ANNUAL CLASS I NON-HAZAROUS WELL REPORT Waste Disposal Well #2 January – December 2020

Western Refining Southwest, Inc.
Bloomfield Terminal
Bloomfield, New Mexico
Permit # - UICI-011
API # - 30-45-35747

May 2021

By: Margaret Garza

TABLE OF CONTENTS

EXECUTIV	E SUMMARY	1
1.0	INTRODUCTION	3
1.1	Well Information	3
2.0	OPERATION AND MAINTENANCE ACTIVITIES	4
2.1	Well Operations	4
2.2	Quarterly Sampling and Chemical Analysis	4
2.3	Well Maintenance Activities	5
3.0	WELL EVALUATION	6
3.1	Bradenhead Test	6
3.1	Area of Review (AOR)	6
3.2	Pressure Fall-Off Test	6
3.3	Bottom-Hole Pressure Survey	6
3.0	SPILL REPORTING	7

LIST OF FIGURES

Figure 1 Site Map

Figure 2 Well Schematic

LIST OF TABLES

Table 1 2020 Operational Summary

Table 2 2020 Quarterly Analytical Summary

LIST OF APPENDICES

Attachment A 2020 Quarterly Reports

Attachment B 2020 Bradenhead Test Reports

Attachment C Area of Review Attachment D 2020 Fall-Off Test

EXECUTIVE SUMMARY

This report provides a summary of activities conducted in 2020 on Waste Disposal Well #2 (WDW-#2) at the Western Refining Bloomfield ("Western") facility. The following is a summary of well operations and well testing activities performed in 2020.

Operational Summary

Injection Volume - The volume injected into the disposal well during 2020 was 1,298,526 gallons. Since the commissioning of the well on March 8, 2017, approximately 6,709,138 gallons have been disposed of via the on-site injection well. The well was not operational for approximately 8,019 hours, which is equivalent to 334.1 days. Table 1 provides a summary of the well's operation in 2020.

Sampling and Chemical Analyses - Injection fluids samples were collected on a quarterly basis for chemical analysis pursuant to Permit Condition 2.A. Analytical results show that the wastewaters injected through the on-site injection well exhibit characteristics of being a RCRA non-hazardous waste. A summary of the analytical results is provided in Table 2. A copy of the analytical laboratory reports, including the Quality Assurance / Quality Control (QA/QC) results are provided in Attachment A.

Bradenhead Tests – The Bradenhead Test was conducted September 18, 2020 in conjunction with the annual Fall-Off Test. No concerns were observed during testing. A copy of the test report is included in Attachment B.

Mechanical Integrity Tests – Pursuant to Permit Condition 3.D.1. of UICI-011, a Mechanical Integrity Test (MIT) is required once every five year unless otherwise instructed by the NMOCD Director. The most recent MIT was conducted on June 8, 2017 with a representative of NMOCD present to observe. There were no issues or concerns raised by NMOCD. An MIT was not performed in 2020.

Area of Review (AOR) – Western conducted an Area of Review within a 1-mile radius of WDW #2. The results of this review are provided in Attachment C of this report.

Pressure Fall-Off Test and Bottom-Hole Survey – A bottom-hole pressure survey and pressure fall-off test analysis was performed in September 2020. The pressure survey and fall-off pressure test were conducted in accordance with United States Environmental Protection Agency (USEPA) 40 CFR 146.13, State of New Mexico Fall-Off Test Guidelines, dated December 3, 2007, and EPA Region 6 Pressure Falloff Testing Guidelines, Third Revision, dated August 8, 2002. A detailed report including the data collected and data interpretation by a third-party Petroleum Engineer is included as Attachment D.

1.0 INTRODUCTION

This report provides a summary of activities conducted during 2020 on Waste Disposal Well #2 (WDW #2). The disposal well is part of the Western Bloomfield Terminal facility operations. The facility is located south of Bloomfield, New Mexico in San Juan County. The physical address of the facility is as follows:

Bloomfield Terminal

#50 County Road 4990 Bloomfield, NM 87413

The Bloomfield Terminal is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing. U.S. Highway 550 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north. Figure 1 shows the general layout of the Terminal.

1.1 Well Information

Well Name & Number: Waste Disposal Well #2

OCD UIC: UICI-011

Well Classification: Class I Non-hazardous

API Number: 30-045-35747

Legal Location: 2028 FNL, 111 FEL, H S27 T29N R11W Physical Address: #50 Road 4990, Bloomfield, NM 87413

2.0 OPERATION AND MAINTENANCE ACTIVITIES

2.1 Well Operations

The non-hazardous injection well at the Bloomfield Terminal is used to dispose of treated wastewaters generated from Terminal operations. Typically, treated wastewater from the on-site Wastewater Treatment Plant (WWTP) is pumped from the WWTP aeration ponds to the on-site evaporation ponds, located south of County Road 4990. Treated wastewater that is not evaporated at the evaporation ponds can be routed to the injection well for final disposal. Figure 2 shows a schematic of the well construction.

In 2020 approximately 1,298,526 gallons of wastewater was disposed of via the on-site injection well. Since the commissioning of the well on March 8, 2017, approximately 6,709,138 gallons have been disposed of via the on-site injection well. Total injected wastewater volumes, well injection pressures, and injection flow rates are continuously monitored and stored into a database. Injection volumes and average injection pressure readings are reported monthly to New Mexico Oil Conservation Division (NMOCD) through the on-line C-115 reporting web-link and in the quarterly reports submitted to NMOCD each quarter. In 2020, operation of the injection well did not exceed the permitted injection pressure limit of 1,465 psi, and no abnormal operating condition were observed. A summary of the monthly maximum, minimum, and average operation values is provided in Table 1.

2.2 Quarterly Sampling and Chemical Analysis

In 2020 quarterly samples were collected of water injected through WDW #2. The samples were analyzed for the following pursuant to Permit Condition 2.A. of UICI-011 dated July 20, 2016:

- pH;
- Oxidation Reduction Potential;
- Specific Conductance;
- Specific gravity;

- Temperature;
- Major dissolved cations and anions; and
- EPA RCRA characteristically hazardous constituents.

First quarter samples were collected on March 25, 2020. Second quarter samples were collected on June 30, 2020. Third quarter samples were collected on September 18, 2020. Fourth quarter samples were collected on December 18, 2020. A summary of the analytical results is provided in Table 2.

All quarterly samples collected for laboratory analysis were submitted to Hall Environmental Analysis Laboratory located in Albuquerque, NM. The analytical results show that the injected water exhibited characteristics of RCRA non- hazardous waste. The analytical results were compared to the respective Water Quality Control Commission (WQCC) limits. Chloride and Calcium were detected above the respective WQCC standards for each sampling event in 2020. All other detected concentrations were below the respective RCRA and WQCC standards. Copies of the quarterly reports that include the analytical reports and operational data are provided as an attachment (Attachment A).

2.3 Well Maintenance Activities

General routine preventative maintenance was performed on the injection well system equipment. No major mechanical maintenance work was required to be performed in 2020. No issues were observed during routine maintenance activities conducted in 2020.

3.0 WELL EVALUATION

3.1 Bradenhead Test

The annual Bradenhead Test was conducted on September 18, 2020. All activities were conducted following NMOCD approval and the respective documentation is provided as an attachment (Attachment B). No concerns were observed during testing activities.

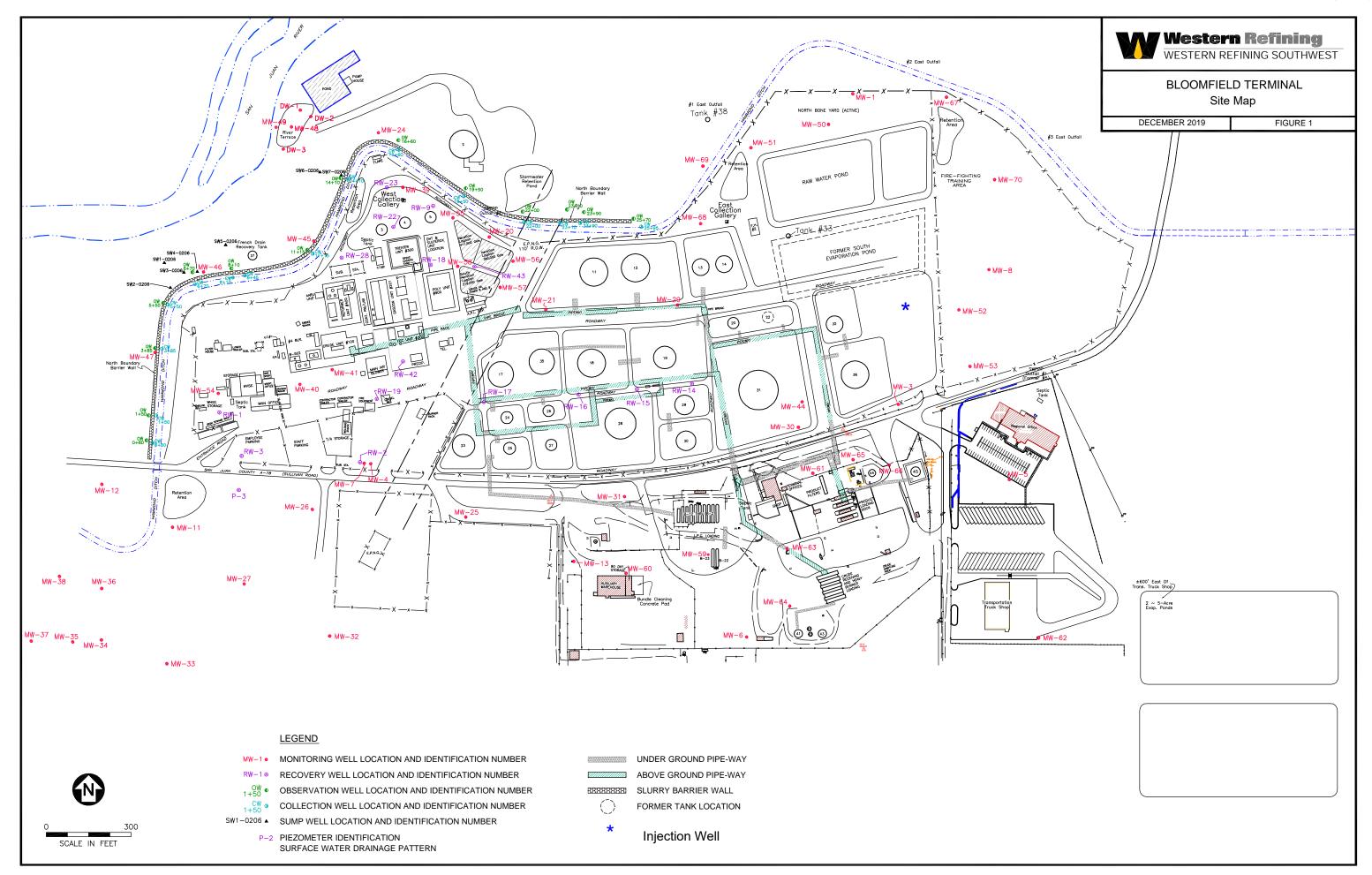
3.1 Area of Review (AOR)

The Area of Review (AOR) data was updated in 2021 using the NMOCD mapping program. The area of review data shows all wells known to have been drilled within a one-mile radius of WDW-1. Based on the NMOCD database only one well, Ashcroft SWD #1, operates within the same injection zone as WDW #2. This well is 0.64 miles from WDW-2 and is an active water disposal well. No wells are currently producing from the Entrada injection zone within the AOR. A copy of the AOR and list of wells identified within the one-mile radius is provided as an Attachment (Attachment C).

3.2 Pressure Fall-Off Test

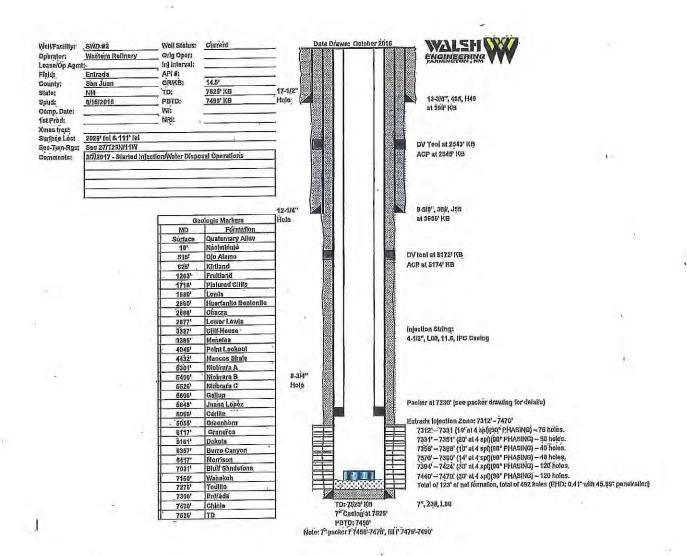
A pressure Fall-Off Test (FOT) was conducted in September 2020. The well test was conducted in accordance with United States Environmental Protection Agency (USEPA) 40 CFR 146.13 and the State of New Mexico Falloff Test Guidelines dated December 3, 2007. The FOT was conducted with tandem bottom hole pressure memory gauges. A detailed report including the data collected and data interpretation by a third-party Petroleum Engineer is included as an attachment (Attachment D).

3.3 Bottom-Hole Pressure Survey


A bottom-hole pressure survey was conducted following the completion of the FOT activities. The bottom-hole pressures gauges used for the FOT were pulled from the well making gradient stops every 1,000 feet. The results of the pressure survey are provided in the 2020 Fall-Off Test Report (Attachment D).

3.0 SPILL REPORTING

No reportable leaks or spill events occurred in 2020. Groundwater sampling activities were conducted in August 2020. A summary of the activities conducted, and copies of the sampling results were submitted to NMOCD in April 2021 (2020 Groundwater Remediation and Monitoring Annual Report).


FIGURES

Received by OCD: 6/2/2021 1:17:05 PM

FIGURE &

. A wellbore diagram showing the current configuration of the wellbore.

TABLES

ATTACHMENT A

WESTERN REFINING SOUTHWEST, INC. - BLOOMFIELD TERMINAL P.O. BOX 159 BLOOMFIELD, NEW MEXICO 87413

QUARTERLY INJECTION WELL REPORT DISCHARGE PERMIT UICI-011 (WDW #2) U.L: H, SEC 27, T29N, R11W API #: 30-045-35747

	AMOUNT	AMOUNT	TOTALIZER				_					ON-LINE	
	OF WATER	FROM WWTP	AMOUNT	DOWN-	-	VIECTION PRESSUR			NNULAR PRESSUR	Ē		FLOW RATES	
PERIOD	FROM RIVER		INJECTED	TIME	MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG
2020	(GALLONS)	(GALLONS)	(GALLONS)	(HRS)	(PSIA)	(PSIA)	(PSIA)	(PSIA)	(PSIA)	(PSIA)	(GPM)	(GPM)	(GPM)
JAN	0	1,262,000	282,210	576	1,382	514	753	92	ç -3	61	34	23	28
FEB	0	888,000	171,612	600	1,378	601	762	65	<-6	34	34	26	29
MAR	0	1,134,000	83,244	699	1,391	597	705	55	<-6	29	34	28	31
			,,										
APR	0	1,149,000	109,368	658	1,376	702	711	44	<-6	23	33	25	29
MAY	0	1,472,000	179,634	633	1,384	595	755	65	<-6	40	31	24	27
JUN	0	1,689,000	76,230	681	1,357	59 6	674	73	<-6	42	37	4	32
									_				
JUL	0	2,068,000	0	745	906	567	611	94	<-6	64	0	0	C
AUG	64,554	1,962,000	0	745	567	536	550	115	93	105	0	0	O
SEP	76,062	1,908,000	99,792	648	1,291	524	635	119	<-6	84	27	20	22
												•	
OCT	0	1,985,000	274,925	581	1,351	589	794	85	<-6	50	34	25	28
Nov	0	1,636,000	20,923	709	1,376	591	671	110	<-6	70	29	25	28
DEC	0	1,220,000	588	744	813	550	569	114	22	108	35	35	35

The total amount injected in 2020 is:

1,298,526 ga

CERTIFICATION: Kelly Robinson

DATE:

2/15/2021

Note: Well officially brought on-line full time March 8, 2017.

Attachment B - Analytical Summary

		Characteristics	COOM				
	(M	(40 CFR261.24)	(20.6.2.3103 NMAC)	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Volatile O1	Photo II 1 Disklopethene	0.40	2	07/22/2070	0707/06/0	0707/SUZ	12/18/2020
2007 2007	1.3.1-Dichloroethene	0.70	5	< 0.20	-0.70 -0.50	0/:0>	0.70
D027	1,2-Dichlorobenzene	7.5	01	< 0.20	275	2.7>	<7.5
D035	2-Butanone (MEK)	200		< 2.0	<200	<200	<200
D018	Benzene	0.50	01	< 0.50	<0.50	<0.50	<0.50
D019	Carbon Tetrachloride	0.50	10	< 0.20	<0.50	<0.50	<0.50
D021	Chlorobenzene	001	100	< 0.20	001>	001>	00IV
D022	Chlorotorm	0.0	100	< 0.20	\$6.0 \$6.0	0.0	0.00
5500	Hexachlorophrane (PCH)	0.50	00	< 0.20	0.50	0.0>	0.00
D040	D040 Trichloroethene (TCE)	0.50	001	< 0.20	05.0>	<0.50	0.50
D043	Vinyl chloride	0.20	1	< 0.20	<0.20	<0.20	<0.20
Semi-Volati	le Organic Compounds (mgL)	2					
D027	1.4-Dichlorobenzene	7.5		<0.01	<7.5	<7.5	47.5
D041	2,4,5-Trichlorophenol	400		<0.01	<4000	<400	<400
D042	2,4,6-Trichlorophenol	2.0		<0.01	<20	<2.0	<2.0
D030	2,4-Dinitrotoluene	0.13		<0.01	<1.3	<1.3	<0.13
D023	2-Methylphenol (o-Cresol)	200		<0.01	<2000	<200	<200
D024, D025	3+4-Methylphenol (m, p-Cresol)	200		<0.01	<2000	<200	<200
D032	Hexachlorobenzene	0.13		<0.01	<1.3	<0.13	<0.13
D033	Hexachlorobutadiene	0.50		<.020	\$5.0	<0.50	<0.50
D034	Hexachioroethane	3.0		<0.01	0.00	3.0	0.5
D036	Nitrobenzene	7.0		<0.01	077	62.0	0.7
D037	rentaciuorophenol	100		<0.020	\2001 \2001	\s\0	2017
DVJs General Ch	Dozo It jirume General Chemistry (mo/7 unless otherwise stated)	0.0		50.05	^^	7	?
				1500	4500	3800	3400
	Bromide			4	4.0	3.2	1.6
	Chloride		250 *	1200	1200	830	890
	Fluoride			<2.0	< 0.50	<0.50	<0.50
	Nitrate + Nitrite as N			<0.50	< 0.50	<1.0	<1.0
	Phosphorus, Orthophosphate (As P)			<2.5	< 2.5	<2.5	2.5
	Sulfate		* 009	87	78	98	72
	Total Dissolved Solids		10,000	2920	2870	2190	1950
	pH (pH Units) Discrete and a Co CO 2)			17.7	647.1	1.71	7.90
	Dicarbonate (As CaCO3)			200	7/:1	070	349.0
	Total Alkalimity (as CaCO3)			695	647.1	6263	349 6
	Oxidation-Reduction Potential (mV)			6.2	37.7	179	24
	Specific Gravity			0.993	0.9946	0.9958	666.0
Total Metals	s (mgL)						
D004	Arsenic	5.0		< 0.030	< 0.030	<0.030	<5.0
D005	Barium	100		0.32	0.22	0.27	×100
D006	Cadmum	1.0		< 0.0020	< 0.0020	070000	0.1^
)00G	Caronium Tead	5.0		< 0.0000	< 0.000	V0.0000	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
D010	Selenium	1.0		050.0 >	< 0.020	<0.020	2.0
D011	Silver	5.0		< 0.0050	< 0.0050	<0.0050	<5.0
D009	D009 Mercury	0.2	0.002	< 0.00020	<0.0010	<0.00020	<0.020
Dissolved M	letals (mgL)	10 (20) (10) (10) (10) (10) (10)		Para Maria			
	Calcium		0.01	90	73	79	87
	Magnesium			53	52	43	22
	Potassium			< 20	I3	13	55
Tonitahility	Sodium Jonitahility Cornesivity and Beachivity			058	910) CO	200
D003	Reactive Cvanide (mg/L)			. 5000>	<0.005	<0.00500 <0.00500	<0.00500
D003	Reactive Sulfide (mgL)			0.32	0.833	<0.0500	0.213
D001	[enitability (°F)	<140° F		>170	>170	>170	>170
D002	Corrosivity (ph Units)	< 2 or > 12.5	6-9	7.27	7.63	7.82	7.36
Pesticides (mg/L)	ng/L)						
	Chlordane	0.03		<0.002	<0.20	<0.30	<0.030
Field Parameters	ieters				,	i i	702
	Hd			7.59	7.63	7.73	7.96

ATTACHMENT A

2020 Quarterly Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 15, 2020

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135

FAX: (505) 632-3911

RE: WDW 2 Injection Well OrderNo.: 2003C07

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/26/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2003C07

Date Reported: 4/15/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Western Refining Southwest, Inc.Client Sample ID: Injection Well WaterProject:WDW 2 Injection WellCollection Date: 3/25/2020 11:20:00 AMLab ID:2003C07-001Matrix: AQUEOUSReceived Date: 3/26/2020 7:50:00 AM

Result **RL Oual Units DF** Date Analyzed **Batch** Analyses **SPECIFIC GRAVITY** Analyst: JRR Specific Gravity 0.9930 0 4/8/2020 10:27:00 AM R67933 **EPA METHOD 300.0: ANIONS** Analyst: CJS Fluoride ND 2.0 mg/L 4/3/2020 8:22:57 PM R67842 Chloride 1200 50 mg/L 100 4/2/2020 8:17:18 PM R67807 Nitrogen, Nitrite (As N) ND 0.50 Н mg/L 3/27/2020 8:58:18 PM R67641 Bromide 4.0 0.50 mg/L 5 3/27/2020 8:58:18 PM R67641 Nitrogen, Nitrate (As N) ND 0.50 Н mg/L 5 3/27/2020 8:58:18 PM R67641 Phosphorus, Orthophosphate (As P) ND 2.5 Н mg/L 5 4/3/2020 9:01:34 PM R67842 87 2.5 3/27/2020 8:58:18 PM R67641 mg/L SM2510B: SPECIFIC CONDUCTANCE Analyst: vfs 3/31/2020 10:27:05 AM R67720 Conductivity 4500 5.0 µmhos/c 1 SM2320B: ALKALINITY Analyst: vfs Bicarbonate (As CaCO3) 569.0 20.00 mg/L Ca 1 3/30/2020 6:28:59 PM R67685 2.000 mg/L Ca 1 3/30/2020 6:28:59 PM R67685 Carbonate (As CaCO3) ND mg/L Ca 1 Total Alkalinity (as CaCO3) 569.0 20.00 3/30/2020 6:28:59 PM R67685 SM2540C MOD: TOTAL DISSOLVED SOLIDS Analyst: KS **Total Dissolved Solids** 2920 *D mg/L 4/3/2020 3:27:00 PM 51479 100 SM4500-H+B / 9040C: PH Analyst: vfs рН 7.64 pH units 1 3/30/2020 6:28:59 PM R67685 **EPA METHOD 7470: MERCURY** Analyst: pmf ND 0.00020 4/6/2020 4:53:53 AM 51574 Mercury mg/L 1 **EPA METHOD 6010B: DISSOLVED METALS** Analyst: ELS Calcium 20 4/2/2020 10:08:06 AM 90 mg/L 20 A67781 Magnesium 53 20 mg/L 4/2/2020 10:08:06 AM A67781 ND 20 Potassium mg/L 20 4/2/2020 10:08:06 AM A67781 Sodium 830 20 4/2/2020 10:08:06 AM A67781 mg/L **EPA 6010B: TOTAL RECOVERABLE METALS** Analyst: ELS Arsenic ND 3/31/2020 10:10:10 AM 51418 0.030 mg/L 1 Barium 0.32 0.0020 mg/L 1 3/31/2020 9:11:22 AM 51418 Cadmium ND 0.0020 mg/L 1 3/31/2020 9:11:22 AM 51418 3/31/2020 9:11:22 AM Chromium ND 0.0060 mg/L 1 51418 Lead ND 0.020 mg/L 1 3/31/2020 9:11:22 AM 51418 Selenium ND 0.050 mg/L 1 3/31/2020 9:11:22 AM 51418 Silver ND 0.0050 mg/L 3/31/2020 9:11:22 AM 51418

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

EPA METHOD 8081: PESTICIDES

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 19

Analyst: JME

Analytical Report Lab Order 2003C07

Date Reported: 4/15/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well Water

Project: WDW 2 Injection Well

Collection Date: 3/25/2020 11:20:00 AM

Lab ID: 2003C07-001 **Matrix:** AQUEOUS **Received Date:** 3/26/2020 7:50:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8081: PESTICIDES						Analyst	: JME
Chlordane	ND	2.0		μg/L	1	4/8/2020 8:58:41 AM	51482
Surr: Decachlorobiphenyl	32.2	38.2-102	S	%Rec	1	4/8/2020 8:58:41 AM	51482
Surr: Tetrachloro-m-xylene	28.4	32.3-92.4	S	%Rec	1	4/8/2020 8:58:41 AM	51482
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
1,4-Dichlorobenzene	ND	10		μg/L	1	4/5/2020 8:28:42 PM	51448
2,4-Dinitrotoluene	ND	10		μg/L	1	4/5/2020 8:28:42 PM	51448
Hexachlorobenzene	ND	10		μg/L	1	4/5/2020 8:28:42 PM	51448
Hexachlorobutadiene	ND	20		μg/L	1	4/5/2020 8:28:42 PM	51448
Hexachloroethane	ND	10		μg/L	1	4/5/2020 8:28:42 PM	51448
2-Methylphenol	11	10		μg/L	1	4/5/2020 8:28:42 PM	51448
3+4-Methylphenol	ND	10		μg/L	1	4/5/2020 8:28:42 PM	51448
Nitrobenzene	ND	10		μg/L	1	4/5/2020 8:28:42 PM	51448
Pentachlorophenol	ND	20		μg/L	1	4/5/2020 8:28:42 PM	51448
Pyridine	ND	30		μg/L	1	4/5/2020 8:28:42 PM	51448
2,4,5-Trichlorophenol	ND	10		μg/L	1	4/5/2020 8:28:42 PM	51448
2,4,6-Trichlorophenol	ND	10		μg/L	1	4/5/2020 8:28:42 PM	51448
Surr: 2-Fluorophenol	28.6	19.1-74.7		%Rec	1	4/5/2020 8:28:42 PM	51448
Surr: Phenol-d5	22.6	19.2-57		%Rec	1	4/5/2020 8:28:42 PM	51448
Surr: 2,4,6-Tribromophenol	34.3	31-96.4		%Rec	1	4/5/2020 8:28:42 PM	51448
Surr: Nitrobenzene-d5	48.2	46.2-101		%Rec	1	4/5/2020 8:28:42 PM	51448
Surr: 2-Fluorobiphenyl	15.8	39.7-98.2	S	%Rec	1	4/5/2020 8:28:42 PM	51448
Surr: 4-Terphenyl-d14	16.4	31.1-102	S	%Rec	1	4/5/2020 8:28:42 PM	51448
EPA METHOD 8260B: VOLATILES						Analyst	: RAA
Benzene	ND	0.50		μg/L	200	4/3/2020 8:35:00 PM	R67816
Toluene	ND	0.20		μg/L	200	4/3/2020 8:35:00 PM	R67816
Ethylbenzene	ND	0.20		μg/L	200	4/3/2020 8:35:00 PM	R67816
Methyl tert-butyl ether (MTBE)	ND	0.20		μg/L	200	4/3/2020 8:35:00 PM	R67816
1,2,4-Trimethylbenzene	ND	0.20		μg/L	200	4/3/2020 8:35:00 PM	R67816
1,3,5-Trimethylbenzene	ND	0.20		μg/L	200	4/3/2020 8:35:00 PM	R67816
1,2-Dichloroethane (EDC)	ND	0.20		μg/L	200	4/3/2020 8:35:00 PM	R67816
1,2-Dibromoethane (EDB)	ND	0.20		μg/L	200	4/3/2020 8:35:00 PM	R67816
Naphthalene	ND	0.40		μg/L	200	4/3/2020 8:35:00 PM	R67816
1-Methylnaphthalene	ND	0.80		μg/L	200	4/3/2020 8:35:00 PM	R67816
2-Methylnaphthalene	ND	0.80		μg/L	200	4/3/2020 8:35:00 PM	R67816
Acetone	ND	2.0		μg/L	200	4/3/2020 8:35:00 PM	R67816
Bromobenzene	ND	0.20		μg/L	200	4/3/2020 8:35:00 PM	R67816
Bromodichloromethane	ND	0.20		μg/L	200	4/3/2020 8:35:00 PM	R67816
Bromoform	ND	0.20		μg/L	200	0 4/3/2020 8:35:00 PM	R67816

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 19

Analytical Report Lab Order 2003C07

Date Reported: 4/15/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Lab ID: 2003C07-001

Matrix: AQUEOUS

Collection Date: 3/25/2020 11:20:00 AM **Received Date:** 3/26/2020 7:50:00 AM

Client Sample ID: Injection Well Water

Analyses	Result	RL (Qual Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Analys	t: RAA
Bromomethane	ND	0.60	μg/L	200 4/3/2020 8:35:00 PM	R67816
2-Butanone	ND	2.0	μg/L	200 4/3/2020 8:35:00 PM	R67816
Carbon disulfide	ND	2.0	μg/L	200 4/3/2020 8:35:00 PM	R67816
Carbon Tetrachloride	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
Chlorobenzene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
Chloroethane	ND	0.40	μg/L	200 4/3/2020 8:35:00 PM	R6781
Chloroform	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
Chloromethane	ND	0.60	μg/L	200 4/3/2020 8:35:00 PM	R6781
2-Chlorotoluene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
4-Chlorotoluene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
cis-1,2-DCE	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
cis-1,3-Dichloropropene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,2-Dibromo-3-chloropropane	ND	0.40	μg/L	200 4/3/2020 8:35:00 PM	R6781
Dibromochloromethane	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
Dibromomethane	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,2-Dichlorobenzene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,3-Dichlorobenzene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,4-Dichlorobenzene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
Dichlorodifluoromethane	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,1-Dichloroethane	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,1-Dichloroethene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,2-Dichloropropane	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,3-Dichloropropane	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
2,2-Dichloropropane	ND	0.40	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,1-Dichloropropene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
Hexachlorobutadiene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
2-Hexanone	ND	2.0	μg/L	200 4/3/2020 8:35:00 PM	R6781
Isopropylbenzene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
4-Isopropyltoluene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
4-Methyl-2-pentanone	ND	2.0	μg/L	200 4/3/2020 8:35:00 PM	R6781
Methylene Chloride	ND	0.60	μg/L	200 4/3/2020 8:35:00 PM	R6781
n-Butylbenzene	ND	0.60	μg/L	200 4/3/2020 8:35:00 PM	R6781
n-Propylbenzene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
sec-Butylbenzene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
Styrene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
tert-Butylbenzene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,1,1,2-Tetrachloroethane	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781
1,1,2,2-Tetrachloroethane	ND	0.40	μg/L	200 4/3/2020 8:35:00 PM	R6781
Tetrachloroethene (PCE)	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R6781

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 19

Project:

Lab ID:

Analytical Report Lab Order 2003C07

Date Reported: 4/15/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

 Collection Date: 3/25/2020 11:20:00 AM **Received Date:** 3/26/2020 7:50:00 AM

Client Sample ID: Injection Well Water

Analyses	Result	RL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Analyst	: RAA
trans-1,2-DCE	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R67816
trans-1,3-Dichloropropene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R67816
1,2,3-Trichlorobenzene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R67816
1,2,4-Trichlorobenzene	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R67816
1,1,1-Trichloroethane	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R67816
1,1,2-Trichloroethane	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R67816
Trichloroethene (TCE)	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R67816
Trichlorofluoromethane	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R67816
1,2,3-Trichloropropane	ND	0.40	μg/L	200 4/3/2020 8:35:00 PM	R67816
Vinyl chloride	ND	0.20	μg/L	200 4/3/2020 8:35:00 PM	R67816
Xylenes, Total	ND	0.30	μg/L	200 4/3/2020 8:35:00 PM	R67816
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	200 4/3/2020 8:35:00 PM	R67816
Surr: 4-Bromofluorobenzene	109	70-130	%Rec	200 4/3/2020 8:35:00 PM	R67816
Surr: Dibromofluoromethane	108	70-130	%Rec	200 4/3/2020 8:35:00 PM	R67816
Surr: Toluene-d8	95.2	70-130	%Rec	200 4/3/2020 8:35:00 PM	R67816

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 19

ANALYTICAL REPORT

April 02, 2020

Ss

Cn

Sr

[°]Qc

Gl

ΑI

Sc

Hall Environmental Analysis Laboratory

L1203632 Sample Delivery Group: Samples Received: 03/28/2020

Project Number:

Description:

Report To:

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By:

Dapline R Richards Daphne Richards

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2003C07-001 INJECTION WELL WATER L1203632-01	5
Qc: Quality Control Summary	6
Wet Chemistry by Method 2580	6
Wet Chemistry by Method 4500 CN E-2011	7
Wet Chemistry by Method 9034-9030B	8
Wet Chemistry by Method 9040C	9
Wet Chemistry by Method D93/1010A	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

SAMPLE SUMMARY

Collected by

Collected date/time Received date/time

03/28/20 08:30

03/25/20 11:20

2	O(Ω :	30	\square	7	7-C)()	1	IN	JF	C	TI(NC	1 /	NELL	V	/A1	ΓFF	5	1120	03	63	2-0)1	GW	

2000007 OOTHIOLOTION WELL WITHER EIZOOOD						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 2580	WG1452842	1	03/31/20 13:43	03/31/20 13:43	MJA	Mt. Juliet, TN
Wet Chemistry by Method 4500 CN E-2011	WG1452851	1	04/01/20 10:50	04/01/20 17:06	BAM	Mt. Juliet, TN
Wet Chemistry by Method 9034-9030B	WG1452619	1	03/30/20 16:39	03/30/20 16:39	MJA	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG1452768	1	03/30/20 14:00	03/30/20 14:00	JIC	Mt. Juliet, TN
Wet Chemistry by Method D93/1010A	WG1452856	1	04/01/20 12:32	04/01/20 12:32	MJA	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Daphne Richards Project Manager

Japhne R Richards

Project Narrative

All Reactive Cyanide results reported in the attached report were determined as totals using method 9012B.

All Reactive Sulfide results reported in the attached report were determined as totals using method 9034/9030B.

Hall Environmental Analysis Laboratory

SAMPLE RESULTS - 01

ONE LAB. NATRAGA 27. of 300

Collected date/time: 03/25/20 11:20

Wet Chemistry by Method 2580

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	mV			date / time	
ORP	6.20	<u>T8</u>	1	03/31/2020 13:43	<u>WG1452842</u>

Wet Chemistry by Method 4500 CN E-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Reactive Cyanide	ND		0.00500	1	04/01/2020 17:06	WG1452851

Cn

Wet Chemistry by Method 9034-9030B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Reactive Sulfide	0.325		0.0500	1	03/30/2020 16:39	WG1452619

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
Corrosivity by pH	7.27	<u>T8</u>	1	03/30/2020 14:00	WG1452768

Sample Narrative:

L1203632-01 WG1452768: 7.27 at 19.4C

ΆΙ Sc

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	deg F			date / time	
Flashpoint	DNF at 170		1	04/01/2020 12:32	WG1452856

ONE LAB. NAT Page 28 of 300

Wet Chemistry by Method 2580

L1203632-01

L1203632-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1203632-01	03/31/20 13:43 • (DUP)	R3514562-2	03/31/20	13:43
	Original Popult	DLID Docult	Dilution	ח מו וח

	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits
Analyte	mV	mV		mV		mV
ORP	6.20	9.50	1	3.30		20

Laboratory Control Sample (LCS)

(LCS) R3514562-1 03/31/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mV	mV	%	%	
ORP	92.0	95.0	103	86.0-105	

[†]Cn

ONE LAB. NATRAGE 29 of 300

L1203632-01

Method Blank (MB)

(MB) R3514731-1 04/01/20 16:34

MB Result MB Qualifier MB MDL MB RDL

Analyte mg/l mg/l mg/l

Reactive Cyanide U 0.00180 0.00500

L1203597-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1203597-02 04/01/20 17:01 • (DUP) R3514731-7 04/01/20 17:02

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Reactive Cyanide	ND	0.000	1	0.000		20

⁶Qc

L1203613-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1203613-02 04/01/20 17:04 • (DUP) R3514731-8 04/01/20 17:05

(03) 21203013-02 04/01/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Reactive Cyanide	ND	0.000	1	0.000		20

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3514731-2 04/01/20 16:35

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Reactive Cyanide	0.100	0.105	105	90.0-110	

L1202333-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1202333-02 04/01/20 16:46 • (MS) R3514731-3 04/01/20 16:47 • (MSD) R3514731-4 04/01/20 16:48

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Reactive Cyanide	0.100	0.0131	0.115	0.113	102	99.9	1	75.0-125			1.75	20	

L1202561-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 1202561 02 04/01/20 16:52 - (MS) D3514731 5 04/01/20 16:53 - (MSD) D3514731 6 04/01/20 16:54

(OS) L1202561-02 04/01/2	20 10:52 • (1015)	R3514/31-5 U4	101/20 16:53 •	(IVISD) R351473	31-6 04/01/20	10.54						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Reactive Cyanide	0.100	ND	0.104	0.102	101	99.2	1	75.0-125			1.94	20

ONE LAB. NATRAGE 30 of 300

Wet Chemistry by Method 9034-9030B

Wet Chemistry by Method 9034-90301

Method Blank (MB)

(MB) R3514014-1 03/30/2	0 16:31			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Reactive Sulfide	U		0.00650	0.0500

3 Ss

Laboratory Control Sample (LCS)

(LCS) R3514014-2 03/30/	/20 16:31				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Reactive Sulfide	0.500	0.496	99.2	85.0-115	

[†]Cn

ONE LAB. NATRAGE 31 of 300

Wet Chemistry by Method 9040C L1203632-01

Laboratory Control Sample (LCS)

(LCS) R3514056-1 03/30/20 14:00

Sample Narrative: LCS: 9.99 at 20.6C

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	SU	SU	%	%	
Corrosivity by pH	10.0	9.99	99.9	99.0-101	

Ss

ONE LAB. NATRAGA 32 of 300

Wet Chemistry by Method D93/1010A

L1203632-01

L1200394-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1200394-05 04/01/20 12:32 • (DUP) R3514694-3 04/01/20 12:32

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	deg F	deg F		%		%	
Flashpoint	139	139	1	0.000		10	

²Tc

Sample Narrative:

OS: This sample was run twice in this WG with the same result each time.

Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3514694-1_04/01/20 12:32 • (LCSD) R3514694-2_04/01/20 12:32

(LCS) KSS14094-1 04/01/2	Spike Amount	•	LCSD Result		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	deg F	deg F	deg F	%	%	%			%	%
Flashpoint	82.0	82.9	82.9	101	101	97.0-103			0.000	10

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

ADDIEVIALIONS and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

Т8

Sample(s) received past/too close to holding time expiration.

11 of 14

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

ENVIRONMENTAL

ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory Page 35 of 300 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

SUB CO	NTRATOR: PACE	TN COMPANY P	ACE TN		PHONE:	(800) 767-5859	FAX:	515) 758-5859
ADDRES	12065	Lebanon Rd			ACCOUNT #:		EMAIL:	
CITY, ST	ATE, ZIP: Mt. Ju	liet, TN 37122						
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	NALYTICAL	COMMENTS
_		Injection Well Water	250HDPE	Aqueous	3/25/2020 11:20:00 AM	1 RCI and Oxidation Red	luction Potential	1203632 -01
		Injection Well Water	500PLNAOH	Aqueous	3/25/2020 11:20:00 AM	1 RCI		- oz
2					3/25/2020 11:20:00 AM			63

Relinquished By:	Date: 3/27/2020		Received By:	Date	Time.		TRANSMITTA	
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	HARDCOPY (extra cost)	☐ FAX OR LAB USE O	INE
Relinquished By:	Date	Time:	Received By him the	Date 3/3	27/5 Time: 83.	Temp of samples 0.660,		

Client:

Pace Analytical National Center for Testing & Innovation Cooler Received/Opened On: 3 Received By: Signature: 127/20 Temperature: 1203032

Yes

No

Receipt Check List

COC Seal Present / Intact? COC Signed / Accurate?

Bottles arrive intact?

Correct bottles used? Sufficient volume sent?

If Applicable

VOA Zero headspace?

Preservation Correct / Checked?

Hall Environmental Analysis Laboratory, Inc.

PQL

0.50

Result

ND

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: MB	SampT	ype: m k	olk	Tes	tCode: El	PA Method	300.0: Anions	3		
Client ID: PBW	Batch	n ID: R6	7641	F	lunNo: 6	7641				
Prep Date:	Analysis D	Date: 3/	27/2020	S	SeqNo: 2	335160	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)	ND	0.10								
Bromide	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Sulfate	ND	0.50								
Sample ID: LCS	SampT	ype: Ics	.	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: LCSW	Batch	n ID: R6	7641	F	lunNo: 6	7641				
Prep Date:	Analysis D	Date: 3/	27/2020	S	SeqNo: 2	335161	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)	1.0	0.10	1.000	0	101	90	110			
Bromide	2.6	0.10	2.500	0	103	90	110			
Nitrogen, Nitrate (As N)	2.6	0.10	2.500	0	104	90	110			
Sulfate	10	0.50	10.00	0	103	90	110			
Sample ID: MB	SampT	ype: m k	olk	Tes	tCode: El	PA Method	300.0: Anions	\$	_	
Client ID: PBW	Batch	n ID: R6	7807	F	tunNo: 6	7807				
Prep Date:	Analysis D)ate· A/	2/2020	,	SegNo: 2	3/2200	Units: mg/L			

Sample ID: LCS	SampT	ype: Ics	i	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: LCSW	Batch	ID: R6	7807	F	tunNo: 6	7807				
Prep Date:	Analysis D	ate: 4/ 3	2/2020	S	SeqNo: 2	342210	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.7	0.50	5.000	0	94.1	90	110			

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

RPDLimit

Qual

Sample ID: MB	Tes	tCode: El	S							
Client ID: PBW	Batch	ID: R6	7842	F	RunNo: 6	7842				
Prep Date:	Analysis D	ate: 4/	3/2020	S	SeqNo: 2	343290	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								

Phosphorus, Orthophosphate (As P ND 0.50

Qualifiers:

Analyte

Chloride

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R67842 RunNo: 67842

Prep Date: Analysis Date: 4/3/2020 SeqNo: 2343292 Units: mg/L

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Fluoride 0.47 0.10 0.5000 0 94.2 90 110

Phosphorus, Orthophosphate (As P 4.6 0.50 5.000 0 92.1 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Project: WDW	2 Injection Well			
Sample ID: MB-51482	SampType: MBLK	TestCode: EPA Method	8081: PESTICIDES	
Client ID: PBW	Batch ID: 51482	RunNo: 67939		
Prep Date: 4/1/2020	Analysis Date: 4/8/2020	SeqNo: 2347751	Units: µg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chlordane	ND 1.0			
Surr: Decachlorobiphenyl	2.3 2.500		102	
Surr: Tetrachloro-m-xylene	2.0 2.500	79.7 32.3	92.4	
Sample ID: LCS-51482	SampType: LCS	TestCode: EPA Method	8081: PESTICIDES	
Client ID: LCSW	Batch ID: 51482	RunNo: 67939		
Prep Date: 4/1/2020	Analysis Date: 4/8/2020	SeqNo: 2347752	Units: %Rec	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Surr: Decachlorobiphenyl	1.1 2.500	43.7 38.2	102	
Surr: Tetrachloro-m-xylene	0.94 2.500	37.7 32.3	92.4	
Sample ID: LCSD-51482	SampType: LCSD	TestCode: EPA Method	8081: PESTICIDES	
Client ID: LCSS02	Batch ID: 51482	RunNo: 67939		
Prep Date: 4/1/2020	Analysis Date: 4/8/2020	SeqNo: 2347753	Units: %Rec	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Surr: Decachlorobiphenyl	1.4 2.500	55.8 38.2	102 0	20
Surr: Tetrachloro-m-xylene	0.96 2.500	38.5 32.3	92.4 0	20
Sample ID: MB-51482	SampType: MBLK	TestCode: EPA Method	8081: PESTICIDES	
Client ID: PBW	Batch ID: 51482	RunNo: 67939		
Prep Date: 4/1/2020	Analysis Date: 4/8/2020	SeqNo: 2347762	Units: µg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chlordane	ND 1.0			
Surr: Decachlorobiphenyl	2.6 2.500		102	S
Surr: Tetrachloro-m-xylene	2.1 2.500	82.1 32.3	92.4	
Sample ID: LCS-51482	SampType: LCS	TestCode: EPA Method	8081: PESTICIDES	
Client ID: LCSW	Batch ID: 51482	RunNo: 67939		
Prep Date: 4/1/2020	Analysis Date: 4/8/2020	SeqNo: 2347763	Units: %Rec	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Surr: Decachlorobiphenyl	1.2 2.500		102	
Surr: Tetrachloro-m-xylene	0.95 2.500	38.2 32.3	92.4	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 19

Hall Environmental Analysis Laboratory, Inc.

0.96

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: LCSD-51482 SampType: LCSD TestCode: EPA Method 8081: PESTICIDES Client ID: LCSS02 Batch ID: 51482 RunNo: 67939 Prep Date: 4/1/2020 Analysis Date: 4/8/2020 SeqNo: 2347764 Units: %Rec SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Surr: Decachlorobiphenyl 1.5 2.500 60.6 38.2 102 0 20 Surr: Tetrachloro-m-xylene 0.98 2.500 39.3 32.3 92.4 0 20

Sample ID: LCS-51482 TestCode: EPA Method 8081: PESTICIDES SampType: LCS Client ID: LCSW Batch ID: 51482 RunNo: 67939 Prep Date: 4/1/2020 Analysis Date: 4/8/2020 SeqNo: 2347829 Units: %Rec Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 2.500 Surr: Decachlorobiphenyl 1.1 43.7 38.2 102 0.92 36.9 Surr: Tetrachloro-m-xylene 2.500 32.3 92.4

Sample ID: LCS-51482 SampType: LCS TestCode: EPA Method 8081: PESTICIDES Client ID: LCSW Batch ID: 51482 RunNo: 67939 Prep Date: 4/1/2020 Analysis Date: 4/8/2020 SeqNo: 2347830 Units: %Rec HighLimit Result PQL SPK value SPK Ref Val %REC %RPD **RPDLimit** Qual Analyte LowLimit Surr: Decachlorobiphenyl 1.2 2.500 47.6 38.2 102

38.3

32.3

92.4

2.500

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix

Surr: Tetrachloro-m-xylene

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: 100ng Ics	SampT	ype: LC	s	Tes						
Client ID: LCSW	Batch	n ID: R6	7816	F	RunNo: 6	7816				
Prep Date:	Analysis D	oate: 4/ 5	3/2020	S	SeqNo: 2	343109	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	23	1.0	20.00	0	114	70	130			
Toluene	20	1.0	20.00	0	97.6	70	130			
Chlorobenzene	19	1.0	20.00	0	95.0	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	112	70	130			
Trichloroethene (TCE)	21	1.0	20.00	0	105	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		112	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130			
Surr: Dibromofluoromethane	11		10.00		109	70	130			
Surr: Toluene-d8	9.6		10.00		95.8	70	130			

Sample ID: mb	SampType: MBLK	TestCode: EPA Method 8260B: VOLATILES	
Client ID: PBW	Batch ID: R67816	RunNo: 67816	
Prep Date:	Analysis Date: 4/3/2020	SeqNo: 2343110 Units: μg/L	
Analyte	Result PQL SPK value SPk	Ref Val %REC LowLimit HighLimit %RPD	RPDLimit Qual

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,				
Client ID: PBW	Batch	n ID: R6	7816	R	RunNo: 67	7816				
Prep Date:	Analysis D	ate: 4/ .	3/2020	S	SeqNo: 23	343110	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0		<u> </u>						
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
• •										

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: mb Client ID: PBW	·	SampType: MBLK Batch ID: R67816			tCode: El RunNo: 6		8260B: VOL	ATILES		
Prep Date:	Analysis D	Analysis Date: 4/3/2020			SeqNo: 2	343110	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		112	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		109	70	130			
Surr: Dibromofluoromethane	11		10.00		108	70	130			
Surr: Toluene-d8	9.7		10.00		96.7	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: 2003C07

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: MB-51448 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 51448

RunNo: 67871

Prep Date: 3/31/2020	Analysis D	oate: 4/	5/2020	S	SeqNo: 2:	344458	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,4-Dichlorobenzene	ND	10								
2,4-Dinitrotoluene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	20								
Hexachloroethane	ND	10								
2-Methylphenol	ND	10								
3+4-Methylphenol	ND	10								
Nitrobenzene	ND	10								
Pentachlorophenol	ND	20								
Pyridine	ND	30								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	100		200.0		51.9	19.1	74.7			
Surr: Phenol-d5	78		200.0		38.9	19.2	57			
Surr: 2,4,6-Tribromophenol	120		200.0		60.5	31	96.4			
Surr: Nitrobenzene-d5	64		100.0		64.1	46.2	101			
Surr: 2-Fluorobiphenyl	53		100.0		52.9	39.7	98.2			
Surr: 4-Terphenyl-d14	70		100.0		69.9	31.1	102			

Sample ID: LCS-51448	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	n ID: 51	448	F	RunNo: 6	7871				
Prep Date: 3/31/2020	Analysis D	ate: 4/	5/2020	S	SeqNo: 2	344459	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,4-Dichlorobenzene	67	10	100.0	0	67.4	28.6	87.9			
2,4-Dinitrotoluene	57	10	100.0	0	57.4	44	88.3			
Pentachlorophenol	140	20	200.0	0	70.6	30.6	83.6			
Surr: 2-Fluorophenol	170		200.0		85.9	19.1	74.7			S
Surr: Phenol-d5	160		200.0		78.5	19.2	57			S
Surr: 2,4,6-Tribromophenol	160		200.0		81.4	31	96.4			
Surr: Nitrobenzene-d5	87		100.0		87.2	46.2	101			
Surr: 2-Fluorobiphenyl	73		100.0		73.0	39.7	98.2			
Surr: 4-Terphenyl-d14	84		100.0		84.5	31.1	102			

Sample ID: 2003C07-001BMS SampType: MS TestCode: EPA Method 8270C: Semivolatiles Client ID: Injection Well Water Batch ID: 51448 RunNo: 67871 Units: µg/L Prep Date: 3/31/2020 Analysis Date: 4/5/2020 SeqNo: 2344461 Analyte PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Result LowLimit Qual

1,4-Dichlorobenzene 21 10 100.0 15 88.6 0 20.9

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 12 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: 2003C07-001BMS SampType: MS TestCode: EPA Method 8270C: Semivolatiles Client ID: Injection Well Water Batch ID: 51448 RunNo: 67871 Prep Date: 3/31/2020 Analysis Date: 4/5/2020 SeqNo: 2344461 Units: µg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result 2,4-Dinitrotoluene 24 10 100.0 0 23.9 15 113 Pentachlorophenol 64 20 200.0 0 32.1 15 105 Surr: 2-Fluorophenol 60 200.0 29.9 74.7 19.1 Surr: Phenol-d5 43 200.0 21.7 19.2 57 76 Surr: 2,4,6-Tribromophenol 200.0 38.2 31 96.4 Surr: Nitrobenzene-d5 45 100.0 44.7 46.2 101 S S Surr: 2-Fluorobiphenyl 16 100.0 15.7 39.7 98.2 Surr: 4-Terphenyl-d14 16 100.0 16.4 31.1 102 S

Sample ID: 2003C07-001BMSI	D SampT	ype: MS	SD.	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: Injection Well Wat	t er Batch	ID: 51 4	148	F	RunNo: 6	7871				
Prep Date: 3/31/2020	Analysis D	ate: 4/	5/2020	S	SeqNo: 2	344462	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,4-Dichlorobenzene	25	10	100.0	0	24.6	15	88.6	16.6	46.8	
2,4-Dinitrotoluene	31	10	100.0	0	31.0	15	113	26.1	49.8	
Pentachlorophenol	84	20	200.0	0	42.1	15	105	27.0	52	
Surr: 2-Fluorophenol	68		200.0		34.1	19.1	74.7	0	0	
Surr: Phenol-d5	50		200.0		25.0	19.2	57	0	0	
Surr: 2,4,6-Tribromophenol	93		200.0		46.4	31	96.4	0	0	
Surr: Nitrobenzene-d5	51		100.0		51.3	46.2	101	0	0	
Surr: 2-Fluorobiphenyl	19		100.0		18.7	39.7	98.2	0	0	S
Surr: 4-Terphenyl-d14	23		100.0		22.7	31.1	102	0	0	S

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: Ics-1 99.9uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R67720 RunNo: 67720

Prep Date: Analysis Date: 3/31/2020 SeqNo: 2337973 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.90 0 99.6 85 115

Sample ID: 2003C07-001c dup SampType: dup TestCode: SM2510B: Specific Conductance

Client ID: Injection Well Water Batch ID: R67720 RunNo: 67720

Prep Date: Analysis Date: 3/31/2020 SeqNo: 2337985 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 4400 5.0 0.173 20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 19

Hall Environmental Analysis Laboratory, Inc.

2003C07

WO#:

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: MB-51574 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 51574 RunNo: 67868

Prep Date: 4/6/2020 Analysis Date: 4/6/2020 SeqNo: 2344284 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCSLL-51574 SampType: LCSLL TestCode: EPA Method 7470: Mercury

Client ID: BatchQC Batch ID: 51574 RunNo: 67868

Prep Date: 4/6/2020 Analysis Date: 4/6/2020 SeqNo: 2344285 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020 0.0001500 0 125 50 150

Sample ID: LCS-51574 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 51574 RunNo: 67868

Prep Date: 4/6/2020 Analysis Date: 4/6/2020 SeqNo: 2344286 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0048 0.00020 0.005000 0 95.8 80 120

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: MB SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals Client ID: PBW Batch ID: A67781 RunNo: 67781 Prep Date: Analysis Date: 4/2/2020 SeqNo: 2341007 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Calcium ND 1.0 Magnesium ND 1.0 Potassium ND 1.0 ND Sodium 1.0

Sample ID: LCS	SampT	ype: LC	s	Tes	tCode: El	PA Method	6010B: Disso	lved Meta	als	
Client ID: LCSW	Batch	1D: A6	7781	F	RunNo: 6	7781				
Prep Date:	Analysis D	ate: 4/ 2	2/2020	S	SeqNo: 2	341010	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	51	1.0	50.00	0	102	80	120			
Magnesium	50	1.0	50.00	0	100	80	120			
Potassium	48	1.0	50.00	0	96.5	80	120			
Sodium	50	1.0	50.00	0	101	80	120			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 19

Hall Environmental Analysis Laboratory, Inc.

ND

0.0050

WO#: **2003C07 15-Apr-20**

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: MB-51418 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals PBW Client ID: Batch ID: 51418 RunNo: 67723 Analysis Date: 3/31/2020 SeqNo: 2338029 Prep Date: 3/30/2020 Units: mg/L SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result PQL %REC LowLimit HighLimit Qual Barium ND 0.0020 Cadmium ND 0.0020 Chromium ND 0.0060 I ead ND 0.020 Selenium ND 0.050

Sample ID: LCS-51418 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals Client ID: LCSW Batch ID: 51418 RunNo: 67723 Prep Date: 3/30/2020 Analysis Date: 3/31/2020 SeqNo: 2338030 Units: mg/L %RPD PQL SPK value SPK Ref Val %REC HighLimit **RPDLimit** Analyte Result LowLimit Qual Barium 0.48 0.0020 0.5000 96.0 80 120 0 99.6 80 0.50 0.0020 0.5000 120 Cadmium 0 97.0 Chromium 0.48 0.0060 0.5000 80 120 Lead 0.50 0.020 0.5000 0 100 80 120 Selenium 0 101 120 0.51 0.050 0.5000 80 Silver 0.098 0.0050 0.1000 0 97.9 80 120

Sample ID: MB-51418 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: PBW Batch ID: 51418 RunNo: 67723 Prep Date: Analysis Date: 3/31/2020 3/30/2020 SeqNo: 2338065 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte ND 0.030 Arsenio

Sample ID: LCS-51418 TestCode: EPA 6010B: Total Recoverable Metals SampType: LCS Batch ID: 51418 Client ID: LCSW RunNo: 67723 Prep Date: 3/30/2020 Analysis Date: 3/31/2020 SeqNo: 2338066 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte LowLimit HighLimit Qual 0.51 0.030 0.5000 102 80 120 Arsenic

Qualifiers:

Silver

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R67685 RunNo: 67685

Prep Date: Analysis Date: 3/30/2020 SeqNo: 2337802 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R67685 RunNo: 67685

Prep Date: Analysis Date: 3/30/2020 SeqNo: 2337803 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 77.20 20.00 80.00 0 96.5 90 110

Sample ID: 2003C07-001c dup SampType: dup TestCode: SM2320B: Alkalinity

Client ID: Injection Well Water Batch ID: R67685 RunNo: 67685

Prep Date: Analysis Date: 3/30/2020 SeqNo: 2337822 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 570.8 20.00 0.316 20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 18 of 19

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003C07**

15-Apr-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well

Sample ID: MB-51479 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 51479 RunNo: 67825

Prep Date: 4/1/2020 Analysis Date: 4/3/2020 SeqNo: 2342586 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-51479 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 51479 RunNo: 67825

Prep Date: 4/1/2020 Analysis Date: 4/3/2020 SeqNo: 2342587 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

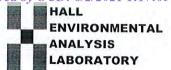
H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank


E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 19 of 19

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com Client Name: Western Refining Southw Work Order Number: 2003C07 RcptNo: 1 Received By: Isaiah Ortiz 3/26/2020 7:50:00 AM Last Baca Completed By: Leah Baca 3/27/2020 8:46:06 AM Reviewed By: DAD 3/77/70 Chain of Custody 1. Is Chain of Custody sufficiently complete? Yes 🗸 No 🗌 Not Present 2. How was the sample delivered? Client Log In 3. Was an attempt made to cool the samples? No 🗌 Yes 🗸 NA 🗌 No 🗌 Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 NA 🗌 Sample(s) in proper container(s)? Yes 🗸 No 🗌 6. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 7. Are samples (except VOA and ONG) properly preserved? Yes V No 🗌 No V 8. Was preservative added to bottles? Yes NA 🗌 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes No 🗌 NA V Yes 🗌 10. Were any sample containers received broken? No V # of preserved bottles checked 11. Does paperwork match bottle labels? Yes 🗸 No 🗌 for pH: unless noted) (Note discrepancies on chain of custody) 12. Are matrices correctly identified on Chain of Custody? Yes 🗸 No 🗌 13. Is it clear what analyses were requested? Yes 🗸 No 🗌 14. Were all holding times able to be met? Yes 🗸 No 🗌 (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes No NA V Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions:

16. Additional remarks:

17. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	3.1	Good				
2	1.2	Good				

	n-of-C		Turn-Around Time:	Time:				HALL		2	K	Z	ENVIRONMENTAL	leceive
Ullent: We	Stern	Western Refining Southwest	X Standard	□ Rush				AN	ALY	SIS	7	BO	ANALYSIS LABORATOR	>
			Project Name:	·				www	.haller	vironr	www.hallenvironmental.com	moo.		OC.
Mailing Address:	50	CR 4990	WDW #3	Injection	Well	49(4901 Hawkins NE	kins N	- 1	nbnqı	Albuquerque, NM 87109	NM 8	7109	D: 6 /
Blox	Bloom Field,	d, NM 87413	Project #:			Tel.	1. 505-	505-345-3975		Fax	505-345-4107	15-410		/2/20
Phone #:	505-63	505-633-4166							Ana	lysis	Analysis Request	sst		21
email or Fax#	Krobinson	email or Fax#: <i>Krokin รถก3 © monathon จะชาติคลาก. ขอก</i> Project Manager:	Project Mana	ger:					VOS		(40.			1:17
QA/QC Package:	υ	, Level 4 (Full Validation)	Kelly	y Robinson	40		bcB,2	SWISO	S 'Od	- (1-1)				:05 PM
Accreditation:	□ Az Col	mpliance	Sampler: Esti	Carrell TYes	oN 🗆		111102			17				
☑ EDD (Type)			olers	2 3.1.	-0/cc/3,1-c									
			Cooler Temp(including CF):	including CF): 1:	2-0 Kel 1.2.				_					
Date Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL NO.	X3T8 X3T8	8081 Pe M) ad3	d sHA9	RCRA 8	V) 0928	S) 0728	Total Co		
3/35 1130	water	Injection well water	3-il Amber	Cool	100-							×		
	-		1-50ml	Cool								Х		
			1-350ml	HNOZ								×		
			1-350ml	1007	V							×		
			1- RCI Sctus	Verious								K		
× >1	K	H	3-40 mi vos	HCI								×		
	Relinquished by:	,	Received by:	Via:	Date Time	Remarks:								
2135 1411 Date: Time:	Relinquished by:	poss	Received by:	W WILL E	7.35/30 /4// Date Time	5	PO #:	4500007548	00	151	181			Page
3/s/201811	Shill	Character Character	5	Course	sheho ciso									53 o
If necess:	ny, samples su.	If necessary, sumples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report	ontracted to other ac	credited laboratories.	This serves as notice of this	possibility. A	νης sub-α	ontracted	data will	be clearly	/ notated	on the a	nalytical report.	f 300

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

immediately or within a specified time period, or assess a civil penalty, or both (see Section 74-6-10 NMSA 1978). The compliance order may also include a suspension or termination of this Discharge Permit. OCD may also commence a civil action in district court for appropriate relief, including injunctive relief (see Section 74-6-10(A)(2) NMSA 1978). The Permittee may be subject to criminal penalties for discharging a water contaminant without a discharge permit or in violation of a condition of a discharge permit; making any false material statement, representation, certification or omission of material fact in a renewal application, record, report, plan or other document filed, submitted or required to be maintained under the Water Quality Act; falsifying, tampering with or rendering inaccurate any monitoring device, method or record required to be maintained under the Water Quality Act; or failing to monitor, sample or report as required by a Discharge Permit issued pursuant to a state or federal law or regulation (see Section 74-6-10.2 NMSA 1978).

2. GENERAL FACILITY OPERATIONS:

2.A.) QUARTERLY MONITORING REQUIREMENTS FOR CLASS I NON-HAZARDOUS WASTE INJECTION WELL: The Permittee shall properly conduct waste management injection operations at its facility by injecting only non-hazardous (RCRA exempt and RCRA non-hazardous, non-exempt) oil field waste fluids. Injected waste fluids shall not exhibit the RCRA characteristics, i.e., ignitability, reactivity, corrosivity, or toxicity under 40 CFR 261 Subpart "C" 261.21 – 261.24 (July 1, 1992), at the point of injection into WDW-2, based upon environmental analytical laboratory testing. Pursuant to 20.6.2.5207B, the Permittee shall provide analyses of the injected fluids at least quarterly to yield data representative of their toxicity characteristic.

The Permittee shall also analyze the injected fluids quarterly for the following characteristics:

- pH (Method 9040);
- Eh;
- Specific conductance;
- Specific gravity;
- Temperature;
- Major dissolved cations and anions, including: fluoride, calcium, potassium, magnesium, sodium bicarbonate, carbonate, chloride, sulfate, bromide, total dissolved solids, and cation/anion balance using the methods specified in 40 CFR 136.3); and,
- BPA RCRA Characteristics for Ignitability (ASTM Methods); Corrosivity (SW-846) and Reactivity (determined through Permittee's application of knowledge or generating process).

The Permittee shall analyze the injected fluids quarterly for the constituents identified in the Quarterly Monitoring List (below) to demonstrate that the injected fluids do not exhibit the characteristic of toxicity using the Toxicity Characteristic Leaching Procedure, EPA SW-846 Test Method 1311 (see Table 1, 40 CFR 261.24(b)).

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

(UICI-011 (WDW-2)) (July 20, 2016)

EPA HW No.	Contaminant	SW-846	Regulatory
5000		Methods	Level (mg/L)
D004	Arsenic	(1311)	(5.0)
D005	Barium	(1311)	(100.0)
D018	Benzene	8021B	0.5
D006	Cadmium	(1311)	1.0
D019	Carbon tetrachloride	8021B	0.5
DOGO	CUL	8260B	(0.00)
D020	Chlordane	8081A	0.03
D021)	Chlorobenzene	8021B) 8260B)	100.0
D022	Chloroform	8021B	6.0
		8260B	
D007	Chromium	1311	5.0
D023	o-Cresol	8270D	200.0
D024	m-Cresol	8270D	200.0
D025).	p-Cresol)	8270D	200.0
D026	Cresol	8270D	200.0
D027	1,4-Dichlorobenzene	8021B	7.5
		8121	
		8260B	
		8270D	
D028)	1,2-Dichloroethane	8021B	0.5
D000	4.4 50 11 11 11 1	8260B	0.5
D029	1,1-Dichloroethylene	8021B	0.7
D030	(2.4 Dinitratalyana)	8260B	0.10
D030)	2,4-Dinitrotoluene	8091 8270D	0.13
D032	Hexachlorobenzene	8121	0.13
D033	Hexachlorobutadiene	8021B	0.13
D033	Tioxacmorooutadiene	8121	0.5
		8260B	
D034	Hexachloroethane	8121	3.0
D008	Lead	1311	5.0
D009	(Mercury)	7470A	0.2
		7471B)	
D035	Methyl ethyl ketone	8015B	200.0
		8260B	when the
D036	Nitrobenzene	8091	2.0
		8270D	
0037	Pentrachlorophenol)	8041	100.0
0038	Pyridine	8260B	(5.0)
		8270D	

Page 6

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

D010	Selenium	1311	1.0
D011	Silver	(1311)	5.0
D039	Tetrachloroethylene	8260B	0.7
D040	Trichloroethylene	8021B 8260B	0.5
D041	(2,4,5-Trichlorophenol)	8270D	400.0
D042	2,4,6-Trichlorophenol	8041A 8270D	2.0
D043	Vinyl chloride	8021B 8260B	0.2

If o-, m-, and p-cresol concentrations cannot be differentiated, then the total cresol (D026) concentration is used.

The regulatory level of total cresol is 200 mg/L.

If the quantitation limit is greater than the regulatory level, then the quantitation limit becomes the regulatory level.

If metals (dissolved), the EPA 1311 TCLP Laboratory Method is required with the exception of Mercury (total).

- 1. Monitor and Piezometer Wells: Groundwater with a total dissolved solids concentration of less than 10,000 mg/L occurs at an estimated depth of approximately 10 30 ft. below ground surface at the WDW-2 well (hereafter, "uppermost water-bearing unit"). Groundwater monitoring well (MW) with GW sampling capability shall be installed proximal to and hydrogeologically downgradient from WDW-2 in order to monitor the uppermost water-bearing unit. The MW shall be screened (15 ft. screen with top of screen positioned 5 ft. above water table) into the uppermost water-bearing unit. The Permittee shall propose a monitoring frequency with chemical monitoring parameters in order to detect potential groundwater contamination either associated with or not associated with WDW-2.
- 2.B. CONTINGENCY PLANS: The Permittee shall implement its proposed contingency plan(s) included in its application to cope with failure of a system(s) in the Discharge Permit.
- 2.C. CLOSURE: Prior to closure of the facility, the Permittee shall submit for OCD's approval, a closure plan including a completed form C-103 for plugging and abandonment of the waste injection well. The Permittee shall plug and abandon its well pursuant to 20.6.2.5209 NMAC and as specified in Permit Condition 2.D.
 - 1. Pre-Closure Notification: Pursuant to 20.6.2.5005A NMAC, the Permittee shall submit a pre-closure notification to OCD's Environmental Bureau at least 30 days prior to the date that it proposes to close or to discontinue operation of WDW-2. Pursuant to 20.6.2.5005B NMAC, OCD's Environmental Bureau must approve all proposed well closure activities before the Permittee may implement its proposed closure plan.
 - 2. Required Information: The Permittee shall provide OCD's Environmental Bureau with the following information in the pre-closure notification specified in Permit Condition 2.C.1:
 - Name of facility;
 - Address of facility;
 - · Name of Permittee (and owner or operator, if appropriate);

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

July 23, 2020

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4135

FAX:

RE: Injection Well 2 2Q2020 OrderNo.: 2007018

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/1/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2007018

Date Reported: 7/23/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well #2

Project: Injection Well 2 2Q2020 **Collection Date:** 6/30/2020

Lab ID: 2007018-001 **Matrix:** AQUEOUS **Received Date:** 7/1/2020 8:05:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8081: PESTICIDES TCLP						Analyst	: JME
Chlordane	ND	0.20		mg/L	1	7/15/2020 9:21:46 AM	53534
Surr: Decachlorobiphenyl	75.8	38.2-102		%Rec	1	7/15/2020 9:21:46 AM	53534
Surr: Tetrachloro-m-xylene	52.7	32.3-92.4		%Rec	1	7/15/2020 9:21:46 AM	53534
EPA METHOD 8270C TCLP						Analyst	DAM
2-Methylphenol	ND	2000		mg/L	1	7/22/2020 8:27:37 PM	53528
3+4-Methylphenol	ND	2000		mg/L	1	7/22/2020 8:27:37 PM	53528
2,4-Dinitrotoluene	ND	1.3		mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachlorobenzene	ND	1.3		mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachlorobutadiene	ND	5.0		mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachloroethane	ND	30		mg/L	1	7/22/2020 8:27:37 PM	53528
Nitrobenzene	ND	20		mg/L	1	7/22/2020 8:27:37 PM	53528
Pentachlorophenol	ND	1000		mg/L	1	7/22/2020 8:27:37 PM	53528
Pyridine	ND	50		mg/L	1	7/22/2020 8:27:37 PM	53528
2,4,5-Trichlorophenol	ND	4000		mg/L	1	7/22/2020 8:27:37 PM	53528
2,4,6-Trichlorophenol	ND	20		mg/L	1	7/22/2020 8:27:37 PM	53528
Cresols, Total	ND	2000		mg/L	1	7/22/2020 8:27:37 PM	53528
Surr: 2-Fluorophenol	54.9	15-81.1		%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: Phenol-d5	45.6	15-61.1		%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 2,4,6-Tribromophenol	77.5	17.2-108		%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: Nitrobenzene-d5	63.0	18.7-120		%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 2-Fluorobiphenyl	47.7	23.6-103		%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 4-Terphenyl-d14	94.9	24.1-105		%Rec	1	7/22/2020 8:27:37 PM	53528
SPECIFIC GRAVITY						Analyst	CAS
Specific Gravity	0.9946	0			1	7/1/2020 2:10:00 PM	R70056
EPA METHOD 300.0: ANIONS						Analyst	CAS
Fluoride	ND	0.50		mg/L	5	7/1/2020 10:01:06 PM	R70074
Chloride	1200	50	*	mg/L	100	7/2/2020 4:39:21 PM	R70134
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	7/1/2020 10:01:06 PM	R70074
Bromide	4.0	0.50		mg/L	5	7/1/2020 10:01:06 PM	R70074
Nitrogen, Nitrate (As N)	ND	0.50		mg/L	5	7/1/2020 10:01:06 PM	R70074
Phosphorus, Orthophosphate (As P)	ND	2.5		mg/L	5	7/1/2020 10:01:06 PM	R70074
Sulfate	78	2.5		mg/L	5	7/1/2020 10:01:06 PM	R70074
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: JRR
Conductivity	4500	10		µmhos/c	1	7/7/2020 10:26:38 AM	R70195
SM2320B: ALKALINITY						Analyst	: JRR
Bicarbonate (As CaCO3)	647.1	20.00		mg/L Ca	1	7/7/2020 10:26:38 AM	R70195
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	7/7/2020 10:26:38 AM	R70195

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 14

Analytical Report Lab Order 2007018

Date Reported: 7/23/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well #2

Project: Injection Well 2 2Q2020 **Collection Date:** 6/30/2020

Lab ID: 2007018-001 **Matrix:** AQUEOUS **Received Date:** 7/1/2020 8:05:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SM2320B: ALKALINITY						Analyst:	JRR
Total Alkalinity (as CaCO3)	647.1	20.00		mg/L Ca	1	7/7/2020 10:26:38 AM	R70195
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst:	KS
Total Dissolved Solids	2870	200	*D	mg/L	1	7/8/2020 10:16:00 AM	53514
SM4500-H+B / 9040C: PH				J		Analyst:	.IRR
pH	7.77		Н	pH units	1	7/7/2020 10:26:38 AM	R70195
•	,,,,		•••	priamo	•		
EPA METHOD 7470: MERCURY	NB	0.0040			_	Analyst:	
Mercury	ND	0.0010		mg/L	5	7/7/2020 4:27:56 PM	53531
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst:	ELS
Arsenic	ND	0.030		mg/L	1	7/8/2020 12:41:36 PM	53551
Barium	0.22	0.0020		mg/L	1	7/8/2020 12:41:36 PM	53551
Cadmium	ND	0.0020		mg/L	1	7/8/2020 12:41:36 PM	53551
Calcium	73	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551
Chromium	ND	0.0060		mg/L	1	7/8/2020 12:41:36 PM	53551
Lead	ND	0.020		mg/L	1	7/8/2020 12:41:36 PM	53551
Magnesium	52	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551
Potassium	13	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551
Selenium	ND	0.050		mg/L	1	7/8/2020 12:41:36 PM	53551
Silver	ND	0.0050		mg/L	1	7/8/2020 12:41:36 PM	53551
Sodium	910	10		mg/L	10	7/8/2020 1:06:08 PM	53551
TCLP VOLATILES BY 8260B						Analyst:	CCM
Benzene	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
1,2-Dichloroethane (EDC)	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
2-Butanone	ND	200		mg/L	200	7/7/2020 12:55:00 AM	T70113
Carbon Tetrachloride	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
Chloroform	ND	6.0		mg/L	200	7/7/2020 12:55:00 AM	T70113
1,4-Dichlorobenzene	ND	7.5		mg/L	200	7/7/2020 12:55:00 AM	T70113
1,1-Dichloroethene	ND	0.70		mg/L	200	7/7/2020 12:55:00 AM	T70113
Tetrachloroethene (PCE)	ND	0.70		mg/L	200	7/7/2020 12:55:00 AM	T70113
Trichloroethene (TCE)	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
Vinyl chloride	ND	0.20		mg/L	200	7/7/2020 12:55:00 AM	T70113
Chlorobenzene	ND	100		mg/L	200	7/7/2020 12:55:00 AM	T70113
Surr: 1,2-Dichloroethane-d4	103	70-130		%Rec	200	7/7/2020 12:55:00 AM	T70113
Surr: 4-Bromofluorobenzene	102	70-130		%Rec	200	7/7/2020 12:55:00 AM	T70113
Surr: Dibromofluoromethane	106	70-130		%Rec	200	7/7/2020 12:55:00 AM	T70113
Surr: Toluene-d8	102	70-130		%Rec	200	7/7/2020 12:55:00 AM	T70113

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 14

ANALYTICAL REPORT

July 14, 2020

Ss

Cn

Sr

[°]Qc

Gl

ΑI

Sc

Hall Environmental Analysis Laboratory

L1236077 Sample Delivery Group: Samples Received: 07/02/2020

Project Number:

Description:

Report To: Jackie Bolte

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By: Jah V Houkins

John Hawkins

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2007018-001E INJECTION WELL #2 L1236077-01	5
2007018-001F INJECTION WELL #2 L1236077-02	6
2007018-001G INJECTION WELL #2 L1236077-03	7
Qc: Quality Control Summary	8
Wet Chemistry by Method 2580	8
Wet Chemistry by Method 4500 CN E-2011	9
Wet Chemistry by Method 4500H+ B-2011	10
Wet Chemistry by Method 9034-9030B	11
Wet Chemistry by Method D93/1010A	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SAMPLE SUMMARY

2007018-001E INJECTION WELL #2 L1236077-01	\/\/\/		Collected by	Collected date/time 06/30/20 00:00	Received dat 07/02/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2580	WG1504658	1	07/07/20 05:39	07/07/20 05:39	AKA	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011 Wet Chemistry by Method D93/1010A	WG1503689 WG1506806	1	07/03/20 12:57 07/11/20 19:15	07/03/20 12:57 07/11/20 19:15	KEG JIC	Mt. Juliet, TN Mt. Juliet, TN
2007018-001F INJECTION WELL #2 L1236077-02	WW		Collected by	Collected date/time 06/30/20 00:00	Received dat 07/02/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9034-9030B	WG1504791	1	07/07/20 15:23	07/07/20 15:23	SL	Mt. Juliet, TN
2007018-001G INJECTION WELL #2 L1236077-03	WW		Collected by	Collected date/time 06/30/20 00:00	Received dat 07/02/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 4500 CN E-2011	WG1507316	1	07/11/20 18:08	07/13/20 15:06	JER	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Project Manager

John Hawkins

Project Narrative

All Reactive Cyanide results reported in the attached report were determined as totals using method 9012B. All Reactive Sulfide results reported in the attached report were determined as totals using method 9034/9030B.

Hall Environmental Analysis Laboratory

SAMPLE RESULTS - 01

ONE LAB. NAT Page 64 of \$10

Collected date/time: 06/30/20 00:00

Wet Chemistry by Method 2580

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	mV			date / time	
ORP	37.7	Q	1	07/07/2020 05:39	WG1504658

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	su			date / time	
Corrosivity by pH	7.63	<u>T8</u>	1	07/03/2020 12:57	WG1503689

Cn

Sample Narrative:

L1236077-01 WG1503689: 7.63 at 21.1C

СQс

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	deg F			date / time	
Flashpoint	DNF at 170		1	07/11/2020 19:15	WG1506806

Gl

SAMPLE RESULTS - 02

ONE LAB. NATRAGE 65 of \$10

Collected date/time: 06/30/20 00:00

Wet Chemistry by Method 9034-9030B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Reactive Sulfide	0.833		0.0500	1	07/07/2020 15:23	WG1504791

SAMPLE RESULTS - 03

ONE LAB. NATRAGE 66 of 300

Collected date/time: 06/30/20 00:00

Wet Chemistry by Method 4500 CN E-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Reactive Cyanide	ND		0.00500	1	07/13/2020 15:06	WG1507316

ONE LAB. NATRAGE 67. of 300

Wet Chemistry by Method 2580

L1236077-01

L1236077-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1236077-01 07/07/2	20 05:39 • (DUF) R3546691-2	07/07/20	05:39		
	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits
Analyte	mV	mV		mV		mV
ORP	37.7	55.8	1	18.1		20

²Tc

Laboratory Control Sample (LCS)

(LCS) R3546691-1 07/07/2	10 05:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mV	mV	%	%	
ORP	228	226	99.0	86.0-105	

ONE LAB. NAT Page 68 of 300

L1236077-03

Method Blank (MB)

(MB) R3548947-1	0//13/20 14:32	
	MR Pocult	

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Reactive Cyanide	U		0.00180	0.00500

Original Sample (OS) • Duplicate (DUP)

(OS) • (DUP) R3548947-3 07/13/20 14:37

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte		mg/l		%		%
Reactive Cyanide		ND	1	0.000		20

[†]Cn

Ss

Laboratory Control Sample (LCS)

(LCS) R3548947-2 07/13/20 14:33

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Reactive Cyanide	0.100	0.0984	98.4	90.0-110	

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l		mg/l	mg/l	%	%		%			%	%
Reactive Cyanide	0.100		0.106	0.101	106	101	1	75.0-125			4.83	20

ONE LAB. NATRAGE 69 of 300

L1236077-01

Wet Chemistry by Method 4500H+ B-2011 Laboratory Control Sample (LCS)

(LCS) R3545989-1 07/03/20 12:57

Sample Narrative: LCS: 10.05 at 22.2C

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	Su	Su	%	%	
Corrosivity by pH	10.0	10.1	101	99.0-101	

Ss

Wet Chemistry by Method 9034-9030B

QUALITY CONTROL SUMMARY

ONE LAB. NATRAGE 70 of 300

L1236077-02

Method Blank (MB)

 (MB) R3547698-1
 07/07/20 14:56

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 mg/l
 mg/l
 mg/l

 Reactive Sulfide
 U
 0.00650
 0.0500

²Tc

Ss

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3547698-2 07/07	//20 14:56				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Reactive Sulfide	0.500	0.473	94.6	85.0-115	

ONE LAB. NATRAGE 71 of 300

Wet Chemistry by Method D93/1010A

L1236077-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3548542-1 07/11/2	0 19:15 • (LCSD)) R3548542-2	07/11/20 19:15							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	deg F	deg F	deg F	%	%	%			%	%
Flashpoint	126	127	125	101	99.1	96.0-104			1.59	10

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions					
MDL	Method Detection Limit.					
ND	Not detected at the Reporting Limit (or MDL where applicable).					
RDL	Reported Detection Limit.					
Rec.	Recovery.					
RPD	Relative Percent Difference.					
SDG	Sample Delivery Group.					
U	Not detected at the Reporting Limit (or MDL where applicable).					
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.					
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.					
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.					
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.					
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.					
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.					
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.					
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.					
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.					
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.					
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.					
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.					

Qualifier	Description
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.
T8	Sample(s) received past/too close to holding time expiration.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Otato / tool culturions	
Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PROJECT:

ANALYSIS

LABORATORY

OF:

Hall Environmental Analysis Laboratory

4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975

FAX: 505-345-4107

Website: clients.hallenvironmental.com

SUB C	ONTRATOR Pace T	COMPANY:	PACE TN		PHONE:	(800) 767-5859 FAX:	(615) 758-5859
ADDR	12065	Lebanon Rd			ACCOUNT#	EMAIL	
CITY,	TATE, ZIP: Mt. Ju	lliet, TN 37122					
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS ANALYTICA	L COMMENTS
1	2007018-001E	Injection Well #2	500HDPE	Aqueous	6/30/2020	1 ORP, Corrosivity, Ignitability	L1236077-01
2	2007018-001F	Injection Well #2	500PLNAOH	Aqueous	6/30/2020	1 Reactive Sulfide	02
3	2007018-001G	Injection Well #2	500PL-NaOH	Aqueous	6/30/2020	1 Reactive Cyanide	03

Relinquished By: EM	Date: 7/1/2020	Time: 11:19 AM	Received By:	Date:	Time:	REPORT TRANSMITTAL DESIRED: ☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLINE
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	FOR LAB USE ONLY
Relinquished By:	Date:	Time:	REPLANTED	Prop lan	Time 2:45	Temp of samples 510=5 Attempt to Cool?

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

23-Jul-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: MB	SampT	ype: mb	lk	Tes	tCode: El	PA Method	3			
Client ID: PBW	Batch	n ID: R7	0074	RunNo: 70074						
Prep Date:	Analysis D	oate: 7/	1/2020	9	SeqNo: 2	434415	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Nitrogen, Nitrite (As N)	ND	0.10								
Bromide	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sulfate	ND	0.50								
Sample ID: LCS	SampT	vpe: lcs		Tes	tCode: El	PA Method	300.0: Anions	•		

Sample ID: LCS	SampType: Ics TestCode: EPA Method 300						300.0: Anions	5		
Client ID: LCSW	Batc	h ID: R7	0074	F	RunNo: 7	0074				
Prep Date:	Analysis [Date: 7/	1/2020	5	SeqNo: 2	434416	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.54	0.10	0.5000	0	108	90	110			
Nitrogen, Nitrite (As N)	0.98	0.10	1.000	0	98.3	90	110			
Bromide	2.5	0.10	2.500	0	101	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	100	90	110			
Phosphorus, Orthophosphate (As P	4.7	0.50	5.000	0	94.3	90	110			
Sulfate	9.8	0.50	10.00	0	98.0	90	110			

Sample ID: MB	SampTy	SampType: mblk			TestCode: EPA Method 300.0: Anions					
Client ID: PBW	Batch	ID: R7	0134	F	RunNo: 7	0134				
Prep Date:	Analysis Da	ate: 7/ 2	2/2020	S	SeqNo: 2	437168	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50								

Sample ID: LCS	SampT	ype: Ics	;	Tes	tCode: El	PA Method	300.0: Anion	5		
Client ID: LCSW	Batch	n ID: R7	0134	F	RunNo: 7	0134				
Prep Date:	Analysis D	ate: 7/ 2	2/2020	S	SeqNo: 2	437169	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4 9	0.50	5 000	0	98.4	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 14

Hall Environmental Analysis Laboratory, Inc.

0.0017

WO#: **2007018**

23-Jul-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: MB-53534	SampType: MBLK	TestCode: EPA Method 8081: Pesticides TCLP
Client ID: PBW	Batch ID: 53534	RunNo: 70353
Prep Date: 7/7/2020	Analysis Date: 7/15/2020	SeqNo: 2445441 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chlordane	ND 0.030	
Surr: Decachlorobiphenyl	0.0022 0.002500	87.3 38.2 102
Surr: Tetrachloro-m-xylene	0.0018 0.002500	72.0 32.3 92.4
Sample ID: LCS-53534	SampType: LCS	TestCode: EPA Method 8081: Pesticides TCLP
Client ID: LCSW	Batch ID: 53534	RunNo: 70353
Prep Date: 7/7/2020	Analysis Date: 7/15/2020	SeqNo: 2445442 Units: %Rec
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Surr: Decachlorobiphenyl	0.0022 0.002500	88.4 38.2 102
Surr: Tetrachloro-m-xylene	0.0019 0.002500	77.1 32.3 92.4
Sample ID: LCSD-53534	SampType: LCSD	TestCode: EPA Method 8081: Pesticides TCLP
Client ID: LCSS02	Batch ID: 53534	RunNo: 70353
Prep Date: 7/7/2020	Analysis Date: 7/15/2020	SeqNo: 2445443 Units: %Rec
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Surr: Decachlorobiphenyl	0.0024 0.002500	96.2 38.2 102 0 0

Sample ID: MB-53534	SampType: MBLK			TestCode: EPA Method 8081: Pesticides TCLP						
Client ID: PBW	Batch	n ID: 53	534	F	RunNo: 7	0353				
Prep Date: 7/7/2020	Analysis D	Date: 7/	15/2020	S	SeqNo: 2	445445	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlordane	ND	0.030								
Surr: Decachlorobiphenyl	0.0022		0.002500		86.5	38.2	102			
Surr: Tetrachloro-m-xylene	0.0018		0.002500		72.9	32.3	92.4			

66.1

32.3

92.4

0.002500

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix

Surr: Tetrachloro-m-xylene

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 14

0

Hall Environmental Analysis Laboratory, Inc.

ND

ND

0.010

0.010

0.010

0.010

0.20

100

0.01000

0.01000

0.01000

0.01000

WO#: **2007018**

23-Jul-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: 100ng lcs	Samp	Type: LC	s	Tes	tCode: TC	LP Volatile	es by 8260B			
Client ID: LCSW	Bat	ch ID: T7 0	0113	R	tunNo: 70	0113				
Prep Date:	Analysis	Date: 7/	6/2020	S	SeqNo: 24	138829	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.019	0.00023	0.02000	0	95.7	70	130			
1,1-Dichloroethene	0.019	0.00013	0.02000	0	95.1	70	130			
Trichloroethene (TCE)	0.018	0.00020	0.02000	0	88.0	70	130			
Chlorobenzene	0.021	0.00014	0.02000	0	107	70	130			
Surr: 1,2-Dichloroethane-d4	0.0098		0.01000		98.0	70	130			
Surr: 4-Bromofluorobenzene	0.010		0.01000		102	70	130			
Surr: Dibromofluoromethane	0.0096		0.01000		96.4	70	130			
Surr: Toluene-d8	0.010		0.01000		102	70	130			
Sample ID: MB	Samp	Туре: МЕ	BLK	Tes	tCode: T (LP Volatile	es by 8260B			
Client ID: PBW	Bat	ch ID: T7	0113	R	tunNo: 70	0113				
Prep Date:	Analysis	Date: 7/	6/2020	S	SeqNo: 24	138830	Units: mg/L			
Prep Date: Analyte	Analysis Result	Date: 7/ PQL		SPK Ref Val		138830 LowLimit	Units: mg/L HighLimit	%RPD	RPDLimit	Qual
							J	%RPD	RPDLimit	Qual
Analyte	Result	PQL					J	%RPD	RPDLimit	Qual
Analyte Benzene	Result	PQL 0.50					J	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC)	Result ND ND	PQL 0.50 0.50					J	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone	Result ND ND ND	PQL 0.50 0.50 200					J	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride	Result ND ND ND ND	PQL 0.50 0.50 200 0.50					J	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform	Result ND ND ND ND ND	PQL 0.50 0.50 200 0.50 6.0					J	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform 1,4-Dichlorobenzene	Result ND	PQL 0.50 0.50 200 0.50 6.0 7.5					J	%RPD	RPDLimit	Qual

Qualifiers:

Vinyl chloride

Chlorobenzene

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

102

100

99.5

100

70

70

70

70

130

130

130

130

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

23-Jul-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: mb-53528	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8270C TCLP	<u>'</u>		
Client ID: PBW	Batch	n ID: 53	528	F	RunNo: 7 0	0542				
Prep Date: 7/7/2020	Analysis D	ate: 7/ 2	22/2020	8	SeqNo: 24	453803	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	ND	200								
3+4-Methylphenol	ND	200								
2,4-Dinitrotoluene	ND	0.13								
Hexachlorobenzene	ND	0.13								
Hexachlorobutadiene	ND	0.50								
Hexachloroethane	ND	3.0								
Nitrobenzene	ND	2.0								
Pentachlorophenol	ND	100								
Pyridine	ND	5.0								
2,4,5-Trichlorophenol	ND	400								
2,4,6-Trichlorophenol	ND	2.0								
Cresols, Total	ND	200								
Surr: 2-Fluorophenol	0.13		0.2000		67.3	15	81.1			
Surr: Phenol-d5	0.10		0.2000		52.1	15	61.1			
Surr: 2,4,6-Tribromophenol	0.15		0.2000		74.1	17.2	108			
Surr: Nitrobenzene-d5	0.078		0.1000		77.9	18.7	120			
Surr: 2-Fluorobiphenyl	0.059		0.1000		59.0	23.6	103			
Surr: 4-Terphenyl-d14	0.11		0.1000		114	24.1	105			S

Sample ID: Ics-53528	Samp	Type: LC	s	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: LCSW	Bato	h ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis	Date: 7/	22/2020	8	SeqNo: 2	453804	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.077	0.0010	0.1000	0	76.5	33.8	121			
3+4-Methylphenol	0.16	0.0010	0.2000	0	81.8	33.6	109			
2,4-Dinitrotoluene	0.055	0.0010	0.1000	0	54.8	50.4	124			
Hexachlorobenzene	0.088	0.0010	0.1000	0	88.1	50.1	120			
Hexachlorobutadiene	0.043	0.0010	0.1000	0	42.5	16.1	103			
Hexachloroethane	0.042	0.0010	0.1000	0	42.3	15	94.2			
Nitrobenzene	0.087	0.0010	0.1000	0	87.4	32.4	125			
Pentachlorophenol	0.080	0.0010	0.1000	0	79.7	44.6	114			
Pyridine	0.011	0.0010	0.1000	0	11.2	15	67			S
2,4,5-Trichlorophenol	0.082	0.0010	0.1000	0	81.9	49.4	118			
2,4,6-Trichlorophenol	0.083	0.0010	0.1000	0	82.6	50.3	116			
Cresols, Total	0.24	0.0010	0.3000	0	80.0	33.8	109			
Surr: 2-Fluorophenol	0.12		0.2000		61.5	15	81.1			
Surr: Phenol-d5	0.092		0.2000		45.8	15	61.1			
Surr: 2,4,6-Tribromophenol	0.14		0.2000		72.4	17.2	108			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 14

Hall Environmental Analysis Laboratory, Inc.

0.11

WO#: **2007018**

23-Jul-20

S

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Surr: 4-Terphenyl-d14

Sample ID: Ics-53528 SampType: LCS TestCode: EPA Method 8270C TCLP Client ID: LCSW RunNo: 70542 Batch ID: 53528 Prep Date: 7/7/2020 Analysis Date: 7/22/2020 SeqNo: 2453804 Units: mg/L SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Surr: Nitrobenzene-d5 0.080 0.1000 80.5 18.7 120 Surr: 2-Fluorobiphenyl 0.060 0.1000 59.6 23.6 103

108

24.1

105

0.1000

Sample ID: 2007018-001bms TestCode: EPA Method 8270C TCLP SampType: MS Client ID: Injection Well #2 RunNo: 70542 Batch ID: 53528 Prep Date: 7/7/2020 Analysis Date: 7/22/2020 SeqNo: 2453806 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.95 0.010 0 95.3 30.5 2-Methylphenol 1.000 98.2 3+4-Methylphenol 2.1 0.010 2.000 0 106 27.4 98.6 S 0 77.0 34.3 0.77 0.010 1.000 87.4 2,4-Dinitrotoluene Hexachlorobenzene 0.94 0.010 1.000 0 93.8 36.5 100 0 52.9 0.53 0.010 1.000 15 108 Hexachlorobutadiene 0.010 0 53.6 Hexachloroethane 0.54 1.000 15 90.7 Nitrobenzene 0.95 0.010 1.000 0 95.4 39 100 Pentachlorophenol 0.88 0.010 1.000 0 87.5 15 97.5 Pyridine 0.10 0.010 1.000 0 10.4 15 65.8 S 0 90.7 2,4,5-Trichlorophenol 0.91 0.010 1.000 36.1 109 2,4,6-Trichlorophenol 0.95 0.010 1.000 0 94.9 37.8 104 S Cresols, Total 0.010 0 27.1 3.1 3.000 102 99.8 Surr: 2-Fluorophenol 1.5 2.000 72.6 15 81.1 Surr: Phenol-d5 2.000 54.5 15 61.1 1.1 Surr: 2,4,6-Tribromophenol 1.7 2.000 86.3 17.2 108 Surr: Nitrobenzene-d5 0.91 1.000 91.2 18.7 120 Surr: 2-Fluorobiphenyl 0.70 1.000 69.8 23.6 103 Surr: 4-Terphenyl-d14 1.0 1.000 102 24.1 105

Sample ID: 2007018-001bmsd Client ID: Injection Well #2	•	ype: MS ID: 53			tCode: El RunNo: 7		8270C TCLP			
Prep Date: 7/7/2020	Analysis D	ate: 7/ 2	22/2020	8	SeqNo: 2	453807	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.76	0.010	1.000	0	75.9	30.5	98.2	22.7	44.3	
3+4-Methylphenol	1.6	0.010	2.000	0	79.5	27.4	98.6	28.3	50	
2,4-Dinitrotoluene	0.67	0.010	1.000	0	67.0	34.3	87.4	13.9	45.1	
Hexachlorobenzene	0.82	0.010	1.000	0	81.9	36.5	100	13.6	47.2	
Hexachlorobutadiene	0.39	0.010	1.000	0	39.3	15	108	29.4	43.4	
Hexachloroethane	0.39	0.010	1.000	0	38.9	15	90.7	31.8	39.2	
Nitrobenzene	0.77	0.010	1.000	0	76.6	39	100	21.9	42.1	

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

23-Jul-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: 2007018-001bmsc	I SampT	ype: MS	SD .	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: Injection Well #2	Batch	ID: 535	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis D	ate: 7/2	22/2020	S	SeqNo: 2	453807	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Pentachlorophenol	0.86	0.010	1.000	0	85.6	15	97.5	2.30	50	
Pyridine	ND	0.010	1.000	0	0.0392	15	65.8	200	50	RS
2,4,5-Trichlorophenol	0.86	0.010	1.000	0	85.6	36.1	109	5.85	49.7	
2,4,6-Trichlorophenol	0.80	0.010	1.000	0	80.2	37.8	104	16.8	47	
Cresols, Total	2.3	0.010	3.000	0	78.3	27.1	99.8	26.5	27.4	
Surr: 2-Fluorophenol	1.3		2.000		62.9	15	81.1	0	0	
Surr: Phenol-d5	1.0		2.000		50.9	15	61.1	0	0	
Surr: 2,4,6-Tribromophenol	1.6		2.000		81.5	17.2	108	0	0	
Surr: Nitrobenzene-d5	0.79		1.000		79.4	18.7	120	0	0	
Surr: 2-Fluorobiphenyl	0.60		1.000		59.7	23.6	103	0	0	
Surr: 4-Terphenyl-d14	1.0		1.000		104	24.1	105	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

23-Jul-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: Ics-1 99.5uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439134 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 99 10 99.50 0 99.8 85 115

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

23-Jul-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: MB-53531 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 53531 RunNo: 70152

Prep Date: 7/7/2020 Analysis Date: 7/7/2020 SeqNo: 2437876 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LLLCS-53531 SampType: LCSLL TestCode: EPA Method 7470: Mercury

Client ID: BatchQC Batch ID: 53531 RunNo: 70152

Prep Date: 7/7/2020 Analysis Date: 7/7/2020 SeqNo: 2437877 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020 0.0001500 0 96.1 50 150

Sample ID: LCS-53531 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 53531 RunNo: 70152

Prep Date: 7/7/2020 Analysis Date: 7/7/2020 SeqNo: 2437878 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0049 0.00020 0.005000 0 98.2 80 120

Sample ID: 2007018-001DMS SampType: MS TestCode: EPA Method 7470: Mercury

Client ID: Injection Well #2 Batch ID: 53531 RunNo: 70152

Prep Date: 7/7/2020 Analysis Date: 7/7/2020 SeqNo: 2437885 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0025 0.0010 0.005000 0 49.4 75 125 S

Sample ID: 2007018-001DMSD SampType: MSD TestCode: EPA Method 7470: Mercury

Client ID: Injection Well #2 Batch ID: 53531 RunNo: 70152

Prep Date: 7/7/2020 Analysis Date: 7/7/2020 SeqNo: 2437886 Units: mg/L

Analyte PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual LowLimit 0.0024 0.0010 0.005000 48.5 75 1.89 20 Mercury 125

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

23-Jul-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: MB-53551 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 53551 RunNo: 70197

00				•						
Prep Date: 7/7/2020	Analysis	Date: 7/	8/2020	8	SeqNo: 24	439313	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.030								
Barium	ND	0.0020								
Cadmium	ND	0.0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Lead	ND	0.020								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	ND	0.0050								
Sodium	ND	1.0								

Sample ID: LCS-53551	Samp	Type: LC	S	Test	tCode: EF	PA 6010B:	Total Recover	able Meta	ıls	
Client ID: LCSW	Bato	ch ID: 535	551	R	RunNo: 7 (0197				
Prep Date: 7/7/2020	Analysis	Date: 7/8	8/2020	S	SeqNo: 24	439314	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.45	0.030	0.5000	0	89.1	80	120			
Barium	0.47	0.0020	0.5000	0	93.1	80	120			
Cadmium	0.46	0.0020	0.5000	0	92.8	80	120			
Calcium	51	1.0	50.00	0	102	80	120			
Chromium	0.45	0.0060	0.5000	0	89.1	80	120			
Lead	0.45	0.020	0.5000	0	90.6	80	120			
Magnesium	51	1.0	50.00	0	103	80	120			
Potassium	50	1.0	50.00	0	99.2	80	120			
Selenium	0.45	0.050	0.5000	0	90.1	80	120			
Silver	0.095	0.0050	0.1000	0	95.0	80	120			
Sodium	51	1.0	50.00	0	101	80	120			

Sample ID: 2007018-001DMS	Samp	Type: MS	3	Tes	tCode: El	PA 6010B:	Total Recove	rable Meta	als	
Client ID: Injection Well #2	Bato	h ID: 53	551	F	RunNo: 7	0197				
Prep Date: 7/7/2020	Analysis I	Date: 7/	8/2020	8	SeqNo: 2	439318	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.32	0.030	0.5000	0	63.1	75	125			S
Barium	0.58	0.0020	0.5000	0.2229	71.2	75	125			S
Cadmium	0.37	0.0020	0.5000	0	73.1	75	125			S
Chromium	0.32	0.0060	0.5000	0	64.2	75	125			S
Lead	0.33	0.020	0.5000	0	65.8	75	125			S
Magnesium	97	1.0	50.00	52.48	88.9	75	125			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 14

Hall Environmental Analysis Laboratory, Inc.

0.070

0.0050

0.1000

WO#: **2007018**

23-Jul-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: 2007018-001DMS SampType: MS TestCode: EPA 6010B: Total Recoverable Metals Injection Well #2 Client ID: Batch ID: 53551 RunNo: 70197 Prep Date: 7/7/2020 Analysis Date: 7/8/2020 SeqNo: 2439318 Units: mg/L PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result LowLimit

12.98 Potassium 60 1.0 50.00 94.1 75 125 Selenium 0.32 0.050 0.5000 0 63.5 75 125 S 0.1000 0 74.0 75 125 S Silver 0.074 0.0050

Sample ID: 2007018-001DMSD TestCode: EPA 6010B: Total Recoverable Metals SampType: MSD Client ID: Injection Well #2 RunNo: 70197 Batch ID: 53551 Prep Date: 7/7/2020 Analysis Date: 7/8/2020 SeqNo: 2439319 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.30 59.7 75 125 5.44 20 S Arsenic 0.030 0.5000 0 Barium 0.55 0.0020 0.5000 0.2229 65.3 75 125 5.26 20 S S 0.0020 0.5000 0 69.8 75 125 4.61 20 Cadmium 0.35 Chromium 0.31 0.0060 0.5000 0 61.1 75 125 5.01 20 S 63.9 75 20 S 0.32 0.020 0.5000 0 125 2.92 Lead 91 76.5 75 6.58 20 Magnesium 1.0 50.00 52.48 125 20 Potassium 56 1.0 50.00 12.98 85.7 75 125 7.22 Selenium 0.30 0.050 0.5000 0 59.0 75 125 7.36 20 S

0

70.2

75

125

5.21

20

S

Qualifiers:

Silver

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018 23-Jul-20**

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439098 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439099 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 76.40 20.00 80.00 0 95.5 90 110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439121 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439122 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 77.32 20.00 80.00 0 96.7 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

23-Jul-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: MB-53514 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 53514 RunNo: 70168

Prep Date: 7/6/2020 Analysis Date: 7/8/2020 SeqNo: 2438320 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

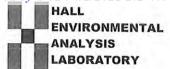
Total Dissolved Solids ND 20.0

Sample ID: LCS-53514 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 53514 RunNo: 70168

Prep Date: 7/6/2020 Analysis Date: 7/8/2020 SeqNo: 2438321 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual


Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 14

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name:	Western Refining Southwest, Inc.	Work Order Number:	2007018		RcptNo: 1
Received By:	Emily Mocho	7/1/2020 8:05:00 AM			
Completed By:	Emily Mocho	7/1/2020 10:48:41 AM			
	SPA 12:40				
Chain of Cust	ody				
1. Is Chain of Cu	stody complete?		Yes 🗸	No 🗆	Not Present
2. How was the s	ample delivered?		Courier		
Log In					
ATT TO STATE OF THE STATE OF TH	ot made to cool the sam	ples?	Yes 🗸	No 🗆	NA 🗆
4. Were all samp	es received at a temper	ature of >0° C to 6.0°C	Yes 🗸	No 🗆	NA 🗆
5. Sample(s) in p	roper container(s)?		Yes 🗸	No 🗆	
6. Sufficient samp	ole volume for indicated t	test(s)?	Yes 🔽	No 🗆	. 120
7. Are samples (e	xcept VOA and ONG) pr	roperly preserved?	Yes 🗸	No 🗆	711160
8. Was preservati	ve added to bottles?		Yes 🔲	No V	R71170
9. Received at lea	st 1 vial with headspace	<1/4" for AQ VOA?	Yes 🗸	No 🗆	NA 🗆
10. Were any sam	ple containers received l	broken?	Yes	No 🔽	# of preserved
	k match bottle labels?		Yes 🗸	No 🗆	bottles checked for pH: (<2 pr {12 ynless noted)
12. Are matrices co	orrectly identified on Cha	in of Custody?	Yes 🗸	No 🗆	Adjusted? JeS
3. Is it clear what	analyses were requested	d?	Yes 🗸	No 🗌	- 11
	g times able to be met? stomer for authorization.		Yes 🗸	No 🗌	Checked by: J2 7112
Special Handli	ng (if applicable)				
15. Was client not	fied of all discrepancies	with this order?	Yes	No 🗌	NA 🗹
Person N	Notified:	Date:			
By Whor	n;	Via:	eMail P	hone Fax	☐ In Person
Regardin	g:				
Client Ins	structions:				
16. Additional rem	narks: 05 ml 0.	f HN103 was a	idded.	to San	uple our for ph
17. <u>Cooler Inforn</u> Cooler No		metals analy			

NTAL	5/2/2021 1: 601	17:05 PM																Page 88 o
BOOM	Albuquerque, NM 87109 Fax 505-345-4107 nalysis Request	(tnesdA\tr	sofy)	Ma	Se		X	X	X	X	X	X	X	X	9		ĴΞ	Analytical
HALL ENVIRON NALYSIS LABC www.hallenvironmental.com	erque, INI 505-345- Request	(140340/10			imə2) 0			-			-	-			+	H	H	Mak
HALL ENVI ANALYSIS www.hallenvironme	Fax 5				AOV) 0										+	+		4
YS .YS	- Albuqu Fax Analysis	PO4, SO4	' ^z ON	10°3	-, Br, 1	CI' I			H									79
LL AL	975 A				M 8 A9				ĪĪ									ac ac
I A	345-3	SMISO	100		8 yd sl	Service.	Ш											#
	Tel. 505-345-3975	8071			1 Pestio		Н					_			-	-		See Atachol
	Tel.	O / MRO)	367,53		35 3017	-5.000				-					+	H	H	ا الله الله الله الله الله الله الله ال
		(1208) s's				200								-	+	H	H	Remarks:
Project Name: Name	4506183	Project Manager: K, Kobiusay	Sampler:	olers:	Cooler Temp(including CF): 2.0 ±0 = 2.0 (°C)	Tiesel valive	A Stown Noue	2-some Poly	3-VOA HCI	1-500ml poly NaOH	1- SDOWL Day Zungert	2-250WI PAY HNO3	1-125ml Ply H,50u	ESBown 2012				Received by: Via: Date Time Received by: Via: Date Time 7 MM (04) CK 7/1/20 8:05
: Western Refining 19 Address: ST (R Ugan	Seld NN 801-5	#: age: ☐ Level 4 (Full Validation)	n: ☐ Az Compliance ☐ Other			e Matrix Sample Name	Wisher Well #2	,										Relinquished by: Relinquished by:
Client: Weste	MOO # auould	email or Fax#: QA/QC Package: Standard	Accreditation:	EDD (Type)	2	Date Time	10/30/20											Date: Time: 59/22 720/ 30/10 1820/

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2 UICI-011 (WDW-2) July 20, 2016

immediately or within a specified time period, or assess a civil penalty, or both (see Section 74-6-10 NMSA 1978). The compliance order may also include a suspension or termination of this Discharge Permit. OCD may also commence a civil action in district court for appropriate relief, including injunctive relief (see Section 74-6-10(A)(2) NMSA 1978). The Permittee may be subject to criminal penalties for discharging a water contaminant without a discharge permit or in violation of a condition of a discharge permit; making any false material statement, representation, certification or omission of material fact in a renewal application, record, report, plan or other document filed, submitted or required to be maintained under the Water Quality Act; falsifying, tampering with or rendering inaccurate any monitoring device, method or record required to be maintained under the Water Quality Act; or failing to monitor, sample or report as required by a Discharge Permit issued pursuant to a state or federal law or regulation (see Section 74-6-10.2 NMSA 1978).

2. GENERAL FACILITY OPERATIONS:

2.A. QUARTERLY MONITORING REQUIREMENTS FOR CLASS I NON-HAZARDOUS WASTE INJECTION WELL: The Permittee shall properly conduct waste management injection operations at its facility by injecting only non-hazardous (RCRA exempt and RCRA non-hazardous, non-exempt) oil field waste fluids. Injected waste fluids shall not exhibit the RCRA characteristics, i.e., ignitability, reactivity, corrosivity, or toxicity under 40 CFR 261 Subpart "C" 261.21 – 261.24 (July 1, 1992), at the point of injection into WDW-2, based upon environmental analytical laboratory testing. Pursuant to 20.6.2.5207B, the Permittee shall provide analyses of the injected fluids at least quarterly to yield data representative of their toxicity characteristic.

The Permittee shall also analyze the injected fluids quarterly for the following characteristics:

- pH (Method 9040);
- • Eh;
- Specific conductance;
- Specific gravity;
 - Temperature;
- Major dissolved cations and anions, including: fluoride, calcium, potassium, magnesium, sodium bicarbonate, carbonate, chloride, sulfate, bromide, total dissolved solids, and cation/anion balance using the methods specified in 40 CFR 136.3); and,
- EPA RCRA Characteristics for Ignitability (ASTM Methods); Corrosivity (SW-846) and Reactivity (determined through Permittee's application of knowledge or generating process).

The Permittee shall analyze the injected fluids quarterly for the constituents identified in the Quarterly Monitoring List (below) to demonstrate that the injected fluids do not exhibit the characteristic of toxicity using the Toxicity Characteristic Leaching Procedure, EPA SW-846 Test Method 1311 (see Table 1, 40 CFR 261.24(b)).

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

EPA HW No.	Contaminant	SW-846	Regulatory
D004	Arsenic	Methods 1311	Level (mg/L
D005	Barium	Transfer Co.	5.0
D018	Benzene	1311	100.0
D006	Cadmium	8021B	0.5
D019	Carbon tetrachloride	1311	1.0
	Carbon tendemorade	8021B 8260B	0.5
D020	Chlordane	8081A	0.03
D021	Chlorobenzene	8021B 8260B	100.0
D022	Chloroform	8021B 8260B	6.0
D007	Chromium	1311	5.0
D023	o-Cresol	8270D	200.0
D024	m-Cresol	8270D	200.0
D025 .	p-Cresol	8270D	200.0
D026	Cresol	8270D	200.0
D027	1,4-Dichlorobenzene	8021B 8121 8260B 8270D	7.5
D028	1,2-Dichloroethane	8021B 8260B	0.5
D029	1,1-Dichloroethylene	8021B 8260B	0.7
D030	2,4-Dinitrotoluene	8091 8270D	0.13
0032	Hexachlorobenzene	8121	0.13
0033	Hexachlorobutadiene	8021B 8121 8260B	0.5
0034	Hexachloroethane	8121	3.0
8000	Lead	1311	5.0
0009	Mercury	7470A 7471B	0.2
0035	Methyl ethyl ketone	8015B 8260B	200.0
0036	Nitrobenzene	8091 8270D	2.0
0037	Pentrachlorophenol	8041	100.0
038	Pyridine	8260B 8270D	5.0

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

D010	Selenium	1311	1.0
D011	Silver	1311	5.0
D039	Tetrachloroethylene	8260B	0.7
D040	Trichloroethylene	8021B	0.5
		8260B	13.5
D041	2,4,5-Trichlorophenol	8270D	400.0
D042	2,4,6-Trichlorophenol	8041A	2.0
	HAVE CONTRACT OF THE	8270D	
D043	Vinyl chloride	8021B	0.2
		8260B	

If 0-, m-, and p-cresol concentrations cannot be differentiated, then the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/L.

If the quantitation limit is greater than the regulatory level, then the quantitation limit becomes the regulatory level. If metals (dissolved), the EPA 1311 TCLP Laboratory Method is required with the exception of Mercury (total).

- 1. Monitor and Piezometer Wells: Groundwater with a total dissolved solids concentration of less than 10,000 mg/L occurs at an estimated depth of approximately 10 30 ft. below ground surface at the WDW-2 well (hereafter, "uppermost water-bearing unit"). Groundwater monitoring well (MW) with GW sampling capability shall be installed proximal to and hydrogeologically downgradient from WDW-2 in order to monitor the uppermost water-bearing unit. The MW shall be screened (15 ft. screen with top of screen positioned 5 ft. above water table) into the uppermost water-bearing unit. The Permittee shall propose a monitoring frequency with chemical monitoring parameters in order to detect potential groundwater contamination either associated with or not associated with WDW-2.
- 2.B. CONTINGENCY PLANS: The Permittee shall implement its proposed contingency plan(s) included in its application to cope with failure of a system(s) in the Discharge Permit.
- 2.C. CLOSURE: Prior to closure of the facility, the Permittee shall submit for OCD's approval, a closure plan including a completed form C-103 for plugging and abandonment of the waste injection well. The Permittee shall plug and abandon its well pursuant to 20.6.2.5209 NMAC and as specified in Permit Condition 2.D.
 - 1. Pre-Closure Notification: Pursuant to 20.6.2.5005A NMAC, the Permittee shall submit a pre-closure notification to OCD's Environmental Bureau at least 30 days prior to the date that it proposes to close or to discontinue operation of WDW-2. Pursuant to 20.6.2.5005B NMAC, OCD's Environmental Bureau must approve all proposed well closure activities before the Permittee may implement its proposed closure plan.
 - 2. Required Information: The Permittee shall provide OCD's Environmental Bureau with the following information in the pre-closure notification specified in Permit Condition 2.C.1:
 - Name of facility;
 - Address of facility;
 - Name of Permittee (and owner or operator, if appropriate);

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: clients.hallenvironmental.com

October 14, 2020

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135

FAX

RE: WDW 2 Injection Well Quarterly Sampling OrderNo.: 2009B76

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 9/19/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2009B76

Date Reported: 10/14/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.
 Project: WDW 2 Injection Well Quarterly Sampli
 Lab ID: 2009B76-001
 Matrix: AQUEOUS
 Client Sample ID: Injection Well Water
 Collection Date: 9/18/2020 3:00:00 PM
 Received Date: 9/19/2020 9:18:00 AM

EPA METHOD 300.0: ANIONS Analyst: JMT Fluoride ND 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Chloride 830 25 * mg/L 50 10/12/2020 6:46:38 PM R72608 Bromide 3.2 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Phosphorus, Orthophosphate (As P) ND 2.5 H mg/L 5 10/8/2020 3:45:21 PM R72532 Sulfate 86 2.5 mg/L 5 10/8/2020 3:45:21 PM R72532 Nitrate+Nitrite as N ND 1.0 mg/L 5 10/8/2020 3:45:21 PM R72532 SM2510B: SPECIFIC CONDUCTANCE FRAME OF TAX SPECIFIC C	Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch						
Surr: Decachlorobiphenyl 42.1 38.2-102 D WRec 10 10/5/2020 10:38:24 AM 55379 Surr: Tetrachloro-m-xylene 39.7 32.3-92.4 D WRec 10 10/5/2020 10:38:24 AM 55379 EPA METHOD 8270C TCLP Undertylphenol ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 3+4-Methylphenol ND 201 mg/L 1 9/29/2020 4:56:32 PM 55360 3+4-Methylphenol ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 3+4-Methylphenol ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 4-Exachlorobenzere ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorophenol ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorophenol ND 0.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Porticle ND 0.0 mg/L 1 9/29/2020 4:56:32 PM<	EPA METHOD 8081: PESTICIDES TCLP						Analyst:	JME						
EPA METHOD 8270C TCLP 2-Methylphenol ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-4-Methylphenol ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4-Dinitrotoluene ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4-Dinitrotoluene ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-Methylphenol ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-Methylphenol ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-Methylphenol ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-Methylphenol ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-Mexachlorobenzene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-Mexachlorobenzene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-Mexachlorobenzene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-Mexachlorobenzene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-Mexachlorobenzene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 3-4-Mexachlorophenol ND 0.50 mg	Chlordane	ND	0.30	D	mg/L	10	10/5/2020 10:38:24 AM	55379						
EPA METHOD 8270C TCLP 2-Methylphenol ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 34-4 Methylphenol ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 34-4 Methylphenol ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4-Dinitrotoluene ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorobenzene ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorobenzene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorobenzene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorobenzene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorophenol ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 Pentachlorophenol ND 100 mg/L 1 9/29/2020 4:56:32 PM 55360 Pentachlorophenol ND 100 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 3,4.5-Tric	Surr: Decachlorobiphenyl	42.1	38.2-102	D	%Rec	10	10/5/2020 10:38:24 AM	55379						
2-Methylphenol ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 34-4 Methylphenol ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4-Dinitrotolune ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 55360 Mexachlorobenzene ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 Mexachlorobenzene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 Mexachlorobentane ND 3.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Mexachlorobentane ND 3.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene ND 400 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene ND 400 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene MD 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene MD 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene MD 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene MD 3.0 Mg/L 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene-d5 34.4 15-61.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene-d5 38.2 18.7-120 %Rec 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene-d5 38.2 38.7-120 %Rec 1 9/29/2020 4:56:32 PM 55360 Mitrobenzene-d5 Mit	Surr: Tetrachloro-m-xylene	39.7	32.3-92.4	D	%Rec	10	10/5/2020 10:38:24 AM	55379						
3+4-Methylphenol ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4-Dinitrotoluene ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorobenzene ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorobutadiene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorophenol ND 3.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Piridine ND 100 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 4.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 4.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2.4,6-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorobiphenol 3.2 15-81.1	EPA METHOD 8270C TCLP						Analyst:	DAM						
2,4-Dinifrotoluene ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorobenzene ND 0.13 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorobenzene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorobenzene ND 3.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachlorobenzene ND 3.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Nitrobenzene ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pentachlorophenol ND 100 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4,5-Trichlorophenol ND 400 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4,5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4,5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 30.2 15-81.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 30.2 15-81.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 60.4 17.2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 3-Terphenol-d5 34.4 15-61.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorobiphenol 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenol-d5 38.2 18.7-120 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenol-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY The stream of t	2-Methylphenol	ND	200		mg/L	1	9/29/2020 4:56:32 PM	55360						
Hexachlorobenzene ND	3+4-Methylphenol	ND	200		mg/L	1	9/29/2020 4:56:32 PM	55360						
Hexachlorobutadiene ND 0.50 mg/L 1 9/29/2020 4:56:32 PM 55360 Hexachloroethane ND 3.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Nitrobenzene ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pentachlorophenol ND 100 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 400 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4,6-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4,6-Trichlorophenol 30.2 15-81.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 30.2 15-81.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: Phenol-d5 34.4 15-61.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 3-Fribromophenol 60.4 17.2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorobiphenol 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorobiphenol 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 76.8 76.	2,4-Dinitrotoluene	ND	0.13		mg/L	1	9/29/2020 4:56:32 PM	55360						
Hexachloroethane ND 3.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Nitrobenzene ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pentachlorophenol ND 100 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4,5-Trichlorophenol ND 400 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4,5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4,5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Cresols, Total ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 30.2 15-81.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 34.4 15-61.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 60.4 17.2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: Nitrobenzene-d5 38.2 18.7-120 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorobiphenol 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorobiphenol 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 3.0 3.0 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 3.0 3	Hexachlorobenzene	ND	0.13		mg/L	1	9/29/2020 4:56:32 PM	55360						
Nitrobenzene ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pentachlorophenol ND 100 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Pyridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4,5-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2,4,6-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Cresols, Total ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 30.2 15-81.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 60.4 17-2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-4,6-Tribromophenol 60.4 17-2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-4,6-Tribromophenol 60.4 17-2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-4,6-Tribromophenol 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 3-Fluorobiphenyl 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY	Hexachlorobutadiene	ND	0.50		mg/L	1	9/29/2020 4:56:32 PM	55360						
Pentachlorophenol ND 100 mg/L 1 9/29/2020 4:56:32 PM 55360 Pryridine ND 5.0 mg/L 1 9/29/2020 4:56:32 PM 55360 2.4,5-Trichlorophenol ND 400 mg/L 1 9/29/2020 4:56:32 PM 55360 2.4,6-Trichlorophenol ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Cresols, Total ND 2.0 mg/L 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 30.2 15-81.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 30.2 15-81.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 60.4 17.2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 60.4 17.2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: Nitrobenzene-d5 38.2 18.7-120 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 3-Fluorobiphenyl 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY Analyst: JRR Specific Gravity 0.9958 0 mg/L 5 10/5/2020 8:18:00 AM R72378 SPECIFIC GRAVITY Analyst: JRR Specific Gravity 0.9958 0 mg/L 5 10/8/2020 3:45:21 PM R72532 SPECIFIC GRAVITY Surrespinators	Hexachloroethane	ND	3.0		mg/L	1	9/29/2020 4:56:32 PM	55360						
Pyridine	Nitrobenzene	ND	2.0		mg/L	1	9/29/2020 4:56:32 PM	55360						
2,4,5-Trichlorophenol ND 400 mg/L 1 9/29/2020 4:56:32 PM 55360 C32 PM 5536	Pentachlorophenol	ND	100		mg/L	1	9/29/2020 4:56:32 PM	55360						
2,4,6-Trichlorophenol	Pyridine	ND	5.0		mg/L	1	9/29/2020 4:56:32 PM	55360						
Cresols, Total ND 200 mg/L 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 30.2 15-81.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: Phenol-d5 34.4 15-61.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorophenol 60.4 17.2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 3-Horophenol 60.4 17.2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY 7 1 10/5/2020 8:18:00 AM 772378 EPA METHOD 300.0: ANIONS <t< td=""><td>2,4,5-Trichlorophenol</td><td>ND</td><td>400</td><td></td><td>mg/L</td><td>1</td><td>9/29/2020 4:56:32 PM</td><td>55360</td></t<>	2,4,5-Trichlorophenol	ND	400		mg/L	1	9/29/2020 4:56:32 PM	55360						
Surr: 2-Fluorophenol 30.2 15-81.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: Phenol-d5 34.4 15-61.1 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2,4,6-Tribromophenol 60.4 17.2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: Witrobenzene-d5 38.2 18.7-120 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorobiphenyl 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY Analyst: JRR Specific Gravity 0.9958 0 1 10/5/2020 8:18:00 AM R72378 EPA METHOD 300.0: ANIONS METHOD 300.0: ANIONS The mathematics of the miles of th	2,4,6-Trichlorophenol	ND	2.0		mg/L	1	9/29/2020 4:56:32 PM	55360						
Surr: Phenol-d5 34.4 15-61.1 %Rec 1 9/29/2020 4:56:32 PM 55360 PM Surr: 2,4,6-Tribromophenol 60.4 17.2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 PM Surr: Nitrobenzene-d5 38.2 18.7-120 %Rec 1 9/29/2020 4:56:32 PM 55360 PM Surr: 2-Fluorobiphenyl 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 PM Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 PM Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 PM Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 PM Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 PM SPECIFIC GRAVITY 0.9958 0 mg/L 1 10/5/2020 8:18:00 AM R72378 EPA METHOD 300.0: ANIONS MD 0.50 mg/L 5 10/8/2020 3:	Cresols, Total	ND	200		mg/L	1	9/29/2020 4:56:32 PM	55360						
Surr: 2,4,6-Tribromophenol 60.4 17.2-108 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: Nitrobenzene-d5 38.2 18.7-120 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorobiphenyl 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY *** Analyst: JRR Specific Gravity 0.9958 0 1 10/5/2020 8:18:00 AM R72378 ** EPA METHOD 300.0: ANIONS *** Analyst: JRR ** Fluoride ** MD 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 ** Fluoride ** METHOD 300.0: ANIONS ** Mg/L 5 10/8/2020 3:45:21 PM R72532 ** Fluoride ** METHOD 300.0: Anional Malphana ** Malphana ** Mg/L 5 10/8/2020 3:45:21 PM R72532 ** Malphana	Surr: 2-Fluorophenol	30.2	15-81.1		%Rec	1	9/29/2020 4:56:32 PM	55360						
Surr: Nitrobenzene-d5 38.2 18.7-120 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 2-Fluorobiphenyl 51.5 23.6-103 %Rec 1 9/29/2020 4:56:32 PM 55360 Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY Landlyst: JRR Specific Gravity 0.9958 0 Landlyst: JR Analyst: JRR EPA METHOD 300.0: ANIONS Landlyst: JMT Fluoride ND 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Chloride 830 25 mg/L 5 10/8/2020 3:45:21 PM R72532 Phosphorus, Orthophosphate (As P) ND 2.5 H mg/L 5 10/8/2020 3:45:21 PM R72532 Sulfate Nitrate+Nitrite as N ND 1.0 mg/L 5 10/8/2020 3:45:21 PM R72532 SM2510B: SPECIFIC CONDUCTANCE <td colspa<="" td=""><td>Surr: Phenol-d5</td><td>34.4</td><td>15-61.1</td><td></td><td>%Rec</td><td>1</td><td>9/29/2020 4:56:32 PM</td><td>55360</td></td>	<td>Surr: Phenol-d5</td> <td>34.4</td> <td>15-61.1</td> <td></td> <td>%Rec</td> <td>1</td> <td>9/29/2020 4:56:32 PM</td> <td>55360</td>	Surr: Phenol-d5	34.4	15-61.1		%Rec	1	9/29/2020 4:56:32 PM	55360					
Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 51.5 23.6-103 (Rec %Rec 1 9/29/2020 4:56:32 PM (9/29/2020 4:56:32 PM) 55360 (5360) SPECIFIC GRAVITY Analyst: JRR Specific Gravity 0.9958 0 1 10/5/2020 8:18:00 AM R72378 EPA METHOD 300.0: ANIONS Fluoride ND 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Chloride 830 25 * mg/L 50 10/12/2020 6:46:38 PM R72608 Bromide 3.2 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Phosphorus, Orthophosphate (As P) ND 2.5 H mg/L 5 10/8/2020 3:45:21 PM R72532 Sulfate 86 2.5 mg/L 5 10/8/2020 3:45:21 PM R72532 SM2510B: SPECIFIC CONDUCTANCE μmhos/c 5 10/8/2020 3:45:21 PM R72532 SM2320B: ALKALINITY 3800 10 μmhos/c 1 9/25/2020 10:36:08 AM R72166 <th <="" colspan="6" td=""><td>Surr: 2,4,6-Tribromophenol</td><td>60.4</td><td>17.2-108</td><td></td><td>%Rec</td><td>1</td><td>9/29/2020 4:56:32 PM</td><td>55360</td></th>	<td>Surr: 2,4,6-Tribromophenol</td> <td>60.4</td> <td>17.2-108</td> <td></td> <td>%Rec</td> <td>1</td> <td>9/29/2020 4:56:32 PM</td> <td>55360</td>						Surr: 2,4,6-Tribromophenol	60.4	17.2-108		%Rec	1	9/29/2020 4:56:32 PM	55360
Surr: 4-Terphenyl-d14 76.8 24.1-105 %Rec 1 9/29/2020 4:56:32 PM 55360 SPECIFIC GRAVITY Analyst: JRR Specific Gravity 0.9958 0 1 10/5/2020 8:18:00 AM R72378 EPA METHOD 300.0: ANIONS Fluoride ND 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Chloride 830 25 mg/L 50 10/12/2020 6:46:38 PM R72608 Bromide 3.2 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Phosphorus, Orthophosphate (As P) ND 2.5 H mg/L 5 10/8/2020 3:45:21 PM R72532 Sulfate 86 2.5 mg/L 5 10/8/2020 3:45:21 PM R72532 SM2510B: SPECIFIC CONDUCTANCE mg/L 5 10/8/2020 3:45:21 PM R72532 SM2320B: ALKALINITY 3800 10 µmhos/c 1 9/25/2020 10:36:08 AM R72166 SM2320B: ALKALINITY	Surr: Nitrobenzene-d5	38.2	18.7-120		%Rec	1	9/29/2020 4:56:32 PM	55360						
SPECIFIC GRAVITY Analyst: JRR Specific Gravity 0.9958 0 1 10/5/2020 8:18:00 AM R72378 EPA METHOD 300.0: ANIONS Fluoride ND 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Chloride 830 25 * mg/L 50 10/12/2020 6:46:38 PM R72608 Bromide 3.2 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Phosphorus, Orthophosphate (As P) ND 2.5 H mg/L 5 10/8/2020 3:45:21 PM R72532 Sulfate 86 2.5 mg/L 5 10/8/2020 3:45:21 PM R72532 Nitrate+Nitrite as N ND 1.0 mg/L 5 10/8/2020 3:45:21 PM R72532 SM2510B: SPECIFIC CONDUCTANCE Langust: JRR Conductivity 3800 10 µmhos/c 1 9/25/2020 10:36:08 AM R72166 SM2320B: ALKALINITY 3800 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM<	Surr: 2-Fluorobiphenyl	51.5	23.6-103		%Rec	1	9/29/2020 4:56:32 PM	55360						
Specific Gravity 0.9958 0 1 10/5/2020 8:18:00 AM R72378 EPA METHOD 300.0: ANIONS Fluoride ND 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Chloride 830 25 * mg/L 50 10/12/2020 6:46:38 PM R72608 Bromide 3.2 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Phosphorus, Orthophosphate (As P) ND 2.5 H mg/L 5 10/8/2020 3:45:21 PM R72532 Sulfate 86 2.5 mg/L 5 10/8/2020 3:45:21 PM R72532 SM2510B: SPECIFIC CONDUCTANCE ND 1.0 mg/L 5 10/8/2020 9:17:02 PM R72532 SM2320B: ALKALINITY 3800 10 µmhos/c 1 9/25/2020 10:36:08 AM R72166 Smartine 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166 Carbonate (As CaCO3) 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	Surr: 4-Terphenyl-d14	76.8	24.1-105		%Rec	1	9/29/2020 4:56:32 PM	55360						
EPA METHOD 300.0: ANIONS Analyst: JMT Fluoride ND 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Chloride 830 25 * mg/L 50 10/12/2020 6:46:38 PM R72608 Bromide 3.2 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Phosphorus, Orthophosphate (As P) ND 2.5 H mg/L 5 10/8/2020 3:45:21 PM R72532 Sulfate 86 2.5 mg/L 5 10/8/2020 3:45:21 PM R72532 Nitrate+Nitrite as N ND 1.0 mg/L 5 10/8/2020 3:45:21 PM R72532 SM2510B: SPECIFIC CONDUCTANCE FRAME OF TAX SPECIFIC C	SPECIFIC GRAVITY						Analyst	JRR						
Fluoride ND 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 R72532 R7266 Chloride 830 25 * mg/L 50 10/12/2020 6:46:38 PM R72608 R72608 R72608 R72608 R72608 R72608 R72608 R72608 R72532 R7260 R72532 R7260 R72532 R7260 R72532 R7260 R72532 R7260 R7260 R72532 R7260	Specific Gravity	0.9958	0			1	10/5/2020 8:18:00 AM	R72378						
Chloride 830 25 * mg/L 50 10/12/2020 6:46:38 PM R72608 Bromide 3.2 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Phosphorus, Orthophosphate (As P) ND 2.5 H mg/L 5 10/8/2020 3:45:21 PM R72532 Sulfate 86 2.5 mg/L 5 10/8/2020 3:45:21 PM R72532 Nitrate+Nitrite as N ND 1.0 mg/L 5 10/8/2020 9:17:02 PM R72532 SM2510B: SPECIFIC CONDUCTANCE Fanalyst: JRR Conductivity 3800 10 μmhos/c 1 9/25/2020 10:36:08 AM R72166 SM2320B: ALKALINITY Bicarbonate (As CaCO3) 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166 Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	EPA METHOD 300.0: ANIONS						Analyst	JMT						
Bromide 3.2 0.50 mg/L 5 10/8/2020 3:45:21 PM R72532 Phosphorus, Orthophosphate (As P) ND 2.5 H mg/L 5 10/8/2020 3:45:21 PM R72532 Sulfate 86 2.5 mg/L 5 10/8/2020 3:45:21 PM R72532 Nitrate+Nitrite as N ND 1.0 mg/L 5 10/8/2020 9:17:02 PM R72532 SM2510B: SPECIFIC CONDUCTANCE Analyst: JRR Conductivity 3800 10 μmhos/c 1 9/25/2020 10:36:08 AM R72166 SM2320B: ALKALINITY Analyst: JRR Bicarbonate (As CaCO3) 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166 Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	Fluoride	ND	0.50		mg/L	5	10/8/2020 3:45:21 PM	R72532						
Phosphorus, Orthophosphate (As P) ND 2.5 H mg/L 5 10/8/2020 3:45:21 PM R72532 Sulfate 86 2.5 mg/L 5 10/8/2020 3:45:21 PM R72532 Nitrate+Nitrite as N ND 1.0 mg/L 5 10/8/2020 9:17:02 PM R72532 SM2510B: SPECIFIC CONDUCTANCE Analyst: JRR Conductivity 3800 10 μmhos/c 1 9/25/2020 10:36:08 AM R72166 SM2320B: ALKALINITY Analyst: JRR Bicarbonate (As CaCO3) 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166 Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	Chloride	830	25	*	mg/L	50	10/12/2020 6:46:38 PM	R72608						
Sulfate 86 2.5 mg/L 5 10/8/2020 3:45:21 PM R72532 Nitrate+Nitrite as N ND 1.0 mg/L 5 10/8/2020 9:17:02 PM R72532 SM2510B: SPECIFIC CONDUCTANCE Analyst: JRR Conductivity 3800 10 μmhos/c 1 9/25/2020 10:36:08 AM R72166 SM2320B: ALKALINITY Analyst: JRR Bicarbonate (As CaCO3) 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166 Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	Bromide	3.2	0.50		mg/L	5	10/8/2020 3:45:21 PM	R72532						
Nitrate+Nitrite as N ND 1.0 mg/L 5 10/8/2020 9:17:02 PM R72532 SM2510B: SPECIFIC CONDUCTANCE Analyst: JRR Conductivity 3800 10 μmhos/c 1 9/25/2020 10:36:08 AM R72166 SM2320B: ALKALINITY Analyst: JRR Bicarbonate (As CaCO3) 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166 Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	10/8/2020 3:45:21 PM	R72532						
SM2510B: SPECIFIC CONDUCTANCE Analyst: JRR Conductivity 3800 10 μmhos/c 1 9/25/2020 10:36:08 AM R72166 SM2320B: ALKALINITY Analyst: JRR Bicarbonate (As CaCO3) 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166 Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	Sulfate	86	2.5		mg/L	5	10/8/2020 3:45:21 PM	R72532						
Conductivity 3800 10 μmhos/c 1 9/25/2020 10:36:08 AM R72166 SM2320B: ALKALINITY Analyst: JRR Bicarbonate (As CaCO3) 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166 Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	Nitrate+Nitrite as N	ND	1.0		mg/L	5	10/8/2020 9:17:02 PM	R72532						
SM2320B: ALKALINITY Analyst: JRR Bicarbonate (As CaCO3) 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166 Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR						
Bicarbonate (As CaCO3) 626.3 20.00 mg/L Ca 1 9/25/2020 10:36:08 AM R72166 Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	Conductivity	3800	10		µmhos/c	1	9/25/2020 10:36:08 AM	R72166						
Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	SM2320B: ALKALINITY						Analyst	JRR						
Carbonate (As CaCO3) ND 2.000 mg/L Ca 1 9/25/2020 10:36:08 AM R72166	Bicarbonate (As CaCO3)	626.3	20.00		mg/L Ca	1	9/25/2020 10:36:08 AM	R72166						
		ND	2.000		-									
	Total Alkalinity (as CaCO3)	626.3	20.00		mg/L Ca	1	9/25/2020 10:36:08 AM	R72166						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 15

Analytical ReportLab Order **2009B76**

Date Reported: 10/14/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Western Refining Southwest, Inc.Client Sample ID: Injection Well WaterProject:WDW 2 Injection Well Quarterly SampliCollection Date: 9/18/2020 3:00:00 PMLab ID:2009B76-001Matrix: AQUEOUSReceived Date: 9/19/2020 9:18:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: KS
Total Dissolved Solids	2190	20.0	*	mg/L	1	9/23/2020 5:56:00 PM	55350
SM4500-H+B / 9040C: PH						Analyst	: JRR
рН	7.71		Н	pH units	1	9/25/2020 10:36:08 AM	
EPA METHOD 7470: MERCURY				•		Analyst	pmf
Mercury	ND	0.00020		mg/L	1	10/1/2020 10:50:02 PM	55413
EPA 6010B: TOTAL RECOVERABLE METALS				J		Analyst	pmf
Arsenic	ND	0.030		mg/L	1	9/29/2020 4:11:00 AM	. 55452
Barium	0.27	0.0020		mg/L	1	9/29/2020 4:11:00 AM	55452
Cadmium	ND	0.0020		mg/L	1	9/30/2020 5:43:56 AM	55452
Calcium	79	1.0		mg/L	1	9/29/2020 4:11:00 AM	55452
Chromium	ND	0.0060		mg/L	1	9/29/2020 4:11:00 AM	55452
Lead	ND	0.020		mg/L	1	9/29/2020 4:11:00 AM	55452
Magnesium	43	1.0		mg/L	1	9/29/2020 4:11:00 AM	55452
Potassium	13	1.0		mg/L	1	9/29/2020 4:11:00 AM	55452
Selenium	ND	0.050		mg/L	1	9/30/2020 5:43:56 AM	55452
Silver	ND	0.0050		mg/L	1	9/29/2020 4:11:00 AM	55452
Sodium	650	10		mg/L	10	10/2/2020 3:48:41 AM	55452
TCLP VOLATILES BY 8260B						Analyst	DJF
Benzene	ND	0.50		mg/L	1	9/24/2020 4:08:47 PM	C72134
1,2-Dichloroethane (EDC)	ND	0.50		mg/L	1	9/24/2020 4:08:47 PM	C72134
2-Butanone	ND	200		mg/L	1	9/24/2020 4:08:47 PM	C72134
Carbon Tetrachloride	ND	0.50		mg/L	1	9/24/2020 4:08:47 PM	C72134
Chloroform	ND	6.0		mg/L	1	9/24/2020 4:08:47 PM	C72134
1,4-Dichlorobenzene	ND	7.5		mg/L	1	9/24/2020 4:08:47 PM	C72134
1,1-Dichloroethene	ND	0.70		mg/L	1	9/24/2020 4:08:47 PM	C72134
Tetrachloroethene (PCE)	ND	0.70		mg/L	1	9/24/2020 4:08:47 PM	C72134
Trichloroethene (TCE)	ND	0.50		mg/L	1	9/24/2020 4:08:47 PM	C72134
Vinyl chloride	ND	0.20		mg/L	1	9/24/2020 4:08:47 PM	C72134
Chlorobenzene	ND	100		mg/L	1	9/24/2020 4:08:47 PM	C72134
Surr: 1,2-Dichloroethane-d4	89.2	70-130		%Rec	1	9/24/2020 4:08:47 PM	C72134
Surr: 4-Bromofluorobenzene	102	70-130		%Rec	1	9/24/2020 4:08:47 PM	C72134
Surr: Dibromofluoromethane	112	70-130		%Rec	1	9/24/2020 4:08:47 PM	C72134
Surr: Toluene-d8	96.2	70-130		%Rec	1	9/24/2020 4:08:47 PM	C72134

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 15

Analytical Report Lab Order 2009B76

Date Reported: 10/14/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: WDW 2 Injection Well Quarterly Sampli Collection Date:

Lab ID: 2009B76-002 **Matrix:** TRIP BLANK **Received Date:** 9/19/2020 9:18:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
TCLP VOLATILES BY 8260B					Analyst	: DJF
Benzene	ND	0.50	mg/L	1	9/24/2020 4:37:14 PM	C72134
1,2-Dichloroethane (EDC)	ND	0.50	mg/L	1	9/24/2020 4:37:14 PM	C72134
2-Butanone	ND	200	mg/L	1	9/24/2020 4:37:14 PM	C72134
Carbon Tetrachloride	ND	0.50	mg/L	1	9/24/2020 4:37:14 PM	C72134
Chloroform	ND	6.0	mg/L	1	9/24/2020 4:37:14 PM	C72134
1,4-Dichlorobenzene	ND	7.5	mg/L	1	9/24/2020 4:37:14 PM	C72134
1,1-Dichloroethene	ND	0.70	mg/L	1	9/24/2020 4:37:14 PM	C72134
Tetrachloroethene (PCE)	ND	0.70	mg/L	1	9/24/2020 4:37:14 PM	C72134
Trichloroethene (TCE)	ND	0.50	mg/L	1	9/24/2020 4:37:14 PM	C72134
Vinyl chloride	ND	0.20	mg/L	1	9/24/2020 4:37:14 PM	C72134
Chlorobenzene	ND	100	mg/L	1	9/24/2020 4:37:14 PM	C72134
Surr: 1,2-Dichloroethane-d4	93.7	70-130	%Rec	1	9/24/2020 4:37:14 PM	C72134
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	9/24/2020 4:37:14 PM	C72134
Surr: Dibromofluoromethane	109	70-130	%Rec	1	9/24/2020 4:37:14 PM	C72134
Surr: Toluene-d8	93.7	70-130	%Rec	1	9/24/2020 4:37:14 PM	C72134

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 15

ANALYTICAL REPORT

October 01, 2020

Hall Environmental Analysis Laboratory

L1264916 Sample Delivery Group: Samples Received: 09/22/2020

Project Number:

Description:

Report To: Jackie Bolte

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By: Jah V Houkins

John Hawkins

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2009B76-001E INJECTION WELL WATER L1264916-01	5
2009B76-001F INJECTION WELL WATER L1264916-02	6
2009B76-001G INJECTION WELL WATER L1264916-03	7
2009B76-001H INJECTION WELL WATER L1264916-04	8
Qc: Quality Control Summary	9
Wet Chemistry by Method 2580	9
Wet Chemistry by Method 4500 CN E-2011	10
Wet Chemistry by Method 4500H+ B-2011	11
Wet Chemistry by Method 9034-9030B	12
Wet Chemistry by Method D93/1010A	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

Wet Chemistry by Method 2580

SAMPLE SUMMARY

			Collected by	Collected date/time 09/18/20 15:00	Received data 09/22/20 09:	-, -, -, -, -, -, -, -, -, -, -, -, -, -
2009B76-001E INJECTION WELL WATER L126491	16-01 WW			09/16/20 15:00	09/22/20 09.	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 4500H+ B-2011	WG1548240	1	09/24/20 14:00	09/24/20 14:00	SAC	Mt. Juliet, TN
Wet Chemistry by Method D93/1010A	WG1551089	1	09/30/20 08:00	09/30/20 08:00	CAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
2009B76-001F INJECTION WELL WATER L126491	16-02 WW			09/18/20 15:00	09/22/20 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9034-9030B	WG1547883	1	09/23/20 17:33	09/23/20 17:33	MJA	Mt. Juliet, TN
2009B76-001G INJECTION WELL WATER L12649	16-03 WW	1	Collected by	Collected date/time 09/18/20 15:00	Received data 09/22/20 09:	-, -, -, -, -, -, -, -, -, -, -, -, -, -
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 4500 CN E-2011	WG1551381	1	09/30/20 13:51	10/01/20 00:59	MCG	Mt. Juliet, TN
2009B76-001H INJECTION WELL WATER L12649	16-04 GW		Collected by	Collected date/time 09/18/20 15:00	Received data 09/22/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

WG1552078

09/30/20 20:30

09/30/20 20:30

JIC

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John Hawkins Project Manager

Project Narrative

All Reactive Cyanide results reported in the attached report were determined as totals using method 9012B. All Reactive Sulfide results reported in the attached report were determined as totals using method 9034/9030B.

ONE LAB. NAPagev100 of 300

Collected date/time: 09/18/20 15:00

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	SU			date / time	
Corrosivity by pH	7.82	<u>T8</u>	1	09/24/2020 14:00	WG1548240

Sample Narrative:

L1264916-01 WG1548240: 7.82 at 20.7C

³Ss

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	deg F			date / time	
Flashpoint	DNF at 170		1	09/30/2020 08:00	WG1551089

Cn

ONE LAB. NAPage 101 of 300

Collected date/time: 09/18/20 15:00

Wet Chemistry by Method 9034-9030B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Reactive Sulfide	ND		0.0500	1	09/23/2020 17:33	WG1547883

ONE LAB. NAPagev102 of 300

Collected date/time: 09/18/20 15:00

Wet Chemistry by Method 4500 CN E-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Reactive Cyanide	ND		0.00500	1	10/01/2020 00:59	WG1551381

ONE LAB. NAPage 103 of 300

Collected date/time: 09/18/20 15:00

Wet Chemistry by Method 2580

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	mV			date / time		
ORP	179	T8	1	09/30/2020 20:30	WG1552078	

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev104 of 300

Wet Chemistry by Method 2580

L1264916-04

L1264912-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1264912-03 09/30	(OS) L1264912-03 09/30/20 20:30 • (DUP) R3576362-3 09/30/20 20:30						
	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits	
Analyte	mV	mV		mV		mV	
ORP	202	200	1	2.70		20	

²Tc

L1264912-16 Original Sample (OS) • Duplicate (DUP)

(OS) L1264912-16 09/30	0/20 20:30 • (DUF	P) R3576362-4	1 09/30/2	0 20:30		
	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits
Analyte	mV	mV		mV		mV
ORP	198	188	1	9.70		20

L1264916-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1264916-04 09/30/	/20 20:30 • (DUF	P) R3576362-	5 09/30/2	0 20:30		
	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits
Analyte	mV	mV		mV		mV
ORP	179	198	1	18.8		20

L1267162-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1267162-01 09/30	/20 20:30 • (DUP) R3576362-6	09/30/2	0 20:30		
	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits
Analyte	mV	mV		mV		mV
ORP	171	170	1	1.50		20

⁹Sc

PAGE:

9 of 16

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3576362-1 09/30	/20 20:30 • (LC	SD) R3576362	2-2 09/30/20 2	20:30						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	Diff	Diff Limits
Analyte	mV	mV	mV	%	%	%			mV	mV
ORP	228	227	226	99.4	99.3	86.0-105			0.300	20

QUALITY CONTROL SUMMARY L1264916-03

ONE LAB. NA Page 105 of 300

Wet Chemistry by Method 4500 CN E-2011

Method Blank (MB)

Laboratory Control Sample (LCS)

(LCS) R3576510-2	10/01/20 00:40			
	Spike Amount	LCS Result	LCS Rec.	Rec. Lim

Ss

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Reactive Cyanide	0.100	0.0998	99.8	90.0-117	

QUALITY CONTROL SUMMARY L1264916-01

ONE LAB. NA Page 106 of 300

Wet Chemistry by Method 4500H+ B-2011

Laboratory Control Sample (LCS)

(LCS) R3574146-1 09/24/20 14:00

Sample Narrative: LCS: 10.03 at 20.1C

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	SU	SU	%	%	
Corrosivity by pH	10.0	10.0	100	99.0-101	

U

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev107 of 300

Wet Chemistry by Method 9034-9030B

0.00650

0.0500

wet enemiatry by method 3034-3030

Method Blank (MB)

Reactive Sulfide

 (MB) R3573725-1
 09/23/20 17:15

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 mg/l
 mg/l
 mg/l

Laboratory Control Sample (LCS)

1	1 (2)	1 D2572775 7	09/23/20 17:15
١		NJJ/J/ZJ=Z	03/23/20 17.13

(LCS) R35/3/25-2 U9/23	3/20 1/:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qua
Analyte	mg/l	mg/l	%	%	
Reactive Sulfide	0.500	0.457	91.4	85.0-115	

Ss

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev108 of 300

Wet Chemistry by Method D93/1010A

L1264916-01

L1264816-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1264816-01	09/30/20 08:00 • (DUP) R3575980-3 09/30/20 08:00	

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	deg F	deg F		%		%
Flashpoint	153	152	1	0.656		10

[†]Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3575980-1	09/30/20 08:00	• (LCSD) R3575980-2	09/30/20 08:00

(LC3) R35/5960-1 09/30/	20 06.00 • (LC.	3D) K33/396U	1-2 09/30/200	00.00						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	deg F	deg F	deg F	%	%	%			%	%
Flashpoint	126	125	125	99.1	99.1	96.0-104			0.000	10

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

Т8

Sample(s) received past/too close to holding time expiration.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana 1	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

CHAIN OF CUSTODY RECORD PA

OP.	los.
AGE:	OF:
1	
	1

Page 111 of 300
Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975

FAX: 505-345-4107

Website: clients.hallenvironmental.com

41264914

SUB CO	ONTRATOR: Pace	rn company:	PACE TN		PHONE	(800) 767-5859	FAX:	(615) 758-5859
ADDRE	12065	Lebanon Rd			ACCOUNT #		EMAIL:	
CITY, S	TATE, ZIP: Mt. Ju	uliet, TN 37122						
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTICA	H071
1	2009B76-001E	Injection Well Water	500HDPE	Aqueous	9/18/2020 3:00:00 PM	1 Corrosivity, Ignitat	pility	~11
2	2009B76-001F	Injection Well Water	500PLNAOH	Aqueous	9/18/2020 3:00:00 PM	1 Reactive Sulfide	712	u
3	2009B76-001G	Injection Well Water		Aqueous	9/18/2020 3:00:00 PM	1 Reactive Cyanide	TIRNO	w
4	2009B76-001H	Injection Well Water	125HDP	Aqueous	9/18/2020 3:00:00 PM	1 ORP		w

OC Signed/Accurate: OCT Signed	N VOA N Pres N N N	If Applic Zero Headsp .Correct/Ch	eck: Y N	s to lab@halle	environmental.com. F	Please return all coolers and blue ice. Thank you.
Relinquished By: EM	Date: 9/19/2020		1	1	Time 922/2	REPORT TRANSMITTAL DESIRED: HARDCOPY (extra cost)
Relinquished By:			Received By:	Date:	Time G12/2	
	9/19/2020	11:31 AM	2 Cary	1	11	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLINE

Hall Environmental Analysis Laboratory, Inc.

2009B76 14-Oct-20

WO#:

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Sample ID: MB	SampT	ype: m k	olk	Tes	tCode: El	PA Method	300.0: Anions	6		
Client ID: PBW	Batch	n ID: R7	2532	F	RunNo: 7	2532				
Prep Date:	Analysis D	Date: 10	0/8/2020	5	SeqNo: 2	545985	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sulfate	ND	0.50								
Nitrate+Nitrite as N	ND	0.20								
Sample ID: LCS	SampT	ype: Ics	3	Tes	tCode: El	PA Method	300.0: Anions	3		
Sample ID: LCS Client ID: LCSW	•	Type: Ics			tCode: E l RunNo: 7		300.0: Anions	5		
•	•	n ID: R7	2532	F		2532	300.0: Anions Units: mg/L	S		
Client ID: LCSW	Batch	n ID: R7	2532 0/8/2020	F	RunNo: 7	2532		%RPD	RPDLimit	Qual
Client ID: LCSW Prep Date:	Batch Analysis D	n ID: R7 Date: 10	2532 0/8/2020	F	RunNo: 7	2532 545986	Units: mg/L		RPDLimit	Qual
Client ID: LCSW Prep Date: Analyte	Batch Analysis D Result	n ID: R7 Date: 10 PQL	2532 0/8/2020 SPK value	SPK Ref Val	RunNo: 7 SeqNo: 2 %REC	2532 545986 LowLimit	Units: mg/L HighLimit		RPDLimit	Qual
Client ID: LCSW Prep Date: Analyte Fluoride	Batch Analysis D Result 0.55	PQL 0.10	2532 0/8/2020 SPK value 0.5000	SPK Ref Val	RunNo: 7 SeqNo: 2 %REC 110	2532 545986 LowLimit 90	Units: mg/L HighLimit		RPDLimit	Qual
Client ID: LCSW Prep Date: Analyte Fluoride Bromide	Batch Analysis D Result 0.55 2.5	PQL 0.10 0.10	2532 0/8/2020 SPK value 0.5000 2.500	SPK Ref Val 0 0	RunNo: 7 SeqNo: 2 **REC 110 101	2532 545986 LowLimit 90 90	Units: mg/L HighLimit 110 110		RPDLimit	Qual

Sample ID: MB	SampType: mblk	TestCode: EPA Method	300.0: Anions
Client ID: PBW	Batch ID: R72608	RunNo: 72608	
Prep Date:	Analysis Date: 10/12/2020	SeqNo: 2549641	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Chloride	ND 0.50		

Sample ID: LCS	SampTy	pe: Ics		Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: LCSW	Batch	ID: R7	2608	F	RunNo: 7	2608				
Prep Date:	Analysis Da	ate: 10	/12/2020	S	SeqNo: 2	549649	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.5	0.50	5.000	0	90.7	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009B76**

14-Oct-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Sample ID: MB-55379	SampType: MBLK	8081: Pesticides TCLP	
Client ID: PBW	Batch ID: 55379	RunNo: 72475	
Prep Date: 9/23/2020	Analysis Date: 10/5/2020	SeqNo: 2549071	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Chlordane	ND 0.030		
Surr: Decachlorobiphenyl	0.0018 0.002500	72.1 38.2	102
Surr: Tetrachloro-m-xylene	0.0018 0.002500	70.2 32.3	92.4
Sample ID: MB-55379	SampType: MBLK	TestCode: EPA Method	8081: Pesticides TCLP
Client ID: PBW	Batch ID: 55379	RunNo: 72475	
Prep Date: 9/23/2020	Analysis Date: 10/5/2020	SeqNo: 2549408	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Chlordane	ND 0.030		
Surr: Decachlorobiphenyl	0.0018 0.002500	70.1 38.2	102
Surr: Tetrachloro-m-xylene	0.0018 0.002500	70.0 32.3	92.4
Sample ID: LCS-55379	SampType: LCS	TestCode: EPA Method	8081: Pesticides TCLP
Client ID: LCSW	Batch ID: 55379	RunNo: 72475	
Prep Date: 9/23/2020	Analysis Date: 10/5/2020	SeqNo: 2549409	Units: %Rec
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Surr: Decachlorobiphenyl	0.0013 0.002500	51.9 38.2	102
Surr: Tetrachloro-m-xylene	0.0013 0.002500	51.6 32.3	92.4
Sample ID: LCSD-55379	SampType: LCSD	TestCode: EPA Method	8081: Pesticides TCLP
Client ID: LCSS02	Batch ID: 55379	RunNo: 72475	

Qualifiers:

Prep Date:

Surr: Decachlorobiphenyl

Surr: Tetrachloro-m-xylene

9/23/2020

Analysis Date: 10/5/2020

PQL

SPK value SPK Ref Val

0.002500

0.002500

Result

0.0014

0.0015

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

SeqNo: 2549410

LowLimit

38.2

32.3

%REC

57.6

59.0

Units: %Rec

HighLimit

102

92.4

%RPD

0

0

RPDLimit

0

0

Qual

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009B76**

14-Oct-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Batch ID: C 7 lysis Date: 9 sult PQL ND 0.50 ND 0.50 ND 200	/24/2020 SPK value		RunNo: 7 : SeqNo: 2 ! %REC		Units: mg/L HighLimit	%RPD	RPDLimit	Qual
sult PQL ND 0.50 ND 0.50 ND 200	SPK value		·		•	%RPD	RPDLimit	Qual
ND 0.50 ND 0.50 ND 200		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
ND 0.50 ND 200								
ND 200								
ND 0.50								
ND 6.0								
ND 7.5								
ND 0.70								
ND 0.70								
ND 0.50								
ND 0.20								
ND 100								
087	0.01000		87.1	70	130			
010	0.01000		104	70	130			
011	0.01000		107	70	130			
095	0.01000		95.0	70	130			
	ND 0.50 ND 6.0 ND 7.5 ND 0.70 ND 0.50 ND 0.20 ND 100 087 010	ND 0.50 ND 6.0 ND 7.5 ND 0.70 ND 0.70 ND 0.50 ND 0.20 ND 100 087 0.01000 011 0.01000	ND 0.50 ND 6.0 ND 7.5 ND 0.70 ND 0.70 ND 0.50 ND 0.20 ND 100 087 0.01000 010 0.01000 011 0.01000	ND 0.50 ND 6.0 ND 7.5 ND 0.70 ND 0.70 ND 0.50 ND 0.20 ND 100 087 0.01000 87.1 010 0.01000 104 011 0.01000 107	ND 0.50 ND 6.0 ND 7.5 ND 0.70 ND 0.70 ND 0.50 ND 0.20 ND 100 087 0.01000 87.1 70 010 0.01000 104 70 011 0.01000 107 70	ND 0.50 ND 6.0 ND 7.5 ND 0.70 ND 0.70 ND 0.50 ND 0.20 ND 100 087 0.01000 87.1 70 130 010 0.01000 104 70 130 011 0.01000 107 70 130	ND 0.50 ND 6.0 ND 7.5 ND 0.70 ND 0.70 ND 0.50 ND 0.20 ND 100 087 0.01000 87.1 70 130 010 0.01000 104 70 130 011 0.01000 107 70 130	ND 0.50 ND 6.0 ND 7.5 ND 0.70 ND 0.70 ND 0.50 ND 0.20 ND 100 087 0.01000 87.1 70 130 010 0.01000 104 70 130 011 0.01000 107 70 130

Sample ID: 100ng Ics	Samp	Гуре: LC	s	Tes	tCode: T (CLP Volatil	es by 8260B			
Client ID: LCSW	Batc	h ID: C7	2134	F	RunNo: 7	2134				
Prep Date:	Analysis [Date: 9/	24/2020	S	SeqNo: 2	528438	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.50	0.02000	0	96.8	70	130			
1,1-Dichloroethene	ND	0.70	0.02000	0	101	70	130			
Trichloroethene (TCE)	ND	0.50	0.02000	0	93.2	70	130			
Chlorobenzene	ND	100	0.02000	0	95.0	70	130			
Surr: 1,2-Dichloroethane-d4	0.0094		0.01000		93.8	70	130			
Surr: 4-Bromofluorobenzene	0.010		0.01000		103	70	130			
Surr: Dibromofluoromethane	0.011		0.01000		106	70	130			
Surr: Toluene-d8	0.0095		0.01000		95.2	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009B76**

14-Oct-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

										_
Sample ID: mb-55360	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: PBW	Batch	n ID: 55 3	360	F	RunNo: 7 2	2260				
Prep Date: 9/22/2020	Analysis D	oate: 9/2	29/2020	8	SeqNo: 2	534412	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	ND	200								
3+4-Methylphenol	ND	200								
2,4-Dinitrotoluene	ND	0.13								
Hexachlorobenzene	ND	0.13								
Hexachlorobutadiene	ND	0.50								
Hexachloroethane	ND	3.0								
Nitrobenzene	ND	2.0								
Pentachlorophenol	ND	100								
Pyridine	ND	5.0								
2,4,5-Trichlorophenol	ND	400								
2,4,6-Trichlorophenol	ND	2.0								
Cresols, Total	ND	200								
Surr: 2-Fluorophenol	0.12		0.2000		58.1	15	81.1			
Surr: Phenol-d5	0.11		0.2000		55.2	15	61.1			
Surr: 2,4,6-Tribromophenol	0.14		0.2000		72.5	17.2	108			
Surr: Nitrobenzene-d5	0.064		0.1000		64.0	18.7	120			
Surr: 2-Fluorobiphenyl	0.067		0.1000		66.6	23.6	103			
Surr: 4-Terphenyl-d14	0.092		0.1000		92.4	24.1	105			
Pyridine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Cresols, Total Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl	ND ND ND 0.12 0.11 0.14 0.064	5.0 400 2.0	0.2000 0.2000 0.1000 0.1000		55.2 72.5 64.0 66.6	15 17.2 18.7 23.6	61.1 108 120 103			

Sample ID: Ics-55360	Samp	Type: LC	s	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: LCSW	Bat	ch ID: 55	360	F	tunNo: 7 2	2260				
Prep Date: 9/22/2020	Analysis	Date: 9/	29/2020	S	SeqNo: 2	534413	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.046	0.00010	0.1000	0	46.2	33.8	121			
3+4-Methylphenol	0.095	0.00010	0.2000	0	47.7	33.6	109			
2,4-Dinitrotoluene	0.053	0.00010	0.1000	0	52.9	50.4	124			
Hexachlorobenzene	0.089	0.00010	0.1000	0	88.9	50.1	120			
Hexachlorobutadiene	0.030	0.00010	0.1000	0	30.2	16.1	103			
Hexachloroethane	0.027	0.00010	0.1000	0	26.7	15	94.2			
Nitrobenzene	0.047	0.00010	0.1000	0	47.4	32.4	125			
Pentachlorophenol	0.085	0.00010	0.1000	0	84.7	44.6	114			
Pyridine	0.016	0.00010	0.1000	0	15.7	15	67			
2,4,5-Trichlorophenol	0.068	0.00010	0.1000	0	68.4	49.4	118			
2,4,6-Trichlorophenol	0.055	0.00010	0.1000	0	55.4	50.3	116			
Cresols, Total	0.14	0.00010	0.3000	0	47.2	33.8	109			
Surr: 2-Fluorophenol	0.058		0.2000		29.1	15	81.1			
Surr: Phenol-d5	0.052		0.2000		25.9	15	61.1			
Surr: 2,4,6-Tribromophenol	0.14		0.2000		70.7	17.2	108			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009B76**

14-Oct-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Sample ID: Ics-55360 SampType: LCS TestCode: EPA Method 8270C TCLP Client ID: LCSW Batch ID: 55360 RunNo: 72260 Prep Date: Analysis Date: 9/29/2020 SeqNo: 2534413 Units: mg/L 9/22/2020 SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Surr: Nitrobenzene-d5 0.036 0.1000 36.1 18.7 120 Surr: 2-Fluorobiphenyl 0.032 0.1000 31.9 23.6 103 Surr: 4-Terphenyl-d14 0.098 0.1000 24.1 98.5 105

Sample ID: 2009b76-001bms TestCode: EPA Method 8270C TCLP SampType: MS Client ID: Injection Well Water RunNo: 72260 Batch ID: 55360 Prep Date: 9/22/2020 Analysis Date: 9/29/2020 SeqNo: 2534415 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.024 0.00010 23.7 30.5 S 2-Methylphenol 0.1000 O 98.2 3+4-Methylphenol 0.052 0.00010 0.2000 0 26.0 27.4 98.6 S 0 34.3 0.034 0.00010 0.1000 34.4 87.4 2,4-Dinitrotoluene Hexachlorobenzene 0.049 0.00010 0.1000 0 49.5 36.5 100 0 0.017 0.00010 0.1000 17.0 15 108 Hexachlorobutadiene 0 14.3 S Hexachloroethane 0.014 0.00010 0.1000 15 90.7 Nitrobenzene 0.023 0.00010 0.1000 0 22.9 39 100 S Pentachlorophenol 0.044 0.00010 0.1000 0 44.1 15 97.5 Pyridine 0.018 0.00010 0.1000 0 17.9 15 65.8 0 49.5 2,4,5-Trichlorophenol 0.050 0.00010 0.1000 36.1 109 2,4,6-Trichlorophenol 0.041 0.00010 0.1000 0 40.9 37.8 104 Cresols, Total 0.076 0.00010 0 25.2 27.1 S 0.3000 99.8 Surr: 2-Fluorophenol 0.022 0.2000 10.8 15 81.1 S Surr: Phenol-d5 0.025 0.2000 12.3 15 61.1 S Surr: 2,4,6-Tribromophenol 0.12 0.2000 61.4 17.2 108 S Surr: Nitrobenzene-d5 0.014 0.1000 13.9 18.7 120 S Surr: 2-Fluorobiphenyl 0.018 0.1000 18.3 23.6 103 Surr: 4-Terphenyl-d14 0.080 0.1000 80.3 24.1 105

Sample ID: 2009b76-001bmsc Client ID: Injection Well War		Type: MS			tCode: El RunNo: 7		8270C TCLP				
Prep Date: 9/22/2020	Analysis	Date: 9/2	29/2020	8	SeqNo: 2	534416	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
2-Methylphenol 0.049 0.00010 0.1000 0 49.4 30.5 98.2 70.2 44											
3+4-Methylphenol	0.11	0.00010	0.2000	0	54.5	27.4	98.6	70.8	50	R	
2,4-Dinitrotoluene	0.049	0.00010	0.1000	0	48.9	34.3	87.4	34.8	45.1		
Hexachlorobenzene	0.070	0.00010	0.1000	0	69.8	36.5	100	34.1	47.2		
Hexachlorobutadiene	0.027	0.00010	0.1000	0	26.6	15	108	44.0	43.4	R	
Hexachloroethane	0.022	0.00010	0.1000	0	21.9	15	90.7	41.7	39.2	R	
Nitrobenzene	0.038	0.00010	0.1000	0	38.4	39	100	50.5	42.1	RS	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009B76**

14-Oct-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Sample ID: 2009b76-001bms		Type: MS			tCode: El		8270C TCLP			
Prep Date: 9/22/2020	Analysis	Date: 9/2	29/2020	5	SeqNo: 2	534416	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Pentachlorophenol	0.046	0.00010	0.1000	0	45.7	15	97.5	3.73	50	
Pyridine	0.027	0.00010	0.1000	0	26.6	15	65.8	38.8	50	
2,4,5-Trichlorophenol	0.070	0.00010	0.1000	0	70.3	36.1	109	34.7	49.7	
2,4,6-Trichlorophenol	0.065	0.00010	0.1000	0	65.1	37.8	104	45.8	47	
Cresols, Total	0.16	0.00010	0.3000	0	52.8	27.1	99.8	70.6	27.4	R
Surr: 2-Fluorophenol	0.053		0.2000		26.3	15	81.1	0	0	
Surr: Phenol-d5	0.056		0.2000		28.0	15	61.1	0	0	
Surr: 2,4,6-Tribromophenol	0.11		0.2000		57.2	17.2	108	0	0	
Surr: Nitrobenzene-d5	0.029		0.1000		29.4	18.7	120	0	0	
Surr: 2-Fluorobiphenyl	0.039		0.1000	39.3 23.6 103				0	0	
Surr: 4-Terphenyl-d14	0.061		0.1000		61.0	24.1	105	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 15

Hall Environmental Analysis Laboratory, Inc.

2009B76

WO#:

14-Oct-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Sample ID: Ics-1 99.2uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R72166 RunNo: 72166

Prep Date: Analysis Date: 9/25/2020 SeqNo: 2529530 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 98 10 99.20 0 98.8 85 115

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009B76 14-Oct-20**

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Sample ID: MB-55413 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 55413 RunNo: 72332

Prep Date: 10/1/2020 Analysis Date: 10/1/2020 SeqNo: 2536817 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCSLL-55413 SampType: LCSLL TestCode: EPA Method 7470: Mercury

Client ID: BatchQC Batch ID: 55413 RunNo: 72332

Prep Date: 10/1/2020 Analysis Date: 10/1/2020 SeqNo: 2536818 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020 0.0001500 0 122 50 150

Sample ID: LCS-55413 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 55413 RunNo: 72332

Prep Date: 10/1/2020 Analysis Date: 10/1/2020 SeqNo: 2536819 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0047 0.00020 0.005000 0 94.9 80 120

Sample ID: 2009B76-001DMS SampType: MS TestCode: EPA Method 7470: Mercury

Client ID: Injection Well Water Batch ID: 55413 RunNo: 72332

Prep Date: 10/1/2020 Analysis Date: 10/1/2020 SeqNo: 2536823 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0039 0.00020 0.005000 0 77.3 75 125

Sample ID: 2009B76-001DMSD SampType: MSD TestCode: EPA Method 7470: Mercury

Client ID: Injection Well Water Batch ID: 55413 RunNo: 72332

Prep Date: 10/1/2020 Analysis Date: 10/1/2020 SeqNo: 2536824 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0040 0.00020 0.005000 0 79.9 75 125 3.23 20

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009B76**

14-Oct-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Sample ID: MB-55452 Client ID: PBW		Type: ME			tCode: El RunNo: 7 2		Total Recover	able Meta	als	
Prep Date: 9/25/2020	Analysis I	Date: 9/	29/2020	S	SeqNo: 2	533349	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.030								
Barium	ND	0.0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Lead	ND	0.020								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Silver	ND	0.0050								

Sample ID: LCS-55452	Samp	Type: LC	S	Tes	tCode: El	PA 6010B:	Total Recover	able Meta	als	
Client ID: LCSW	Bato	ch ID: 554	452	F	RunNo: 7	2243				
Prep Date: 9/25/2020	Analysis	Date: 9/	29/2020	S	SeqNo: 2	533351	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.45	0.030	0.5000	0	90.4	80	120			
Barium	0.47	0.0020	0.5000	0	94.1	80	120			
Calcium	49	1.0	50.00	0	98.4	80	120			
Chromium	0.46	0.0060	0.5000	0	91.7	80	120			
Lead	0.47	0.020	0.5000	0	94.9	80	120			
Magnesium	49			0	98.4	80	120			
Potassium	49	49 1.0 50.00			97.2	80	120			
Silver	0.095	0.095 0.0050 0.1000			95.4	80	120			

Sample ID: MB-55452	SampType: MBLK	TestCode: EPA 6010B:	Total Recoverable Metals
Client ID: PBW	Batch ID: 55452	RunNo: 72287	
Prep Date: 9/25/2020	Analysis Date: 9/30/2020	SeqNo: 2535107	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Cadmium	ND 0.0020		
Selenium	ND 0.050		

Sample ID: LCS-55452	Samp	Type: LC	S	Tes	tCode: El	PA 6010B: ¹	Total Recove	rable Meta	als	
Client ID: LCSW	Bato	h ID: 554	152	R	tunNo: 7	2287				
Prep Date: 9/25/2020	Analysis I	Date: 9/ 3	30/2020	S	SeqNo: 2	535109	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Cadmium	0.45	0.0020	0.5000	0	89.4	80	120			
Selenium	0.47	0.050	0.5000	0	94.0	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009B76**

14-Oct-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Sample ID: MB-55452 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 55452 RunNo: 72373

Prep Date: 9/25/2020 Analysis Date: 10/2/2020 SeqNo: 2538459 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sodium ND 1.0

Sample ID: LCS-55452 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 55452 RunNo: 72373

Prep Date: 9/25/2020 Analysis Date: 10/2/2020 SeqNo: 2538461 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sodium 48 1.0 50.00 0 95.3 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 13 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009B76**

14-Oct-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R72166 RunNo: 72166

Prep Date: Analysis Date: 9/25/2020 SeqNo: 2529582 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R72166 RunNo: 72166

Prep Date: Analysis Date: 9/25/2020 SeqNo: 2529583 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 76.72 20.00 80.00 0 95.9 90 110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R72166 RunNo: 72166

Prep Date: Analysis Date: 9/25/2020 SeqNo: 2529605 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R72166 RunNo: 72166

Prep Date: Analysis Date: 9/25/2020 SeqNo: 2529606 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 76.64 20.00 80.00 0 95.8 90 110

Sample ID: mb-3 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R72166 RunNo: 72166

Prep Date: Analysis Date: 9/25/2020 SeqNo: 2529628 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-3 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R72166 RunNo: 72166

Prep Date: Analysis Date: 9/25/2020 SeqNo: 2529629 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 77.64 20.00 80.00 0 97.0 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009B76**

14-Oct-20

Client: Western Refining Southwest, Inc.

Project: WDW 2 Injection Well Quarterly Sampling

Sample ID: MB-55350 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 55350 RunNo: 72087

Prep Date: 9/22/2020 Analysis Date: 9/23/2020 SeqNo: 2525437 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-55350 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 55350 RunNo: 72087

Prep Date: 9/22/2020 Analysis Date: 9/23/2020 SeqNo: 2525438 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

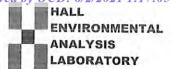
H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank


E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 15

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refinin Southwest, Inc.	g Work Order	Number: 200	9B76			RcptNo: 1
Received By: Cheyenne Cas	on 9/19/2020 9:1	8:00 AM				
Completed By: Emily Mocho	9/19/2020 10:	41:58 AM				
Reviewed By: &M 9	19/20					
Chain of Custody						
1. Is Chain of Custody complete?		Yes	V	No		Not Present
2. How was the sample delivered?	>	Fed	Ex			
Log In						
Was an attempt made to cool the second that the second th	ne samples?	Yes	~	No		NA 🗆
4. Were all samples received at a	temperature of >0° C to 6.0°	C Yes	~	No		NA 🗆
5. Sample(s) in proper container(s)?	Yes	~	No		
6. Sufficient sample volume for ind	icated test(s)?	Yes	~	No [
7. Are samples (except VOA and C	ONG) properly preserved?	Yes	V	No [
8. Was preservative added to bottle	es?	Yes		No 5	~	NA 🗆
9. Received at least 1 vial with hear	dspace <1/4" for AQ VOA?	Yes	~	No [NA 🗆
10. Were any sample containers red	ceived broken?	Yes		No		W of war and
			-		_	# of preserved bottles checked
 Does paperwork match bottle lat (Note discrepancies on chain of 		Yes	V	No L		for pH: (<2) or >12 unless note
2. Are matrices correctly identified		Yes	~	No [Adjusted? \(\(\(\) \(\) \(\)
3. Is it clear what analyses were rec		Yes	V	No [140
14. Were all holding times able to be (If no, notify customer for authori	e met?	Yes	V	No [Checked by: JR a 114
Special Handling (if applica						
15. Was client notified of all discrep		Yes		No [NA 🔽
Person Notified:		Date:	_		_	
By Whom:		Via: eM	ail [Phone	Fax	In Person
Regarding:						
Client Instructions:						
16. Additional remarks:						
17. Cooler Information Cooler No Temp °C Co 1 0.1 Good	ndition Seal Intact Seal d Not Present	No Seal D	ate	Signed B	у	

	ANAI YSTS I ABORATOR	aco lotromacrivaelled www	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request		tsid	ılytical	euv	√ þa	See Attache	×	×	×	×	×	×	×	×			Remarks:	Relinquished by: Date Time Coeived by:
			rly Sampling				_	u	oN □	0.120.1	HEAL NO.	100							_			Date Time Re \mathcal{L} \mathcal{L} \mathcal{L}	Date Time
le:	□ Rush		n Well- Quarte				Kelly Robinson	obinsc	☑ Yes	uture: ○. ○ +	Preservative Type	None	None	HCI	NaOH	Zn Acetate / NaoH	HN03	HN03	H2SO4			9/19/	
Turn-Around Time:	X Standard	Project Name:	WDW #2 Injection Well- Quarterly Sampling	Project #:		Project Manager		Sampler:	On Ice:	Sample Temperature: ○ . ○ + ○ .	Container Type and #	2- 1.0L Amber	3-500mL Poly	3-VOAs	1-500mL Poly	1-500mL Poly	1-500mL Poly	1-125mL Poly	1-125mL Poly			Received by:	Received by:
Chain-of-Custody Record				Bloomfield, NM 87413	-4166	krobinson3@marathonpetroleum.com Project Manager:	☐ Level 4 (Full Validation)				Sample Request ID	Injection Well Water										Hay Con C	i by:
f-Custo	Western Refining Southwest, Inc.		50 CR 4990	Bloomfiel	(505) 632-4166	krobinson			□ Other	lei	Matrix	15:00 Water	Water	Water	Water	Water	Water	Water	Water			Relinquíshed by	Relinquished
hain-o	Western Re		ess:			#:	ige:	2		e) Excel	Time	15:0		_						10	,	Time:	Time:
	Client:	to Iı	Mailing Address:	ıg: 6	:# Bhone #:	email or Fax#:	7:4 QA/QC Package: 7:4 X Standard	Made Accreditation:	> NELAP	X EDD (Type)	Date	9/18/2020										8/20	Date:

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

immediately or within a specified time period, or assess a civil penalty, or both (see Section 74-6-10 NMSA 1978). The compliance order may also include a suspension or termination of this Discharge Permit. OCD may also commence a civil action in district court for appropriate relief, including injunctive relief (see Section 74-6-10(A)(2) NMSA 1978). The Permittee may be subject to criminal penalties for discharging a water contaminant without a discharge permit or in violation of a condition of a discharge permit; making any false material statement, representation, certification or omission of material fact in a renewal application, record, report, plan or other document filed, submitted or required to be maintained under the Water Quality Act; falsifying, tampering with or rendering inaccurate any monitoring device, method or record required to be maintained under the Water Quality Act; or failing to monitor, sample or report as required by a Discharge Permit issued pursuant to a state or federal law or regulation (see Section 74-6-10.2 NMSA 1978).

2. GENERAL FACILITY OPERATIONS:

2.A. QUARTERLY MONITORING REQUIREMENTS FOR CLASS I NON-HAZARDOUS WASTE INJECTION WELL: The Permittee shall properly conduct waste management injection operations at its facility by injecting only non-hazardous (RCRA exempt and RCRA non-hazardous, non-exempt) oil field waste fluids. Injected waste fluids shall not exhibit the RCRA characteristics, i.e., ignitability, reactivity, corrosivity, or toxicity under 40 CFR 261 Subpart "C" 261.21 – 261.24 (July 1, 1992), at the point of injection into WDW-2, based upon environmental analytical laboratory testing. Pursuant to 20.6.2.5207B, the Permittee shall provide analyses of the injected fluids at least quarterly to yield data representative of their toxicity characteristic.

The Permittee shall also analyze the injected fluids quarterly for the following characteristics:

- pH (Method 9040);
- Eh;
- Specific conductance;
- Specific gravity;
- Temperature;
- Major dissolved cations and anions, including: fluoride, calcium, potassium, magnesium, sodium bicarbonate, carbonate, chloride, sulfate, bromide, total dissolved solids, and cation/anion balance using the methods specified in 40 CFR 136.3); and,
- EPA RCRA Characteristics for Ignitability (ASTM Methods); Corrosivity (SW-846) and Reactivity (determined through Permittee's application of knowledge or generating process).

The Permittee shall analyze the injected fluids quarterly for the constituents identified in the Quarterly Monitoring List (below) to demonstrate that the injected fluids do not exhibit the characteristic of toxicity using the Toxicity Characteristic Leaching Procedure, EPA SW-846 Test Method 1311 (see Table 1, 40 CFR 261.24(b)).

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

EPA HW No.	Contaminant	SW-846 Methods	Regulatory Level (mg/L)
D004	Arsenic	1311	5.0
D005	Barium	1311	100.0
D018	Benzene	8021B	0.5
D006	Cadmium	1311	1.0
D019 ·	Carbon tetrachloride	8021B 8260B	0.5
D020	Chlordane	8081A	0.03
D021	Chlorobenzene	8021B 8260B	100.0
D022	Chloroform	8021B 8260B	6.0
D007	Chromium	1311	5.0
D023	o-Cresol	8270D	200.0
D024	m-Cresol	8270D	200.0
D025	p-Cresol	8270D	200.0
D026	Cresol	8270D	200.0
D027	1,4-Dichlorobenzene	8021B 8121 8260B 8270D	7.5
D028	1,2-Dichloroethane	8021B 8260B	0.5
D029	1,1-Dichloroethylene	8021B 8260B	0.7
D030	2,4-Dinitrotoluene	8091 8270D	0.13
D032	Hexachlorobenzene	8121	0.13
D033	Hexachlorobutadiene	8021B 8121 8260B	0.5
D034	Hexachloroethane	8121	3.0
D008	Lead	1311	5.0
D009	Mercury	7470A 7471B	0.2
D035	Methyl ethyl ketone	8015B 8260B	200.0
D036	Nitrobenzene	8091 8270D	2.0
D037	Pentrachlorophenol	8041	100.0
D038	Pyridine	8260B 8270D	5.0

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

D010	Selenium	1311	1.0
D011	Silver	1311	5.0
D039	Tetrachloroethylene	8260B	0.7
D040	Trichloroethylene	8021B	0.5
		8260B	
D041	2,4,5-Trichlorophenol	8270D	400.0
D042	2,4,6-Trichlorophenol	8041A	2.0
		8270D	
D043	Vinyl chloride	8021B	0.2
		8260B	

If o, m, and p-cresol concentrations cannot be differentiated, then the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/L.

If the quantitation limit is greater than the regulatory level, then the quantitation limit becomes the regulatory level. If metals (dissolved), the EPA 1311 TCLP Laboratory Method is required with the exception of Mercury (total).

- 1. Monitor and Piezometer Wells: Groundwater with a total dissolved solids concentration of less than 10,000 mg/L occurs at an estimated depth of approximately 10 30 ft. below ground surface at the WDW-2 well (hereafter, "uppermost water-bearing unit"). Groundwater monitoring well (MW) with GW sampling capability shall be installed proximal to and hydrogeologically downgradient from WDW-2 in order to monitor the uppermost water-bearing unit. The MW shall be screened (15 ft. screen with top of screen positioned 5 ft. above water table) into the uppermost water-bearing unit. The Permittee shall propose a monitoring frequency with chemical monitoring parameters in order to detect potential groundwater contamination either associated with or not associated with WDW-2.
- 2.B. CONTINGENCY PLANS: The Permittee shall implement its proposed contingency plan(s) included in its application to cope with failure of a system(s) in the Discharge Permit.
- 2.C. CLOSURE: Prior to closure of the facility, the Permittee shall submit for OCD's approval, a closure plan including a completed form C-103 for plugging and abandonment of the waste injection well. The Permittee shall plug and abandon its well pursuant to 20.6.2.5209 NMAC and as specified in Permit Condition 2.D.
 - 1. Pre-Closure Notification: Pursuant to 20.6.2.5005A NMAC, the Permittee shall submit a pre-closure notification to OCD's Environmental Bureau at least 30 days prior to the date that it proposes to close or to discontinue operation of WDW-2. Pursuant to 20.6.2.5005B NMAC, OCD's Environmental Bureau must approve all proposed well closure activities before the Permittee may implement its proposed closure plan.
 - 2. Required Information: The Permittee shall provide OCD's Environmental Bureau with the following information in the pre-closure notification specified in Permit Condition 2.C.1:
 - Name of facility;
 - Address of facility;
 - Name of Permittee (and owner or operator, if appropriate);

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: clients.hallenvironmental.com

January 07, 2021

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135

FAX

RE: Injection Well 2 4Q2020 OrderNo.: 2012A28

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 12/19/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **2012A28**

Date Reported: 1/7/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well #2

Project: Injection Well 2 4Q2020 Collection Date: 12/18/2020 8:00:00 AM

Lab ID: 2012A28-001 **Matrix:** AQUEOUS **Received Date:** 12/19/2020 7:30:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed Batch
EPA METHOD 8081: PESTICIDES TCLP						Analyst: LSB
Chlordane	ND	0.030		mg/L	1	12/29/2020 3:17:33 PM 57198
Surr: Decachlorobiphenyl	88.7	41.7-129		%Rec	1	12/29/2020 3:17:33 PM 57198
Surr: Tetrachloro-m-xylene	81.4	31.8-88.5		%Rec	1	12/29/2020 3:17:33 PM 57198
EPA METHOD 8270C TCLP						Analyst: DAM
2-Methylphenol	ND	200		mg/L	1	12/28/2020 10:03:35 PM 57174
3+4-Methylphenol	ND	200		mg/L	1	12/28/2020 10:03:35 PM 57174
2,4-Dinitrotoluene	ND	0.13		mg/L	1	12/28/2020 10:03:35 PM 57174
Hexachlorobenzene	ND	0.13		mg/L	1	12/28/2020 10:03:35 PM 57174
Hexachlorobutadiene	ND	0.50		mg/L	1	12/28/2020 10:03:35 PM 57174
Hexachloroethane	ND	3.0		mg/L	1	12/28/2020 10:03:35 PM 57174
Nitrobenzene	ND	2.0		mg/L	1	12/28/2020 10:03:35 PM 57174
Pentachlorophenol	ND	100		mg/L	1	12/28/2020 10:03:35 PM 57174
Pyridine	ND	5.0		mg/L	1	12/28/2020 10:03:35 PM 57174
2,4,5-Trichlorophenol	ND	400		mg/L	1	12/28/2020 10:03:35 PM 57174
2,4,6-Trichlorophenol	ND	2.0		mg/L	1	12/28/2020 10:03:35 PM 57174
Cresols, Total	ND	200		mg/L	1	12/28/2020 10:03:35 PM 57174
Surr: 2-Fluorophenol	47.1	15-81.1		%Rec	1	12/28/2020 10:03:35 PM 57174
Surr: Phenol-d5	37.4	15-61.1		%Rec	1	12/28/2020 10:03:35 PM 57174
Surr: 2,4,6-Tribromophenol	99.5	17.2-108		%Rec	1	12/28/2020 10:03:35 PM 57174
Surr: Nitrobenzene-d5	56.2	18.7-120		%Rec	1	12/28/2020 10:03:35 PM 57174
Surr: 2-Fluorobiphenyl	66.4	23.6-103		%Rec	1	12/28/2020 10:03:35 PM 57174
Surr: 4-Terphenyl-d14	59.1	24.1-105		%Rec	1	12/28/2020 10:03:35 PM 57174
SPECIFIC GRAVITY						Analyst: JRR
Specific Gravity	0.9999	0			1	12/23/2020 9:40:00 AM R74205
EPA METHOD 300.0: ANIONS						Analyst: CAS
Fluoride	ND	0.50		mg/L	5	12/30/2020 1:48:35 PM R74337
Chloride	890	25	*	mg/L	50	12/30/2020 2:13:18 PM R74337
Bromide	1.6	0.50		mg/L	5	12/21/2020 5:31:57 PM R74178
Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	12/21/2020 5:31:57 PM R74178
Sulfate	72	2.5		mg/L	5	12/21/2020 5:31:57 PM R74178
Nitrate+Nitrite as N	ND	1.0		mg/L	5	12/21/2020 10:04:59 PM R74178
SM2510B: SPECIFIC CONDUCTANCE						Analyst: MH
Conductivity	3400	10		µmhos/c	: 1	12/28/2020 12:12:40 PM R74270
SM2320B: ALKALINITY						Analyst: MH
Bicarbonate (As CaCO3)	349.6	20.00		mg/L Ca	1	12/23/2020 4:40:13 PM R74231
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	12/23/2020 4:40:13 PM R74231
Total Alkalinity (as CaCO3)	349.6	20.00		mg/L Ca	1	12/23/2020 4:40:13 PM R74231
· , ,				-		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 13

Analytical Report

Lab Order **2012A28**Date Reported: **1/7/2021**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well #2

Lab ID: 2012A28-001 **Matrix:** AQUEOUS **Received Date:** 12/19/2020 7:30:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: MH
Total Dissolved Solids	1950	40.0	*D	mg/L	1	12/23/2020 11:43:00 AM	Л 57191
SM4500-H+B / 9040C: PH						Analyst	: МН
рН	7.96		Н	pH units	1	12/23/2020 4:40:13 PM	
EPA METHOD 7470: MERCURY						Analyst	: ags
Mercury	ND	0.020		mg/L	1	12/23/2020 1:00:53 PM	57168
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	: JLF
Arsenic	ND	5.0		mg/L	1	12/22/2020 2:30:37 PM	57149
Barium	ND	100		mg/L	1	12/22/2020 2:30:37 PM	57149
Cadmium	ND	1.0		mg/L	1	12/22/2020 2:30:37 PM	57149
Calcium	87	1.0		mg/L	1	12/22/2020 2:30:37 PM	57149
Chromium	ND	5.0		mg/L	1	12/22/2020 2:30:37 PM	57149
Lead	ND	5.0		mg/L	1	12/28/2020 3:45:41 PM	57149
Magnesium	22	1.0		mg/L	1	12/22/2020 2:30:37 PM	57149
Potassium	55	1.0		mg/L	1	12/22/2020 2:30:37 PM	57149
Selenium	ND	1.0		mg/L	1	12/22/2020 2:30:37 PM	57149
Silver	ND	5.0		mg/L	1	12/22/2020 2:30:37 PM	57149
Sodium	550	10		mg/L	10	12/22/2020 4:05:31 PM	57149
TCLP VOLATILES BY 8260B						Analyst	: JMR
Benzene	ND	0.50		mg/L	1	12/27/2020 5:55:26 PM	T74256
1,2-Dichloroethane (EDC)	ND	0.50		mg/L	1	12/27/2020 5:55:26 PM	T74256
2-Butanone	ND	200		mg/L	1	12/27/2020 5:55:26 PM	T74256
Carbon Tetrachloride	ND	0.50		mg/L	1	12/27/2020 5:55:26 PM	T74256
Chloroform	ND	6.0		mg/L	1	12/27/2020 5:55:26 PM	T74256
1,4-Dichlorobenzene	ND	7.5		mg/L	1	12/27/2020 5:55:26 PM	T74256
1,1-Dichloroethene	ND	0.70		mg/L	1	12/27/2020 5:55:26 PM	T74256
Tetrachloroethene (PCE)	ND	0.70		mg/L	1	12/27/2020 5:55:26 PM	T74256
Trichloroethene (TCE)	ND	0.50		mg/L	1	12/27/2020 5:55:26 PM	T74256
Vinyl chloride	ND	0.20		mg/L	1	12/27/2020 5:55:26 PM	T74256
Chlorobenzene	ND	100		mg/L	1	12/27/2020 5:55:26 PM	T74256
Surr: 1,2-Dichloroethane-d4	102	70-130		%Rec	1	12/27/2020 5:55:26 PM	T74256
Surr: 4-Bromofluorobenzene	101	70-130		%Rec	1	12/27/2020 5:55:26 PM	T74256
Surr: Dibromofluoromethane	84.1	70-130		%Rec	1	12/27/2020 5:55:26 PM	T74256
Surr: Toluene-d8	94.4	70-130		%Rec	1	12/27/2020 5:55:26 PM	T74256

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 13

ANALYTICAL REPORT

January 05, 2021

Ss

Cn

Qc

GI

Hall Environmental Analysis Laboratory

L1299519 Sample Delivery Group: Samples Received: 12/22/2020

Project Number:

Description:

Report To: Jackie Bolte

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By:

John Hawkins

John V Hankins

615-758-5858

Mount Juliet, TN 37122

800-767-5859

www.pacenational.com

12065 Lebanon Rd

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2012A28-001E INJECTION WELL #2 L1299519-01	5
2012A28-001F INJECTION WELL #2 L1299519-02	6
2012A28-001G INJECTION WELL #2 L1299519-03	7
Qc: Quality Control Summary	8
Wet Chemistry by Method 2580	8
Wet Chemistry by Method 4500 CN E-2011	9
Wet Chemistry by Method 4500H+ B-2011	10
Wet Chemistry by Method 9034-9030B	11
Wet Chemistry by Method D93/1010A	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	ite/time
2012A28-001E INJECTION WELL #2 L1299519-01	WW			12/18/20 08:00	12/22/20 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 2580	WG1597489	1	12/26/20 09:00	12/26/20 09:00	SRG	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1598939	1	12/30/20 15:51	12/30/20 15:51	KPS	Mt. Juliet, TN
Wet Chemistry by Method D93/1010A	WG1600697	1	01/04/21 16:00	01/04/21 16:00	CO	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
2012A28-001F INJECTION WELL #2 L1299519-02	WW			12/18/20 08:00	12/22/20 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9034-9030B	WG1595786	1	12/23/20 17:01	12/23/20 17:01	LRP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
2012A28-001G INJECTION WELL #2 L1299519-03	WW			12/18/20 08:00	12/22/20 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 4500 CN E-2011	WG1598368	1	12/29/20 09:07	12/29/20 19:20	JER	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John Hawkins Project Manager

All Reactive Cyanide results reported in the attached report were determined as totals using method 9012B.

All Reactive Sulfide results reported in the attached report were determined as totals using method 9034/9030B.

Hall Environmental Analysis Laboratory

SAMPLE RESULTS - 01

ONE LAB. NAPagev136 of 300

Collected date/time: 12/18/20 08:00

Wet Chemistry by Method 2580

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	mV			date / time	
ORP	24.0		1	12/26/2020 09:00	WG1597489

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
Corrosivity by pH	7.36	<u>T8</u>	1	12/30/2020 15:51	WG1598939

Sample Narrative:

L1299519-01 WG1598939: 7.36 at 20C

СQс

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	deg F			date / time	
Flashpoint	DNF at 170		1	01/04/2021 16:00	WG1600697

Gl

SAMPLE RESULTS - 02

ONE LAB. NAPagev137 of 300

Collected date/time: 12/18/20 08:00

Wet Chemistry by Method 9034-9030B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Reactive Sulfide	0.213		0.0500	1	12/23/2020 17:01	WG1595786	

SAMPLE RESULTS - 03

ONE LAB. NAPage 138 of 300

Collected date/time: 12/18/20 08:00

Wet Chemistry by Method 4500 CN E-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Reactive Cyanide	ND		0.00500	1	12/29/2020 19:20	WG1598368

ONE LAB. NA Page 139 of 300

Wet Chemistry by Method 2580

L1298461-11 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result Dilution DUP Diff DUP Qualifier DUP Diff Limits	(OS) L1298461-11 12/26/20	09:00 • (DUP)	R3607276-3	12/26/20	09:00		
		Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits
Analyte mV mV mV mV	Analyte	mV	mV		mV		mV
ORP 13.2 15.2 1 2.00 20	ORP	13.2	15.2	1	2.00		20

L1298461-12 Original Sample (OS) • Duplicate (DUP)

AnalyteMVMVDUP ResultDUP DiffDUP QualifierDUP Diff LimitsORP61.444.8116.620	(OS) L1298461-12 12/26/20 09:00 • (DUP) R3607276-4 12/26/20 09:00								
·		Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits		
ORP 61.4 44.8 1 16.6 20	Analyte	mV	mV		mV		mV		
	ORP	61.4	44.8	1	16.6		20		

L1298461-13 Original Sample (OS) • Duplicate (DUP)

			•				
(OS) L1298461-13 12/26/20 09:00 • (DUP) R3607276-5 12/26/20 09:00							
	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits	
Analyte	mV	mV		mV		mV	
ORP	131	125	1	6.50		20	

L1299519-01 Original Sample (OS) • Duplicate (DUP)

	J 1	\ / I	`	,		
(OS) L1299519-01 12/26/20 09:00 • (DUP) R3607276-6 12/26/20 09:00						
	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits
Analyte	mV	mV		mV		mV
ORP	24.0	28.4	1	4.40		20

L1299906-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1299906-01 12/26/20 09:00 • (DUP) R3607276-7 12/26/20 09:00							
	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits	
Analyte	mV	mV		mV		mV	
ORP	44.6	53.1	1	8.50		20	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3607276-1 12/26/20 09:00 • (LCSD) R3607276-2 12/26/20 09:00										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	Diff	Diff Limits
Analyte	mV	mV	mV	%	%	%			mV	mV
ORP	228	228	212	100	93.2	86.0-105			15.7	20

ONE LAB. NAPagev140 of 300

Wet Chemistry by Method 4500 CN E-2011 L1299519-03

Method Blank (MB)

(MB) R3608155-1 12/29/20 18:46									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/l		mg/l	mg/l					
Reactive Cyanide	U		0.00180	0.00500					

Ss

L1299672-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1299672-01 12/29/20 19	• (DUP) R3608155-!	12/29/20 19:26
------------------------------	--------------------	----------------

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Reactive Cyanide	ND	ND	1	0.000		20

L1299853-02 Original Sample (OS) • Duplicate (DUP)

(OS) | 1299853-02 | 12/29/20 19:33 • (DI IP) P3608155-6 | 12/29/20 19:34

(03) [1299033-02 12/29/2	Original Result	,		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Reactive Cyanide	0.0119	0.00636	1	60.7	<u>P1</u>	20

Sc

Laboratory Control Sample (LCS)

(LCS) R3608155-2	12/29/20 18:47
------------------	----------------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Reactive Cyanide	0.100	0.0963	96.3	90.0-117	

L1299416-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1299416-03 12/29/20 18:52	• (MS) R3608155-3 12/29/20 18:53 • ((MSD) R3608155-4 12/29/20 18:54
---------------------------------	--------------------------------------	---------------------------------

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Reactive Cyanide	0.100	ND	0.0993	0.0972	97.0	94.9	1	90.0-110			2.14	20	

L1300515-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OC) 1200E1E 0	1 12/20/20 10:20	(MAC) D26001EE 7	12/29/20 19:39 • (M	ICD/ DOCUOTEE O	12/20/20 10:40
1031 LI300313-0	1 12/23/20 13.30	110131 43000133-7	12/23/20 13.33 • 11/1	1301 13000133-0	12/23/20 13.40

(O5) L1300515-01 12/23/20 13.38 • (N15) R3608155-7 12/23/20 13.33 • (N15D) R3608155-8 12/23/20 13.40												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Reactive Cyanide	0.100	ND	0.0998	0.0995	95.6	95.3	1	90.0-110			0.301	20

ONE LAB. NAPage 141 of 300

L1299519-01

Wet Chemistry by Method 4500H+ B-2011

Laboratory Control Sample (LCS)

Sample Narrative: LCS: 10.04 at 19.3C

(LCS) R3608445-1 12/30/20 15:51 Spike Amount LCS Result Rec. Limits LCS Qualifier LCS Rec. % % Analyte Corrosivity by pH 10.0 10.0 100 99.0-101

ONE LAB. NARagev142 of 300

Wet Chemistry by Method 9034-9030B

L1299519-02

Method Blank (MB)

(MB) R3606782-1 12/23	3/20 16:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Reactive Sulfide	U		0.0250	0.0500

²Tc

Laboratory Control Sample (LCS)

(LCS) R3606782-2 12/	/23/20 16:57				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Reactive Sulfide	0.500	0.566	113	85.0-115	

ONE LAB. NAPagev143 of 300

Wet Chemistry by Method D93/1010A

L1299519-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3609549-1 01/04	1/21 16:00 • (LCSI) R3609549	-2 01/04/21 16:0	00						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	deg F	deg F	deg F	%	%	%			%	%
Flashpoint	126	131	131	104	104	96.0-104			0.000	10

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	2 Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	KY90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN00003
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN000032021-1
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	TN00003
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-20-18
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	998093910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 6/8/2021 4:04:43 PM

CHAIN OF CUSTODY RECORD F

AGE:	OF:
1	1

Hall Environmental Analysis Laboratory Page 146 of 300

nmental Analysis Laborator; 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

D079

'allenvironmental.com

	ONTRATOR: Pace	rn company:	PACE TN		PHONE:	(800) 767-5859 FAX	(615) 758-5859		
ADDRI	12065	Lebanon Rd		ACCOUNT #:					
CITY, S	TATE, ZIP: Mt. Ju	uliet, TN 37122							
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE	MATRIX	COLLECTION DATE	#CONTAINERS ANALY	TICAL COMMENTS		
1		Injection Well #2	500HDPE	Aqueous	12/18/2020 8:00:00 AM	1 ORP, Corrosivity, Ignitability	1259519-01		
2	2012A28-001F	Injection Well #2	500PLNAOH	Aqueous	12/18/2020 8:00:00 AM	1 Reactive Sulfide	a		
3	2012A28-001G	Injection Well #2	500PL-NaOH	Aqueous	12/18/2020 8:00:00 AM	1 Reactive Cyanide	4)		

RAD SCREEN: <0.5 mR/hr

Please include the LAB ID and	the CLIENT S	AMPLE ID on	all final reports. Please e-mai	il results to lab@hall	environmental.com. I	Please return all coolers and blue ice. Thank you.
Relinquished By:	Date: 12/21/2020	Time: 12:17 PM	Received By:	Date/20	Times 30	REPORT TRANSMITTAL DESIRED: HARDCOPY (extra cost)
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	FOR LAB USE ONLY
TAT: Stan	dard	RUSH	Next BD ☐ 2nd	1BD ☐ 3rd E	3D [Temp of samples € Attempt to Cool ?

Hall Environmental Analysis Laboratory, Inc.

2012A28

WO#:

07-Jan-21

Client: Western Refining Southwest, Inc. **Project:** Injection Well 2 4Q2020

Sample ID: MB	SampType: mblk			Tes	Code: E	5				
Client ID: PBW	Batch ID: R74178			F	4178					
Prep Date:	Analysis D	ate: 12	2/21/2020	S	eqNo: 2	618041	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sulfate	ND	0.50								
Nitrate+Nitrite as N	ND	0.20								
Sample ID: I CS	SamnT	vne. Ice		Tas	Code: E	PA Method	300 0: Anione	,		

Samp rype: Ics			res	restcode: EPA Method 300.0: Anions					
Batch ID: R74178			F	RunNo: 74178					
Analysis D	ate: 12	2/21/2020	8	SeqNo: 2	618042	Units: mg/L			
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2.5	0.10	2.500	0	98.5	90	110			
4.8	0.50	5.000	0	96.0	90	110			
9.8	0.50	10.00	0	97.8	90	110			
3.4	0.20	3.500	0	98.5	90	110			
	Batch Analysis D Result 2.5 4.8 9.8	Batch ID: R7 Analysis Date: 12 Result PQL 2.5 0.10 4.8 0.50 9.8 0.50	Batch ID: R74178 Analysis Date: 12/21/2020 Result PQL SPK value 2.5 0.10 2.500 4.8 0.50 5.000 9.8 0.50 10.00	Batch ID: R74178 R74178 R R R R R R R R R R R R R R R R R R R	Batch ID: R74178 RunNo: 7. Analysis Date: 12/21/2020 SeqNo: 2 Result PQL SPK value SPK Ref Val %REC 2.5 0.10 2.500 0 98.5 4.8 0.50 5.000 0 96.0 9.8 0.50 10.00 0 97.8	Batch ID: R74178 RunNo: 74178 Analysis Date: 12/21/2020 SeqNo: 2618042 Result PQL SPK value SPK Ref Val %REC LowLimit 2.5 0.10 2.500 0 98.5 90 4.8 0.50 5.000 0 96.0 90 9.8 0.50 10.00 0 97.8 90	Batch ID: R74178 RunNo: 74178 Analysis Date: 12/21/2020 SeqNo: 2618042 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 2.5 0.10 2.500 0 98.5 90 110 4.8 0.50 5.000 0 96.0 90 110 9.8 0.50 10.00 0 97.8 90 110	Analysis Date: 12/21/2020 SeqNo: 2618042 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 2.5 0.10 2.500 0 98.5 90 110 4.8 0.50 5.000 0 96.0 90 110 9.8 0.50 10.00 0 97.8 90 110	Batch ID: R74178 RunNo: 74178 Analysis Date: 12/21/2020 SeqNo: 2618042 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit 2.5 0.10 2.500 0 98.5 90 110 4.8 0.50 5.000 0 96.0 90 110 9.8 0.50 10.00 0 97.8 90 110

Sample ID: MB SampType: mblk			Tes	tCode: El	3					
Client ID: PBW	Batch	n ID: R7	4337	F	RunNo: 7	4337				
Prep Date:	Analysis D	ate: 12	2/30/2020	8	SeqNo: 2	624363	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								

Sample ID: LCS	SampType: Ics			Tes	TestCode: EPA Method 300.0: Anions					
Client ID: LCSW	Batch ID: R74337			RunNo: 74337						
Prep Date:	Analysis D	ate: 12	2/30/2020	8	SeqNo: 20	624364	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.47	0.10	0.5000	0	94.3	90	110			
Chloride	4.7	0.50	5.000	0	94.1	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 3 of 13

Hall Environmental Analysis Laboratory, Inc.

0.0021

0.0019

2012A28 07-Jan-21

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 4Q2020

Sample ID: MB-57198	SampType: MBLK	TestCode: EPA Method 8081: Pesticides TCLP
Client ID: PBW	Batch ID: 57198	RunNo: 74305
Prep Date: 12/23/2020	Analysis Date: 12/29/2020	SeqNo: 2625239 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chlordane	ND 0.030	
Surr: Decachlorobiphenyl	0.0012 0.002500	49.7 41.7 129
Surr: Tetrachloro-m-xylene	0.0014 0.002500	56.3 31.8 88.5
Sample ID: MB-57198	SampType: MBLK	TestCode: EPA Method 8081: Pesticides TCLP
Client ID: PBW	Batch ID: 57198	RunNo: 74305
Prep Date: 12/23/2020	Analysis Date: 12/29/2020	SeqNo: 2625240 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chlordane	ND 0.030	
Surr: Decachlorobiphenyl	0.0013 0.002500	53.0 41.7 129
Surr: Tetrachloro-m-xylene	0.0016 0.002500	63.3 31.8 88.5
Sample ID: MB-57230	SampType: MBLK	TestCode: EPA Method 8081: Pesticides TCLP
Client ID: PBW	Batch ID: 57230	RunNo: 74305
Prep Date: 12/28/2020	Analysis Date: 12/29/2020	SeqNo: 2625241 Units: %Rec
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sample ID: MB-57230	SampType: MBL	K Tes	tCode: EPA Method	8081: Pesticio	les TCLP		
Client ID: PBW	Batch ID: 5723	0 F	RunNo: 74305				
Prep Date: 12/28/2020	Analysis Date: 12/2	29/2020	SeqNo: 2625242	Units: %Rec			
Analyte	Result PQL S	SPK value SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Decachlorobiphenyl	0.0023	0.002500	91.2 41.7	129			
Surr: Tetrachloro-m-xylene	0.0021	0.002500	84.2 31.8	88.5			

41.7

31.8

85.8

76.0

129

88.5

0.002500

0.002500

Sample ID: LCS-57198	SampT	ype: LC	e: LCS TestCode: EPA Metho			PA Method	lethod 8081: Pesticides TCLP				
Client ID: LCSW	Batch	n ID: 57	198	F	RunNo: 7	4305					
Prep Date: 12/23/2020	Analysis D	ate: 1	2/29/2020	8	SeqNo: 2	625244	Units: %Re	С			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: Decachlorobiphenyl	0.0022		0.002500		88.8	41.7	129				
Surr: Tetrachloro-m-xylene	0.0019		0.002500		75.7	31.8	88.5				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Surr: Decachlorobiphenyl

Surr: Tetrachloro-m-xylene

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2012A28**

07-Jan-21

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 4Q2020

Sample ID: LCS-57198 SampType: LCS TestCode: EPA Method 8081: Pesticides TCLP

Client ID: LCSW Batch ID: 57198 RunNo: 74305

Prep Date: 12/23/2020 Analysis Date: 12/29/2020 SeqNo: 2625246 Units: %Rec

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: Decachlorobiphenyl 0.0024 0.002500 94.3 41.7 129

Surr: Tetrachloro-m-xylene 0.0021 0.002500 83.2 31.8 88.5

Sample ID: LCSD-57198 SampType: LCSD TestCode: EPA Method 8081: Pesticides TCLP

Client ID: LCSS02 Batch ID: 57198 RunNo: 74305

Prep Date: 12/23/2020 Analysis Date: 12/29/2020 SeqNo: 2625247 Units: %Rec

%RPD **RPDLimit** Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit Qual Surr: Decachlorobiphenyl 0.0027 0.002500 108 41.7 129 0 0 0.0023 0 S Surr: Tetrachloro-m-xylene 0.002500 92.4 31.8 88.5 0

Sample ID: LCSD-57198 SampType: LCSD TestCode: EPA Method 8081: Pesticides TCLP

Client ID: LCSS02 Batch ID: 57198 RunNo: 74305

Prep Date: 12/23/2020 Analysis Date: 12/29/2020 SeqNo: 2625248 Units: %Rec

HighLimit %RPD PQL SPK value SPK Ref Val %REC **RPDLimit** Qual Analyte Result LowLimit Surr: Decachlorobiphenyl 0.0029 0.002500 115 41.7 129 0 0 Surr: Tetrachloro-m-xylene 101 0 0 S 0.0025 0.002500 31.8 88.5

Sample ID: LCS-57230 SampType: LCS TestCode: EPA Method 8081: Pesticides TCLP

Client ID: LCSW Batch ID: 57230 RunNo: 74305

Prep Date: 12/28/2020 Analysis Date: 12/29/2020 SeqNo: 2625249 Units: %Rec

SPK value SPK Ref Val %REC %RPD **RPDLimit** Result PQL LowLimit HighLimit Qual 0.0017 69.5 129 Surr: Decachlorobiphenyl 0.002500 41 7 Surr: Tetrachloro-m-xylene 0.0014 0.002500 55.1 31.8 88.5

Sample ID: LCS-57230 SampType: LCS TestCode: EPA Method 8081: Pesticides TCLP

Client ID: LCSW Batch ID: 57230 RunNo: 74305

Prep Date: 12/28/2020 Analysis Date: 12/29/2020 SeqNo: 2625250 Units: %Rec

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: Decachlorobiphenyl 41.7 0.0018 0.002500 73.6 129 Surr: Tetrachloro-m-xylene 0.0015 0.002500 59.3 31.8 88.5

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 5 of 13

Hall Environmental Analysis Laboratory, Inc.

2012A28 07-Jan-21

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 4Q2020

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: T (CLP Volatil	es by 8260B			
Client ID: LCSW	Batcl	n ID: T7 4	4256	F	RunNo: 74	4256				
Prep Date:	Analysis D	Date: 12	2/27/2020	\$	SeqNo: 20	621292	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.50	0.02000	0	101	70	130			
1,1-Dichloroethene	ND	0.70	0.02000	0	93.4	70	130			
Trichloroethene (TCE)	ND	0.50	0.02000	0	88.9	70	130			
Chlorobenzene	ND	100	0.02000	0	98.0	70	130			
Surr: 1,2-Dichloroethane-d4	0.010		0.01000		99.9	70	130			
Surr: 4-Bromofluorobenzene	0.010		0.01000		99.8	70	130			
Surr: Dibromofluoromethane	0.0080		0.01000		80.3	70	130			
Surr: Toluene-d8	0.0094		0.01000		93.6	70	130			

Sample ID: mb1	SampT	уре: МЕ	BLK	Tes	tCode: T (CLP Volatil	es by 8260B			
Client ID: PBW	Batch	n ID: T7 4	4256	F	RunNo: 7	4256				
Prep Date:	Analysis D	oate: 12	2/27/2020	S	SeqNo: 2	621293	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.50								
1,2-Dichloroethane (EDC)	ND	0.50								
2-Butanone	ND	200								
Carbon Tetrachloride	ND	0.50								
Chloroform	ND	6.0								
1,4-Dichlorobenzene	ND	7.5								
1,1-Dichloroethene	ND	0.70								
Tetrachloroethene (PCE)	ND	0.70								
Trichloroethene (TCE)	ND	0.50								
Vinyl chloride	ND	0.20								
Chlorobenzene	ND	100								
Surr: 1,2-Dichloroethane-d4	0.010		0.01000		101	70	130			
Surr: 4-Bromofluorobenzene	0.010		0.01000		100	70	130			
Surr: Dibromofluoromethane	0.0077		0.01000		76.8	70	130			
Surr: Toluene-d8	0.0095		0.01000		95.4	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 6 of 13

Hall Environmental Analysis Laboratory, Inc.

2012A28 07-Jan-21

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 4Q2020

Sample ID: Ics-1 99.5uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R74270 RunNo: 74270

Prep Date: Analysis Date: 12/28/2020 SeqNo: 2621907 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 95 10 99.50 0 95.1 85 115

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2012A28**

07-Jan-21

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 4Q2020

Sample ID: MB-57168 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 57168 RunNo: 74214

Prep Date: 12/22/2020 Analysis Date: 12/23/2020 SeqNo: 2619650 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LLLCS-57168 SampType: LCSLL TestCode: EPA Method 7470: Mercury

Client ID: BatchQC Batch ID: 57168 RunNo: 74214

Prep Date: 12/22/2020 Analysis Date: 12/23/2020 SeqNo: 2619651 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020 0.0001500 0 66.1 50 150

Sample ID: LCS-57168 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 57168 RunNo: 74214

Prep Date: 12/22/2020 Analysis Date: 12/23/2020 SeqNo: 2619652 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0048 0.00020 0.005000 0 96.8 80 120

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2012A28**

07-Jan-21

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 4Q2020

Sample ID: MB-57149 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 57149 RunNo: 74188

Prep Date:	12/21/2020	Analysis [Date: 12	2/22/2020	S	SeqNo: 20	618401	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.030								
Barium		ND	0.0020								
Cadmium		ND	0.0020								
Calcium		ND	1.0								
Chromium		ND	0.0060								
Magnesium		ND	1.0								
Potassium		ND	1.0								
Selenium		ND	0.050								
Silver		ND	0.0050								
Sodium		ND	1.0								

Sample ID: LCS-57149	Samp	Type: LC	:S	Test	tCode: El	PA 6010B:	Total Recover	able Meta	als	
Client ID: LCSW	Bato	ch ID: 57	149	R	RunNo: 7	4188				
Prep Date: 12/21/2020	Analysis	Date: 12	2/22/2020	S	SeqNo: 2	618403	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.50	0.030	0.5000	0	100	80	120			
Barium	0.48	0.0020	0.5000	0	96.8	80	120			
Cadmium	0.49	0.0020	0.5000	0	98.2	80	120			
Calcium	48	1.0	50.00	0	96.1	80	120			
Chromium	0.49	0.0060	0.5000	0	97.2	80	120			
Magnesium	48	1.0	50.00	0	96.8	80	120			
Potassium	48	1.0	50.00	0	96.6	80	120			
Selenium	0.49	0.050	0.5000	0	99.0	80	120			
Silver	0.10	0.0050	0.1000	0	101	80	120			
Sodium	49	1.0	50.00	0	98.2	80	120			

Sample ID: 2012A28-001DMS	Samp	SampType: MS TestCode: EPA 6010B: Total Recoverable Metals								
Client ID: Injection Well #2	Bato	h ID: 57	149	F	RunNo: 7	4188				
Prep Date: 12/21/2020	Analysis	Date: 12	2/22/2020	9	SeqNo: 20	618405	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.46	0.030	0.5000	0	91.2	75	125			
Barium	0.79	0.0020	0.5000	0.3492	88.3	75	125			
Cadmium	0.47	0.0020	0.5000	0	94.5	75	125			
Chromium	0.45	0.0060	0.5000	0.001590	89.8	75	125			
Magnesium	70	1.0	50.00	22.01	96.0	75	125			
Selenium	0.47	0.050	0.5000	0	93.4	75	125			
Silver	0.11	0.0050	0.1000	0.004336	104	75	125			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 13

Hall Environmental Analysis Laboratory, Inc.

0.49

0.020

0.5000

2012A28 07-Jan-21

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 4Q2020

Sample ID: 2012A28-001	I DMSD Samp	Type: MS	SD	Tes	tCode: El	PA 6010B:	Total Recover	rable Meta	als	
Client ID: Injection We	II #2 Bato	ch ID: 571	149	F	RunNo: 7	4188				
Prep Date: 12/21/2020	Analysis	Date: 12	2/22/2020	9	SeqNo: 2	618406	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.48	0.030	0.5000	0	95.2	75	125	4.34	20	
Barium	0.78	0.0020	0.5000	0.3492	85.4	75	125	1.85	20	
Cadmium	0.47	0.0020	0.5000	0	93.6	75	125	1.02	20	
Chromium	0.44	0.0060	0.5000	0.001590	88.0	75	125	2.00	20	
Magnesium	69	1.0	50.00	22.01	94.6	75	125	1.01	20	
Selenium	0.48	0.050	0.5000	0	97.0	75	125	3.73	20	
Silver	0.11	0.0050	0.1000	0.004336	101	75	125	2.38	20	
Sample ID: MB-57149	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA 6010B:	Total Recover	rable Meta	als	
Sample ID: MB-57149 Client ID: PBW	•	Type: ME			tCode: El RunNo: 7		Total Recover	rable Meta	als	
	Bato		149	F		4281	Total Recover	rable Meta	als	
Client ID: PBW	Bato	ch ID: 57 1	149 2/28/2020	F	RunNo: 7	4281		rable Meta	RPDLimit	Qual
Client ID: PBW Prep Date: 12/21/2020	Bato Analysis	ch ID: 57 1 Date: 12	149 2/28/2020	F	RunNo: 7 SeqNo: 2	4281 622252	Units: mg/L			Qual
Client ID: PBW Prep Date: 12/21/2020 Analyte	Bato Analysis I Result ND	Date: 12	149 2/28/2020 SPK value	SPK Ref Val	RunNo: 7 6 SeqNo: 2 6 %REC	4281 622252 LowLimit	Units: mg/L	%RPD	RPDLimit	Qual
Client ID: PBW Prep Date: 12/21/2020 Analyte Lead	Bato Analysis Result ND Samp	PQL 0.020	2/28/2020 SPK value	SPK Ref Val	RunNo: 7 6 SeqNo: 2 6 %REC	4281 622252 LowLimit PA 6010B:	Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Client ID: PBW Prep Date: 12/21/2020 Analyte Lead Sample ID: LCS-57149	Batc Analysis I Result ND Samp Batc	PQL 0.020	149 2/28/2020 SPK value SS 149	SPK Ref Val Tes	RunNo: 7- SeqNo: 2 %REC tCode: El	4281 622252 LowLimit PA 6010B: 4281	Units: mg/L HighLimit	%RPD	RPDLimit	Qual

Sample ID: 2012A28-001DMS	SampType:	MS	Tes	tCode: EF	PA 6010B:	Total Recover	rable Meta	ıls	
Client ID: Injection Well #2	Batch ID:	57149	F	RunNo: 7 4	1281				
Prep Date: 12/21/2020	Analysis Date:	12/28/2020	5	SeqNo: 26	622256	Units: mg/L			
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead	0.49 0.0	20 0.5000	0	97.2	75	125			

0

97.7

80

120

Sample ID: 2012A28-001DMS	D SampT	ype: MS	SD	Tes	tCode: El	PA 6010B:	Total Recover	able Meta	als	
Client ID: Injection Well #2	Batch	1D: 57	149	F	RunNo: 7	4281				
Prep Date: 12/21/2020	Analysis D	ate: 12	2/28/2020	S	SeqNo: 2	622257	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead	0.47	0.020	0.5000	0	94.7	75	125	2.62	20	•

Qualifiers:

Lead

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 13

Hall Environmental Analysis Laboratory, Inc.

2012A28 07-Jan-21

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 4Q2020

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R74231 RunNo: 74231

Prep Date: Analysis Date: 12/23/2020 SeqNo: 2620308 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R74231 RunNo: 74231

Prep Date: Analysis Date: 12/23/2020 SeqNo: 2620310 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 80.04 20.00 80.00 0 100 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 11 of 13

Hall Environmental Analysis Laboratory, Inc.

0.9992

WO#: **2012A28**

0.0700

20

07-Jan-21

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 4Q2020

Specific Gravity

Sample ID: 2012A28-001CDUP SampType: DUP TestCode: Specific Gravity

0

Client ID: Injection Well #2 Batch ID: R74205 RunNo: 74205

Prep Date: Analysis Date: 12/23/2020 SeqNo: 2619429 Units:

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 12 of 13

Hall Environmental Analysis Laboratory, Inc.

2012A28 07-Jan-21

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 4Q2020

Sample ID: MB-57191 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 57191 RunNo: 74238

Prep Date: 12/23/2020 Analysis Date: 12/23/2020 SeqNo: 2620643 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-57191 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 57191 RunNo: 74238

Prep Date: 12/23/2020 Analysis Date: 12/23/2020 SeqNo: 2620644 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 991 20.0 1000 0 99.1 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

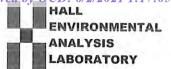
H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank


E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 13 of 13

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Work Order Number: 2012A28 RcptNo: 1 Southwest, Inc. Received By: Cheyenne Cason 12/19/2020 7:30:00 AM Completed By: **Desiree Dominguez** 12/21/2020 12:07:22 PM Reviewed By: SGL 12/21/20 Chain of Custody 1. Is Chain of Custody complete? Yes V No 🗌 Not Present 2. How was the sample delivered? Courier Log In 3. Was an attempt made to cool the samples? NA 🗌 Yes V No 🗌 4. Were all samples received at a temperature of >0° C to 6.0°C No L Yes V NA 🗌 Sample(s) in proper container(s)? Yes V No 🗌 6. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 No 🗌 7. Are samples (except VOA and ONG) properly preserved? 8. Was preservative added to bottles? No V Yes NA L 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 1 No L NA 🗌 Yes 10. Were any sample containers received broken? No V Yes # of preserved bottles checked 11. Does paperwork match bottle labels? Yes 🗸 for pH: No 🗌 (Note discrepancies on chain of custody) (<2 or >12 unless noted) Adjusted? 12. Are matrices correctly identified on Chain of Custody? Yes V No 🗌 13. Is it clear what analyses were requested? V No Yes Checked by: 12/21/20 14. Were all holding times able to be met? Yes 🗸 No 🗌 (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes NA V No L Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By

Page 1 of 1

2

1.1

1.1

Good

Good

Yes

Yes

Client	Western y Address:							21
Project Name Proj		n	X Standard	□ Rush		ANALYSIS		eived
Project #: Project Manager: Rely Robinson Project Manager: Proje			Project Name:			www.hallenviror		by O
Fig. 6105 6324-9375 Fax 505-345-4107	1.6	0661	Injec	tion Well #2 -	4Q2020	4901 Hawkins NE - Albuqu		CD:
Continue	Bloomfie	eld, NM 87413	Project #:				J	6/2/
Peaches Peaches Peachest		32-4166		PO 45001837	52	Analysis Rec		202
Package: Content of Full Validation Sample: Kelly Robinson Level 4 (Full Validation) Sample: Kelly Robinson Level 4 (Full Validation) Sample: Kelly Robinson Level 4 (Full Validation) Sample: Fixed Sample Temperature: \$2.50.0 None Type Container Type Preservative HEAL No. Container Type Container Type Preservative Level And #	email or Fax#: krobinso	on3@marathonpetroleum.con	Project Manager					11:
Container Container Type Preservative Container Type Container Type Preservative Container Type Container Typ	QA/QC Package: X Standard	☐ Level 4 (Full Validation)		Kelly Robinsor	_	ţsiJ lɛ		17:05 F
Time Relinquished by Constituted Constitute Con			Sampler:	Kelly Robinsor	_	alytice		M(N)
Sample Temperature: \$\int_{\text{Container}} \text{Time} Sample Request ID Container Type Preservative HEAL No. Propertion Type Type	NELAP			0.00	ON [su/		OL
Time Matrix Sample Request ID Container Type Preservative HEAL No. A	EDD (Type)E		Sample Tempera	ature: See	Row	√ pe		Y)
Water Injection Well #2 4-500mL Amber None -001 X X X X X X X X X	Time		Container Type and #		HEAL NO.	See Attache		Air Bubbles
Water 2-500mL Poly None x	800	Injection Well #2		None	100-	×		
Water 3-VOAs HCI X Water 1-500mL Poly NaOH X X Water 1-250mL Poly HNO3 X X Water 1-125mL Poly HNO3 X X Water 1-125mL Poly HNO3 X X Water 1-125mL Poly HNO3 X X Mater 1-125mL Poly HNO3 X <td< td=""><td>Water</td><td></td><td></td><td>None</td><td>_</td><td>×</td><td></td><td></td></td<>	Water			None	_	×		
Water 1-500mL Poly NaOH X X Water 1-250mL Poly HNO3 X X Water 1-125mL Poly HNO3 X X Water 1-125mL Poly HNO3 X X Time: Reinquished by: Received by: X X Time: Reinquished by: Received by: Received by: Received by: Received by: Time: Reinquished by: Received by: Received by: Received by: Received by:	Water		3-VOAs	HCI		×		
Water I-500mL Poly Nach Zn Acetate / Nach X X Water I-250mL Poly HNO3 X X X Water I-125mL Poly HNO3 X X X Time: Relinquished by: Received by:	Water			NaOH		×		
Water 1-250mL Poly HNO3 X X Water 1-125mL Poly HNO3 X X Water 1-125mL Poly H2SO4 X X Time: Relinquished by: Received by: Received by: Pate Time Remarks: Time: Relinquished by: Received by:	Water		1-500mL Poly	Zn Acetate / NaoH		×		
Water Water 1-125mL Poly HNO3 X X X X X X X X X	Water		1-250mL Poly	HN03		×		
Water Wate	Water			HN03		×		
Time: Relinquished by: Received by: Pate Time Remarks:		→		H2SO4	+	×		
Time: Relinquished by: Received by: Pate Time Remarks:								
Time: Relinquished by: Received by: Recei								
Time: Relinquished by: Received by: Date Time 1. M - 0.3 = 1.1	Time:	elle Due	Received by:	**	23	Remarks: Analytical List Attached to COC	-	Pa
	Time:	hed by:		12/1				ge 159 o

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

immediately or within a specified time period, or assess a civil penalty, or both (see Section 74-6-10 NMSA 1978). The compliance order may also include a suspension or termination of this Discharge Permit. OCD may also commence a civil action in district court for appropriate relief, including injunctive relief (see Section 74-6-10(A)(2) NMSA 1978). The Permittee may be subject to criminal penalties for discharging a water contaminant without a discharge permit or in violation of a condition of a discharge permit; making any false material statement, representation, certification or omission of material fact in a renewal application, record, report, plan or other document filed, submitted or required to be maintained under the Water Quality Act; falsifying, tampering with or rendering inaccurate any monitoring device, method or record required to be maintained under the Water Quality Act; or failing to monitor, sample or report as required by a Discharge Permit issued pursuant to a state or federal law or regulation (see Section 74-6-10.2 NMSA 1978).

2. GENERAL FACILITY OPERATIONS:

2.A. QUARTERLY MONITORING REQUIREMENTS FOR CLASS I NON-HAZARDOUS WASTE INJECTION WELL: The Permittee shall properly conduct waste management injection operations at its facility by injecting only non-hazardous (RCRA exempt and RCRA non-hazardous, non-exempt) oil field waste fluids. Injected waste fluids shall not exhibit the RCRA characteristics, i.e., ignitability, reactivity, corrosivity, or toxicity under 40 CFR 261 Subpart "C" 261.21 – 261.24 (July 1, 1992), at the point of injection into WDW-2, based upon environmental analytical laboratory testing. Pursuant to 20.6.2.5207B, the Permittee shall provide analyses of the injected fluids at least quarterly to yield data representative of their toxicity characteristic.

The Permittee shall also analyze the injected fluids quarterly for the following characteristics:

- o pH (Method 9040);
- o Eh:
- Specific conductance:
- Specific gravity;
 - Temperature;
- Major dissolved cations and anions, including: fluoride, calcium, potassium, magnesium, sodium bicarbonate, carbonate, chloride, sulfate, bromide, total dissolved solids, and cation/anion balance using the methods specified in 40 CFR 136.3); and,
- EPA RCRA Characteristics for Ignitability (ASTM Methods); Corrosivity (SW-846) and Reactivity (determined through Permittee's application of knowledge or generating process).

The Permittee shall analyze the injected fluids quarterly for the constituents identified in the Quarterly Monitoring List (below) to demonstrate that the injected fluids do not exhibit the characteristic of toxicity using the Toxicity Characteristic Leaching Procedure, EPA SW-846 Test Method 1311 (see Table 1, 40 CFR 261.24(b)).

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-<u>011 (WDW-2)</u> July 20, <u>2</u>016

EPA HW No.	Contaminant	SW-846	Regulatory
D004		Methods	Level (mg/L)
D005	Arsenic	1311	5,0
D018	Barium	1311	100.0
D006	Benzene	8021B	0.5
D019 .	Cadmium	1311	1.0
	Carbon tetrachloride	8021B 8260B	0.5
D020	Chlordane	8081A	0.03
D021	Chlorobenzene	8021B 8260B	100.0
D022	Chloroform	8021B 8260B	6.0
D007	Chromium	1311	5.0
D023	o-Cresol	8270D	200.0
D024	m-Cresol	8270D	200.0
D025 .	p-Cresol	8270D	200.0
D026	Cresol	8270D	200.0
D027	1,4-Dichlorobenzene	8021B 8121 8260B 8270D	75
	1,2-Dichloroethane	8021B 8260B	0.5
D029	1,1-Dichloroethylene	8021B 8260B	0,7
D030	2,4-Dinitrotoluene	8091 8270D	0.13
0032	Hexachlorobenzene	8121	0.13
0033	Hexachlorobutadiene	8021B 8121 8260B	0.5
034	Hexachloroethane	8121	3.0
008	Lead	1311	5.0
009	Mercury	7470A 7471B	0.2
035	Methyl ethyl ketone	8015B 8260B	200.0
036	Nitrobenzene	8091 8270D	2.0
037	Pentrachlorophenol	8041	100.0
038	Pyridine	8260B 8270D	5.0

Page 6

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

D010	Selenium	1311	1.0
D011	Silver	1311	5.0
D039	Tetrachloroethylene	8260B	0.7
D040	Trichloroethylene	8021B	0.5
		8260B	7.00
D041	2,4,5-Trichlorophenol	8270D	400,0
D042	2,4,6-Trichlorophenol	8041A	2.0
	10.0.2.2.2.	8270D	1 540
D043	Vinyl chloride	8021B	0.2
		8260B	74.945

If o-, m-, and p-cresol concentrations cannot be differentiated, then the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/L.

If the quantitation limit is greater than the regulatory level, then the quantitation limit becomes the regulatory level, If metals (dissolved), the EPA 1311 TCLP Laboratory Method is required with the exception of Mercury (total).

- 1. Monitor and Piezometer Wells: Groundwater with a total dissolved solids concentration of less than 10,000 mg/L occurs at an estimated depth of approximately 10 30 ft. below ground surface at the WDW-2 well (hereafter, "uppermost water-bearing unit"). Groundwater monitoring well (MW) with GW sampling capability shall be installed proximal to and hydrogeologically downgradient from WDW-2 in order to monitor the uppermost water-bearing unit. The MW shall be screened (15 ft. screen with top of screen positioned 5 ft. above water table) into the uppermost water-bearing unit. The Permittee shall propose a monitoring frequency with chemical monitoring parameters in order to detect potential groundwater contamination either associated with or not associated with WDW-2,
- 2.B. CONTINGENCY PLANS: The Permittee shall implement its proposed contingency plan(s) included in its application to cope with failure of a system(s) in the Discharge Permit.
- 2.C. CLOSURE: Prior to closure of the facility, the Permittee shall submit for OCD's approval, a closure plan including a completed form C-103 for plugging and abandonment of the waste injection well. The Permittee shall plug and abandon its well pursuant to 20.6.2.5209 NMAC and as specified in Permit Condition 2.D.
 - 1. Pre-Closure Notification: Pursuant to 20.6.2.5005A NMAC, the Permittee shall submit a pre-closure notification to OCD's Environmental Bureau at least 30 days prior to the date that it proposes to close or to discontinue operation of WDW-2. Pursuant to 20.6.2.5005B NMAC, OCD's Environmental Bureau must approve all proposed well closure activities before the Permittee may implement its proposed closure plan.
 - 2. Required Information: The Permittee shall provide OCD's Environmental Bureau with the following information in the pre-closure notification specified in Permit Condition 2.C.1:
 - Name of facility;
 - Address of facility;
 - · Name of Permittee (and owner or operator, if appropriate);

Page 7

ATTACHMENT B

2020 Bradenhead Test Report

Received by QCD; 6/2/2024 bid 7ie 05	PM State of New Me	xico		Form	ge 164 of 300	
Office District 1 – (575) 393-6161	Energy, Minerals and Natural Resources OIL CONSERVATION DIVISION 1220 South St. Francis Dr.		Revised July 18, 2013 WELL API NO.		18, 2013	
1625 N. French Dr., Hobbs, NM 88240 <u>District II</u> – (575) 748-1283			30-045-35747			
811 S. First St., Artesia, NM 88210 District III – (505) 334-6178			5. Indicate Type			
1000 Rio Brazos Rd., Aztec, NM 87410 District IV – (505) 476-3460	Santa Fe, NM 87		STATE 6. State Oil & G	FEE 🔀		
1220 S. St. Francis Dr., Santa Fe, NM			o. State on & o	ids Bedse No.		
87505 SUNDRY NOT	ICES AND REPORTS ON WELLS		7. Lease Name of	or Unit Agreement	Name	
	OSALS TO DRILL OR TO DEEPEN OR PLU CATION FOR PERMIT" (FORM C-101) FO			-		
1. Type of Well: Oil Well	Gas Well Other Wastewater D	Disposal Well		8. Well Number: WDW #2		
2. Name of Operator Western Refining Southwest, Inc.			9. OGRID Num	ber 267595		
3. Address of Operator 50 County Road 4990 (PO Box 15	9) Bloomfield, NM 87413		10. Pool name o Entrada	or Wildcat		
4. Well Location			_L			
Unit LetterH	: 2028 feet from the Nor	th line and	East feet fr	om the	line	
Section 27	Township 29N	Range 11W	NMPM	San Juan Co	ounty	
	11. Elevation (Show whether DR,	RKB, RT, GR, etc.		学出版		
	Sign .					
12. Check	Appropriate Box to Indicate Na	ature of Notice,	Report or Other	r Data		
NOTICE OF IN	NTENTION TO:	SUB	SEQUENT RE	PORT OF		
PERFORM REMEDIAL WORK	PLUG AND ABANDON	REMEDIAL WOR	•	ALTERING CAS	ING 🗌	
TEMPORARILY ABANDON	CHANGE PLANS	COMMENCE DR		P AND A		
PULL OR ALTER CASING DOWNHOLE COMMINGLE	MULTIPLE COMPL	CASING/CEMEN	T JOB 📙			
CLOSED-LOOP SYSTEM	İ					
OTHER			Bradenhead Test			
	oleted operations. (Clearly state all pork). SEE RULE 19.15.7.14 NMAC					
proposed completion or rec		. Tor wantiple co	impletions. Attach	wendore diagram	<i>J</i> 1	
	he Bloomfield Terminal Injection					
	ssure test on the Bradenhead and		ngs of WDW #2	on Friday, Septer	nber 18,	
2020. A representative of NMO	CD observed the testing via face-	time in the field.				
[················						
Spud Date:	Rig Release Da	ite:				
L						
I hereby certify that the information	above is true and complete to the bo	est of my knowledg	ge and belief.			
SIGNATURE	TITLE Enviro	nmental Superviso	r DAT	F 09/18/2020		
For State Use Only	son E-mail address: krobinso					
APPROVED BY: Conditions of Approval (if any):	TITLE		D	ATE		

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION
AZTEC DISTRICT OFFICE
1000 RIO BRAZOS ROAD
AZTEC NM 87410
(505) 334-6178 FAX: (505) 334-6170
http://emnrd.state.nm.us/ocd/District III/3distric.htm

BRADENHEAD TEST REPORT

(submit 1 copy to above address)

Date of Test 9-18-20 Operator Western Refining Southwest PI #30-045-35747						
	Property Name Wash Dopsel Well No. Z Location: Unit H Section 27 Township 29 Range 11					
						: Tubing 650 Intermediate 6 Casing 6 Bradenhead 43
OPE	N BRA	DENHI	EAD AN	D INTER	MEDIA	TE TO ATMOSPHERE INDIVIDUALLY FOR 15 MINUTES EACH
				FLOW CHARACTERISTICS BRADENHEAD INTERMEDIATE		
TIME 5 min_	Ø	Ø	Ø	Ø	Ø	Steady Flow
10 min_	Ø	Ø	Ø	Ø	Ø	Surges
15 min_	Ø	Ø	Ø	Ø	Ø	Down to Nothing
20 min_						Nothing
25 min_						Gas
30 min_						Gas & Water
(Ø = Zero Water					
If brade	nhead i	lowed w	ater, che	ck all of th	e descrip	otions that apply below:
CLEAR FRESH SALTY SULFUR BLACK						
5 MINU	CLEAR FRESH SALTY SULFUR BLACK Light puff when opened after 5 minutes 5 MINUTE SHUT-IN PRESSURE BRADENHEAD O INTERMEDIATE O					
DEMADES.						
The intermediate and bradenhead have not been opened prior to						
testing. Dradenhead pressure to Opsi in 4 seconds. Intermedicate to & ps						
testing. Bradenhead pressure to Opsi in 4 seconds. Intermedicate to & ps in 14 seconds. Intermedicate had no puff after 5 minute shut-in. By Kelly Robinson : Frank Dooling Witness Monica Kuchling (Via Face-Time)						
By Kelly Robins : Frank Dooling Witness Monica Ruchling (Via Face - line)						
(Position)						
E-mail address Krobinsa 3@ marathon Petroleum. com						

ATTACHMENT C

Area of Review

Wells within One-Mile Radius of Bloomfield Terminal Disposal Well WDW-2

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well (WDW) #2 Well List for 1 Mile Area of Review (AOR)

Name	API#	Well Type	Date Drilled	Location (Lat, Long)	Depth(FT)	Record of Completion
PREONGARD WELL #1	30-045-25745	GAS	N/A	36.6985, -107.9679	0	Never Drilled
JACQUE #002	30-045-34409	GAS	9/7/2007	36.6998,-107.9735	1897	Active
PRE-ONGARD WELL #001	30-045-23553	GAS	N/A	36.6998,-107.9738	0	Never Drilled
DAVIS GAS COM F #001E	30-045-24084	GAS	9/7/1980	36.7000,-107.9737	6392	Active
PRE-ONGARD WELL #002	30-045-07883	GAS	N/A	36.7001,-107.9738	0	Never Drilled
DISPOSAL #001	30-045-29002	Salt Water Disposal	12/17/1993	36.6964,-107.9742	3601	Plugged, Site Released
DAVIS GAS COM F #001R	30-045-30833	GAS	11/28/2001	36.6946,-107.9726	6700	Active
DAVIS GAS COM J #001	30-045-25329	GAS	10/29/1982	36.7001,-107.9650	4331	Active
PRE-ONGARD WELL #1	30-045-23552	GAS	N/A	36.7001,-107.9650	0	Never Drilled
SULLIVAN GAS COM D #001E	30-045-24083	GAS	01/19/1980	36.7001,-107.9648	6329	Active
DAVIS GAS COM F #001	30-045-07825	GAS	10/4/1960	36.6948,-107.9740	6365	Plugged, Site Released
DAVIS GAS COM G #001	30-045-23554	GAS	10/11/1979	36.6947,-107.9738	2951	Plugged, Site Released
JACQUE #001	30-045-34463	GAS	10/31/2007	36.6941,-107.9727	1890	Active
PRE-ONGARD WELL #001	30-045-07812	GAS	12/10/1952	36.6943,-107.9733	1804	Plugged, Site Released
CALVIN #001	30-045-12003	GAS	10/24/1962	36.6930,-107.9660	6450	Active
MANGUM #001S	30-045-34266	GAS	N/A	36.6985,-107.9796	0	Never Drilled
CALVIN #003	30-045-25612	OIL	4/29/1983	36.6945,-107.9624	5970	Active
CALVIN #100	30-045-31118	GAS	1/8/2003	36.6926,-107.9637	1970	Active
PRE-ONGARD WELL #001	30-045-07776	GAS	N/A	36.6907,-107.9688	0	Plugged, Site Released
NANCY HARTMAN #002	30-045-26721	GAS	7/26/1986	36.7066,-107.9729	2824	Active
CONGRESS #009	30-045-24572	GAS	3/1/1981	36.6920,-107.9640	2960	Active
SULLIVAN GAS COM D #001	30-045-07733	GAS	11/10/1964	36.7016,-107.9603	6260	Active
HARTMAN #001	30-045-07961	GAS	03/03/1960	36.7068,-107.9734	6310	Plugged, Site Released
GRACE PEARCE #001	30-045-07959	GAS	06/19/1958	36.7068,-107.9756	1620	Plugged, Site Released
ASHCROFT SWD #001	30-045-30788	Salt Water Disposal	12/19/2001	36.7014,-107.9592	7512	Active
CONGRESS #018	30-045-25673	OIL	5/7/1983	36.6955,-107.9815	6150	Active
MANGUM #001E	30-045-24673	GAS	2/27/1981	36.6999,-107.9821	6240	Active
CALVIN #001F	30-045-33093	GAS	10/2/2005	36.6943,-107.9593	6525	Active
MARIAN S #001	30-045-27365	GAS	9/16/1989	36.6998,-107.9826	2840	Active
LAUREN KELLY #001	30-045-27361	GAS	9/14/1989	36.7000,-107.9826	1500	Active
PRE-ONGARD WELL #001X	30-045-29107	GAS	11/1/1953	36.6991,-107.9573	0	Plugged, Site Released
PRE-ONGARD WELL #00X	30-045-07870	GAS	6/14/1953	36.6992,-107.9573	1442	Plugged, Site Released
PRE-ONGARD WELL #001	30-045-07896	GAS	N/A	36,7016,-107,9828	0	Never Drilled
EARL B SULLIVAN #001	30-045-23163	GAS	12/23/1978	36.7019,-107.9577	2861	Active
CONGRESS #016	30-045-25657	OIL	5/7/1983	36.6879,-107.9721	6200	Active
STATE GAS COM BS #001	30-045-23550	GAS	11/11/1979	36,7081,-107,9640	2954	Active
PEARCE GAS COM #001	30-045-07985	GAS	06/19/1965	36.7082,-107.9639	6274	Plugged, Site Released
MANGUM #001	30-045-07835	GAS	12/6/1962	36.6957,-107.9840	6350	Active
MARY JANE #001	30-045-26731	GAS	08/26/1986	36.7057,-107.9815	2845	Active
SUMMIT #009	30-045-24574	GAS	11/06/1980	36.6872,-107.9727	2985	Active
ROYAL FLUSH #001	30-045-34312	GAS	06/12/2007	36.7059,-107.9814	2045	Active

ATTACHMENT D

2020 Fall-Off Test

Received by OCD of Population bilities	PM State of New Mexico	Page 170 of 300 Form C-103
Office <u>District I</u> – (575) 393-6161	Energy, Minerals and Natural Resour	rces Revised July 18, 2013
1625 N. French Dr., Hobbs, NM 88240 District II – (575) 748-1283		WELL API NO.
811 S. First St., Artesia, NM 88210	OIL CONSERVATION DIVISION	ON 30-045-35747 5. Indicate Type of Lease
<u>District III</u> – (505) 334-6178 1000 Rio Brazos Rd., Aztec, NM 87410	1220 South St. Francis Dr.	STATE FEE S
District IV - (505) 476-3460	Santa Fe, NM 87505	6. State Oil & Gas Lease No.
1220 S. St. Francis Dr., Santa Fe, NM 87505		
SUNDRY NOT (DO NOT USE THIS FORM FOR PROPO	CICES AND REPORTS ON WELLS OSALS TO DRILL OR TO DEEPEN OR PLUG BACK TO ICATION FOR PERMIT" (FORM C-101) FOR SUCH	7. Lease Name or Unit Agreement Name
1. Type of Well: Oil Well	Gas Well 🛛 Other Wastewater Disposal W	ell 8. Well Number: WDW #2
2. Name of Operator Western Refining Southwest, Inc.		9. OGRID Number 267595
3. Address of Operator 50 County Road 4990 (PO Box 15	59) Bloomfield, NM 87413	10. Pool name or Wildcat Entrada
4. Well Location		
Unit LetterH	: 2028 feet from the North	line and <u>East</u> feet from theline
Section 27	Township 29N Range l	
	11. Elevation (Show whether DR, RKB, RT,	GR, etc.)
PERFORM REMEDIAL WORK TEMPORARILY ABANDON DULL OR ALTER CASING DOWNHOLE COMMINGLE CLOSED-LOOP SYSTEM OTHER: Fall Off Test 13. Describe proposed or com of starting any proposed w proposed completion or re	CHANGE PLANS COMMENT CASING/ MULTIPLE COMPL OTHER: pleted operations. (Clearly state all pertinent de cork). SEE RULE 19.15.7.14 NMAC. For Multiple Completion. minal Injection Well Discharge Permit (UIC off Test (FOT) on WDW #2. Wester contact	
Spud Date:	Rig Release Date:	
I hereby certify that the information	above is true and complete to the best of my k	nowledge and belief.
SIGNATURE Helly Ro	TITLE Environmental Si	upervisor DATE <u>11/26/2020</u>
Type or print name <u>Kelly Robins</u> For State Use Only	E-mail address: <u>krobinson3@</u> 1	marathonpetroleum.com PHONE: (505) 632-4166
APPROVED BY: Conditions of Approval (if any):	TITLE	DATE

2020 ANNUAL BOTTOM-HOLE PRESSURESURVEY AND PRESSURE FALLOFF TEST REPORT WESTERN REFINING SOUTHWEST, INC.

WASTE DISPOSAL WELL NO. 2 Bloomfield, New Mexico

November 2020

Houston, TX

Project No. 192143A

<u>Prepared by Larry McDonald</u>

Reviewed by Jeffry Tahtouh

TABLE OF CONTENTS

EXECU	TIVE SUMMARY	5
1.	FACILITY INFORMATION	
2.	WELL INFORMATION	
3.	CURRENT WELLBORE SCHEMATIC	6
4.	ELECTRIC LOG ENCOMPASSING THE COMPLETED INTERVAL	7
5.	RELEVANT PORTIONS OF THE POROSITY LOG USED TO ESTIMATE FORMA	
	POROSITY	7
6.	PVT DATA OF THE FORMATION AND INJECTION FLUID	7
7.	DAILY RATE HISTORY DATA (MINIMUM OF ONE MONTH PRECEDING THE	FALLOFF
	TEST)	7
8.	CUMULATIVE INJECTION INTO THE FORMATION FROM TEST WELL	7
9.	PRESSURE GAUGES	7
10.	ONE MILE AREA OF REVIEW (AOR)	8
11.	GEOLOGY	9
12.	OFFSET WELLS	9
13.	CHRONOLOGICAL LISTING OF THE DAILY TESTING ACTIVITIES	10
14.	PRESSURE FALLOFF ANALYSIS	10
15.	NEW MEXICO OIL CONSERVATION DIVISION THREE YEAR RECORDING KE	EPING
	STATEMENT	16

TABLES

TABLE 1:	TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR Waste Disposal Well No. 2
TABLE 2:	WELL CHANGES IN THE COMBINED AREA OF REVIEW
TABLE 3:	WELLS THAT HAVE BEEN PLUGGED AND ABANDONED SINCE THE 2019 AOR UPDATE
TABLE 4:	WELLS THAT HAVE BEEN TEMPORARILY ABANDONED SINCE THE 2019 AOR UPDATE
TABLE 5:	WELLS THAT HAVE BEEN RECOMPLETED SINCE THE 2019 AOR UPDATE
TABLE 6:	NEWLY DRILLED WELLS SINCE THE 2019 AOR UPDATE
TABLE 7:	TABULATION OF THE FIGURES INCLUDED IN THE REPORT
TABLE 8:	COMPARISON OF PERMEABILITY, MOBILITY-THICKNESS, SKIN, AND FALSE EXTRAPOLATED PRESSURE 2020, AND 2019 FROM AVAILABLE DATA
TABLE 9:	STATIC PRESSURE GRADIENT DATA

FIGURES

FIGURE 1:	WASTE DISPOSAL WELL NO. 2 SCHEMATIC
FIGURE 2:	MAP OF ONE MILE AREA OF REVIEW
FIGURE 3:	TEST OVERVIEW
FIGURE 4:	CARTESIAN PLOT OF THE DATA USED IN THE ANALYSIS
FIGURE 5:	DERIVATIVE LOG-LOG PLOT
FIGURE 6:	SUPERPOSITION HORNER (SEMI-LOG) PLOT
FIGURE 7:	EXPANDED SUPERPOSITION HORNER (SEMI-LOG) PLOT
FIGURE 8:	STATIC PRESSURE GRADIENT SURVEY

APPENDICES

APPENDIX A: DUAL INDUCTION LOG SECTIONS FROM 7200 FEET TO 7532 FEET

APPENDIX B: POROSITY LOG SECTIONS FROM 7200 FEET TO 7532 FEET

APPENDIX C: INJECTION AND FORMATION FLUID ANALYSIS

APPENDIX D: DAILY RATE HISTORY DATA

APPENDIX E: GAUGE CALIBRATION SHEETS

APPENDIX F: PANSYSTEM© ANALYSIS OUTPUT

EXECUTIVE SUMMARY

WSP USA Inc. (WSP) was contracted by Western Refining Southwest Inc. (Western) to conduct the analysis of the annual bottom-hole pressure survey and pressure falloff test on Western's Waste Disposal Well No. 2 (WDW#2). The test was performed according to New Mexico Oil Conservation Division (OCD) falloff test guidelines (New Mexico Oil Conservation Division UIC Class I Well Fall-Off Test Guidance, December 3, 2007).

The test provides the state regulatory agency with the necessary information to access the validity of requested or existing injection well permit conditions and satisfy the permitting objective of protecting the underground sources of drinking water (USDW). Specifically, 40 CFR Part 146 states "the Director shall require monitoring of the pressure buildup in the injection zone annually, including at a minimum, a shutdown of the well for a time sufficient to conduct a valid observation of the pressure fall-off curve" (40 CFR§146.13 for Nonhazardous Class I Wells).

The falloff testing was conducted according to the testing plan submitted to and approved by the NM OCD.

As prescribed by the guidelines, the report discusses supporting and background information in Sections 1 through 9. The one-mile area of review (updated since the 2019 falloff testing) is discussed in Section 10 and geology in Section 11. Information on the offset wells is discussed in Section 12, daily testing activities in Section 13. The pressure falloff testing and analysis results are discussed in Section 14. The OCD required record keeping statement is discussed in Section 15.

1. FACILITY INFORMATION

- a. Name: Western Refining Southwest, Inc. (subsidiary of the Marathon Petroleum Company)
- b. Facility Location: 50 County Road 4990 (PO Box 159) Bloomfield, New Mexico 87413
- c. Operator's Oil and Gas Remittance Identifier (OGRID) Number: 267595

2. WELL INFORMATION

- a. OCD UIC Permit Number: UICI-011
- b. Well Classification: Class I Non-hazardous
- c. Well Name and Number: WDW#2
- d. API Number: 30-045-35747
- e. Well Legal Location: 2028' FNL and 111' FEL, Unit letter H of Section 27, Township 29 North, Range 11 West

3. CURRENT WELLBORE SCHEMATIC

The WDW#2 wellbore schematic is presented in Figure 1. The schematic contains data, as requested by the guidelines and includes the following:

- a. Tubing: 4-1/2-inch, 11.6 pound per foot, API grade L-80, with Internal Plastic Coated (IPC) casing, set at 7230 feet
- b. Packer: Baker, 7-inch by 4-1/2-inch set at 7230 feet.
- c. Size, Type, and Depth of Casing: There are three casing strings in the well. The information for these casing strings was obtained from OCD records on file with the state and geophysical logs. The casing strings are:
 - i. 13-3/8-inch, 48 pound per foot, steel construction, API grade H40, set at a depth of 298 feet. The casing was cemented to the surface with 394 sacks of cement. The casing was set in open hole with a diameter of 17.5 inches.
 - ii. 9-5/8-inch, 36 pound per foot, steel construction, API grade J-55, set at a depth of 3500 feet. The casing was cemented to the surface with 857 sacks of cement. The casing was set in open hole with a diameter of 12.25 inches.
 - iii. 7-inch, 26 pound per foot and 23 pound per foot, steel construction, API grade L-80, set at a depth of 7525 feet. The casing was cemented to surface with 868 sacks of cement. The casing was set in open hole with a diameter of 8.75 inches.

4. ELECTRIC LOG ENCOMPASSING THE COMPLETED INTERVAL

The dual induction log is presented in Appendix A and encompasses the completed interval between 7200 feet and 7532 feet. The dual induction log was submitted to the OCD with the original permit after the well was drilled.

5. RELEVANT PORTIONS OF THE POROSITY LOG USED TO ESTIMATE FORMATION POROSITY

The porosity log is presented in Appendix B and encompasses the completed interval between 7200 feet and 7532 feet. The neutron density log was submitted to the OCD with the original permit after the well was drilled. The porosity of the formation, 14.9%, and the reservoir thickness, 123 feet, were determined from this log. These values were used in the analysis of the pressure falloff data (Section 15). Additional information concerning the geology of the injection reservoir is discussed in Section 11.

6. PVT DATA OF THE FORMATION AND INJECTION FLUID

The fluid used for the injection test is the terminal treated wastewater (effluent). A current effluent analysis collected on July 13, 2020 and August 17, 2020 is included in Appendix C. A summary of the formation water is also in Appendix C. The formation water analyses taken on January 25, 2017 is included.

7. DAILY RATE HISTORY DATA (MINIMUM OF ONE MONTH PRECEDING THE FALLOFF TEST)

The rate history used in the analysis of the pressure falloff data began on May 28, 2020 and ends when the well was shut-on September 21, 2020. The daily rate history is summarized in Appendix D.

8. CUMULATIVE INJECTION INTO THE FORMATION FROM TEST WELL

The total volume of fluid injected into the WDW#2 was 6,738,018 gallons. The injected volumes were obtained from NMOCD online records.

9. PRESSURE GAUGES

Two (2) downhole pressure gauges were used for the WDW-2 buildup and falloff testing. The downhole pressure gauge was set at 7312 feet, ground level.

a. Describe the type of downhole surface pressure readout gauge used including manufacture and type:

An MRO pressure gauge was used to monitor the bottom-hole pressure and temperature during the pressure buildup and falloff testing. The gauge was a sapphire crystal gauge with Serial No.240. The gauges are manufactured by Micro-Smart.

b. List the full range, accuracy and resolution of the gauge:

The MRO pressure gauge, Serial No. 240, has a full range of 14.73 psi to 5000 psi and an accuracy of 0.05% of full scale.

c. Provide the manufacturer's recommended frequency of calibration and a calibration certificate showing date the gauge was last calibrated:

The certificates of calibration for the pressure gauge used during the testing are included as Appendix E. The pressure gauge was last calibrated on March 10, 2020 and is within the recommended calibration frequency as recommended by Micro-Smart.

10. ONE MILE AREA OF REVIEW (AOR)

Federal Abstract Company was contracted by WSP to undertake a review of well changes made within a one-mile area of review (AOR) of WDW#2. The current update of the one-mile area of review includes all existing wells within the one-mile AOR and any changes that have occurred to these wells since the 2019 update.

No new freshwater wells were reported within the search area since the submittal of the 2019 report.

a. Identify wells located within the one-mile AOR:

There are 62 wells in the one-mile radius of investigation. Table 1 contains a listing of all wells within the one-mile AOR of WDW#2. Figure 2 is a base map of the area containing the one-mile AOR.

b. Ascertain the status of wells within the one-mile AOR:

Table 1 also contains a listing of all wells within the one-mile AOR, with their current status. Tables 2 through 6 contain a list of all wells within the one-mile AOR that have had modifications to the current permit or have had new drilling and/or completion permits issued since the 2019 pressure falloff report.

Five (5) additional wells were found in the AOR that were not identified in the previous reports. They can be found in the Table 1 and are numbered 58 through 62. Ten (10) wells were found in which the owner had changed. Three (3) wells were found in which the permit was cancelled. Five (5) new wells were plugged and abandoned. No wells were placed in temporarily abandoned status. No wells were found that were returned to production status. No wells were found that had been recompleted.

No new wells were drilled and no permits were issued to drill new wells. All plugged and abandoned wells were successfully plugged and isolated from the WDW#2 injection interval according to current OCD records.

c. Provide details on any offset producers and injectors completed in the same interval:

One of the sixty-two wells in the AOR, Ashcroft SWD #1, penetrates the Entrada injection zone. This well is 0.64 miles from the disposal well and is an active water disposal well. Ashcroft SWD #1 is listed as ID No. 24 in Table 1 and no changes have occurred to this well. No wells are currently producing form the Entrada injection zone within the AOR.

11. GEOLOGY

The injection zone is the Entrada sandstone formation. The formations occur in WDW #2 at the depths shown in the table below. The injection zone is shown in WDW #2 logs in Appendices A and B.

	Waste Disposal Well #2		
Injection Zone Formation	(KB elev = 5,550 ft)		
	MD below KB (ft)	SS Depth (ft)	
Bluff Sandstone	Not completed	7,031	
Entrada Sandstone	7,312 to 7,470	7,308	

The Jurassic aged Entrada Sandstone is thought to be one of the best water disposal rock units in the San Juan Basin. The Entrada is the basal formation of the San Rafael Group which also includes the Todilto and Wanakah Formations. The Entrada Sandstone is present throughout the basin's subsurface and crops out along its margin as step cliffs. The Entrada unconformably overlies the Chinle Formation. The Todilto Formation made up of limestone and anhydrite in dense and thought to an impermeable barrier or seal and likely seal for the injection zone.

The Entrada Sandstone consists of mottled reddish-brown very fine to medium grained wellsorted, silica cemented quartz sandstone interbedded with thinner reddish-brown siltstones. The sandstone units are assembled in high-angle, large-scale crossbeds indicating eolian environment deposition and with the siltstones representing interdue and sabkha deposition. The crossstratified sandstone is competent, laterally persistent and with homogenous reservoir properties. Entrada Sandstone gross thickness ranges from 60 feet to 330 feet across the basin.

At the WDW #2 location the Entrada is 158 feet thick. Based upon the nearby XTO Energy Ashcroft SWD #1 water disposal well density porosities are up to 18 percent with the most porous interval found in the upper 90 feet of the formation where many of the density porosities are greater than 10 percent. WDW #2 has a density porosity of 12.1 percent. The two intervals with the highest porosity are 20 feet from 7,333 feet to 7,353 feet with 14.1 percent porosity and 26 feet from 7,442 feet to 7,468 feet with 14.9 percent porosity. Permeability for the well as measured by this falloff test is 1.14 md or less.

12. OFFSET WELLS

The offset well is discussed in Section 10.0.

13. CHRONOLOGICAL LISTING OF THE DAILY TESTING ACTIVITIES

a. Date of the testing:

The buildup portion of the testing started on September 18, 2020 at 1334 hours and continued until September 21, 2020 at 1424 hours when WDW-2 was shut-in. The falloff test ended on October 1, 2020 at 0802 hours. Five-minute gradient stops were made at 1000-foot intervals while pulling the pressure gauges out of the well. After the pressure gauges were pulled out of the well, the well was turned over to Western plant operations personnel.

b. Time of the injection period:

The buildup portion of the testing began on September 18, 2020 when the injection rate was set at an average injection rate of approximately 22 gallons per minute (gpm). The bottomhole pressure and temperature were monitored for 72.83 hours after which time the well was shut in.

c. Type of injection fluid:

The injected fluid was non-hazardous wastewater from the plant. The density of the injection fluid averaged 8.33 pounds per gallon during the test.

d. Final injection pressure and temperature prior to shutting in the well:

The final flowing pressure feet (P_{wf}) and temperature (T_{wf}) were 4479.71 psia and 181.71°F, respectively.

e. Total shut-in time:

WDW-2 was shut-in for 234 hours.

f. Final static pressure and temperature at the end of the fall-off portion of the test:

The final static pressure (P_{static}) and temperature (T_{static}) were 3750.78 psia and 184.46°F, respectively.

14. PRESSURE FALLOFF ANALYSIS

The following discussion of the analysis of the pressure data recorded during the falloff testing of WDW- 2 satisfies Sections 15 through 19 of Section IX, Report Components, of the OCD's falloff test guidelines. Where appropriate, the specific guideline addressed is annotated. Specific parameters used in the equations and discussed previously in this report are also annotated. The plots included with this report are summarized in Table 7. The inclusion of these plots in this report satisfies OCD Guideline Section IX.18.

The pressure data obtained during the falloff test were analyzed using the commercially available pressure transient analysis software program PanSystem©. Appendix F contains the output from this software program. Figure 3 shows the pressure data recorded by the bottomhole pressure gauge from the time the tool was in place through the 234-hour shut-in period. Figure 4 is a Cartesian plot of the pressure data recorded during the falloff period.

Figure 5 is the derivative log-log diagnostic plot of the falloff data, showing change in pressure and pressure derivative versus elapsed shut-in time. The different flow regimes, wellbore storage, fracture bilinear flow, pseudo-radial flow and change in reservoir characteristics if present, are indicated on the log-log plot and the superposition Horner plot (OCD Guideline Section IX.18.c and IX.18.d).

Wellbore storage begins at 0.036 hours and continues to an elapsed shut in time of 0.052 hours. The bi- linear flow period begins at an elapsed shut-in time of 0.488 and continues until an elapsed shut-in time of 1.10 hours. The linear flow period was not apparent on the 2020 derivative log-log plot as was seen on the 2019 pressure falloff analysis report. Although the pseudo-radial flow period is not fully developed, it gives a good determination of the reservoir permeability. The pseudo-radial flow period begins at an elapsed shut in time of 153.77 hours and continues to an elapsed time of 233.94 hours. (OCD Guideline Section IX.15.b).

The reservoir permeability was determined from the pseudo-radial flow region of the superposition semi-log plot, Figure 6. The superposition time function was used to account for all rate changes during the injection period used in the analysis of the data. The pseudo-radial flow regime begins at a Superposition time of 1.96 and continues to 1.76. Figure 7 shows an expanded view of the pseudo-radial flow regime. The slope of the radial flow period, as calculated by the analysis software, was 482.305 psi/cycle (OCD Guideline Section IX.15.c). The injection rate just prior to shut in was 24 gpm which is equivalent to 882.86 barrels per day (bbls/day).

An estimate of mobility-thickness (transmissibility, OCD Guideline Section IX.15.d), kh/ μ , for the reservoir was determined to be 297.64 md-ft/cp using the following equation:

$$\frac{kh}{\mu} = 162.6 \frac{qB}{m}$$

where,

 kh/μ = formation mobility-thickness, millidarcy-feet/centipoise

q = rate prior to shut in, bpd

B = formation volume factor, reservoir volume/surface

volume

m = slope of radial flow period, psi/cycle

$$\frac{kh}{\mu} = 162.6 \, \frac{(882.86)(1.0)}{482.305}$$

The permeability-thickness (flow capacity, OCD Guideline Section IX.15.i), kh, was determined to be 138.89 md-ft by multiplying the mobility-thickness, kh/ μ , by the viscosity of the reservoir fluid (see Section 6), $\mu_{\rm reservoir}$, of 0.47 centipoise (cp):

$$kh = \frac{(kh)}{\mu} \mu_{reservoir}$$

= (297.64)(0.47)
= 139.89 md-ft

The reservoir permeability (OCD Guideline Section IX.15.e) using the total thickness (see Section 5 and Section 11) of 123 feet was 1.14 md:

$$k = \frac{kh}{h}$$

$$= \frac{139.89}{123}$$

$$= 1.14 \text{ md}$$

To determine whether the proper viscosity was used in arriving at this permeability, the travel time for a pressure transient to pass beyond the waste front needs to be calculated (OCD Guideline Section VIII.5). The distance to the waste front is determined from the following equation:

$$r_{waste} = \left(\frac{0.13368 \, V}{\pi \, h \, \Phi}\right)^{1/2}$$

where,

 r_{waste} = radius to waste front, feet

V = total volume injected into the injection interval,

gallons

h = formation thickness, feet

φ = formation porosity, fraction

0.13368 = constant

A cumulative volume of approximately 6,738,018 gallons of waste has been injected into WDW-2 (see Section 8). The formation has a porosity of 0.149 (see Section 5 and Section 11).

The distance to the waste front was determined to be 125.08 feet:

$$r_{waste} = \left(\frac{(0.13368)(6738018)}{\pi (123)(0.149)}\right)^{1/2}$$

= 125.08 feet

The time necessary for a pressure transient to traverse this distance is calculated from the following equation:

$$t_{waste} = 948 \frac{\Phi \, \mu_{waste} \, c_t \, r_{waste}^2}{k}$$

where,

 t_{waste} = time for pressure transient to reach waste front, hours

φ = formation porosity, fraction

 μ_{waste} = viscosity of the waste at reservoir conditions, centipoise

 r_{waste} = radius to waste front, feet

c_t = total compressibility of the formation and fluid, psi

k = formation permeability, millidarcies

948 = constant

The pore volume compressibility is $4.44 \times 10^{-6} \, \text{psi}^{-1}$ (see Section 6). The viscosity of the waste fluid is 0.47 cp (see Section 6). The time necessary for a pressure transient to traverse the distance from the wellbore to the leading edge of the waste front would be 4.04 hours:

$$t_{waste} = 948 \frac{(0.149)(0.47)(4.44 \times 10^{-6})(125.08)^2}{1.14}$$

= 4.04 hours

Since the time required to pass through the waste is less than the 153.77 hours required to reach the beginning of the radial flow period, the assumption that the pressure transient was traveling through reservoir fluid during the period of the semi-log straight line was correct.

The near wellbore skin damage (OCD Guideline Section IX.15.f) was determined from the following equation:

$$s = 1.151 \left[\frac{p_{\text{wf}} - p_{1\text{hr}}}{m_1} - \log \left(\frac{k}{\phi \mu c_t r_w^2} \right) + 3.23 \right]$$

where,

s = formation skin damage, dimensionless

1.151 = constant

 p_{wf} = flowing pressure immediately prior to shut in, psi

 p_{1hr} = pressure determined from extrapolating the first radial flow semi-log line to a Δt of one hour, psi

m₁ = slope of the first radial flow semi-log line, psi/cycle

k = permeability of the formation, md

 ϕ = porosity of the injection interval, fraction

 μ = viscosity of the fluid the pressure transient is traveling through, cp

 c_t = total compressibility of the formation plus fluid, psi⁻¹

 r_w = radius of the wellbore, feet

3.23 = constant

The final measured flowing pressure was 4479.71 psia. The pressure determined by extrapolating the radial flow semi-log line to a Δt of one hour, p_{1hr} , was 4522.64 psia (calculated from the analysis software). The wellbore radius, r_w , is 0.3281 feet (completion records). Using these values in addition to the previously discussed parameters results in a skin of -5.05:

$$s = 1.151 \left[\frac{4479.71 - 4522.64}{482.305} - \log \left(\frac{1.14}{(0.149)(0.47)(4.44x10^{-6})(0.3281^2)} \right) + 3.23 \right]$$

= -5.05

The change in pressure, Δp_{skin} , in the wellbore associated with the skin factor (OCD Guideline Section IX.15.g) was calculated using the following equation:

$$\Delta p_{skin} = 0.869(m)(s)$$

where,

0.869 = constant

m = slope from superposition plot of the well test, psi/cycle

s = skin factor calculated from the well test

The change in pressure, Δp_{skin} , using the previously calculated and defined values was determined to be -2117 psi:

 $\Delta p_{skin} = 0.869(m)(s)$

$$= 0.869 (482.305)(-5.05)$$

$$= -2117 \text{ psi}$$

The flow efficiency (E, OCD Guideline Section IX.15.h) was determined from the following equation:

$$E = \frac{p_{wf} - \Delta p_{skin} - p_{static}}{p_{wf} - p_{static}}$$

where,

E = flow efficiency, fraction

 p_{wf} = flowing pressure prior to shutting in the well for the fall-off test,

p_{static} = final pressure from the pressure falloff test

 Δp_{skin} = pressure change due to skin damage

Using the previously determined parameters, the flow efficiency was calculated to be 3.91:

$$E = \frac{4479.71 - (-2117) - 3750.78}{4479.40 - 3750.78}$$
$$= 3.91$$

The radius of investigation (OCD Guideline Section IX.15.a) was calculated using the following equation:

$$R_{\rm inv} = 0.029 \sqrt{\frac{k \Delta ts}{\phi \mu Ct}}$$

The radius of investigation, r_{inv} , using the previously defined values was determined to be 849 feet:

R inv = 0.029
$$\sqrt{\frac{(1.14)(234)}{(0.149)(0.47)(4.44 \times 10^{-6})}}$$

As indicated on Figure 5, the pressure data does not depart the pseudo-radial flow region. No pressure or temperature anomalies were noted on any of the analysis plots (OCD Guideline Section VIII.9 and IX17.b).

Because WDW-2 was shut in approximately 1915 hours prior to the 2020 pressure falloff testing, a current Hall plot (OCD Guideline Section IX.18.h) could not be constructed.

A comparison of the 2020 and 2019 reservoir analysis results are available in Table 8 (OCD Guideline Section IX.19).

On October 1, 2020, a static pressure gradient survey was conducted while pulling the pressure gauges out of the well. Static gradient stops were conducted at 7312 feet, 7000 feet, 6000 feet,

5000 feet, 4000 feet, 3000 feet, 2000 feet, 1000 feet, and at the surface. The bottom-hole pressure and temperature, after 234 hours of shut-in at 7312 feet were 3750.78 psia and 184.46°F, respectively. The gradient survey is summarized in Table 8. The data are graphically depicted in Figure 8.

15. NEW MEXICO OIL CONSERVATION DIVISION THREE YEAR RECORDING KEEPING STATEMENT

Western will keep the raw test data, generated during the testing, on file for a minimum of three years. The raw test data will be made available to OCD upon request.

TABLES

TABLE 1

TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR WASTE DISPOSAL WELL NO. 2

											Penetrate
Map	Distance				Well	Total					Injection
ID	(ft)	API No	Со	Lease	No	Depth	ULSTR	Type	Status	Plug Date	Zone
0	0	30-045-35747	Western Refining Southwest, Inc.	Waste Disposal Well	2	7525	H-27-29N-11W	SWD	Active		Υ
1	1041	30-045-34409	Holcomb Oil & Gas Inc	Jacque	2	1897	H-27-29N-11W	Gas	Active		N
2	1141	30-045-24084	Hilcorp Energy Co	Davis Gas Com F	001E	6392	H-27-29N-11W	Gas	Active		N
3	1170	30-045-07883	Pre-Ongard Well Operator	Pre-Ongard Well	2	0	H-27-29N-11W	Gas	Plugged	12/31/1901	N
4	1380	30-045-29002	San Juan Refining Co	Disposal	1	3601	I-27-29N-11W	SWD	Plugged	10/29/2015	N
5	1582	30-045-30833	Hilcorp Energy Co	Davis Gas Com F	001R	6700	I-27-29N-11W	Gas	Active		N
6	1643	30-045-25329	Holcomb Oil & Gas Inc	Davis Gas Com J	1	4331	F-26-29N-11W	Gas	Active		N
7	1693	30-045-24083	Hilcorp Energy Co	Sullivan Gas Com D	001E	6329	F-26-29N-11W	Gas	Active		N
8	1740	30-045-07825	Bp America Production Co	Davis Gas Com F	1	6365	I-27-29N-11W	Gas	Plugged	1/19/1994	N
9	1742	30-045-23554	XTO Energy, Inc	Davis Gas Com G	1	2951	I-27-29N-11W	Gas	Plugged	11/15/2011	N
10	1756	30-045-34463	Holcomb Oil & Gas Inc	Jacque	1	1890	I-27-29N-11W	Gas	Active		N
11	1793	30-045-07812	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	I-27-29N-11W	Gas	Plugged	11/3/1982	N
12	2376	30-045-12003	Hilcorp Energy Co	Calvin	1	6450	M-26-29N-11W	Gas	Active		N
13	2640	30-045-02133	N/A	Lauren Kelly	1	3028	27-29N-11W	N/A	Inactive		N
14	2640	30-045-02134	N/A	B Garland	1	3028	27-29N-11W	N/A	Inactive		N
15	2713	30-045-34266	Holcomb Oil & Gas Inc	Mangum	001S	0	F-27-29N-11W	Gas	Cancelled	12/31/9999	N
16	2750	30-045-25612	Hilcorp Energy Co	Calvin	3	5970	K-26-29N-11W	Oil	Active		N
17	2904	30-045-31118	Hilcorp Energy Co	Calvin	100	1970	N-26-29N-11W	Gas	Active		N
18	2909	30-045-07776	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	M-26-29N-11W	Gas	Plugged	12/31/1901	N
19	3018	30-045-26721	Manana Gas Inc	Nancy Hartman	2	2824	P-22-29N-11W	Gas	Active		N
20	3025	30-045-24572	Morningstar Operating Llc	Congress	9	2960	N-26-29N-11W	Gas	Active		N
21	3121	30-045-07733	Hilcorp Energy Co	Sullivan Gas Com D	1	6260	B-26-29N-11W	Gas	Active		N
22	3146	30-045-07961	Manana Gas Inc	Hartman	1	6310	P-22-29N-11W	Gas	Plugged	6/14/1999	N
23	3391	30-045-07959	John C Pickett	Grace Pearce	1	1620	O-22-29N-11W	Gas	Plugged	3/2/2000	N
24	3412	30-045-30788	Hilcorp Energy Co	Ashcroft Swd	1	7512	B-26-29N-11W	SWD	Active		Υ
25	3451	30-045-25673	Hilcorp Energy Co	Congress	18	6150	K-27-29N-11W	Oil	Active		N
26	3498	30-045-24673	Hilcorp Energy Co	Mangum	001E	6240	F-27-29N-11W	Gas	Active		N
27	3597	30-045-33093	Hilcorp Energy Co	Calvin	001F	6525	J-26-29N-11W	Gas	Active		N

TABLE 1

TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR WASTE DISPOSAL WELL NO. 2

	Distance				Well	Total					Penetrate Injection
ID	(ft)	API No	Со	Lease	No	Depth	ULSTR	Туре	Status	Plug Date	Zone
28	3645	30-045-27365	Manana Gas Inc	Marian S	1	2840	F-27-29N-11W	Gas	Active		N
29	3654	30-045-27361	Manana Gas Inc	Lauren Kelly	1	1500	F-27-29N-11W	Gas	Active		N
30	3803	30-045-29107	Pre-Ongard Well Operator	Pre-Ongard Well	001X	0	G-26-29N-11W	Gas	Plugged	7/28/1955	N
31	3805	30-045-07870	Pre-Ongard Well Operator	Pre-Ongard Well	00X	0	G-26-29N-11W	Gas	Plugged	7/1/1953	N
32	3836	30-045-07896	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	C-27-29N-11W	Gas	Plugged	11/27/1978	N
33	3874	30-045-23163	Hilcorp Energy Co	Earl B Sullivan	1	2861	B-26-29N-11W	Gas	Active		N
34	3907	30-045-25657	Hilcorp Energy Co	Congress	16	6200	A-34-29N-11W	Oil	Active		N
35	3936	30-045-23550	Holcomb Oil & Gas Inc	State Gas Com Bs	1	2954	K-23-29N-11W	Gas	Active		N
36	3963	30-045-07985	Bp America Production Co	Pearce Gas Com	1	6230	K-23-29N-11W	Gas	Plugged	3/12/1997	N
37	4155	30-045-07835	Holcomb Oil & Gas Inc	Mangum	1	6350	L-27-29N-11W	Gas	Active		N
38	4199	30-045-26731	Manana Gas Inc	Mary Jane	1	2845	N-22-29N-11W	Gas	Active		N
39	4192	30-045-24574	Hilcorp Energy Co	Summit	9	2985	A-34-29N-11W	Gas	Active		N
40	4209	30-045-34312	Manana Gas Inc	Royal Flush	1	2045	N-22-29N-11W	Gas	Active		N
41	4364	30-045-07940	Manana Gas Inc	Cook	1	6305	N-22-29N-11W	Gas	Active		N
42	4391	30-045-13089	Manana Gas Inc	Cook	2	1440	N-22-29N-11W	Gas	Active		N
43	4587	30-045-07868	Holcomb Oil & Gas Inc	Sullivan	2	1478	H-26-29N-11W	Gas	Active		N
44	4583	30-045-08009	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	K-23-29N-11W	Gas	Plugged	8/26/1980	N
45	4649	30-045-25675	Hilcorp Energy Co	Congress	15	6030	C-35-29N-11W	Oil	Active		N
46	4722	30-045-21457	Morningstar Operating Llc	Delo	10	2900	I-26-29N-11W	Gas	Active		N
47	4736	30-045-25707	Morningstar Operating Llc	Summit	15	6216	C-34-29N-11W	Gas	Active		N
48	4773	30-045-07903	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	M-27-29N-11W	Gas	Plugged	7/1/1975	N
49	4816	30-045-24573	Morningstar Operating Llc	Garland	3	2905	M-27-29N-11W	Gas	Active		N
50	4897	30-045-25195	Hilcorp Energy Co	Calvin	2	5950	P-26-29N-11W	Oil	Active		N
51	4908	30-045-24772	Hilcorp Energy Co	Calvin	001E	6500	P-26-29N-11W	Gas	Active		N
52	4983	30-045-21732	Burlington Resources O&G Co Lp	Garland B	001R	1810	M-27-29N-11W	Gas	Plugged	8/9/2010	N
53	5038	30-045-25621	Holcomb Oil & Gas Inc	Earl B Sullivan	2	5751	H-26-29N-11W	Oil	Active		N
54	5056	30-045-24837	Hilcorp Energy Co	Congress	004E	6508	E-35-29N-11W	Gas	Active		N
55	5133	30-045-20752	Chaparral Oil & Gas Co	Lea Ann	1	1900	E-35-29N-11W	Gas	Plugged	12/18/1999	N

TABLE 1

TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR WASTE DISPOSAL WELL NO. 2

											Penetrate
Map	Distance				Well	Total					Injection
ID	(ft)	API No	Со	Lease	No	Depth	ULSTR	Type	Status	Plug Date	Zone
56	5165	30-045-22639	General Minerals Corp	Delo	11	1945	P-26-29N-11W	Gas	Plugged	7/30/2010	N
57	5221	30-045-24082	Hilcorp Energy Co	Pearce Gas Com	001E	6365	J-23-29N-11W	Gas	Active		N
58	703	30-045-25745	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	E-26-29N-11W	Gas	Cancelled		N
59	1129	30-045-23553	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	H-27-29N-11W	Gas	Plugged		N
60	1658	30-045-23552	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	F-26-29N-11W	Gas	Cancelled		N
61	4766	30-045-23551	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	O-23-29N-11W	Gas	Cancelled		N
62	4894	30-045-25738	Pre-Ongard Well Operator	Pre-Ongard Well	23	0	I-26-29N-11W	Gas	Cancelled		N

TABLE 2
WELL CHANGES IN THE AREA OF REVIEW

						_		Change of					
Unit		Twp	Rng	Map ID	Well Name	Operator	Changes	Owner	P&A	T&A	Recomp	New	Cancelled
Н	27	29N	11W	2	Davis Gas Com F	Davis Gas Com F	Owner	[X]					
Н	27	29N	11W	3	Pre-Ongard Well	Pre-Ongard Well	P&A		[X]				
I	27	29N	11W	5	Davis Gas Com F	Davis Gas Com F	Owner	[X]					
F	26	29N	11W	7	Sullivan Gas Com D	Sullivan Gas Com D	Owner	[X]					
F	27	29N	11W	15	Mangum	Mangum	P&A		[X]				
М	26	29N	11W	18	Pre-Ongard Well	Pre-Ongard Well	P&A		[X]				
В	26	29N	11W	21	Sullivan Gas Com D	Sullivan Gas Com D	Owner	[X]					
В	26	29N	11W	24	Ashcroft Swd	Ashcroft Swd	Owner	[X]					
С	27	29N	11W	32	Pre-Ongard Well	Pre-Ongard Well	P&A		[X]				
В	26	29N	11W	33	Earl B Sullivan	Earl B Sullivan	Owner	[X]					
I	26	29N	11W	46	Delo	Delo	Owner	[X]					
С	34	29N	11W	47	Summit	Summit	Owner	[X]					
М	27	29N	11W	49	Garland	Garland	Owner	[X]					
J	23	29N	11W	57	Pearce Gas Com	Pearce Gas Com	Owner	[X]					
Ε	26	29N	11W	58	Pre-Ongard Well	Pre-Ongard Well Operator	Cancelled						[X]
Н	27	29N	11W	59	Pre-Ongard Well	Pre-Ongard Well Operator	P&A		[X]				
F	26	29N	11W	60	Pre-Ongard Well	Pre-Ongard Well Operator	Cancelled						[X]
0	23	29N	11W	61	Pre-Ongard Well	Pre-Ongard Well Operator	Cancelled						[X]
I	26	29N	11W	62	Pre-Ongard Well	Pre-Ongard Well Operator	Cancelled						[X]

TABLE 3
WELLS THAT HAVE BEEN PLUGGED AND ABANDONED SINE THE 2019 AOR UPDATE

								Change of					
Unit	Sect	Twp	Rng	Map ID	API No	Well Name	Operator	Owner	P&A	T&A	Prod	Recomp	New
Н	27	29N	11W	3	30-045-07883	Pre-Ongard Well	Pre-Ongard Well		[X]				
F	27	29N	11W	15	30-045-34266	Mangum	Mangum		[X]				
M	26	29N	11W	18	30-045-07776	Pre-Ongard Well	Pre-Ongard Well		[X]				
С	27	29N	11W	32	30-045-07896	Pre-Ongard Well	Pre-Ongard Well		[X]				
Н	27	29N	11W	59	30-045-23553	Pre-Ongard Well	Pre-Ongard Well		[X]				

TABLE 4
WELLS THAT HAVE BEEN TEMPORARILY ABANDONED SINCE THE 2019 AOR UPDATE

							Change of					
Unit	Sect	Twp	Rng	Map ID	API No	Well Name Operator	Owner	P&A	T&A	Prod	Recomp	New

NO CHANGES

TABLE 5
WELLS THAT HAVE BEEN RECOMPLETED SINCE THE 2019 AOR UPDATE

Unit	Sect	Twp	Rng	Map ID	API No	Well Name Operator	Change of Owner	P&A	T&A	Prod	Recomp	New
------	------	-----	-----	--------	--------	--------------------	-----------------	-----	-----	------	--------	-----

NO CHANGES

TABLE 6

NEWLY DRILLED WELLS SINCE THE 2019 AOR UPATE

		_	_				Change of					
Unit	Sect	Twp	Rng	Map ID	API No	Well Name Operator	Owner	P&A	T&A	Prod	Recomp	New

NO CHANGES

TABLE 7
FIGURES INCLUDED IN THE REPORT

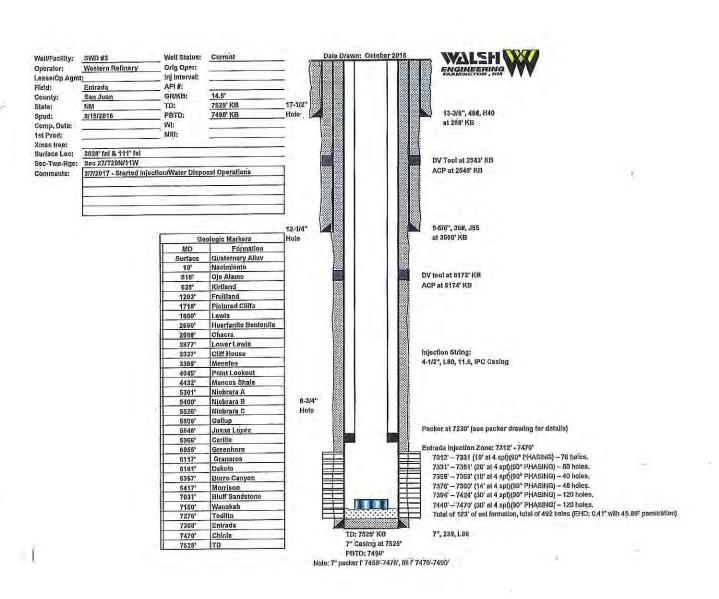
Figure	Description	OCD Reference
1	Waste Disposal Well #2 Schematic	Section VI.1 and IX.3
2	Map of One Mile Area of Review	n/a
3	Waste Disposal Well #2 Test Overview	Section IX.18.f
4	Waste Disposal Well #2 Cartesian Plot of Data Used in the Analysis	Section IX.18.a
5	Waste Disposal Well #2 Derivative Log-Log Plot	Section IX.18.c
6	Waste Disposal Well #2 Superposition Horner (Semi- Log) Plot	Section IX.18.d
7	Waste Disposal Well #2 Expanded Superposition Horner (Semi-Log) Plot	Section IX.18.d
8	Waste Disposal Well #2 Static Pressure Gradient Survey	n/a

TABLE 8

Waste Disposal Well #2 Comparison of Permeability, Transmissibility, Skin, False Extrapolated Pressure, and Fill Depth

Date of Test	Permeability (k)	Mobility-Thickness (kh/u)	Skin (s)	False Extrapolated Pressure (p*)
September 21 to October 1, 2020	1.14 md	297.64 md-ft/cp	-5.05	3632.37 psia
April 15 – 30, 2019	1.73 md	451 md-ft/cp	-3.80	3809.70 psia

TABLE 9


STATIC PRESSURE GRADIENT SURVEY WASTE DISPOSAL WELL No. 2 OCTOBER 1, 2020

		nory Gauge ial No. 1243	
Depth (feet)	Pressure (psig)	Pressure Gradient (psi/ft)	Temperature (°F)
0	587.92	-	65.86
1000	1024.54	0.437	75.71
2000	1437.63	0.413	95.25
3000	1888.65	0.451	112.31
4000	2319.81	0.431	131.73
5000	2749.02	0.429	149.61
6000	3176.71	0.428	177.27
7000	3603.32	0.427	187.23
7312	3736.08	0.426	184.46

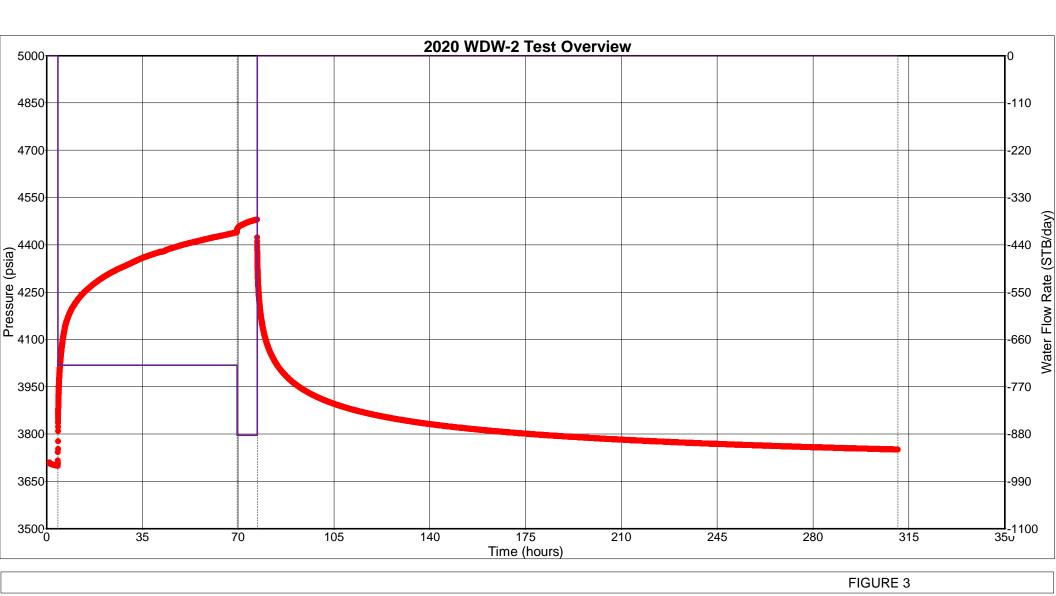

FIGURES

FIGURE 1

(H)	(E)	(F)	(G)	(H)	(E)	(F)	(G)	(H)	N A
(1)	(L)	(K)	(J)	(1)	(L)	4 × 08009 (K) 35 23550 207985 36	(N) 57	(I) 4082	● OIL WELL
(P)	(M)	42 13089 4 07940 34312 26731 (N)	07959 1 23 40 (O)	2207961 26721 19 (P)	(M)	(N)	61 2355 (O)	(P)	
(A)	(D)	32 (C)	(B)	(A) 07883 3	(D) 235	(C) 07 21	733 (B) 33 24 231 24 30788	63 ^(A)	1-MILE AREA OF REVIEW 24082 API NO. 57 MAP ID NO. (see Table I) PENETRATE INJECTION ZONE
(H)	2736 2736 (E)	29 5 26 28 24673 (F) 3	59 23553: 34266 (G)	07883 <mark>3</mark> 24084 2 34409 1 WI (H) Ø 35747	25329 ⅓ 0W-2 58 	24083 (F)	07870 31 *** (G) 29107 30	43	521
(1)	(L)	07835 25 • 25673 (K)	4	29002 23554 5 23554 5 30833 2 34463	(L) 12	(K) 16 256		62 -★25738 46 +★21457	SCALE (IN FEET) 0 2000 4000
(P)	245 2707 27217 (M) 52	73 903 48 32 (N)	(O)	(P)	18 (M) ※07776	31118 24572 20 (N)	24772 (O) 51	50 25195 252639 56 (P)	WSP USA Inc. 16200 Park Row, Ste 200 Houston TX 77084 TEL: (281) 589-5900
(A)	(D)	47 ★ 2570 (C)	(B)	34 39 ● 25657 24574 (A)	(D)	45 (C)● 2567 38	5 (B)	(A)	FIGURE 2 WESTERN REFINING SOUTHWEST BLOOMFIELD, NEW MEXICO AREA OF REVIEW MAP
(H)	(E)	(F)	(G)	(H)	54 55 × 2075	837 (F)	(G)	(H)	DATE: 11/12/2020 CHECKED BY: JT JOB NO: 192143A DRAWN BY: WDD APPROVED BY: JT DWG NO:

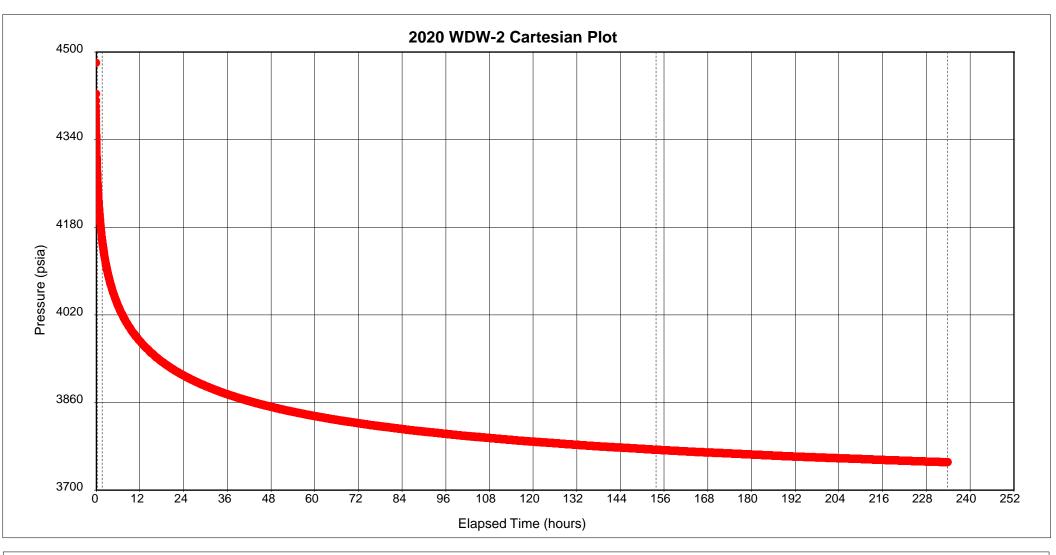
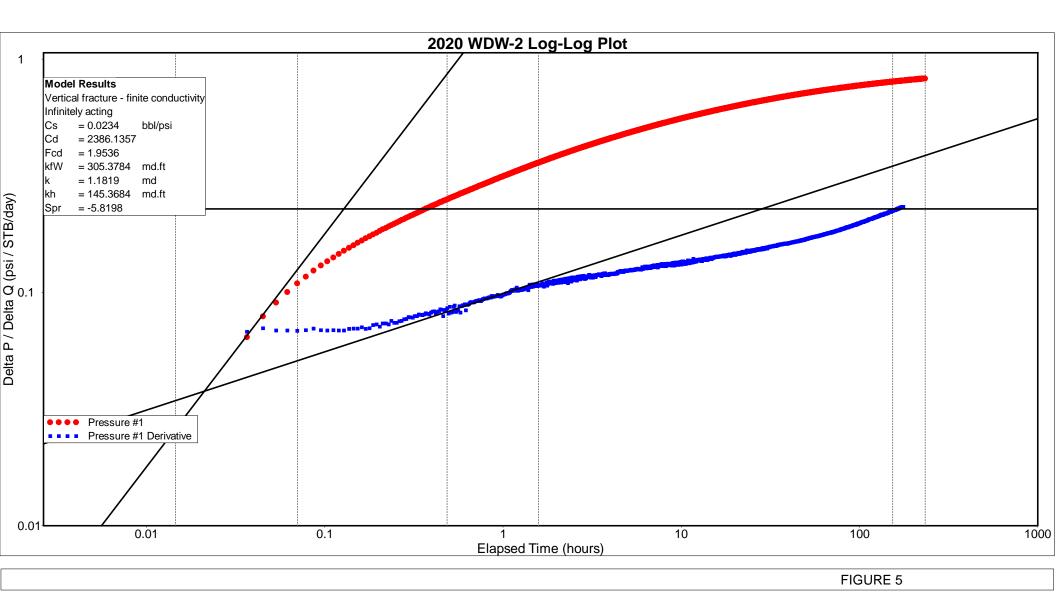



FIGURE 4

Released to Imaging: 6/8/2021 4:04:43 PM

.

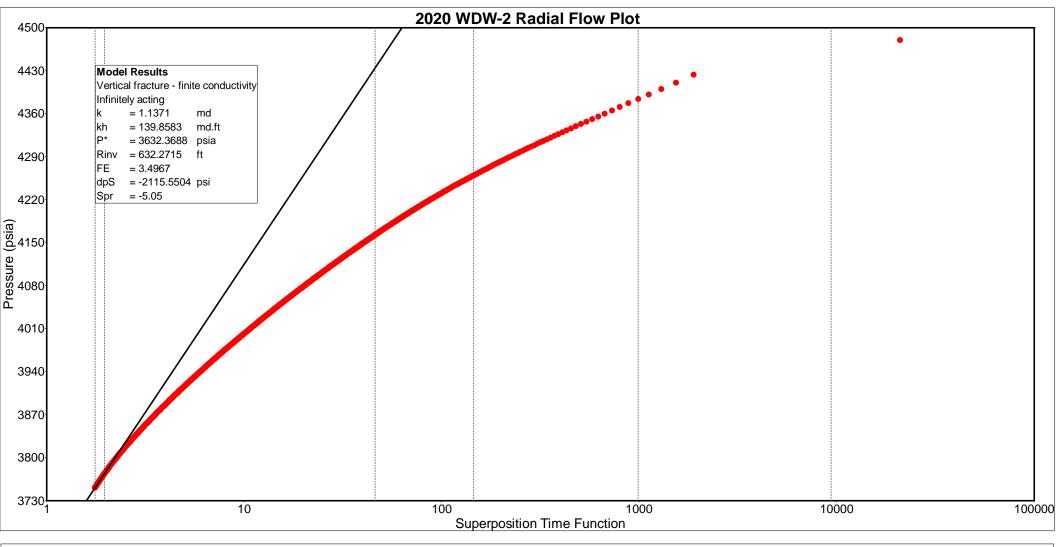


FIGURE 6

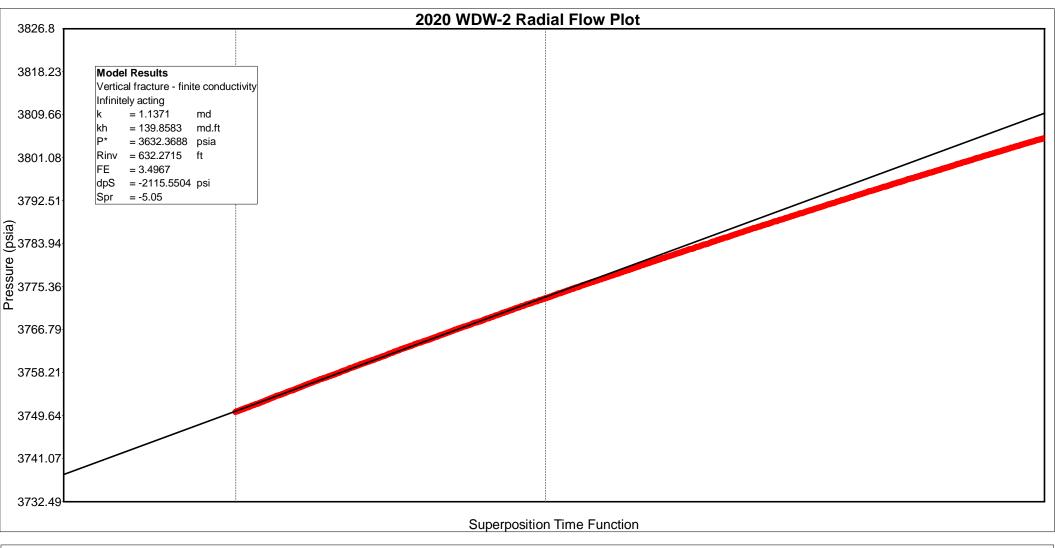
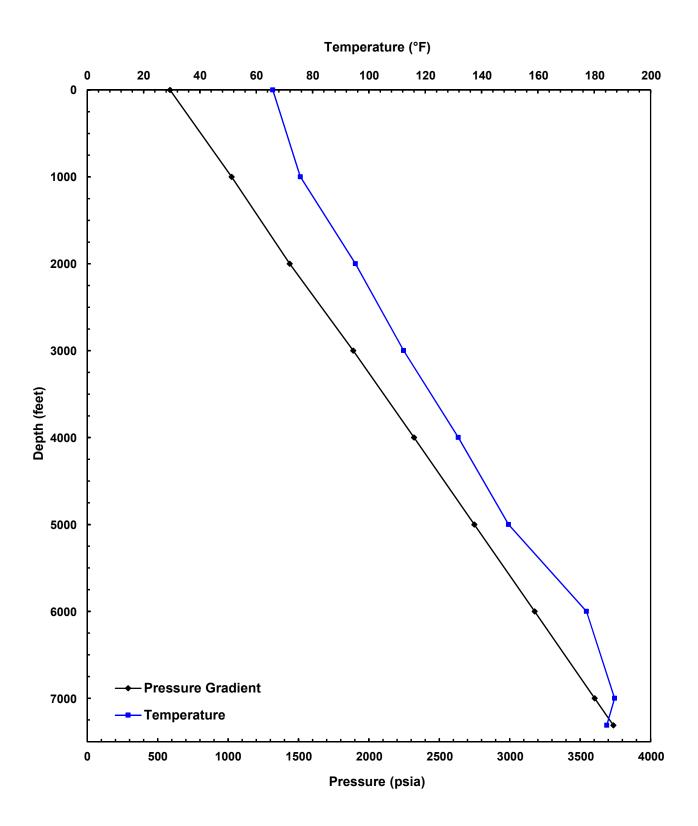
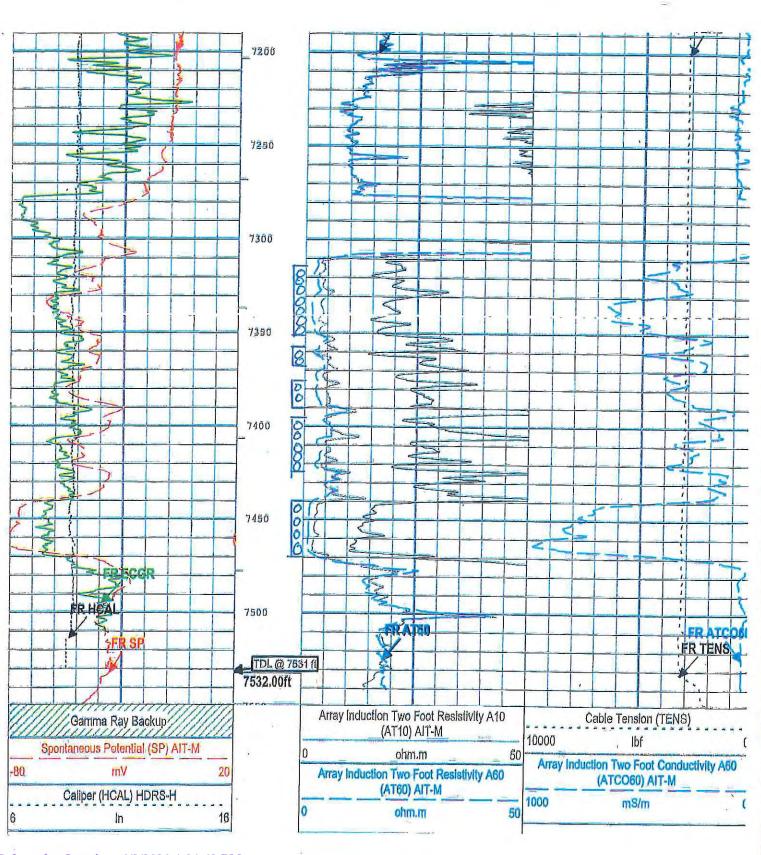



FIGURE 7

STATIC PRESSURE GRADIENT SURVEY WASTE DISPOSAL WELL No. 2 OCTOBER 1, 2020

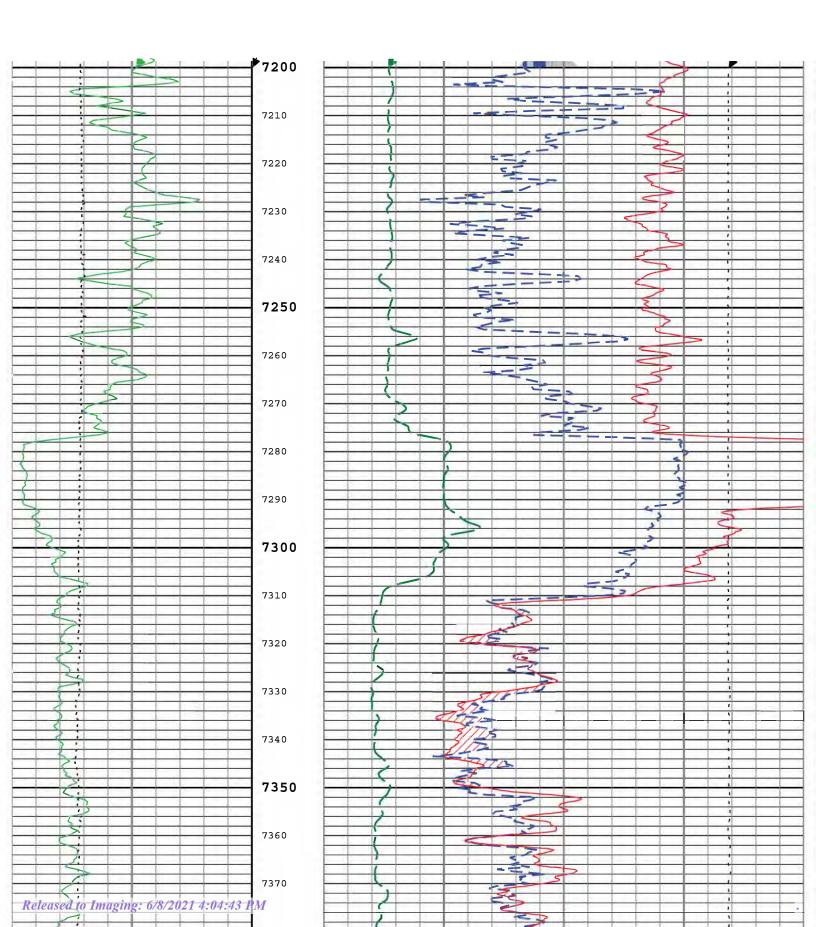
APPENDICES

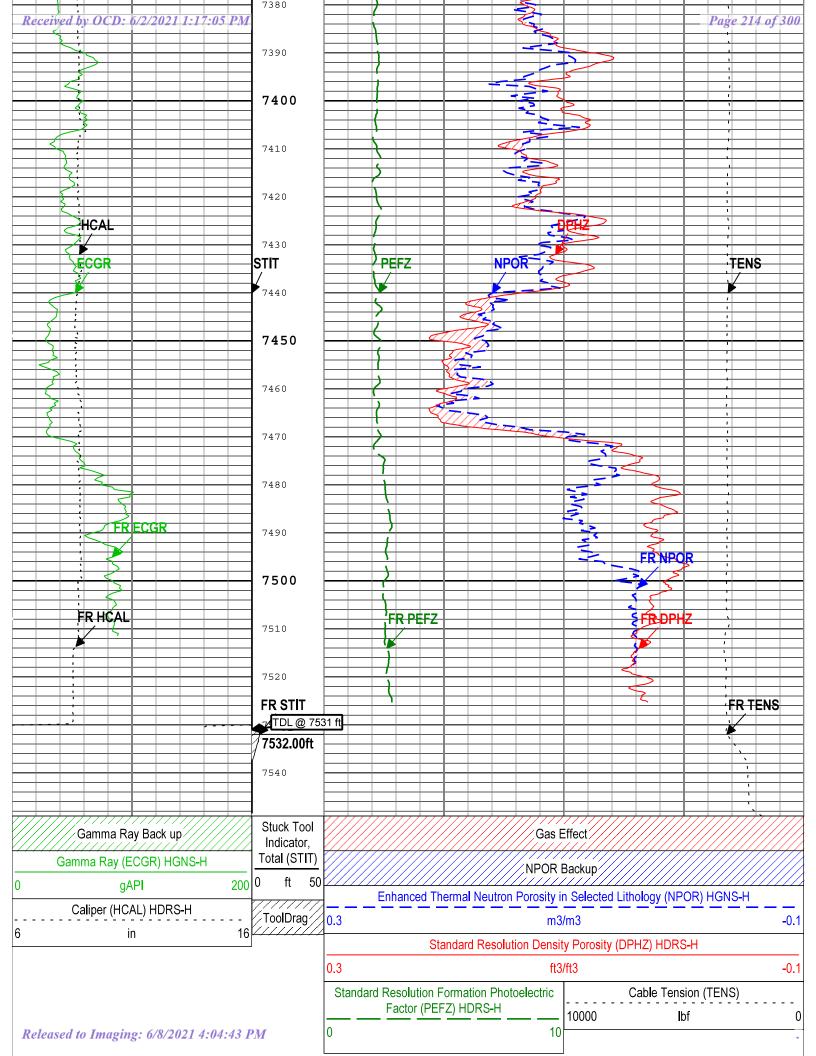

APPENDIX A

DUAL INDUCTION LOG SECTIONS FROM 7200 FEET TO 7532 FEET

Released to Imaging: 6/8/2021 4:04:43 PM

Table 1: A copy of the well log showing the Entrada interval to be tested.




APPENDIX B

POROSITY LOG SECTIONS FROM 7200 FEET TO 7532 FEET

Released to Imaging: 6/8/2021 4:04:43 PM

APPENDIX C

INJECTION AND FORMATION FLUID ANALYSIS

Released to Imaging: 6/8/2021 4:04:43 PM

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 01, 2017

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: DWD #2

OrderNo.: 1701A75

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/26/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order 1701A75

Date Reported: 2/1/2017

2/1/2017 3:56:00 PM

20

20

1/30/2017 10:59:56 AM 29930

1/30/2017 10:59:56 AM 29930

1/30/2017 10:59:56 AM 29930

500 1/30/2017 11:06:12 AM 29930

29970

Analyst: pmf

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

DWD #2 Project:

1701A75-001 Lab ID:

Total Dissolved Solids

Calcium

Magnesium

Potassium

Sodium

EPA 6010B: TOTAL RECOVERABLE METALS

Matrix: AQUEOUS

Collection Date: 1/25/2017 11:00:00 AM Received Date: 1/26/2017 7:05:00 AM

Client Sample ID: DWD 2 Formation Water

PQL Qual Units DF Date Analyzed Batch Result Analyses Analyst: MRA **EPA METHOD 300.0: ANIONS** 1/26/2017 6:37:17 PM R40335 2.0 mg/L Fluoride ND 1/27/2017 7:20:01 PM R40361 23000 2500 mg/L Chloride 1/26/2017 6:37:17 PM R40335 20 ND 2.0 mg/L Bromide 1/26/2017 6:37:17 PM R40335 ND 10 mg/L Phosphorus, Orthophosphate (As P) 1/27/2017 7:07:36 PM R40361 25 mg/L 910 100 1/27/2017 7:32:26 PM R40361 ND 20 mg/L Nitrate+Nitrite as N Analyst: JRR SM2510B: SPECIFIC CONDUCTANCE 1/30/2017 1:40:54 PM R40366 µmhos/cm 94000 50 Conductivity Analyst: JRR SM2320B: ALKALINITY 1/30/2017 11:39:53 AM R40366 20.00 mg/L CaCO3 1 Bicarbonate (As CaCO3) 255.3 2.000 mg/L CaCO3 1 1/30/2017 11:39:53 AM R40366 ND Carbonate (As CaCO3) mg/L CaCO3 1 1/30/2017 11:39:53 AM R40366 20.00 Total Alkalinity (as CaCO3) 255.3 Analyst: KS SM2540C MOD: TOTAL DISSOLVED SOLIDS

2000

20

20

20

500

*D

48900

1700

200

450

16000

mg/L

mg/L

mg/L

mq/L

mg/L

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits R
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 5 J
- Sample pH Not In Range
- Reporting Detection Limit RL
- Sample container temperature is out of limit as specified

Trust our People. Trust our Data. zromie seigylabitom

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 College Station, 7.6 888.640.2218 - Gillette, WY 866.689.7175 - Helena, MF 877.472.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:

Hall Environmental

Project:

Analyses

Not Indicated

Lab ID:

B17011690-001

Client Sample ID: 1701A75-001C DWD 2 Formation Water

Report Date: 01/27/17

Collection Date: 01/25/17 11:00

DateReceived: 01/27/17

Matrix: Aqueous

MCL

QCL Method Analysis Date / By Result Units Qualifiers RL

CORROSIVITY

pΗ

6.46 s.u.

0.10

SW9040C

01/27/17 10:54 / jmg

Report **Definitions:** RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Trust our People. Trust our Data.

Billings, NT 890.735.4489 • Casper, WY 888.295.0515
College Station, TX 988.690.2218 • Gillette, WY 868.686.7175 • Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental
Project: Not Indicated

Report Date: 01/27/17

Work Order: B17011690

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDI_imit	Qual
Melhod:	8W9040C		2147 - 54 V				Analytical Ru	n: ORION	720A HZW	_170127A
Lab ID: pH	ICV	Initial Calibrat 8.11	ion Verificatio s.u.	n Standard 0.10	101	98	102		01/27	7/17 10:54
Method:	SW9040C				*					: R273874
Lab ID: pH	B17011690-001ADUP	Sample Dupli 6.49	cate s.u.	0.10		Run; ORIO	ON 720A HZW_	_170127A 0.5	01/2° 3	7/17 10:54

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Hall Environmental Analysis Laboratory, Inc.

WO#: 1701A75

01-Feb-17

Client:

Western Refining Southwest, Inc.

2.4

4.8

0.10

0.50

2.500

5.000

Project:

Bromide

Phosphorus, Orthophosphate (As P

DWD #2

CONTRACTOR										
Sample ID MB	Samp	ype: ml	oik	Tos	ar5688					
Client ID: PBW	Batcl	n ID: R4	0335	F	lunNo: 4	10335				
Prep Date:	Analysis D	Date: 1/	26/2017	9	SeqNo: 1	264291	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10				544000000000000000000000000000000000000	• In the second second			
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sample ID LCSb	Samp	ype: Ics	· · · · · · · · · · · · · · · · · · ·	Tes	tCode: E	PA Method	300.0: Anions			
Client ID: LCSW	Batc	h ID: R4	0335	F	RunNo: 4	10335				
Prep Date:	Analysis [Date: 1	/26/2017	5	SeqNo: '	1264293	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLImit	Qual
Fluoride	0.52	0.10	0.5000	0	104	90	110			

Sample ID MB	SampT	ype: mt	oik	TestCode: EPA Method 300.0: Anions							
Client ID: PBW	Batch	F	RunNo: 40361								
Prep Date:	Analysis D	ate: 1/	27/2017	8	SeqNo: 1	265117	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride	ND	0.50	10,700								
Sulfate	ND	0.50									
Nitrate+Nitrite as N	ND	0.20	25								

0

0

96.4

96.7

90

90

110

110

Sample ID LCS	SampT	ype: lcs		Test	tCode: El	S						
Client ID: LCSW	nt ID: LCSW Batch ID: R40361 RunNo: 40361											
Prep Date:	Analysis D	ate: 1/	27/2017	9	SeqNo: 1	265118	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Chloride	4.8	0.50	5.000	0	95.5	90	110					
Sulfate	9.7	0.50	10.00	0	97.2	90	110					
Nitrate+Nitrite as N	itrite as N 3.5 0.20 3.500 0 98.8					90	110					

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- Page 2 of 5

- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#:

1701A75

01-Feb-17

Client:

Western Refining Southwest, Inc.

Project:

DWD #2

Sample ID MB-29930	SampT	ype: ME	BLK	TestCode: EPA 6010B: Total Recoverable Metals							
Client ID: PBW	Batch	iD: 29	930	F	tunNo: 40						
Prep Date: 1/27/2017	Analysis D	ate: 1/	30/2017	8	SeqNo: 1	265583	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Calcium	ND	1.0									
Va gnesium	ND	1.0									
Potassium	ND	1.0									
Sodium	ND	1.0									

Sample ID LCS-29930	SampT	ype: LC	S	TestCode: EPA 6010B: Total Recoverable Metals								
Client ID: LCSW	Batch	ID: 29	930	F								
Prep Date: 1/27/2017	Analysis D	ate: 1/	30/2017	5	SegNo: 1	265584	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD_	RPDLimit	Qual		
Calcium	49	1.0	50.00	0	98.3	80	120					
Magnesium	49	1.0	50.00	0	97.3	80	120					
Potassium	47	1.0	50.00	0	94.9	80	120					
Sodium	48	1.0	50.00	0	95.4	80	120					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

Page 3 of 5

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1701A75

01-Feb-17

Client:

Western Refining Southwest, Inc.

Project:

DWD #2

SampT	ype: ml	olk	Tes						
Batch	1 ID: R4	0366	F	unNo: 4	0366				
Analysis D	ate: 1/	30/2017	5	eqNo: 1	266120	Units: mg/L	CaCO3		
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
ND	20.00								00.5 W
Samp1	ype: Ics	3	Tes	Code: S	M2320B: A	lkalinity			
	Batch Analysis D Result ND	Batch ID: R4 Analysis Date: 1/ Result PQL ND 20.00	Result PQL SPK value	Batch ID: R40366 R Analysis Date: 1/30/2017 S Result PQL SPK value SPK Ref Val ND 20.00	Batch ID: R40366 RunNo: 4 Analysis Date: 1/30/2017 SeqNo: 1 Result PQL SPK value SPK Ref Val %REC ND 20.00	Batch ID: R40366 RunNo: 40366 Analysis Date: 1/30/2017 SeqNo: 1266120 Result PQL SPK value SPK Ref Val %REC LowLimit ND 20.00	Batch ID: R40366 RunNo: 40366 Analysis Date: 1/30/2017 SeqNo: 1266120 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit ND 20.00	Batch ID: R40366 RunNo: 40366 Analysis Date: 1/30/2017 SeqNo: 1266120 Units: mg/L CaCO3 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD ND 20.00 ND ND </td <td>Batch ID: R40366 RunNo: 40366 Analysis Date: 1/30/2017 SeqNo: 1266120 Units: mg/L CaCO3 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit ND 20.00</td>	Batch ID: R40366 RunNo: 40366 Analysis Date: 1/30/2017 SeqNo: 1266120 Units: mg/L CaCO3 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit ND 20.00

Sample ID lcs-1	SampT	ype: Ics		Tes						
Client ID: LCSW	0366	F	RunNo: 4	0366						
Prep Date:	Date: Analysis Date: 1/30/2017 SeqNo: 1266121						Units: mg/L	CaCO3		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Lowl imit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	78.04	20.00	80.00	0	97.6	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 4 of 5

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#:

1701A75

01-Feb-17

Client:

Western Refining Southwest, Inc.

Project:

DWD #2

Sample ID MB-29970

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID:

PBW

Batch ID: 29970

PQL

20.0

RunNo: 40436

Prep Date: 1/31/2017

Analysis Date: 2/1/2017

SegNo: 1267368

Units: mg/L

Qual

Analyte

Result ND SPK value SPK Ref Val %REC

HighLimit LowLimit

%RPD

RPDLimit

Total Dissolved Solids

Sample ID LCS-29970

SampType: LCS

TestCode: SM2540C MOD: Total Dissolved Solids

LCSW Client ID:

Result

1010

Batch ID: 29970

RunNo: 40436

Prep Date: 1/31/2017

Analysis Date: 2/1/2017

SeqNo: 1267369

Units: mg/L

%RPD

RPDLimit

Qual

Total Dissolved Solids

PQL 20.0

1000

SPK value SPK Ref Val

%REC 101

80

LowLimit

HighLimit

120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

R RPD outside accepted recovery limits

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

E Value above quantitation range

Analyte detected below quantitation limits J

Page 5 of 5

P Sample pH Not In Range

RL Reporting Detection Limit

Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Cilent Name: Western Refining Southw Work Order Number:	1701A75		RcptNo:	1
Received by/date: AT 61/21d//7				
Logged By: Anne Thorne 1/26/2017 7:05:00 AM		alone Sham	-	
Completed By: Anne Thorne 1/26/2017 9:13:16 AM		an II-	_	
Reviewed By: 1(26/17		WHA 21-		
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present	
2. Is Chain of Custody complete?	Yes 🔽	No 🗌	Not Present	
3. How was the sample delivered?	Courier			
Log In				
4. Was an attempt made to cool the samples?	Yeş 🔽	No 🗆	NA 🗆	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗆	na 🗆	
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌		
7. Sufficient sample volume for Indicated test(s)?	Yes 🗹	No 🗆		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗸	No 🗆		
9. Was preservative added to bottles?	Yes 🗆	No 🔽	NA \square	
10.VOA vials have zero headspace?	Yes 🗆	No 🗆	No VOA Vials 🗹	
11. Were any sample containers received broken?	Yes 🗌	No 🔽	# of preserved	,
40 page 4 marks built black 0	Yes 🗹	No 🗆	bottles checked for pH:	2
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	res 🖭	140		>12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗆	Adjusted?	NV
14. Is it clear what analyses were requested?	Yes 🔽	No 🗀		\mathcal{L}_{α}
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🔽	No 🗆	Checked by:	
(4.10)		ĸ		
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗆	NA 🔽	1
Person Notified: Date				
By Whom: Via:	eMail _	Phone Fax	In Person	
Regarding:				
Client Instructions:				
17. Additional remarks:			No.	
18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No 1 1.0 Good Yes	Seal Date	Signed By		
D 1 C1				

	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107 Apalysis Request	(V) (O)	(Gas on	HqT + 40 \ OF (1.81 (1.80 (1.40) (2.00) (2.00) (2.00) (3.00) (4.00) (A.00)	(GH)	BTEX + MT BTEX + MT BTEX + MT TPH 8015B TPH (Methored (M			×						Remarks:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	□ Standard X Rush 2 - day	Project Name:	- つまる の#4384	Project #:		Kelly Robinson	Sampler: Watt Krake Co	Temperatures et al.	Container Preservative HEAL NG A Type and # Type	Poly	HND3	1-15541 Hassy	,					Received by: Muttic Male Male	intracted to other accredited laboratories. This serves as notice of this
Chain-of-Custody Record			Mailing Address: 50 CR 4990	AFR W 10 87413	7/6 1	QA/QC Package: ✓ Standard □ Level 4 (Full Validation)	□ Other	☐ EDD (Type)	Date Time Matrix Sample Request ID	-25-17 11:00 H30 DWD3 Formatanualed-500m1							•	Date: Time: Relinquished by: 25/17 1447 Relinquished by: Date: Time: Relinquished by: [25/17 [80 U Wurthu while.	If necessary, samples submitted to Hall Environmental may be subco

All Anions	EPA Method 300.0	1-500ml unpreserved plastic 1-125 ml H2SO4 plastic
Alkalinity	SM2320 B	Volume will come from the 500ml unpreserved plastic
eC	SM 2510B	Volume will come from the 500ml unpreserved plastic
TDS	SM 2540 C	Volume will come from the 500ml unpreserved plastic
Cations	EPA Method 200.7	1-500ml HNO3 Plastic
рН	EPA Method 9040	Volume will come from the 500ml unpreserved plastic

SM = Standard Methods

EPA Methods 310.1, 150.1, 160.1, 320.1 and 120.1 have been withdrawn by EPA. Most labs have are accredited for all of the tests listed above and we perform these methods regularly for f

We will ship out one bottle set today as listed below. Fill all bottles to the neck and keep the sa We can rush this work on a 1-2 business day TAT.

- 1-500ml unpreserved plastic
- 1-125ml H2SO4 Plastic
- 1-500ml HNO3 plastic

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

August 17, 2020

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135

FAX:

RE: Injection Well 2 2Q2020 OrderNo.: 2007018

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/1/2020 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued July 23, 2020.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2007018

Date Reported: 8/17/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well #2

Project: Injection Well 2 2Q2020 Collection Date: 6/30/2020

Lab ID: 2007018-001 **Matrix:** AQUEOUS **Received Date:** 7/1/2020 8:05:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8081: PESTICIDES TCLP					Analyst	: JME
Chlordane	ND	0.20	mg/L	1	7/15/2020 9:21:46 AM	53534
Surr: Decachlorobiphenyl	75.8	38.2-102	%Rec	1	7/15/2020 9:21:46 AM	53534
Surr: Tetrachloro-m-xylene	52.7	32.3-92.4	%Rec	1	7/15/2020 9:21:46 AM	53534
EPA METHOD 8270C TCLP					Analyst	: DAM
2-Methylphenol	ND	200	mg/L	1	7/22/2020 8:27:37 PM	53528
3+4-Methylphenol	ND	200	mg/L	1	7/22/2020 8:27:37 PM	53528
2,4-Dinitrotoluene	ND	0.13	mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachlorobenzene	ND	0.13	mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachlorobutadiene	ND	0.50	mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachloroethane	ND	3.0	mg/L	1	7/22/2020 8:27:37 PM	53528
Nitrobenzene	ND	2.0	mg/L	1	7/22/2020 8:27:37 PM	53528
Pentachlorophenol	ND	100	mg/L	1	7/22/2020 8:27:37 PM	53528
Pyridine	ND	5.0	mg/L	1	7/22/2020 8:27:37 PM	53528
2,4,5-Trichlorophenol	ND	400	mg/L	1	7/22/2020 8:27:37 PM	53528
2,4,6-Trichlorophenol	ND	2.0	mg/L	1	7/22/2020 8:27:37 PM	53528
Cresols, Total	ND	200	mg/L	1	7/22/2020 8:27:37 PM	53528
Surr: 2-Fluorophenol	54.9	15-81.1	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: Phenol-d5	45.6	15-61.1	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 2,4,6-Tribromophenol	77.5	17.2-108	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: Nitrobenzene-d5	63.0	18.7-120	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 2-Fluorobiphenyl	47.7	23.6-103	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 4-Terphenyl-d14	94.9	24.1-105	%Rec	1	7/22/2020 8:27:37 PM	53528
SPECIFIC GRAVITY					Analyst	CAS
Specific Gravity	0.9946	0		1	7/1/2020 2:10:00 PM	R70056
EPA METHOD 300.0: ANIONS					Analyst	CAS
Fluoride	ND	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Chloride	1200	50	* mg/L	100	7/2/2020 4:39:21 PM	R70134
Nitrogen, Nitrite (As N)	ND	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Bromide	4.0	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Nitrogen, Nitrate (As N)	ND	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Phosphorus, Orthophosphate (As P)	ND	2.5	mg/L	5	7/1/2020 10:01:06 PM	R70074
Sulfate	78	2.5	mg/L	5	7/1/2020 10:01:06 PM	R70074
SM2510B: SPECIFIC CONDUCTANCE					Analyst	: JRR
Conductivity	4500	10	µmhos/	2 1	7/7/2020 10:26:38 AM	R70195
SM2320B: ALKALINITY					Analyst	: JRR
Bicarbonate (As CaCO3)	647.1	20.00	mg/L Ca	a 1	7/7/2020 10:26:38 AM	R70195
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	a 1	7/7/2020 10:26:38 AM	R70195

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 14

Analytical Report Lab Order 2007018

Date Reported: 8/17/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Lab ID: 2007018-001

Matrix: AQUEOUS

Received Date: 7/1/2020 8:05:00 AM

Client Sample ID: Injection Well #2

Collection Date: 6/30/2020

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SM2320B: ALKALINITY						Analyst:	JRR
Total Alkalinity (as CaCO3)	647.1	20.00		mg/L Ca	1	7/7/2020 10:26:38 AM	R70195
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst:	KS
Total Dissolved Solids	2870	200	*D	mg/L	1	7/8/2020 10:16:00 AM	53514
SM4500-H+B / 9040C: PH				Ü		Analyst:	JRR
pH	7.77		Н	pH units	1	7/7/2020 10:26:38 AM	R70195
EPA METHOD 7470: MERCURY				p	•	Analyst	
Mercury	ND	0.0010		mg/L	5	7/7/2020 4:27:56 PM	53531
•	ND	0.0010		mg/L	J		
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst:	
Arsenic	ND	0.030		mg/L	1	7/8/2020 12:41:36 PM	53551
Barium	0.22	0.0020		mg/L	1	7/8/2020 12:41:36 PM	53551
Cadmium	ND	0.0020		mg/L	1	7/8/2020 12:41:36 PM	53551
Calcium	73	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551
Chromium	ND	0.0060		mg/L	1	7/8/2020 12:41:36 PM	53551
Lead	ND	0.020		mg/L	1	7/8/2020 12:41:36 PM	53551
Magnesium	52	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551
Potassium	13	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551
Selenium	ND	0.050		mg/L	1	7/8/2020 12:41:36 PM	53551
Silver	ND	0.0050		mg/L	1	7/8/2020 12:41:36 PM	53551
Sodium	910	10		mg/L	10	7/8/2020 1:06:08 PM	53551
TCLP VOLATILES BY 8260B						Analyst	CCM
Benzene	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
1,2-Dichloroethane (EDC)	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
2-Butanone	ND	200		mg/L	200	7/7/2020 12:55:00 AM	T70113
Carbon Tetrachloride	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
Chloroform	ND	6.0		mg/L	200	7/7/2020 12:55:00 AM	T70113
1,4-Dichlorobenzene	ND	7.5		mg/L	200	7/7/2020 12:55:00 AM	T70113
1,1-Dichloroethene	ND	0.70		mg/L	200	7/7/2020 12:55:00 AM	T70113
Tetrachloroethene (PCE)	ND	0.70		mg/L	200	7/7/2020 12:55:00 AM	T70113
Trichloroethene (TCE)	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
Vinyl chloride	ND	0.20		mg/L	200	7/7/2020 12:55:00 AM	T70113
Chlorobenzene	ND	100		mg/L	200	7/7/2020 12:55:00 AM	T70113
Surr: 1,2-Dichloroethane-d4	103	70-130		%Rec	200	7/7/2020 12:55:00 AM	T70113
Surr: 4-Bromofluorobenzene	102	70-130		%Rec		7/7/2020 12:55:00 AM	T70113
Surr: Dibromofluoromethane	106	70-130		%Rec		7/7/2020 12:55:00 AM	T70113
Surr: Toluene-d8	102	70-130		%Rec		7/7/2020 12:55:00 AM	T70113

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 14

ANALYTICAL REPORT

Ss

Sr

[°]Qc

Gl

Sc

Hall Environmental Analysis Laboratory

Sample Delivery Group: L1236077 Samples Received: 07/02/2020

Project Number:

Description:

Report To: Jackie Bolte

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By: Jahn V Houkins

John Hawkins

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2007018-001E INJECTION WELL #2 L1236077-01	5
2007018-001F INJECTION WELL #2 L1236077-02	6
2007018-001G INJECTION WELL #2 L1236077-03	7
Qc: Quality Control Summary	8
Wet Chemistry by Method 2580	8
Wet Chemistry by Method 4500 CN E-2011	9
Wet Chemistry by Method 4500H+ B-2011	10
Wet Chemistry by Method 9034-9030B	11
Wet Chemistry by Method D93/1010A	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

Ss

SAMPLE SUMMARY

2007040 004F IN IFCTION WELL #2 1422C077 04	\		Collected by	Collected date/time 06/30/20 00:00	Received da 07/02/20 08	
2007018-001E INJECTION WELL #2 L1236077-01 Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2580	WG1504658	1	07/07/20 05:39	07/07/20 05:39	AKA	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1503689	1	07/03/20 12:57	07/03/20 12:57	KEG	Mt. Juliet, TN
Wet Chemistry by Method D93/1010A	WG1506806	1	07/11/20 19:15	07/11/20 19:15	JIC	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2007018-001F INJECTION WELL #2 L1236077-02	WW			06/30/20 00:00	07/02/20 08	3:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9034-9030B	WG1504791	1	07/07/20 15:23	07/07/20 15:23	SL	Mt. Juliet, TN
2007018-001G INJECTION WELL #2 L1236077-03	WW		Collected by	Collected date/time 06/30/20 00:00	Received da 07/02/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 4500 CN E-2011	WG1507316	1	07/11/20 18:08	07/13/20 15:06	JER	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Project Manager

John Hawkins

Project Narrative

All Reactive Cyanide results reported in the attached report were determined as totals using method 9012B. All Reactive Sulfide results reported in the attached report were determined as totals using method 9034/9030B.

SAMPLE RESULTS - 01

ONE LAB. NAPage 234 of 300

Collected date/time: 06/30/20 00:00

Wet Chemistry by Method 2580

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	mV			date / time	
ORP	37.7	Q	1	07/07/2020 05:39	WG1504658

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
Corrosivity by pH	7.63	<u>T8</u>	1	07/03/2020 12:57	WG1503689

Sample Narrative:

L1236077-01 WG1503689: 7.63 at 21.1C

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	deg F			date / time	
Flashpoint	DNF at 170		1	07/11/2020 19:15	WG1506806

Collected date/time: 06/30/20 00:00

SAMPLE RESULTS - 02

ONE LAB. NAPagev235 of 300

L123607

Wet Chemistry by Method 9034-9030B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Reactive Sulfide	0.833		0.0500	1	07/07/2020 15:23	WG1504791

Collected date/time: 06/30/20 00:00

SAMPLE RESULTS - 03

ONE LAB. NAPage 236 of 300

L12360

Wet Chemistry by Method 4500 CN E-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Reactive Cyanide	ND		0.00500	1	07/13/2020 15:06	WG1507316

WG1504658	thod 2580				QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Rece
p1236077-01 Original Sample (OS) • Duplicate (DUP)	nal Sample (dn	licate (DU	(A			ived (
OS) L1236077-01 07/07/20 05:39 • (DUP) R3546691-2 07/07/20 05:39 Original Result DUP Result DUP Result DUP Result DUP DIIUTION DUP DII	/20 05:39 • (DUP) Original Result) R3546691-2 DUP Result	07/07/20 05:39 Dilution DUP Diff	<u>.</u>	DUP Qualifier DUP Diff Limits		by OC
M. Analyte	μV	νm	μV		Jul July		D :
.8: 0	37.7	55.8	1 18.	1	20		6/2 /.
5/8/2							202
Saboratory Control Sample (LCS)	Sample (LC	(S2)					11:
LCS) R3546691-1 07/07/20 05:39	/20 05:39						17:
04:	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		05
47 Analyte	μV	Λm	%	%			PN S
окр РМ	228	226	0.66	86.0-105			o O O
							\overline{A}
							σ

ACCOUNT: Hall Environmental Analysis Laboratory

PROJECT:

PAGE: 8 of 15

DATE/TIME: 07/14/20 07:36

SDG: L1236077

PAGE: 9 of 15

DATE/TIME: 07/14/20 07:36

WG1507316				QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.
elea Wet Chemistry by Me	thod 4500 CN E-20			<u>L1236077-03</u>	
postinod Blank (MB)	3)				ived (
(MB) R3548947-1 07/13/20 14:32	20 14:32				
ma	.	MB Qualifier MB MDL	ADL MB RDL	11	
Analyte	l/gm	l/gm	l/gm		
Reactive Cyanide	n	0.00180	0.00500	00	
6/8/					
/20	:	į			
Original Sample (OS) • Duplicate (DUP)	OS) • Duplicate (I	OUP)			
(OS) • (DUP) R3548947-3 07/13/20 14:37	-3 07/13/20 14:37				
9 4: 43	Original Result DUP Result		Dilution DUP RPD	DUP Qualifier Limits	05 R
4Analyte	l/gm		%	%	
Reactive Cyanide	QN	-	0.000	20	

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

LCS Qualifier

Rec. Limits

LCS Rec.

Spike Amount LCS Result

mg/l 0.100

Analyte Reactive Cyanide

Laboratory Control Sample (LCS)

(LCS) R3548947-2 07/13/2014:33

90.0-110

98.4

mg/l 0.0984 Sc

₹

	RPD Limits	%	20
	MSD Qualifier RPD	%	4.83
	MS Qualifier		
	Rec. Limits	%	75.0-125
	Dilution		_
	MSD Rec.	%	101
	MS Rec.	%	106
/20 15:05	MSD Result	l/gm	0.101
(OS) • (MS) R3548947-4 07/13/2015:04 • (MSD) R3548947-5 07/13/2015:05	Spike Amount Original Result MS Result	l/gm	0.106
7-4 07/13/2015:04	Spike Amount	l/gm	0.100
(OS) • (MS) R354894		Analyte	Reactive Cyanide

PROJECT:

SDG: L1236077

ACCOUNT:

PM

g

 $\overline{\mathbb{Q}}$

₹

Sc

QUALITY CONTROL SUMMARY

LCS Qualifier

Rec. Limits

LCS Rec.

Spike Amount LCS Result

WG1503689

pawet Chemistry by Method 4500H+ B-2011

pl_aboratory Control Sample (LCS)

(LCS) R3545989-1 07/03/20 12:57

Spike Amount LCS Result

Sulanalyte

99.0-101

101

28.7027 A:04:43 PM

DATE/TIME: 07/14/20 07:36

SDG: L1236077

PROJECT:

WG1504791	thod 9034-903	0 B		ŊØ	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Rece
per (MB)	3)						ived (
MR) R3547698-1 07/07/20 14:56	/20 14:56 MR Pecult	MR Qualifier	MR	IUB BDI			by O
sa Manalyte	mg/l		mg/l	mg/l			CD:
Reactive Sulfide	n		0.00650	0.0500			6/2
6/8/2							2/202
2 - aboratory Control Sample (LCS)	ol Sample (LC	(S)					1 1:
LCS) R3547698-2 07/07/20 14:56	7/20 14:56						17:
04:	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		05
43 Analyte	l/gm	l/gm	%	%			PN S
WReactive Sulfide	0.500	0.473	94.6	85.0-115			o O O
							Ū

Sc

ACCOUNT:
Hall Environmental Analysis Laboratory

PAGE: 12 of 15

DATE/TIME: 07/14/20 07:36

SDG: L1236077

PROJECT:

0	WG1506806 QUALITY CONT	Ø	UALITY	CONTROL SUMMARY	OL SUN	IMARY		NO	ONE LAB. NATIONWIDE.	Rece
Sample (LCS) • Labor	atory (Sontrol Samp	le Duplicate	(LCSD)						ived
J 19:15 • (LCSD) R3548542-	2 07/11/20 1	19:15								by (
Spike Amount LCS Result	LCSD Res	sult LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD		RPD Limits) C.
deg F deg F	deg F	%	%	%		%	%			D:
126 127	125	101	1.00	96.0-104		1.59	0			6/2/2021 1:17:05 PM
										Sc

ACCOUNT:
Hall Environmental Analysis Laboratory

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Delinitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.
T8	Sample(s) received past/too close to holding time expiration.

Ss

Cn

Sr

Qc

GI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Website: clients.hallenvironmental.com

Hall Environmental Analysis Laboratory

OF:

CHAIN OF CUSTODY RECORD PAGE: 1

4901 Hawkins NE Ilbuquerque, NM 87109 TEL; 505-345-3975 FAX: 505-345-4107 000

1 ORP, Corrosivity, Ignitability

1 Reactive Sulfide 1 Reactive Cyanide

500PL-NaOH Aqueous 6/30/2020

6/30/2020

500PLNAOH Aqueous

2007018-001F Injection Well #2

2007018-001G Injection Well #2

2007018-001E Injection Well #2

Aqueous

500HDPE

ENVIRONMENTAL ANALYSIS LABORATORY

ANALYTICAL COMMENTS (615) 758-5859 EMAIL: FAX 6585-797 (008) # CONTAINERS COLLECTION ACCOUNT PHONE DATE MATRIX BOTTLE TYPE PACE TN COMPANY CLIENT SAMPLE ID Mt. Juliet, TN 37122 12065 Lebanon Rd SUB CONTRATOR Pace TN SAMPLE CITY, STATE, ZIP. ADDRESS: ITEM

Relinquished By: PM	Date: 7/1/2020	7/1/2020 Time: 11:19 AM	Received By:	Date: Time:	ORT TRANSMITTAL DESIRED.	
	Descri	Thurst	Danaisead Day	Data	L HARDCOPY (extra cost)	ONLINE
Kennquished by:	Date.	Lune.	Notes of the second of the sec		EOB I AB TISE ONI V	i de
Relinquished By:	Date:	Time:	LANGH XP	Date Jan Time 4.45	Charles of complete A VA A Attended to Cod	
TAT:	Standard 🗀	RUSH	Next BD	□ dabse □	rempters of the samples of the sample of the samples of the sample of the samples	1

Hall Environmental Analysis Laboratory, Inc.

ND

0.50

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R70074 RunNo: 70074 Prep Date: Analysis Date: 7/1/2020 SeqNo: 2434415 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.10 Fluoride ND Nitrogen, Nitrite (As N) ND 0.10 Bromide ND 0.10 Nitrogen, Nitrate (As N) ND 0.10 Phosphorus, Orthophosphate (As P ND 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R70074 RunNo: 70074 Prep Date: Analysis Date: 7/1/2020 SeqNo: 2434416 Units: mg/L SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result PQL LowLimit Qual Fluoride 0.54 0.10 0.5000 0 108 90 110 Nitrogen, Nitrite (As N) 0.98 1.000 0 98.3 90 0.10 110 0 101 Bromide 2.5 0.10 2.500 90 110 0 100 Nitrogen, Nitrate (As N) 2.5 0.10 2.500 90 110 Phosphorus, Orthophosphate (As P 0.50 5.000 0 94.3 90 110 4.7 Sulfate 9.8 0.50 10.00 0 98.0 90 110

Sample ID: MB TestCode: EPA Method 300.0: Anions SampType: mblk Client ID: PBW Batch ID: R70134 RunNo: 70134 Prep Date: Analysis Date: 7/2/2020 SeqNo: 2437168 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND 0.50 Chloride

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R70134 RunNo: 70134 Prep Date: Analysis Date: 7/2/2020 SeqNo: 2437169 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Chloride 4.9 0.50 5.000 98.4 90 110

Qualifiers:

Sulfate

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: MB-53534	SampT	уре: МЕ	BLK	Tes	Code: E	PA Method	8081: Pestici	des TCLP		
Client ID: PBW	Batch	h ID: 53	534	F	lunNo: 7	0353				
Prep Date: 7/7/2020	Analysis D	Date: 7/	15/2020	5	SeqNo: 2	445441	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlordane	ND	0.030								
Surr: Decachlorobiphenyl	0.0022		0.002500		87.3	38.2	102			
Surr: Tetrachloro-m-xylene	0.0018		0.002500		72.0	32.3	92.4			
Sample ID: LCS-53534	SampT	ype: LC	s	Tes	tCode: E	PA Method	8081: Pestici	des TCLP		
Client ID: LCSW	Batch	h ID: 53	534	F	unNo: 7	0353				
Prep Date: 7/7/2020	Analysis D	Date: 7/	15/2020	S	SeqNo: 2	445442	Units: %Rec	;		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Decachlorobiphenyl	0.0022		0.002500		88.4	38.2	102			
Surr: Tetrachloro-m-xylene	0.0019		0.002500		77.1	32.3	92.4			
Sample ID: LCSD-53534	SamnT	ype: LC	:SD	Tes	Code: F	PA Method	8081: Pestici	des TCLP		
Campio ID. LOOD -30334	Campi	, po. LO		103	L	. A Michiga	ooo i. i colici	GOO I OLI		

Sample 1D. LC3D-33334	Janipi	уре. сс	30	163	icode. Ei	A Method	ouo i. Festici	ues ICLF		
Client ID: LCSS02	Batch	ID: 53 5	534	F	RunNo: 70	0353				
Prep Date: 7/7/2020	Analysis D	ate: 7/	15/2020	8	SeqNo: 2	445443	Units: %Rec	;		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Surr: Decachlorobiphenyl	Result 0.0024	PQL	SPK value 0.002500	SPK Ref Val	%REC 96.2	LowLimit 38.2	HighLimit 102	%RPD 0	RPDLimit 0	Qual

Sample ID: MB-53534	Samp	уре: МЕ	BLK	Tes	tCode: El					
Client ID: PBW	Batc	h ID: 53 !	534	F	RunNo: 70	0353				
Prep Date: 7/7/2020	Analysis [Date: 7/	15/2020	8	SeqNo: 2	445445	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlordane	ND	0.030								
Surr: Decachlorobiphenyl	0.0022		0.002500		86.5	38.2	102			
Surr: Tetrachloro-m-xylene	0.0018		0.002500		72.9	32.3	92.4			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: 100ng lcs	Samp	Type: LC	S	Tes	tCode: T (CLP Volatil	es by 8260B			
Client ID: LCSW	Bat	ch ID: T7	0113	F	RunNo: 7 0	0113				
Prep Date:	Analysis	Date: 7/	6/2020	8	SeqNo: 2	438829	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.019	0.00023	0.02000	0	95.7	70	130			
1,1-Dichloroethene	0.019	0.00013	0.02000	0	95.1	70	130			
Trichloroethene (TCE)	0.018	0.00020	0.02000	0	88.0	70	130			
Chlorobenzene	0.021	0.00014	0.02000	0	107	70	130			
Surr: 1,2-Dichloroethane-d4	0.0098		0.01000		98.0	70	130			
Surr: 4-Bromofluorobenzene	0.010		0.01000		102	70	130			
Surr: Dibromofluoromethane	0.0096		0.01000		96.4	70	130			
Surr: Toluene-d8	0.010		0.01000		102	70	130			
Sample ID: MB	Samp	туре: МЕ	BLK	Tes	tCode: T (CLP Volatil	es by 8260B			

Client ID: PBW	Batch ID: T70113			F	RunNo: 7 0	0113				
Prep Date:	Analysis Date: 7/6/2020		SeqNo: 2438830			Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.50								
1,2-Dichloroethane (EDC)	ND	0.50								
2-Butanone	ND	200								
Carbon Tetrachloride	ND	0.50								
Chloroform	ND	6.0								
1,4-Dichlorobenzene	ND	7.5								
1,1-Dichloroethene	ND	0.70								
Tetrachloroethene (PCE)	ND	0.70								
Trichloroethene (TCE)	ND	0.50								
Vinyl chloride	ND	0.20								
Chlorobenzene	ND	100								
Surr: 1,2-Dichloroethane-d4	0.010		0.01000		102	70	130			
Surr: 4-Bromofluorobenzene	0.010		0.01000		100	70	130			
Surr: Dibromofluoromethane	0.010		0.01000		99.5	70	130			
Surr: Toluene-d8	0.010		0.01000		100	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: mb-53528	SampType: MBLK			TestCode: EPA Method 8270C TCLP						
Client ID: PBW	Batch ID: 53528			RunNo: 70542						
Prep Date: 7/7/2020	Analysis Date: 7/22/2020		5	SeqNo: 2	453803	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	ND	200								
3+4-Methylphenol	ND	200								
2,4-Dinitrotoluene	ND	0.13								
Hexachlorobenzene	ND	0.13								
Hexachlorobutadiene	ND	0.50								
Hexachloroethane	ND	3.0								
Nitrobenzene	ND	2.0								
Pentachlorophenol	ND	100								
Pyridine	ND	5.0								
2,4,5-Trichlorophenol	ND	400								
2,4,6-Trichlorophenol	ND	2.0								
Cresols, Total	ND	200								
Surr: 2-Fluorophenol	0.13		0.2000		67.3	15	81.1			
Surr: Phenol-d5	0.10		0.2000		52.1	15	61.1			
Surr: 2,4,6-Tribromophenol	0.15		0.2000		74.1	17.2	108			
Surr: Nitrobenzene-d5	0.078		0.1000		77.9	18.7	120			
Surr: 2-Fluorobiphenyl	0.059		0.1000		59.0	23.6	103			
Surr: 4-Terphenyl-d14	0.11		0.1000		114	24.1	105			S

Sample ID: Ics-53528	SampType: LCS			Tes	tCode: EF	PA Method				
Client ID: LCSW	Batch ID: 53528			R	RunNo: 7 0	0542				
Prep Date: 7/7/2020	Analysis Date: 7/22/2020			S	SeqNo: 24	453804	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.077	0.0010	0.1000	0	76.5	33.8	121			
3+4-Methylphenol	0.16	0.0010	0.2000	0	81.8	33.6	109			
2,4-Dinitrotoluene	0.055	0.0010	0.1000	0	54.8	50.4	124			
Hexachlorobenzene	0.088	0.0010	0.1000	0	88.1	50.1	120			
Hexachlorobutadiene	0.043	0.0010	0.1000	0	42.5	16.1	103			
Hexachloroethane	0.042	0.0010	0.1000	0	42.3	15	94.2			
Nitrobenzene	0.087	0.0010	0.1000	0	87.4	32.4	125			
Pentachlorophenol	0.080	0.0010	0.1000	0	79.7	44.6	114			
Pyridine	0.011	0.0010	0.1000	0	11.2	15	67			S
2,4,5-Trichlorophenol	0.082	0.0010	0.1000	0	81.9	49.4	118			
2,4,6-Trichlorophenol	0.083	0.0010	0.1000	0	82.6	50.3	116			
Cresols, Total	0.24	0.0010	0.3000	0	80.0	33.8	109			
Surr: 2-Fluorophenol	0.12		0.2000		61.5	15	81.1			
Surr: Phenol-d5	0.092		0.2000		45.8	15	61.1			
Surr: 2,4,6-Tribromophenol	0.14		0.2000		72.4	17.2	108			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 14

Hall Environmental Analysis Laboratory, Inc.

SampType: MS

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: 2007018-001bms

Sample ID: Ics-53528 SampType: LCS TestCode: EPA Method 8270C TCLP Client ID: LCSW Batch ID: 53528 RunNo: 70542 Prep Date: 7/7/2020 Analysis Date: 7/22/2020 SeqNo: 2453804 Units: mq/L Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.1000 Surr: Nitrobenzene-d5 0.080 80.5 18.7 120

 Surr: Nitrobenzene-d5
 0.080
 0.1000
 80.5
 18.7
 120

 Surr: 2-Fluorobiphenyl
 0.060
 0.1000
 59.6
 23.6
 103

 Surr: 4-Terphenyl-d14
 0.11
 0.1000
 108
 24.1
 105
 S

TestCode: EPA Method 8270C TCLP

Client ID: Injection Well #2 Batch ID: 53528 RunNo: 70542 7/7/2020 Analysis Date: 7/22/2020 SeqNo: 2453806 Units: mq/L Prep Date: Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 30.5 0.095 0.0010 0.1000 0 95.3 98.2 2-Methylphenol 3+4-Methylphenol 0.0010 0.2000 0 106 27.4 98.6 0.21

S 2,4-Dinitrotoluene 0 77.0 34.3 87.4 0.077 0.0010 0.1000 Hexachlorobenzene 0.094 0.0010 0.1000 0 93.8 36.5 100 0.053 0 52.9 Hexachlorobutadiene 0.0010 0.1000 15 108 Hexachloroethane 0.054 0.0010 0.1000 0 53.6 15 90.7 0 95.4 Nitrobenzene 0.095 0.0010 0.1000 39 100 Pentachlorophenol 0.088 0.0010 0.1000 0 87.5 15 97.5 Pyridine 0.010 0.0010 0.1000 0 10.4 15 65.8 S 0 90.7 36.1 2,4,5-Trichlorophenol 0.091 0.0010 0.1000 109 2,4,6-Trichlorophenol 0.095 0.0010 0.1000 0 94.9 37.8 104 0 S Cresols, Total 0.0010 102 27.1 99.8 0.31 0.3000 0.15 0.2000 72.6 15 81.1 Surr: 2-Fluorophenol Surr: Phenol-d5 0.11 0.2000 54.5 15 61.1 86.3 Surr: 2,4,6-Tribromophenol 0.17 0.2000 17.2 108 Surr: Nitrobenzene-d5 0.091 0.1000 91.2 18.7 120 Surr: 2-Fluorobiphenyl 0.070 0.1000 69.8 23.6 103 Surr: 4-Terphenyl-d14 24.1 0.10 0.1000 102 105

Sample ID: 2007018-001bmsd TestCode: EPA Method 8270C TCLP SampType: MSD Batch ID: 53528 RunNo: 70542 Client ID: Injection Well #2 Prep Date: 7/7/2020 Analysis Date: 7/22/2020 SeqNo: 2453807 Units: ma/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 2-Methylphenol 0.076 0.0010 0.1000 0 75.9 30.5 98.2 22.7 44.3 3+4-Methylphenol 0.16 0.0010 0.2000 0 79.5 27.4 98.6 28.3 50 0 0.067 67.0 34.3 87.4 45.1 2,4-Dinitrotoluene 0.0010 0.1000 13.9 Hexachlorobenzene 0.082 0.0010 0.1000 0 81.9 36.5 100 13.6 47.2 0 Hexachlorobutadiene 39.3 29.4 43.4 0.039 0.0010 0.1000 15 108 Hexachloroethane 0.039 0.0010 0.1000 0 38.9 15 90.7 31.8 39.2 0 Nitrobenzene 76.6 21.9 42.1 0.077 0.0010 0.1000 39 100

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: 2007018-001bmsd SampType: MSD TestCode: EPA Method 8270C TCLP Client ID: Injection Well #2 Batch ID: 53528 RunNo: 70542 Prep Date: 7/7/2020 Analysis Date: 7/22/2020 SeqNo: 2453807 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Pentachlorophenol 0.086 0.0010 0.1000 0 85.6 15 97.5 2.30 50 0 0.0392 RS Pyridine ND 0.0010 0.1000 15 65.8 200 50 2,4,5-Trichlorophenol 0 85.6 36.1 0.086 0.0010 0.1000 109 5.85 49.7 2,4,6-Trichlorophenol 0.080 0.0010 0.1000 0 80.2 37.8 104 16.8 47 Cresols, Total 0.23 0.0010 0.3000 0 78.3 27.1 99.8 26.5 27.4 Surr: 2-Fluorophenol 0.13 0.2000 62.9 15 81.1 0 0 Surr: Phenol-d5 0.10 0.2000 50.9 15 61.1 0 0 0 0 Surr: 2,4,6-Tribromophenol 0.2000 81.5 17.2 108 0.16 Surr: Nitrobenzene-d5 0.079 0.1000 79.4 18.7 120 0 0 Surr: 2-Fluorobiphenyl 59.7 23.6 0 0 0.060 0.1000 103 Surr: 4-Terphenyl-d14 0.10 0.1000 104 24.1 105 0 0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: Ics-1 99.5uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439134 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 99 10 99.50 0 99.8 85 115

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: MB-53531 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 53531 RunNo: 70152

Prep Date: 7/7/2020 Analysis Date: 7/7/2020 SeqNo: 2437876 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LLLCS-53531 SampType: LCSLL TestCode: EPA Method 7470: Mercury

Client ID: BatchQC Batch ID: 53531 RunNo: 70152

Prep Date: 7/7/2020 Analysis Date: 7/7/2020 SeqNo: 2437877 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020 0.0001500 0 96.1 50 150

Sample ID: LCS-53531 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 53531 RunNo: 70152

Prep Date: 7/7/2020 Analysis Date: 7/7/2020 SeqNo: 2437878 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0049 0.00020 0.005000 0 98.2 80 120

Sample ID: 2007018-001DMS SampType: MS TestCode: EPA Method 7470: Mercury

Client ID: Injection Well #2 Batch ID: 53531 RunNo: 70152

Prep Date: 7/7/2020 Analysis Date: 7/7/2020 SeqNo: 2437885 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0025 0.0010 0.005000 0 49.4 75 125 S

Sample ID: 2007018-001DMSD SampType: MSD TestCode: EPA Method 7470: Mercury

Client ID: Injection Well #2 Batch ID: 53531 RunNo: 70152

Prep Date: 7/7/2020 Analysis Date: 7/7/2020 SeqNo: 2437886 Units: mg/L

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Mercury 0.0024 0.0010 0.005000 48.5 75 125 1.89 20 S

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: MB-53551 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 53551 RunNo: 70197

Prep Date: 7/7/2020	Analysis	Date: 7/	8/2020	S	SeqNo: 24	439313	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	ND	0.030									
Barium	ND	0.0020									
Cadmium	ND	0.0020									
Calcium	ND	1.0									
Chromium	ND	0.0060									
Lead	ND	0.020									
Magnesium	ND	1.0									
Potassium	ND	1.0									
Selenium	ND	0.050									
Silver	ND	0.0050									
Sodium	ND	1.0									

Sample ID: LCS-53551	Samp	Type: LC	S	TestCode: EPA 6010B: Total Recoverable Metals									
Client ID: LCSW	Bato	ch ID: 53	551	R	RunNo: 7 0	0197							
Prep Date: 7/7/2020	Analysis	Date: 7/	8/2020	S	SeqNo: 2	439314	Units: mg/L	ts: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Arsenic	0.45	0.030	0.5000	0	89.1	80	120						
Barium	0.47	0.0020	0.5000	0	93.1	80	120						
Cadmium	0.46	0.0020	0.5000	0	92.8	80	120						
Calcium	51	1.0	50.00	0	102	80	120						
Chromium	0.45	0.0060	0.5000	0	89.1	80	120						
Lead	0.45	0.020	0.5000	0	90.6	80	120						
Magnesium	51	1.0	50.00	0	103	80	120						
Potassium	50	1.0	50.00	0	99.2	80	120						
Selenium	0.45	0.050	0.5000	0	90.1	80	120						
Silver	0.095	0.0050	0.1000	0	95.0	80	120						
Sodium	51	1.0	50.00	0	101	80	120						

Sample ID: 2007018-001DMS	Samp	Туре: МЅ	5	TestCode: EPA 6010B: Total Recoverable Metals						
Client ID: Injection Well #2	Bato	h ID: 53	551	F	RunNo: 70	0197				
Prep Date: 7/7/2020	Analysis	Date: 7/ 8	8/2020	9	SeqNo: 2	439318	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.32	0.030	0.5000	0	63.1	75	125			S
Barium	0.58	0.0020	0.5000	0.2229	71.2	75	125			S
Cadmium	0.37	0.0020	0.5000	0	73.1	75	125			S
Chromium	0.32	0.0060	0.5000	0	64.2	75	125			S
Lead	0.33	0.020	0.5000	0	65.8	75	125			S
Magnesium	97	1.0	50.00	52.48	88.9	75	125			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 14

Hall Environmental Analysis Laboratory, Inc.

SampType: MSD

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: 2007018-001DMSD

Sample ID: 2007018-001DMS SampType: MS TestCode: EPA 6010B: Total Recoverable Metals Injection Well #2 Client ID: Batch ID: 53551 RunNo: 70197 Prep Date: 7/7/2020 Analysis Date: 7/8/2020 SeqNo: 2439318 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

TestCode: EPA 6010B: Total Recoverable Metals

12.98 50.00 94.1 75 Potassium 60 1.0 125 63.5 75 S Selenium 0.32 0.050 0.5000 0 125 S Silver 0.1000 0 75 0.074 0.0050 74.0 125

Client ID: Injection Well #2 Batch ID: 53551 RunNo: 70197

Prep Date: 7/7/2020 Analysis Date: 7/8/2020 SeqNo: 2439319 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu

							_				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	0.30	0.030	0.5000	0	59.7	75	125	5.44	20	S	
Barium	0.55	0.0020	0.5000	0.2229	65.3	75	125	5.26	20	S	
Cadmium	0.35	0.0020	0.5000	0	69.8	75	125	4.61	20	S	
Chromium	0.31	0.0060	0.5000	0	61.1	75	125	5.01	20	S	
Lead	0.32	0.020	0.5000	0	63.9	75	125	2.92	20	S	
Magnesium	91	1.0	50.00	52.48	76.5	75	125	6.58	20		
Potassium	56	1.0	50.00	12.98	85.7	75	125	7.22	20		
Selenium	0.30	0.050	0.5000	0	59.0	75	125	7.36	20	S	
Silver	0.070	0.0050	0.1000	0	70.2	75	125	5.21	20	S	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439098 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439099 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 76.40 20.00 80.00 0 95.5 90 110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439121 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439122 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 77.32 20.00 80.00 0 96.7 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007018**

17-Aug-20

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: MB-53514 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 53514 RunNo: 70168

Prep Date: 7/6/2020 Analysis Date: 7/8/2020 SeqNo: 2438320 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-53514 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 53514 RunNo: 70168

Prep Date: 7/6/2020 Analysis Date: 7/8/2020 SeqNo: 2438321 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

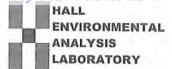
H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank


E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 14

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Completed By: Emily Mocho Reviewed By: SfA 12:40 7·1·20 Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In	Work Order Number: 7/1/2020 8:05:00 AM 7/1/2020 10:48:41 AM		✓ ier	No 🗆	RcptNo: 1 Not Present
Completed By: Emily Mocho Reviewed By: SpA 12:40 7:1-20 Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In	7/1/2020 10:48:41 AM	Yes Cour	ier	No 🗆	Not Present
Reviewed By: SfA 12:40 7-1-20 Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In		Yes Cour	ier	No 🗀	Not Present
Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In	: >0° C to 6 0°C	Cour	ier	No 🗆	Not Present
Is Chain of Custody complete? How was the sample delivered? Log In	: >0° C to 6 0°C	Cour	ier	No 🗌	Not Present
2. How was the sample delivered? <u>Log In</u>	: >0° C to 6 0°C	Cour	ier	No 🗌	Not Present
Log In	: >0° C to 6 0°C				
	: >0° C to 6 0°C	Yes			
3. Was an attempt made to cool the samples?	: >0° C to 6 0°C	Yes	. 0		
o. Was an attempt made to cool the samples?	5 >0° C to 6 0°C		V	No 🗌	NA 🗆
4. Were all samples received at a temperature of		Yes	✓	No 🗆	NA 🗆
5. Sample(s) in proper container(s)?		Yes	~	No 🗌	
6. Sufficient sample volume for indicated test(s)?		Yes	V	No 🗌	. 120
7. Are samples (except VOA and ONG) properly	preserved?	Yes	V	No 🗌	1R711/20
8. Was preservative added to bottles?		Yes		No 🗸	NA 🗆
9. Received at least 1 vial with headspace <1/4" f	for AQ VOA?	Yes	V	No 🗆	NA 🗆
O. Were any sample containers received broken?	?	Yes		No 🗸	# of preserved
1. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes	V	No 🗆	bottles checked for pH: (<2 or <12 unless noted)
2. Are matrices correctly identified on Chain of Cu	ustody?	Yes	V	No 🗌	Adjusted? yes
3, Is it clear what analyses were requested?		Yes	V	No 🗆	
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes	V	No 🗌	Checked by: $J[2,7](]2$
Special Handling (if applicable)					
15. Was client notified of all discrepancies with thi	is order?	Yes		No 🗌	NA 🗹
Person Notified:	Date:				
By Whom:	Via:	eMa	ail Pho	ne 🗌 Fax	☐ In Person
Regarding:					
Client Instructions:					
16. Additional remarks: 05 ml of H	Mos was a	rdo	led to	s Sau	mple our for ph
	tals analy	S (S eal Da		子(イフ igned By	O

HALL ENVIRONMENTAL ANALYSIS I ABORATORY	37109	5 Fax 505-345-4107	Analysis Request	(OSO,	9's (802) 10', MF 10',	7 DE (102)	8/8 504 50 TO 8 8 8 8 9,1 10 10 10 10 10 10 10 10 10 10 10 10 10	GFR bod (S 310 310 310 310 310 310 310	15D flethory 83 8 Meth 8 Meth 8 Meth 9 Meth 9 Meth 1 , 18	08:H:80 81 P:0 08:H:8 09:E; E 60 (V)	100 LOO LOO LOO LOO LOO LOO LOO LOO LOO L	X	X	X	X	X		X	X		See Attached Analytical Lit as	182 Male Male Male Man Counter 7/1/20 8:05 Semples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	1 Mychar Well #2- 202020		104 4300 85 tsC		K. Robiusan		☑ Yes □ No	olers: i	Cooler Temp(including CF): Z.O ±0 = 2.0 (°C)	HEAL No.	Total Company	Fredmi None	2-some Poly		1-SDOWNLOOLY NAOH	1-Spoul Ddy Liberth	1-250WI PAL HNO3	1-125ml Ply H,500	ESBount Poly		Received by: Via: Date Time Received by: Via: Date Time	SUM COUNTER 7/1/20 8:05
Chain-of-Custody Record Client: Western Refining	Mailing Address: SD CR 4990		Phone # (SDS) 80 1 - 56 16	email or Fax#:	QA/QC Package: ☐ Level 4 (Full Validation)	Accreditation: Az Compliance	□ NELAC □ Other	V EDD (Type) Excel	7		te Time Matrix Sample Name	6/30/20 Webler layection Well #2									Date: Time: Relinquished by: 139/25 720 Common Date: Time: Relinquished by:	182 Man All Environmental may be subc

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

immediately or within a specified time period, or assess a civil penalty, or both (see Section 74-6-10 NMSA 1978). The compliance order may also include a suspension or termination of this Discharge Permit. OCD may also commence a civil action in district court for appropriate relief, including injunctive relief (see Section 74-6-10(A)(2) NMSA 1978). The Permittee may be subject to criminal penalties for discharging a water contaminant without a discharge permit or in violation of a condition of a discharge permit; making any false material statement, representation, certification or omission of material fact in a renewal application, record, report, plan or other document filed, submitted or required to be maintained under the Water Quality Act; falsifying, tampering with or rendering inaccurate any monitoring device, method or record required to be maintained under the Water Quality Act; or failing to monitor, sample or report as required by a Discharge Permit issued pursuant to a state or federal law or regulation (see Section 74-6-10.2 NMSA 1978).

2. GENERAL FACILITY OPERATIONS:

2.A. QUARTERLY MONITORING REQUIREMENTS FOR CLASS I NON-HAZARDOUS WASTE INJECTION WELL: The Permittee shall properly conduct waste management injection operations at its facility by injecting only non-hazardous (RCRA exempt and RCRA non-hazardous, non-exempt) oil field waste fluids. Injected waste fluids shall not exhibit the RCRA characteristics, i.e., ignitability, reactivity, corrosivity, or toxicity under 40 CFR 261 Subpart "C" 261.21 – 261.24 (July 1, 1992), at the point of injection into WDW-2, based upon environmental analytical laboratory testing. Pursuant to 20.6.2.5207B, the Permittee shall provide analyses of the injected fluids at least quarterly to yield data representative of their toxicity characteristic.

The Permittee shall also analyze the injected fluids quarterly for the following characteristics:

- o pH (Method 9040);
- o Eh;
- Specific conductance;
- Specific gravity;
 - · Temperature;
- Major dissolved cations and anions, including: fluoride, calcium, potassium, magnesium, sodium bicarbonate, carbonate, chloride, sulfate, bromide, total dissolved solids, and cation/anion balance using the methods specified in 40 CFR 136.3); and,
- EPA RCRA Characteristics for Ignitability (ASTM Methods); Corrosivity (SW-846) and Reactivity (determined through Permittee's application of knowledge or generating process).

The Permittee shall analyze the injected fluids quarterly for the constituents identified in the Quarterly Monitoring List (below) to demonstrate that the injected fluids do not exhibit the characteristic of toxicity using the Toxicity Characteristic Leaching Procedure, EPA SW-846 Test Method 1311 (see Table 1, 40 CFR 261.24(b)).

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

EPA HW No.	Contaminant	SW-846 Methods	Regulatory Level (mg/L)
D004	Arsenic	1311	5.0
D005	Barium	1311	100.0
D018	Benzene	8021B	0.5
D006	Cadmium	1311	1.0
D019	Carbon tetrachloride	8021B 8260B	0.5
D020	Chlordane	8081A	0.03
D021	Chlorobenzene	8021B 8260B	100.0
D022	Chloroform	8021B 8260B	6.0
D007	Chromium	1311	5.0
D023	o-Cresol	8270D	200.0
D024	m-Cresol	8270D	200.0
D025 .	p-Cresol	8270D	200.0
D026	Cresol	8270D	200.0
D027	1,4-Dichlorobenzene	8021B 8121 8260B 8270D	7.5
D028	1,2-Dichloroethane	8021B 8260B	0.5
D029	1,1-Dichloroethylene	8021B 8260B	0.7
D030	2,4-Dinitrotoluene	8091 8270D	0.13
D032	Hexachlorobenzene	8121	0.13
D033	Hexachlorobutadiene	8021B 8121 8260B	0.5
0034	Hexachloroethane	8121	3.0
2008	Lead	1311	5.0
0009	Мегсигу	7470A 7471B	0.2
0035	Methyl ethyl ketone	8015B 8260B	200.0
0036	Nitrobenzene	8091 8270D	2.0
0037	Pentrachlorophenol	8041	100.0
0038	Pyridine	8260B 8270D	5.0

Page 6

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

D010	Selenium	1311	1.0
D011	Silver	1311	5.0
D039	Tetrachloroethylene	8260B	0.7
D040	Trichloroethylene	8021B	0.5
		8260B	
D041	2,4,5-Trichlorophenol	8270D	400.0
D042	2,4,6-Trichlorophenol	8041A	2.0
	Franch Control	8270D	1
D043	Vinyl chloride	8021B	0.2
		8260B	

If o-, m-, and p-cresol concentrations cannot be differentiated, then the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/L.

If the quantitation limit is greater than the regulatory level, then the quantitation limit becomes the regulatory level. If metals (dissolved), the EPA 1311 TCLP Laboratory Method is required with the exception of Mercury (total).

- 1. Monitor and Piezometer Wells: Groundwater with a total dissolved solids concentration of less than 10,000 mg/L occurs at an estimated depth of approximately 10 30 ft. below ground surface at the WDW-2 well (hereafter, "uppermost water-bearing unit"). Groundwater monitoring well (MW) with GW sampling capability shall be installed proximal to and hydrogeologically downgradient from WDW-2 in order to monitor the uppermost water-bearing unit. The MW shall be screened (15 ft. screen with top of screen positioned 5 ft. above water table) into the uppermost water-bearing unit. The Permittee shall propose a monitoring frequency with chemical monitoring parameters in order to detect potential groundwater contamination either associated with or not associated with WDW-2.
- 2.B. CONTINGENCY PLANS: The Permittee shall implement its proposed contingency plan(s) included in its application to cope with failure of a system(s) in the Discharge Permit.
- 2.C. CLOSURE: Prior to closure of the facility, the Permittee shall submit for OCD's approval, a closure plan including a completed form C-103 for plugging and abandonment of the waste injection well. The Permittee shall plug and abandon its well pursuant to 20.6.2.5209 NMAC and as specified in Permit Condition 2.D.
 - 1. Pre-Closure Notification: Pursuant to 20.6.2.5005A NMAC, the Permittee shall submit a pre-closure notification to OCD's Environmental Bureau at least 30 days prior to the date that it proposes to close or to discontinue operation of WDW-2. Pursuant to 20.6.2.5005B NMAC, OCD's Environmental Bureau must approve all proposed well closure activities before the Permittee may implement its proposed closure plan.
 - 2. Required Information: The Permittee shall provide OCD's Environmental Bureau with the following information in the pre-closure notification specified in Permit Condition 2.C.1:
 - Name of facility;
 - Address of facility;
 - Name of Permittee (and owner or operator, if appropriate);

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

July 13, 2020

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX: (505) 632-3911

RE: Evaporation Ponds OrderNo.: 2007061

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/1/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2007061

Date Reported: 7/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Lab ID: 2007061-001

Matrix: AQUEOUS

Client Sample ID: Evap Pond South

Collection Date: 6/30/2020 7:45:00 AM

Received Date: 7/1/2020 8:05:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst	JME
Diesel Range Organics (DRO)	0.54	0.40		mg/L	1	7/7/2020 10:40:40 AM	53522
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	7/7/2020 10:40:40 AM	53522
Surr: DNOP	113	81.5-152		%Rec	1	7/7/2020 10:40:40 AM	53522
SM2340B: HARDNESS						Analyst	ags
Hardness (As CaCO3)	390	6.6		mg/L	1	7/7/2020 12:58:00 PM	R70149
EPA METHOD 300.0: ANIONS						Analyst	: CJS
Fluoride	ND	1.0		mg/L	10	7/6/2020 6:28:24 PM	R70144
Chloride	1100	50	*	mg/L	100	7/6/2020 6:41:15 PM	R70144
Bromide	3.7	1.0		mg/L	10	7/6/2020 6:28:24 PM	R70144
Phosphorus, Orthophosphate (As P)	ND	5.0	Н	mg/L	10	7/6/2020 6:28:24 PM	R70144
Sulfate	79	5.0		mg/L	10	7/6/2020 6:28:24 PM	R70144
Nitrate+Nitrite as N	ND	2.0		mg/L	10	7/6/2020 6:54:07 PM	R70144
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: JRR
Conductivity	4600	10		µmhos/c	1	7/7/2020 1:18:10 PM	R70195
SM2320B: ALKALINITY						Analyst	: JRR
Bicarbonate (As CaCO3)	653.3	20.00		mg/L Ca	1	7/7/2020 1:18:10 PM	R70195
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	7/7/2020 1:18:10 PM	R70195
Total Alkalinity (as CaCO3)	653.3	20.00		mg/L Ca	1	7/7/2020 1:18:10 PM	R70195
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: KS
Total Dissolved Solids	2660	200	*D	mg/L	1	7/8/2020 6:10:00 PM	53532
EPA METHOD 200.7: METALS						Analyst	ags
Calcium	72	1.0		mg/L	1	7/7/2020 2:19:40 PM	53509
Iron	1.7	0.25	*	mg/L	5	7/7/2020 2:21:25 PM	53509
Magnesium	52	1.0		mg/L	1	7/7/2020 2:19:40 PM	53509
Manganese	0.20	0.0020	*	mg/L	1	7/7/2020 2:19:40 PM	53509
Potassium	13	1.0		mg/L	1	7/7/2020 2:19:40 PM	53509
Sodium	840	10		mg/L	10	7/7/2020 3:10:25 PM	53509
EPA METHOD 8015D: GASOLINE RANGE						Analyst	DJF
Gasoline Range Organics (GRO)	0.11	0.10		mg/L	2	7/9/2020 2:37:38 PM	GW7022
Surr: BFB	104	70-130		%Rec	2	7/9/2020 2:37:38 PM	GW7022
EPA METHOD 8260B: VOLATILES						Analyst	: DJF
Benzene	ND	2.0		μg/L	2	7/9/2020 2:37:38 PM	W70228
Toluene	12	2.0		μg/L	2	7/9/2020 2:37:38 PM	W70228
Ethylbenzene	ND	2.0		μg/L	2	7/9/2020 2:37:38 PM	W70228
Methyl tert-butyl ether (MTBE)	ND	2.0		μg/L	2	7/9/2020 2:37:38 PM	W70228

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 13

Analytical Report Lab Order 2007061

Date Reported: 7/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Lab ID: 2007061-001

Matrix: AQUEOUS

Collection Date: 6/30/2020 7:45:00 AM **Received Date:** 7/1/2020 8:05:00 AM

Client Sample ID: Evap Pond South

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
1,2,4-Trimethylbenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,2-Dichloroethane (EDC)	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,2-Dibromoethane (EDB)	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Naphthalene	ND	4.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1-Methylnaphthalene	ND	8.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
2-Methylnaphthalene	ND	8.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Acetone	120	20	μg/L	2	7/9/2020 2:37:38 PM	W70228
Bromobenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Bromodichloromethane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Bromoform	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Bromomethane	ND	6.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
2-Butanone	ND	20	μg/L	2	7/9/2020 2:37:38 PM	W70228
Carbon disulfide	ND	20	μg/L	2	7/9/2020 2:37:38 PM	W70228
Carbon Tetrachloride	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Chlorobenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Chloroethane	ND	4.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Chloroform	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Chloromethane	ND	6.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
2-Chlorotoluene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
4-Chlorotoluene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
cis-1,2-DCE	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Dibromochloromethane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Dibromomethane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,2-Dichlorobenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,3-Dichlorobenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,4-Dichlorobenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Dichlorodifluoromethane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,1-Dichloroethane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,1-Dichloroethene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,2-Dichloropropane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,3-Dichloropropane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
2,2-Dichloropropane	ND	4.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
1,1-Dichloropropene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
Hexachlorobutadiene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
2-Hexanone	ND	20	μg/L	2	7/9/2020 2:37:38 PM	W70228
Isopropylbenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 13

Analytical Report Lab Order 2007061

Date Reported: 7/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Collection Date: 6/30/2020 7:45:00 AM

Lab ID: 2007061-001

Matrix: AQUEOUS

Received Date: 7/1/2020 8:05:00 AM

Result **RL Qual Units DF** Date Analyzed Batch Analyses **EPA METHOD 8260B: VOLATILES** Analyst: DJF W70228 4-Isopropyltoluene ND 2.0 μg/L 2 7/9/2020 2:37:38 PM 4-Methyl-2-pentanone ND 20 μg/L 2 7/9/2020 2:37:38 PM W70228 Methylene Chloride ND W70228 6.0 μg/L 2 7/9/2020 2:37:38 PM n-Butylbenzene W70228 ND 6.0 μg/L 2 7/9/2020 2:37:38 PM n-Propylbenzene ND 2.0 μg/L 2 W70228 7/9/2020 2:37:38 PM sec-Butylbenzene ND 2.0 μg/L 2 7/9/2020 2:37:38 PM W70228 Styrene ND 2.0 μg/L 2 7/9/2020 2:37:38 PM W70228 ND 2.0 μg/L 2 7/9/2020 2:37:38 PM W70228 tert-Butylbenzene 1,1,1,2-Tetrachloroethane ND 2.0 µg/L 2 7/9/2020 2:37:38 PM W70228 1,1,2,2-Tetrachloroethane ND 4.0 W70228 μg/L 2 7/9/2020 2:37:38 PM Tetrachloroethene (PCE) ND 2.0 μg/L 2 7/9/2020 2:37:38 PM W70228 trans-1,2-DCE ND 2.0 μg/L 2 7/9/2020 2:37:38 PM W70228 ND 2.0 2 W70228 trans-1,3-Dichloropropene µg/L 7/9/2020 2:37:38 PM 2.0 ND 2 W70228 1,2,3-Trichlorobenzene μg/L 7/9/2020 2:37:38 PM 2 W70228 1,2,4-Trichlorobenzene ND 2.0 µg/L 7/9/2020 2:37:38 PM 1,1,1-Trichloroethane ND 2.0 μg/L 2 7/9/2020 2:37:38 PM W70228 1,1,2-Trichloroethane ND 2.0 μg/L 2 7/9/2020 2:37:38 PM W70228 2.0 2 Trichloroethene (TCE) ND μg/L 7/9/2020 2:37:38 PM W70228 Trichlorofluoromethane ND 2.0 μg/L 2 7/9/2020 2:37:38 PM W70228 2 1,2,3-Trichloropropane ND 4.0 µg/L 7/9/2020 2:37:38 PM W70228 ND 2.0 2 W70228 Vinyl chloride μg/L 7/9/2020 2:37:38 PM Xylenes, Total 9.6 3.0 μg/L 2 7/9/2020 2:37:38 PM W70228 Surr: 1,2-Dichloroethane-d4 104 70-130 %Rec 2 W70228 7/9/2020 2:37:38 PM Surr: 4-Bromofluorobenzene 91.6 70-130 %Rec 2 7/9/2020 2:37:38 PM W70228 Surr: Dibromofluoromethane 70-130 2 W70228 101 %Rec 7/9/2020 2:37:38 PM Surr: Toluene-d8 70-130 %Rec W70228 99.8 7/9/2020 2:37:38 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007061**

13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: MBLK-53509 SampType: MBLK TestCode: EPA Method 200.7: Metals Client ID: **PBW** Batch ID: 53509 RunNo: 70149 Prep Date: 7/6/2020 Analysis Date: 7/7/2020 SeqNo: 2437613 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Calcium ND 1.0 0.050 ND

 Iron
 ND
 0.050

 Magnesium
 ND
 1.0

 Manganese
 ND
 0.0020

 Potassium
 ND
 1.0

 Sodium
 ND
 1.0

Sample ID: LLLCS-53509	Samp	Type: LC	SLL	Tes	tCode: El	PA Method				
Client ID: BatchQC	Bato	ch ID: 53	509	F	RunNo: 7 0	0149				
Prep Date: 7/6/2020	Analysis	Date: 7/	7/2020	5	SeqNo: 2	437614	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0	0.5000	0	110	50	150			
Iron	ND	0.050	0.02000	0	111	50	150			
Magnesium	ND	1.0	0.5000	0	106	50	150			
Manganese	0.0020	0.0020	0.002000	0	102	50	150			
Potassium	ND	1.0	0.5000	0	78.7	50	150			
Sodium	ND	1.0	0.5000	0	134	50	150			

Sample ID: LCS-53509 TestCode: EPA Method 200.7: Metals SampType: LCS Batch ID: 53509 RunNo: 70149 Client ID: LCSW Analysis Date: 7/7/2020 Prep Date: 7/6/2020 SeqNo: 2437615 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 50.00 85 49 1.0 0 97.3 115 Calcium 0.47 0.050 0.5000 0 93.7 85 115 Iron Magnesium 50.00 0 98.2 85 49 1.0 115 Manganese 0.46 0.0020 0.5000 0 91.1 85 115 Potassium 50.00 0 95.7 48 1.0 85 115 Sodium 49 1.0 50.00 0 98.8 85 115

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007061**

13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R70144 RunNo: 70144

Prep Date: Analysis Date: 7/6/2020 SeqNo: 2437459 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride ND 0.10 ND 0.50 Chloride ND Bromide 0.10 Phosphorus, Orthophosphate (As P ND 0.50 Sulfate ND 0.50 Nitrate+Nitrite as N ND 0.20

Sample ID: LCS	SampT	ype: Ics	;	Tes	tCode: EF	;							
Client ID: LCSW	Batch	n ID: R7	0144	F	RunNo: 70	0144							
Prep Date:	rep Date: Analysis Date: 7/6/2020				SeqNo: 24	437460	Units: mg/L	g/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Fluoride	0.46	0.10	0.5000	0	91.4	90	110						
Chloride	4.8	0.50	5.000	0	95.5	90	110						
Bromide	2.4	0.10	2.500	0	97.2	90	110						
Phosphorus, Orthophosphate (As P	4.6	0.50	5.000	0	93.0	90	110						
Sulfate	9.6	0.50	10.00	0	96.4	90	110						
Nitrate+Nitrite as N	3.4	0.20	3.500	0	95.9	90	110						

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007061**

13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: MB-53522 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range

Client ID: PBW Batch ID: 53522 RunNo: 70147

Prep Date: 7/6/2020 Analysis Date: 7/7/2020 SeqNo: 2437591 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 0.40
Motor Oil Range Organics (MRO) ND 2.5

Surr: DNOP 0.51 0.5000 101 81.5 152

Sample ID: LCS-53522 SampType: LCS TestCode: EPA Method 8015D: Diesel Range

Client ID: LCSW Batch ID: 53522 RunNo: 70147

Prep Date: 7/6/2020 Analysis Date: 7/7/2020 SeqNo: 2437592 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.40 3.1 2.500 123 82 138

Surr: DNOP 0.25 0.2500 99.2 81.5 152

Sample ID: 2007061-001BMS SampType: MS TestCode: EPA Method 8015D: Diesel Range

Client ID: Evap Pond South Batch ID: 53522 RunNo: 70147

Prep Date: 7/6/2020 Analysis Date: 7/7/2020 SeqNo: 2437594 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 3.5 0.40 0.5436 118 70.1

 Diesel Range Organics (DRO)
 3.5
 0.40
 2.500
 0.5436
 118
 70.1
 159

 Surr: DNOP
 0.30
 0.2500
 120
 81.5
 152

Sample ID: 2007061-001BMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range

Client ID: Evap Pond South Batch ID: 53522 RunNo: 70147

Prep Date: 7/6/2020 Analysis Date: 7/7/2020 SeqNo: 2437595 Units: mg/L

Result SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte POL LowLimit Diesel Range Organics (DRO) 3.4 0.40 2.500 0.5436 115 70.1 159 1.96 20 Surr: DNOP 0.30 0.2500 119 81.5 152 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 6 of 13

Qual

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007061**

13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: mb1 SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

Sample ID. IIID1		ype. wit					0200B. VOL	TILLO		
Client ID: PBW	Batch	n ID: W	70228	F	RunNo: 7 0	0228				
Prep Date:	Analysis D	ate: 7/	9/2020	S	SeqNo: 24	140715	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
, some personal										

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007061**

13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: mb1	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	n ID: W7	70228	F	RunNo: 7 0	0228				
Prep Date:	Analysis D	oate: 7/	9/2020	5	SeqNo: 24	440715	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		91.4	70	130			
Surr: Dibromofluoromethane	10		10.00		99.8	70	130			
Surr: Toluene-d8	10		10.00		100	70	130			

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: W7	70228	F	RunNo: 70	0228				
Prep Date:	Analysis D	ate: 7/	9/2020	8	SeqNo: 24	440716	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene	Result 22	PQL 1.0	SPK value 20.00	SPK Ref Val	%REC 111	LowLimit 70	HighLimit 130	%RPD	RPDLimit	Qual
,							3	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007061**

13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: 100ng Ics Client ID: LCSW	•	ype: LC			tCode: EF RunNo: 7 (8260B: VOL	ATILES		
Prep Date:	Analysis D	ate: 7/ 9	9/2020	5	SeqNo: 24	440716	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	22	1.0	20.00	0	109	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	95.3	70	130			
Surr: 1,2-Dichloroethane-d4	9.5		10.00		95.2	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		92.8	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.7		10.00		97.4	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007061**

13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: Ics-1 99.5uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439134 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 99 10 99.50 0 99.8 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007061**

13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: mb1 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: GW70228 RunNo: 70228

Prep Date: Analysis Date: 7/9/2020 SeqNo: 2440763 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 11 10.00 105 70 130

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: GW70228 RunNo: 70228

Prep Date: Analysis Date: 7/9/2020 SeqNo: 2440764 Units: mg/L

HighLimit %RPD Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit **RPDLimit** Qual Gasoline Range Organics (GRO) 0.48 0.050 0.5000 O 96.7 70 130

Surr: BFB 10 10.00 102 70 130

Sample ID: 2007061-001ams SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: Evap Pond South Batch ID: GW70228 RunNo: 70228

Prep Date: Analysis Date: 7/9/2020 SeqNo: 2440766 Units: mg/L

SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result PQL %REC LowLimit HighLimit Qual Gasoline Range Organics (GRO) 1.1 0.10 1.000 0.1140 99.4 70 130

Surr: BFB 21 20.00 104 70 130

Sample ID: 2007061-001amsd SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: Evap Pond South Batch ID: GW70228 RunNo: 70228

Prep Date: Analysis Date: 7/9/2020 SeqNo: 2440767 Units: mg/L

SPK value SPK Ref Val %REC %RPD Analyte Result **PQL** LowLimit HighLimit **RPDLimit** Qual Gasoline Range Organics (GRO) 1.1 0.10 1.000 0.1140 95.2 70 130 3.86 20 Surr: BFB 21 20.00 103 70 130 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 11 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007061**

13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439098 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439099 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 76.40 20.00 80.00 0 95.5 90 110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439121 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R70195 RunNo: 70195

Prep Date: Analysis Date: 7/7/2020 SeqNo: 2439122 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 77.32 20.00 80.00 0 96.7 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: **2007061**

13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: MB-53532 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 53532 RunNo: 70189

Prep Date: 7/7/2020 Analysis Date: 7/8/2020 SeqNo: 2438885 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-53532 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 53532 RunNo: 70189

Prep Date: 7/7/2020 Analysis Date: 7/8/2020 SeqNo: 2438886 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 995 20.0 1000 0 99.5 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

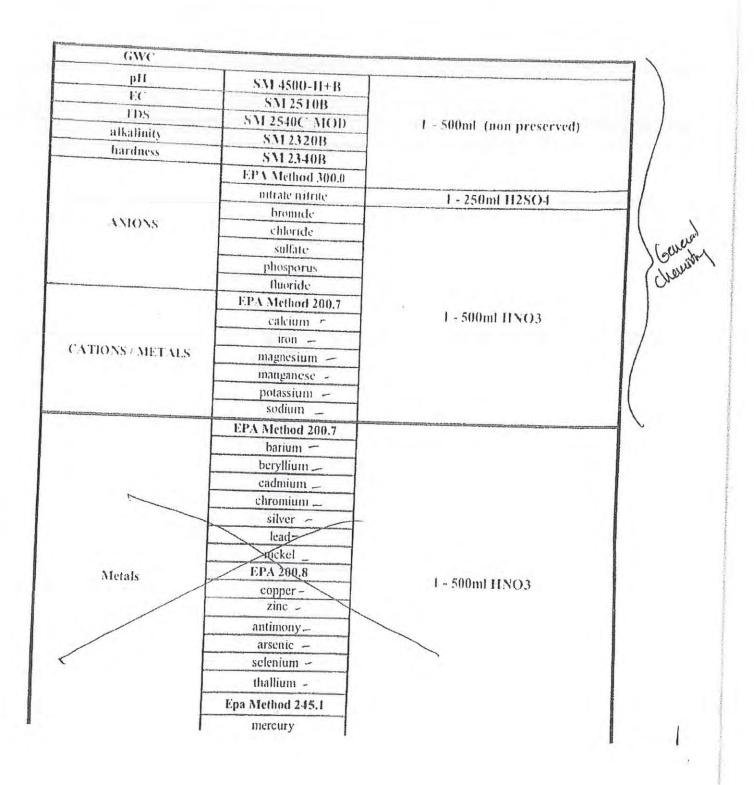
E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 13 of 13


Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name:	Western Refining Southwest, Inc.	Work Order Num	ber: 2007061		RcptNo: 1
Received By:	Emily Mocho	7/1/2020 8:05:00 A	M		
Completed By:	John Caldwell	7/1/2020 2:33:35 P	M	ahr Cll	tue/
Reviewed By:	SPA	7.2.20		goortea	····
Chain of Cu	stody				
1. Is Chain of (Custody complete?		Yes 🗸	No 🗌	Not Present
2. How was the	e sample delivered?		Courier		
Log In					
	mpt made to cool the sam	oles?	Yes 🗸	No 🗆	NA 🗆
4. Were all sam	nples received at a temper	ature of >0° C to 6.0°C	Yes 🗸	No 🗆	NA 🗆
5. Sample(s) in	n proper container(s)?		Yes 🗸	No 🗌	
6. Sufficient sar	mple volume for indicated t	est(s)?	Yes 🗸	No 🗌	
7. Are samples	(except VOA and ONG) pr	operly preserved?	Yes 🗸	No 🗌	
8. Was preserve	ative added to bottles?		Yes	No 🗸	NA 🗆
9. Received at I	least 1 vial with headspace	<1/4" for AQ VOA?	Yes 🗸	No 🗌	NA 🗆
10. Were any sa	imple containers received l	oroken?	Yes 🗌	No 🗸	# of preserved
	vork match bottle labels? pancies on chain of custody	<i>(</i>)	Yes 🔽	No 🗆	bottles checked for pH: 2 (<2) or >12 unless noted)
12. Are matrices	correctly identified on Cha	in of Custody?	Yes 🔽	No 🗌	Adjusted? NO
13. Is it clear wha	at analyses were requested	1?	Yes 🗸	No 🗌	
	ling times able to be met? customer for authorization.)	Yes 🗸	No 🗌	Checked by: EM 7/2/20
Special Hand	lling (if applicable)				
	otified of all discrepancies	with this order?	Yes	No 🗌	NA 🗹
Person	Notified:	Date			
By Wh	iom:	Via:	eMail	Phone Fax	In Person
Regard	ding:				
Client I	Instructions:				
16. Additional re	emarks:				
17. Cooler Info	rmation				
Cooler No		Seal Intact Seal No	Seal Date	Signed By	Í .
1	2.0 Good				

Chain-of-Custody Record	Turn-Around Time:	eceived by the second of the s
3 Client: Western Refining	Standard 🗆 Rush	YSTS I ABORATORY
mag	Project Name:	environmental com
Source Mailing Address: SO CR 490	Evaporation touchs	37109
Blowfield, NN 97413		5 Fax 505-345-4107
Phone #: (SDS) 801-561 6	1704 4506183752	Analysis Request
0:+ email or Fax#:	Project Manager:	(Oq.
age:	K Robinson	V MRG
✓ Level 4 (Full Validation)	Anna .	2 3 7 July 30 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Accreditation: Az Compliance	Sampler:	(10, V D)
	On Ice: Z Yes D No	8/8 8/8 504 10 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
X EDD (Type) FXC	# of Coolers:	(GR) ide ide ide ide ide ide ide
	Cooler Temp(including CF): 2.0 (°C)	estice lethory 833 Methory 830, 11, 18, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Date Time Matrix Samule Name	Container Preservative HEAL No.	3TEX / 1081 Pd 1081 P
137345 Water	JUL	
	Deson Auher	X
		\times \(\)
	-	
	250ml	X
BIST L ELEPS BULL - NOV-LY	4	X
424/2 Birs- Wata Evap Pond-North	THE PERSON NAMED IN	
	A Poly sam	A
	1 Oct 125 wit 1811, 50	Â
	1	X
: Time:	Received by: Via: Date Time	Remarks: No Noth Sound le.
Date: Time: Relinquished by: I	Received by: Via: Date Time	
If necessary samples s		This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Scanned with CamScanner

Annual Bottom-Hole Pressure Survey and Pressure Falloff Test Report – Waste Disposal Well No. 2 – Project 192025X Western Refining Southwest, Inc. – Bloomfield, New Mexico – November 2020

APPENDIX D

DAILY RATE HISTORY

APPENDIX D

WDW#2
Daily Injection Rates and Pressures

	WDW#2	WDW#2
Date/Time	Daily Rates	Pressure
	(gpm)	(psig)
05/28/20 00:00	0	595
05/29/20 00:00	27	1233
05/30/20 00:00	26	1316
05/31/20 00:00	0	984
06/01/20 00:00	0	791
06/02/20 00:00	0	740
06/03/20 00:00	0	713
06/04/20 00:00	0	694
06/05/20 00:00	0	681
06/06/20 00:00	0	670
06/07/20 00:00	0	661
06/08/20 00:00	0	653
06/09/20 00:00	0	647
06/10/20 00:00	0	641
06/11/20 00:00	0	636
06/12/20 00:00	0	631
06/12/20 00:00	0	627
06/14/20 00:00	0	623
l 		
06/15/20 00:00	0	619 616
06/16/20 00:00		
06/17/20 00:00	0	613
06/18/20 00:00	0	610
06/19/20 00:00	0	607
06/20/20 00:00	0	605
06/21/20 00:00	0	602
06/22/20 00:00	0	600
06/23/20 00:00	0	597
06/24/20 00:00	0	772
06/25/20 00:00	0	636
06/26/20 00:00	0	618
06/27/20 00:00	0	610
06/28/20 00:00	0	605
06/29/20 00:00	0	601
06/30/20 00:00	33	1252
07/01/20 00:00	0	919
07/02/20 00:00	0	733
07/03/20 00:00	0	690
07/04/20 00:00	0	669
07/05/20 00:00	0	655
07/06/20 00:00	0	644
07/07/20 00:00	0	636

APPENDIX D

WDW#2
Daily Injection Rates and Pressures

	WDW#2	WDW#2
Date/Time	Daily Rates	Pressure
Bute, Time	(gpm)	(psig)
07/08/20 00:00	0	629
07/09/20 00:00	0	624
07/10/20 00:00	0	618
07/10/20 00:00	0	614
07/11/20 00:00	0	610
07/12/20 00:00	0	607
07/13/20 00:00	0	603
07/15/20 00:00	0	600
07/16/20 00:00	0	597
07/10/20 00:00	0	595
	0	592
07/18/20 00:00		
07/19/20 00:00 07/20/20 00:00	0	590 588
l		
07/21/20 00:00	0	586
07/22/20 00:00	0	584
07/23/20 00:00	0	582
07/24/20 00:00	0	580
07/25/20 00:00	0	578
07/26/20 00:00	0	576
07/27/20 00:00	0	575
07/28/20 00:00	0	573
07/29/20 00:00	0	572
07/30/20 00:00	0	570
07/31/20 00:00	0	569
08/01/20 00:00	0	567
08/02/20 00:00	0	566
08/03/20 00:00	0	565
08/04/20 00:00	0	563
08/05/20 00:00	0	562
08/06/20 00:00	0	561
08/07/20 00:00	0	560
08/08/20 00:00	0	559
08/09/20 00:00	0	557
08/10/20 00:00	0	556
08/11/20 00:00	0	555
08/12/20 00:00	0	554
08/13/20 00:00	0	553
08/14/20 00:00	0	552
08/15/20 00:00	0	551
08/16/20 00:00	0	550
08/17/20 00:00	0	549

APPENDIX D

WDW#2 Daily Injection Rates and Pressures

	WDW#2	WDW#2
Date/Time	Daily Rates	Pressure
	(gpm)	(psig)
08/18/20 00:00	0	548
08/19/20 00:00	0	547
08/20/20 00:00	0	546
08/21/20 00:00	0	545
08/22/20 00:00	0	544
08/23/20 00:00	0	544
08/24/20 00:00	0	543
08/25/20 00:00	0	542
08/26/20 00:00	0	541
08/27/20 00:00	0	540
08/28/20 00:00	0	540
08/29/20 00:00	0	539
08/30/20 00:00	0	538
08/31/20 00:00	0	537
09/01/20 00:00	0	536
09/02/20 00:00	0	535
09/03/20 00:00	0	535
09/04/20 00:00	0	534
09/05/20 00:00	0	533
09/06/20 00:00	0	533
09/07/20 00:00	0	532
09/08/20 00:00	0	531
09/09/20 00:00	0	531
09/10/20 00:00	0	530
09/11/20 00:00	0	529
09/12/20 00:00	0	528
09/13/20 00:00	0	528
09/14/20 00:00	0	527
09/15/20 00:00	0	527
09/16/20 00:00	0	526
09/17/20 00:00	0	525
09/18/20 00:00	0	534
09/19/20 00:00	23	1064
09/20/20 00:00	22	1180
09/21/20 14:24	22	1291

Annual Bottom-Hole Pressure Survey and Pressure Falloff Test Report – Waste Disposal Well No. 2 – Project 192025X Western Refining Southwest, Inc. – Bloomfield, New Mexico – November 2020

APPENDIX E

GAUGE CALIBRATION CERTIFICATES

Released to Imaging: 6/8/2021 4:04:43 PM

10-March-2020

Gauge Model Gauge S/N

SP-2000

Pressure Range

5 K

Accuracy 0.05% Full Scale

Applied Pressure	Recorded Pressure	Diffe	erence
psig	psig	psi	Percent (%)
0.01	0.01	0.00	0.0000%
774.08	772.99	-1.09	-0.0218%
1498.24	1496.97	-1.27	-0.0254%
2222.36	2221.20	-1.16	-0.0232%
2946.53	2945.44	-1.09	-0.0218%
3670.66	3669.59	-1.07	-0.0214%
4394.87	4393.80	-1.07	-0.0214%
5119.00	5118.01	-0.99	-0.0198%
4394.87	4393.83	-1.04	-0.0208%
3670.66	3669.56	-1.10	-0.0220%
2946.53	2945.51	-1.02	-0.0204%
2222.36	2221.22	-1.14	-0.0228%
1498.24	1496.99	-1.25	-0.0250%
774.08	772.81	-1.27	-0.0254%
0.01	0.01	0.00	0.0000%

Oven Temperature:

218.7 °F

Probe Temperature:

218.6 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

10-March-2020

Gauge Model Gauge S/N

SP-2000

240

Pressure Range

5 K

Accuracy 0.05%

Full Scale

Applied	Recorded		
Pressure	Pressure	Diffe	erence
psig	psig	psi	Percent (%)
0.01	2.38	2.37	0.0474%
774.08	776.30	2.22	0.0444%
1498.24	1500.18	1.94	0.0388%
2222.36	2224.29	1.93	0.0386%
2946.53	2948.24	1.71	0.0342%
3670.66	3672.19	1.53	0.0306%
4394.87	4396.25	1.38	0.0276%
5119.00	5120.28	1.28	0.0256%
4394.87	4396.11	1.24	0.0248%
3670.66	3671.87	1.21	0.0242%
2946.53	2947.80	1.27	0.0254%
2222.36	2223.58	1.22	0.0244%
1498.24	1499.16	0.92	0.0184%
774.08	775.38	1.30	0.0260%
0.01	1.82	1.81	0.0362%

Oven Temperature:

254.1 °F

Probe Temperature:

253.4 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

10-March-2020

Gauge Model Gauge S/N SP-2000

262

Pressure Range

5 K

Accuracy 0.05% Full Scale

Applied Pressure	Recorded Pressure	Diffe	erence
psig	psig	psi	Percent (%)
0.01	1.00	0.99	0.0198%
774.08	774.85	0.77	0.0154%
1498.24	1499.96	1.72	0.0344%
2222.36	2222.84	0.48	0.0096%
2946.53	2947.01	0.48	0.0096%
3670.66	3671.21	0.55	0.0110%
4394.87	4395.43	0.56	0.0112%
5119.00	5119.62	0.62	0.0124%
4394.87	4395.86	0.99	0.0198%
3670.66	3671.85	1.19	0.0238%
2946.53	2947.85	1.32	0.0264%
2222.36	2223.50	1.14	0.0228%
1498.24	1499.51	1.27	0.0254%
774.08	775.37	1.29	0.0258%
0.01	1.52	1.51	0.0302%

Oven Temperature:

218.9 °F

Probe Temperature:

218.6 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

10-March-2020

Gauge Model Gauge S/N

SP-2000

262

Pressure Range

5 K

Accuracy 0.05%

Full Scale

Applied Pressure	Recorded Pressure	Difference	
psig	psig	psi	Percent (%)
0.01	1.40	1.20	0.02780/
	1.40	1.39	0.0278%
774.08	774.85	0.77	0.0154%
1498.24	1499.96	1.72	0.0344%
2222.36	2222.84	0.48	0.0096%
2946.53	2947.01	0.48	0.0096%
3670.66	3671.51	0.85	0.0170%
4394.87	4395.43	0.56	0.0112%
5119.00	5119.62	0.62	0.0124%
4394.87	4395.86	0.99	0.0198%
3670.66	3671.85	1.19	0.0238%
2946.53	2947.80	1.27	0.0254%
2222.36	2223.52	1.16	0.0232%
1498.24	1499.51	1.27	0.0254%
774.08	775.37	1.29	0.0258%
0.01	1.52	1.51	0.0302%

Oven Temperature:

254.1 °F

Probe Temperature:

253.4 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

Annual Bottom-Hole Pressure Survey and Pressure Falloff Test Report – Waste Disposal Well No. 2 – Project 192025X Western Refining Southwest, Inc. – Bloomfield, New Mexico – November 2020

APPENDIX F

PANSYSTEM® ANALYSIS OUTPUT

Received by OCD: 6/2/2021 1:17:05 PM

WSP USA

Report File:

LKM 2020 PanSystem WDW-2.pa

Company
Western Refining Company
Well
Waste Disposal Well No. 2
Location
Bloomfield, New Mexico

Test Pressure Buildup/Falloff Test

Date

Gauge Depth 7312

Well Test Analysis Report

Gauge Type/Serial Number Micro-Smart Systems/SP2000/#240

Analyst LKM WSP USA Project No. N/A

Report File:

Page 290 of 300 LKM 2020 PanSystem WDW-2.pa

PanSystem Version 3.5

Well Test Analysis Report

Reservoir Description

Fluid type: Water

Well orientation: Vertical Number of wells: 1 Number of layers: 1

Layer Parameters Data

	Entrada Sandstone
Formation thickness	123.0000 ft
Average formation porosity	0.1490
Water saturation	0.0000
Gas saturation	0.0000
Formation compressibility	0.000000 psi-1
Total system compressibility	4.4400e-6 psi-1
Layer pressure	3632.369000 psia
Temperature	181.710000 deg F

Well Parameters Data

	WDW-2
Well radius	0.3281 ft
Distance from observation to active well	0.000000 ft
Wellbore storage coefficient	0.02338 bbl/psi
Storage Amplitude	0.000000 psi
Storage Time Constant	0.000000 hr
Second Wellbore Storage	0.000000 bbl/psi
Time Change for Second Storage	0.000000 hr
Well offset - x direction	0.0000 ft
Well offset - y direction	0.0000 ft

Fluid Parameters Data

	Entrada Sandstone
Oil gravity	0.000000 API
Gas gravity	0.000000 sp grav
Gas-oil ratio (produced)	0.000000 scf/STB
Water cut	0.000000
Water salinity	0.000000 ppm
Check Pressure	3698.530000 psia
Check Temperature	181.710000 deg F
Gas-oil ratio (solution)	0.000000 scf/STB
Bubble-point pressure	0.000000 psia
Oil density	0.000 lb/ft3

Report File:

Page 291 of 300 LKM 2020 PanSystem WDW-2.pa

PanSystem Version 3.5

Well Test Analysis Report

Fluid Parameters Data (cont)

	Entrada Sandstone
Oil viscosity	0.000 cp
Oil formation volume factor	0.000 RB/STB
Gas density	0.000 lb/ft3
Gas viscosity	0.0 cp
Gas formation volume factor	0.000 ft3/scf
Water density	62.1852 lb/ft3
Water viscosity	0.470 cp
Water formation volume factor	1.000 RB/STB
Oil compressibility	0.000000 psi-1
Initial Gas compressibility	0.000000 psi-1
Water compressibility	2.9753e-6 psi-1

Entrada Sandstone Correlations

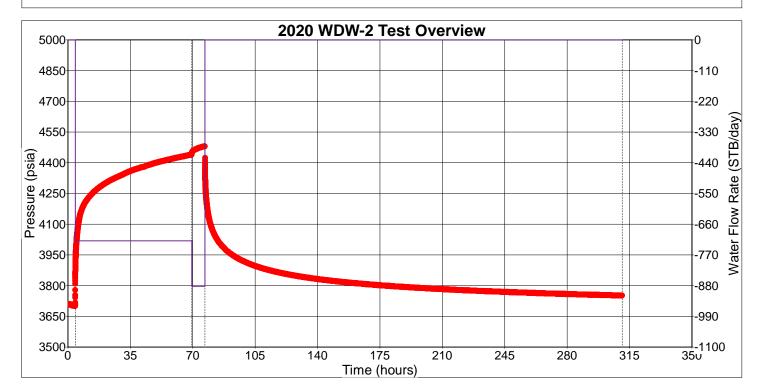
Not Used

Entrada Sandstone Model Data

Entrada Sandstone Model Type: Vertical fracture - finite conductivity

	Entrada Sandstone
Permeability	1.13706 md
Fracture face skin	0.0000
Fracture half-length	137.4750 ft
Dimensionless fracture conductivity	1.091280

Rate Change Data

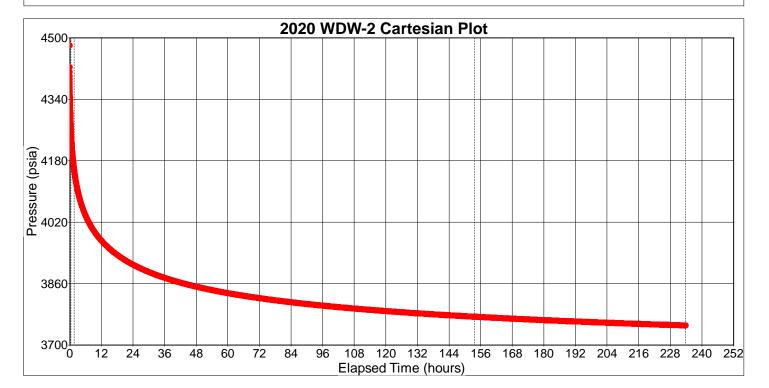

Time	Pressure	Rate
Hours	psia	STB/day
-2745.566670	0.000000	-922.520000
-2682.566670	0.000000	0.000000
-1970.566670	0.000000	-1095.880000
4.133330	3698.530000	0.000000
69.596255	4439.165000	-720.000000
76.963378	4479.706000	-882.860000
310.999696	3750.402000	0.000000

Report File:

Page 292 of 300 LKM 2020 PanSystem WDW-2.pa

PanSystem Version 3.5

Well Test Analysis Report

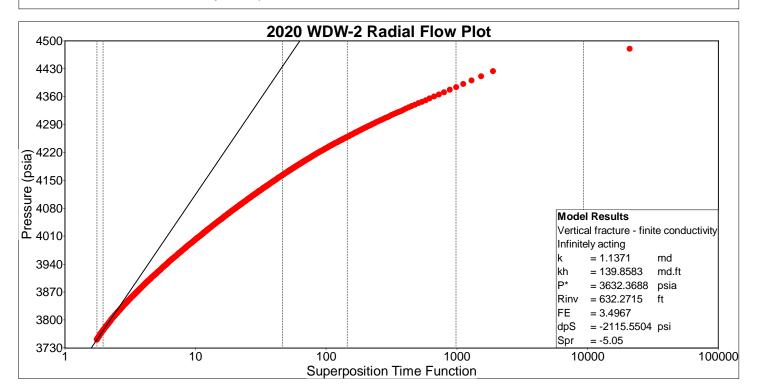


Report File:

Page 293 of 300 LKM 2020 PanSystem WDW-2.pa

PanSystem Version 3.5

Well Test Analysis Report



Report File:

LKM 2020 PanSystem WDW-2.pa

PanSystem Version 3.5

Well Test Analysis Report

2020 WDW-2 Radial Flow Plot Model Results

Vertical fracture - finite conductivity - Infinitely acting

Classic Wellbore Storage

	Value
Permeability	1.13706 md
Permeability-thickness	139.858329 md.ft
Extrapolated pressure	3632.368779 psia
Radius of investigation	632.271493 ft
Flow efficiency	3.496704
dP skin (constant rate)	-2115.550411 psi
Pseudo-radial skin factor	-5.049953

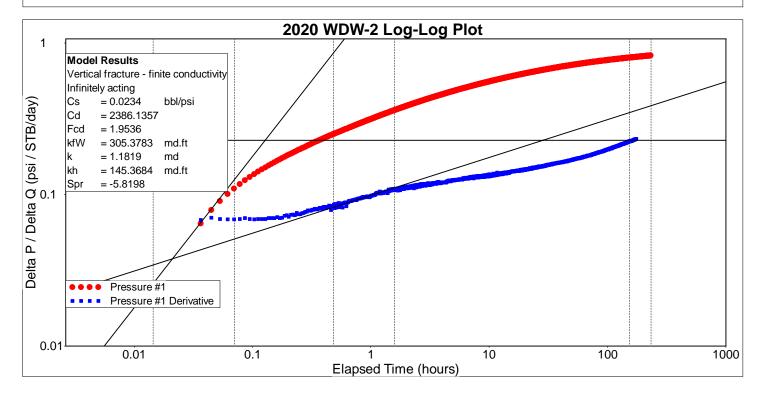
2020 WDW-2 Radial Flow Plot Line Details

Line type: Pseudo-radial flow

Slope : 482.305 Intercept : 3632.37

Coefficient of Determination: 0.999736

	Pseudo-radial flow
Extrapolated pressure	3632.368779 psia
Pressure at dt = 1 hour	4522.643982 psia


Number of Intersections = 0

Report File:

LKM 2020 PanSystem WDW-2.pa

PanSystem Version 3.5

Well Test Analysis Report

2020 WDW-2 Log-Log Plot Model Results

Vertical fracture - finite conductivity - Infinitely acting

Classic Wellbore Storage

	Value
Wellbore storage coefficient	0.02338 bbl/psi
Dimensionless wellbore storage	2386.135683
Dimensionless fracture conductivity	1.953579
Fracture conductivity	305.378305 md.ft
Permeability	1.181857 md
Permeability-thickness	145.368424 md.ft
Pseudo-radial skin factor	-5.819792

2020 WDW-2 Log-Log Plot Line Details

Line type: Wellbore storage

Slope: 1

Intercept: 1.78215

Coefficient of Determination : Not Used

Line type: Fracture bilinear flow

Slope : 0.25

Intercept: 0.0988643

Coefficient of Determination: Not Used

Received by OCD: 6/2/2021 1:17:05 PM WSP USA Report File: LKM 2020 PanSystem WDW-2.pa

PanSystem Version 3.5

Well Test Analysis Report

Line type: Pseudo-radial flow

Slope: 0

Intercept: 0.228261

Coefficient of Determination : Not Used

Number of Intersections = 0

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

with plugging and abandonment of WDW-2, surface restoration, and post-operational monitoring, as may be needed. OCD may require additional financial assurance to ensure adequate funding is available to plug and abandon the well and/or for any required corrective action(s).

Methods by which the Permittee shall demonstrate the ability to undertake these measures shall include submission of a surety bond or other adequate assurances per Permit Condition 5.B. herein, such as financial statements or other materials acceptable to the OCD Director, such as: (1) a surety bond; (2) a trust fund with a New Mexico bank in the name of the State of New Mexico, with the State as Beneficiary; (3) a non-renewable letter of credit made out to the State of New Mexico; (4) liability insurance specifically covering the contingencies listed in this paragraph; or (5) a performance bond, generally in conjunction with another type of financial assurance. If an adequate bond is posted by the Permittee to a federal or another state agency, and this bond covers all of the measures specified above, the OCD Director shall consider this bond as satisfying the bonding or financial assurance requirements of Sections 20.6.2.5000 through 20.6.2.5299 NMAC wholly or in part, depending upon the extent to which such bond is adequate to ensure that the Permittee will fully perform the measures required herein.

2.I. REPORTING:

- 1. Quarterly Reports: The Permittee shall submit quarterly reports pursuant to 20.6.2.5208A NMAC to OCD's Environmental Bureau no later than 45 days following the end of each calendar quarter. The quarterly reports shall include the following:
 - a. Physical, chemical and other relevant characteristics of injection fluids;
- **b.** Monthly average, maximum and minimum values for injection pressure, flow rate and volume, and annular pressure with any exceedances identified; and
- c. Results of monitoring prescribed under Section 20.6.2.5207B NMAC with any exceedances of Permit Condition 2.A.
 - d. Piezometer and monitor well information from Permit Condition 2.A.1.
 - e. Continuous monitoring chart(s) and information from Permit Condition 3.C.
- 2. Annual Report: The Permittee shall submit its annual report pursuant to 20.6.2.3107 NMAC to OCD's Environmental Bureau by **June 1**st of the following year. The annual report shall include the following:
 - Cover sheet marked as "Annual Class I Non-Hazardous Waste Injection Well (WDW-2), Name of Permittee, Discharge Permit Number, API number of well, date of report, and person submitting report;

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

- Summary of Class I non-hazardous waste injection well operations for the year including a description and reason for any remedial or major work on the well with a copy of form C-103(s);
- Copy of Monthly injection/disposal volume, including the cumulative total should be carried over to each year;
- Maximum and average injection pressures;
- Copy of the quarterly chemical analyses shall be included with data summary and all QA/QC and DOO associated information;
- Copy of any mechanical integrity test (MIT) chart(s), including the type of test, i.e., duration, gauge pressure, etc. unless OCD has approved Monthly Continuous Monitoring Charts for MITs in lieu of individual MITs;
- · Copy of Fall-Off Test charts;
- Summary tables listing environmental analytical laboratory data for quarterly waste fluid samples. Any 20.6.2.3103 NMAC constituent(s) found to exceed a water quality standard shall be highlighted and noted in the annual report. The Permittee shall include copies of the most recent year's environmental analytical laboratory data sheets with QA/QC summary sheet information in conformance with the National Environmental Laboratory Accreditation Conference (NELAC) and EPA Standards;
- Brief explanation describing deviations from the normal injection operations;
- Results of any leaks and spill reports (include any C-141 reports);
- Area of Review (AOR) annual update summary with any new wells penetrating the injection zone within a 1-mile radius from WDW-2;
- Summary with interpretation of MITs, Fall-Off Tests, Bradenhead Tests, etc., with conclusion(s) and recommendation(s);
- Summary of all major Facility activities or events, which occurred during the year with any conclusions and recommendations;
- Summary of any new discoveries of ground water contamination with all leaks, spills and releases and corrective actions taken; and,
- Permittee shall file its Annual Report in an electronic format with a hard copy submittal to OCD's Environmental Bureau.

3. CLASS I NON-HAZARDOUS WASTE INJECTION WELL OPERATIONS:

- **3.A. OPERATING REQUIREMENTS:** The Permittee shall comply with the operating requirements specified in 20.6.2.5206A NMAC and 20.6.2.5206B NMAC to ensure that:
- 1. The maximum injection pressure at the wellhead shall not initiate new fractures or propagate existing fractures in the confining zone, or cause the movement of injection or formation fluids into ground water having 10,000 mg/l or less TDS except for fluid movement approved pursuant to 20.6.2.5103 NMAC.
- 2. Injection between the outermost casing and the well bore is prohibited in a zone other than the authorized injection zone. If the Permittee determines that WDW-2 is discharging or suspects that it is discharging fluids into a zone or zones other than the permitted injection zone specified in Permit Condition 3.B.1., then the Permittee shall cease operations until proper

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

COMMENTS

Action 29242

COMMENTS

Operator:	OGRID:
WESTERN REFINING SOUTHWEST, INC.	267595
123 W Mills Avenue	Action Number:
El Paso, TX 79901	29242
	Action Type:
	[UF-DP] Discharge Permit (DISCHARGE PERMIT)

COMMENTS

Created By	Comment	Comment Date
cchavez	DP Annual Report 2020	6/8/2021

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 29242

CONDITIONS

Operator:	OGRID:
WESTERN REFINING SOUTHWEST, INC.	267595
123 W Mills Avenue	Action Number:
El Paso, TX 79901	29242
	Action Type:
	[UF-DP] Discharge Permit (DISCHARGE PERMIT)

CONDITIONS

Created	Condition	Condition	l
Ву		Date	l
cchavez	Conditions of Approval for future submittals are: 1) Setup report contents consistent with Permit Annual Report Specifications; 2) Include summaries; 3) Do not reference separate GW-1 Report	6/8/2021	
	to address "injection well" specific spill and remedial reporting requirements; and 4) Include any "Conclusions and Recommendations" with each report.		l