Openand Objective		oort Type: Wo										
General Site Inf	ormation:				EV/00 ALL 0							
Site:		EVGSAU 2437-001 Flowline Release (near EVGSAU Satellite #1 Facility)										
Company:		ConocoPhillips Unit Letter I&J Sec. 19 T 17S R 35 E										
Section, Towns	hip and Range			T 17S	R 35 E							
Lease Number:		Associated API	No. 30-025-0208	6								
County:		Lea	22.04.04.00°			402 4020549						
GPS:		State	32.818100°			-103.492854°						
Surface Owner: Mineral Owner:		State										
			a Hood toward	2 Morrio St		d Blvd (US-62/US-180). 15						
Directions:						nto State Highway 238 (NM						
						proximate 3/4 mile to						
		Satellite #1 Facilit	•									
			y. Release aleas	SILE IS 200	southeast of							
Release Data:												
Date Released:		10/29/2019										
Type Release:		Produced Water/	Dil									
Source of Conta	mination:	Flowline leak										
Fluid Released:		23 bbl										
Fluids Recovere	d:	10 bbl										
	nication:											
Official Commu												
	Marvin Soriwei				Christian M.	Llull						
Name:	Marvin Soriwei Conoco Phillips -	RMR			Christian M. Tetra Tech	Llull						
Name: Company:					Tetra Tech							
Name: Company:	Conoco Phillips -				Tetra Tech	Capital of Texas Highway						
Name: Company: Address:	Conoco Phillips -	kwy.			Tetra Tech 8911 North	Capital of Texas Highway Suite 2310						
Name: Company: Address: City:	Conoco Phillips - 935 N. Eldridge P	kwy.			Tetra Tech 8911 North Building 2, 9	Capital of Texas Highway Suite 2310 as						
Name: Company: Address: City: Phone number:	Conoco Phillips - 935 N. Eldridge P Houston, Texas 7	kwy.			Tetra Tech 8911 North Building 2, S Austin, Texa	Capital of Texas Highway Suite 2310 as						
Official Commu Name: Company: Address: City: Phone number: Fax: Email:	Conoco Phillips - 935 N. Eldridge P Houston, Texas 7 (832) 486-2730	kwy.			Tetra Tech 8911 North Building 2, S Austin, Texa (512) 338-2	Capital of Texas Highway Suite 2310 as						

Site Characterization	
Shallowest Depth to Groundwater:	73' below surface
Impact to groundwater or surface water:	No
Extents within 300 feet of a watercourse:	No
Extents within 200 feet of lakebed, sinkhole, or playa lak	No
Extents within 300 feet of an occupied structure:	No
Extents within 500 horizontal feet of a private water well:	No
Extents within 1000 feet of any water well or spring:	No
Extents within incorporated municipal well field:	No
Extents within 300 feet of a wetland:	No
Extents overlying a subsurface mine:	No
Karst Potential:	Low
Extents within a 100-year floodplain:	No
Impact to areas not on a production site:	No

Recommended Remedial Action Levels (RRALs)						
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides		
10 mg/kg	50 mg/kg	1,000 mg/kg	2,500 mg/kg	10,000 mg/kg		

November 3, 2020

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Work Plan ConocoPhillips EVGSAU 2437-001 Flowline Release (near EVGSAU Satellite #1 Facility) Unit Letters I and J, Section 19, Township 17 South, Range 35 East Lea County, New Mexico Incident ID# NRM1935733118

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from the flowline of the East Vacuum Grayburg-San Andres Unit (EVGSAU) 2437-001 well (API No. 30-025-02086). The release point is located on the EVGSAU 2437-001 flowline, approximately 200 feet southeast of the EVGSAU Satellite #1 facility. The well is located approximately 1.2 miles west-southwest of the release footprint, thus within the C-141 the "Site Name" is listed as Satellite #1. The release footprint is located in Public Land Survey System (PLSS) Unit Letters I and J, Section 19, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.818100°, -103.492854°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Attachment A), the release was discovered on October 29, 2019 while COP personnel were inspecting the adjacent EVGSAU Satellite #1. Approximately 22.4 barrels (bbls) of produced water and 0.6 bbls of oil were reported released, of which 9.7 bbls of produced water and 0.3 bbls of oil were recovered. The New Mexico Oil Conservation District (NMOCD) received the C-141 report form for the release on November 4, 2019. The NMOCD Incident ID for this release is NRM1935733118.

SITE CHARACTERIZATION

A site characterization was performed and no water bodies, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential, which further decreases the risk for contaminant migration from soil to groundwater.

The Site is within a New Mexico oil and gas production area. According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are no water wells within a ½ mile (800-meter) radius of the Site. There are seven (7) water wells within a 3/4-mile (1200-meter) radius with an average depth

Release Characterization and Remediation Work Plan November 3, 2020

to groundwater at 73 feet (ft.) below ground surface (bgs). The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization, the RRALs for the Site are as follows:

Constituent	RRAL
Chloride (0-4 ft bgs)	600 mg/kg
Chloride (>4 ft bgs)	10,000 mg/kg
ТРН	2,500 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

INITIAL RESPONSE AND SITE ASSESSMENT

In accordance with 19.15.29.8. B. (4) NMAC that states "the responsible party may commence remediation immediately after discovery of a release", ConocoPhillips elected to begin initial remedial response and assessment of the impacted area in late 2019. The release extent was initially identified as an area along the flowline that extends from the EVGSAU 2437-001 lease pad to the EVGSAU Satellite #1 facility. The release point is located approximately 200 feet southeast of the flowline header at the Satellite facility. The visibly impacted soil in the release footprint was excavated by COP personnel with heavy equipment to approximately 1.5 feet bgs to remove the impacted surface soils. Figure 3 depicts the release extent and the excavated area. Visibly impacted soil was excavated from an area equaling approximately 1,400 square feet during initial response activities

In December of 2019, following initial response activities, COP collected twenty-four (24) soil samples from fifteen (15) locations within and surrounding the excavation area. Sample locations included both vertical assessment and confirmation sidewall locations. Sample locations are shown on Figure 3. These soil samples were sent to Cardinal Laboratories in Hobbs, New Mexico and analyzed for chloride via EPA Method SM45000CI-B, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B.

Analytical results associated with nine (9) of the soil samples exceeded the reclamation RRAL of 600 mg/kg for chloride from 0-4 feet bgs. The analytical results associated with the majority of the soil samples exceeded the reclamation concentration for TPH (100 mg/kg) in the upper four feet. In addition, analytical results associated with the SP#5 location exceeded the TPH RRAL of 2,500 mg/kg at a depth of 5 feet bgs. Analytical results associated with sidewall sample locations Wall #5 and Wall #6 exceeded the Total BTEX RRAL of 50 mg/kg. All other sample results were below the Site RRALs for BTEX. Analytical results from the BG#1 through BG#4 provide north and south horizontal delineation of the release extent. Sample results from the initial soil assessment are summarized in Table 1. A copy of the analytical laboratory report and chain-of-custody documentation are included in Appendix C.

ADDITIONAL SITE ASSESSMENT/DELINEATION

On March 11, 2020, Tetra Tech visited the release Site to visually inspect the release area, assess current conditions, and map the excavated extents from the initial response activities. The approximate release extent, analytical data and sample locations were provided to Tetra Tech prior to the site visit.

Release Characterization and Remediation Work Plan November 3, 2020

During the visit, an approximate 60-ft by 30-ft area was observed to have been excavated to roughly 1.5 feet below the surrounding surface grade. (Figure 3). Photographic documentation from the March 2020 site visit is included in Appendix D.

Complete horizontal and vertical delineation of the release was not achieved during the initial response and assessment. In order to attempt to achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling on July 16, 2020 on behalf of ConocoPhillips. A total of five (5) borings (BH-1 through BH-5) were installed using an air rotary drilling rig. Two (2) borings (BH-1 and BH-2) were installed within the release extent to depths of 22 and 17 feet bgs, respectively, to achieve vertical delineation. Two borings (BH-3 and BH-4) were installed along the northwest and southeast perimeter of the release extent (to the northwest and southeast, respectively) to depths of 10 feet bgs to achieve horizontal delineation. Boring BH-5 was installed further to the northeast to provide background data. Boring logs from the July 2020 assessment activities are included in Appendix E.

A total of twenty-eight (28) samples were collected from the five (5) borings and submitted to Pace Analytical (Pace) in Nashville, Tennessee. The samples were analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix C. Boring locations are shown in Figure 4. Select photos of the site assessment field activities are included in Appendix D.

ADDITIONAL SITE DELINEATION

To achieve additional horizontal delineation of the release extent to the west, Tetra Tech personnel returned to the Site on August 20, 2020 to conduct additional soil sampling on behalf of ConocoPhillips. A total of two (2) additional borings (BH-6 and BH-7) were installed with a hand auger to the west of boring BH-3.

A total of four (4) samples were collected and submitted to Pace and again analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Copies of the laboratory analytical reports and chain-of-custody documentation are included in Appendix C. Boring locations are shown in Figure 4.

SUMMARY OF SAMPLING RESULTS

Results from the July and August 2020 site assessment events are summarized in Table 2. Analytical results associated with the BH-1 and BH-2 locations (drilled inside the previously excavated area) exceeded the TPH reclamation RRAL of 100 mg/kg in the uppermost 2-3' sample interval. Analytical results associated with the BH-1 (2-3') and BH-3 (2-3') exceeded the reclamation RRAL of 600 mg/kg chloride from 0-4 feet bgs. All analytical results were below the benzene and Total BTEX Site RRALs of 10 mg/kg and 50 mg/kg, respectively.

Soil borings BH-1 and BH-2 vertically delineate soil impacts within the footprint of the release area. Soil borings BH-4, BH-5, BH-6 and BH-7 successfully delineated horizontal impacts to the south, east, and north. Initial assessment sample locations BG#1 through BG#4 provide north and south horizontal delineation of the release extent.

REMEDIATION WORK PLAN

Based on the analytical results, ConocoPhillips proposes to remove the remaining impacted material as shown in Figure 5. Most of the area will be excavated to 4' bgs. Impacted soils will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum depth of 5 feet bgs, or until a representative sample from the walls and bottom of the excavation are below the RRALs. The areas of the release extent that contain steel surface lines or are adjacent to these lines will be hand-dug to the maximum extent practicable and heavy equipment will come no more than 3 ft from any pressurized lines.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities and analyzed for chlorides, TPH, and BTEX. Once results are received, NMOCD will be notified and the

excavation will then be backfilled with clean material to surface grade. The estimated areal extent of the proposed excavation encompasses a surface area of approximately 2,215 square feet resulting in an estimated additional 245 cubic yards volume of material to be removed.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 6. Six (6) confirmation floor samples and eleven (11) confirmation sidewall samples are proposed for verification of remedial activities.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to Pace Laboratories for analysis of chloride, TPH, and BTEX. Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND RESTORATION PLAN

The backfilled areas will be seeded in Spring 2021 (first favorable growing season) to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Sandy Loam (SL) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix F.

CONCLUSION

ConocoPhillips proposes to begin remediation activities at the Site within 90 days of NMOCD plan approval. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely, Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager

Greg W. Pope, P.G. Program Manager

CC:

- Mr. Marvin Soriwei, RMR ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips
- Mr. Charles Beauvais, GPBU ConocoPhillips

Release Characterization and Remediation Work Plan November 3, 2020

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

- Figure 1 Overview Map
- Figure 2 Site Location/Topographic Map
- Figure 3 Initial Site Assessment Map
- Figure 4 Additional Release Assessment Map
- Figure 5 Proposed Remediation Extent
- Figure 6 Alternative Confirmation Sampling Plan

Tables:

Table 1 – Summary of Analytical Results – Initial Soil Assessment

Table 2 – Summary of Analytical Results – Additional Soil Assessment

Appendices:

Appendix A – C-141 Forms

Appendix B – Site Characterization Data

Appendix C – Laboratory Analytical Data

Appendix D – Soil Boring Logs

Appendix E – Photographic Documentation

Appendix F – NMSLO Seed Mixture Details

5

FIGURES

. Released to Imaging: 1/21/2021 9:46:56 AM

. Released to Imaging: 1/21/2021 9:46:56 AM

. Released to Imaging: 1/21/2021 9:46:56 AM

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT CONOCOPHILLIPS EVSGAU 2437-001 FLOWLINE RELEASE: NRM1935733118 LEA COUNTY, NM

										-					TPH ³									
									BTEX	2			0					TP	H ³					
Sample ID	Sample Date	Sample Depth	le Depth Chloride ¹		Benzene		Toluen	Toluene		zene	Total Xyle	enes	Total B	TEX	GRO ⁴		DRO		EXT DF	-	Total TPH			
										-					C ₆ - C ₁₀		>C ₁₀ - C ₂₈		>C ₂₈ - C ₃₆					
		ft. bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg			
SP #1	12/4/2019	2	2560		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		283		59.7		343			
51 112	12, 1,2015	4	4000		< 0.050		0.245		1.87		3.84		5.96		62.1		726		132		858			
SP #2	12/4/2019	2	2760		< 0.050		0.205		1.28		3.55		5.03		256		12500		2590		15346			
51 #2	12/4/2015	4	3440		< 0.500		1.51		4.20		7.62		13.3		126		1550		303		1979			
SP #3	12/4/2019	2	2960	QM-07	< 0.050		0.721		3.48		9.02		13.2		341		18100		3480		21580			
51 #5	12/4/2015	4	1860		< 0.050		0.887		5.60		11.7		18.2		296		4970		916		5886			
SP #4	12/4/2019	3	2840		< 0.050		0.124		0.953		2.94		4.02		207		7450		1520		9177			
51 #4	12/4/2015	5	4400		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		512		192		704			
SP #5	12/4/2019	3	3400		0.115		4.71		9.83		23.1		37.8		640		8810		1560		10370			
51 #5	12/4/2015	5	1260		< 0.050		0.399		0.966		1.53		2.90		144		6180		1020		7200			
Wall #1	12/4/2019	~1	1360		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		89.4		60.0		149			
Wall #2	12/4/2019	~1	8000		< 0.050		< 0.050		0.058		0.155		< 0.300		10.3		109		22.2		131			
Wall #3	12/4/2019	~1	48.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		<30.0			
Wall #4	12/4/2019	~1	1500		< 0.050		< 0.050		0.573		4.15		4.72		280		7040		1210		8250			
Wall #5	12/4/2019	~1	112.0		< 0.050		19.3		64.3		124		207		3900		36500		5710		42210			
Wall #6	12/4/2019	~1	1060		< 0.050		4.94		21.0		41.0		66.9		1080		9100		1290		10390			
		surface	16.0	[< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0	Г Т	<30.0			
BG #1	12/4/2019	2	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		<10.0		<10.0		<30.0			
		surface	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		<30.0			
BG #2	12/4/2019	2	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		<10.0		<10.0		<30.0			
		surface	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		<30.0			
BG #3	12/4/2019	2	48.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		<30.0			
DC #4	12/4/2010	surface	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		<30.0			
BG #4	12/4/2019	2	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		<30.0			

NOTES:

Released to Imaging: 1/21/2021 9:46:56 AM

ft. Feet bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

1 Method SM4500Cl-B

- 2 Method 8260B
- 3 Method 8015M

Bold and italicized values indicate exceedance of proposed RRALs

on acceptable LCS recovery.

QUALIFIERS:

Shaded rows indicate depth intervals proposed for excavation and remediation.

QM-07 The spike recovery was outside acceptance limits for MS and/or MSD. The batch was accepted based

Page 15 of 169

TABLE 2 SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT - NRM1935733118 CONOCOPHILLIPS EVGSAU 2437-001 FLOWLINE RELEASE LEA COUNTY, NM

											BTEX ²								TPH	1 ³		
Sample ID	Sample Date	Sample Depth Interval	Field Screer	ning Results	Chloride1		Benzene		Toluene		Ethylbenzen		Total Xylene		Total BTEX	GRO⁴		DRO		ORO		Total TPH
Sample ID	Sample Date	intervar	Chloride	PID			Benzene		roluene		Ethylbenzen	e	Total Aylene	Total DIEX		C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	рр	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		2-3	300	394	736		< 0.00104		< 0.00519		< 0.00260		0.00139	J	0.00139	< 0.104		347		381		728
		4-5	800	20	1080		< 0.00108		< 0.00542		< 0.00271		0.00108	J	0.00108	< 0.108		3.51	J	2.03	J	5.54
		6-7	780	0.0	754		< 0.00104		< 0.00521		< 0.00260		0.00248	J	0.00248	< 0.104		< 4.17		0.944	J	0.944
BH-1	7/16/2020	8-9	2500	0.0	3410		< 0.00108		< 0.00539		< 0.00269		< 0.00700		-	< 0.108		2.25	J	0.986	J	3.24
		11-12	2600	0.0	1210		< 0.00103		< 0.00513		< 0.00256		< 0.00667		-	< 0.103		2.70	J	1.84	J	4.54
		16-17	> 4000	0.0	5890		< 0.00125		< 0.00624		< 0.00312		< 0.00811		-	< 0.112		2.29	J	< 4.50		2.29
		21-22	450	0.0	543		< 0.00105		< 0.00526		< 0.00263		< 0.00684		-	< 0.105		3.61	J	1.67	J	5.28
		2-3	400	0.0	446		< 0.00102		< 0.00509		< 0.00254		< 0.00661		-	< 0.102		286		294		580
		4-5	800	0.0	674		< 0.00109		< 0.00543		< 0.00272		0.00696	J	0.00696	< 0.109		< 4.34		0.449	J	0.449
BH-2	7/16/2020	6-7	950	0.0	912		< 0.00106		< 0.00528		< 0.00264		< 0.00687		-	0.0372	ВJ	< 4.23		0.552	J	0.589
		8-9	875	0.0	846		< 0.00103		< 0.00517		0.000767	J	0.00115	J	0.00192	0.0389	ΒJ	< 4.14		0.416	J	0.455
		11-12	1100	0.0	1210		< 0.00106		< 0.00530		< 0.00265		0.00332	J	0.00332	0.0391	ΒJ	< 4.24		0.791	J	0.830
		16-17	150	0.0	160		< 0.00110		< 0.00548		< 0.00274		< 0.00712		-	0.0345	ΒJ	< 4.38		0.438	J	0.473
		0-1	190	0.0	15.1	J	< 0.00108		< 0.00542		< 0.00271		0.00258	J	0.00258	0.0312	ВJ	2.49	J	7.31		9.83
		2-3	380	0.0	684		< 0.00105		< 0.00526		< 0.00263		< 0.00683		-	0.0472	ΒJ	< 4.20		2.84	J	2.89
BH-3	7/16/2020	4-5	110	0.0	72.7		< 0.00103		< 0.00514		< 0.00257		0.00117	J	0.00117	0.0394	ВJ	< 4.11		1.52	J	1.56
		6-7	88	0.0	103		< 0.00100		< 0.00502		< 0.00251		0.00130	J	0.00130	0.0418	ΒJ	2.01	J	4.29		6.34
		9-10	73	0.0	80.9		< 0.00107		< 0.00534		< 0.00267		0.00124	J	0.00124	0.0409	ΒJ	< 4.27		2.15	J	2.19
		0-1	50	0.0	< 20.4		< 0.00102		< 0.00511		0.000784	J	< 0.00664		0.000784	0.0415	ΒJ	10.2		30.3		40.5
		2-3	40	0.0	45.9		< 0.00101		< 0.00507		< 0.00253		< 0.00659		-	0.0392	ΒJ	3.22	J	4.42		7.68
BH-4	7/16/2020	4-5	160	0.0	177		< 0.00104		< 0.00520		< 0.00260		< 0.00676		-	0.0379	ΒJ	< 4.16		< 4.16		0.0379
		6-7	94	0.0	115		< 0.00106		< 0.00528		< 0.00264		< 0.00686		-	0.0370	ΒJ	< 4.22		< 4.22		0.0370
		9-10	60	0.0	74.4		< 0.00107		< 0.00537		< 0.00269		< 0.00698		-	0.0423	ΒJ	< 4.30		< 4.30		0.0423
		0-1	190	0.0	24.5		< 0.00107		< 0.00537		< 0.00269		< 0.00699		-	0.0349	ΒJ	< 4.30		0.894	J	0.929
		2-3	56	0.0	27.4		< 0.00102		< 0.00509		< 0.00255		< 0.00662		-	0.0373	ΒJ	< 4.07		< 4.07		0.0373
BH-5	7/16/2020	4-5	60	0.0	14.8	J	< 0.00103		< 0.00517		< 0.00258		< 0.00672		-	0.0635	ΒJ	< 4.13		< 4.13		0.0635
		6-7	60	0.0	< 20.5		< 0.00103		< 0.00513		< 0.00256		< 0.00667		-	0.0352	ΒJ	< 4.10		< 4.10		0.0352
		9-10	34	0.0	< 20.9		< 0.00105		< 0.00523		< 0.00262		< 0.00680		-	0.0350	ΒJ	< 4.18		< 4.18		0.0350
BH-6	8/19/2020	0-1	-	-	10.6	J	< 0.00112		< 0.00559		< 0.00280		< 0.00727		-	< 0.106		7.47		17.8		25.3
BIFO	0/15/2020	2-3	-	-	96.3		< 0.00182		< 0.00911		< 0.00455		< 0.0118		-	< 0.141		10.1		< 5.64		10.1
BUL 7	8/10/2020	0-1	-	-	< 27.5	1	< 0.00176		< 0.00878		< 0.00439	1	< 0.0114		-	< 0.138	1	3.40	1	< 5.51		3.40
BH-7	8/19/2020	2-3	-	-	< 28.6		< 0.00186		< 0.00929		< 0.00464		< 0.0121		-	< 0.143		2.63	J	< 5.71		2.63

NOTES: bgs

Released to Imaging: 1/21/2021 9:46:56 AM

ft. Feet

Bold and italicized values indicate exceedance of proposed RRALs

Shaded rows indicate depth intervals proposed for excavation and remediation.

- 1 EPA Method 300.0
- 2 EPA Method 8260B
- 3 EPA Method 8015
- 4 EPA Method 8015D/GRO
- QUALIFIERS: B The same analyte is found in the associated blank.

DRO Diesel range organics ORO Oil range organics

GRO Gasoline range organics

Below ground surface

TPH Total Petroleum Hydrocarbons

ppm Parts per million mg/kg Milligrams per kilogram

Received by OCD: 11/3/2020 1:33:09 PM

.

APPENDIX A C-141 Forms

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party ConocoPhillips Company	OGRID 217817
Contact Name Gustavo Fejervary	Contact Telephone 432/210-7037
Contact email g.fejervary@cop.com	Incident # (assigned by OCD)
Contact mailing address	5735 SW 7000 Andrews, TX 79714

Location of Release Source

Latitude _32.81840

Longitude	-103.49300
(NAD 83 in decimal degrees to 5 deci	imal places)

Site Name EVGSAU SAT 1	Site Type flow line leak
Date Release Discovered 10/29/19	API# (if applicable)

Unit Letter	Section	Township	Range	County
j	19	17s	35e	Lea

Surface Owner: 🛛 State 🗌 Federal 🔲 Tribal 🔲 Private (Name: ____

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below) Crude Oil Volume Released (bbls) 0.6 Volume Recovered (bbls) 0.3 Volume Released (bbls) 22.4 Produced Water Volume Recovered (bbls) 97 Is the concentration of total dissolved solids (TDS) Ves No in the produced water >10,000 mg/l? Condensate Volume Released (bbls) Volume Recovered (bbls) Natural Gas Volume Released (Mcf) Volume Recovered (Mcf) Other (describe) Volume/Weight Released (provide units) Volume/Weight Recovered (provide units) Cause of Release When checking satellite 1 area found flowline leak to 2437-001

Received by OCD: 11/3/2020 1:33:09 PM

Form C-141 Page 2	State of New Mexico Oil Conservation Division	Incident ID District RP	
		Facility ID Application ID	
Was this a major	If YES, for what reason(s) does the responsible par	ty consider this a major release?]

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMÁC?	LESS THAN 25 BBLS
🗌 Yes 💋 No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

I The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Remediation process is ongoing.

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Gustavo Fejervary	Title: Environmental Coordinator
Signature:	Date: 11/4/19
email: g.fejetvary@cop.com	Telephone:432/210-7037
OCD Only	
Received by:	Date:

									Total Estimated Volume of Spilled Liquid other than Oil (bbl.)	0.102	0.345	9.204	2.148	0.690	0:000	0,000	0:000	0.000	0.000	12.490
							~~~~~~	ġ	Total Estimated Volume of Spilled Oil (bbl.)	0.005	0.018	0,484	0,113	0.036	0.000	0:000	0:00	0.000	0:000	0.657
							ation factor	if No, use factors abov	Percentage of Oil if Spilled Fluid is a Mixture	5.00%	5.00%	5.00%	5,00%	5,00%						
							soil spilled-fluid satur	fluid saturation factor;	Total Estimated Volume of Spill (bbl.)	0.108	0.363	689.6	2.261	0.727	0:00	0:00	0.00	0:00	0:000	13.147
L48 Spill Volume Estimate Form						Spill Calculation - Subsurface Spill - Rectangle	On Pad - 10.5%; Off Pad - 15.12% soil spilled-fluid saturation factor	Yes, On Pad - 8%; Off Pad - 13.57% soil spilled-fluid saturation factor; if No, use factors above.	Estimated volume of each area (bbl.)	0.712	2.403	64.080	14.952	4.806	0.000	0,000	0.000	0.000	0.000	Total Volume Release:
L48 Spill Volu						Spill Calculation - S		Yes, On Pa	Soil Spilled-Fluid Saturation	15.12%	15.12%	15,12%	15.12%	15.12%						
	SVGSAU 2437-001	Asset Area: SENM (Buckeye)	130 P.M. 10/29/19	Jil Mixture	lowine leak				Depth (in.)	2.00	3.00	4.00	4.00	3.00						
	Facility Name & Number: EVGSAU 2437-001	Asset Area: S	Release Discovery Date & Time: 2:30 P.M. 10/29/19	Release Type: Oil Mixture	Provide any known details about the event: Flowline leak		Was the release on pad or off-pad?	Has it rained at least a haif inch in the last 24 hours?	Width (ft.)	1.0	3.0	24.0	12.0	9.0		4. Bit will be used by the state of the s				
	Facili		Release Disc		e any known deti		Was the release	least a half inch i	Length (ft.)	24.0	18.0	45.0	21.0	12.0						
					Provid			Has it rained at	Convert Irregular shape into a series of rectangles	Rectangle A	Rectangle B	Rectangle C	Rectangle D	Rectangle E	Rectangle F	Rectangle G	Rectangle H	Rectangle I	Rectangle J	

Page 3

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

# Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

### Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/3/20.	20 1:33:09 PM State of New Mexico			Page 22 of 169
			Incident ID	
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations all operators are public health or the environm failed to adequately investig addition, OCD acceptance of and/or regulations. Printed Name: Signature:	rmation given above is true and complete to the required to report and/or file certain release not ment. The acceptance of a C-141 report by the gate and remediate contamination that pose a thr of a C-141 report does not relieve the operator of	tifications and perform cc OCD does not relieve the reat to groundwater, surfa f responsibility for compl 	prrective actions for rele coperator of liability sho ce water, human health iance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by:		Date:		
		Dute		

Received by OCD: 11/3/2020 1:33:09 PM State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

# **Remediation Plan**

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Title: Signature: Date: Telephone: email: OCD Only Date: Received by: Approved with Attached Conditions of Approval Approved Denied Deferral Approved Signature: Date:

Page 5

# APPENDIX B Site Characterization Data



# New Mexico Office of the State Engineer Water Column/Average Depth to Water

No records found.

UTMNAD83 Radius Search (in meters):

Easting (X): 641087.121

Northing (Y): 3632127

Radius: 800

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.



# New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)		••					2=NE 3 it to larç	=SW 4=SEj gest) (NA	) AD83 UTM in me	eters)	(	In feet)	
POD Number	POD Sub- Code basin (	Count		Q 16		Sec 1	Tws	Rng	х	Y	Distance	-	-	Water Column
L 05439	L	LE	2	3	3	19	17S	35E	640212	3631888* 🌍	907	135	85	50
L 06940	L	LE	1	4	3	20	17S	35E	642001	3631907* 🌍	939	135	85	50
<u>L 05850</u>	L	LE	2	2	2	19	17S	35E	641377	3633109* 🌍	1023	230		
L 02943	L	LE	4	1	1	20	17S	35E	641780	3632913* 🌍	1047	110	60	50
L 04066	L	LE		4	2	30	17S	35E	641309	3630994* 🌍	1154	116	70	46
L 04490	L	LE		4	2	30	17S	35E	641309	3630994* 🌍	1154	110	70	40
L 04829 POD7	L	LE	3	3	3	19	17S	35E	640012	3631688* 🌍	1161	210	70	140
										Avera	ge Depth to	Water:	73	feet
											Minimum	Depth:	60	feet
											Maximum	Depth:	85	feet

### **Record Count:** 7

### UTMNAD83 Radius Search (in meters):

Easting (X): 641087.121

Northing (Y): 3632127

**Radius:** 1200

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/19/20 10:39 PM



Received by OCD: 11/3/2020 1:38:09 PM

# Incident ID# NRM1935733118



. Released to Imaging: 1/21/2021 9:46:56 AM

NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

# APPENDIX C Laboratory Analytical Data



December 10, 2019

JUSTIN WRIGHT Conoco Phillips - Hobbs

P. O. BOX 325

Hobbs, NM 88240

RE: EVGSAU 2437-001

Enclosed are the results of analyses for samples received by the laboratory on 12/05/19 14:30.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab_accred_certif.html">www.tceq.texas.gov/field/ga/lab_accred_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



### Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477 12/05/2019 Sampling Date:

Received:	12/05/2019	Sampling Date:	12/04/2019
Reported:	12/10/2019	Sampling Type:	Soil
Project Name:	EVGSAU 2437-001	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM		

### Sample ID: SP #1 - 2' (H904083-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	<0.050	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	<0.050	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	<0.150	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	<0.300	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2560	16.0	12/06/2019	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	283	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	57.9	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	87.9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	93.3	% 37.6-14	7						

### Cardinal Laboratories

#### *=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



LEA COUNTY, NM

### Analytical Results For:

		Conoco Ph	illips - Hobbs		
		JUSTIN WI	RIGHT		
		P. O. BOX	325		
		Hobbs NM,	, 88240		
		Fax To:	(575) 297-1477	,	
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker

### Sample ID: SP #1 - 4' (H904083-02)

Project Location:

BTEX 8021B	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	0.245	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	1.87	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	3.84	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	5.96	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	133	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4000	16.0	12/06/2019	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	62.1	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	726	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	132	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	106	% 41-142	2						
Surrogate: 1-Chlorooctadecane	109	% 37.6-14	7						

#### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



LEA COUNTY, NM

### Analytical Results For:

		Conoco Ph	illips - Hobbs		
		JUSTIN WI	RIGHT		
		P. O. BOX	325		
		Hobbs NM	, 88240		
		Fax To:	(575) 297-1477	,	
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker

### Sample ID: SP #2 - 2' (H904083-03)

Project Location:

BTEX 8021B	mg/	′kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	12/09/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	0.205	0.050	12/09/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	1.28	0.050	12/09/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	3.55	0.150	12/09/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	5.03	0.300	12/09/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	135 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Chloride	2760	16.0	12/06/2019	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	256	50.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	12500	50.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	2590	50.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	139 9	% 41-142	2						
Surrogate: 1-Chlorooctadecane	391 9	% 37.6-14	7						

#### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



NONE GIVEN

LEA COUNTY, NM

Tamara Oldaker

Sample Received By:

### Analytical Results For:

		Conoco Phi	illips - Hobbs		
		JUSTIN WF	RIGHT		
		P. O. BOX	325		
		Hobbs NM,	88240		
		Fax To:	(575) 297-1477	7	
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact

### Sample ID: SP #2 - 4' (H904083-04)

Project Number:

Project Location:

BTEX 8021B	mg/	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	1.51	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	4.20	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	7.62	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	13.3	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	164	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3440	16.0	12/06/2019	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	126	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	1550	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	303	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	107	% 41-142							
Surrogate: 1-Chlorooctadecane	121	% 37.6-14	7						

#### **Cardinal Laboratories**

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



LEA COUNTY, NM

### Analytical Results For:

		Conoco Ph	illips - Hobbs		
		JUSTIN WI	RIGHT		
		P. O. BOX	325		
		Hobbs NM	, 88240		
		Fax To:	(575) 297-1477	,	
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker

### Sample ID: SP #3 - 2' (H904083-05)

Project Location:

BTEX 8021B	mg/	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.500	0.500	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	0.721	0.500	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	3.48	0.500	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	9.02	1.50	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	13.2	3.00	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	154	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2960	16.0	12/06/2019	ND	416	104	400	0.00	QM-07
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	341	50.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	18100	50.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	3480	50.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	142	% 41-142							
Surrogate: 1-Chlorooctadecane	512	% 37.6-14	7						

#### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



LEA COUNTY, NM

### Analytical Results For:

		Conoco Ph	illips - Hobbs		
		JUSTIN WI	RIGHT		
		P. O. BOX	325		
		Hobbs NM	, 88240		
		Fax To:	(575) 297-1477	,	
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker

### Sample ID: SP #3 - 4' (H904083-06)

Project Location:

BTEX 8021B	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.500	0.500	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	0.887	0.500	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	5.60	0.500	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	11.7	1.50	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	18.2	3.00	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	159	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1860	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	296	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	4970	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	916	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	118	% 41-142	2						
Surrogate: 1-Chlorooctadecane	197	% 37.6-14	7						

#### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager


LEA COUNTY, NM

### Analytical Results For:

		Conoco Ph	illips - Hobbs		
		JUSTIN WI	RIGHT		
		P. O. BOX	325		
		Hobbs NM,	, 88240		
		Fax To:	(575) 297-1477	,	
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker

### Sample ID: SP #4 - 3' (H904083-07)

Project Location:

BTEX 8021B	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	0.124	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	0.953	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	2.94	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	4.02	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	185	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2840	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	Analyzed By: MS			S-04		
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	207	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	7450	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	1520	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	107	% 41-142	2						
Surrogate: 1-Chlorooctadecane	258	% 37.6-14	7						

### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Phil	lips - Hobbs		
		JUSTIN WR	IGHT		
		P. O. BOX 3	25		
		Hobbs NM,	88240		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM				

### Sample ID: SP #4 - 5' (H904083-08)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	<0.050	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	<0.050	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	<0.150	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	<0.300	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	144 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4400	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	512	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	192	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	88.2	% 41-142							
Surrogate: 1-Chlorooctadecane	105 9	% 37.6-14	7						

### Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



NONE GIVEN

LEA COUNTY, NM

Tamara Oldaker

Sample Received By:

### Analytical Results For:

		Conoco Pl	hillips - Hobbs		
		JUSTIN W	/RIGHT		
		P. O. BOX	325		
		Hobbs N№	1, 88240		
		Fax To:	(575) 297-147	7	
	12/05/2019			Sampling Date:	12/04/2019
	12/10/2019			Sampling Type:	Soil
:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact

### Sample ID: SP #5 - 3' (H904083-09)

Received:

Reported: Project Name:

Project Number:

Project Location:

BTEX 8021B	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.115	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	4.71	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	9.83	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	23.1	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	37.8	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	283	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3400	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	640	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	8810	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	1560	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	158	% 41-142							
Surrogate: 1-Chlorooctadecane	286	% 37.6-14	7						

### Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



NONE GIVEN

LEA COUNTY, NM

Sample Received By:

& Intact

Tamara Oldaker

### Analytical Results For:

		Conoco Ph	illips - Hobbs		
		JUSTIN WE	RIGHT		
		P. O. BOX	325		
		Hobbs NM,	, 88240		
		Fax To:	(575) 297-1477	7	
	12/05/2019			Sampling Date:	12/04/2019
	12/10/2019			Sampling Type:	Soil
e:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact

### Sample ID: SP #5 - 5' (H904083-10)

Received:

Reported: Project Name

Project Number:

Project Location:

BTEX 8021B	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	0.399	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	0.966	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	1.53	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	2.90	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	293	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Chloride	1260	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	144	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	6180	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	1020	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	99.5	% 41-142	2						
Surrogate: 1-Chlorooctadecane	244	% 37.6-14	7						

### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM				

### Sample ID: WALL # 1 (H904083-11)

BTEX 8021B	mg/	kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	<0.050	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	<0.050	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	<0.150	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	<0.300	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	146 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1360	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	84.9	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	60.0	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	81.9	% 41-142							
Surrogate: 1-Chlorooctadecane	86.9	% 37.6-14	7						

### **Cardinal Laboratories**

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM				

### Sample ID: WALL # 2 (H904083-12)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	<0.050	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	0.058	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	0.155	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	<0.300	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8000	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	10.3	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	109	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	22.2	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	95.1	% 41-142							
Surrogate: 1-Chlorooctadecane	101	% 37.6-14	7						

### **Cardinal Laboratories**

### *=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Phil JUSTIN WR P. O. BOX 3 Hobbs NM,	325			
		Fax To:	(575) 297-1477			
Received:	12/05/2019			Sampling Date:	12/04/	2019
Reported:	12/10/2019			Sampling Type:	Soil	
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool &	Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara	a Oldaker
Project Location:	LEA COUNTY, NM					

### Sample ID: WALL # 3 (H904083-13)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	<0.050	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	<0.050	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	<0.150	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	<0.300	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	<10.0	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	<10.0	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	89.7	% 41-142	,						
Surrogate: 1-Chlorooctadecane	92.9	% 37.6-14	7						

### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Ph	illips - Hobbs		
		JUSTIN WF	RIGHT		
		P. O. BOX	325		
		Hobbs NM,	88240		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM				

### Sample ID: WALL # 4 (H904083-14)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	<0.050	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	0.573	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	4.15	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	4.72	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	169	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1500	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	280	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	7040	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	1210	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	126	% 41-142	2						
Surrogate: 1-Chlorooctadecane	243	% 37.6-14	7						

### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Ph	illips - Hobbs		
		JUSTIN WF	RIGHT		
		P. O. BOX	325		
		Hobbs NM,	88240		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM				

### Sample ID: WALL # 5 (H904083-15)

BTEX 8021B	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<1.00	1.00	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	19.3	1.00	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	64.3	1.00	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	124	3.00	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	207	6.00	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	187	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	3900	50.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	36500	50.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	5710	50.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	561	% 41-142	2						
Surrogate: 1-Chlorooctadecane	864	% 37.6-14	7						

### Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM				

### Sample ID: WALL # 6 (H904083-16)

BTEX 8021B	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.500	0.500	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	4.94	0.500	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	21.0	0.500	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	41.0	1.50	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	66.9	3.00	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	141	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1060	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1080	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	9100	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	1290	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	196	% 41-142	2						
Surrogate: 1-Chlorooctadecane	291	% 37.6-14	7						

### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Phill	lips - Hobbs			
		JUSTIN WR	IGHT			
		P. O. BOX 3	25			
		Hobbs NM,	88240			
		Fax To:	(575) 297-1477			
Received:	12/05/2019			Sampling Date:	1	2/04/2019
Reported:	12/10/2019			Sampling Type:	S	oil
Project Name:	EVGSAU 2437-001			Sampling Condition:	C	ool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Т	amara Oldaker
Project Location:	LEA COUNTY, NM					

### Sample ID: BG # 1 - SURFACE (H904083-17)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/10/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	<0.050	0.050	12/10/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	<0.050	0.050	12/10/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	<0.150	0.150	12/10/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	<0.300	0.300	12/10/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	<10.0	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	<10.0	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	88.7	% 41-142	,						
Surrogate: 1-Chlorooctadecane	88.6	% 37.6-14	7						

### Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



LEA COUNTY, NM

### Analytical Results For:

		Conoco Phil JUSTIN WR P. O. BOX 3	-		
		Hobbs NM,	88240		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker

### Sample ID: BG # 1 - 2' (H904083-18)

Project Location:

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	<0.050	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	<0.050	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	<0.150	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	<0.300	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	<10.0	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	<10.0	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	85.9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	85.8	% 37.6-14	7						

### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Phill	ips - Hobbs		
		JUSTIN WRI	GHT		
		P. O. BOX 3	25		
		Hobbs NM, 8	38240		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM				

### Sample ID: BG # 2 - SURFACE (H904083-19)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	<0.050	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	<0.050	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	<0.150	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	<0.300	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.3	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2019	ND	202	101	200	8.83	
DRO >C10-C28*	<10.0	10.0	12/09/2019	ND	217	109	200	1.54	
EXT DRO >C28-C36	<10.0	10.0	12/09/2019	ND					
Surrogate: 1-Chlorooctane	79.9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	80.5	% 37.6-14	7						

### Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



LEA COUNTY, NM

### Analytical Results For:

		Conoco Phi JUSTIN WR P. O. BOX 3	-		
		Hobbs NM,			
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker

### Sample ID: BG # 2 - 2' (H904083-20)

Project Location:

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2019	ND	1.78	88.9	2.00	2.86	
Toluene*	<0.050	0.050	12/06/2019	ND	1.73	86.7	2.00	2.02	
Ethylbenzene*	<0.050	0.050	12/06/2019	ND	1.76	87.9	2.00	2.18	
Total Xylenes*	<0.150	0.150	12/06/2019	ND	5.32	88.6	6.00	2.03	
Total BTEX	<0.300	0.300	12/06/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/07/2019	ND	226	113	200	3.20	
DRO >C10-C28*	<10.0	10.0	12/07/2019	ND	238	119	200	0.955	
EXT DRO >C28-C36	<10.0	10.0	12/07/2019	ND					
Surrogate: 1-Chlorooctane	94.6	% 41-142							
Surrogate: 1-Chlorooctadecane	97.3	% 37.6-14	7						

### Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Phill	ips - Hobbs		
		JUSTIN WRI	GHT		
		P. O. BOX 3	25		
		Hobbs NM, 8	38240		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM				

### Sample ID: BG # 3 - SURFACE (H904083-21)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/07/2019	ND	1.77	88.5	2.00	6.41	
Toluene*	<0.050	0.050	12/07/2019	ND	1.71	85.3	2.00	6.34	
Ethylbenzene*	<0.050	0.050	12/07/2019	ND	1.72	86.1	2.00	6.58	
Total Xylenes*	<0.150	0.150	12/07/2019	ND	5.21	86.8	6.00	6.49	
Total BTEX	<0.300	0.300	12/07/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/07/2019	ND	226	113	200	3.20	
DRO >C10-C28*	<10.0	10.0	12/07/2019	ND	238	119	200	0.955	
EXT DRO >C28-C36	<10.0	10.0	12/07/2019	ND					
Surrogate: 1-Chlorooctane	101 9	6 41-142							
Surrogate: 1-Chlorooctadecane	105 %	6 37.6-14	7						

### Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



LEA COUNTY, NM

### Analytical Results For:

		Conoco Phil	lips - Hobbs		
		JUSTIN WR	IGHT		
		P. O. BOX 3	25		
		Hobbs NM,	88240		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker

### Sample ID: BG # 3 - 2' (H904083-22)

Project Location:

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/07/2019	ND	1.77	88.5	2.00	6.41	
Toluene*	<0.050	0.050	12/07/2019	ND	1.71	85.3	2.00	6.34	
Ethylbenzene*	<0.050	0.050	12/07/2019	ND	1.72	86.1	2.00	6.58	
Total Xylenes*	<0.150	0.150	12/07/2019	ND	5.21	86.8	6.00	6.49	
Total BTEX	<0.300	0.300	12/07/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/07/2019	ND	226	113	200	3.20	
DRO >C10-C28*	<10.0	10.0	12/07/2019	ND	238	119	200	0.955	
EXT DRO >C28-C36	<10.0	10.0	12/07/2019	ND					
Surrogate: 1-Chlorooctane	99.2	% 41-142	,						
Surrogate: 1-Chlorooctadecane	102	% 37.6-14	7						

### **Cardinal Laboratories**

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Ph	illips - Hobbs		
		JUSTIN WE	RIGHT		
		P. O. BOX	325		
		Hobbs NM,	88240		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM				

### Sample ID: BG # 4 - SURFACE (H904083-23)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/07/2019	ND	1.77	88.5	2.00	6.41	
Toluene*	<0.050	0.050	12/07/2019	ND	1.71	85.3	2.00	6.34	
Ethylbenzene*	<0.050	0.050	12/07/2019	ND	1.72	86.1	2.00	6.58	
Total Xylenes*	<0.150	0.150	12/07/2019	ND	5.21	86.8	6.00	6.49	
Total BTEX	<0.300	0.300	12/07/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.4	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/07/2019	ND	226	113	200	3.20	
DRO >C10-C28*	<10.0	10.0	12/07/2019	ND	238	119	200	0.955	
EXT DRO >C28-C36	<10.0	10.0	12/07/2019	ND					
Surrogate: 1-Chlorooctane	91.9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	95.5	% 37.6-14	7						

### Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



		Conoco Phil	lips - Hobbs		
		JUSTIN WR	IGHT		
		P. O. BOX 3	25		
		Hobbs NM,	88240		
		Fax To:	(575) 297-1477		
Received:	12/05/2019			Sampling Date:	12/04/2019
Reported:	12/10/2019			Sampling Type:	Soil
Project Name:	EVGSAU 2437-001			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NM				

### Sample ID: BG # 4 - 2' (H904083-24)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/07/2019	ND	1.77	88.5	2.00	6.41	
Toluene*	<0.050	0.050	12/07/2019	ND	1.71	85.3	2.00	6.34	
Ethylbenzene*	<0.050	0.050	12/07/2019	ND	1.72	86.1	2.00	6.58	
Total Xylenes*	<0.150	0.150	12/07/2019	ND	5.21	86.8	6.00	6.49	
Total BTEX	<0.300	0.300	12/07/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.2	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/06/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/07/2019	ND	226	113	200	3.20	
DRO >C10-C28*	<10.0	10.0	12/07/2019	ND	238	119	200	0.955	
EXT DRO >C28-C36	<10.0	10.0	12/07/2019	ND					
Surrogate: 1-Chlorooctane	91.9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	94.1	% 37.6-14	7						

### Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



### **Notes and Definitions**

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

### **Cardinal Laboratories**

### *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 56 of 169

### of 29 Page 27 р П D oratories

# CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

## 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name: (	ConocoPhillips												8	BILL TO	0		1				ANALYSIS	2	ŝ			REQUEST	ŝ	7					
Project Manager:	Justin Wright	ıt		2.4					-	P.O. #:	.#																-		-		-		-
Address:										Co	Company:	any		COPC											_						-		-
City: Hobbs	Зў.	St NM	Zip:	Ň						Attn:	n:	1													-		_				_		
Phone #: 575-631-9092	9092	Fax #:								Ad	Address:	SS:	00									-									-		~
Project #:		Project Owner:	ä	0	COPC	0				City:	ž																_						-
Project Name: EVG	EVGSAU 2437-001	101								State:	ite:			Zip:															_				
Project Location: (	Lea County . NIM	1ml								Phone #:	one	#															-						-
Sampler Name: J	Justin Wright									Fax #:	#														_		-		_		-		
FOR LAB USE ONLY							MATRIX	RIX			PR	ESE	PRESERV.		SAMPLING	ING									_						-		-
Lab I.D.	Sample I.D.	ē	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER	WASTEWATER	SOIL	OIL	SLUDGE	OTHER :	ACID/BASE:	ICE / COOL	OTHER :	DATE	щ	TIME	Chlorides	BTEX	TPH														
1 SP#1-	1-2'		G				-	-				-		12-4			<	<	<						_		-		-		+		
	SP#1-41		G	E.			1					-		12-21			<	5	<						-		-		-		-		
Rds C	C-CHAS		G				1					-		12-4			<	<	<														
4 Spa	14-2-41		G				-		-		-	-		12-4			<	V	<						_				-		-		
Pds S	SP4 3-21		G				1					-		12-4			×	<	4								-		1				
C SP#	5P# 3-41		G			1.2.1	1					-		12-4			<	V	<						_		-		+				
	SP# 4-31		G	11			1					1		12-4			<	<	<						_								
#ds 8.	SD#4-5'		G				1					-		12-4			<	<	<				1		-		-		+	11	1		
-S#ds 6	5-31		G		125		-					1		12-4			<	<	4			-	_		$\rightarrow$		-		-				
Kds 01	5PH5-5'		G				1					1		12-4			<	<	<					-	-		-						
PLEASE NOTE: Liability and Damages. Cardina's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed warved unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose limitation, business interruptions, loss of use, or loss of profits incured by client, its sublidantes, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	ity and Damages. Cardinal's liability and dis sluding those for negligence and any other c all Cardinal be liable for incidental or consec- arising out of or related to the performance	ent's exclusive remedy for any claim arising whether based in contract or tort, si arase whatsoever shall be deemed waived unless made in writing and received quental damages, including without limitation, business interruptions, loss of use to 15 arorices hereunder by Cardinal, regardless of whether such claim is based	y daim a emed w vithout lin ardinal, r	nitation nitation	wheth inless h, busin	er bas made ness in wheth	ed in c in writi terrup er suc	ng and ions, l	recent recent recent recent recent	t, sha red by use, c	I be I Caro or loss	imited linal w s of pr	i to th vithin : rofits i	hall be limited to the amount paid by the client for the by Cardinal within 30 days after completion of the , or loss of profits incurred by client, its subsidianee upon any of the above stated reasons or otherwise	d by the c completion ient, its si	ilient for the on of the applical ubsidiaries, otherwise.	ble					ľ					ŀ		ł		l l		t
Relinquished By;		Date: 12-5-19 Time: 2:30,7m	Re	Received By:	ved	By:	Ø	Nº 1	9	1h	all of	61	1	H/	۶	Verbal Result: All Results are	ult: are en	□ Yes nailed.	Ple	□ No ase prov	Add'l Phone #: ide Email addre	Pho	ne ≢	ess									
Religiduished/By:		Date: '	R	Received By:	/ed	By:							5		71	REMARKS:																	
Delivered By: (Circle One) Sampler - UPS - Bus - Other:		Observed Temp. °C _ 4.5	4	- 4		Con	Sample Condition Cool Intact	Than Con	t ditio	ň		· 유	(Init	CHECKED BY: (Initials)		Turnaround Time:	Time		Standard Rush			Bacteria (on Cool Intact	ter	ia (o	t	Sa	mpl	le C	ond	Bacteria (only) Sample Condition Cool Intact Observed Temp.	ample Condition Observed Temp. °C		
FORM-005 R 3.0		Sector Sector	1	-			No No		No		1	10	10		0:	Correction Factor + 0,4 °C	ctor +	0.4 °C			-		Nc			1.1	orr	ecte	d T	em	Corrected Temp. °C	ľ	

### Received by OCD: 11/3/2020 1:33:09 PM

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Page 57 of 169

## CARDINAL Laboratories

# CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

### 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name:	ConocoPhillips												81	BILL TO							ANALYSIS	P	Ś		낆	Ö	REQUEST	S						
Project Manager:	Justin Wright	ght								0	P.O. #:					21			-		-	_	19											
Address:										or	Company:	any	••	COPC								_		-										
City: H	Hobbs	St NM	Zip:	ň						Attn:	3	16										_												
Phone #: 575-(	575-631-9092	Fax #:							-	Ado	Address:	ŝ																-						
Project #:		Project Owner:	Ť	0	COPC					City:									-							_		-						
Project Name: E	EVGSAU 2437-001	7-001							_	State:	ē:			Zip:										_		-								
Project Location:	Leg County NM	MM							-	Pho	Phone #:	#							_		_													
Sampler Name:	Justin Wright									Fax #:	#	11												-										
FOR LAB USE ONLY			P.			-	MATRIX	Ř	-11		PR	SE	PRESERV.	SAMPLING	LING											-		1000						
Lab I.D.	Sample I.D.	D.	(G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER	WASTEWATER	SOIL	OIL	SLUDGE	OTHER :	ACID/BASE:	ICE / COOL	OTHER :	DATE	TIME	Chlorides	BTEX	TPH	IPA															
	Wall H 1		G				-	_		-		-		12-4		5	5	3	-					-		-			11	1				
12	りないはる		G				1				Territoria (	-		12-4		<	-	<	-			_		-										
-	bjall #3		G				-		1.1			-		12-61		5	<	5	1			_		-										
	Wall #4		G				-	_				-	-	12-4		<	4	3	-					-										
IS	Wall #5		G				-	-				-	1 1	12-4		-	1	<				-												
161	Wall #6		G			1=	-	-				-	1	12-4		<	1	5				-		-										
17	BGHI-Surface		G				1	hed 1				-		12-4		\$	1	2						-		-								
181	BGH1-2'		G				-	-				-	1	12-4		<	<	5				-		-										
19	BGH2-Surface		G				1		1			1	-	12-41		<	*	~						-										
20	BG#2-2"		G				-	100	<u>(</u>			-	1 -	12-4	-	5	5	2	-			_	1	-		-								1
PLEASE NOTE: Liability and analyses. All claims including t service. In no event shall Card affiliates or successors arising	PLEASE NOTE: Liability and Damages. Cardina's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemde waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, artifiates or successors arising out of or related to the performance of services hereundor by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	I client's exclusive remedy for any claim er cause whatsoever shall be deemed v nsequental damages, including without I ance of services hereunder by Cardinal,	ny claim a eemed wa without lin Cardinal, r	aived u nitation	whethe Inless r , busin	r base nade ir ess inte	d in cou writing erruptic	g and ons, lo claim	or tor receiv ss of i s bas	ed by use, o	Card Card or loss	inal w of pr	to the ability offits i	arising whether based in contract or tort, shall be limited to the amount paid by the client for th avaived unless made in writing and received by Cardinal writin 30 days after completion of the limitation, business interruptions, loss of use, or loss of profits incurred by client; is subsidiaries regardless of whether such claim is based upon any of the above stated reasons or otherwise	<ul> <li>client for the etion of the applicat subsidiaries,</li> <li>or otherwise.</li> </ul>	ole			111				2.1	1.0										
Relinquished By:	<i>p</i> /	Date Time	Re	Received By:	red	BV:	CH .	9	R	Can	112	1	2	N°,	Verbal Result: All Results are		Yes     No     Add'I Phone #: emailed.     Please provide Email address:	Ple	I No	pro	Add'l Phone #: vide Email addre	Ema	hon a	e #:	SS:									
Relifiquished By:		Date: Time:	R	Received By:	ed	By:			-				5		REMARKS:																			
Delivered By: (Circle One) Sampler - UPS - Bus - Oth	rcle One) 3us - Other:	Observed Temp. °C Corrected Temp. °C	11	4.5	- (0)	Sample Condition Cool Intact	ample Conditionol Intact	Intact	estitio	S		율		ED BY: als)	Turnaround Time: Thermometer ID #9	io Tim		Rus	Standard Rush	a		_0_	Bac	Bacteria (only) Cool Intact	act (or	nly)	Sar	nple	Nec Co	ondi d Te	Bacteria (only) Sample Condition Cool Intact Observed Temp. °C    Yes	°°	-	
Sampler - UPS - Bus -	Sus - Other:	Corrected lemp. "C -4.1	110	1		34	No Yes Yes	79	les			NO.	0		Thermometer ID Correction Factor	ctor D	#97 + 0.4 °C							5 %	1	5 es	>		+	ł		Corrected Temp of		

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

### aboratories r

Page 58 of 169

Page 29 of 29

# CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

### 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name: ConocoPhillips	S				ANI	
	Vright		P.O. #:		AW	
Address:			Company: COPC			
City: Hobbs	St NM	Zip:				
Phone #: 575-631-9092	Fax #:		Address:			
Project #:	Project Owner:	er: COPC	City:			
Project Name: EVGSAU 2437-001	37-001		State: Zip:			
Project Location: Les County, NM	LUNG N		#			
Sampler Name: Justin Wright	4		Fax #			
FOR LAB USE ONLY		MATRIX	ESERV.	SAMPLING		
Lab I.D. Samp	Sample I.D.	(G)RAB OR (C)OMP. # CONTAINERS GROUNDWATER WASTEWATER SOIL DIL SLUDGE	OTHER :	TIME Chlorides BTEX	TPH	
JI BG#3-Surface	ace	1	1 1		~	
22 BG#3-21		G 1	1 12-4	× ×	e ·	
23 BG # 4- Surface	ace	G I	1 12-4	-	4	
24 BG#4-21		G /	1-61 1	-	< •	
		G 1	1	-		
		G 1	1			
		G /	1			
		G				
		ָר ה ה ה	1			
PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including hours on the same and the same set of	y and client's exclusive remedy for an	y claim arising whether based in contract or te	ort, shall be limited to the amount paid by	/ the client for the		
	or consequental damages, including v formance of services hereunder by C	or increases when be used in a version of the approximate inviting and increment by advantage in the approximation of the approximation that is a set of the set o	eived by Cardinal within 30 days after con of use, or loss of profits incurred by client ased upon any of the above stated reaso	mpletion of the applicable , its subsidiaries, ons or otherwise.		
Relinquished By:		Received By:	Malle	Result: Ilts are	□ No Please prov	Add'l Phone #: ide Email address:
Rélihadished By:	Date: / Time:	Received By:	the generation of the second s	REMARKS:		
Delivered By: (Circle One) Sampler - UPS - Bus - Other	Observed Temp. °C	Sample C	ion CHECKED BY: (Initials)	Turnaround Time:	Standard J	Bacteria (only) Sample Condition Cool Intact Observed Temp. °C
FORM-006 R 3.0	Corrected Temp. °C_4. [		-	Thermometer ID #97 Correction Factor + 0.4 °C		0 0

### Received by OCD: 11/3/2020 1:33:09 PM

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com



### ANALYTICAL REPORT July 29, 2020

### **ConocoPhillips - Tetra Tech**

Sample Delivery Group:	L1241287
Samples Received:	07/18/2020
Project Number:	212C-MD-02192
Description:	EVGSAU 2437-001
Site:	LEA COUNTY, NEW MEXICO
Report To:	Christian Llull
	901 West Wall
	Suite 100
	Midland, TX 79701

Ср
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
[°] Al
⁹ Sc

Entire Report Reviewed By: Chu, forman

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be Analytical National is performed per guidance provided in laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 1/2021 9:46:56 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02192

SDG: L1241287

DATE/TIME: 07/29/20 16:50

PAGE: 1 of 59

	Cp: Cover Page	1
	Tc: Table of Contents	2
	Ss: Sample Summary	4
	Cn: Case Narrative	10
	Sr: Sample Results	11
	BH-1 (2-3') L1241287-01	11
	BH-1 (4-5') L1241287-02	12
	BH-1 (6-7') L1241287-03	13
	BH-1 (8-9') L1241287-04	14
	BH-1 (11-12') L1241287-05	15
	BH-1 (16-17') L1241287-06	16
	BH-1 (21-22') L1241287-07	17
	BH-2 (2-3') L1241287-08	18
	BH-2 (4-5') L1241287-09	19
	BH-2 (6-7') L1241287-10	20
	BH-2 (8-9') L1241287-11	21
	BH-2 (11-12') L1241287-12	22
	BH-2 (16-17') L1241287-13	23
	BH-3 (0-1') L1241287-14	24
	BH-3 (2-3') L1241287-15	25
	BH-3 (4-5') L1241287-16	26
	BH-3 (6-7') L1241287-17	27
	BH-3 (9-10') L1241287-18	28
	BH-4 (0-1') L1241287-19	29
	BH-4 (2-3') L1241287-20	30
	BH-4 (4-5') L1241287-21	31
	BH-4 (6-7') L1241287-22	32
	BH-4 (9-10') L1241287-23	33
	BH-5 (0-1') L1241287-24	34
	BH-5 (2-3') L1241287-25	35
	BH-5 (4-5') L1241287-26	36
	BH-5 (6-7') L1241287-27	37
	BH-5 (9-10') L1241287-28	38
	Qc: Quality Control Summary	39
	Total Solids by Method 2540 G-2011	39
	Wet Chemistry by Method 300.0	43
	Volatile Organic Compounds (GC) by Method 8015D/GRO	45
	Volatile Organic Compounds (GC/MS) by Method 8260B	48
	Semi-Volatile Organic Compounds (GC) by Method 8015	51
	Gl: Glossary of Terms	53
~	PROJECT: SDG:	DATE/TIME:



Released to Imaging: 1/21/2021 9:46:56 AM ConocoPhillips - Tetra Tech **PROJECT:** 212C-MD-02192

SDG: L1241287 DATE/TIME: 07/29/20 16:50 PAGE: 2 of 59

### ONE LAB. NA Page 61 of 169

Al: Accreditations & Locations	54
Sc: Sample Chain of Custody	55



Released to Imaging: 1/2021 9:46:56 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02192

SDG: L1241287

DATE/TIME: 07/29/20 16:50

PAGE: 3 of 59

### SAMPLE SUMMARY

ONE LAB. NA Page 62 of 169

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-1 (2-3') L1241287-01 Solid			Collected by Adrian	Collected date/time 07/16/20 08:00	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513991	1	07/23/20 21:13	07/23/20 21:31	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	5	07/22/20 10:30	07/22/20 14:12	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1513384	1	07/21/20 20:36	07/23/20 02:22	TPR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 10:05	JAH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	5	07/23/20 23:17	07/25/20 03:11	JN	Mt. Juliet, TN
BH-1 (4-5') L1241287-02 Solid			Collected by Adrian	Collected date/time 07/16/20 08:10	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513991	1	07/23/20 21:13	07/23/20 21:31	KBC	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1512224	5	07/22/20 10:30	07/22/20 14:21	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1513384	1	07/21/20 20:36	07/23/20 02:43	TPR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 10:26	JAH	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/24/20 22:54	JN	Mt. Juliet, T
BH-1 (6-7') L1241287-03 Solid			Collected by Adrian	Collected date/time 07/16/20 08:20	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
incurou	Bateri	Dilation	date/time	date/time	riidiyse	Location
Total Solids by Method 2540 G-2011	WG1513991	1	07/23/20 21:13	07/23/20 21:31	KBC	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1512224	5	07/22/20 10:30	07/22/20 14:30	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1513384	1	07/21/20 20:36	07/23/20 03:03	TPR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 10:46	JAH	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/24/20 23:07	JN	Mt. Juliet, TI
BH-1 (8-9') L1241287-04 Solid			Collected by Adrian	Collected date/time 07/16/20 08:30	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513991	1	07/23/20 21:13	07/23/20 21:31	KBC	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1512224	5	07/22/20 10:30	07/22/20 14:40	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1513384	1	07/21/20 20:36	07/23/20 03:24	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 11:06	JAH	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/24/20 23:20	JN	Mt. Juliet, Ti
BH-1 (11-12') L1241287-05 Solid			Collected by Adrian	Collected date/time 07/16/20 08:40	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513992	1	07/23/20 20:57	07/23/20 21:10	KBC	Mt. Juliet, Tl
Wet Chemistry by Method 300.0	WG1512224	5	07/22/20 10:30	07/22/20 14:59	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1513384	1	07/21/20 20:36	07/23/20 03:44	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 11:27	JAH	Mt. Juliet, Tl
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/24/20 23:33	JN	Mt. Juliet, TN

**PROJECT:** 212C-MD-02192

SDG: L1241287 DATE/TIME: 07/29/20 16:50

:: 50 PAGE: 4 of 59

### SAMPLE SUMMARY

ONE LAB. NA Page 63 of 169

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-1 (16-17') L1241287-06 Solid			Collected by Adrian	Collected date/time 07/16/20 08:50	Received dat 07/18/20 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1513992	1	07/23/20 20:57	07/23/20 21:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	10	07/22/20 10:30	07/22/20 15:18	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1513384	1	07/21/20 20:36	07/23/20 04:05	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1515528	1	07/21/20 20:36	07/27/20 02:37	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 00:11	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
BH-1 (21-22') L1241287-07 Solid			Adrian	07/16/20 09:00	07/18/20 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513992	1	07/23/20 20:57	07/23/20 21:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	1	07/22/20 10:30	07/22/20 16:06	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1513384	1	07/21/20 20:36	07/23/20 04:25	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1515528	1	07/21/20 20:36	07/27/20 02:57	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 00:24	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
BH-2 (2-3') L1241287-08 Solid			Adrian	07/16/20 09:10	07/18/20 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513992	1	07/23/20 20:57	07/23/20 21:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	1	07/22/20 10:30	07/22/20 16:15	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1513384	1	07/21/20 20:36	07/23/20 04:46	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1515528	1	07/21/20 20:36	07/27/20 03:17	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	5	07/23/20 23:17	07/25/20 03:23	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
BH-2 (4-5') L1241287-09 Solid			Adrian	07/16/20 09:20	07/18/20 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513992	1	07/23/20 20:57	07/23/20 21:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	1	07/22/20 10:30	07/22/20 16:25	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1513384	1	07/21/20 20:36	07/23/20 05:07	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 12:48	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 00:36	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
BH-2 (6-7') L1241287-10 Solid			Adrian	07/16/20 09:30	07/18/20 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513992	1	07/23/20 20:57	07/23/20 21:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	5	07/22/20 10:30	07/22/20 16:38	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/23/20 23:04	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 13:09	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 00:49	JN	Mt. Juliet, TN

**PROJECT:** 212C-MD-02192

SDG: L1241287 DATE/TIME: 07/29/20 16:50

PAGE: 5 of 59

### SAMPLE SUMMARY

ONE LAB. NA Page 64 of 169

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-2 (8-9') L1241287-11 Solid			Collected by Adrian	Collected date/time 07/16/20 09:40	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513992	1	07/23/20 20:57	07/23/20 21:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	5	07/22/20 10:30	07/22/20 16:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/23/20 23:28	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 13:29	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 01:02	JN	Mt. Juliet, TN
			Collected by Adrian	Collected date/time 07/16/20 09:50	Received da 07/18/20 08	
BH-2 (11-12') L1241287-12 Solid			Aunan	07/10/20 05:50	07/10/20 00	.+5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513992	1	07/23/20 20:57	07/23/20 21:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	5	07/22/20 10:30	07/22/20 16:57	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/23/20 23:52	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 13:49	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 01:15	JN	Mt. Juliet, TN
BH-2 (16-17') L1241287-13 Solid			Collected by Adrian	Collected date/time 07/16/20 10:00	Received da 07/18/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Method	Daten	Dilution	date/time	date/time	Andryst	LUCATION
Total Solids by Method 2540 G-2011	WG1513992	1	07/23/20 20:57	07/23/20 21:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	1	07/22/20 10:30	07/22/20 17:06	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 00:16	DWR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 14:09	JAH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 01:28	JN	Mt. Juliet, TN
BH-3 (0-1') L1241287-14 Solid			Collected by Adrian	Collected date/time 07/16/20 10:10	Received da 07/18/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513992	1	07/23/20 20:57	07/23/20 21:10	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	1	07/22/20 10:30	07/22/20 17:16	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 00:40	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 14:29	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 01:41	JN	Mt. Juliet, TN
BH-3 (2-3') L1241287-15 Solid			Collected by Adrian	Collected date/time 07/16/20 10:20	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513993	1	07/23/20 20:28	07/23/20 20:53	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	5	07/22/20 10:30	07/22/20 17:44	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 01:04	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 14:49	JAH	Mt. Juliet, TN
Volatile Organic Compounds (OC/MS) by Method 6200D						,

**PROJECT:** 212C-MD-02192

SDG: L1241287 DATE/TIME: 07/29/20 16:50

PAGE: 6 of 59

### SAMPLE SUMMARY

ONE LAB. NA Page 65 of 169

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-3 (4-5') L1241287-16 Solid			Collected by Adrian	Collected date/time 07/16/20 10:30	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513993	1	07/23/20 20:28	07/23/20 20:53	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	1	07/22/20 10:30	07/22/20 17:54	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 01:28	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 15:08	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 02:06	JN	Mt. Juliet, TN
BH-3 (6-7') L1241287-17 Solid			Collected by Adrian	Collected date/time 07/16/20 10:40	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513993	1	07/23/20 20:28	07/23/20 20:53	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1513333	1	07/22/20 10:30	07/22/20 18:03	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 01:51	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 15:29	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 02:19	JN	Mt. Juliet, T
BH-3 (9-10') L1241287-18 Solid			Collected by Adrian	Collected date/time 07/16/20 10:50	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
menou	batch	Dilution	date/time	date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513993	1	07/23/20 20:28	07/23/20 20:53	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512224	1	07/22/20 10:30	07/22/20 18:13	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 02:15	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 15:49	JAH	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 02:32	JN	Mt. Juliet, Ti
BH-4 (0-1') L1241287-19 Solid			Collected by Adrian	Collected date/time 07/16/20 11:00	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513993	1	07/23/20 20:28	07/23/20 20:53	JAV	Mt. Juliet, Tl
Wet Chemistry by Method 300.0	WG1512224	1	07/22/20 10:30	07/22/20 18:32	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 02:39	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 16:09	JAH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 02:58	JN	Mt. Juliet, Ti
BH-4 (2-3') L1241287-20 Solid			Collected by Adrian	Collected date/time 07/16/20 11:10	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513993	1	07/23/20 20:28	07/23/20 20:53	JAV	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1512224	1	07/22/20 10:30	07/22/20 18:41	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 03:03	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513140	1	07/21/20 20:36	07/22/20 16:29	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514121	1	07/23/20 23:17	07/25/20 02:45	JN	Mt. Juliet, TN

**PROJECT:** 212C-MD-02192

SDG: L1241287 DATE/TIME: 07/29/20 16:50

:: 50 PAGE: 7 of 59

### SAMPLE SUMMARY

ONE LAB. NA Page 66 of 169

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-4 (4-5') L1241287-21 Solid			Collected by Adrian	Collected date/time 07/16/20 11:20	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1513993	1	07/23/20 20:28	07/23/20 20:53	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512219	1	07/21/20 11:16	07/21/20 23:07	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 03:27	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513217	1	07/21/20 20:36	07/22/20 18:08	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514449	1	07/24/20 01:38	07/24/20 16:47	JN	Mt. Juliet, TN
BH-4 (6-7') L1241287-22 Solid			Collected by Adrian	Collected date/time 07/16/20 11:30	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1513993	1	07/23/20 20:28	07/23/20 20:53	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512219	1	07/21/20 11:16	07/21/20 23:25	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 03:51	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513217	1	07/21/20 20:36	07/22/20 18:27	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514449	1	07/24/20 01:38	07/24/20 16:59	JN	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-4 (9-10') L1241287-23 Solid			Adrian	07/16/20 11:40	07/18/20 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1513993	1	07/23/20 20:28	07/23/20 20:53	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512219	1	07/21/20 11:16	07/21/20 23:42	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 04:15	DWR	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513217	1	07/21/20 20:36	07/22/20 18:46	DWR	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514449	1	07/24/20 01:38	07/24/20 17:12	JN	Mt. Juliet, Ti
BH-5 (0-1') L1241287-24 Solid			Collected by Adrian	Collected date/time 07/16/20 12:00	Received da 07/18/20 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1513993	1	07/23/20 20:28	07/23/20 20:53	JAV	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1512219	1	07/21/20 11:16	07/22/20 00:00	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 04:39	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513217	1	07/21/20 20:36	07/22/20 19:05	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514449	1	07/24/20 01:38	07/24/20 17:25	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (2-3') L1241287-25 Solid			Adrian	07/16/20 12:10	07/18/20 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513995	1	07/24/20 00:40	07/24/20 00:48	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512219	1	07/21/20 11:16	07/22/20 00:52	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 05:03	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513217	1	07/21/20 20:36	07/22/20 19:24	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514449	1	07/24/20 01:38	07/24/20 17:38	JN	Mt. Juliet, TN

PROJECT: 212C-MD-02192

SDG: L1241287 DATE/TIME: 07/29/20 16:50

IME: 16:50 PAGE: 8 of 59

### SAMPLE SUMMARY

ONE LAB. NA Page 67 of 169

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

			Collected by	Collected date/time		
BH-5 (4-5') L1241287-26 Solid			Adrian	07/16/20 12:20	07/18/20 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1513995	1	07/24/20 00:40	07/24/20 00:48	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512219	1	07/21/20 11:16	07/22/20 01:09	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1515530	1	07/21/20 20:36	07/27/20 14:23	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513217	1	07/21/20 20:36	07/22/20 19:43	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514449	1	07/24/20 01:38	07/24/20 17:51	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (6-7') L1241287-27 Solid			Adrian	07/16/20 12:30	07/18/20 08:	45

Batch	Dilution	Preparation	Analysis	Analyst	Location
		date/time	date/time		
WG1513995	1	07/24/20 00:40	07/24/20 00:48	KBC	Mt. Juliet, TN
WG1512219	1	07/21/20 11:16	07/22/20 01:27	ELN	Mt. Juliet, TN
WG1514298	1	07/21/20 20:36	07/24/20 06:39	DWR	Mt. Juliet, TN
WG1513217	1	07/21/20 20:36	07/22/20 20:02	DWR	Mt. Juliet, TN
WG1514449	1	07/24/20 01:38	07/24/20 20:12	JN	Mt. Juliet, TN
	WG1513995 WG1512219 WG1514298 WG1513217	WG1513995         1           WG1512219         1           WG1514298         1           WG1513217         1	date/time           WG1513995         1         07/24/20 00:40           WG1512219         1         07/21/20 11:16           WG1514298         1         07/21/20 20:36           WG1513217         1         07/21/20 20:36	date/time         date/time           WG1513995         1         07/24/20 00:40         07/24/20 00:48           WG1512219         1         07/21/20 11:16         07/22/20 01:27           WG1514298         1         07/21/20 20:36         07/24/20 06:39           WG1513217         1         07/21/20 20:36         07/22/20 20:02	date/time         date/time           WG1513995         1         07/24/20 00:40         07/24/20 00:48         KBC           WG1512219         1         07/21/20 11:16         07/22/20 01:27         ELN           WG1514298         1         07/21/20 20:36         07/24/20 06:39         DWR           WG1513217         1         07/21/20 20:36         07/22/20 20:02         DWR

			Collected by	Collected date/time	Received dat	e/time
BH-5 (9-10') L1241287-28 Solid			Adrian	07/16/20 12:40	07/18/20 08:4	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1513995	1	07/24/20 00:40	07/24/20 00:48	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1512219	1	07/21/20 11:16	07/22/20 01:44	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1514298	1	07/21/20 20:36	07/24/20 07:03	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1513217	1	07/21/20 20:36	07/22/20 20:21	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1514449	1	07/24/20 01:38	07/24/20 18:04	JN	Mt. Juliet, TN

SDG: L1241287 DATE/TIME: 07/29/20 16:50

### CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager



PROJECT: 212C-MD-02192

SDG: L1241287

DATE/TIME: 07/29/20 16:50 PAGE: 10 of 59

### SAMPLE RESULTS - 01

*Q*c

Gl

Al

Sc

Collected date/time: 07/16/20 08:00

	Result	Qualifier	Dilution	Analysis		Batch	
Analyte	%			date / time			
Total Solids	96.3		1	07/23/2020 21:3		WG1513991	
Wet Chemistr	y by Method 300.0 Result (dry)		MDL (dry)	RDL (dry)	Dilution	Analysis	Patch
			mg/kg	mg/kg	Dilution	date / time	Batch
Analyto	malka						
Analyte Chloride	mg/kg 736		47.8	104	5	07/22/2020 14:12	WG1512224
Chloride			47.8	104	5		WG1512224

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	07/23/2020 02:22	WG1513384
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		07/23/2020 02:22	<u>WG1513384</u>

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	07/22/2020 10:05	WG1513140
Toluene	U		0.00135	0.00519	1	07/22/2020 10:05	WG1513140
Ethylbenzene	U		0.000765	0.00260	1	07/22/2020 10:05	WG1513140
Total Xylenes	0.00139	J	0.000914	0.00675	1	07/22/2020 10:05	WG1513140
(S) Toluene-d8	98.4			75.0-131		07/22/2020 10:05	WG1513140
(S) 4-Bromofluorobenzene	100			67.0-138		07/22/2020 10:05	WG1513140
(S) 1,2-Dichloroethane-d4	101			70.0-130		07/22/2020 10:05	WG1513140

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	347		8.36	20.8	5	07/25/2020 03:11	<u>WG1514121</u>
C28-C40 Oil Range	381		1.42	20.8	5	07/25/2020 03:11	<u>WG1514121</u>
(S) o-Terphenyl	76.4			18.0-148		07/25/2020 03:11	WG1514121

SDG: L1241287 Received by OCD: 11/3/2020 1:33:09 PM Collected date/time: 07/16/20 08:10 SAMPLE RESULTS - 02

Ss

Cn

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.3		1	07/23/2020 21:31	WG1513991	Tc

### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1080		49.9	108	5	07/22/2020 14:21	WG1512224

### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Qualifier	WDE (dry)	,	Dilution	,	Bateri	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	07/23/2020 02:43	WG1513384	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		07/23/2020 02:43	WG1513384	

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000506	0.00108	1	07/22/2020 10:26	WG1513140
Toluene	U		0.00141	0.00542	1	07/22/2020 10:26	WG1513140
Ethylbenzene	U		0.000799	0.00271	1	07/22/2020 10:26	WG1513140
Total Xylenes	0.00108	J	0.000954	0.00704	1	07/22/2020 10:26	WG1513140
(S) Toluene-d8	98.4			75.0-131		07/22/2020 10:26	WG1513140
(S) 4-Bromofluorobenzene	101			67.0-138		07/22/2020 10:26	WG1513140
(S) 1,2-Dichloroethane-d4	97.3			70.0-130		07/22/2020 10:26	WG1513140

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.51	J	1.74	4.34	1	07/24/2020 22:54	<u>WG1514121</u>
C28-C40 Oil Range	2.03	J	0.297	4.34	1	07/24/2020 22:54	<u>WG1514121</u>
(S) o-Terphenyl	72.2			18.0-148		07/24/2020 22:54	WG1514121

SDG: L1241287 DATE/TIME: 07/29/20 16:50 Received by OCD: 11/3/2020 1:33:09 PM Collected date/time: 07/16/20 08:20 SAMPLE RESULTS - 03

Ss

Cn

ΆI

Sc

### Total Solids by Method 2540 G-2011

						 l'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	96.0		1	07/23/2020 21:31	WG1513991	Tc

### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	754		47.9	104	5	07/22/2020 14:30	WG1512224

### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.100.011	date / time		
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	07/23/2020 03:03	WG1513384	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		07/23/2020 03:03	<u>WG1513384</u>	

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	07/22/2020 10:46	<u>WG1513140</u>
Toluene	U		0.00135	0.00521	1	07/22/2020 10:46	<u>WG1513140</u>
Ethylbenzene	U		0.000768	0.00260	1	07/22/2020 10:46	<u>WG1513140</u>
Total Xylenes	0.00248	J	0.000917	0.00677	1	07/22/2020 10:46	<u>WG1513140</u>
(S) Toluene-d8	97.1			75.0-131		07/22/2020 10:46	WG1513140
(S) 4-Bromofluorobenzene	102			67.0-138		07/22/2020 10:46	<u>WG1513140</u>
(S) 1,2-Dichloroethane-d4	102			70.0-130		07/22/2020 10:46	WG1513140

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	07/24/2020 23:07	<u>WG1514121</u>
C28-C40 Oil Range	0.944	J	0.285	4.17	1	07/24/2020 23:07	<u>WG1514121</u>
(S) o-Terphenyl	73.5			18.0-148		07/24/2020 23:07	WG1514121

Received by OCD: 11/3/2020 1:33:09 PM Collected date/time: 07/16/20 08:30

SAMPLE RESULTS - 04 L1241287

### Total Solids by Method 2540 G-2011

-						10	ⁿ
	Result	Qualifier	Dilution	Analysis	Batch		~P
Analyte	%			date / time		2	
Total Solids	92.8		1	07/23/2020 21:31	WG1513991	T	Гс

### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3410		49.5	108	5	07/22/2020 14:40	WG1512224

### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Qualifier	WDE (ury)	KDE (ury)	Dilution	,	Bateri	e
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	07/23/2020 03:24	WG1513384	L
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		07/23/2020 03:24	<u>WG1513384</u>	5

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000503	0.00108	1	07/22/2020 11:06	WG1513140
Toluene	U		0.00140	0.00539	1	07/22/2020 11:06	WG1513140
Ethylbenzene	U		0.000794	0.00269	1	07/22/2020 11:06	WG1513140
Total Xylenes	U		0.000948	0.00700	1	07/22/2020 11:06	WG1513140
(S) Toluene-d8	97.2			75.0-131		07/22/2020 11:06	WG1513140
(S) 4-Bromofluorobenzene	99.7			67.0-138		07/22/2020 11:06	WG1513140
(S) 1,2-Dichloroethane-d4	98.2			70.0-130		07/22/2020 11:06	<u>WG1513140</u>

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.25	J	1.73	4.31	1	07/24/2020 23:20	WG1514121
C28-C40 Oil Range	0.986	J	0.295	4.31	1	07/24/2020 23:20	<u>WG1514121</u>
(S) o-Terphenyl	78.1			18.0-148		07/24/2020 23:20	WG1514121

SDG: L1241287

DATE/TIME: 07/29/20 16:50 Ss Cn

ΆI

Sc
SAMPLE RESULTS - 05 L1241287

#### Total Solids by Method 2540 G-2011

	Re	sult Q	Jualifier [	Dilution	Analysis	Batch	Ср
Analyte	%				date / time		2
Total Solids	97	.5	1		07/23/2020 21:10	WG1513992	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1210		47.2	103	5	07/22/2020 14:59	WG1512224

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	07/23/2020 03:44	WG1513384
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		07/23/2020 03:44	<u>WG1513384</u>

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00103	1	07/22/2020 11:27	<u>WG1513140</u>
Toluene	U		0.00133	0.00513	1	07/22/2020 11:27	<u>WG1513140</u>
Ethylbenzene	U		0.000756	0.00256	1	07/22/2020 11:27	WG1513140
Total Xylenes	U		0.000903	0.00667	1	07/22/2020 11:27	<u>WG1513140</u>
(S) Toluene-d8	98.4			75.0-131		07/22/2020 11:27	WG1513140
(S) 4-Bromofluorobenzene	100			67.0-138		07/22/2020 11:27	<u>WG1513140</u>
(S) 1,2-Dichloroethane-d4	102			70.0-130		07/22/2020 11:27	WG1513140

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.70	J	1.65	4.10	1	07/24/2020 23:33	<u>WG1514121</u>
C28-C40 Oil Range	1.84	J	0.281	4.10	1	07/24/2020 23:33	<u>WG1514121</u>
(S) o-Terphenyl	75.1			18.0-148		07/24/2020 23:33	WG1514121

SDG: L1241287

Ss Cn

Â

Sc

SAMPLE RESULTS - 06 L1241287

Ss

Cn

ΆI

Sc

#### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	89.0		1	07/23/2020 21:10	WG1513992	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5890		103	225	10	07/22/2020 15:18	WG1512224

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quannet	mg/kg	mg/kg	Dilution	date / time	bach	e
TPH (GC/FID) Low Fraction	U		0.0244	0.112	1	07/23/2020 04:05	WG1513384	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		07/23/2020 04:05	<u>WG1513384</u>	5

## Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000583	0.00125	1	07/27/2020 02:37	WG1515528
Toluene	U		0.00162	0.00624	1	07/27/2020 02:37	WG1515528
Ethylbenzene	U		0.000920	0.00312	1	07/27/2020 02:37	WG1515528
Total Xylenes	U		0.00110	0.00811	1	07/27/2020 02:37	WG1515528
(S) Toluene-d8	97.2			75.0-131		07/27/2020 02:37	WG1515528
(S) 4-Bromofluorobenzene	98.8			67.0-138		07/27/2020 02:37	WG1515528
(S) 1,2-Dichloroethane-d4	102			70.0-130		07/27/2020 02:37	WG1515528

#### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.29	J	1.81	4.50	1	07/25/2020 00:11	<u>WG1514121</u>
C28-C40 Oil Range	U		0.308	4.50	1	07/25/2020 00:11	<u>WG1514121</u>
(S) o-Terphenyl	64.9			18.0-148		07/25/2020 00:11	WG1514121

SDG: L1241287

SAMPLE RESULTS - 07

Ss

Cn

ΆI

Sc

# Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C	р
Analyte	%			date / time		2	_
Total Solids	95.0		1	07/23/2020 21:10	WG1513992	T	С

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	543		9.69	21.1	1	07/22/2020 16:06	WG1512224

### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guanner	mg/kg	mg/kg	Dilution	date / time	Butth	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	07/23/2020 04:25	WG1513384	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		07/23/2020 04:25	WG1513384	

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	<u></u>
Benzene	U		0.000492	0.00105	1	07/27/2020 02:57	WG1515528
Toluene	U		0.00137	0.00526	1	07/27/2020 02:57	WG1515528
Ethylbenzene	U		0.000776	0.00263	1	07/27/2020 02:57	WG1515528
Total Xylenes	U		0.000926	0.00684	1	07/27/2020 02:57	<u>WG1515528</u>
(S) Toluene-d8	98.6			75.0-131		07/27/2020 02:57	WG1515528
(S) 4-Bromofluorobenzene	99.7			67.0-138		07/27/2020 02:57	<u>WG1515528</u>
(S) 1,2-Dichloroethane-d4	101			70.0-130		07/27/2020 02:57	WG1515528

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.61	J	1.69	4.21	1	07/25/2020 00:24	WG1514121
C28-C40 Oil Range	1.67	J	0.288	4.21	1	07/25/2020 00:24	<u>WG1514121</u>
(S) o-Terphenyl	71.0			18.0-148		07/25/2020 00:24	WG1514121

SDG: L1241287

SAMPLE RESULTS - 08

Ss

Cn

Â

Sc

## Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	98.3		1	07/23/2020 21:10	<u>WG1513992</u>	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	446		9.36	20.3	1	07/22/2020 16:15	WG1512224	

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	Bateri	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	07/23/2020 04:46	WG1513384	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		07/23/2020 04:46	WG1513384	

## Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000475	0.00102	1	07/27/2020 03:17	<u>WG1515528</u>
Toluene	U		0.00132	0.00509	1	07/27/2020 03:17	<u>WG1515528</u>
Ethylbenzene	U		0.000750	0.00254	1	07/27/2020 03:17	<u>WG1515528</u>
Total Xylenes	U		0.000895	0.00661	1	07/27/2020 03:17	<u>WG1515528</u>
(S) Toluene-d8	100			75.0-131		07/27/2020 03:17	WG1515528
(S) 4-Bromofluorobenzene	105			67.0-138		07/27/2020 03:17	<u>WG1515528</u>
(S) 1,2-Dichloroethane-d4	103			70.0-130		07/27/2020 03:17	WG1515528

#### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	286		8.19	20.3	5	07/25/2020 03:23	<u>WG1514121</u>
C28-C40 Oil Range	294		1.39	20.3	5	07/25/2020 03:23	<u>WG1514121</u>
(S) o-Terphenyl	90.3			18.0-148		07/25/2020 03:23	WG1514121

SDG: L1241287

SAMPLE RESULTS - 09 L1241287

#### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.1		1	07/23/2020 21:10	<u>WG1513992</u>	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	674		9.99	21.7	1	07/22/2020 16:25	WG1512224

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Dilution	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	07/23/2020 05:07	WG1513384	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		07/23/2020 05:07	WG1513384	

## Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000507	0.00109	1	07/22/2020 12:48	WG1513140
Foluene	U		0.00141	0.00543	1	07/22/2020 12:48	WG1513140
Ethylbenzene	U		0.000800	0.00272	1	07/22/2020 12:48	WG1513140
otal Xylenes	0.00696	J	0.000956	0.00706	1	07/22/2020 12:48	WG1513140
(S) Toluene-d8	98.8			75.0-131		07/22/2020 12:48	WG1513140
(S) 4-Bromofluorobenzene	96.1			67.0-138		07/22/2020 12:48	WG1513140
(S) 1,2-Dichloroethane-d4	97.6			70.0-130		07/22/2020 12:48	WG1513140

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.34	1	07/25/2020 00:36	<u>WG1514121</u>
C28-C40 Oil Range	0.449	J	0.298	4.34	1	07/25/2020 00:36	<u>WG1514121</u>
(S) o-Terphenyl	74.8			18.0-148		07/25/2020 00:36	WG1514121

SDG: L1241287

DATE/TIME: 07/29/20 16:50 Ss Cn

ΆI

Sc

#### SAMPLE RESULTS - 10 L1241287

Sc

Analyte	Result %	Qualifie	er Dilution	Analysis date / time		Batch		
Total Solids	94.6		1	07/23/2020 21:10		WG1513992		
Wet Chemistry by	Method 300	).0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	912		48.6	106	5	07/22/2020 16:38	WG1512224	
Chloride Volatile Organic (		GC) by Me			5	07/22/2020 16:38	<u>WG1512224</u>	
		GC) by Me <u>Qualifier</u>			5 Dilution	07/22/2020 16:38 Analysis	<u>WG1512224</u> Batch	
	Compounds (		ethod 8015	D/GRO				
Volatile Organic (	Compounds ( Result (dry)		ethod 8015 MDL (dry)	D/GRO RDL (dry)		Analysis		

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000493	0.00106	1	07/22/2020 13:09	<u>WG1513140</u>
Toluene	U		0.00137	0.00528	1	07/22/2020 13:09	<u>WG1513140</u>
Ethylbenzene	U		0.000779	0.00264	1	07/22/2020 13:09	WG1513140
Total Xylenes	U		0.000930	0.00687	1	07/22/2020 13:09	<u>WG1513140</u>
(S) Toluene-d8	98.6			75.0-131		07/22/2020 13:09	WG1513140
(S) 4-Bromofluorobenzene	102			67.0-138		07/22/2020 13:09	<u>WG1513140</u>
(S) 1,2-Dichloroethane-d4	99.7			70.0-130		07/22/2020 13:09	<u>WG1513140</u>

# Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	07/25/2020 00:49	<u>WG1514121</u>
C28-C40 Oil Range	0.552	J	0.289	4.23	1	07/25/2020 00:49	<u>WG1514121</u>
(S) o-Terphenyl	79.2			18.0-148		07/25/2020 00:49	WG1514121

SDG: L1241287

#### SAMPLE RESULTS - 11 L1241287

ΆI

Sc

Wet Chemistry by Method 300.0	
Wet Chemistry by Method 300.0	
Result (dry) <u>Qualifier</u> MDL (dry) RDL (dry) Dilution Analysis	Batch
Analyte mg/kg mg/kg mg/kg date / time	
Chloride 846 47.6 103 5 07/22/2020 16:47	WG1512224

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0389	ВJ	0.0224	0.103	1	07/23/2020 23:28	WG1514298
(S) a,a,a-Trifluorotoluene(FID)	99.9			77.0-120		07/23/2020 23:28	WG1514298

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1	07/22/2020 13:29	WG1513140
Toluene	U		0.00134	0.00517	1	07/22/2020 13:29	WG1513140
Ethylbenzene	0.000767	J	0.000762	0.00259	1	07/22/2020 13:29	WG1513140
Total Xylenes	0.00115	J	0.000910	0.00672	1	07/22/2020 13:29	WG1513140
(S) Toluene-d8	98.3			75.0-131		07/22/2020 13:29	WG1513140
(S) 4-Bromofluorobenzene	98.6			67.0-138		07/22/2020 13:29	WG1513140
(S) 1,2-Dichloroethane-d4	98.8			70.0-130		07/22/2020 13:29	WG1513140

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.14	1	07/25/2020 01:02	<u>WG1514121</u>
C28-C40 Oil Range	0.416	J	0.283	4.14	1	07/25/2020 01:02	<u>WG1514121</u>
(S) o-Terphenyl	73.2			18.0-148		07/25/2020 01:02	WG1514121

SDG: L1241287

# SAMPLE RESULTS - 12

AI

Sc

Collected date/time: 07/16/20 09:50

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	94.3		1	07/23/2020 21:10	)	WG1513992		
Wet Chemistry by	Method 300.	.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	1210		48.8	106	5	07/22/2020 16:57	WG1512224	
Volatile Organic C	compounds (G	GC) by Met	thod 8015	D/GRO				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0391	ВJ	0.0230	0.106	1	07/23/2020 23:52	WG1514298	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		07/23/2020 23:52	WG1514298	

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	07/22/2020 13:49	WG1513140
Toluene	U		0.00138	0.00530	1	07/22/2020 13:49	WG1513140
Ethylbenzene	U		0.000782	0.00265	1	07/22/2020 13:49	WG1513140
Total Xylenes	0.00332	J	0.000933	0.00689	1	07/22/2020 13:49	WG1513140
(S) Toluene-d8	99.4			75.0-131		07/22/2020 13:49	WG1513140
(S) 4-Bromofluorobenzene	98.9			67.0-138		07/22/2020 13:49	WG1513140
(S) 1,2-Dichloroethane-d4	100			70.0-130		07/22/2020 13:49	WG1513140

# Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.24	1	07/25/2020 01:15	WG1514121
C28-C40 Oil Range	0.791	J	0.291	4.24	1	07/25/2020 01:15	<u>WG1514121</u>
(S) o-Terphenyl	75.6			18.0-148		07/25/2020 01:15	WG1514121

SDG: L1241287

#### SAMPLE RESULTS - 13 L1241287

Ss

Cn

ΆI

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.3		1	07/23/2020 21:10	WG1513992	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	160		10.1	21.9	1	07/22/2020 17:06	WG1512224

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dp)	RDL (dry)	Dilution	Analysis	Patch	
	Result (ury)	Qualifier	MDL (dry)	RDL (ury)	Dilution	Alidiysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0345	ВJ	0.0238	0.110	1	07/24/2020 00:16	WG1514298	L
(S) a,a,a-Trifluorotoluene(FID)	99.0			77.0-120		07/24/2020 00:16	WG1514298	7

## Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000512	0.00110	1	07/22/2020 14:09	<u>WG1513140</u>
Toluene	U		0.00142	0.00548	1	07/22/2020 14:09	<u>WG1513140</u>
Ethylbenzene	U		0.000807	0.00274	1	07/22/2020 14:09	WG1513140
Total Xylenes	U		0.000964	0.00712	1	07/22/2020 14:09	<u>WG1513140</u>
(S) Toluene-d8	98.1			75.0-131		07/22/2020 14:09	WG1513140
(S) 4-Bromofluorobenzene	97.1			67.0-138		07/22/2020 14:09	<u>WG1513140</u>
(S) 1,2-Dichloroethane-d4	98.1			70.0-130		07/22/2020 14:09	WG1513140

#### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.38	1	07/25/2020 01:28	<u>WG1514121</u>
C28-C40 Oil Range	0.438	J	0.300	4.38	1	07/25/2020 01:28	<u>WG1514121</u>
(S) o-Terphenyl	74.1			18.0-148		07/25/2020 01:28	WG1514121

SDG: L1241287

# SAMPLE RESULTS - 14

Ss

Cn

Â

Sc

# Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C	p
Analyte	%			date / time		2	
Total Solids	92.3		1	07/23/2020 21:10	<u>WG1513992</u>	ŤΤ	С

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	15.1	J	9.97	21.7	1	07/22/2020 17:16	WG1512224

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0312	ВJ	0.0235	0.108	1	07/24/2020 00:40	WG1514298	
(S) a,a,a-Trifluorotoluene(FID)	99.5			77.0-120		07/24/2020 00:40	WG1514298	

## Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000506	0.00108	1	07/22/2020 14:29	WG1513140
Toluene	U		0.00141	0.00542	1	07/22/2020 14:29	WG1513140
Ethylbenzene	U		0.000798	0.00271	1	07/22/2020 14:29	WG1513140
Total Xylenes	0.00258	J	0.000953	0.00704	1	07/22/2020 14:29	WG1513140
(S) Toluene-d8	101			75.0-131		07/22/2020 14:29	WG1513140
(S) 4-Bromofluorobenzene	101			67.0-138		07/22/2020 14:29	WG1513140
(S) 1,2-Dichloroethane-d4	101			70.0-130		07/22/2020 14:29	WG1513140

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.49	J	1.74	4.33	1	07/25/2020 01:41	<u>WG1514121</u>
C28-C40 Oil Range	7.31		0.297	4.33	1	07/25/2020 01:41	<u>WG1514121</u>
(S) o-Terphenyl	65.9			18.0-148		07/25/2020 01:41	WG1514121

#### SAMPLE RESULTS - 15 L1241287

Â

Sc

	Result	Qualifier	Dilution	Analysis		Batch		
analyte	%			date / time				
otal Solids	95.1		1	07/23/2020 20:	.53	WG1513993		
	by Method 300.0					<u>woisissss</u>		
	by Method 300.0		MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	by Method 300.0	Qualifier	MDL (dry)				Batch	

# Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0472	<u>B J</u>	0.0228	0.105	1	07/24/2020 01:04	WG1514298
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-120		07/24/2020 01:04	WG1514298

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000491	0.00105	1	07/22/2020 14:49	WG1513140
Toluene	U		0.00137	0.00526	1	07/22/2020 14:49	WG1513140
Ethylbenzene	U		0.000775	0.00263	1	07/22/2020 14:49	WG1513140
Total Xylenes	U		0.000925	0.00683	1	07/22/2020 14:49	WG1513140
(S) Toluene-d8	97.6			75.0-131		07/22/2020 14:49	WG1513140
(S) 4-Bromofluorobenzene	94.6			67.0-138		07/22/2020 14:49	WG1513140
(S) 1,2-Dichloroethane-d4	96.3			70.0-130		07/22/2020 14:49	WG1513140

# Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	07/25/2020 01:53	WG1514121
C28-C40 Oil Range	2.84	J	0.288	4.20	1	07/25/2020 01:53	WG1514121
(S) o-Terphenyl	79.5			18.0-148		07/25/2020 01:53	WG1514121

# SAMPLE RESULTS - 16

Total Solids by Method 2540 G-2011

· · · · · · · · · · · · · · · · · · ·						l'Cn
	Res	ult <u>Qualifi</u>	er Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	97.	}	1	07/23/2020 20:53	WG1513993	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	72.7		9.46	20.6	1	07/22/2020 17:54	WG1512224

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
		Qualifier			Dilution	,	Baten
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0394	<u>B J</u>	0.0223	0.103	1	07/24/2020 01:28	WG1514298
(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120		07/24/2020 01:28	WG1514298

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	07/22/2020 15:08	WG1513140
oluene	U		0.00134	0.00514	1	07/22/2020 15:08	WG1513140
Ethylbenzene	U		0.000758	0.00257	1	07/22/2020 15:08	WG1513140
otal Xylenes	0.00117	J	0.000905	0.00668	1	07/22/2020 15:08	WG1513140
(S) Toluene-d8	95.8			75.0-131		07/22/2020 15:08	WG1513140
(S) 4-Bromofluorobenzene	98.4			67.0-138		07/22/2020 15:08	WG1513140
(S) 1,2-Dichloroethane-d4	101			70.0-130		07/22/2020 15:08	WG1513140

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.11	1	07/25/2020 02:06	<u>WG1514121</u>
C28-C40 Oil Range	1.52	J	0.282	4.11	1	07/25/2020 02:06	<u>WG1514121</u>
(S) o-Terphenyl	81.1			18.0-148		07/25/2020 02:06	WG1514121

SDG: L1241287 DATE/TIME: 07/29/20 16:50 Tc Ss Cn

> Sr Dc

ΆI

Sc

# SAMPLE RESULTS - 17

Sr

Â

Sc

Collected date/time: 07/16/20 10:40

Chloride

Total Solids by	y Method 2540 G	-2011						1,
	Result	Qualifier	Dilution	Analysis		Batch		(
Analyte	%			date / time				2
Total Solids	99.6		1	07/23/2020 20	):53	WG1513993		
Wet Chemistry	y by Method 300.0	0						3
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg	mg/kg		date / time		4

1

07/22/2020 18:03

WG1512224

## Volatile Organic Compounds (GC) by Method 8015D/GRO

9.24

103

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	 6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	0.0418	ВJ	0.0218	0.100	1	07/24/2020 01:51	WG1514298	
(S) a,a,a-Trifluorotoluene(FID)	98.1			77.0-120		07/24/2020 01:51	WG1514298	⁷ Gl

20.1

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Patch
	Result (uly)	Qualifier	MDL (ury)	KDL (uly)	Dilution	Allalysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000469	0.00100	1	07/22/2020 15:29	WG1513140
oluene	U		0.00131	0.00502	1	07/22/2020 15:29	WG1513140
Ethylbenzene	U		0.000740	0.00251	1	07/22/2020 15:29	WG1513140
otal Xylenes	0.00130	J	0.000884	0.00653	1	07/22/2020 15:29	WG1513140
(S) Toluene-d8	97.7			75.0-131		07/22/2020 15:29	WG1513140
(S) 4-Bromofluorobenzene	97.2			67.0-138		07/22/2020 15:29	WG1513140
(S) 1,2-Dichloroethane-d4	97.0			70.0-130		07/22/2020 15:29	WG1513140

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.01	J	1.62	4.02	1	07/25/2020 02:19	<u>WG1514121</u>
C28-C40 Oil Range	4.29		0.275	4.02	1	07/25/2020 02:19	<u>WG1514121</u>
(S) o-Terphenyl	87.4			18.0-148		07/25/2020 02:19	WG1514121

SDG: L1241287

# SAMPLE RESULTS - 18

Sr

Â

Sc

Collected date/time: 07/16/20 10:50

Total Solids by	y Method 2540 (	G-2011						1	
	Result	Qualif	ier Dilution	Analysis		Batch			Ср
Analyte	%			date / time					2
Total Solids	93.7		1	07/23/2020 2	0:53	WG1513993		2	Тс
Wet Chemistry	y by Method 300	).0						3	³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	⁺Cn
Chloride	80.9		9.82	21.3	1	07/22/2020 18:13	WG1512224		CII

## Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0409	ВJ	0.0232	0.107	1	07/24/2020 02:15	WG1514298	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		07/24/2020 02:15	WG1514298	

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000498	0.00107	1	07/22/2020 15:49	WG1513140
Toluene	U		0.00139	0.00534	1	07/22/2020 15:49	WG1513140
Ethylbenzene	U		0.000787	0.00267	1	07/22/2020 15:49	WG1513140
Total Xylenes	0.00124	J	0.000939	0.00694	1	07/22/2020 15:49	WG1513140
(S) Toluene-d8	101			75.0-131		07/22/2020 15:49	WG1513140
(S) 4-Bromofluorobenzene	97.4			67.0-138		07/22/2020 15:49	WG1513140
(S) 1,2-Dichloroethane-d4	102			70.0-130		07/22/2020 15:49	WG1513140

# Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.27	1	07/25/2020 02:32	<u>WG1514121</u>
C28-C40 Oil Range	2.15	J	0.292	4.27	1	07/25/2020 02:32	<u>WG1514121</u>
(S) o-Terphenyl	79.4			18.0-148		07/25/2020 02:32	WG1514121

SDG: L1241287

# SAMPLE RESULTS - 19

Â

Sc

Collected date/time: 07/16/20 11:00

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	97.9		1	07/23/2020 20:5	52	WG1513993		
		)	I	0772372020 20.3	55	W01515995		
	y by Method 300.0		)L (drv)				Batch	
		Qualifier MD	)L (dry)	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0415	<u>B J</u>	0.0222	0.102	1	07/24/2020 02:39	WG1514298
(S) a,a,a-Trifluorotoluene(FID)	99.2			77.0-120		07/24/2020 02:39	WG1514298

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000477	0.00102	1	07/22/2020 16:09	WG1513140
Toluene	U		0.00133	0.00511	1	07/22/2020 16:09	WG1513140
Ethylbenzene	0.000784	J	0.000753	0.00255	1	07/22/2020 16:09	WG1513140
Total Xylenes	U		0.000899	0.00664	1	07/22/2020 16:09	WG1513140
(S) Toluene-d8	97.8			75.0-131		07/22/2020 16:09	WG1513140
(S) 4-Bromofluorobenzene	97.9			67.0-138		07/22/2020 16:09	WG1513140
(S) 1,2-Dichloroethane-d4	96.8			70.0-130		07/22/2020 16:09	WG1513140

# Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.2		1.65	4.09	1	07/25/2020 02:58	<u>WG1514121</u>
C28-C40 Oil Range	30.3		0.280	4.09	1	07/25/2020 02:58	<u>WG1514121</u>
(S) o-Terphenyl	51.7			18.0-148		07/25/2020 02:58	WG1514121

SDG: L1241287

SAMPLE RESULTS - 20 L1241287

Ss

Cn

Â

Sc

#### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	98.7		1	07/23/2020 20:53	WG1513993	-	Тс

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	45.9		9.32	20.3	1	07/22/2020 18:41	WG1512224

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0392	ВJ	0.0220	0.101	1	07/24/2020 03:03	WG1514298	
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		07/24/2020 03:03	<u>WG1514298</u>	

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000473	0.00101	1	07/22/2020 16:29	<u>WG1513140</u>
Toluene	U		0.00132	0.00507	1	07/22/2020 16:29	<u>WG1513140</u>
Ethylbenzene	U		0.000747	0.00253	1	07/22/2020 16:29	WG1513140
Total Xylenes	U		0.000892	0.00659	1	07/22/2020 16:29	<u>WG1513140</u>
(S) Toluene-d8	98.6			75.0-131		07/22/2020 16:29	WG1513140
(S) 4-Bromofluorobenzene	94.8			67.0-138		07/22/2020 16:29	<u>WG1513140</u>
(S) 1,2-Dichloroethane-d4	98.0			70.0-130		07/22/2020 16:29	WG1513140

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.22	J	1.63	4.05	1	07/25/2020 02:45	WG1514121
C28-C40 Oil Range	4.42		0.278	4.05	1	07/25/2020 02:45	<u>WG1514121</u>
(S) o-Terphenyl	66.4			18.0-148		07/25/2020 02:45	WG1514121

SDG: L1241287

# SAMPLE RESULTS - 21

#### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.2		1	07/23/2020 20:53	WG1513993	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	177		9.57	20.8	1	07/21/2020 23:07	WG1512219	

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	qualifier	mg/kg	mg/kg	Dilution	date / time	Baten	
TPH (GC/FID) Low Fraction	0.0379	ВJ	0.0226	0.104	1	07/24/2020 03:27	WG1514298	
(S) a,a,a-Trifluorotoluene(FID)	99.0			77.0-120		07/24/2020 03:27	<u>WG1514298</u>	

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	07/22/2020 18:08	WG1513217
Toluene	U		0.00135	0.00520	1	07/22/2020 18:08	WG1513217
Ethylbenzene	U		0.000766	0.00260	1	07/22/2020 18:08	WG1513217
Total Xylenes	U		0.000915	0.00676	1	07/22/2020 18:08	WG1513217
(S) Toluene-d8	100			75.0-131		07/22/2020 18:08	WG1513217
(S) 4-Bromofluorobenzene	97.1			67.0-138		07/22/2020 18:08	WG1513217
(S) 1,2-Dichloroethane-d4	81.1			70.0-130		07/22/2020 18:08	WG1513217

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.16	1	07/24/2020 16:47	WG1514449
C28-C40 Oil Range	U		0.285	4.16	1	07/24/2020 16:47	WG1514449
(S) o-Terphenyl	58.2			18.0-148		07/24/2020 16:47	WG1514449

SDG: L1241287 DATE/TIME: 07/29/20 16:50 ²Tc ³Ss ⁴Cn

Sr

ΆI

Sc

SAMPLE RESULTS - 22

Ss

Cn

Â

Sc

#### Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.7		1	07/23/2020 20:53	WG1513993	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	115		9.72	21.1	1	07/21/2020 23:25	WG1512219

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanner	ma/ka	mg/kg	Dilution	date / time	Batch	
TPH (GC/FID) Low Fraction	0.0370	<u>B J</u>	0.0229	0.106	1	07/24/2020 03:51	WG1514298	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		07/24/2020 03:51	WG1514298	

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000493	0.00106	1	07/22/2020 18:27	<u>WG1513217</u>
Toluene	U		0.00137	0.00528	1	07/22/2020 18:27	<u>WG1513217</u>
Ethylbenzene	U		0.000778	0.00264	1	07/22/2020 18:27	WG1513217
Total Xylenes	U		0.000929	0.00686	1	07/22/2020 18:27	<u>WG1513217</u>
(S) Toluene-d8	100			75.0-131		07/22/2020 18:27	WG1513217
(S) 4-Bromofluorobenzene	98.4			67.0-138		07/22/2020 18:27	<u>WG1513217</u>
(S) 1,2-Dichloroethane-d4	84.5			70.0-130		07/22/2020 18:27	WG1513217

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	07/24/2020 16:59	<u>WG1514449</u>
C28-C40 Oil Range	U		0.289	4.22	1	07/24/2020 16:59	<u>WG1514449</u>
(S) o-Terphenyl	63.9			18.0-148		07/24/2020 16:59	WG1514449

# SAMPLE RESULTS - 23

Gl

AI

Sc

Collected date/time: 07/16/20 11:40

(S)

a,a,a-Trifluorotoluene(FID)

	Result	Qualifier	Dilution	Analysis		Patch	
Analista		Quaimer	Dilution			Batch	
Analyte	%			date / time			
Total Solids	93.1		1	07/23/2020 20:5	53	WG1513993	
Wet Chemistry by	Method 300.	0					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	74.4		9.88	21.5	1	07/21/2020 23:42	WG1512219
Volatile Organic C	Compounds (G	GC) by Met	hod 8015	D/GRO			
Volatile Organic C	Compounds (C	GC) by Met	hod 8015 MDL (dry)	D/GRO RDL (dry)	Dilution	Analysis	Batch
Volatile Organic C					Dilution	Analysis date / time	Batch
	Result (dry)		MDL (dry)	RDL (dry)	Dilution		Batch WG1514298

# Volatile Organic Compounds (GC/MS) by Method 8260B

100

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00107	1	07/22/2020 18:46	WG1513217
Toluene	U		0.00140	0.00537	1	07/22/2020 18:46	WG1513217
Ethylbenzene	U		0.000792	0.00269	1	07/22/2020 18:46	WG1513217
Total Xylenes	U		0.000945	0.00698	1	07/22/2020 18:46	WG1513217
(S) Toluene-d8	99.0			75.0-131		07/22/2020 18:46	WG1513217
(S) 4-Bromofluorobenzene	99.6			67.0-138		07/22/2020 18:46	WG1513217
(S) 1,2-Dichloroethane-d4	87.8			70.0-130		07/22/2020 18:46	WG1513217

77.0-120

# Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.30	1	07/24/2020 17:12	WG1514449
C28-C40 Oil Range	U		0.294	4.30	1	07/24/2020 17:12	WG1514449
(S) o-Terphenyl	72.3			18.0-148		07/24/2020 17:12	WG1514449

SDG: L1241287 DATE/TIME: 07/29/20 16:50

WG1514298

07/24/2020 04:15

SAMPLE RESULTS - 24

ONE LAB. NA Page 92 of 169

Ss

Cn

ΆI

Sc

#### Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.0		1	07/23/2020 20:53	WG1513993	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	24.5		9.89	21.5	1	07/22/2020 00:00	WG1512219

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0349	<u>B J</u>	0.0233	0.107	1	07/24/2020 04:39	WG1514298	
(S) a,a,a-Trifluorotoluene(FID)	99.3			77.0-120		07/24/2020 04:39	<u>WG1514298</u>	

## Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00107	1	07/22/2020 19:05	<u>WG1513217</u>
Toluene	U		0.00140	0.00537	1	07/22/2020 19:05	<u>WG1513217</u>
Ethylbenzene	U		0.000792	0.00269	1	07/22/2020 19:05	<u>WG1513217</u>
Total Xylenes	U		0.000946	0.00699	1	07/22/2020 19:05	<u>WG1513217</u>
(S) Toluene-d8	100			75.0-131		07/22/2020 19:05	WG1513217
(S) 4-Bromofluorobenzene	98.2			67.0-138		07/22/2020 19:05	<u>WG1513217</u>
(S) 1,2-Dichloroethane-d4	85.9			70.0-130		07/22/2020 19:05	WG1513217

#### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.30	1	07/24/2020 17:25	<u>WG1514449</u>
C28-C40 Oil Range	0.894	J	0.295	4.30	1	07/24/2020 17:25	<u>WG1514449</u>
(S) o-Terphenyl	76.4			18.0-148		07/24/2020 17:25	WG1514449

SAMPLE RESULTS - 25

Ss

Cn

Â

Sc

#### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	98.2		1	07/24/2020 00:48	WG1513995	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	27.4		9.37	20.4	1	07/22/2020 00:52	WG1512219

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Dilution	date / time	bach	
TPH (GC/FID) Low Fraction	0.0373	R I	0.0221	0.102	1	07/24/2020 05:03	WG1514298	
(S)		<u>D J</u>	0.0221		I			
a,a,a-Trifluorotoluene(FID)	100			77.0-120		07/24/2020 05:03	<u>WG1514298</u>	

## Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000475	0.00102	1	07/22/2020 19:24	<u>WG1513217</u>
Toluene	U		0.00132	0.00509	1	07/22/2020 19:24	<u>WG1513217</u>
Ethylbenzene	U		0.000750	0.00255	1	07/22/2020 19:24	WG1513217
Total Xylenes	U		0.000896	0.00662	1	07/22/2020 19:24	WG1513217
(S) Toluene-d8	101			75.0-131		07/22/2020 19:24	WG1513217
(S) 4-Bromofluorobenzene	98.3			67.0-138		07/22/2020 19:24	WG1513217
(S) 1,2-Dichloroethane-d4	86.8			70.0-130		07/22/2020 19:24	WG1513217

#### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.07	1	07/24/2020 17:38	WG1514449
C28-C40 Oil Range	U		0.279	4.07	1	07/24/2020 17:38	WG1514449
(S) o-Terphenyl	56.6			18.0-148		07/24/2020 17:38	WG1514449

# SAMPLE RESULTS - 26

Ss

Cn

Â

Sc

#### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		-	2
Total Solids	96.8		1	07/24/2020 00:48	WG1513995		Тс

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	14.8	J	9.51	20.7	1	07/22/2020 01:09	WG1512219	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guanner	mg/kg	mg/kg	Dilution	date / time	bach	
TPH (GC/FID) Low Fraction	0.0635	ВJ	0.0224	0.103	1	07/27/2020 14:23	WG1515530	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		07/27/2020 14:23	<u>WG1515530</u>	

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	07/22/2020 19:43	WG1513217
Toluene	U		0.00134	0.00517	1	07/22/2020 19:43	WG1513217
Ethylbenzene	U		0.000761	0.00258	1	07/22/2020 19:43	WG1513217
Total Xylenes	U		0.000909	0.00672	1	07/22/2020 19:43	WG1513217
(S) Toluene-d8	99.4			75.0-131		07/22/2020 19:43	WG1513217
(S) 4-Bromofluorobenzene	98.6			67.0-138		07/22/2020 19:43	WG1513217
(S) 1,2-Dichloroethane-d4	84.3			70.0-130		07/22/2020 19:43	WG1513217

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	07/24/2020 17:51	WG1514449
C28-C40 Oil Range	U		0.283	4.13	1	07/24/2020 17:51	<u>WG1514449</u>
(S) o-Terphenyl	58.5			18.0-148		07/24/2020 17:51	WG1514449

SDG: L1241287

SAMPLE RESULTS - 27

#### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	97.5		1	07/24/2020 00:48	<u>WG1513995</u>		Гс

#### Wet Chemistry by Method 300.0

								_
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	Ĺ
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	U		9.44	20.5	1	07/22/2020 01:27	WG1512219	·

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.101.011	date / time		
TPH (GC/FID) Low Fraction	0.0352	<u>B J</u>	0.0223	0.103	1	07/24/2020 06:39	WG1514298	
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		07/24/2020 06:39	WG1514298	

## Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00103	1	07/22/2020 20:02	<u>WG1513217</u>
Toluene	U		0.00133	0.00513	1	07/22/2020 20:02	<u>WG1513217</u>
Ethylbenzene	U		0.000756	0.00256	1	07/22/2020 20:02	<u>WG1513217</u>
Total Xylenes	U		0.000903	0.00667	1	07/22/2020 20:02	<u>WG1513217</u>
(S) Toluene-d8	99.3			75.0-131		07/22/2020 20:02	<u>WG1513217</u>
(S) 4-Bromofluorobenzene	96.1			67.0-138		07/22/2020 20:02	<u>WG1513217</u>
(S) 1,2-Dichloroethane-d4	89.1			70.0-130		07/22/2020 20:02	<u>WG1513217</u>

#### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	07/24/2020 20:12	<u>WG1514449</u>
C28-C40 Oil Range	U		0.281	4.10	1	07/24/2020 20:12	<u>WG1514449</u>
(S) o-Terphenyl	75.5			18.0-148		07/24/2020 20:12	<u>WG1514449</u>

SDG: L1241287 DATE/TIME: 07/29/20 16:50 ²Tc ³Ss ⁴Cn ⁵Sr

ےد اد

ΆI

Sc

SAMPLE RESULTS - 28 L1241287

#### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	95.6		1	07/24/2020 00:48	<u>WG1513995</u>	T	Τс

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.63	20.9	1	07/22/2020 01:44	WG1512219

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.10101	date / time		
TPH (GC/FID) Low Fraction	0.0350	<u>B J</u>	0.0227	0.105	1	07/24/2020 07:03	WG1514298	
(S) a,a,a-Trifluorotoluene(FID)	99.6			77.0-120		07/24/2020 07:03	WG1514298	

# Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000489	0.00105	1	07/22/2020 20:21	<u>WG1513217</u>
Toluene	U		0.00136	0.00523	1	07/22/2020 20:21	<u>WG1513217</u>
Ethylbenzene	U		0.000771	0.00262	1	07/22/2020 20:21	WG1513217
Total Xylenes	U		0.000921	0.00680	1	07/22/2020 20:21	<u>WG1513217</u>
(S) Toluene-d8	99.8			75.0-131		07/22/2020 20:21	<u>WG1513217</u>
(S) 4-Bromofluorobenzene	99.2			67.0-138		07/22/2020 20:21	<u>WG1513217</u>
(S) 1,2-Dichloroethane-d4	87.1			70.0-130		07/22/2020 20:21	WG1513217

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.18	1	07/24/2020 18:04	<u>WG1514449</u>
C28-C40 Oil Range	U		0.287	4.18	1	07/24/2020 18:04	<u>WG1514449</u>
(S) o-Terphenyl	65.3			18.0-148		07/24/2020 18:04	<u>WG1514449</u>

SDG: L1241287

DATE/TIME: 07/29/20 16:50 Ss Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

# QUALITY CONTROL SUMMARY

Cn

Sr

[°]Qc

GI

Â

Sc

#### Method Blank (MB)

7/23/20 21:31				
MB Result	<b>MB</b> Qualifier	MB MDL	MB RDL	
%		%	%	
0.000				
ì	7/23/20 21:31 MB Result %	//23/20 21:31 MB Result <u>MB Qualifier</u> %	/23/20 21:31 MB Result <u>MB Qualifier</u> MB MDL I % %	/23/20 21:31 MB Result <u>MB Qualifier</u> MB MDL MB RDL % % %

### L1241287-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1241287-01 07/2	23/20 21:31 • (DUF	P) R3552892-3	07/23/20	21:31		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.3	95.5	1	0.844		10

# Laboratory Control Sample (LCS)

(LCS) R3552892-2 07/	/23/20 21:31				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1241287 DATE/TIME: 07/29/20 16:50 PAGE: 39 of 59

Total Solids by Method 2540 G-2011

#### QUALITY CONTROL SUMMARY L1241287-05,06,07,08,09,10,11,12,13,14

Qc

GI

Â

Sc

#### Method Blank (MB)

Method Blank	(MB)				
(MB) R3552890-1	07/23/20 21:10				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Тс
Total Solids	0.00100				
					³ Ss

#### L1241287-11 Original Sample (OS) • Duplicate (DUP)

L1241287-11 Origina	al Sample (C	DS) • Dupl	icate (D	UP)		
(OS) L1241287-11 07/23/2	20 21:10 • (DUP) F	3552890-3	07/23/20 2	21:10		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.7	96.7	1	0.0198		10

# Laboratory Control Sample (LCS)

(LCS) R3552890-2 07	/23/20 21:10				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1241287

DATE/TIME: 07/29/20 16:50

PAGE: 40 of 59

Total Solids by Method 2540 G-2011

#### QUALITY CONTROL SUMMARY L1241287-15,16,17,18,19,20,21,22,23,24

°Qc

GI

Â

Sc

#### Method Blank (MB)

1B)				
23/20 20:53				
MB Result	MB Qualifier	MB MDL	/B RDL	
%		%	б	
0.00100				
	23/20 20:53 MB Result %	23/20 20:53 MB Result <u>MB Qualifier</u> %	23/20 20:53 MB Result <u>MB Qualifier</u> MB MDL M % % 9	23/20 20:53 MB Result MB Qualifier MB MDL MB RDL % % %

#### L1241287-22 Original Sample (OS) • Duplicate (DUP)

L1241287-22 Or	iginal Sample	(OS) • Dur	plicate (	DUP)			
(OS) L1241287-22 07/	/23/20 20:53 • (DU	P) R3552883-	.3 07/23/2	:0 20:53			
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	94.7	96.2	1	1.62		10	

# Laboratory Control Sample (LCS)

(LCS) R3552883-2 07/2	3/20 20:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1241287

DATE/TIME: 07/29/20 16:50

PAGE: 41 of 59

Total Solids by Method 2540 G-2011

### QUALITY CONTROL SUMMARY L1241287-25,26,27,28

[°]Qc

GI

Â

Sc

#### Method Blank (MB)

Method Blank					$1^{\circ}$ Cp $1^{\circ}$
(MB) R3552946-1 (	07/24/20 00:48				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.000				
					³ Ss

### L1241293-01 Original Sample (OS) • Duplicate (DUP)

L1241293-01 Orig	ginal Sample	(OS) • Dup	olicate (I	DUP)			
(OS) L1241293-01 07/2	4/20 00:48 • (DU	IP) R3552946-	3 07/24/2	0 00:48			
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
alyte	%	%		%		%	
Total Solids	57.1	57.4	1	0.606		10	

# Laboratory Control Sample (LCS)

(LCS) R3552946-2 07/2	CS) R3552946-2 07/24/20 00:48												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	%	%	%	%									
Total Solids	50.0	50.0	100	85.0-115									

DATE/TIME: 07/29/20 16:50

PAGE: 42 of 59

Wet Chemistry by Method 300.0

#### QUALITY CONTROL SUMMARY L1241287-21,22,23,24,25,26,27,28

Тс

Ss

### Method Blank (MB)

(MB) R3551821-1 07/	MB) R3551821-1 07/21/20 17:36										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
Chloride	U		9.20	20.0							

### L1241025-01 Original Sample (OS) • Duplicate (DUP)

L1241025-01 (	Original Sample (	(OS) • Dup	olicate (l	DUP)					4
(OS) L1241025-01	07/21/20 18:29 • (DUP)	R3551821-3	07/21/20 1	8:46					Cn
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			⁵ Sr
Analyte	mg/kg	mg/kg		%		%			
Chloride	123	125	1	1.83		20			⁶ Qc

## L1241287-28 Original Sample (OS) • Duplicate (DUP)

_1241287-28 Orig	inal Sample	(OS) • Dup	olicate (	DUP)			
DS) L1241287-28 07/22	2/20 01:44 • (DUP	) R3551821-6	07/22/20	02:02			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	U	U	1	0.000		20	

#### Laboratory Control Sample (LCS)

(LCS) R3551821-2 07/21/2	(LCS) R3551821-2 07/21/20 17:53												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/kg	mg/kg	%	%									
Chloride	200	204	102	90.0-110									

## L1241025-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1241025-02 07/21/2	20 19:04 • (MS) I	R3551821-4 07	//21/20 19:21 • (I	MSD) R355182	1-5 07/21/2019	9:38						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	627	37.6	655	653	98.5	98.2	1	80.0-120			0.284	20

Released to	Imaging ^{AC} F/241/2021 9:46:56 AM	
	ConocoPhillips - Tetra Tech	

PROJECT: 212C-MD-02192

SDG: L1241287

DATE/TIME: 07/29/20 16:50

PAGE: 43 of 59

Wet Chemistry by Method 300.0

# QUALITY CONTROL SUMMARY L1241287-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

⁺Cn

Sr

Qc

## Method Blank (MB)

7/22/20 13:08				
MB Result	MB Qualifier	MB MDL	MB RDL	
mg/kg		mg/kg	mg/kg	
U		9.20	20.0	
	7/22/20 13:08 MB Result	7/22/20 13:08 MB Result <u>MB Qualifier</u>	7/22/20 13:08 MB Result <u>MB Qualifier</u> MB MDL mg/kg mg/kg	7/22/20 13:08 MB Result <u>MB Qualifier</u> MB MDL MB RDL mg/kg mg/kg mg/kg

### L1241287-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1241287-04 07/22/	20 14:40 • (DUP)	R3552301-3	07/22/20	14:49		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	3410	3480	5	2.25		20

## L1241287-18 Original Sample (OS) • Duplicate (DUP)

L1241287-18 Ori	ginal Sample (	OS) • Dup	olicate (E	OUP)		
(OS) L1241287-18 07/2	22/20 18:13 • (DUP)	R3552301-6	07/22/20	18:22		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	80.9	85.7	1	5.85		20

#### Laboratory Control Sample (LCS)

(LCS) R3552301-2 07/22	S) R3552301-2 07/22/20 13:17											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/kg	mg/kg	%	%								
Chloride	200	195	97.3	90.0-110								

# L1241287-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1241287-06 07/22/	20 15:08 • (MS)	R3552301-4 0	7/22/20 15:47	• (MSD) R3552	301-5 07/22/2	0 15:56						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	562	5770	5890	5960	21.4	35.2	1	80.0-120	EV	EV	1.31	20

<b>Released</b> to	Imaging ^{AC} F/2H/2021 9:46:56 AM	
	ConocoPhillips - Tetra Tech	

PROJECT: 212C-MD-02192

SDG: L1241287

DATE/TIME: 07/29/20 16:50

PAGE: 44 of 59 Volatile Organic Compounds (GC) by Method 8015D/GRO

# QUALITY CONTROL SUMMARY

## Method Blank (MB)

(1.10) 0000000 0 07/00	00.0454										
(MB) R3552399-3 07/22/20 21:54											
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
TPH (GC/FID) Low Fraction	U		0.0217	0.100							
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120							

## Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3552399-1 07/22	(LCS) R3552399-1 07/22/20 20:52 • (LCSD) R3552399-2 07/22/20 21:13											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
TPH (GC/FID) Low Fraction	5.50	6.06	6.16	110	112	72.0-127			1.64	20		
(S) a,a,a-Trifluorotoluene(FID)				100	101	77.0-120						

Volatile Organic Compounds (GC) by Method 8015D/GRO

## QUALITY CONTROL SUMMARY 1241287-10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28

⁺Cn

Sr

Qc

GI

AI

Sc

#### Method Blank (MB)

)										
(MB) R3553317-2 07/23/20 22:16										
MB Result	MB Qualifier	MB MDL	MB RDL							
mg/kg		mg/kg	mg/kg							
0.0461	J	0.0217	0.100							
97.3			77.0-120							
	0 22:16 MB Result mg/kg 0.0461	0 22:16 MB Result MB Qualifier mg/kg 0.0461 J	0 22:16 MB Result <u>MB Qualifier</u> MB MDL mg/kg mg/kg 0.0461 <u>J</u> 0.0217	MB Result MB Qualifier MB MDL MB RDL   mg/kg mg/kg mg/kg mg/kg   0.0461 J 0.0217 0.100						

## Laboratory Control Sample (LCS)

(LCS) R3553317-1 07/23/	20 21:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.36	97.5	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			116	77.0-120	

### L1241293-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1241293-01 07/24/2	(OS) L1241293-01 07/24/20 07:27 • (MS) R3553317-3 07/24/20 07:51 • (MSD) R3553317-4 07/24/20 08:15												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	379	2.30	451	441	119	116	28.5	10.0-151			2.16	28	
(S) a,a,a-Trifluorotoluene(FID)					118	116		77.0-120					

Volatile Organic Compounds (GC) by Method 8015D/GRO

# QUALITY CONTROL SUMMARY

#### Method Blank (MB)

(MB) R3553649-2 07/27/20 13:00											
	MB Result	MB Qualifier	MB MDL	MB RDL							
nalyte	mg/kg		mg/kg	mg/kg							
PH (GC/FID) Low Fraction	0.0553	J	0.0217	0.100							
'S) 1,a-Trifluorotoluene(FID)	96.8			77.0-120							

## Laboratory Control Sample (LCS)

(LCS) R3553649-1 07/27	S) R3553649-1 07/27/20 12:12												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/kg	mg/kg	%	%									
TPH (GC/FID) Low Fraction	5.50	5.00	90.9	72.0-127									
(S) a.a.a-Trifluorotoluene(FID)			111	77.0-120									

Sc

SDG: L1241287 DATE/TIME: 07/29/20 16:50

PAGE: 47 of 59 Volatile Organic Compounds (GC/MS) by Method 8260B

## QUALITY CONTROL SUMMARY L1241287-01,02,03,04,05,09,10,11,12,13,14,15,16,17,18,19,20

Qc

#### Method Blank (MB)

Method Blank (MB	)											
(MB) R3553312-2 07/22/20 06:40												
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/kg		mg/kg	mg/kg								
Benzene	U		0.000467	0.00100								
Ethylbenzene	U		0.000737	0.00250								
Toluene	U		0.00130	0.00500								
Xylenes, Total	U		0.000880	0.00650								
(S) Toluene-d8	99.1			75.0-131								
(S) 4-Bromofluorobenzene	101			67.0-138								
(S) 1,2-Dichloroethane-d4	99.0			70.0-130								

# Laboratory Control Sample (LCS)

(LCS) R3553312-1 07/22	(LCS) R3553312-1 07/22/20 05:39									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	Í GI				
Analyte	mg/kg	mg/kg	%	%						
Benzene	0.125	0.139	111	70.0-123		8				
Ethylbenzene	0.125	0.131	105	74.0-126		A				
Toluene	0.125	0.123	98.4	75.0-121		9				
Xylenes, Total	0.375	0.372	99.2	72.0-127		Sc				
(S) Toluene-d8			97.0	75.0-131						
(S) 4-Bromofluorobenzene			95.9	67.0-138						
(S) 1,2-Dichloroethane-d4			105	70.0-130						

DATE/TIME: 07/29/20 16:50 PAGE: 48 of 59 Volatile Organic Compounds (GC/MS) by Method 8260B

76.4

# QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

## Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3552570-3 07/22/20 16:51											
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
Benzene	U		0.000467	0.00100							
Ethylbenzene	U		0.000737	0.00250							
Toluene	U		0.00130	0.00500							
Xylenes, Total	U		0.000880	0.00650							
(S) Toluene-d8	101			75.0-131							
(S) 4-Bromofluorobenzene	97.5			67.0-138							

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

70.0-130

(LCS) R3552570-1 07/22	(LCS) R3552570-1 07/22/20 15:35 • (LCSD) R3552570-2 07/22/20 15:54												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		GI	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
Benzene	0.125	0.115	0.117	92.0	93.6	70.0-123			1.72	20		8	
Ethylbenzene	0.125	0.115	0.122	92.0	97.6	74.0-126			5.91	20			
Toluene	0.125	0.114	0.118	91.2	94.4	75.0-121			3.45	20		9	
Xylenes, Total	0.375	0.349	0.360	93.1	96.0	72.0-127			3.10	20		Sc	
(S) Toluene-d8				99.5	97.9	75.0-131							
(S) 4-Bromofluorobenzene				102	102	67.0-138							
(S) 1,2-Dichloroethane-d4				87.8	87.6	70.0-130							

DATE/TIME: 07/29/20 16:50

PAGE: 49 of 59 Volatile Organic Compounds (GC/MS) by Method 8260B

# QUALITY CONTROL SUMMARY

Qc

# Method Blank (MB)

(MB) R3553488-2 07/26/20 20:34									
Analyte	mg/kg		mg/kg	mg/kg					
Benzene	U		0.000467	0.00100					
Ethylbenzene	U		0.000737	0.00250					
Toluene	U		0.00130	0.00500					
Xylenes, Total	U		0.000880	0.00650					
(S) Toluene-d8	99.1			75.0-131					
(S) 4-Bromofluorobenzene	101			67.0-138					
(S) 1,2-Dichloroethane-d4	101			70.0-130					

# Laboratory Control Sample (LCS)

(LCS) R3553488-1 07/26/20 19:13										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI				
Analyte	mg/kg	mg/kg	%	%						
Benzene	0.125	0.111	88.8	70.0-123		8				
Ethylbenzene	0.125	0.106	84.8	74.0-126		A				
Toluene	0.125	0.107	85.6	75.0-121		9				
Xylenes, Total	0.375	0.313	83.5	72.0-127		Sc				
(S) Toluene-d8			96.9	75.0-131						
(S) 4-Bromofluorobenzene			101	67.0-138						
(S) 1,2-Dichloroethane-d4			105	70.0-130						

SDG: L1241287 DATE/TIME: 07/29/20 16:50 PAGE: 50 of 59
Semi-Volatile Organic Compounds (GC) by Method 8015

#### QUALITY CONTROL SUMMARY 11241287-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

⁺Cn

۶r

[°]Qc

Gl

Â

Sc

#### Method Blank (MB)

	(0)				- Ľ /
(MB) R3553281-1 07/24	4/20 22:29				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	2.
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	3
(S) o-Terphenyl	83.3			18.0-148	L

#### Laboratory Control Sample (LCS)

(LCS) R3553281-2 07/24	4/20 22:41				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	40.6	81.2	50.0-150	
(S) o-Terphenyl			87.8	18.0-148	

#### L1241287-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1241287-05 07/24/	20 23:33 • (MS)	R3553281-3 0	7/24/20 23:46	• (MSD) R3553	3281-4 07/24/	20 23:58						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	51.0	2.70	43.8	43.6	80.6	79.7	1	50.0-150			0.469	20
(S) o-Terphenyl					81.9	76.4		18.0-148				

DATE/TIME: 07/29/20 16:50 Semi-Volatile Organic Compounds (GC) by Method 8015

# QUALITY CONTROL SUMMARY

⁺Cn

Sr

ິQc

GI

Â

Sc

#### Method Blank (MB)

	1				l'Cn l
(MB) R3552978-1 07/24/	/20 10:32				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	³ Ss
(S) o-Terphenyl	68.2			18.0-148	00

#### Laboratory Control Sample (LCS)

(LCS) R3552978-2 07/2	4/20 10:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	31.6	63.2	50.0-150	
(S) o-Terphenyl			68.3	18.0-148	

DATE/TIME: 07/29/20 16:50 PAGE: 52 of 59

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

Abbreviations and	Demittons
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1241287

### Received by OCD: 11/3/2020 1:33:09 PM CCREDITATIONS & LOCATIONS

### ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

	110		
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana ¹	LA180010	Texas	T104704245-18-15
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

#### Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

#### **Our Locations**

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



Released to Imaging: 1/21/2021 9:46:56 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02192

SDG: L1241287 DATE/TIME: 07/29/20 16:50

Analysis Request of Chain of Custody Record

901 West Wall Street, Suite 100 TŁ Tetra Tech, Inc. Midland, Texas 79701 224287 FO31 Tel (432) 682-4559 Fax (432) 682-3946 Client Name: ANALYSIS REQUEST Conoco Phillips Site Manager: Christian Llull (Circle or Specify Method No.) Email: christian.llull@tetratech.com Project Name: EVGSAU 2437-001 Contact Info: Phone: (512) 338-1667 Project Location: Lea County, New Mexico Project #: 212C-MD-02192 (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 ist) MRO) Se Hg CLP Metals Ag As Ba Cd Cr Pb Se Hg attached **Receiving Laboratory:** Pace Analytical Sampler Signature: Adrian ORO -Pb 50 Comments: **COPTETRA Acctnum** 5 826 DRO C35) CG TDS mistry 624 BTEX Ag As Ba PRESERVATIVE 6 (Ext to SAMPLING MATRIX GRO -Volatiles 8260B / CONTAINERS FILTERED (Y/N) METHOD Semi. Vol. Sulfate 608 5 Anion/Cation Balar PLM (Asbestos) YEAR: 2020 Chloride 300.0 **General Water** 8021B TX1005 8082 / LAB # 8015M SAMPLE IDENTIFICATION 8270C otal Metals Semi / **3C/MS Vol.** PH 8015R LAB USE ide NATEF ICE GC/MS HCL HNO₃ IORM SOIL BTEX CLP CB's HOLD CLP DATE TIME AH ONLY Hd H õ 70 BH-1 (0-1') X 7/16/2020 800 X 1 N X X X as BH-1 (2-3') х 7/16/2020 X N X X X 810 1 .05 BH-1 (4-5') 7/16/2020 820 Х х X X 1 N х 0 BH-1 (6-7') 7/16/2020 830 X Х 1 N X X х 0 BH-1 (9-10') х 7/16/2020 840 X N X Х 1 X 0 BH-1 (14-15') х X х 7/16/2020 850 1 N X Х BH-1 (19-20') x 7/16/2020 900 х Ν х X 1 X 08 BH-2 (0-1') X 7/16/2020 910 X 1 N X X Х ()A BH-2 (2-3') 7/16/2020 920 х X х N 1 X X BH-2 (4-5') х 7/16/2020 930 X N х 1 X X Relinquished by: Date: allow pe Time: Date: Time: REMARKS: Received by LAB USE X Standard 7/17 4.30 ONLY Relinguished by Date: Received by: Time: Date: RUSH: Same Day 24 hr. 48 hr. 72 hr. Time: Sample Temperature Rush Charges Authorized Relinquished by: Date: Time: Received by: Date: Time: Special Report Limits or TRRP Report 07/18/20 0845 ORIGINAL COPY (Circle) HAND DELIVERED FEDEX UPS Tracking #: 1790 3030 2971 17-1-36 A

Page 113 of 169

Page: 1 of 3

. Released to Imaging: 1/21/2021 9:46:56 AM

Analysis Request of Chain of Custody Record

### Page 114 of 169

Page: 2 of 3

Æ	Tetra Tech, Inc.			1		Midla Tel	and, 7 (432)	Stree Texas ) 682- 2) 682	-455	9	00				L	1	2	Y	12	18	57	7					
Client Name:	Conoco Phillips	Site Manage	r:	Chris	itian l	Juli																JES					
Project Name:	EVGSAU 2437-001	Contact Info		Emai Phon					atecl	h.com		1	ī	((	Circ	le	or	Sp		;ify	Me 	ethe	od I	No	.) 	I	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	-MD-	021	92					1															
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 75	9701										11												list)			Ľ
Receiving Laborator	ry: Pace Analytical	Sampler Sig	nature:	A	drian							11	- MRO		Se Hg									attached li			3
Comments: COP	TETRA Acctnum											8260B	DRO - ORO - MRO)		Cd Cr Pb				4	8270C/625			a	(see			
		SAMPLING	lume/Amou	MAT	TRIX	PR		RVAT		S	Î	BTEX	30 - DI				iles		0B / 62		_		e TDS	nemistr	ance		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020			Τ		MLI		Π	VINER	(N/N) D	1	8015M (GRO -	0	Is Ag A	s	ii Volat		1. 826	mi. Vo	221 000	estos)	Sulfate	Water Chemistry	on Bala	-	
( LAB USE )		DATE	TIME	WATER	SOIL	HCL	HNO ₃	NONE		# CONTAINERS	FILTERED	BTEX 8021B		PAH 8270C	Fotal Metals Ag As Ba FCI P Metals An As Ba	TCLP Volatiles	TCLP Semi Volatiles	RCI	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol.	NORM	PLM (Asbestos)	Chloride 300.0 Chloride Sulf	General W	Anion/Cation Balance		НОГР
-11	BH-2 (6-7')	7/16/2020	940		x			x		1	N	X	X			1		-				-	X		T		-
-12	BH-2 (9-10')	7/16/2020	950		x		)	x		1	Ν	x	X								T	Π	x		T	T	
-13	BH-2 (14-15')	7/16/2020	1000	)	x		)	x	Π	1	N	x	X		T						T	Π	x		H		
-14	BH-3 (0-1')	7/16/2020	1010	;	×		)	x	Π	1	N	x	X	Π	T	T	T			T	T	Ħ	x	1	H	+	Г
-15	BH-3 (2-3')	7/16/2020	1020	)	×		)	x	Π	1	N	X	X		1	T		Π		T	$\top$	$\square$	x	T	H	$\top$	Γ
-16	BH-3 (4-5')	7/16/2020	1030	)	×		)	x		1	N	X	X		T					T	1	$\square$	x	T	Ħ	1	
-17	BH-3 (6-7')	7/16/2020	1040	)	x		)	x	Π	1	N	x	X					Π		1	+	Ħ	x	1	Ħ	+	
-18	BH-3 (9-10')	7/16/2020	1050	)	x		)	x		1	N	x	X	Π		T		Π			1	Ħ	x		H	+	
-19	BH-4 (0-1')	7/16/2020	1100	)	x		)	x		1	N	x	X		1			Π		T	$\top$	$\square$	x		H	+	Π
-20	BH-4 (2-3')	7/16/2020	1110	1	x		)	x		1	Ν	X	x		T						T	Ħ	x		Ħ	+	Π
Relinquished by:	Date: Time: 7/17/20 1430 Date: Time: Date: Time:	Received by: Received by: Received by:	n		7	17	ate:	C Tir	me: / ( me: me:	4:5	30		LAB ON	ILY		RE	-		anda SH:	Same		24 h		8 hr.	72 hr.	k.	
ioinquisited by:	Date. Time.	The	D				1			084	5				-			_					TRRP I	Repor	rt		
Released to Imag	ging: 1/21/2021 9:46:56 AM	ÓRIGINA	LCOPY									(Circ	le) H	AND		-		-	-			rackin	7	t	H		

Analysis Request of Chain of Custody Record

Page: 3 of 3

TŁ	Tetra Tech, Inc.					Midla Tel	and (43	all Stre , Texa 32) 68 32) 68	as 79 2-45	59	00					1	L	. 1	12	lu	Y.	28	37	>			
Client	Conoco Phillips	Site Manage	er:	Chri	stian	Llull						Γ											EST				
Project Name:	EVGSAU 2437-001	Contact Info			ail: chi ne: (5				trated	h.com	1	1	I	1	(Ci 	rcl	e d	or S	Spe 	ecit	fy I	Me	tho	d	No.)	) 	11
Project Location: (county, state)	Lea County, New Mexico	Project #:	-	2120	C-MD	-0219	92					11															
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	701	-									11													st)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:	ļ	Adriar	n							() - MRO)		Se Hg	Se Hg									attached list)		1
Comments: COPTETF	RA Acctnum											8260B	OFO - ORO		d Cr Pb	Cd Cr Pb				8270C/625				0	(see		13
		SAMPLING	lume/Amou	MA	TRIX			ERVA			Î	BTEX 8	GRO - DRO		As Ba C	As Ba (		iles	0B / 624					e TDS	Chemistry	ance	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020		Π		T				AINER	D (Y/I	21B	M ( GF	0	Is Ag A	als Ag	tilles	i Volat	I. 8260B		32 / 608		estos)	Sulfate	ater Ch	on Bala	
( LAB USE )		DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B BTEX 82	TPH 8015M	PAH 8270C	Fotal Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Metals	CLP Volatiles	TCLP Semi Volatiles	GC/MS Vol.	GC/MS Semi. Vol.	PCB's 8082 / 608	NORM	PLM (Asbestos) Chloride 300.0	Chloride	General Water	Anion/Cation Balance TPH 8015R	
-2/	BH-4 (4-5')	7/16/2020	1120		x	-	-	X		1	N	X	X			F		- 14		0	4	2		-			-
-22	BH-4 (6-7')	7/16/2020	1130		x	Ħ		x		1	N	x	X		Π		1	+	1	$\mathbf{T}$	H		>	<	Ħ	+	+
-23	BH-4 (9-10')	7/16/2020	1140		x	Ħ		x		1	N	X	X					+	$\uparrow$	+	H	T	>	<	Ħ	1	
-24	BH-5 (0-1')	7/16/2020	1200		x	$\square$		x		1	N	X	×				1	+	t	+	H	1	>	<	Ħ	+	++
-25	BH-5 (2-3')	7/16/2020	1210		x			x		1	N	X	X				1	$\uparrow$	T	T	H	+	>	<	Ħ	+	+
-21	BH-5 (4-5')	7/16/2020	1220		x	$\square$		x		1	N	x	X			1	1	1	T	$\top$	H	1	>	<	Ħ	+	
-27	BH-5 (6-7')	7/16/2020	1230		x			х		1	N	x	X				$^{+}$	$\uparrow$	t	+	H	+	>	<	Ħ	+	++
-28	BH-5 (9-10')	7/16/2020	1240	3	x			х	Trade	1	N	х	×										×	<			
				$\vdash$	+	$\square$	_		-	_	-		-			-	_	-	-			_	-			-	
Relinquished by: Relinquished by: Relinquished by:	Date: Time: -//7/20 14/30 Date: Time: Date: Time:	Received by: Received by:	M		71	Da Da Da	te:		ime: ime:	fre		L		NLY			_	R	ush (	l: Sai Charg	ges Ai	uthor	rized		3 hr.		
Released to Imaging	: 1/21/2021 9:46:56 AM	ORIGINA	L COPY	7	0		117	oh		089	10	(Circl	e) H	IAND	DEI		-	FE	DE)	x U	IPS	Tra	_	#: _	VA	3	)

Pace Analytical National Center for Testing & Inno	ovation	
Cooler Receipt Form		
Client:	L124	1/287
Cooler Received/Opened On: 67 / 1/20 Temperature	:3.6	-
Received By: Brandan Stockton		
Signature: Mac		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?	V	A PROPERTY
Bottles arrive intact?		
Correct bottles used?	V	
Sufficient volume sent?	1	
If Applicable		新聞ののでは
VOA Zero headspace?		2
Preservation Correct / Checked?		

#### **Chris McCord**

From:	Abbott, Sam <u><sam.abbott@tetratech.com></sam.abbott@tetratech.com></u>
Sent:	Tuesday, July 21, 2020 9:55 AM
То:	Chris McCord
Subject:	FW: Pace Analytical National Login for 212C-MD-02192 EVGSAU 2437-001 L1241287
Attachments:	COCL1241287.pdf; In01L1241287.pdf

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Chris,

Here are the revisions to this COC. With both this one and Philmex, the samples not listed here do not require revisions.

Old	New
BH-1 (0-1')	BH-1 (2-3')
BH-1 (2-3')	BH-1 (4-5')
BH-1 (4-5')	BH-1 (6-7')
BH-1 (6-7')	BH-1 (8-9')
BH-1 (9-10')	BH-1 (11-12')
BH-1 (14-15')	BH-1 (16-17')
BH-1 (19-20')	BH-1 (21-22')
BH-2 (0-1')	BH-2 (2-3')
BH-2 (2-3')	BH-2 (4-5')
BH-2 (4-5')	BH-2 (6-7')
BH-2 (6-7')	BH-2 (8-9')
BH-2 (9-10')	BH-2 (11-12')
BH-2 (14-15')	BH-2 (16-17')

Thank you!

Sam

From: Llull, Christian <<u>Christian.Llull@tetratech.com</u>> Sent: Sunday, July 19, 2020 7:53 AM To: Abbott, Sam <<u>Sam.Abbott@tetratech.com</u>> Subject: Fwd: Pace Analytical National Login for 212C-MD-02192 EVGSAU 2437-001 L1241287

Christian

Get Outlook for iOS

From: Chris McCord <<u>cmccord@pacenational.com</u>> Sent: Sunday, July 19, 2020 3:02:15 AM To: Llull, Christian <<u>Christian.Llull@tetratech.com</u>> Subject: Pace Analytical National Login for 212C-MD-02192 EVGSAU 2437-001 L1241287



### ANALYTICAL REPORT August 25, 2020

### **ConocoPhillips - Tetra Tech**

Sample Delivery Group:	L1253109
Samples Received:	08/21/2020
Project Number:	212C-MD-02192
Description:	EVGSAU 2437-001
Site:	LEA COUNTY, NEW MEXICO
Report To:	Christian Llull
	901 West Wall
	Suite 100
	Midland, TX 79701

Ср Тс Ss Cn Śr *Q*c Gl ΆI Sc

Entire Report Reviewed By: Chu, form

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 1/2021 9:46:56 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02192

SDG: L1253109

DATE/TIME: 08/25/20 14:18 PAGE: 1 of 17

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
BH-6 (0-1) L1253109-01	5
BH-6 (2-3) L1253109-02	6
BH-7 (0-1) L1253109-03	7
BH-7 (2-3) L1253109-04	8
Qc: Quality Control Summary	9
Total Solids by Method 2540 G-2011	9
Wet Chemistry by Method 300.0	10
Volatile Organic Compounds (GC) by Method 8015D/GRO	11
Volatile Organic Compounds (GC/MS) by Method 8260B	12
Semi-Volatile Organic Compounds (GC) by Method 8015	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SDG: L1253109

### SAMPLE SUMMARY

ONE LAB. N APage 120 of 169

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-6 (0-1) L1253109-01 Solid			Collected by Adrian	Collected date/time 08/19/20 08:00	08/21/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1530230	1	08/21/20 14:35	08/21/20 14:42	MT	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1529993	1	08/22/20 10:26	08/22/20 17:40	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1530338	1	08/21/20 15:07	08/22/20 00:53	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1530364	1	08/21/20 15:07	08/21/20 18:03	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1530250	1	08/21/20 17:09	08/24/20 11:47	JN	Mt. Juliet, TN
PH 6 (2 2)   1252100 02 Salid			Collected by Adrian	Collected date/time 08/19/20 08:10	Received da 08/21/20 09:	
BH-6 (2-3) L1253109-02 Solid	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Daten	Bildtion	date/time	date/time	, margoe	200000
Total Solids by Method 2540 G-2011	WG1530230	1	08/21/20 14:35	08/21/20 14:42	MT	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1529993	1	08/22/20 10:26	08/22/20 17:49	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1530338	1	08/21/20 15:07	08/22/20 01:16	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1530364	1	08/21/20 15:07	08/21/20 18:22	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1530250	1	08/21/20 17:09	08/23/20 11:24	TJD	Mt. Juliet, TN
Serie-volatile organic compounds (GC) by method bors						
			Collected by Adrian	Collected date/time 08/19/20 08:20	Received da 08/21/20 09:	
BH-7 (0-1) L1253109-03 Solid	Batch	Dilution	-			
BH-7 (0-1) L1253109-03 Solid	Batch	Dilution	Adrian	08/19/20 08:20	08/21/20 09:	30
BH-7 (0-1) L1253109-03 Solid Method	Batch WG1530230	Dilution	Adrian Preparation	08/19/20 08:20 Analysis	08/21/20 09:	30 Location
BH-7 (0-1) L1253109-03 Solid Method Total Solids by Method 2540 G-2011			Adrian Preparation date/time	08/19/20 08:20 Analysis date/time	08/21/20 09: Analyst	Cocation Mt. Juliet, TN
BH-7 (0-1) L1253109-03 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1530230	1	Adrian Preparation date/time 08/21/20 14:35	08/19/20 08:20 Analysis date/time 08/21/20 14:42	08/21/20 09: Analyst MT	Location Mt. Juliet, TN Mt. Juliet, TN
BH-7 (0-1) L1253109-03 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1530230 WG1529993	1	Adrian Preparation date/time 08/21/20 14:35 08/22/20 10:26	08/19/20 08:20 Analysis date/time 08/21/20 14:42 08/22/20 17:59	08/21/20 09: Analyst MT ELN	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
BH-7 (0-1) L1253109-03 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1530230 WG1529993 WG1530338	1 1 1	Adrian Preparation date/time 08/21/20 14:35 08/22/20 10:26 08/21/20 15:07	08/19/20 08:20 Analysis date/time 08/21/20 14:42 08/22/20 17:59 08/22/20 01:38	08/21/20 09: Analyst MT ELN JAH	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
BH-7 (0-1) L1253109-03 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1530230 WG1529993 WG1530338 WG1530364	1 1 1 1	Adrian Preparation date/time 08/21/20 14:35 08/22/20 10:26 08/21/20 15:07 08/21/20 15:07	08/19/20 08:20 Analysis date/time 08/21/20 14:42 08/22/20 17:59 08/22/20 01:38 08/21/20 18:41	08/21/20 09: Analyst MT ELN JAH BMB TJD	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
BH-7 (0-1) L1253109-03 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GR0 Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 BH-7 (2-3) L1253109-04 Solid	WG1530230 WG1529993 WG1530338 WG1530364	1 1 1 1	Adrian Preparation date/time 08/21/20 14:35 08/22/20 10:26 08/21/20 15:07 08/21/20 15:07 08/21/20 17:09 Collected by	08/19/20 08:20 Analysis date/time 08/21/20 14:42 08/22/20 17:59 08/22/20 01:38 08/21/20 18:41 08/23/20 11:37 Collected date/time	08/21/20 09: Analyst MT ELN JAH BMB TJD Received da	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
BH-7 (0-1) L1253109-03 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 BH-7 (2-3) L1253109-04 Solid Method	WG1530230 WG1529993 WG1530338 WG1530364 WG1530250	1 1 1 1	Adrian Preparation date/time 08/21/20 14:35 08/22/20 10:26 08/21/20 15:07 08/21/20 15:07 08/21/20 17:09 Collected by Adrian Preparation	08/19/20 08:20 Analysis date/time 08/21/20 14:42 08/22/20 17:59 08/22/20 01:38 08/21/20 18:41 08/23/20 11:37 Collected date/time 08/19/20 08:30 Analysis	08/21/20 09: Analyst MT ELN JAH BMB TJD Received da 08/21/20 09:	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time :30
BH-7 (0-1) L1253109-03 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1530230 WG1529993 WG1530338 WG1530364 WG1530250 Batch	1 1 1 1 Dilution	Adrian Preparation date/time 08/21/20 14:35 08/22/20 10:26 08/21/20 15:07 08/21/20 15:07 08/21/20 17:09 Collected by Adrian Preparation date/time	08/19/20 08:20 Analysis date/time 08/21/20 14:42 08/22/20 17:59 08/22/20 01:38 08/21/20 18:41 08/23/20 11:37 Collected date/time 08/19/20 08:30 Analysis date/time	08/21/20 09: Analyst MT ELN JAH BMB TJD Received da 08/21/20 09: Analyst	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time 30 Location Mt. Juliet, TN
BH-7 (0-1) L1253109-03 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 BH-7 (2-3) L1253109-04 Solid Method Total Solids by Method 2540 G-2011	WG1530230 WG1529993 WG1530338 WG1530364 WG1530250 Batch WG1530230	1 1 1 1 1 Dilution	Adrian Preparation date/time 08/21/20 14:35 08/22/20 10:26 08/21/20 15:07 08/21/20 15:07 08/21/20 17:09 Collected by Adrian Preparation date/time 08/21/20 14:35	08/19/20 08:20           Analysis           date/time           08/21/20 14:42           08/22/20 17:59           08/22/20 01:38           08/21/20 18:41           08/23/20 11:37           Collected date/time           08/19/20 08:30           Analysis           date/time           08/21/20 14:42	08/21/20 09: Analyst ELN JAH BMB TJD Received da 08/21/20 09: Analyst MT	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time 30 Location Mt. Juliet, TN Mt. Juliet, TN
BH-7 (0-1) L1253109-03 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 BH-7 (2-3) L1253109-04 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1530230 WG1529993 WG1530338 WG1530364 WG1530250 Batch WG1530230 WG1530230 WG1529993	1 1 1 1 1 Dilution	Adrian Preparation date/time 08/21/20 14:35 08/22/20 10:26 08/21/20 15:07 08/21/20 15:07 08/21/20 17:09 Collected by Adrian Preparation date/time 08/21/20 14:35 08/22/20 10:26	08/19/20 08:20           Analysis           date/time           08/21/20 14:42           08/22/20 17:59           08/22/20 01:38           08/21/20 18:41           08/23/20 11:37           Collected date/time           08/19/20 08:30           Analysis           date/time           08/21/20 14:42           08/21/20 14:42           08/21/20 14:42           08/22/20 18:08	08/21/20 09: Analyst ELN JAH BMB TJD Received da 08/21/20 09: Analyst MT ELN	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time 30

PROJECT: 212C-MD-02192

SDG: L1253109

DATE/TIME: 08/25/20 14:18

PAGE: 3 of 17

#### CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 1/271/2021 9:46:56 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02192

SDG: L1253109 DATE/TIME: 08/25/20 14:18

TIME: 0 14:18 PAGE: 4 of 17

#### SAMPLE RESULTS - 01 L1253109

Â

Sc

Collected date/time: 08/19/20 08:00

	Result	Qualifi	er Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	94.4		1	08/21/2020 14	.10	WG1530230		
	/ by Method 300.	.0	1	06/21/2020 14.	.42	<u>WGI550250</u>		
		.0 <u>Qualifier</u>	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	y by Method 300.		MDL (dry) mg/kg		-		Batch	

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	08/22/2020 00:53	WG1530338
(S) a,a,a-Trifluorotoluene(FID)	98.5			77.0-120		08/22/2020 00:53	WG1530338

#### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000522	0.00112	1	08/21/2020 18:03	WG1530364
Toluene	U		0.00145	0.00559	1	08/21/2020 18:03	WG1530364
Ethylbenzene	U		0.000825	0.00280	1	08/21/2020 18:03	WG1530364
Total Xylenes	U		0.000985	0.00727	1	08/21/2020 18:03	WG1530364
(S) Toluene-d8	106			75.0-131		08/21/2020 18:03	WG1530364
(S) 4-Bromofluorobenzene	94.2			67.0-138		08/21/2020 18:03	WG1530364
(S) 1,2-Dichloroethane-d4	83.8			70.0-130		08/21/2020 18:03	<u>WG1530364</u>

#### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.47		1.71	4.24	1	08/24/2020 11:47	<u>WG1530250</u>
C28-C40 Oil Range	17.8		0.290	4.24	1	08/24/2020 11:47	<u>WG1530250</u>
(S) o-Terphenyl	66.5			18.0-148		08/24/2020 11:47	WG1530250

Received by OCD: 11/3/2020 1:33:09 PM Collected date/time: 08/19/20 08:10 SAMPLE RESULTS - 02

ONE LAB. N A Page 123 of 169

Ss

Cn

ΆI

Sc

#### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	70.9		1	08/21/2020 14:42	WG1530230	Tc

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	96.3		13.0	28.2	1	08/22/2020 17:49	WG1529993

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0306	0.141	1	08/22/2020 01:16	WG1530338	
(S) a,a,a-Trifluorotoluene(FID)	98.6			77.0-120		08/22/2020 01:16	WG1530338	

#### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000851	0.00182	1	08/21/2020 18:22	WG1530364
Toluene	U		0.00237	0.00911	1	08/21/2020 18:22	WG1530364
Ethylbenzene	U		0.00134	0.00455	1	08/21/2020 18:22	WG1530364
Total Xylenes	U		0.00160	0.0118	1	08/21/2020 18:22	WG1530364
(S) Toluene-d8	103			75.0-131		08/21/2020 18:22	WG1530364
(S) 4-Bromofluorobenzene	94.4			67.0-138		08/21/2020 18:22	WG1530364
(S) 1,2-Dichloroethane-d4	83.5			70.0-130		08/21/2020 18:22	WG1530364

#### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.1		2.27	5.64	1	08/23/2020 11:24	<u>WG1530250</u>
C28-C40 Oil Range	U		0.387	5.64	1	08/23/2020 11:24	<u>WG1530250</u>
(S) o-Terphenyl	76.5			18.0-148		08/23/2020 11:24	WG1530250

SDG: L1253109 DAT 08/25 Received by OCD: 11/3/2020 1:33:09 PM Collected date/time: 08/19/20 08:20 SAMPLE RESULTS - 03

ONE LAB. N APage 124 of 169

Ss

Cn

ΆI

Sc

#### Total Solids by Method 2540 G-2011

						I Cr	$\sim$
	Result	Qualifier	Dilution	Analysis	Batch		J
Analyte	%			date / time		2	_
Total Solids	72.6		1	08/21/2020 14:42	WG1530230	Tc	2

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		12.7	27.5	1	08/22/2020 17:59	WG1529993	

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guanner	mg/kg	mg/kg	Dilution	date / time	baten	
TPH (GC/FID) Low Fraction	U		0.0299	0.138	1	08/22/2020 01:38	WG1530338	
(S) a,a,a-Trifluorotoluene(FID)	99.1			77.0-120		08/22/2020 01:38	WG1530338	

#### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000820	0.00176	1	08/21/2020 18:41	WG1530364
Toluene	U		0.00228	0.00878	1	08/21/2020 18:41	WG1530364
Ethylbenzene	U		0.00129	0.00439	1	08/21/2020 18:41	WG1530364
Total Xylenes	U		0.00155	0.0114	1	08/21/2020 18:41	WG1530364
(S) Toluene-d8	104			75.0-131		08/21/2020 18:41	WG1530364
(S) 4-Bromofluorobenzene	96.1			67.0-138		08/21/2020 18:41	WG1530364
(S) 1,2-Dichloroethane-d4	84.9			70.0-130		08/21/2020 18:41	WG1530364

#### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.40	J	2.22	5.51	1	08/23/2020 11:37	<u>WG1530250</u>
C28-C40 Oil Range	U		0.377	5.51	1	08/23/2020 11:37	<u>WG1530250</u>
(S) o-Terphenyl	68.4			18.0-148		08/23/2020 11:37	WG1530250

SDG: L1253109 DAT 08/25 Received by OCD: 11/3/2020 1:33:09 PM Collected date/time: 08/19/20 08:30 SAMPLE RESULTS - 04

ONE LAB. N APage 125 of 169

Ss

Cn

ΆI

Sc

#### Total Solids by Method 2540 G-2011

-						I Cr	n
	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time		2	_
Total Solids	70.0		1	08/21/2020 14:42	WG1530230	Tc	2

#### Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		13.1	28.6	1	08/22/2020 18:08	WG1529993

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
		Quanner		KDE (dry)	Dilution	,	Baten	e	6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Ċ.
TPH (GC/FID) Low Fraction	U		0.0310	0.143	1	08/22/2020 02:00	WG1530338	L	
(S) a,a,a-Trifluorotoluene(FID)	99.0			77.0-120		08/22/2020 02:00	<u>WG1530338</u>	5	⁷ C

#### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000867	0.00186	1	08/21/2020 19:00	WG1530364
Toluene	U		0.00241	0.00929	1	08/21/2020 19:00	<u>WG1530364</u>
Ethylbenzene	U		0.00137	0.00464	1	08/21/2020 19:00	WG1530364
Total Xylenes	U		0.00163	0.0121	1	08/21/2020 19:00	<u>WG1530364</u>
(S) Toluene-d8	106			75.0-131		08/21/2020 19:00	<u>WG1530364</u>
(S) 4-Bromofluorobenzene	95.7			67.0-138		08/21/2020 19:00	<u>WG1530364</u>
(S) 1,2-Dichloroethane-d4	89.3			70.0-130		08/21/2020 19:00	WG1530364

#### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.63	J	2.30	5.71	1	08/23/2020 11:49	<u>WG1530250</u>
C28-C40 Oil Range	U		0.391	5.71	1	08/23/2020 11:49	<u>WG1530250</u>
(S) o-Terphenyl	74.9			18.0-148		08/23/2020 11:49	WG1530250

SDG: L1253109 DAT 08/25

Total Solids by Method 2540 G-2011

#### QUALITY CONTROL SUMMARY L1253109-01,02,03,04

GI

Â

Sc

#### Method Blank (MB)

Method Dialik						$^{1}c$
(MB) R3562547-1 0	8/21/20 14:42					
	MB Result	<b>MB</b> Qualifier	MB MDL	MB RDL		2
Analyte	%		%	%		T
Total Solids	0.000					
						3

#### L1253109-01 Original Sample (OS) • Duplicate (DUP)

L1253109-01 Orig	inal Sample	(OS) • Dup	olicate (I	DUP)			
(OS) L1253109-01 08/21	/20 14:42 • (DUP)	) R3562547-3	08/21/20	14:42			
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	94.4	96.2	1	1.84		10	

#### Laboratory Control Sample (LCS)

(LCS) R3562547-2 08/2	1/20 14:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 08/25/20 14:18

Wet Chemistry by Method 300.0

#### QUALITY CONTROL SUMMARY L1253109-01,02,03,04

Τс

Ss

Cn

Sr

Qc

#### Method Blank (MB)

(MB) R3562822-1 08	8/22/20 14:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

#### L1251858-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1251858-01 08/22	2/20 15:55 • (DUP	) R3562822-3	8 08/22/20	0 16:05		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	43.1	44.7	1	3.67		20

#### L1253169-01 Original Sample (OS) • Duplicate (DUP)

L1253169-01 Orig	jinal Sample	(OS) • Dup	olicate (l	DUP)			
OS) L1253169-01 08/2	2/20 18:37 • (DUP	) R3562822-4	1 08/22/20	D 18:46			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	JP RPD nits	
Analyte	mg/kg	mg/kg		%			
Chloride	15.4	14.7	1	4.17	J	)	

#### Laboratory Control Sample (LCS)

(LCS) R3562822-2 08/22	2/20 14:38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	193	96.5	90.0-110	

#### L1253169-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1253169-05 08/22/2	20 19:05 • (MS)	R3562822-5 (	08/22/20 19:15	5 • (MSD) R3562	2822-6 08/22	/20 19:24						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	18.7	506	505	97.5	97.3	1	80.0-120			0.195	20

Released to	Imaging ^{AC} F/2HV2021 9:46:56 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02192

SDG: L1253109

DATE/TIME: 08/25/20 14:18

PAGE: 10 of 17 Volatile Organic Compounds (GC) by Method 8015D/GRO

# QUALITY CONTROL SUMMARY

#### Method Blank (MB)

	)				1
(MB) R3562811-2 08/21/2	20 17:10				
	MB Result	MB Qualifier	MB MDL	MB RDL	5
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	98.7			77.0-120	3

#### Laboratory Control Sample (LCS)

(LCS) R3562811-1 08/21/2	0 16:24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.26	114	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			100	77.0-120	

Volatile Organic Compounds (GC/MS) by Method 8260B

# QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

#### Method Blank (MB)

(MB) R3562735-3 08/21/2	20 16:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	103			75.0-131
(S) 4-Bromofluorobenzene	95.1			67.0-138
(S) 1,2-Dichloroethane-d4	81.8			70.0-130

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3562735-1 08/21/2	20 15:17 • (LCSE	) R3562735-2	08/21/20 15:3	6							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	<i>'</i>
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	L
Benzene	0.125	0.135	0.133	108	106	70.0-123			1.49	20	8
Ethylbenzene	0.125	0.128	0.116	102	92.8	74.0-126			9.84	20	
Toluene	0.125	0.126	0.118	101	94.4	75.0-121			6.56	20	9
Xylenes, Total	0.375	0.389	0.354	104	94.4	72.0-127			9.42	20	ľ
(S) Toluene-d8				99.9	99.1	75.0-131					L
(S) 4-Bromofluorobenzene				101	95.8	67.0-138					
(S) 1,2-Dichloroethane-d4				91.5	92.4	70.0-130					

#### L1252601-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1252601-02 08/21/2	(OS) L1252601-02 08/21/20 22:28 • (MS) R3562735-4 08/21/20 23:43 • (MSD) R3562735-5 08/22/20 00:02											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.125	0.0222	0.307	0.294	228	217	1	10.0-149	<u>J5</u>	<u>J5</u>	4.33	37
Ethylbenzene	0.125	0.00793	0.177	0.178	135	136	1	10.0-160			0.563	38
Toluene	0.125	0.0526	0.366	0.377	251	260	1	10.0-156	<u>J5</u>	<u>J5</u>	2.96	38
Xylenes, Total	0.375	0.0379	0.560	0.576	139	143	1	10.0-160			2.82	38
(S) Toluene-d8					98.7	99.7		75.0-131				
(S) 4-Bromofluorobenzene					91.1	94.8		67.0-138				
(S) 1,2-Dichloroethane-d4					108	93.6		70.0-130				

SDG: L1253109 DATE/TIME: 08/25/20 14:18 PAGE: 12 of 17 Semi-Volatile Organic Compounds (GC) by Method 8015

# QUALITY CONTROL SUMMARY

⁺Cn

Sr

ິQc

GI

Â

Sc

#### Method Blank (MB)

	2)				Cn l
(MB) R3562650-1 08/22	2/20 07:52				Ch
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	³ Ss
(S) o-Terphenyl	79.6			18.0-148	00

#### Laboratory Control Sample (LCS)

(LCS) R3562650-2 08/2	22/20 08:05				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	40.1	80.2	50.0-150	
(S) o-Terphenyl			59.6	18.0-148	

DATE/TIME: 08/25/20 14:18 PAGE: 13 of 17

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.

J	The identification of the analyte is acceptable, the reported value is an estimate.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.

SDG: L1253109 DATE/TIME: 08/25/20 14:18

### Received by OCD: 11/3/2020 1:33:09 PM CCREDITATIONS & LOCATIONS

### ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana 1	LA180010	Texas	T104704245-18-15
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
		· · · · · · · · · · · · · · · · · · ·	

#### Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

#### **Our Locations**

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



Released to Imaging: 1/21/2021 9:46:56 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02192

SDG: L1253109 DATE/TIME: 08/25/20 14:18

Analysis Request of Chain of Custody Record

Page: 1 of 1

Ŧŧ	Tetra Tech, Inc.				901	Midla Tel	and, (432	Tex: 2) 68	eet, S as 797 32-455 82-394	9	00											U	rs	31	091	
Client Name:	Conoco Phillips	Site Manage	r:	Chris	stian	Llull												LYS								
Project Name:	EVGSAU 2437-001	Contact Info	:			ristia 512) 3				h.com		1	T	) 		le:	or :	Spe 		у N 		hoo 	 	0.)	11	1
Project Location (county, state)	Lea County, New Mexico	Project #:		2120	C-MD	0-021	92																			
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701			3							1				-									list)		
Receiving Labor	ratory: Pace Analytical	Sampler Signature: Adrian										D-MRC		Se Hg									attached list)			
Comments: 0	COPTETRA Acctnum			Ŧ					ας (5.β.)			8260B	5) 10 - OR(		d Cr Pb				8270C/625					(see		
		SAMP	LING	MA	TRIX	PR		RVA		RS	(N)	BTEX 8	(Ext to C35) GRO - DRO - ORO - MRO)	7	As Ba C		atiles	30B / 624	ol. 8270	98		-	ate TDS	Chemistry		
LAB # ( LAB USE ONLY )	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	NONE	CONTAINERS	FILTERED (Y/N)	BTEX 8021B	PH TX1005 (Ext to C35) PH 8015M ( GRO - DRC	AH 8270C	fotal Metals Ag As Ba Cd Cr Pb Se Hg TCL P Metals An As Ba Cd Cr Pb Se Hc	CLP Volatiles	CLP Semi Volatiles	GC/MS Vol. 8260B / 624	GC/MS Semi, Vol.	CB's 8082 / 608	NORM PLM (Ashestos)	Chloride 300.0	Chloride Sulfate	General Water Chemistry Anion/Cation Balance	PH 8015R	
	BH-6 (0-1)	8/19/2020	800		x	1	-	×	2	#	N	X	X			-	-	I O	0	<u>a</u>	2 0	X	0	A G	E	5
and the same	BH-6 (2-3)	8/19/2020	810		x		Π	х		1	N	х	x			T					-	X			Π	
Notes a	BH-7 (0-1)	8/19/2020	820		x			х		1	N	х	x									X		22	Π	-
1.2	BH-7 (2-3)	8/19/2020	830		х			х		1	N	х	X									X				-
10	1			+	-	_	$\square$		-			$\square$	+		+	-		-			1	-		1-00	10	1
		-			+	-	$\square$	-	-			$\vdash$	+	$\vdash$	-	1000	-	-	-	1000	10			-	+	-
1					+	+	$\left  \right $	+	+		-		+	$\vdash$	+	+		+	-	$\vdash$	1		1	-	++	+
1	a the second second				+	+	H	+				H	+	H	+	2	1			all.	+	+	H		++	+
					+	+	H	1	1		1- 199	i.e.	1		+	$\uparrow$		-			1	1	H		$^{++}$	+
Relinquished by: Relinquished by: Relinquished by:	Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time:	Received by: Received by: Received by: Received by:	R X	A second second	, 8	\$2	ate:	20	Time: Time:	14:	,	1	LAB ON ple Te	ILY				Stand RUSH Rush (	: Sa Charg	jes Au	uthoriz	zed	48 h		hr.	04
100		ORIGINA	L COPY	āl.		8	12	21/	20	1	_	-	cle) H				_	-								_

Pace Analytical National Center for Testing & Inn Cooler Receipt Form	ovation	
Client: COPTETRA	l	253/09
Cooler Received/Opened On: 8/2//20 Temperature	: 3,400	Real Providence
Received By: LUCAS GREEN		
Signature:		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?	jenet i se	1
COC Signed / Accurate?	-	
Bottles arrive intact?	1 - 1	1997 B. 1997
Correct bottles used?	1	AT THE
Sufficient volume sent?	1 1	1.10
If Applicable		- Arter
VOA Zero headspace?	HALLA HAMAN	14-15-16

Page 134 of 169

Preservation Correct / Checked?

.

# APPENDIX D Soil Boring Logs



TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of entire excavated area from initial response, facing east	1
212C-MD-02192	SITE NAME	EVGSAU 2437-001 Flowline Release	03/11/2020



TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of south end of excavated area, facing north	2
212C-MD-02192	SITE NAME	EVGSAU 2437-001 Flowline	03/11/2020



TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of release source flowline, facing north	3
212C-MD-02192	SITE NAME	EVGSAU 2437-001 Flowline Release	03/11/2020



TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of north end of excavated area, facing south	4
212C-MD-02192	SITE NAME	EVGSAU 2437-001 Flowline Release	03/11/2020



TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of release source flowline which has been replaced, facing west	5
212C-MD-02192	SITE NAME	EVGSAU 2437-001 Flowline Release	03/11/2020



TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of end of replacement flowline in the south, facing north	6
212C-MD-02192	SITE NAME	EVGSAU 2437-001 Flowline Release	03/11/2020



TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of pipeline headers at east end of Satellite #1 Facility, facing west	7
212C-MD-02192	SITE NAME	EVGSAU 2437-001 Flowline Release	03/11/2020



TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of BH-3 area during site assessment facing east.	8
212C-MD-02192	SITE NAME	EVGSAU 2437-001 Flowline Release	03/11/2020



TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of excavated area with surface pipelines marked during site assessment.	9
212C-MD-02192	SITE NAME	EVGSAU 2437-001 Flowline Release	07/16/2020



TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of BH-1 area during site assessment facing west, with Satellite #1 facility to rear.	10
212C-MD-02192	SITE NAME	EVGSAU 2437-001 Flowline Release	07/16/2020

# APPENDIX E Photographic Documentation

212	C-N	1D-0	<b>CD: 11</b> / 2192	T	E)	ETR	ATEC	H				LOG OF BORING BH-1	Page 1 of
Proie	ect N	lam	e: EV0	GSAU 2	437	-001	Rele	ease	Site	Ass	essm	ent	1 01
-			cation:									Surface Elevation: 3989 ft	
Bore	hole	Nu	mber:	BH-1						E	Boreho Diame	ble 5 Date Started: 7/16/2020 Date Finishe	d: 7/16/2020
			C.	(mc	۲۲ (%)	ENT (%)			DEX			WATER LEVEL OBSERVATIONS	<u>N/A</u> ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	EXCREENING (ppm)	UNCE FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (デ 単 ロ ロ ロ ロ ロ ロ ロ ロ ロ ロ に の し ロ し に の し し に の し し の し し の し し の し し し の し し の し の し し の し し し の し し し し し し し し し し し し し	REMARK
												Excavated to approximately 1.5' bgs during initial response activities.	
_			300	394								-CL- SANDY CLAY: Brown, soft to medium stiff, occasionally cemented, with some pea gravel, no odor, no staining.       1.5         -SM- SILTY SAND: Brown, medium dense,       3	BH-1 (2-3')
_ 5	$\left  \right\rangle$	$\left[ \right]$	800	20								moderately cemented, with pea gravel, with	BH-1 (4-5')
_	$\langle \rangle$	M										-ML- SANDY SILT: White, dense, calcareous, moderately cemented, with some gravel, no odor,	
_	$\left\langle \right\rangle$	M	780	0								no staining. Interbedded with hard caprock calcrete.	BH-1 (6-7')
_		Å	2500	0									BH-1 (8-9')
<u>10</u>		X	2600	0									BH-1 (11-12')
_		M	2000										
15	$\langle \rangle$	M											
_	$\left \right\rangle$	$\left\{ \right\}$	4000+	0									BH-1 (16-17')
_	$\left \right\rangle$	X											
_ 20	}	$\left\{ \right\}$											
<u></u>	$\left \right\rangle$												
	}	$\square$	450	0								22	BH-1 (21-22')
												Bottom of borehole at 22.0 feet.	
Sam Type	pler s:		Split Spoon Shelby Bulk Sample M Grab Sample				r T		∷ Muc Rota Con Fligh	ary tinuou nt Auge	s er	Hand Auger Notes: Air Rotary Direct Push Direct Parrel Notes: Laboratory analytical sample intervals are shown "Remarks" column. Surface elevations are base Earth data.	n in the d on Google

 Logger:
 Adrian Garcia
 Drilling Equipment: Air Rotary
 Driller:
 Scarborough Drilling

 Released to Tmaging:
 10-20-20 / 720/15 UK GEOTECH NOWELL3 2015 TT TEMPLATE DECEMBER WELL.GDT ''
 10-20-20 / 720/15 UK GEOTECH NOWELL3 2015 TT TEMPLATE DECEMBER WELL.GDT ''

_			110	J
	F 1	Pag of		

TETRA TECH LOG OF BORING BH-2 212C-MD-02192 EVGSAU 2437-001 Release Site Assessment Project Name: 3988 ft Borehole Location: GPS Coordinates: 32.818160, -103.492938 Surface Elevation: Borehole 5 Diameter (in.): Date Started: 7/16/2020 BH-2 Date Finished: 7/16/2020 Borehole Number: WATER LEVEL OBSERVATIONS While Drilling  $\Sigma$  N/A ft Upon Completion of Drilling I V/A ft (%) SAMPLE RECOVERY (%) MOISTURE CONTENT PLASTICITY INDEX VOC FIELD SCREENING (ppm) CHLORIDE FIELD SCREENING (ppm) Remarks: (pcf) MINUS NO. 200 (%) OPERATION TYPE LIQUID LIMIT DRY DENSITY **GRAPHIC LOG** MATERIAL DESCRIPTION ŧ DEPTH (ft) SAMPLE DEPTH REMARKS LL ExStik PID ΡI Excavated to approximately 1.5' bgs during initial response activities. 1.5 -CL- SANDY CLAY: Brown, soft to medium stiff, occasionally cemented, with some pea gravel, 400 0 grading to SILT (ML), no odor, no staining. 3 BH-2 (2-3') -ML- SANDY SILT: White, dense, calcareous, moderately cemented, with some gravel, no odor, no staining. Interbedded with hard caprock calcrete. 5 800 0 BH-2 (4-5') 950 0 BH-2 (6-7') 875 0 BH-2 (8-9') 10 1100 0 BH-2 (11-12') 15 150 0 BH-2 (16-17') 17 Bottom of borehole at 17.0 feet. Sampler Types: Operation Split Spoon Hand Auger Acetate Liner Notes: Týpes: Mud Rotary Laboratory analytical sample intervals are shown in the Shelby Vane Shear Air Rotary "Remarks" column. Surface elevations are based on Google Continuous Bulk Earth data. California Direct Push Flight Auger Sample Wash M Grab Core Barrel Test Pit Sample Rotary

Driller: Scarborough Drilling Logger: Adrian Garcia Drilling Equipment: Air Rotary Released to Imaging: 1/21/2021 9:46:50 AM

Page	144	6
5		

Page 144 of 169

212C-MD-02192	TE TETRATECH	LOG OF BORING BH-3	Page 1 of 1				
Project Name: E\	GSAU 2437-001 Release Site Assessr	nent					
Borehole Location:	GPS Coordinates: 32.818188, -103.492956	Surface Elevation: 3988 ft					
Borehole Number:	BH-3 Boreh Diam	ole 5 Date Started: 7/16/2020 Date Finished	: 7/16/2020				
E E	m) (Y (%) NT (%) EX	WATER LEVEL OBSERVATIONS	<mark>J/A_</mark> ft				
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	UNC FIELD       Construction       SAMPLE RECOVERY (%)       MOISTURE CONTENT (%)       MOISTURE CONTENT (%)       DRY DENSITY (pcf)       T       LIQUID LIMIT       T       PLASTICITY INDEX       MINUS NO. 200 (%)	MATERIAL DESCRIPTION	REMARKS				
190	0	-CL- SANDY CLAY: Brown, soft to medium stiff, occasionally cemented, with some pea gravel, grading to SILT (ML), no odor, no staining.	BH-3 (0-1')				
380	0	-ML- SANDY SILT: White, dense, calcareous,	BH-3 (2-3')				
5 2 110	0		BH-3 (4-5')				
88	0		BH-3 (6-7')				
	0	10	BH-3 (9-10')				
Bottom of borehole at 10.0 feet.							
Sampler Types:       Split Spoon       Acetate Liner       Operation Types:       Image: Hand Auger       Notes:         Shelby       Image: Vane Shear       Imade Auge: Vane Sh							

Т

 Logger:
 Adrian Garcia
 Drilling Equipment: Air Rotary
 Driller:
 Scarborough Drilling

 .
 Released to Timaging: 1/21/2021 9:46:56 AM
 2015 TT TEMPLATE DECEMBER WELL.GDT''
 Scarborough Drilling
70	110		1/0
Page	145	01	109

212	C-M	D-02	192	Т	<b>b</b> ]'	ETRA	TEC	H				LOG OF BORING BH-4		Page 1 of
roje	ect N	ame	: EV(	GSAU 2	437	-001	Rele	ease	Site	Ass	essm	ent		
ore	hole	Loca	ation:	GPS Coo	rdinat	es: 32	.8180	25, -1(	)3.492	831		Surface Elevation: 3989 ft		
lore	hole	Nun	nber:	BH-4						E	Boreho Diame	le 5 Date Started: 7/16/2020 Date Fir	nishe	d: 7/16/202
	ш		ELD ppm)	(mqq	ERY (%)	TENT (%)	cf)		NDEX			WATER LEVEL OBSERVATIONS	<u> </u>	N/A_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	EXEENING (ppm)	UNCE FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARI
	33	$\langle$	50	0								A	1.5	BH-4 (0-1')
_	$\left \right\rangle$		40	0								-SM- SILTY SAND: Brown, medium dense, moderately cemented, with pea gravel, with interbedded sandstone layers, no odor, no staining.	- 3.5	BH-4 (2-3')
5		Å	160	0								-ML- SANDY SILT: White, dense, calcareous, moderately cemented, with some gravel, no odor, no staining. Interbedded with hard caprock calcrete.	-	BH-4 (4-5')
_			94	0								-	-	BH-4 (6-7')
_		$\left  \right $										-	-	
10	1) )		60	0								Bottom of borehole at 10.0 feet.	10	<u> BH-4 (9-10')</u>
am ype	pler s:		Split Spoon Shelby Bulk Sample Grab		′ane S Califor		. C	2pera ypes	Mud Rota	ary tinuou nt Auge	s er	Hand Auger       Notes:         Air Rotary       Laboratory analytical sample intervals are sl         Direct Push       Earth data.	nowr Dase	n in the d on Googl∉
		Ü	Sample	e 🗄 T	est P	it			Rota		$\square$			

#### Received by OCD: 11/3/2020 1:33:09 PM_

Page	146	of 169

Page

212C-MD-02192												LOG OF BORING BH-5	Page 1 of 1
Proje	ct N	lam	e: EV	GSAU 2	2437	-001	Rele	ease	Site	Ass	essm	ent	
Borel	nole	Lo	cation:	GPS Coo	rdinat	es: 32	.8181	59, -1(	03.492	2741		Surface Elevation: 3989 ft	
Borel	nole	Nu	mber:	BH-5							Boreho Diame	le er (in.): 5 Date Started: 7/16/2020 Date Finish	ed: 7/16/2020
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	WATER LEVEL OBSERVATIONS While Drilling <u>♀ N/A</u> ft Upon Completion of Drilling <u>♀</u> Remarks: MATERIAL DESCRIPTION	N/A ft REMARKS
۵ 	ō ~~	ŝ	ExStik	PID	Ś	Σ	ā	LL	PI	Σ	0 7////		
	$\langle \langle \rangle \rangle \langle \rangle \langle \langle \rangle \rangle \langle \rangle \rangle$	X	190 56	0								-CL- SANDY CLAY: Brown, soft to medium stiff, occasionally cemented, with some pea gravel, grading to SILT (ML), no odor, no staining. -SM- SILTY SAND: Brown, medium dense, moderately cemented, with pea gravel, with interbedded sandstone layers, no odor, no staining. -ML- SANDY SILT: White, dense, calcareous,	BH-5 (0-1') BH-5 (2-3')
5	$\frac{\langle \langle }{\langle \langle } \rangle$	M	60	0								moderately cemented, with some gravel, no odor, no staining. Interbedded with hard caprock calcrete.	BH-5 (4-5')
_ _ 10	$\langle \langle \rangle \rangle \langle \langle \rangle \rangle$	A	60 34	0									BH-5 (6-7') BH-5 (9-10')
												Bottom of borehole at 10.0 feet.	
Samı Type	oler s:		Split Spoon Shelby Bulk Sample Grab Sample		Acetat /ane S Califor Test P	nia			Muc Rota Con Fligi Was Rota	ary tinuou: nt Augo sh ary	er	Hand Auger       Notes:         Air Rotary       Laboratory analytical sample intervals are show         Direct Push       "Remarks" column. Surface elevations are bas         Core Barrel       Core Barrel	<i>v</i> n in the ed on Google
Logg	er:	Adri	ian Garcia				[	Drillin	g Equ	lipme	nt: Air	Rotary Driller: Scarborough Drilling	

Logger: Adrian Garcia Drilling Equipment: Air Rotary Driller: Scarbo Released to Timaging: 1/21/2021 9:46:55

### Received by OCD: 11/3/2020 1:38:09 PM

_	Page	147	of 169	
	0			

Pad	qe	

212C-MD-02192									LOG OF BO	RING BH-6		Page 1 of 1			
Project Name: EVGSAU 2437-001 Release Site Assess								ease	Site	Ass	sessm	nt			
Bore	Borehole Location: GPS Coordinates: 32.818203, -103.492989 Surface Elevation: 3988 ft														
Bore	hole	Nu	nber:	BH-6							Boreh Diame	r (in.): 4 Date Started:	8/19/2020	Date Finishe	ed: 8/19/2020
	ш		ELD ppm)	(mdd	ERY (%)	FENT (%)	of)		<b>JDEX</b>			WATER LEVE	EL OBSERVATION Jpon Completion of Dr		<u>N/A</u> ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	THE CHLORIDE FIELD SCREENING (ppm)	U VOC FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESC	RIPTION	DEPTH (ft)	REMARKS
-		m m	183	0								-CL- SANDY CLAY: Brown occasionally cemented, with odor, no staining.	ι, soft to medium sti ι some pea gravel,	no	BH-6 (0-1')
		Ч	90	0							<u> </u>	Bottom of boreho	ole at 3.0 feet.	3	BH-6 (2-3')
Sam	oler		Solit					Dera	ition						
Sam Type	s:		Split Spoor Shelb Bulk Samp M Grab Samp				r   T		S: Muc Rota	ary itinuou ht Aug sh	us ger	Hand Auger Notes: Air Rotary Direct Push Core Barrel	tical sample interva nn. Surface elevatio	ls are show ns are base	n in the d on Google
Logg	er:	Adria	an Garcia				[	Drillin	g Equ	Jipme	ent: Ha	Auger Driller: Tetra Tech			

#### Received

D	140	6100
 Page	148	of 169

eive	d bj	v 0	<b>CD: 1</b>	1/3/2020	) 1:3	B:09	PM	[										Page 148
212	C-N	1D-0	2192	٦	Ł	ETR	ATEC	H					LC	DG OF BORII	NG BH-7			Page 1 of 1
Proje	ect N	lam	e: E\	/GSAU 2	2437	-001	Rele	ease	Site	Ass	essm	nent						•
Bore	hole	e Lo	cation:	GPS Cod	ordinat	es: 32	2.8182	11, -1	03.492	2947		Surface Eleva	ation:	3988 ft				
Bore	hole	e Nu	mber:	BH-7						E	Boreh	ole 4 eter (in.):		Date Started: 8/	19/2020	Date F	inished	1: 8/19/2020
	E		IELD (ppm)	(mdd)	/ERY (%)	ITENT (%)	ocf)		INDEX			While Drilling Remarks:		ATER LEVEL C <u>N/A</u> ft Upon	DBSERVATI Completion of		<u> </u>	<mark>∖/A_</mark> ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	X CHLORIDE FIELD SCREENING (ppm)	U SCREENING (ppm)	L SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	M	ATEF	RIAL DESCRIF	PTION		DEPTH (ft)	REMARKS
-		89 19 19	123	0								-CL- SAN occasiona odor, no si	lly ce	CLAY: Brown, so mented, with so g.	oft to medium me pea grave	stiff, el, no	_	BH-7 (0-1')
	I	Y	235	0									Botte	om of borehole a	t 3 0 feet		3	BH-7 (2-3')
Sam Type	pler s:	1 1 1	Split Spoo Shelt Bulk Samp Grab Samp	ble	Acetat Vane S Califor Test P	nia	r T		Muc Rota	ary itinuou ht Aug sh	s er	Hand Auger Air Rotary Direct Push Core Barrel	"Ren	s: pratory analytical narks" column. S h data.	sample inter Surface eleva	vals are s tions are	shown based	in the I on Google
Logo	lor.	- ام	ian Cardi-				-	Jrillin		linma	nt		Drillor	a Tata Task				

Logger: Adrian Garcia Drilling Equipment: Hand Auger Driller: Tetra Tech

## APPENDIX F NMSLO Seed Mixture Details



United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for Lea County, New Mexico



# Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

.

## Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Lea County, New Mexico	
KO—Kimbrough gravelly loam, dry, 0 to 3 percent slopes	13
KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes	14
References	17

## **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

#### Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

*Received by OCD: 11/3/2020 1:38:09 PM* 



•

MAPI	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	<ul><li>Spoil Area</li><li>Stony Spot</li></ul>	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils         Soil Map Unit Polygons         Soil Map Unit Lines         Soil Map Unit Points         Special Features         Image: Special Fe	Image: Construction opticImage: C	<ul> <li>Warning: Soil Map may not be valid at this scale.</li> <li>Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.</li> <li>Please rely on the bar scale on each map sheet for map measurements.</li> <li>Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)</li> <li>Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.</li> <li>This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.</li> <li>Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 17, Jun 8, 2020</li> <li>Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.</li> <li>Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020</li> </ul>
Sodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

### **Map Unit Legend**

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
ко	Kimbrough gravelly loam, dry, 0 to 3 percent slopes	0.0	49.7%
KU	Kimbrough-Lea complex, dry, 0 to 3 percent slopes	0.0	50.3%
Totals for Area of Interest		0.1	100.0%

### **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

### Lea County, New Mexico

#### KO—Kimbrough gravelly loam, dry, 0 to 3 percent slopes

#### Map Unit Setting

National map unit symbol: 2tw43 Elevation: 2,500 to 4,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

#### **Map Unit Composition**

*Kimbrough, dry, and similar soils:* 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Kimbrough, Dry**

#### Setting

Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear, concave Parent material: Loamy eolian deposits derived from sedimentary rock

#### **Typical profile**

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

#### **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: 4 to 18 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 95 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water capacity: Very low (about 1.4 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R077DY049TX - Very Shallow 12-17" PZ Hydric soil rating: No

#### **Minor Components**

#### Eunice

Percent of map unit: 10 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Convex Ecological site: R077DY049TX - Very Shallow 12-17" PZ Hydric soil rating: No

#### Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear Ecological site: R077DY049TX - Very Shallow 12-17" PZ Hydric soil rating: No

#### Kenhill

Percent of map unit: 4 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: R077DY038TX - Clay Loam 12-17" PZ Hydric soil rating: No

#### KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

#### Map Unit Setting

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

#### **Map Unit Composition**

*Kimbrough and similar soils:* 45 percent *Lea and similar soils:* 25 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Kimbrough**

#### Setting

Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear, concave Parent material: Loamy eolian deposits derived from sedimentary rock

#### **Custom Soil Resource Report**

#### **Typical profile**

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

#### Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 4 to 18 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 95 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water capacity: Very low (about 1.4 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R077DY049TX - Very Shallow 12-17" PZ Hydric soil rating: No

#### **Description of Lea**

#### Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated caliche of pliocene age

#### **Typical profile**

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

#### Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 22 to 30 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 90 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 3.0

#### Custom Soil Resource Report

Available water capacity: Very low (about 2.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Hydric soil rating: No

#### **Minor Components**

#### Douro

Percent of map unit: 12 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX) Hydric soil rating: No

#### Kenhill

Percent of map unit: 12 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: R077DY038TX - Clay Loam 12-17" PZ Hydric soil rating: No

#### Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear Ecological site: R077DY049TX - Very Shallow 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX) Hydric soil rating: No

# References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

#### Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

## **NMSLO Seed Mix**

## Sandy Loam (SL)

#### SANDY LOAM (SL) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX	
Grasses:				
Galleta grass	Viva, VNS, So.	2.5	F	
Little bluestem	Cimmaron, Pastura	2.5	F	
Blue grama	Hachita, Lovington	2.0	D	
Sideoats grama	Vaughn, El Reno	2.0	F	
Sand dropseed	VNS, Southern	1.0	S	
Forbs:				
Indian blanketflower	VNS, Southern	1.0	D	
Parry penstemon	VNS, Southern	1.0	D	
Blue flax	Appar	1.0	D	
Desert globemallow	VNS, Southern	1.0	D	
Shrubs:				
Fourwing saltbush	VNS, Southern	2.0	D	
Common winterfat	VNS, Southern	1.0	F	
Apache plume	VNS, Southern	0.75	F	
	Total PLS/acr	e 17.75		

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box

• VNS, Southern – No Variety Stated, seed should be from a southern latitude collection of this species.

• Double above seed rates for broadcast or hydroseeding.

• If Parry penstemon is not available, substitute firecracker penstemon.

• If desert globemallow is not available, substitute scarlet globemallow or Nelson globemallow.

• If a species is not available, provide a suggested substitute to the New Mexico Land Office for approval. Increasing all other species proportionately may be acceptable.



CONDITIONS

Action 11045

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 <u>District IV</u> 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

### State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

#### CONDITIONS OF APPROVAL

Operator:	OGRID:	Action Number:	Action Type:			
CONOCOPHILLIPS COMPANY P.O.Box 2197	217817	11045	C-141			
Office SP2-12-W156 Houston, TX77252						
	•		•			
OCD Reviewer	Condition					
ceads	None					