oil ratio limitations, or for an order combining the Sawyer-San Andres and the South Sawyer-San Andres Oil Pools and removing all gas-oil ratio limitations for this pool.

- (3) That the preponderance of the evidence presented establishes that the acreage comprising the Sawyer-San Andres Oil Pool and the South Sawyer-San Andres Oil Pool, as well as the intervening acreage between the two pools, is predominately a gas reservoir and should be designated as the Sawyer-San Andres Gas Pool.
- (4) That special rules and regulations should be promulgated governing said Sawyer-San Andres Gas Pool.

IT IS THEREFORE ORDERED:

- (1) That the Sawyer-San Andres Oil Pool and the South Sawyer-San Andres Oil Pool, as well as the intervening acreage between the two pools, be and the same is hereby reclassified as the Sawyer-San Andres Gas Pool with horizontal limits as described in Appendix "A" of this order, effective November 1, 1959.
- (2) That special rules and regulations governing the Sawyer-San Andres Gas Pool be and the same are hereby promulgated as follows, effective November 1, 1959:

SPECIAL RULES AND REGULATIONS FOR THE SAWYER-SAN ANDRES GAS POOL

- RULE 1. Each well completed or recompleted in the San Andres formation within one mile of the boundary of the Sawyer-San Andres Gas Pool as set forth in Appendix "A", and not nearer to nor within the boundaries of another designated San Andres gas pool, shall be drilled, spaced, and produced in accordance with the special rules and regulations hereinafter set forth.
- RULE 2. (a) Each gas well completed or recompleted in the Sawyer-San Andres Gas Pool shall be located on a tract consisting of approximately 160 acres comprising a quarter section of a governmental section. For purposes of these rules, a unit consisting of between 158 and 182 surface contiguous acres shall be considered a standard unit.
- (b) The Secretary-Director shall have authority to grant an exception to Rule 2 (a) without notice and hearing where an application has been filed in due form and where the unorthodox size or shape of the tract is due to a variation in the legal subdivision of the United States Public Lands Survey, or where the following facts exist and the following provisions are complied with:
- (1) The non-standard unit consists of contiguous quarter-quarter sections or lots.
- (2) The non-standard unit lies wholly within a single governmental section.

-3-Case No. 1763 Order No. R-1517

(3) The entire non-standard unit may reasonably be presumed to be productive of gas from the Sawyer-San Andres Gas Pool.

- (4) That the applicant presents written consent in the form of waivers from all offset operators and from all operators owning interests in the section in which the non-standard unit is situated and which acreage is not included in said non-standard unit.
- (5) In lieu of Paragraph 4 of this Rule, the applicant may furnish proof of the fact that all of the aforesaid operators were notified by registered mail of his intent to form such non-standard unit. The Secretary-Director may approve the application if, after a period of thirty (30) days, no such operator has entered an objection to the formation of such non-standard unit.
- RULE 3. (a) Each well completed or recompleted in the Sawyer-San Andres Gas Pool shall be located no nearer than 660 feet to the outer boundary of the unit dedicated to the well nor nearer than 330 feet to any governmental quarter-quarter section line.

Any well which was drilling to or completed in the Sawyer-San Andres Gas Pool prior to the effective date of this order is granted an exception to the well location requirements set forth in the preceding paragraph.

(b) The Secretary-Director shall have authority to grant exceptions to Rule 3 (a) without notice and hearing where an application therefor has been filed in due form and the necessity for the unorthodox location is based on topographical conditions or is occasioned by the recompletion of a well previously drilled to another horizon.

Applicants shall furnish all offset operators a copy of the application to the Commission and shall stipulate to the Commission that proper notice has been furnished to all such operators. The Secretary-Director may approve the application if, after a period of twenty (20) days, no offset operator has entered an objection to the proposed unorthodox location.

RULE 4. As of the effective date of these rules, no gas shall be flared or vented from any well in the Sawyer-San Andres Gas Pool except for a period not to exceed 72 hours during which the gas-liquid ratio tests required by Rule 7 are being taken; provided, however, that the Secretary-Director of the Commission may extend the 72-hour test period if necessary; provided further, that the Secretary-Director may grant an exception to the no-flare provision for oil wells in said pool when the operator submits a statement setting forth the facts and circumstances justifying such exception in the interest of protecting correlative rights or preventing undur

-4-Case No. 1763 Order No. R-1517

hardship on the applicant. If the Secretary-Director declines to grant administrative approval of the requested exception, the matter shall be set for hearing if the operator so requests. Provided further, that any oil well completed in said Pool after the effective date of these rules shall be given ninety (90) days in which to make hemoficial use of the produced casinghead gas.

RULE 5. A gas well in the Sawyer-San Andres Gas Pool shall mean a well producing with a gas-liquid ratio in excess of 25,000 cubic feet of gas per barrel of liquid hydrocarbons as determined by the gas-liquid ratio tests prescribed in Rule 7. All other wells producing from the Sawyer-San Andres Gas Pool shall be classified as oil wells.

RULE 6. An oil well in the Sawyer-San Andres Gas Pool shall have dedicated thereto a proration unit consisting of 40 acres, more or less, being a governmental quarter-quarter section.

RULE 7. No production shall be permitted from any well in the Sawyer-San Andres Gas Pool until such time as a 24-hour gasliquid ratio test has been taken on said well, and the results thereof filed with the Commission on Form C-116 and the Commission has classified the well in accordance with Rule 5.

If the results of said test indicate that a well should be classified as a gas well, an amended Form C-128, Acreage Dedication Plat, shall accompany the test, outlining the proposed 160-acre unit which is to be dedicated to the well. Form C-104, Request for Gas Allowable, and Form C-110, Certificate of Compliance and Authorization to Transport Oil and Natural Gas, shall also accompany the test, showing thereon the authorized transporter of both liquids and gas, and the date of the gas connection.

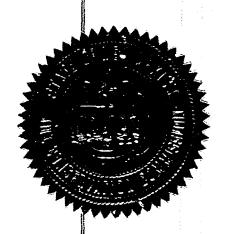
If the results of the test indicate that the well should be classified as an oil well, Form C-110 shall accompany the test showing the authorized transporter of both liquids and gas and the date of the gas connection. If a casinghead gas connection is not immediately available, the operator may request an exception to the no-flare provisions of these pool rules as provided in Rule 4.

Gas-liquid ratio tests shall also be taken semiannually on all wells in the Sawyer-San Andres Gas Pool. These tests shall be taken during the months of April and October and the results thereof filed with the Commission on Form C-116 not later than the 10th day of the month next succeeding the month during which the tests were taken.

RULE 8. Acreage dedicated to a gas well in the Sawyer-San Andres Gas Pcol shall not be simultaneously dedicated to an oil well in said pool.

Case No. 1763 Order No. R-1517

RULE 9. No newly completed well in the Sawyer-San Andres Gas Pool shall be assigned an allowable until Form C-104 and Form C-110 have been filed together with a plat showing the acreage dedicated to the well.


DONE at Santa Fe, New Mexico, on the day and year herein-above designated.

STATE OF NEW MEXICO OIL CONSERVATION COMMISSION

JOHN BURROUGHS, Chairman

MURRAY E. MORGAN, Member

A. L. PORTER, Jr., Member & Secretary

-6-Case No. 1763 Order No. R-1517

APPENDIX "A"

Horizontal Limits of Sawyer-San Andres Gas Pool

TOWNSHIP 9 SOUTH, RANGE 37 EAST, NMPM Section 24: 1/2 Section 25: NE/4

TOWNSHIP 9 SOUTH, RANGE 38 EAST, NMPM
Section 19: All
Section 28: S/2 (partial)
Section 29: W/2 and SE/4
Section 30: All
Section 31: NE/4
Section 32: All
Section 33: All (partial)

TOWNSHIP 10 SOUTH, RANGE 38 EAST, NMPM Section 5: NW/4

Memo

Called Jos Paruly

Called Jos Paruly

11/2/59 and requested

Had he call all operators en Sowyer Ban Contres gas Heat Advise them that prolibited.

W. O. KELLER

KELLER AND PETERSON

PETROLEUM CONSULTANTS PETROLEUM CONSTITUTE (100 Petroleum and Geological Engineering Property Appraisals
Reserve Estimates Reservoir Analysis W. T. WAGGONER BUILDING

1939 COT 55 AT 8 1 49

FORT WORTH, TEXAS

October 2, 1959

Mr. D. S. Nutter, Chief Engineer New Mexico Oil Conservation Commission 107 Mabry Hall, Capitol Building Santa Fe, New Mexico

Dear Mr. Nutter:

Reference is to your request made at the hearing in Santa Fe on September 30, 1959, in regard to the Sawyer and South Sawyer hearing. You will recall that you requested and South Sawyer hearing. Commission multiple governing San a copy of the Texas Railroad Commission rules governing San Andres gas wells drilled in the Levelland Field area located east of the Sawyer area and adjacent to the Buckshot Field area in Texas. Levelland Field Rule No. 8 and State-Wide Rule No. 6-B govern this situation. A copy of each of these rules is enclosed as per your request.

If there are any further questions in this regard, please do not hesitate to call me.

Yours very truly,

KELLER AND PETERSON

WOKfr

Enclosures

Mr. C. A. Powell Alamo Corporation Lubbock, Texas

Mr. Howard Bratten Hinkle Building Roswell, New Mexico (LEVELLAND SAN ANDRES UNIT (SECONDARY RECOVERY)—Cont'd)

hours and for such additional time up to twenty-four (24) consecutive hours as will permit the well being tested, if it is capable of so doing, to produce a volume of oil equivalent to the allowable to which it is entitled under the applicable rules of the Commission. The oil produced during whatever period the well is lested shall be converted to a twenty-four (24) hour basis by multiplying such production during such period by the required factor.

RULE 8. (As Amended by Order No. 8-34,408, Effective October 10, 1956, Order No. 8-37,458, Effective January 21, 1958, and Order No. 8-39,633, Effective January 1, 1959.) A gas well in the area hereinafter described producing from the same reservoir as oil wells shall be allowed to produce monthly that number of cubic feet of gas which, without this rule, are permitted to be produced from such gas well from 42.5 acres under Statewide Rule 6(b); provided, however, that where the acreage assigned by the operator to such gas well is less than or exceeds 42.5 acres, such gas allowable shall be decreased or increased, as the case may be, by multiplying the same by a fraction, the numerator of which is the amount of such assigned acreage and the denominator of which is 42.5. Acreage assigned to an oil proration unit shall not be assigned to a gas well producing from the same reservoir. No acreage can be assigned to a gas well in excess of 708 acres plus a tolerance of 10% thereof, and any so assigned shall consist of acreage which can reasonably be considered to be productive of gas. Acreage assigned to a gas well shall constitute a gas proration unit which shall not be in length more than twice its width and shall be rectangular in shape; provided, however, that in cases of long and narrow leases or where

leases are of such geometric design that it is impossible to comply with the provisions hereof, the Commission may, after proper showing, grant exceptions to the limitations as to the shape of such gas proration units. The provisions of this rule shall be effective only with respect to the following described area lying in the Levelland Field in Cochran County, Texas: That portion of said field lying west of the East Line of the Petter County School Land Surveys and west of the East Line of the Harrison and Brown Survey, Cochran County, Texas, that portion of said field is embraced in Labors 7, 8, 9, 10, 11, 12, 25, 26, and 27 Mills County School Land, A-91, and Labors 8 and 9 Mills County School Land, A-93, and that portion of said field that adjoins on the east the area heretofore described, which is further delineated on the south as the South Line of League 95, Mills County School Land, A-91, on the east as the East Lines of Labors 5, 14, and 23 in Leagues 95, 96, and 97, and Labors 23, 14, 56, and 47, League 98, Mills and Brewster County School Lands A-84, 82, 90, and 91, and on the north as the North Line of League 98, Brewster County School Land, A-84, Cochran County, Texas.

IT IS FURTHER ORDERED That the provisions of this

IT IS FURTHER ORDERED That the provisions of this Special Order take precedence over and supersede the provisions of Special Order No. 8-9617, effective October 1, 1946, and Special Orders No. 8-10,707, effective May 19, 1947, No. 8-11,594, effective December 1, 1947, and No. 8-12,141, effective March 22, 1943, amending such order, adopting operating rules for the Levelland Field, Hockley County, Texas, and other prior orders, if any, relating to operating rules for said field; and any and all such orders are hereby rescinded.

IT IS FURTHER ORDERED That this cause be held open on the docket for such other and further orders as may be necessary.

(LEVELLAND SAN ANDRES UNIT (SECONDARY RECOVERY)—Cont'd)

hours and for such additional time up to twenty-four (24) consecutive hours as will permit the well being tested, if it is capable of so doing, to produce a volume of oil equivalent to the allowable to which it is entitled under the applicable rules of the Commission. The oil produced during whatever policed to well is tested shall be converted to a twenty-four (24) hour basis by multiplying such production during such period by the required factor.

RULE 8. (As Amended by Order No. 8-34,408, Effective October 10, 1956, Order No. 8-37,468, Effective January 21, 1958, and Order No. 8-39,633, Effective January 1, 1959.) A gas well in the area hereinafter described producing from the same reservoir as oil wells shall be allowed to produce monthly that number of cubic feet of gas which, without this rule, are permitted to be produced from such gas well from 42.5 acres under Statewide Rule 6(b); provided, however, that where the acreage assigned by the operator to such gas well is less than or exceeds 42.5 acres, such gas allowable shall be decreased or increased, as the case may be, by multiplying the same by a fraction, the numerator of which is the amount of such assigned acreage and the denominator of which is 42.5. Acreage assigned to an oil proration unit shall not be assigned to a gas well producing from the same reservoir. No acreage can be assigned to a gas well in excess of 708 acres plus a tolerance of 10% thereof, and any so assigned shall consist of acreage which can reasonably be considered to be productive of gas. Acreage assigned to a gas well shall constitute a gas proration unit which shall not be in length more than twice its width and shall be rectangular in shape; provided, however, that in cases of long and narrow leases or where

leases are of such geometric design that it is impossible to comply with the provisions hereof, the Commission may, after proper showing, grant exceptions to the limitations as to the shape of such gas proration units. The provisions of this rule shall be effective only with respect to the following described area lying in the Levelland Field in Cochran County, Texas: That portion of said field lying west of the East Line of the Petter County School Land Surveys and west of the East Line of the Harrison and Brown Survey, Cochran County, Texas, that portion of said field is embraced in Labors 7, 8, 9, 10, 11, 12, 25, 26, and 27 Mills County School Land, A-91, and Labors 8 and 9 Mills County School Land, A-93, and that portion of said field that adjoins on the east the area heretofore described, which is further delineated on the south as the South Line of League 95, Mills County School Land, A-91, on the east as the East Lines of Labors 5, 14, and 23 in Leagues 95, 96, and 97, and Labors 23, 14, 56, and 47, League 98, Mills and Brewster County School Lands A-84, 82, 90, and 91, and on the north as the North Line of League 98, Brewster County School Land, A-84, Cochran County, Texas.

IT IS FURTHER ORDERED That the provisions of this

IT IS FURTHER ORDERED That the provisions of this Special Order take precedence over and supersede the provisions of Special Order No. 8-9617, effective October 1, 1946, and Special Orders No. 8-10,707, effective May 19, 1947, No. 8-11,834, effective December 1, 1947, and No. 8-12,141, effective March 22, 1948, amending such order, adopting operating rules for the Levelland Field, Hockley County, Texas, and other prior orders, if any, relating to operating rules for said field; and any and all such orders are hereby rescinded.

IT IS FURTHER ORDERED That this cause be held open on the docket for such other and further orders as may be necessary.

(CONSERVATION RULES—Cont'd)

to the provision of Chapter 100 of the Acts of the Forty-third Legislature of Texas, Regular Session, 1933, usually referred to as Senate Bill No. 92, amending Article 6008, Revised Statutes, 1925.

RULE 4. APPROVED METHODS OF PREVENTING WASTE 1 BE USED.—Any person, corporation, company or group of adividuals drilling for or producing crude oil or natural gas, or piping oil or gas for any purpose, shall use every possible precaltion in accordance with the most approved methods to stop and prevent waste of oil or gas, or both, in drilling and producing operations, storage, or in piping or distributing, the same shall not wastefully utilize oil or gas, or allow same to leak or escape from natural reservoirs, wells, tanks, containers, or pipe lines.

RULE 5. "COMMERCIAL QUANTITIES" DEFINED.—Any gas stratum showing a well-defined gas formation and producing gas shall be considered capable of producing gas in commercial quantities, and any gas coming from such a gas stratum or formation shall be considered a commercial quantity, and such stratum or formation shall be protected the same as under Rule 8.

such stratum or formation shall be protected the same as under Rule 8.

RULE 6. (Effective December 15, 1933, as Amended by Order No. 20-3,703, Effective June 14, 1942, and Order No. 20-6,839, Effective October 20, 1944.)

(a) Any oll well producing with a gas-oil ratio in excess of two thousand (2,000) cubic feet of gas per barrel of oil produced shall be allowed to produce daily only that volume of gas obtained by multiplying its daily oil allowable, as determined by the allocation formula applicable to said well, by two thousand (2,000) cubic feet. The gas volume thus obtained shall be known as the daily gas limit of such well. The daily oil allowable of such well shall then be determined by dividing its daily gas limit, obtained as herein provided, by its producing gas-oil ratio in cubic feet per barrel of oil produced.

RULE 6(b). (As Added by Order No. 20-6,839, Effective December 12, 1951.) Any gas well producing from the same reservoir in which oil wells are completed and producing shall be allowed to produce daily only that smount of gas which is volumetric equivalent in reservoir displacement of the gas and oil produced from that oil well in the reservoir which withdraws the maximum amount of gas in the production of its daily oil allowable.

The following formula shall be used in the determination of the allowable of a gas and of producing with a greatly with a greatl

The following formula shall be used in the determination of the allowable of a gas well producing with a gas-oil ratio of 100,000 or more under the provisions of this rule:

$$Q = A(r_1 - r_2 + \frac{199.3 \text{ PrB}}{\text{TrZ}})$$

Where:
Q = Gas well allowable, cubic feet per day @ 14.65 PSIA and 60 F.

A = Top oil well allowable, barrels per day at 60°F.

r. = Permissible gas-oil ratio applicable to reservoir, cubic feet @ 14.65 PSIA and 60°F per barrel @ 60°F.
r. = Cubic feet of gas dissolved in one (1) barrel of oil at average reservoir conditions, cubic feet @ 14.65 PSIA and 60°F per barrel @ 60°F.

Pr = Average reservoir pressure at gas-oil contact, PSIA.

Tr = Average reservoir temperature at gas-oil contact,
degrees Rankine.

B = Formation Volume factor of reservoir oil at average reservoir conditions, dimensionless.

Teservoir conditions, dimensionless.

Z = Deviation factor of gas from ideal gas laws at average reservoir pressure and temperature, dimensionless.

The following formula shall be used in the determination of the allowable of a gas well producing with a gas-oil ratio of less than 100,000 under the provisions of this rule:

$$Q = \frac{A \left| (r_1 - r_1 + \frac{199.3 \text{ PrB}}{\text{TrZ}}) \right|}{1 - \frac{r_1}{r_2} + \frac{199.3 \text{ PrB}}{r_1 \text{ TrZ}}}$$

Where r. = Gas-oil ratio of gas well, cubic feet @ 14.65 PSIA and 60°F per barrel @ 60°F. Other symbols are as

The necessary reservoir data shall be obtained from the most recent MER hearing file or estimated by the Commission's Engineering Department unless more recent information is submitted by the operators.

IT IS FURTHER PROVIDED, HOWEVER, That where gas produced from an oil reservoir in a field is returned to the same reservoir from which it was produced, only the volume of gas not returned to the reservoir shall be considered in applying the

(Unnumbered Order Amending Statewide Rule 6-B, Effective May 25, 1954.)

MEMORANDUM TO ALL OPERATORS IN RESERVOIRS HAVING NET GAS-OIL RATIO RULES.

This is to advise that effective June 1, 1954, Statowide Rule This is to advise that elective June 1, 1904, Statewide rule 6-B will not be applied to associated gas wells in reservoirs for which a net gas-oil ratio rule has been adopted for oil wells with net gas defined as total gas produced less gas diverted to legal uses. This does not apply where net gas is defined as total gas produced less gas returned to the reservoir or where special field rules have been adopted for associated gas wells.

Associated gas wells in this category will be dropped from the Associated Gas Well Schedule the next time it is revised. The allowables of all such wells will no longer apply after June 1, 1954, however.

ERNEST O. THOMPSON, Chairman W. A. MURRAY, JR., Commissioner

RULE 7. COMMISSION WILL REGULATE THE TAKING OF NATURAL GAS.—The Railroad Commission of Texas will, as occasion arises, prescribe rules and regulations for the determination of the natural flow of any well or wells in this State, and will regulate the taking of natural gas from any and all sources of supply within the State so as to prevent waste and protect the interests of the public and of all those baving a right to produce therefrom in so far as it may lawfully do so.

RULE 8. GAS TO BE MEASURED. (As Amended by Order No. 20-1,035, Effective October 26, 1939, Order No. 20-28,342, Effective April 7, 1952, and Order No. 20-24,164, Effective August 1, 1952.)

a. All natural gas produced from wells completed in gas reservoirs shall be accounted for by measurement, and the producer shall report the volume produced to the Commission.

b. All natural gas produced from wells completed in an oil reservoir but not listed on the oil proration schedule shall be accounted for by measurement, and the producer shall report the volume produced to the Commission.

c. All natural gas produced from oil wells and sold, processed for its gasoline content, used in a field other than that in which it is produced, or used in recycling or repressuring operations, shall be accounted for by measurement, and the producer shall report the volume produced to the Commission.

d. All natural gas produced from oil wells in this State which is not covered by the provisions of 8-c above, shall be accounted for by measurement or an accurate estimate based on its use or periodic test, and reported to the Commission by the producer. The volume of gas produced by wells exempt from gas-oil ratio surveys may be estimated based on general knowledge of the characteristics of the wells without the use of periodic test data. It is further provided that it shall not be necessary for a producer to report any natural gas produced from a marginal well that is exempt from gas-oil ratio survey, if such gas is not sold or utilized off the lease.

e. Exceptions to this order shall be granted only upon written

e. Exceptions to this order shall be granted only upon written application and proper showing to the Commission.

A record of all measurements or estimates required by this rule shall be maintained for not less than two (2) years in a permanent file and made available to the Commission representatives at all reasonable times. Where settlement or payment for gas is based on measurement made by a plant, a purchaser, or other person taking the gas, the producer may use the volumes determined by such measurement in making this report. The

DOODET. F

DOCKET: EXAMINER HEARING SEPTEMBER 30, 1959

Oil Conservation Commission - 9 a.m., Mabry Hall, State Capitol, Santa Fe, New Mexico

The following cases will be heard before Daniel S. Nutter, Examiner, or A. L. Porter, Jr., Secretary-Director.

CONTINUED CASE

CASE 1739:

Application of Shell Oil Company for approval of a unit agreemnt. Applicant, in the above-styled cause, seeks an order approving its Henshaw Deep Unit Agreement comprising 4824 acres, more or less, of Federal and State lands in Township 16 South, Ranges 30 and 31 East, Eddy County, New Mexico.

NEW CASES

CASE 1760:

Application of The Atlantic Refining Company for an automatic custody transfer system and for permission to produce more than 16 wells into a common tank battery. Applicant, in the above-styled cause, seeks an order authorizing it to install an automatic custody transfer system to handle the production from all Horseshoe-Gallup oil wells on its Navajo "B" Lease comprising certain acreage in Township 31 North, Range 16 West, San Juan County, New Mexico.

CASE 1761:

Application of Stanton Oil Company, Ltd., for a pilot water flood project. Applicant, in the above-styled cause, seeks an order authorizing it to institute a pilot water flood project in the Turkey Track Pool in Eddy County, New Mexico, by the injection of water into the Queen formation through four wells located in Section 34, Township 18 South, Range 29 East.

CASE 1762:

Application of Newmont Oil Company for an unorthodox water injection well location. Applicant, in the above-styled cause, seeks an order authorizing it to reopen and utilize for water injection a well located on an unorthodox location at a point 1620 feet from the North line and 1020 feet from the West line of Section 32, Township 16 South, Range 31 East, Square Lake Pool, Eddy County, New Mexico.

CASE 1763:

Application of Southwestern Hydrocarbon Company for an order abolishing the Sawyer-San Andres and South Sawyer-San Andres Oil Pools in Lea County, New Mexico, and creating the Sawyer-San Andres Gas Pool; or in the alternative for an order extending the horizontal limits of the South Sawyer-San Andres Oil Pool to include the NE/4 of Section 6, the N/2 of Section 5 and the NW/4 of Section 4, Township 10 South, Range 38 East, Lea County, New Mexico, and removing all gas-oil ratio limitations for wells in said pool; or in the alternative for an order combining the Sawyer-San Andres and the South Sawyer-San Andres Oil Pools, as well as the intervening acreage, and removing all gas-oil ratio limitations for such pool.

CASE 1764:

Application of Standard Oil Company of Texas for an unorthodox gas well location. Applicant, in the above-styled cause, seeks an order authorizing an unorthodox gas well location in the Atoka-Pennsylvanina Gas Pool, at a point 1850 feet from the South line and 1650 feet from the East line of Section 14, Township 18 South, Range 26 East, Eddy County, New Mexico.

Docket No. 33-59

- CASE 1765:

 Application of The Ohio Oil Company for a salt water disposal well. Applicant, in the above-styled cause, seeks an order authorizing the disposal of produced salt water into the Lower San Andres formation through its State B-4286 "A" Well No. 2, located in Unit F, Section 2, Township 17 South, Range 36 East, Lea County, New Mexico. The proposed injection interval is from 5725 feet to 5968 feet.
- CASE 1766:

 Application of Northwest Production Corporation for an oil-oil dual completion. Applicant, in the above-styled cause, seeks an order authorizing the dual completion of its "S" Well No. 16-2, located in the SW/4 SW/4 of Section 2, Township 24 North, Range 4 West, Rio Arriba County, New Mexico, in such a manner as to produce oil from an undesignated Gallup oil pool and to produce oil from an undesignated Dakota oil pool through parallel strings of tubing.
- CASE 1767:

 Application of El Paso Natural Gas Products Company for permission to produce more than 16 wells in a common tank battery. Applicant, in the above-styled cause, seeks an order authorizing the production of a maximum of 35 wells in the Horseshoe-Gallup Oil Pool into a common tank battery. Said wells are located on applicant's Horseshoe Ute Lease comprising portions of Sections 27, 28, 33 and 34, Township 31 North, Range 16 West, San Juan County, New Mexico.
- CASE 1768:

 Application of T. F. Hodge for the rededication of acreage assigned to three oil wells in the Jalmat Gas Pool. Applicant, in the above-styled cause, seeks an order rededicating the acreage assigned to three oil wells on his Mary E. Wills Lease, Section 33, Township 26 South, Range 37 East, Jalmat Gas Pool, Lea County, New Mexico. Applicant proposes to dedicate 40 acres to each of the three wells, said 40-acre units not to comprise a quarter-quarter section or legal subdivision.
- CASE 1769: Application of Pan American Petroleum Corporation for approval of a unit agreement. Applicant, in the above-styled cause, seeks an order approving its Northeast Hogback Unit Agreement, comprising 10,572 acres, more or less, in Township 30 North, Range 16 West, San Juan County, New Mexico.
- CASE 1770: Application of Pan American Petroleum Corporation for approval of a lease automatic custody transfer system. Applicant, in the above-styled cause, seeks an order authorizing the automatic custody transfer of oil produced from its Lois Wengerd Lease in Sections 23 and 24, Township 12 South, Range 37 East, Gladiola-Devonian Pool, Lea County, New Mexico.
- Application of Pan American Petroleum Corporation for approval of a lease automatic custody transfer system. Applicant, in the above-styled cause, seeks an order authorizing the automatic custody transfer of oil produced from its USA Malco Refinery "F" Lease, Section 1, Township 18 South, Range 27 East, Empire-Abo Pool, Eddy County, New Mexico.
- Application of Pan American Petroleum Corporation for approval of an automatic custody transfer system for four state leases in the Empire-Abo Pool, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks an order amending Order No. R-1292 to provide for automatic custody transfer of oil commingled thereunder.

Docket No. 33-59

CASE 1773:

Application of Pan American Petroleum Corporation for approval of two automatic custody transfer systems for seven federal leases in the Empire-Abo Pool, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks an order amending Order No. R-1399 to provide for automatic custody transfer of oil produced into the two commingled tank batteries authorized therein.

CASE 1774:

Application of Continental Oil Company for a non-standard gas unit. Applicant, in the above-styled cause, seeks the establishment of a 160-acre non-standard gas unit in an undesignated Tubb gas pool consisting of the E/2 NW/4 and the W/2 NE/4 of Section 15, Township 20 South, Range 37 East, Lea County, New Mexico, said unit to be dedicated to the applicant's Britt B-15 No. 10 Well, located in the SW/4 NE/4 of said Section 15.

CASE 1775:

Application of Continental Oil Company for a non-standard gas unit. Applicant, in the above-styled cause, seeks the establishment of a 160-acre non-standard gas unit in an undesignated Tubb gas pool consisting of the E/2 SE/4 of Section 15 and the W/2 SW/4 of Section 14, all in Township 20 South, Range 37 East, Lea County, New Mexico, said unit to be dedicated to the applicant's SEMU Well No. 70, located in the NW/4 SW/4 of said Section 15.

CASE 1776:

Application of Continental Uil Company for an exception to the overproduction shut-in provisions of Order R-520, as amended by Order R-967, for nine wells in the Jalmat Gas Pool. Applicant, in the above-styled cause, seeks an order allowing the following-described wells in the Jalmat Gas Pool to compensate for their overproduced status without being completely shut-in in order to prevent possible waste:

Ascarate D-24 Well No. 1, Unit J, Section 24, T-25-S, R-36-E, Danciger A-8 Well No. 2, Unit P, Section 8, T-23-S, R-36-E, Jack A-20 Well No. 4, Unit G, Section 20, T-24-S, R-37-E, Jack A-29 Well No. 3, Unit H, Section 29, T-24-S, R-37-E, Meyer A-29 Well No. 1, Unit 0, Section 29, T-22-S, R-36-E, Meyer B-28 Well No. 1, Unit E, Section 28, T-22-S, R-36-E, State A-32 Well No. 4, Unit F, Section 32, T-22-S, R-36-E, Stevens A-34 Well No. 1, Unit E, Section 34, T-23-S, R-36-E, Wells B-1 Well No. 1, Unit A, Section 1, T-25-S,

CASE 1777:

Application of El Paso Natural Gas Company for an exception to the overproduction shut-in provisions of Order R-520, as amended by Order R-967, for
two wells in the Jalmat Gas Pool. Applicant, in the above-styled cause,
seeks an order allowing its E. J. Wells Lease Well No. 13, Unit L, Section
5, and its Wells B-4 Lease Well No. 1, Unit D, Section 4, both in Township
25 South, Range 37 East, Jalmat Gas Pool, Lea County, New Mexico, to compensate for their overproduced status without being completely shut-in in
order to prevent possible waste.

R-36-E, all in Lea County, New Mexico.

CASE 1778:

Application of Olsen Oils, Inc., for an exception to the overproduction shut-in provisions of Order R-520, as amended by Order R-967, for four wells in the Jalmat Gas Pool. Applicant, in the above-styled cause, seeks an order allowing the following-described wells in the Jalmat Gas Pool to compensate for their overproduced status without being completely shut-in in order to prevent possible waste:

Cooper B Well No. 2, NE/4 NW/4 of Section 14, T-24-S, R-36-E, Myers B Well No. 1, SE/4 NW/4 of Section 13, T-24-S, R-36-E, S. R. Cooper Well No. 1, SE/4 NE/4 of Section 23, T-24-S, R-36-E, Winningham Well No. 3, NE/4 SE/4 of Section 30, T-25-S, R-37-E, all in Lea County, New Mexico.

Docket No. 33-59

CASE 1779:

Application of Jal Oil Company for an exception to the overproduction shutin provisions of Order R-520, as amended by Order R-967, for four wells in the Jalmat Gas Pool. Applicant, in the above-styled cause, seeks an order allowing the following-described wells in the Jalmat Gas Pool to compensate for their overproduced status without being completely shut-in in order to prevent possible waste: Legal Well No. 2, NE/4 SE/4 of Section 21, Dyer Well No. 3, SE/4 NE/4 of Section 31,

Jenkins Well No. 2, NE/4 SW/4 of Section 29, Ropollo Well No. 1, SW/4 NW/4 of Section 28,

all in Township 25 South, Range 37 East, Lea County, New Mexico.

CASE 1780:

Application of Husky Oil Company for an exception to the overproduction shut-in provisions of Order R-520, as amended by Order R-967, for one well in the Jalmat Gas Poole Applicant, in the above-styled cause, seeks an order allowing its Montecito Woolworth Well No. 2, Unit M, Section 33, Township 24 South, Range 37 East, Jalmat Gas Pool, Lea County, New Mexico, to compensate for its overproduced status without being completely shut-in in order to prevent possible waste.

CASE 1781:

Application of Texaco, Inc. for permission to continue producing an overproduced Jalmat gas well at a lesser rate. Applicant, in the above-styled cause, seeks an order authorizing it to produce its C. C. Fristoe (b) NCT-4 Well No. 2, Unit M, Section 31, Township 24 South, Range 37 East, Jalmat Gas Pool, Lea County, New Mexico, at a maximum rate of 2500 MCF per month for lease use until over production has been compensated for.

OIL CONSERVATION COMMISSION P. O. BOX 871 SANTA FE, NEW MEXICO

October 30, 1959

Mr. Jack Campbell Box 721 Roswell, New Mexico

Dear Mr. Campbell:

On behalf of your client, Southwestern Hydrocarbon Company, we enclose two copies of Order No. R-1517 in Case 1763, issued by the Oil Conservation Commission effective this date.

Very truly yours,

A. L. PORTER, Jr. Secretary-Director

ir

Enclosures: (2)

Copy & Habbs + Howard Bratton

Sille October 22, 1959 Mr. W. M. Stanley District Landman Union Oil Company of California P. O. Box 6738 Roswell, New Mexico. Re: OP90 - Southwestern Hydrocarbon Company Boundary Prospect Lea County, New Mexico Dear Sir: Reference is made to our letter of September 18, 1959, concerning the above mentioned operating agreement. Testimony for Southwestern Hydrocarbon Company's application concerning the Sawyer Area of Lea County, New Mexico was presented to the New Mexico Oil Conservation Commission in an examiner's hearing at Santa Fe on September 30. On October 20, Mr. D. S. Nutter, examining engineer for said Commission, was consulted as to whether this regulatory body has made a decision on this case. Mr. Nutter indicated that the Conservation Commission presently is reviewing this case; however, because of its nature, no immediate decision can be expected. He further indicated that the Commission was more than 30 days behind in publishing their orders. Mr. Nutter is aware that Southwestern Hydrocarbon Company is operating on an extension to November 1, 1959, granted by Union Oil Company in its letter to Southwestern Hydrocarbon Company, dated September 22, 1959. In view of the above information, we request that Union Oil Company of California grant our company an extension from November 1, to that date at which both of our companies receive copies of the published order, plus 15 days, but not to exceed 90 days from November 1, 1959, to commence the next well on the above captioned farmout. This will allow our company sufficient time to take care of the necessary work in staking the location for the next well. Very truly yours, JAS:B SOUTHWESTERN HYDROCARBON COMPANY cc: D. S. Nutter, OCC B. S. Guthrie Lonnie Kemper . A. Sheldon

This is a fast message unless its deferred character is indicated by the

ANDITOTAL OTATOTA

NL=Night Letter LT=International Letter Telegra

LAS 10 DC320

1959 SEP 29 PM 4 15

D MDA2 07 NL PD=MIDLAND TEX 29= NEW MEXICO CONSERVATION COMMISSION= SANTA FE NMEX=

REFERENCE CASE 1763 AS OWNER OF A WORKING INTEREST IN THE SAWYER POOL WE SUPPORT SOUTHWESTERN HYDROGARBONS APPLICATION THAT SAWYER AND SOUTH-SAWYER POOLSHBE ! CONSOLIDATED AND CLASSIFTED AS A GAS POOL TO BE PLACED UNDER STATE-WIDE RULES=

GREAT WESTERN DRILLING CO.

CLASS OF SERVICE This is a fast message

unless its deferred char-acter is indicated by the

roper symbol.

1959 SEP 29

DL=Day Lettet NL=Night Letter

LA 195 DB307

D MD A2 08 ND PD=MTD LAND TEX 29=1 VEW MEXTCO CONSERVATION COMMISSION= SANTA FE NMEX:

REFERENCE CASE 1763 AS OWNER OF A WORKING INTERESTEIN THE SAWYER POOL WE SUPPORT SOUTHWESTERN HYDROCABBONS APPLICATION THAT SAWYER AND SOUTH-SAWYER POOLS BE CONSOLIDATED AND CLASSIFIED AS A GAS POOL TO BE PLACED UNDER STATE-WIDE RULES=

WESTERN DRILLING CO OF LONGVIEW TEXAS.

CLASS OF SERVICE This is a fast message aless its deferred char-

acter is indicated by the

TELEGRAM

DL=Day Letter

NL=Night Letter

LA 192 DA 449

D MDA206 NL PD=MIDLAND TEX 29=

1959 SEP 29 PM 3 39

:NEW MEXTCO CONSERVATION COMMISSION=

SANTA FE NMEX:

=REFERENCE CASE 1763 AS OWNER OF AN INTEREST IN THE SAWYER POOL WE SUPPORT SOUTHWESTERN HYDROCARBONS } APPLICATION THAT SAWYER AND SOUTH-SAWYER POOLS BE CONSOLIDATED AND CLASSIFIED AS A GAS POOL TO BE PLACED UNDER STATE-WIDE RULES=

COOLEY AND HOLCOMB.

BEFORE THE OIL CONSERVATION COMMISSION SANTA FE, NEW MEXICO SEPTEMBER 30, 1959

IN THE MATTER OF:

Application of Southwestern Hydrocarbon Company for an order abolishing the Sawyer-San Andres and South Sawyer-San Andres Oil Pools in Lea County, New Mexico, and creating the Sawyer-San Andres Gas Pool; or in the alternative for an order extending the horizontal limits of the South Sawyer-San Andres Oil Pool to include the NE/4 of Section 6, the N/2 of Section 5 and the NW/4 of Section 4, Township 10 South, Range 38 East, Lea County, New Mexico, and removing all gas-oil ratio limitations for wells in said pool; or in the alternative for an order combining the Sawyer-San Andres and the South Sawyer-San Andres Oil Pools, as well as the intervening acreage, and removing all gas-oil ratio limitations for such pool.

CASE NO.

1763

BEFORE:

Mr. Daniel 3: Nutter Mr. Oliver Payne

TRANSCRIPT OF PROCEEDINGS

MR.NUTTER: The hearing will come to order, please. We will take next Case 1763.

MR. PAYNE: Case 1/63. Application of Southwestern Hydrocarbon Company for an order abolishing the Sawyer-San Andres and South Sawyer-San Andres Oil Pools in Lea County, New Mexico, and creating the Sawyer-San Andres Gas Pool; or in the alternative for an order extending the horizontal limits of the South Sawyer-San Andres Oil Pool to include the NE/4 of Section 6, the N/2 of

SUQUERQUE, NEW MEXICO

INDEX

JOHN A. SHELDON		PAGE
Direct Examination by Mr. Campbell Cross Examination by Mr. Payne QUESTIONS by Mr. Nutter		2 18 19
W. O. KELLER Direct Examination by Mr. Bratton Cross Examination by Mr. Payne QUESTIONS by Mr. Nutter QUESTIONS by Mr. Porter		29 47 50 56
NUMBER EXHIBIT FOR IDENTIFICATION	<u>offered</u>	<u>ACCE</u> PTED
App. 2 Subsurface Struc.Map 4 App. 2 n n 14 ALAMO 1 Structure Man	28 28	28 28
# 2 # # # # # # # # # # # #	46 46 46 46	47 47 47

Section 5 and the NW/4 of Section 4, Township 10 South, Range 38 East, Lea County, New Mexico.

MR. CAMPBELL: Mr. Examiner, Jack Campbell, Campbell and Russell, Roswell, New Mexico, appearing on behalf of the Applicant.

MR. BRATTON: Howard Bratton, Hervey, Dow and Hinkle, appearing on behalf of Alamo Corporation.

MR. CAMPBELL: I have one witness. I believe Mr. Bratton has a witness.

(Witnesses sworn.)

SHELDON, a witness called by and on behalf of the Applicant, having been duly sworn, was examined and testified as follows:

DIRECT EXAMINATION

BY MR. CAMPBELL:

- Will you state your name, please?
- John Sheldon.
- Where do you live, Mr. Sheldon? Q
- Roswell, New Mexico.
- What is your profession? Q
- I'm a consulting geologist. I am on a retainer for Southwestern Hydrocarbon Company.
- Will you give the Examiner a brief description of your educational and professional background?

CH 3-6691

A I was graduated from Texas A. and M. College with a B. S. in petroleum engineering in 1951. From that date through October '58, I was employed by Gulf Oil Corporation in various capacities in the geophysical and geographical department. At the time I left Gulf, I was subsurface geologist, and I have been on a retainer from Southwestern Hydrocarbon Company for one year.

Q During that time, have you continued working in the area that is involved in this application?

A Yes, sir, I have.

MR. CAMPBELL: Are the witness' qualifications as a geologist and engineer acceptable?

MR. NUTTER: Yes, sir. Please proceed.

Q (By Mr. Campbell) Mr. Sheldon, are you acquainted with the application of Southwestern Hydrocarbon Company in the case now pending?

A Yes.

Q You are aware, are you not, that that application was prepared and filed in such a manner that it contains several possible alternatives in connection with this matter?

A Yes.

Q Since the filing of this application, have you and Southwestern Hydrocarbon Company come to a conclusion as to the method that you propose to request the Commission to use in this field?

A Yes. In view of our subsurface studies, pre-existing

ALBUQUERQUE, NEW MEXICO

wells, and the wells that we have just completed NE/4 of Section 6, the N/2 of Section 5 and the NW/4 of Section 4, Township 10 South, Range 38 East, Lea County, New Mexico, we feel that in order to continue development, or continue exploration in the area, that we could not do so through any means other than the classification of, or reclassification of Sawyer-San Andres and South Sawyer-San Andres as a Gas Pool, assuming Statewide regulations as to spacing for these wells.

- Q Then you are requesting that the area referred to in the application be defined as a Gas Pool, is that correct?
 - A Yes, that is correct.
- Q Mr. Sheldon, I'm going to refer you to what has been identified as Exhibit Number 1, which I believe is the exhibit, large exhibit on the board there on the right, and ask you to state what that is?
- A Exhibit Number 1 is a subsurface structure map contoured on the top of the San Andres formation, contouring intervals of 25 feet.
- Q Just a moment. Now, will you refer to that particular map and tell the Examiner what interests Southwestern Hydrocarbon has in that area?
- A Southwestern Hydrocarbon has farmouts by a Federal operating agreement from Union Oil Company and Sinclair Oil and Gas Company. We have 480 acres within the outlined area, and our acreage is concentrated in Section 31 of 9 South, 38 East,

and Sections 4 and 5 of Township 10 South, 38 East.

Now, referring further to that particular exhibit, and the map features of it, will you explain to the Commission, the Examiner what your understanding is of the history of this area insofar as nomenclature is concerned, with particular reference to the Sawyer-San Andres Pool and the South Sawyer-San Andres Pool, and the recent nomenclature of this area?

Well, as I understand it, the Sawyer-San Andres includes Sections 13 and 24 of 9-37, Sections 18, 19, 20, 21, 28, 29, and 30 of Township 9 South, 38 East; that is the last designations I believe, of an order dated August 18.

- That order of August 18 added to the Sawyer-San Andres Pool what area?
 - Actually added Sections 20, 21, 28, and 29.
 - And deleted the SW of the SW of 28, is that correct?
 - Right: right.
- And then what is the present definition of the South Sawyer-San Andres Pool?
- Well, the South Sawyer-San Andres would include the NW/4 of Section 6 of Township 10 South, 38 East, the S/2 of Section 31 and 32, and the SW/4 of Section 33 of 9 South 38 East. the W/2 of the NW/4 of Section 33.
- So the way it stands now, the N/2 of Section 31 and the N/2 of Section 32 are not included in any pool?
 - A Are undesignated at the present time.

Now, where is the well that you have recently completed?

We recently completed our Number 1 Union Federal in the NE/4 of the NW/4 of Section 5, Township 10 South, 38 East.

That is not presently included within the defined limit of any pool, is it?

It has not been assigned, it has not been annexed to the South Sawyer as yet, but it is a direct offset to that pool.

Now, is the area outlined in red on Exhibit Number 1, the contour map on top of the San Andres, the area that you now propose to include within a single gas pool?

> A Yes, it is.

It would involve the addition of Section 25, and the N/2 of Sections 31, and 32, and the NE/4 of Section 6, N/2 of Section 5, and the NW/4 of Section 4, is that correct?

Yes, that is correct.

Now, referring to the contour on top of the San Andres, which is the one appearing on your right on the board there, and the first item on Exhibit 1, will you state what that is, and what it indicates?

Well, it is my interpretation, according to the subsurface strata here, that we definitely indicate the presence of a subsurface structure which is centered in the area outlined.

It indicates probable closure, and I feel that the closure does exist. Our West-East point of dip, or critical dip would be to the North, and we don't have sufficient control to show a reversal there. However, it is a pretty well defined subsurface feature, and it shows that the present limits of the South Sawyer and the Sawyer, show that both fields are included on this one subsurface feature. Actually, one is located in the Northwest flank in the North half of the structure, and the other is in the Southeast flank of this subsurface structure. We feel that at this time that our, we have in the outlined area, we have 14 wells that have been drilled. I believe two or three in that area, let's see, two in the area actually their initial targets were the Devonian; and one was plugged back and completed as a gas well in Section 25, whereas the other well in Section 20, the Warren Number 1 Border Unit is, right now is the only dry hole in the outline.

- Have there been some gas wells drilled that have not been produced in the area?
- A Well, all our gas wells are presently shut-in; at least, those wells are currently designated as gas wells. Our well was completed on August 15th this year, and its status is now shut-in.
- Q Based upon the information you have, as indicated by the contour map on top of the San Andres, is it your opinion that it might be reasonably said that the area encompassed in the

ALBUQUERQUE, NEW MEXICO

red line there, is a common source of supply?

Yes, that is our opinion, based on our subsurface

and engineering studies in the area. Now, refer to the other contour map which appears the left there, which I believe is a contour on the porosity

It is contoured on top of the zone. It is usually of the San Andres? designated in this area as a San Andres porosity, it is actually the top of the first porosity, it is found in the San Andres dolmite, and may or may not be continuous.

What does that particular contour indicate, particu-

It shows that our San Andres porosity, at least this larly in relation to the -map indicates, that we do have closure, that structure would be, you'd have to classify it as a structural trap, rather than a stratographical trap; it is conformable to the top of the San Andres line, so the marker that was used, or this type of porosity is definitely a good marker to map on in the area.

Now, in connection with your studies, and in connection with these contour maps, have you prepared any cross sections in the area?

Yes, I prepared two cross sections.

Refer first to the one that appears as the third

That would be a generally North-South cross section. item on Exhibit Number 1.

Here is a large scale. Now, referring to that North-Q South cross section, would you identify the wells and explain to the Examiner what that indicates in reference to your prior testimony?

This North-South -- generally, the general direction is a North-South cross section, North on the left and South on the right. We have traced off that portion of the electric, or gamma ray neutron log in the vicinity of the San Andres porosity. And here, we are submitting this to support our contour maps on the porosity, showing that we, this at least from the Robinson Brothers Number 1 Unit Federal, is a plugged and abandoned well in the SW/4 of Section 5, extend North to the SW/4 Number 1 Union Federal, North to the what is now Union Number 1 Crosby Federal originally drilled as the George Livermore Number 1 Crosby Federal, and further North to Section 29, the Alamo Number 1 McCormick, then on to the Alamo Number 1 Federal and the Gulf Number 1 Banbert Federal.

How does that particular cross section generally confirm your contours on the top of the porosity?

Well, I've shown by markers here; actually, it is kind of hard to see on this blown up scale, on the small one it is more apparent; but we picked the top of the first porosity in the San Andres, and here in the North-South cross section we show that we do have an apparent closure. This part here is just a little, to the North, dip between these two wells, would be

primarily suggestive, at least the change of depth. Another thing that this cross section will show is that there is a considerable difference from a quantatitive approach of the porosity in this area; we start out with a pretty well developed porosity zone that has been divided into upper and lower porosity down the flank, porosity of total footage, porosity footage, porosity diminishes as you go up to the top of the structure. I have actually outlined in red here zones of which we would interpret as porosity like, strictly from electric or gamma ray log bases, and it shows here that your porosity does diminish over the top of this structure. And, from that relationship, comparing that with production histories and subsurface data concerning porosity and permeability that we would also, our permeability would diminish over the top of this feature, and relative permeability to gas as compared to oil would be increased.

- Q Now, have you made a similar cross section East-West?
- Yes, sir. East-West cross section is a generally East-West cross section.
 - It's the last item on the Exhibit Number 1?
- This cross section primarily shows an East-West turnover or closure in an East-West direction. Now, this is a generally East-West, and we try to keep most of the wells in the New Mexico portion, we could place some wells on the buckshot over here, but this will show variations in porosity across this way too (indicating), but we do show quite a bit of turnover.

PHONE CH 3-6691

This is highly magnified, comparing a horizontal scale to a vertical scale, but it is enough to suggest that we do have a subsurface feature in the area.

- It tends to confirm the structure?
- It confirms our structure. Also, we can see where we have a pretty well developed porosity here in the Texas-Pacific Coal and Oil Federal Number 1, the porosity again diminished over the top of the structure. This one particular log is a microlog on the Ohio Number 1 Caruth Federal, which is a shut-in gas well.
- You have recently completed a well, as you have indicated, in the southern portion of this area, have you not?
 - Yes.
 - Do you have a log of that well?
 - This log is displayed here.
- I believe that is contained, Mr. Examiner, in Exhibit Number 2.
 - That's the lower portion of the log?
- Will you explain to the Examiner the log of that well, and its completion data testing information you might have on it?
- Well, actually we can see the front of the log here, the log portion of the San Andres; we topped our San Andres porosity at 4935, or minus datum of 990. We drilled to a total depth of 5,000 feet, and on the basis of combining our core analysis with gamma ray neutron log interpretation, we felt that

our best chances for completing this well would be in this upper zone of porosity, which is shown right here (indicating). You have a hard spot that separates it from the lower zone of porosity we did perforate roughly 15 feet of lower porosity.

Another reason for attempting completion in the upper porosity was on the basis of the failures of the Robinson Brothers Number 1 Union and Number 1 Warren-Federal in Sections 5 and 6 not shown on these cross sections, you'll have to refer back to the original subsurface map to the Southwestern Drilling Company Number 1 Atlantic failure, all three wells attempted completions in the lower porosity first and failed; and secondly attemped to complete up in the higher porosity where they didn't have as high a fluid separation, but from structural bases it looked like a better place to complete it.

But I have several reasons why these wells have failed. Some of them I feel had poor water shut-off in their cement job, or squeeze job; or the reason I think which was the primary basis, the wells drilled on the South and West flank there seem to exhibit a much more fractured porosity than wells drilled in the other parts of the area, and I know that when you are dealing with fractured porosity, you are subject to quite a bit of co-mingling or communication between water, oil and gas, if you have three distinct levels. So we went ahead and completed in our upper porosity first, and we feel that we have a well that is commercial commercially, that we could actually not only return our investment

but make a moderate profit.

- What would the test on that well reflect?
- Our test comprised of 4. back pressure test that was run by Sinclair Oil and Gas Company by Ray Lauer, their gas analyst, and on the 24-hour point which we consider to be the most important point, it is actually the longest test in the whole series of pressure checks, the well potentialed or gauged at 1,538,000 cubic feet of gas and roughly eight and a half barrels of fluid, which we estimate roughly six and a half barrels of acid water, a barrel and a half of salt water, and a trace of oil which we estimated at a half a barrel of oil.

One characteristic of the test indicated that as you open the choke sizes and reduce the bottom hole pressure, that the well tends to make additional fluid, or your quantity of fluids are increased. However, our well shows that we are producing quite a bit of salt water with the gas, so that is another reason that we at this time, we would not attempt to complete in the lower porosity. We had three failures to the South of us and also indication in the hard spot of the core analysis that there exists a high water saturation.

- Mr. Sheldon, you are aware, are you not, that in the area of the South San Andres Pool where your well is situated, there is a limiting gas-oil ratio of 2,000 to 1?
 - Yes, I'm aware of that.
 - That there is no such limiting ratio in the Sawyer-

San Andres Pool at the South?

- A Right.
- Q Assume that 2,000 to 1 ratio remained in effect in the South area where your well is situated, could you operate your well and could you drill on any of the additional acreage you have available to you?
- We could not, because income from gas which would be our sole source of income, would be restricted so it would be very uneconomical.
- If you were permitted to produce this as a gas well, and if this area is defined as a gas pool, is there any market for the gas that might be produced?
- Yes, we have been approached by Sinclair Oil and Gas, who have recently laid a pipeline to the area extending Southwest out of the Buckshot Pool, and tying it into the line I believe from the Crossroad pools to the Gladiolia plant, and they have approached us on purchasing the gas; and as yet we have not discussed prices, but as soon as we completed the well, they approached us immediately.
- In your Exhibit Number 2, the first item appears to be a letter dated August 12, 1959, from Sinclair Oil and Gas Company, and in that letter did they advise that they would provide marketing facilities for gas if you could produce the gas?
- As I remember the letter, they indicated they wanted to be considered a prospective purchaser of gas, of gas production,

and I don't recall that any other statements were made other than

Is any of the gas being produced in the area now Q being marketed?

As I understand it, I don't believe so, at least out of the New Mexico portion.

And with a limiting gas-oil ratio, you would be unable to produce enough gas to make it attractive for a purchaser, is that correct, or yourself?

That is correct.

For what reason, Mr. Sheldon, do you feel that this should be classified as a gas pool?

Well, from our studies, which combine subsurface studies from a geological standpoint and also from studies made from production data and also some of the engineering data taken from some of the other wells in the area, we feel that the reservoir contains over the greatest percentage of the acreage enclosed in this outline, will be predominantly gas. Your permeabilities and porosities are such, which I hope I exhibited on this cross section, where your proper porcsities have been reduced over the main portion of this structure, and also in this area where your porosities and permeabilities have been reduced, it actually makes up, I would say, in excess of 75 percent of the acreage in that particular area, that I feel that your production or your, or let's say on yor permeabilities would be more conducive to

producing gas.

Now, all the wells, as I understand it, drilled in this area, as all the other areas, that have penetrated the San Andres porosity in the Lea County, have initial show of porosity at the but your San Andres porosity is primarily a pinpoint porosity, is very tight as a whole, and we are counting fractured porosity as being our main reservoir in this area.

If this reservoir is developed as a gas reservoir, with the regular Statewide spacing pattern of 160 acres, will you be able to, from an investment point of view, continue to develop the acreage that you have available to you?

We feel that based on our current subsurface engineering data made available as of this date, we could continue operations of the area; though they will be somewaht marginal, it is by no means, it is not an attractive area from an exploration standpoint, but on a thoroughly correct spacing and cautious development, I believe that the operators can make a moderate income.

Do you believe that that can be done without causing waste?

I don't believe that we'll have any waste; I feel you will have more waste under an oil well type spacing.

> Q Why is that?

Well, on the oil well type spacing you will be drilling less than 160-acres, and I actually believe that gas, at

least from the standpoint of the gas, that we can drain 160 acres, we can drain 160 acres from our gas, but if you space it less than 40's -- well, actually that is a hard point right there to come by.

Do you believe that the only way that you can economically recover the recoverable portion of the resources under this area is to treat this as a gas reservoir, and sell the gas and produce the oil that you get with the gas?

> A We feel that is the only route right now.

Q So that you would lose ultimate recovery of oil and gas if some relief of this nature is not provided, is that correct?

> Yes. A

Now, refer to your exhibit Number 2, Mr. Sheldon, and advise the Examiner what you have included in that exhibit by way of the additional information?

Well, I have included a letter and test results of our 4. back pressure test. Now, this test was run for our own accord, we felt we had a gas well at the time of the completion, and so, as I understand it, we have to get State permission. If once they classify this as a gas well, the State will request us to run a 4. back pressure test. Now, this test was run according to the rules and regulations, however, we did not get a straight line on our pressure, on our pressures here on this plot of our various amounts of production with your pressure. Our 24-hour point and our first pressure point line up in a straight line,

in that it was roughly 45 degrees, which I believe is optimum, and the result indicated that we have a calculated absolute open flow of 1,292,000 cubic feet.

Next, we presented a copy of our log which we submitted to the United States Geological Survey when we completed the well, and it contains complete well history. And the other exhibits would be a photostat of the lower portion of the gamma ray neutron log, and a verifax copy of the core analysis.

Do you have anything further at this time that you wish to add, Mr. Sheldon?

No.

MR. CAMPBELL: That's all the questions I have at this time.

> MR. NUTTER: Any questions of Mr. Sheldon? MR. PAYNE: Yes, sir.

CROSS EXAMINATION

BY MR. PAYNE:

Mr. Sheldon, what are the gravities of the fluids in the area?

Most of your oil that has been produced in the area I believe runs around 25 to 28 gravity, and it varies; at least that's the figures I think that Cactus Petroleum has.

And how about the gas-oil ratios of the various wells in this general area?

I believe another witness could give you those gas-

oil ratios; I have a general idea, I know that in some of them, PAGE 19 well, if we calculate a gas-oil ratio on our well, if we assume that our well produced half a barrel of oil, would be in excess of three million to one, which would be excessive. I think there is another left, one other well that has a gas-oil ratio in excess of three million to one, and I want to restrict my testimony to that of a geological nature. QUESTIONS BY MR. NUTTER:

Mr. Sheldon, what control do you have to draw these contour maps that you have submitted here?

The control, I think I show that there are 14 wells contained within the area.

Within the red outline?

Within the red outline, and there is three additional wells to the South, and some of the wells to the North in the vicinity of the Sawyer Devonian pool.

Now, all of these, I presume that all of these wells by which you show a minus number --

A minus number is a minus datum, reference is subsea.

But these are the tops of the San Andres formation on the wells that you had the control on?

Right, subsea datum.

Now, how many wells are currently producing within this red area?

Right now I believe we have, let's see, I believe I have here tabulated, one, two -- five oil wells or wells that are

ALBUQUERQUE, NEW MEXICO

classified as oil wells, some of which are high gas-oil ratio. Pardon me, there is seven.

MR. CAMPBELL: Mr. Nutter, I might say that Mr. Keller has the production history and the present production status of these wells, and we will present it. This witness probably does not have that data at hand.

It is not at hand.

MR. NUTTER: I was going to ask the witness a geological question as soon as I established how many wells there were in the area, Mr. Campbell.

(By Mr. Nutter) Now, there are seven producing wells Q in this area?

A

Now, are those all producing from the same interval of porosity, for example, that your Southwestern Hydrocarbon Number 1 Unit are producing from?

I think you can see from this cross section in this general East-West cross section that Texas-Pacific Coal and Oil well down in Section 33 is producing in the upper portion of the San Andres porosity; Western Number 1, Great Western, completed their well in the lower portion which is considered the second porous zone, if you wanted to break the porosity down.

Now, you don't have the information on the gas-oil ratios and so forth, the other witness will furnish that?

I believe so.

- What interval is the Alamo Number 1 McCormick produc-Q ing from?
 - It is producing from the lower porosity.
 - How about the Ohio Number 1 Caruth?
- The Ohio Number 1 Caruth is owned by the Western Natural Gas, but it is a shut-in gas well and it is completed in the upper portion of the porosity.
 - Is the DeKalb Number 1 Ohio a producing well?
- It is producing oil from what I interpret to be the upper portion of the San Andres porosity. If we compare it to a common datum, let's see, one minus 1,000 feet from subsurface, we can see that we've got various points here from a structural standpoint, that we've completed these wells. Texas-Pacific Coal and Oil completed theirs in the upper, and as I understand it is still a gas-oil well. Great Western, I mean, Western Number 1 Federal completed, from a structural standpoint the perforations are lower in this section, and they completed it as a high gas oil ratio.
- How do you account for this, as you go from one well to the next that the optimum seems to vacillate between upper porosity and lower porosity?
- Some of the operators complete their wells solely on the basis of core analysis.
- Do you know enough about the gas-oil ratio in this Q area, whether there is a general correlation where the wells are

completed and the excess oil ratio of the well?

A Well, I feel that, all I can do is surmise, I feel that over the major portion of the area that I have outlined on this subsurface structure map, that I think we are going to end up with, over the central portion, has extremely high gas-oil ratio wells, which I would classify them as gas wells.

- Q Have you been able to determine whether there is any portion of that structure that seems to have a higher gas-oil shows than another?
 - A I would say the higher portion.
- Q Do you think this is a gas cap situation with an oil rim around it, or an oil pool below it?
- A It would be kind of hard to say that, because on the South side of our well we have dry holes that were completed, I mean, that produced as high as 90 percent water.
- Q You stated that was in that fractured porosity, didn't you?
- A Well, I would say to an extent you do have fractured porosity over the whole area, but it seems to be more pronounced on your steepest flanks of this structure, which would be the West flank and possibly the South flank here.
- Q I believe you also stated, Mr. Sheldon, that if you had completed your well in other than the upper porosity, that perhaps you would have gotten a higher saturation of water?
 - A Well if -- that would be correct.

Do you think there possibly could have been a higher Q saturation of oil also?

No. if there was a possibility of getting increased oil saturation, I think it would be immediately coned out by water, because there would be such a thin interval.

I see.

Now, where we do have some of our lower gas-oil ratio, I could tell you, which seems to be a unique situation, which I think can be explained; geological areas where you have a general dip, or from a structural standpoint where we have re-entries of the contours, and as I said before, your porosity seems to increase as you go downdip in a vertical extent, and also in percentages, but it is, over-all it is rather a spotty situation. But some of those wells like the DeKalb well, it is low enough downdip where I think he completed their well to about 16 barrels a day, which is definitely uneconomically. I note Texas-Pacific Coal and Oil well had a very low gas-oil ratio, but I'm led to believe now from talking to the lease pumper, that the gas seems to be on the increase, apparently on the increase, I don't have any factual data to support that.

As far as you know, is your well, the Southwestern Hydrocarbon Number 1 you own the highest, is it the best gas well in the pool, or in the area? Does it have the highest potential?

I don't know what basis Gulf, originally, the Devonian Company drilled their gas well up in the northern portion of

DEARNLEY-MEIER REPORTING SERVICE, Inc.

Section 18, it was turned in for 2,700,000 cubic feet.

- And that is a shut-in gas well now?
- That is a shut-in gas well presently, and that was in this area of the original Sawyer pool.
 - Now, is that completed in the upper or lower porosity?
- I believe that well is completed open hole, and I would have to check my total depth, but I have an idea it is open to the whole zone of porosity. Yes, that would be open hole, so I would say the whole zone of porosity that was penetrated by the drill bit is exposed.
 - Q And you don't know the gas-oil ratio of that well?
 - They turned it in as 2,700,000 cubic feet per day.
 - Do you know the amount of liquid it made?
- No, my sources of information, which were major oil companies: completion cards, does not say anything about liquid content.
- Perhaps the other witness will be able to answer that. Mr. Sheldon, the Commission in its order R-199, which was entered November 13th, 1952, excepts the Sawyer-San Andres Pool from the gas-oil ratio requirements of Rule 506. In that order, the Commission found that the following, quote, "The following pools in Eddy, Lea, Chaves and Roosevelt Counties, New Mexico, by reason of their low productivity of oil and gas, should be exempted from those rules". Do you feel now that those wells that have been completed as gas wells should be exempted from

the rule?

- A Unlimited volume?
- Yes, sir, this was an exception from the gas-oil ratio limitations.
- Well, I believe that all these wells in this area that can produce either gas or oil are going to have to be exempted in order to get anything out of the wells.
- Would this still come under this same reason that the original Sawyer Pool was exempted, that is, because of its low productivity of oil and gas?
- Well, I believe that this definitely is a marginal area, if that is what you are getting at, that it should not be prorated; if so, I think that any future development will be, continuous production of these wells, will be very uneconomical.
- You wouldn't produce this well unless you had a gas connection for it, would you?
- No, we couldn't. We wouldn't have anything to produce but gas.
- Even if it were classified as an oil pool, you wouldn't produce it?
- No, I don't see how we can -- well, you could produce it under your unlimited gas-oil ratio, but we feel that it would be most uneconomical, and at the same time, if we feel that an offset well was drilled to our well, that both wells would, at least their ultimate recoveries would be greatly reduced.

As I said before, we feel that this predominantly is a gas pool, and it seems to be, that's based on our subsurface and engineering studies, and we feel that the volume of gas, recoverable gas, compared to the recoverable oil, will be very much higher, or very much greater.

If the pool were to remain classified as an oil pool, do you think there should be any gas-oil restrictions at all, gas-oil ratio restrictions, or should it be completely unlimited as the Sawyer Pool is at the present time?

Well, I wouldn't go -- I mean, I wouldn't recommend any restrictions at all, because I think that you would end up shutting in all the wells that are currently producing, because the production is very marginal; there is only one particular well I think making around 25 barrels a day, but if you --

- You think that is a gas well, or an oil well?
- Right now it is classified as an oil well, but I feel it has high enough of a gas-oil-ratio, that I personally would classify it as a gas well. If you restrict the gas production, you will also restrict the oil production when you hook your well back, because you will be putting more back pressure on your formation; at least, that seems to be the character of our well, varying the choke sizes.
- Would you have any recommendation on how a well should be handled if it were determined that it were an oil well, and this is a gas pool?

A It is my understanding in some pools in New Mexico, that an oil well drilled in a gas pool will be allowed to produce its top allowable, unit allowable, or that allowable that would be given to it under an oil pool classification, and it should be drilled -- we feel on an economic analysis of area, that it wouldn't be profitable to drill up anything less than 160-acre spacing; so we would even recommend a 160-acre spacing on an oil well.

Q Well now, if you did have a gas pool, and a well was encountered which may or may not be an oil pool, what criterion would you recommend to the Commission they use to judge whether that well is a gas well or an oil well?

A I rather study the situation a little more before I make a statement to that effect, or present a criterion.

Q Do you think there is a possibility of encountering an oil well in this area?

A I think the possibility is remote; on one particular area we might have a possibility of getting another oil well over on this side over here (indicating), down in this area, but I believe that on the basis of our subsurface contours that most of this area will be high gas-oil ratio.

Q Do you think there is any direct communication between this area and the Buckshot Pool in Texas?

A They are producing out of comparable zone, what we call the San Andres porosity, but right now I couldn't make a

statement on that, I don't think that we have sufficient evidence. My subsurface maps suggest, some contours over here suggest a break, from a structural standpoint, but we are producing out of the same porosity, but your developments of porosity are very erratic. I think that your Buckshot is primarily a stratographic trap, where your updips limits are terminated by termination of porosity.

Has the suggestion that there are two separate areas, has that been substantiated by dry holes in the area?

There is one or two dry holes in the area, but I'm not actually prepared to make a positive statement to that effect. but I believe those wells were drilled previous to the discovery on the Buckshot pool. I'm not that well acquainted with the area.

What is the Buckshot pool, is that a gas pool, or oil pool?

It is a gas pool.

MR. NUTTER: Does anyone have any further questions of Mr. Sheldon?

(No response.)

MR. NUTTER: He may be excused.

MR. CAMPBELL: I would like to offer Applicant's Exhibits 1 and 2 in evidence.

MR. NUTTER: Applicant's Exhibits 1 and 2 will be received in evidence. It is 10 minutes after 12:00, I think we will recess the hearing until 1:30.

(Recess.)

DEARNLEY-MEIER REPORTING SERVICE, Inc. ALBUQUERQUE, NEW MEXICO

3-6691

AFTERNOON SESSION

1:30 P.M., WEDNESDAY, SEPTEMBER 30, 1959

MR. NUTTER: The Hearing will come to order, please. I believe we are on Case 1763.

MR. BRANTON: If the Commission please, Alamo Corporation would like to support the request heretofore made in this case by Southwestern Hydrocarbon. Our evidence will be presented by one witness, by Mr. Keller.

KELLER, a witness called by and on behalf of Alamo Corporation, having been previously sworn, was examined and testified as follows:

DIRECT EXAMINATION

BY MR. BRANTON:

Will you state your name, address, and occupation, please?

W. O. Keller, of Fort Worth, Texas, consulting petroleum engineer.

Mr. Keller, I believe you have previously testified before this Commission?

> A Yes, sir.

Mr. Keller, have you made a study of the area encompassed in the Sawyer-South Sawyer area involved in Case Number 1763?

Yes, I have. I might explain that in June of this

year the Alamo Corporation came to us for our ideas about what they should do in respect to developing that area. And at that time, we investigated the area and concluded that it could not be econemically developed as an oil field, but that it looked like there was a good opportunity that it could be economically developed as an -- a gas field. Now, of course, the primary reason for this conclusion was that almost without exception the oil wells, or oil and gas wells, or pure gas wells drilled in the area are not what I would call economical wells; that is, the reserves and productivities of the wells is so low that it is not an attractive business proposition to drill them as oil wells. In many of the cases, the value of the indicated gas reserves in the wells far outweigh the value of the oil.

- Based upon your studies in this area, have you prepared certain exhibits reflecting the structure of the area, and the producing history and the core analysis information of the area?
 - Yes, sir, I have tried to. MR. BRATTON: Excuse me a minute. Off the record. (Discussion off the record.)
- (By Mr. Bratton) Referring to Exhibit Number 1 --Q MR. NUTTER: How are these -- have these actually been identified yet, Mr. Bratton?

MR. BRATTON: Exhibit Number 1 is the structure map; we'll mark that Exhibit 1.

(By Mr. Bratton) Referring to Exhibit Number 1, the structure map of the area, Mr. Keller, will you explain what that is, and what it reflects?

Yes, sir. If I might, I would like to explain that what I have attempted to do by the exhibits on the board is to present as concisely and as quickly as I can, the pertinent data from which I arrived at the conclusion in respect to the development of this area which I just previously stated.

Before getting into Exhibit Number 1, I would like to explain that the production, the San Andres production from this area, comes from two porous zones located about 700 feet below the top of the San Andres formation. Now, these zones have been recognized and correlated throughout a very large area in the Sawyer area and extending on East and South way down into Texas; in fact, these are the same zones that produce oil and gas in the Lavaland Field, and even in the Sauterne Field. As litological members, they are quite persistent over a large area.

The first zone in the Sawyer area is generally approximately 40 feet in thickness; underlying the first zone is usually a dense break of ten to twenty feet, although in some of the wells, the disappears. Zone two if also in the neighborhood generally of 40 to 50 feet. Now, the structural condition dense break on top of the first zone porosities are depicted on Exhibit Number 1.

ALBUQUERQUE, NEW MEXICO

The contour interval ahown on Exhibit Number 1 is 20 feet. Also, shown on Exhibit Number 1, by a colored code are the zones of completion in the various wells, that is, the zones of San Andres completions in the various wells located on the map. The wells circled in red are completed in the first perous zone; the wells circled in green are second zone completions. Those wells that are open to both zones will have both a red and green circle around them. The structure in the Sawyer area is what I would describe as an anticlinal nose extending southward as I am indicating: the high is apparently located at this position in the vicinity of the southeast corner of Section 19, Range 38 East, Township 9 South; actually this is the first zone, first porous zone.

MR. NUTTER: Mr. Keller, I believe you mentioned Section 19, didn't you --

Yes, I did.

MR. NUTTER: -- rather than Section 9?

Yes, sir, Section 19, excuse me. The regional structure on the first zone of porosity in the San Andres is a broad monocline dipping generally to the South, and the structural anticlinal nose shown on the Exhibit Number 1 in the Sawyer area, is superimposed on top of this regional monoclinal situation.

Now, the accumulation of oil and gas and water not only in the Sawyer area, but on East of the Sawyer area, is a somewhat complicated thing. Generally, there is some correlation between

CH 3-6691

the occurrence of oil, water and gas with structural position. However, that correlation is not very accurate; there are as many exceptions to it as there are confirmations to it. So actually I think that the accumulation on the position of oil, water and gas structurally is generally controlled to some extent by structure, but probably predominantly by litological conditions; that is primarily the nature of the porosity and permeability development in the various zones. It is not possible to tie down definite oil-water, and gas-oil contacts.

The general character of the two producing zones is reflected by the core analysis data summarized on Exhibit Number 2. I was able to obtain core analysis data on ten wells in the area, eight of which cored the second zone, and ten of which cored the first zone; there are two wells where only the first zone was cored.

I might point out what the character of the producing formation is, as indicated by the core analysis data. First of all, this entire area is very tight, the permeability is extremely low. That's reflected by the core analysis data, and as we will see later, it is also reflected by the low producing capacity of the wells. For example, just -- by the way, I might also add that the core data on the first zone is shown in red on Exhibit Number 2, and on the second zone in green. The permeability, for example, reading off some of the representative numbers, 1.2, .7 millidarcies, .7 millidarcies, .2 millidarcies, .4, 2.7, 3.0,

1.9, 2.7, on the DeKalb well it was 10.3. Now, actually that is not representative because there was one sample in there that had a permability of a hundred and thirty some odd millidarcies, which brought the average up considerably. Coming on down the South end, .9 millidarcies, .7, 2.7 millidarcies. In the Southwestern Hydrocarbon well and the Robinson Federal dry hole, the permeability was 7.3 and 12.7, but unfortunately the zones were water productive in that well where we had this unusually high permeability development for this area. The Western Drilling Company's Atlantic Federal had permeability of 2.7 in the first zone, and 29.9 in the second; again, unfortunately the 29.9 permeability zone was water bearing. So when considering that portion of the cored intervals in these wells that's indicated productive of oil and gas, the permeability development is unusually low, generally less than one millidarcy with a few averaging up 1, 2 and 3 millidarcies.

In respect to porosity development, we have a somewhat similar situation. Without going over the individual wells, the average porosities per zone, by wells rather, is generally from about 5 percent to 9 percent, and averages somewhere around 7 or 8 percent, which is not, compared to other San Andres fields, good porosity development. I would classify it as poor porosity development.

Now, these core analyses data also showed, analyzed the oil saturation, without going into the individual wells, the oil

saturation from the core analysis data, generally averaged from 10 to 20 percent. Now, the unusual thing about the oil saturation picture in the core analysis, regardless of whether the well actually tested water in that zone, or tested oil, or high ratio oil production, or pure gas, there does not seem to be any core analysis with oil saturation, it all has oil saturation whether it is productive of cil, water, or gas, and that's generally true throughout that whole area. I mean, you can drill a well anywhere in that large area north of Slaughter and extending North and West up to the Sawyer area, and you'll get oil shows in the San Andres.

MR. NUTTER: Is this 20 percent oil saturation rather uniform regardless of whether it is oil, water, or gas?

Well, it is not uniform, it is just haphazard, Mr. Nutter. For example, let me show you, in the Robinson Brothers Union Federal the first zone tested 29 percent oil saturation; the second zone half as much, 142 percent oil saturation. Yet, on test of those zones, both of those zones produced predominantly water. The first zone which had the highest oil saturation tested 50 percent water, the second zone tested 90 percent water.

Now, as we will see later, the only low gas-oil ratio well, with a possible exception of one well or two wells that I don't have the gas-oil ratio data on, which is the Texas-Pacific Coal and Oil Gandy Number 1, the oil saturation measured in the core in that well in the producing zone, which is the first zone, is

ALBUQUERQUE, NEW MEXICO

CH 3-6691

13.1 percent. Yet, in the Southwestern Hydrocarbon well, which had only half a barrel approximately of oil and about a million and a half of gas on test, it had 12.9 percent which for all practical purposes is the same, and yet one of the wells is a gas well, and the other is a low gas-oil ratio well. So what it boils down to is those oil saturations don't seem to have any bearing on what the well will produce. Now, my explanation of that is this: That in the wells that tested oil and water and can't be completed commercially, probably the oil saturation you are measuring in the core is fairly close to what it is in the reservoir.

Now, in the -- in these gas wells and extremely high gasoil ratio oil wells, probably the oil saturation you are measuring in the core is slightly less than what the true saturation under reservoir condition is. In other words, in those gas wells and high gas-oil ratio oil wells, the oil and gas is, I think, right in the same porous space, and it is impossible to produce the oil without producing the gas, and conversely, because they occupy the same porous space. It is not a gravity segregation situation where you have an oil, a gas-oil contact.

Now, the water saturation measured in those cores generally averages from 25 to 40 percent water saturation. That, I believe, pretty well shows what the general nature of the producing zones are in the area from core analysis data, and it's characterized by very low permeability development, and low porosity development.

DEARNLEY-MEIER

Referring to your Exhibit Number 3, the productivity and tests of the various wells, do you also have the information from that tabulated, from Exhibit 3, do you have that tabulated, Mr. Keller?

A Yes, sir, I have some of the data shown on Exhibit 3 tabulated on the exhibit, which we might call Exhibit 4.

On Exhibit 3, I've tried to summarize briefly the data in respect to the test and productivity of the various wells in the two zones in the area. Now, just to summarize briefly what that situation looks like, in the Sawyer area I find that there is one low gas-oil ratio oil well that I know of, that is the Texas-Pacific Gandy Number 1 which I previously mentioned. That well produced about 20 barrels per day, and was produced in that capacity from July, so it is about a 20-barrel oil well; and I'm informed that in taking gas-oil ratio tests, the gas is too small to measure, so it is a gas-oil ratio oil well.

Now, there are two wells that produced oil that I don't have, I couldn't get a data on what the gas-oil ratio was; one of those wells is the DeKalb well which produced during July an average of about 13 barrels a day, and the other is the Gulf-Brown well located in Section 19, which during July produced about 4 and a half barrels per day. I've indicated it on Exhibit Number 3, but of those, let's see, the Gulf well is producing from the first zone I believe, and the DeKalb well is also producing from the first zone, so we have one low ratio well, and two small oil

Now, in addition, there are ten wells that are either gas wells or gas wells that produce small quantities of oil, which may be thought of as either oil wells with high gas-oil ratios, or as gas wells which produce a little bit of oil. It is a matter of sematics on the thing. But I might run briefly over the productivity of the wells that we have some data on, or about. Starting in the north, the Gulf-Landreth Number 1 well is shut-in gas well which was completed in 1948, and the scout report shows that it tested about 2,700,000 MCF per day. It has been acidized and it has a show of oil, but apparently the oil didn't amount to anything, and it is my understanding that well has been shut-in since that time. Coming on south, the Great Western Drilling Company's Brown Number 1 was tested in June of this year, it tested 270 MCF of gas, 10 barrels of oil, and 4.2 barrels of water, with a gas-oil ratio of 26,200 to 1 from the first zone. Now, that's one of the oldest oil producing wells in the area, it's been producing since 1948 and has produced a little over 31,000 barrels of oil; during July it produced a total, according to reported information, of 22 barrels so apparently it is not produced full time.

Q Mr. Keller, how much oil has been produced from the whole area during the entire life of the area?

A Well, sir, checking the production records in the area, I find that there has been about, 80 or 85,000 barrels of

ALBUQUERQUE, NEW MEXICO

oil produced since the first well was drilled in the area from the San Andres, and that comes from seven wells, that's the total production to date, and I believe the first was in 1948, so that's about eleven years.

MR. NUTTER: Do you have any idea how much gas has

A No, sir, I don't, Mr. Nutter. It has not been measured, and you might make some kind of an estimate based on what meager gas-oil ratio you have, but other than that -- I don't what it has been very substantial because, from the areas as a whole.

The next well is the Alamo-Brown well, that well was tested in June of this year, it tested a million seven hundred seventy in June of this year, it tested a million seven hundred seventy MCF of gas, plus ten barrels of oil, with a ratio of 173,000 to 1.

MCF of gas, plus ten barrels of oil, with a ratio of 173,000 to 1.

I already mentioned the Gulf-Brown well, it's, I don't have a test on that well, but it produced four and a half barrels per test on that well, but it produced four and a half barrels per day on the average in July, and it's produced to date, that is to August 1st, approximately 24,000 barrels of oil and it is down to four and a half barrels apparently.

The DeKalb well, I do not have a test on that well. It produced 12.7 barrels per day on the average in July, and the production record shows that it hasonly produced about 2,775 production of oil.

The Western Natural Gas well, Caruth Federal Number 1, had a reported potential of 735 MCF per day, plus ten barrels of oil,

plus 17 barrels of water, with a ration of 73,500 from the first zone; second zone was not tested.

The Great Western-Byers Federal Number 1 was tested in August 1958, tested 320 MCF a day, plus 3 barrels of oil for a ratio of 160,700. That well does not have any recorded production; it is my understanding it's shut in as a gas well.

The Alamo McCormick Number 1 is completed in the second zone; it was tested in June '59 with 946 MCF of gas, and 4.2 barrels of oil, with a ratio of 66,700; and it has produced to August 1st, 1219 barrels of oil.

The Western Drilling Company's Robert Gandy Number 1 well is completed in the second zone, it was -- I have a test on it in June 1959 where it produced a million two hundred eighty-seven thousand cubic feet of gas and about 25 barrels of oil, for a gasoil ratio of 50,600. It's a fairly recent well, and it has produced about 12,164 barrels of oil as of August 1st.

I've already mentioned the Texas-Pacific well, it is a low gas-oil ratio, about a 20-barrel well. The cumulative production to date is 11,753 barrels.

MR. NUTTER: What was that figure again?

11,753 barrels. By the way, these cumulative production figures that I'm testifying to are also shown on this Exhibit Number 1.

The Livermore-Crosby Number 1 well, located in Section 31, is a shut-in gas well. It was completed in 1950, and the scout

card shows a potential of 385 MCF per day.

Then I think the Southwestern Hydrocarbon Corporation well, its status is already in the record, it is a gas well which only produced a trace of oil, and it had an open flow calculated of about a million one hundred thousand, produced a million and a half on test.

(By Mr. Bratton) Is there anything further you want to testify to as to the nature or productivity history of the pool, Mr. Keller?

Yes, there is. We have before us a question of whether this is a gas field or an oil field, and it's been my conclusion after looking at the data that it is neither beast nor fowl, it is a hybrid situation. Actually, most of the reserves in the area are the gas reserves, and I think the gas reserves valuewise and volumewise far outweigh the oil reserves. As I previously mentioned, although there is a general relationship between the occurrence of water and gas on structure, you can't rely on it because of the variations in the permeability and porosity situation. For example, referring to Exhibit Number 1, we've talked about this Robinson Brothers Union Federal Number 1 which tested water and was completed in zone one, and also zone two.

Now, going over East into the Buckshot Field, we can see that in that same interval - by the way, that's a datum of about a minus 1051 on top of the first zone - in that same interval we've got oil wells producing wherewater was produced; and so to

my mind that illustrates the fact of these litologically changes on the occurrence of production. I mean, had this been a permeable continuous situation, in each of the zones, then you would have to have had cores of datum where water is found and where the gas is found. In the field itself, for example, the Southwestern Hydrocarbon well which is completed in the first zone as a gas well, is at a datum of minus 989, and didn't, produced a little water but not much. It's at a similar datum to this Featherstone well, and also the Western Drilling Company's well. The Western well tested water in the first zone at about the same datum that the Southwestern Hydrocarbon well tested gas, with very little water. Then the Featherstone well tested 158 MCF per day of gas from the first zone, plus 30 barrels of water per day.

(By Mr. Bratton) Mr. Keller, if this area were defined as a gas pool and produced as a gas pool, in your opinion would it have any effect on the Buckshot pool?

Well, let me say this that my correlations between wells in the Sawyer area that I've been discussing, and the Buckshot area, show that both the areas are producing from the same zones of porosity. Now, as far as I know, there has not been any dry holes drilled directly in between the two, so you must certainly say that there is an opportunity for connection between the two. Now, I think the pertinent question there is whether that actual continuity to whatever extent it does or does not

extend has any practical significance, that is by practical significance just meeting the question headon, would the withdrawals of gas from the Sawyer area adversely affect the oil recovery in the Buckshot area? Now, I'm not in a position. I don't believe anybody is in a position, to prove either way on that question. I'm of the opinion that the probability is that there will not be any affect on the Buckshot field if this Sawyer area is classified as a gas area and produced as such.

Now, the reason I say that is several fold. First of all, if there is some degree of communication between the two, which is quite likely, I know that that degree of communication is probably very low because of the tight characteristics of the pay zones, and that's not only shown by core data and the productivity of the wells, but it is also shown by this situation I previously pointed out where the same data over here, you'll have water production over here, and then in another place it will be gas, and that is just a result of low permeability and not very effective communication.

Now, by the way, I've pointed out that the productivity of the oil wells is low, I mean we've got a couple of 120 barrel oil wells and 125 barrel wells at the present time, the rest of them are 5 to 10 to 12 barrel wells, but then we get a reported two and a half million gas well, and a million and a half gas well, well, that sounds like a pretty good well. But if we reduce that to terms of oil productivity, that is everything being the same in

respect to permeability and thickness, a million and a half gas well is equivalent to a productivity had it been oil saturated, of about an 11 or 12 barrel a day oil well for the simple reason that the gas itself, the oil is about 128 times more viscous than the gas; so you've got that, of course the rate of flow is going to be directly inversely proportionately to the viscosity.

Now, actually, to my way of thinking, this situation in a way presents a dilemma. My candid opinion is that we don't have, strictly speaking, an oil field and we don't have strictly speaking a gas field, we've got a hybrid. The general situation is that we've got wells that are capable of producing all the way from 300 MCF to a reported 2,700,000 MCF per day of gas. For the most part, the oil wells are 5 to 13 barrels, with the two exceptions that I just mentioned. I think that the gas saturation and oil saturation of those high oil wells are in the same porous space, so you can't produce one without the other; and it is my thought that the best solution to this situation is to allow development of the area as a gas area. It's my opinion that it can't be economically developed as an oil area on 40-acres, the wells are not commercial as oil producers.

- Q In your opinion, Mr. Keller, will the greatest ultimate recovery from this area be affected by producing it as a gas pool?
- A Yes, sir, in my opinion, it will be, and of course that relies on my previous opinion that I don't think it can be

NEW MEXICO

economically developed as an oil area; if it is not developed, I don't think it will be effectively depleted in that Southwestern Hydrocarbon's acreage can't be put to beneficial use. Now, I also am of the opinion that the production of this area as a gas area, will not be detrimental to the oil recoveries; in other words, on the whole I think it is going to be beneficial to the oil recoveries, oil will be recovered from the gas wells that produce some oil that might not otherwise be recovered.

If the area were produced or developed under, as an oil area, do you think there could be any further development in the area, assuming that the penalty ratios were applied?

No, sir, if the 2,000 to 1 ratio limit was enforced in this area, that would have the effect of making all of the wells, with the exception of one or two, non-commercial, so that is not a practical solution, you just prevent the operator from producing anything. Now, if you did that, in my opinion, you would cause rather than prevent waste, because you would prevent these wells from being produced.

Now, the other thing there that occurred to me, well, you might put a 2,000 ratio limit on there, and with a net provision, not counting the gas that went to legal use that was sold, but what you are doing there is, you are allowing the oil to be produced economically because you can sell the gas and you are preventing waste from that standpoint, but you are also preventing additional development in the area, so I think that would tend to

cause waste of oil and gas, and in fact that would be saying that we are going to let these wells produce like gas wells, but we are going to make them, require that they be drilled like oil wells.

So when you analyze the thing, you consider all the alternatives, the only solution that I could see was to have rules in the area that would permit the area to be economically drilled on a hundred and sixty or greater spacing, so it could be economically developed, and that would be conducive to waste prevention in the area. Anything else I could think of would not accomplish that purpose.

- Q That would be your recommendation to this Commission, Mr. Keller?
 - A Yes, sir.
- Were exhibits 1 through 4 prepared by you, or under your supervision?
 - Yes, sir. A
- Do you have anything further which you wish to state to the Commission in connection with this matter?
 - No,sir.

MR. BRATTON: We would like to offer in evidence, Exhibits 1 through 4, Alamo Exhibits 1 through 4, and also we would offer Alamo's Exhibit Number 5 which is a copy of a letter from El Paso Natural Gas Company to Alamo pertaining to marketing of the gas in the area.

MR. NUTTER: Without objection, Alamo's Exhibits 1 through 5 will be entered.

MR. BRATTON: We have no further questions of the

witness.

MR. NUTTER: Does anyone have any questions of Mr.

Keller?

MR. PAYNE: Yes, sir.

MR. NUTTER: Mr. Payne.

CROSS EXAMINATION

BY MR. PAYNE:

Mr. Keller, if this is reclassified as a gas pool, Q are there going to be any oil wells in it, and if so, how would you, what would you establish as the determining point?

Well, Mr. Payne, strictly speaking, defining an oil well as a well that produces black oil, yes, there will be a lot of these wells that will be oil wells in that sense because most of them do produce, even the gas wells, a little bit of oil; none of the oil wells in the area presently are capable of producing the normal allowable.

Well now, assuming you take an oil well, assuming you take a well that produces 20 barrels of oil per day and practically no gas, do you think that should be classified as a gas well and spaced on 160?

Well, sir, I don't think that it can be properly classified as a gas well because it is a low ratio well. This is

the Texas-Pacific well we are talking about, but in answer to the spacing on a hundred and sixty, it's not spaced on three hundred and twenty, I mean, my understanding of the effect of spacing rule is that you can't drill them any closer than 40, not -you are not preventing from drilling them wider than 40. the only thing that prevents you from doing that is completion, and I wouldn't see any harm in not drilling any more oil wells in that area, drilling up the 40's, because I don't think that it would be economical to drill additional 20 barrel oil wells on 40-acres in the vicinity of this 20-barrel well; and actually, Mr. Payne, this area and structure has been known for many years, and some of these wells are eleven and twelve years old, and it never has been developed because the situation is such that it is not economical to develop.

Now. I take it that it is your opinion that you can't draw any clearcut gas-oil contact in that area, is that right?

Yes, sir. For example, the Southwestern Hydrocarbon well at minus 989 on top of the first zone didn't produce any appreciable oil, and yet we have the well, the Alamo well which is 50 feet higher, it tested 10 barrels of oil a day, as I recall. Yes, sir, Alamo-Brown well, and you can study the structural position and the productivity of the well, and there just isn't any correlation between that would define a gas-oil contact, and I'm pretty well convinced myself that the gas and oil produced in these high gas-oil ratio wells actually comes in from the same

CH 3-6691

porous space as a result of the saturation conditions, and it's not a reflection that you got an oil-gas contact.

And that being the case, it is your opinion then that this is not a gas cap in New Mexico over a Texas oil pool?

Well. Mr. Payne, again I think we have a hybrid situation, from the standpoint that the oil over in Texas and this gas over there too, is not overlain by a gas cap. What happens, we've got an area here that produces oil, in the same zones, that when we move over a few miles this way and it produces gas, and they are the same zones, I'm satisfied; but the only way to my mind that there could be harm done to the oil recoveries in the oil wells would be that the withdrawals of gas were so high in the gas area, and the communication good enough to where you would actually cause oil to migrate up-structure or towards the Northwest and saturate to a greater extent this oil and gas saturated gas producing area with oil, that might reduce recoveries.

And since these two zones are both tight, as you testified, it's not likely that that would occur, is that right, this migration of oil up-structure?

That's my opinion, yes, sir, that I don't think that it is likely to occur.

Now, have you seen the three alternatives proposed by Southwestern Hydrocarbon in this case, do you have a docket there?

> A Yes, sir.

Q Do you feel that the preferable alternative, looking at it practically and engineering-wise, is that these two oil pools should be abolished, and a gas pool created, do you feel that is the best way to handle it?

A Yes, sir.

MR. PAYNE: Thank you, that's all.

MR. NUTTER: Any further questions of Mr. Keller? (No response.)

QUESTIONS BY MR. NUTTER:

Mr. Keller, your Exhibit Number 5 brings up another problem that has occurred to me. El Paso points out that if in the event satisfactory quantities of gas were available that they would be interested in laying a line into the area. However, they do point out that the actual construction of the facilities would be necessary, as well as they would have to obtain the approval of the Federal Power Commission. The thought occurs to me that sometimes construction of pipeline facilities, and approval by the Federal Power Commission, takes considerable length of time. If these were classified as a gas pool, it would of course of necessity have to be shut-in until such time as the gas could be marketed, I suppose your client is aware of that?

A Yes, sir, it would have to be shut-in until you could sell the gas, because it wouldn't be legal to flare that gas.

Q If it were classified as a gas well?

A Yes, I'm aware of that, and I have advised my client

]

DEARNLEY-MEIER REPORTING SERVICE, Inc.

of that.

Q Another thing, you mentioned that this Robinson well, down there in Section 5, which was a dry hole was structurally as high as the oil producing wells on the Texas side of the State line. Did you hear Mr. Sheldon this morning when he was talking about this well, had encountered some vertical fractures down in there that possibly allowed this water to come into that well, do you think that might have a bearing on the fact that it produced water while the other wells over there produced oil?

Now, I am aware that some of the cores show evidence of fracturing;
I've concluded, however, that that fracturing isn't at all a
significant part of the porosity, that the storage volume is not
in the fractures, in my opinion. And I've also concluded that
whatever the fracturing there, it does not represent a continuous
network that provides any permeability from which the flow to take
place.

Now, the reason I conclude that is that, as you know, fractures have very high permeability, and if these fractures were interconnected and provided means of communication of any practical significance, then we would have a lot better oil and gas wells than we have here, because the productivity of the wells reflect the same degree of permeability development as indicated by the core analysis, and they are all very low, which in my opinion couldn't be fractured permeability, I mean, like an Ellenburger

CH 3-6/91

which is fractured permeability, and when you get into those situations, you got extremely high permeability and flow capacities under the fractured system.

My thought about the occurrence of that water, I think is just about like I previously expressed as I think whether or not you produce oil, water, or gas in a particular well depends upon the saturation conditions that exist in the porous spaces, and I think that it, probably the virgin condition at this location, this dry hole is such that it is highly water saturated, it's got some oil saturation, and those saturations are such that they produce predominantly water.

Q Why has not there been a separation of these three components over a period of geological time?

A Well, there is two reasons, to my mind. One reason, as you know, the saturation conditions are bound to be controlled by capillary forces and gravitation forces. Everywhere you have what we've termed gravitation segregation, which is generally in more permeable rock, the saturation does not change. For example, an oil-water contact from 100 percent water to 100 percent oil, it changes from 100 percent water, and there is a transition zone to where the water saturation becomes the so-called irreducible minimum water saturation, that is, that is the amount of water that the capillary forces will hold in the porous spaces under equilibrium with gravity forces. Actually, I think a lot of the zone that's open in these wells, are in these transition zones

5

between oil and water, and between oil and gas, to where you have both, and sometimes all three saturation conditions available.

Now, do you think if you went high enough up on the structure here, you would get out of the water?

Yes.

Did this --

Well, now you --

Did the Lindrith Number 1 well way up there in Section 18, which potentialed for 2,750,000 cubic feet a day, did it make water on its test :--

Let me check that, if I may.

-- or liquids of any kind, I should say?

That was drilled as a Devonian well.

Devonian Oil Company?

Yes, sir, Lindrith. The information I have on that well is that it was acidized between 4890 and 4983, and swabbed; slight show of oil plus 500 MCF of gas, and there is no reported water production although they acidized with 13,500 gallons. Now, actually you get high enough to where you may not produce any water, although there is water saturation in the rock, but it's, it wouldn't flow, it's so low it won't flow and of course of the rock is the higher the water saturation it can accommodate without flowing, that is the higher irreducible minimum water saturation, because right up on top of the structure, one of the highest wells, this McCormick well, it showed water

saturation from cores from 23 to 32 percent. Now, that-well didn't make any water. Of course, you've got this Great Western well, on a test in May '59 it produced 4.2 barrels of water, and its high, see, it's at the top of the first zone, it's about a minus 970, which is 20 feet higher than the Southwestern well.

Now, the highest well that we've got in New Mexico is the McCormick well in Section 29, is it?

No, it's located on this little highest point on the nose, but this Devonian well or Gulf well, Lindrith, is minus 884, so it's about 59 feet higher than the McCormick well.

So the old Devonian well is the highest in the area?

I believe that's right, that it is either shut-in or producing. Now, there are some deeper wells drilled up north of there that are higher than that, but -- let's see, only one of them that I see that was tested, this Gulf Gandy Federal, I guess it would be, it tested, the first zone, it swabbed 7 barrels of oil and 67 barrels of water in 10 hours after 21,000 barrels of acid; now, it's higher than the Devonian Lindrith well.

It's a dry hole, is it not?

Well, it's, I believe it is a deep well; no, you are right, it is a dry hole.

I don't notice on your exhibits that there are any drilling locations shown in either State; do you know of any locations that are drilling in either State?

There very probably is; we didn't attempt to show,

to spot any drilling locations on that map, Mr. Nutter.

Q How about, have the productive limits of the oil section in the Buckshot pool in Texas been defined on the North-west by dry holes or otherwise?

They have not been actually defined completely. Now, the general situation is this, in Buckshot, referring to Exhibit Number 1 you'll see that the red circle wells, which are zone 1 producers, extend from about this position (indicating) on down South; in other words, from about minus 920 to about minus 1100 on top of the zone one. Now, what apparently happens here as you get below minus 1100, they anticipate that it is going to be water, because these Southwest wells produce some water, as I recall. Now, as you go up North, and you have a datum of minus 1020 approximately, that section becomes more gassy, and there are some high gas-oil ratio wells in that vicinity in zone number one. Now, in zone number two, which are the Green wells, it looks like the most southern production is about a minus 1030 on top of zone one. And I have the impression, I'll have to check this, that zone two tested water on South of there in some places, and as you go further North, it becomes gassy. In fact, at this point where the Dobell Company's Thompson Number 1 gas well is, it is a gas well completed in both zones, so both zones are gassy.

Now, that kind of illustrates what I mean when I was saying that there is a general structural relationship between oil, water, and gas, but it can't be relied on in detail.

ភ

Has the Texas Railroad Commission as yet formulated any gas pool rules for those wells up there that are gas wells?

Yes, sir, they have. They have issued rules permitting development of this area from the New Mexico line on East, I'd have to check the map, what we call the West Lavaland extension area, for a distance of 15 or 20 miles, and they have issued rules that permit the drilling of gas wells on 786 acres, plus 10 percent.

- What do you mean, 788 acres plus ten percent? Q
- You can assign to a gas well as much as 788 acres plus ten percent. See, that area is not sectionalized, it is divided into leagues and bounds and the 788 acres is an Irish league.
- Could you furnish us with a copy of the rules of the Railroad Commission?
 - Yes, sir, I have a copy.

MR. NUTTER: Does anyone have any further questions of Mr. Keller?

QUESTIONS BY MR. PORTER:

Mr. Keller, I believe you recommended that this be defined as a gas pool. Would you have any objection to imposing a limitation of normal unit allowable on any liquids produced from any well in there?

No, sir, I would think that would be done; I think that should be done. It is my understanding that that is the

ALBUQUERQUE, NEW MEXICO

general procedure, like where you have oil wells in areas classified as gas fields.

MR. PAYNE: It should be. It is not always done? MR. PORTER: Not always; you have a definition for an oil well, and in this I don't believe you propose a definition; amounts to the same thing, if you impose a limitation of normal unit allowable.

Yes, sir.

MR. PORTER: That's all I have.

MR. NUTTER: Any further questions of Mr. Keller? He may be excused. Does anyone have anything further they wish to offer in Case 1763?

MR. MORRELL: I have a statement I would like to make. Foster Morrell, independent, Roswell. I am the owner of working and royalty interests within and near the designated Sawyer and South Sawyer Pools. Past development and production in these pools indicate marginal economic conditions; continuation of designation of the pools as oil pools is not conducive to successful commercial operations or to greatest economic recovery of oil and gas from the San Andres reservoir.

With gas pipeline markets now available, it is essential, in my opinion, to market all gas possible in accord with Commission rules, together with such oil as comes with the gas in order to assure commercial operation and the greatest ultimate recovery of the oil and gas. I endorse the petition of Southwestern Hydrocarbon Company in Case 1763.

Thank you. Any further statements? MR. NUTTER:

MR. KEMPER: I'm Lanny Kemper of Kemper Oil Company We have a substantial interest in this Southwestern Hydrocarbon well, and I would like to concur with Foster Morrell's in Roswell. statement and the testimony, and I will assure you that we are not going to spend any more money there if we can't see some reason, economic reason to spend it.

MR. NUTTER: What is your address, Mr. Kemper? MR. KEMPER: Post Office box 744, Roswell, New Mexico. MR. PAYNE: Mr. Examiner, we received communication from Great Western Drilling Company, Western Drilling Company, Longview, Texas, from Kooley and Holcomb, advocating that the application of Southwestern Hydrocarbon Company be granted.

MR. NUTTER: Which one?

The first one. MR. PAYNE:

MR. NUTTER: Does anyone have anything further in Case 1763? We will take that case under advisement.

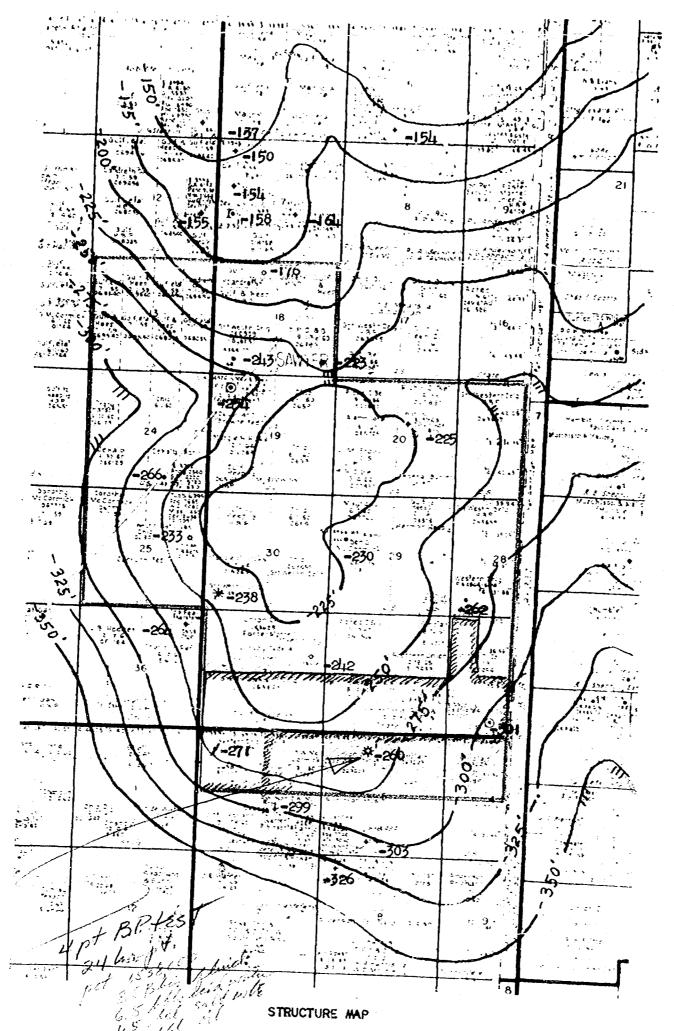
ALBUQUERQUE, NEW MEXICO

STATE OF NEW MEXICO SS. COUNTY OF BERNALILLO

I, J. A. TRUJILLO, Notary Public in and for the County of Bernalillo, State of New Mexico, do hereby certify that the foregoing and attached Transcript of Proceedings before the New Mexico Oil Conservation Commission was reported by me in stenotype and reduced to typewritten transcript by me and/or under my personal supervision, and that the same is a true and correct record to the best of my knowledge, skill and ability.

WITNESS my Hand and Seal, this, the 24th day of October, 1959, in the City of Albuquerque, County of Bernalillo, State of New Mexico.

NOTARY PUBLIC.

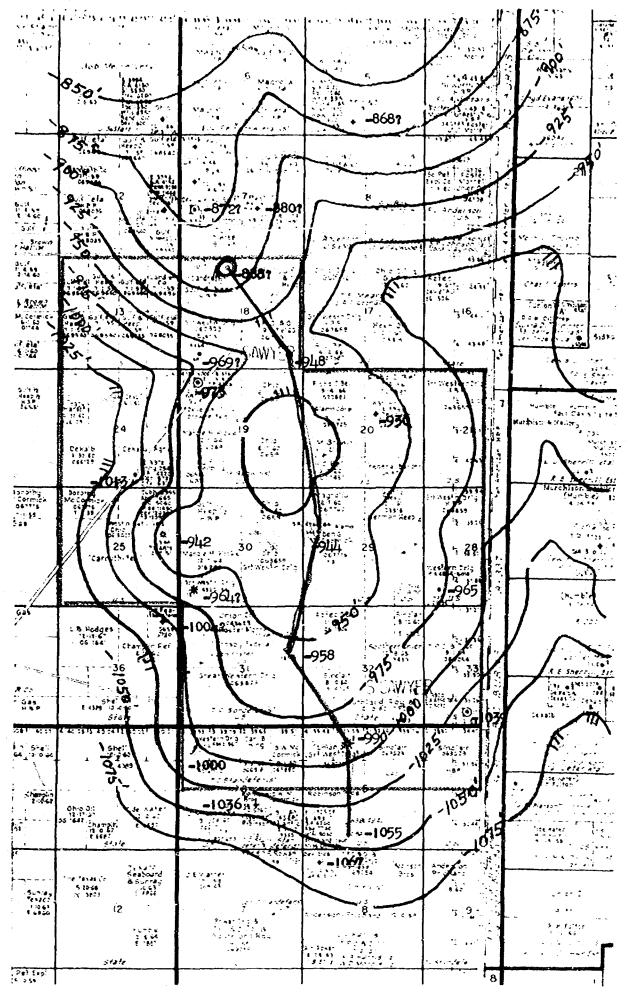

My Commission Expires:

October 5, 1960.

I do hereby certify that the foregoing is a complete record of the proceedings in the Examiner hearing of Case No. 1997. heard by ne on

Examiner Conservation Commission

CONTOURS ON TOP OF THE SAN ANDRES FM.


SEPT. 1, 1959

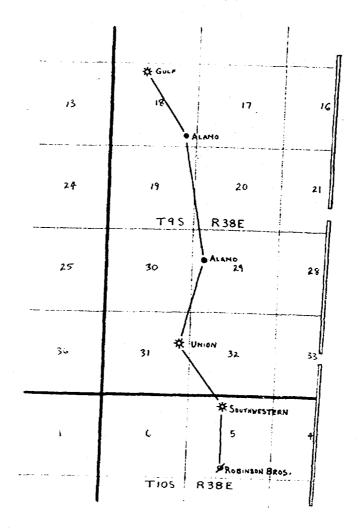
BEFORE EXAMINER NUTCE 25 FOR CONSERVATION COMMISSION BY

1763

CASE NO

BY: J. A. SHELDON

POROS ITY MAP

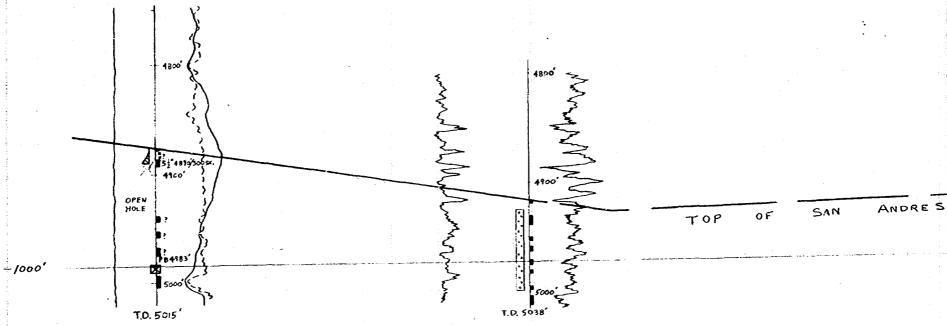

CONTOURS ON TOP OF THE SAN ANDRES POROSITY

C. I.: 25 FT.

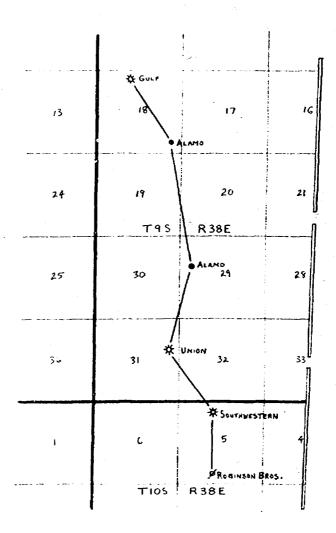
SEPT. 1, 1959

BY: J. A. SHELDON

Rosinson Bros. No. 1 Union - FED.



UNION No.1 CROSBY-FED. SOUTHWESTERN HYDROCARBON CO. No.1 UNION-FED. T.D. 5000


ALAMO NO. I MICORMICK-FED. No.1 LANDRETH-FED. 4100 TOP T.D. 5015

GULF No.1 LANDRETH-FED.

ALAMO No. I BROWN - FED.

UNION No. I CROSBY-FED. ALAMO No.1 MCCORMICK-FED. No.1 UNION-FED. POROSITY T.D. 5000 5000 T.D. 5011'

Denas No.1 Onio-Feb.

Ohio No.1 CARRYTH-Feb.

Associated Top of San Andres

To, 5005.3'

To, 12016'

To, 5006'

POROSITY

POROSITY:

13 24 € DEKA T95- R38E 25 OHIO 31 33 36 T.P. COAL & OIL T.O. 5035'

POROSITY:

SOUTHWESTERN HYDROCARBON COMPANY P. O. Box 578

ROSWELL, NEW MEXICO

SAWYER AREA, LEA COUNTY, N. M.

CASE NO. 1763

EXHIBIT NO.

BEFORE EXAMINER NUTTER OIL CONSERVATION COMMISSION
Southwartell'EXHIBIT NO. 2
CASE NO. 1763

SINCEAIR OIL & GAS CORRANY

SINCLAIR ON BUILDING

Turas. S. Okuahoma

August 12, 1959

GAS AND GAS PRODUCTS DEPARTMENT

PAUL T. DAVIS - SUPE SEE CONTRECT S. HEAST DEVICE

> Southwest Hydrocarbon Company P. O. Bex 578 Roswell, New Mexico

> > Re: Late 1 and 2, Section 4 and 5/2 ME/4 Section 5-108-382, Lea County, Mem Mexico.

Centlemen:

By latter dated July 28, 1959, we directed a letter to the attention of Mr. Paul N. Belmont, F. O. Box 530, Corsicana, Texas, advising your Company that we would appreciate being considered a prospective purchaser of gas produced from your well located in the NW/4 of Section 5-10S-38E. Les County, New Mexico. We now have been furnished with the open flow potential on your well in the NW/4 of Section 5-10S-38E, Les County, New Mexico and will greatly appreciate your furnishing us with the correct legal description and ownership of the lands upon which your Union-Federal Well #1 is located.

We have now been advised of the farmout by our Company of the acreage described in the inre to this letter to your Company. Please he advised that promptly upon completion of wells drilled on this acreage, and the determination of the availability of commercial quantities of gas for sale, that we will provide marketing facilities for such gas.

Sincerely yours

P. T. Davis

GAC: oh

SANGAMAR ON & GAS GOMERANA

האות לריאו הפחדות August 5, 1959

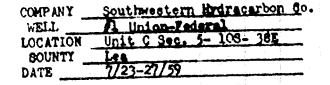
ELSTON

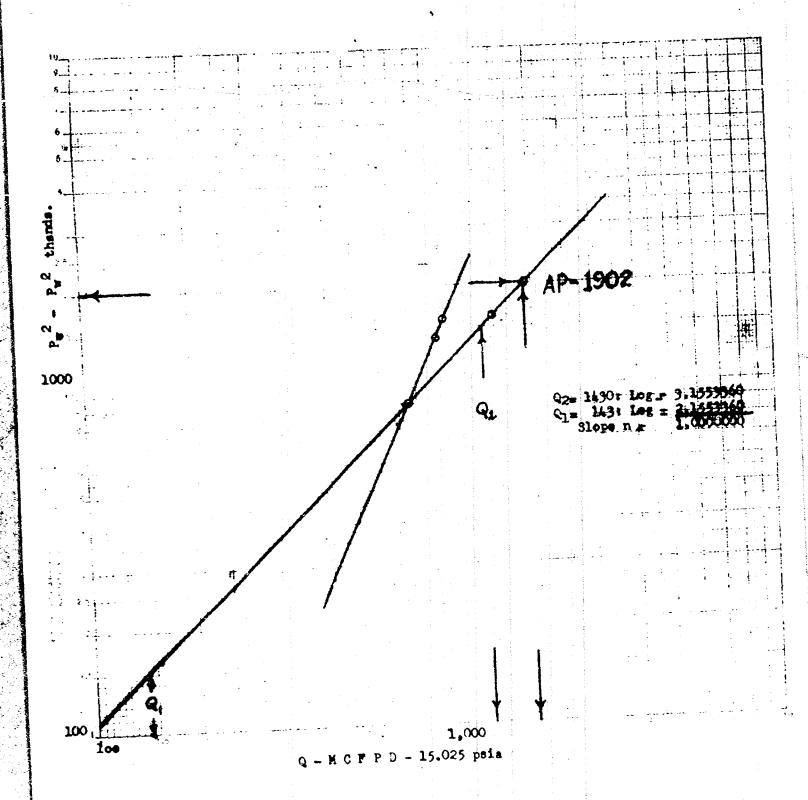
ROCERS

Mr. John A. Shelton Southwestern Hydrocarbon Company P. 0. Box 578 Roswell, New Mexico

> Re: Soutimestern Hydrocarbon Co. -Union-Federal, Well No. 1, Section 5-10S-38E, Lea County, New Mexico

Dear Sir:


As discussed in our telephone conversation, we are attaching three copies of Multi-Point Back Pressure Test dated July 23-27, 1959, for your Union-Federal, Well No. 1. This Test was run by our Gas Analyst, Mr. W. R. Lord.


Very truly yours,

C. Willen Brasly

C. Wilbur Brady Assistant Division Superintendent Gas and Gas Products Department

CWB/fa

, 6							. , .				- 1111 1	
										E N	E M	\
NEW MEXICO CIL CONSERVATION COMMISSION DE CETA C-12												
				.72.	W MEATCO	GIE CON	SERVATIO	N COMMISS.	10% AA	, 30 l		1
									/ 70		R .	Form C-12
			•	MITT	. באר באת בילי	מאלט מספי	COUNT ME	cm byon da	c mark c	F. C:	Kevi	sed 12-1-55
Po	ol <u>Wild</u> e	at		ПОД	Formation	n San/.	rdres	or roll on.	_County_	Lea		Form C-12: sed 12-1-55
								•				00/0
	Initial X Annual Special Date of Test 7/23-27/59											
	Company Southwestern Hydracarbor Co. Lease Union-Federal Well No. 1											
Un:	Unit C Sec. 5 Two 103 Rge. 38E Purchaser None											
Cas	Casing 42 Wt. 11.6# I.D. 4.009 Set at 4299 Perf. 4036 To 4958											
Tui	oing 23	Wt	<i>7#</i> I	.D. <u>1</u>	<u>.995</u> Se	t at 49	75 P	erf. <u>491</u>	1	ro4	945	
Gas	R Pay: From	_ 493	o To	,958	L 491	ы »	G .899	7GL 39	्रः 952 ।	Bar.Pre	285.	13.2
rrt	oducing Thru	: Ua	sing		iv	ioz.ng,	X Sin	Type we ngle-Brade	nhead-G. (le Gor (.0.	Dual
Dat	e of Complet	tion:_	7-21	-59_	Packe	r <u>Yes</u>		Reservo	ir Temp	?		
			•			CBSERV	ED DATA					
_	:	? _					<i>5.</i> 5. 1. 1.					
Tes	sted Through	(Pro	ver) (Opokek	X (CHECHEC)	K			Type Tape	5 - _		
			Flow D				Tubing	Jata	Casing Da	ita	T	
No.	(Prover) (Line)	(Ch	oke) ſice)	Press	Diff.	Temp.	Press	Temp.	Press.	Temp.		Duration
WO.	Size				ς h _u	°F.	psig	o _F .	psig	or.	•	of Flow
SI		1					1404				70	
1.	2"	3/	/16:	1.03	5	59	1035	74				3
2. 3.	3"	1. 11/	4	75	5	72	755	74				3
	$\frac{2^n}{2^n}$	$\frac{1}{1}$	~~~~	9. 18.	~	52 42	520 561	80			 	<u>3</u> 24
5.		+ +/		100	4	42	201				 	
		· L.,		+ -			L ,3	. 				
	Coeffici	ont			ressure	FLOW CAL	CULATION Temp.	(S) Gravity	Compres		Pata	of Flow
No.	00611101	reno	 	'	lessure		tor	Factor	Factor			CFPD
	(24-Hou	ır)	V hw	Pf l	psia	F		Fg	Fpv	. (.025 psia
1. 2. 3. 4. 5.	.7851				10/.8.2	0,99	15	0.9:60	1.121		84	1.6
2.	1.4030				755.2	(1,98	96	36.60	1.110		193	
3.	54 3653				3.1	1.31		3.8660	1.000		109	
4.	54.3553		ļ		- 20.1	1.01	78	0.8.60	1.000		_153	8
سئن				 	PR	ESSURE O	ALCU AT	ONS				
	Liquid Hydro					cf/bel.						r Gas em
	ity of Liqui	d Hydi	rocarbo	ons L-e ^{-s})	0.336	deg.		Speci	fic Gravit	y Flow	ring (Pluid
ر در	7.936			r-e 2	0.238	<u> </u>		Pc_1/	17.2	-rē	<u>230ε.</u>	4
							· 			, -		
No.	Fw	pá	2	. Q	$(F_cQ)^2$	10	$(2)^2$	P. 2	$P_0^2 - P_w^2$	Ca	1.	Р.
l	Ft (psia)	't	1 1	•	(1°CM)	(1	-£-2)	' W"	.c., A	F	W.	Pw Pc
I	1048.2	1399		353	59.92	I.		11:5.4	693.0	1056	ــــــــــــــــــــــــــــــــــــــ	74.5
2.	768.2	590			105.47			615.2	1393.2	781.		55-3
3. 4.	633.2	430.			116.59	28.		1,29.2	1579.2 1523.2	655		46.2 13.8
5.	574.2	329.	7 15.	4 5	233.48		2 /	385.3	ـــکمگندـــ	1 - 5-31		43.6
	olute Potent	ial·	1902			MCFPD.	n 10	00 lised (4	See liotes)			
COMF	ANYSinc	lair	011 &	Gas Co	0.			~~		1	,,,	
ADDRESS Mr. Fred Rogers ACENT and TITLE W.R. Lord Gas Analyst Box 2431 Hobbs New Mexico 22 A. D. M.												
			R. Lor			30x 243	Eobbs	New Mexic		<u> </u>	T UC	<u> </u>
	~~~~	பட்க பிர		いいきよびり	UII						-	

Southwestern Hydracarbor Co.

COMPANY

H_S Content - 432 Grains/loo Cu.Ft.

GPM ------- .355

Froduction -- Well Made Approx. 1bbl. Cil & Approx. 1bbl. Water

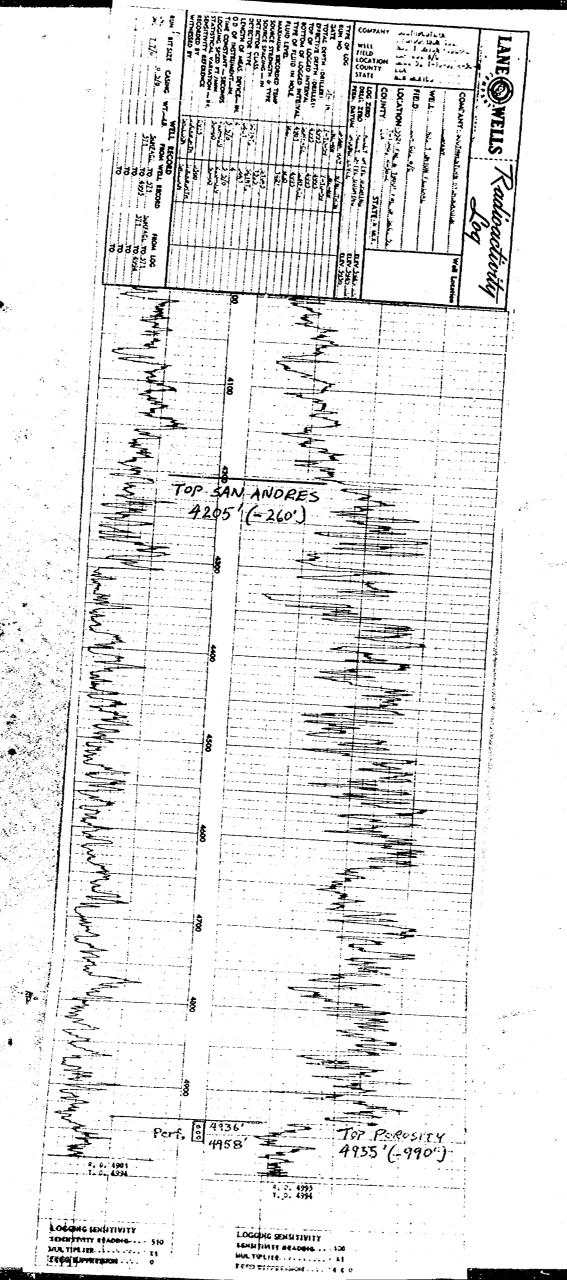
n Slope ---- Points above 1.000 Therefore 45 Deg. drawn through 24 Hr. Point

P.O. Sox 578 Roswell, New Mexico REMARKS

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY LOG OF OIL OR GAS WELL LOCATE WELL CORNECTLY company Southwestern Hydrogarbon Qo Address P.O. Box 578, Roswell N.M. Dessor or Tract .Union-Federal ...... Field Wildort .... StateNew Mexico... Well No. 1 See T. 1081. 381 Meridian NMPM. ... County Lea | | | | Location 552.91. Tot N. Line and 1980. W. Jot M. Line of Bootion 5. .... Geration 3945 10. The information given herewith is a complete and correct record of the well and all work do no therefor so far as can be determined from all available records. J. A. Sheldon Title Goological Consultant The similary on this page is for the condition of the well at above date. OIL OR GAS SANDS OR ZONES (Denote gas by G) No. 4, from No. 1, from 4936 to 5000 to No. 5, from . No. 3, from No. 6, from No. 3, from No. 4, from ..... CASING RECORD 4936 CP&I PAXAS MUDDING AND CEMENTING RECORD Wherexel Medical used Mind gravity Amount of much pacif 8-5/8" 372 208 circulated ×4-1/2 4999 Circulated two stages 300 PLUGS AND ADAPTERS Heaving plug - Material Length Depth set

Size

Adapters Material


Size	Shell used Ex	appostre used Q	nantity Date Depth shot Depth deaned out							
Rotory tools v	vere used from 8U	TOC	5000 feet, and from feet to feet							
	4	1 .								
	-	DATES Completed								
August	17.	1959	feet to feet, and from feet to feet  DATES Completed Shut-in 8-15  Put to producing Shut-in 8-15  Name of fluid of which 5.88% was all 76.5%							
cid That End	uction forthe fast	salt water	barrels of fluid of which $\frac{5.88}{270}\%$ was oil; $\frac{76.5}{\%}\%$							
emuision;	% Water; and	8.5  Put to producing  Put to producing  Self-pours was parted of fluid of which 5.88 was oil; 76.5 was oil; 76.5 was parted of fluid of which 37° API  Section of the sect								
If gas wel	l, cu. ft. per 24 ho									
Rock pres	ssure, lbs. per sq.	An use star 1404 bails tax bor bails.								
	rilling Co.	EM	EMPLOYEES							
			Driller							
	<u></u>	, Driller , Driller , Driller								
FROM-	то-	TOTAL FEET	FORMATION							
	l	<u> </u>	Drilling Samples							
	1									
0 18	18 390	18 372	Caliche & Sd. Sh. & Sd. (Ogallala)							
390	2210	1820	Red. green & gray sh. & sd. (Dockum							
210	2315	105	Group-Undiff) Red sh. & sd. (Dewey Lake)							
315	2370	55	Anhy, red sh. (Rustler)							
370 920	2920 3660	550	Anny, salt & red sh. (Salado)							
720	3000		Anhy, mad sh. & mad sd. (Yatas=7 Rivari							
		1	Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040. no shows							
660	4250	5 ¹ +5	Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040, no shows Anhy, red sh. red sd. w/tr Ls. (Quee							
660	<b>425</b> 0	545	Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040, no shows Anhy, red sh. red sd. w/tr Ls. (Quee Grayburg Undiff) Queen sd. 3660-3755 sl stn Premier sd. 4154-4205 no show							
660 205	4250 5000	545 795	Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040, no shows Anhy, red sh. red sd. w/tr Ls. (Quee Grayburg Undiff) Queen sd. 3660-3755 sl stn Premier sd. 4154-4205 no show Anhy, red sh & dolomite (San Andres)							
			Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040, no shows Anhy, red sh. red sd. w/tr Ls. (Quee Grayburg Undiff) Queen sd. 3660-3755 sl stn Premier sd. 4154-4205 no show Anhy, red sh & dolomite (San Andres) 4935-5000 smpls. bldg. 0&G							
			Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040, no shows Anhy, red sh. red sd. w/tr Ls. (Quee Grayburg Undiff) Queen sd. 3660-3755 sl stn Premier sd. 4154-4205 no show Anhy, red sh & dolomite (San Andres)							
			Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040, no shows Anhy, red sh. red sd. w/tr Ls. (Quee Grayburg Undiff) Queen sd. 3660-3755 sl stn Premier sd. 4154-4205 no show Anhy, red sh & dolomite (San Andres) 4935-5000 smpls. bldg. 0&G							
			Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040, no shows Anhy, red sh. red sd. w/tr Ls. (Quee Grayburg Undiff) Queen sd. 3660-3755 sl stn Premier sd. 4154-4205 no show Anhy, red sh & dolomite (San Andres) 4935-5000 smpls. bldg. 0&G							
			Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040, no shows Anhy, red sh. red sd. w/tr Ls. (Quee Grayburg Undiff) Queen sd. 3660-3755 sl stn Premier sd. 4154-4205 no show Anhy, red sh & dolomite (San Andres) 4935-5000 smpls. bldg. 0&G							
			Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040, no shows Anhy, red sh. red sd. w/tr Ls. (Quee Grayburg Undiff) Queen sd. 3660-3755 sl stn Premier sd. 4154-4205 no show Anhy, red sh & dolomite (San Andres) 4935-5000 smpls. bldg. 0&G							
			Anhy, red sh, & red sd. (Yates-7 Rivers Undiff) Yates sd. 2920-3040, no shows Anhy, red sh. red sd. w/tr Ls. (Quee Grayburg Undiff) Queen sd. 3660-3755 sl stn Premier sd. 4154-4205 no show Anhy, red sh & dolomite (San Andres) 4935-5000 smpls. bldg. 0&G							

16-43094-2. U. S. GOVERNMENT PRINTING OFFICE

#### HISTORY OF OIL OR GAS WELL

It is of the greatest importance to have a complete history of the well. Please state in detail the dates of redrilling, together with the reasons for the work and its results. If there were any changes made in the casing, state fully, and if any casing was "sidetracked" or left in the well, give its size and location. If the well has been dynamited, give date, size, position, and number of shots. If plugs or bridges were put in to test for water, state kind of material used, position, and results of pumping or balling.

Spudded well 6-28-59 with Verna Drilling Co. rotary tools.
Ran 8-5/8" OD. 24#/ft. CF&I seamless surface casing to 371 ft. in red beds and circulated 208 sx of cmt. to surface. Pressured up to 500# for 30 minutes. Cement set for 24 hrs. before drilling ahead. Drid. ahead w/7-7/8 inch bit to 4952. Cored w/7-13/16" core bit from 4952 to 4993, cut and recovered 41° of tan-gray dolomite w/anhy inclusions, generally fair pp porosity throughout, broken and fractured, bleeding cil and gas throughout. Ran Gh-N log from surface to TD 4993. Drid. ahead w/7-7/8" bit to TD of 5000°. Ran 4999° 4-1/2" OD, 9.5# & 11.6#, J-55, CF&I seamless casing with 1. shoe to 5000°. Cemented with 200 sx of Halliburton 50-50 pozmix (4, gel) two stages. First Stage: Pumped to bottom & circulated 125 sx. leaving 5° in bottom of pipe. Pumped water behind first stage up to Halliburton DV tool located at 3041° in the cil string from surface. Pumped second stage of 75 sx of same type cement through DV tool and circulated up across yates sd. Pumped wire line plug down to DV tool with water and let set for 30 minutes. Plug held. Let cement set for 8 hrs. then drilled out plug at DV tool and bottom plug to 4997°. Cement set for additional 12 hrs. Perforated with 4 shots per foot (Leme Wells Bullets) from 4936-58°. Ran 2" ID, external upset J-55, tubing with 4° perforation anchor and Halliburton J-3 packer to 4974°. Packer set at 4880°. Perforation anchor set at 4941-45°. Spotted 20 bbls Dowell reg. acid w/de-emulsified added. Formation broke at 2400%. Treated formation at 3000% w/avg. injection rate of 57 bls/min. Shut well in for 2 hrs. Opened well head and swabbed thru tbg. On third swab, well kicked off and flowed for 2-1/2 hrs. and died. On 15th swabbing pull well kicked off and flowed by heads, cil cut acid water and gas. Well flowed back 240 bbls of cil cut acid water in 1-1/2 days. Est cil volume 10 bbls. Est. gas volume over 1,000,000 CFPD. Sinclair's Gladiola Gas Department ran an unofficial 4-point back pressure test to determine gas volume



LANE WELLS Radioactivity

| Company | Second | Company | Second | Company |

g.

COMPANY	SOUTHMESTERN HYDROXUSEON CONTROL		FILE NO.	WF-3-1299	
	UNION FEDERAL NO. 3				
	WILDGAT	 •			
	LEA STATE NEW ME				
	552 FN & 1980 FWI. SRC 5-7108-1138				

## COMPLETION COREGRAPH

:		:	CO	8 V N .	L	119	JN	lluktu	KAPH		
•		tur Cere		10 of 10	ers and smy			mararist siggitad by the elektrologic ht the has judgmant of Coe Luberabe gaschildy and make no wertany seri lin canacciae with which sich riggir o	m, and far whose estimate and gives, and gives, and gives, and amount a major and a movement of the production, and a movie of the production and a movie of the production.	Hillystud 521957() 5-925741	
	SANO	Бм	PLOMITE E					(2.000) (0.000)	CHERT A A A	<b>A</b> .N	HYDRITE F
FaFi	SAM actured Lilaminated	PLE CHAR FG; MG; CG			Stylolitic	y : Vugg	y		PRODUCTION Gas T:Transitional		TOTAL WATER O-O PERCENT FORE SPACE 75 50 25
SAMPLE	DEPTH FEET		SILITY, MO. Ital Perm Plug	70808177 %	SATU	CUAL RATION E SPACE YOTAL WATEN	$\bigvee$	PERNEABILITY O-O MILLIDARCYS 10	POROSITY XX PERCENT 20 10		OIL SATURATION XX PERCENT PORE SPACE 25 50 75
		CONVENT	TONYT &	MHOI	S-CO	K AN	LYS	<del>┞┍┈┈</del> ┻╅┑ <del>┍╼╘</del>		1.050	
1	14952.0-53.0 53.0-54.2	T.	<b>*0.5</b>		1	20.6		Ò	ř.	14952 17 17 17 17	
] 3	54.2-56.0	3		10.2	7.0	24.0		f		4955	
1	1956.0-57.0	3.0	2.3	,	27.3	20.1	FX	<b>K</b>		1	
5	57.0-58.0	<0.1		6.8	17.1	27.9	FX			7,7	
6	58.0-59.0	1		I	1	7.5				177	
3						78.8 38.0				1,1960	\$4 11 20
_ 9		1	<u> </u>	3	:	81.8				77	
10	1	I .	9.2	7.7		3 :	ł .	9	<b>X</b>	7,7	3
_13	63.3-64.6	•	1	. 5.5	14.5	37.5	<b>.</b>	1	<u> </u>	77	
11		<b>*0.3</b>	*0.3 0.1	7 1	10.3	33.5	7	<del></del>		4965	<b>3</b>
_12 _13	1	)		10.6	1					7-7	<b>34</b> 11117
14	E .	1	•	1	Ŧ.	26.2		6		72	
_15		<u> </u>			,	10.0			-	737	
16		1 . 7				28.8		111111111111111111111111111111111111111		4970	
17	1					42.2 46.1			<del>,                                      </del>		
19	2	i .		i	i	30.4			4.	77	
20	73.0-74.0	Q.1		:	1	7 مىليا		S		7.77	34 1110
_21	74.0-75.0			_kal		95.2			<b>.</b>	4975	8
22	75.0-76.0 76.0-77.0			3.7 7.3		69.2 47.9			44-44444444	H	<b>36 1 1 1 1 1 1 1 1 1 1</b>
24	77.0-78.0	1				46.2				77	
25	78.0-79.0	<0.1		7.8	16.7	25.7	FI			TI	32 MILL
26	79.0-80.0	0.4		1		31.7		<del></del>	+++++++++++++++++++++++++++++++++++++++	1,900	
27	81.0-82.0	0.1		1	- 1	29.6			++++	137	
29		0.6		2.3		34.5 28.5			1 1 3	ラケ	
30	83.0-84.0	0.1		12.3				R		7.7	
31	84.0-85.0	4.2		اكسدا	22.6	36.3	Pi.	4		4985	
.32	85.0-86.0	2.9			- 1	36. L				1752	Biod Hill
33	86.0-87.0	<0.1 <0.1				79.2 50.5				1	
35	88.0-89.0	0.9		,		23.8	i		X.	TEZ	RALL IN
			j		1 1 2 2 2 2 3 4 1					1,990	7

#### BEFORE THE NEW MEXICO

#### OIL CONSERVATION COMMISSION

IN THE MATTER of the Application of Southwestern Hydrocarbon Company for an Order Revoking the Designation of the Sawyer San Andres and Sawyer South) San Andres Oil Pools in Lea County, New Moxico and Creating the Sawyer San) Andres Gas Pool composed of Sections 13, 24 and 25 in Township 9 South, Range 37 East; Sections 18, 19, 20, 29, 30, 31, 32, Wa of 21, Wa of 28, Wa of ) 33, Township 9 South, Range 38 East; ) and No of Sections 5 and 6, and NW of) Section 4, Township 10 South, Range 38) East, Lea County, New Mexico, and for ) Pool rules; or, in the alternative, an) order extending the pool limits of the) Sawyer South San Andres Pool and removing the gas-oil ratio limitations therefrom on combining said pools with-) out limiting gas-oil ratio.

No. //63

#### APPLICATION

Comes now Applicant, Southwestern Hydrocarbon Company, by its Attorneys, Campbell and Russell, and states:

- 1. It is the owner and operator of a well situated in the NEZNWZ of Section 5, Township 10 South, Range 38 East, Lea County, New Mexico.
- 2. By prior orders the Commission has designated the Sawyer San Andres Oil Pool consisting of Sections 13 and 24, Township 9 South, Range 37 East and Sections 18, 19 and 30, Township 9 South, Range 38 East and has pending an application to include within the pool limits Sections 20 and 29 and the W2 of Sections 21 and 28, Township 9 South, Range 38 East.
- 3. By prior orders the Commission has designated the Savyer South San Andres Oil Pool consisting of the St of Sections

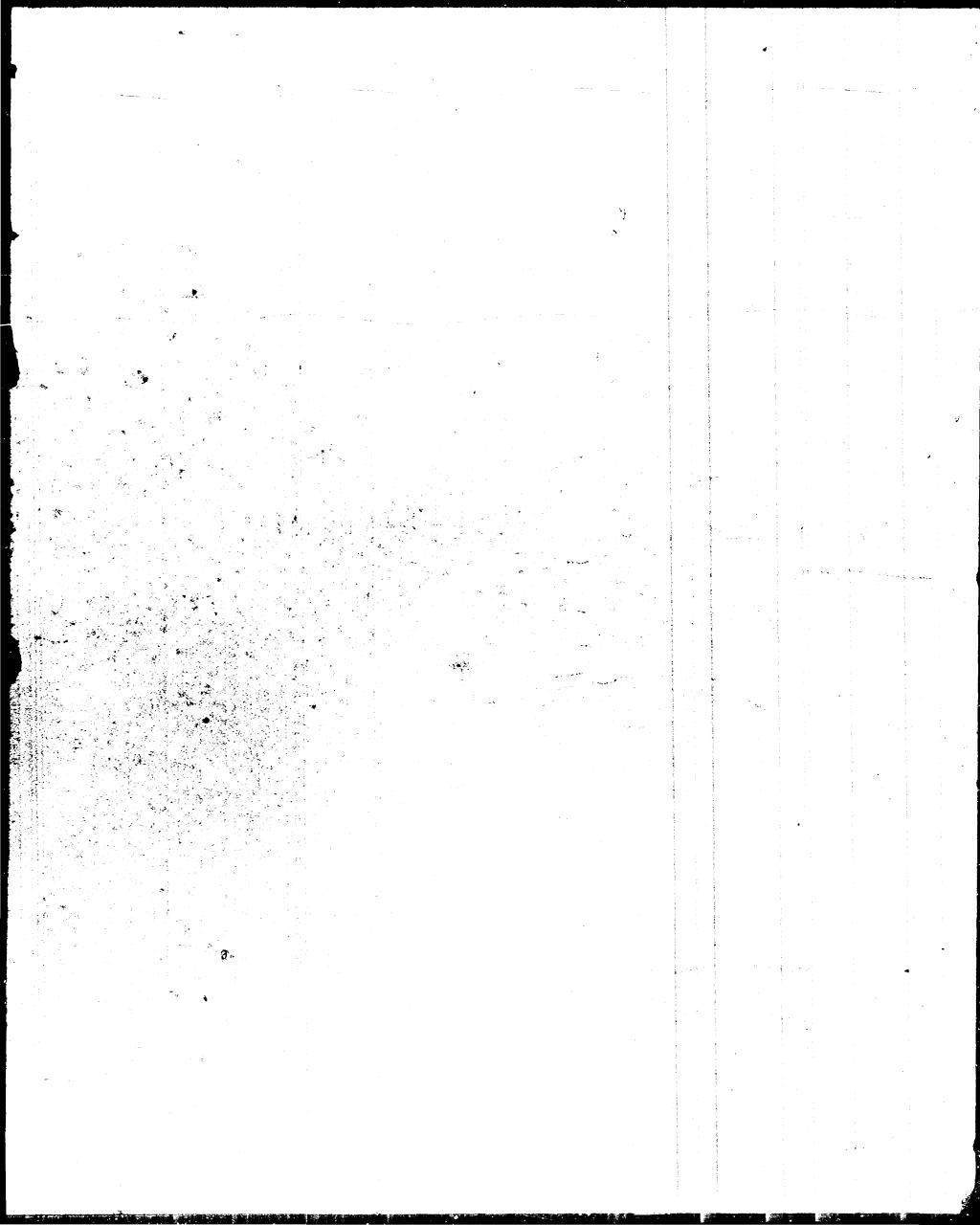
- 31 and 32, SWk and WkNWk of Section 33 and SWkSWk of Section 28, Township 9 South, Range 38 East; and the NWk of Section 6, Township 10 South, Range 38 East.
- 4. Gas-oil ratio limitations have been removed in the Sawyer San Andres Oil Pool but a limiting ratio of 2000 to 1 exists in the Sawyer South San Andres Oil Pool.
- 5. All of the area described in the caption hereof is a common resevoir containing predominately gas, and should be designated as a gas pool.
- 6. If the pools are retained as separate oil pools the gasoil ratio limitation should be removed in the Sawyer South San Andres Pool.
- 7. If the pools are combined into one oil pool, the gas-oil ratio limitation should be removed.

#### WHEREFORE:

Applicant requests the Commission to set this matter down before an Examiner or before the Commission; to publish notice as required by law; and, after hearing, to enter its order:

- 1. Abolishing the Sawyer San Andres and Sawyer South San Andres
  Oil Pools and creating the Sawyer San Andres Gas Pool comprised as set out in the caption hereof, and establishing
  pool rules; or, in the alternative,
- 2. Extend the limits of the Sawyer South San Andres Oil Pool to include the NE% of Section 6, S% of Section 5 and NN% of Section 4, Township 10 South, Range 38 East and remove all gas-oil ratio limitations from such pool, as extended; or, in the alternative,

3. Combine the Sawyer San Andres and Sawyer South San Andres Oil Pools (as extended) and create a new oil pool, encompassing all of the presently defined pools and the extension of the Sawyer South San Andres Pool, together with all lands lying between said pools and removing all gas-oil ratio limitations from such new pool.


> Respectfully submitted, SOUTHWESTERN HYDROCARBON COMPANY

M. Campbell/ CAMPBELL & RUSSELL

Box 766

Roswell, New Mexico

DATED: August 21, 1959



. )