Application ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>95</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🖌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🖌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🖌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🖌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🖌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🖌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🖌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- 🗹 Field data
- Data table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- ✓ Topographic/Aerial maps
- ✓ Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 12/14/2	020 2:43:28 PM State of New Mexico			Page 2 of 113
			Incident ID	nRM2030230289
Page 4	Oil Conservation Division	Oil Conservation Division		
			Facility ID	
			Application ID	
regulations all operators are public health or the environm failed to adequately investig		tifications and perform co OCD does not relieve the reat to groundwater, surfa	orrective actions for rele e operator of liability sho ace water, human health liance with any other feo tal Specialist	ases which may endanger ould their operations have or the environment. In
OCD Only Received by: Cristina	Eads	Date: 12/	/09/2020	

Received by OCD: 12/14/2020 2:43:28 PM
State of New MexicoPage 5Oil Conservation Division

Incident ID	nRM2030230289
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

Scaled sitemap with GPS coordinates showing delineation points

Estimated volume of material to be remediated

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be con	firmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around prodeconstruction.	oduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health	, the environment, or groundwater.
I hereby certify that the information given above is true and complet rules and regulations all operators are required to report and/or file c which may endanger public health or the environment. The acceptan liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local la	ertain release notifications and perform corrective actions for releases nee of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, neceptance of a C-141 report does not relieve the operator of
Printed Name: Robbie Runnels	Title: Environmental Specialist
Signature:	Date: <u>12/2/20</u>
email: rrunnels@mewbourne.com	Telephone: (575)393-5905
OCD Only	
Received by: Cristina Eads	Date: 12/09/2020
Approved Approved with Attached Conditions of A	Approval Denied Deferral Approved
Signature: Justan 2	Date: 02/04/2021

•

Site Assessment Report and **Proposed Remediation Workplan**

Mewbourne Oil Company Carlsbad Water Management System

Eddy County, New Mexico Unit Letters F & K, Section 35, Township 23 South, Range 27 East Latitude 32.261438 North, Longitude 104.163478 West NMOCD Reference No. nRM2030230289

Prepared By:

Etech Environmental & Safety Solutions, Inc. 3100 Plains Highway Lovington, New Mexico 88260

Ben J. Arguijo

1201

Joel W. Lowry

Environmental & Safety Solutions, Inc.

Midland • San Antonio • Lubbock • Lovington • Lafayette

TABLE OF CONTENTS

Section

PROJECT INFORMATION.	1.0
INITIAL SITE ASSESSMENT.	
SITE CHARACTERIZATION AND CLOSURE CRITERIA	
REMEDIATION ACTIVITIES SUMMARY	4.0
PROPOSED REMEDIATION PLAN.	5.0
SAMPLING PLAN.	6 . 0
TIMELINE AND ESTIMATED VOLUME OF SOIL TO BE REMEDIATED	
RESTORATION, RECLAMATION AND RE-VEGETATION PLAN.	
LIMITATIONS.	
DISTRIBUTION	

FIGURES

Figure 1 - Topographic MapFigure 2 - Aerial Proximity MapFigure 3A Site & Sample Location Map - DelineationFigure 3B Site & Sample Location Map - Excavation

TABLES

Table 1 - Concentrations of BTEX, TPH and/or Chloride in Soil

APPENDICES

- Appendix A Field Data and Soil Profile Logs
- Appendix B Laboratory Analytical Reports
- Appendix C Photographic Log
- Appendix D Depth to Groundwater Information
- Appendix E Elevation Profile
- Appendix F Groundwater Quality Data
- Appendix G Chloride Migration Models

1.0 PROJECT INFORMATION

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Mewbourne Oil Company, has prepared this Site Assessment Report and Proposed Remediation Workplan for the release site known as the Carlsbad Water Management System. Details of the release are summarized below:

atitude:	32.261438 Provided	Longitude:	-104.163478	
	d Water Management System	Site Type:	Pipeline	
ate Release Discovere	d: 10/19/2020	API # (if applic	cable): N/A	
Unit Letter Sec	ction Township	Range	County	
F&K	35 238	27E	Eddy	
urface Owner: Sta	ate X Federal Tribal Nature and	Private (National Notation of Least Strength Private (National Network) Pri		
Crude Oil	Volume Released (bbls)		Volume Recovered (bbls)	
X Produced Water	Volume Released (bbls)	150	Volume Recovered (bbls) 20	
	Is the concentration of dissolve produced water > 10,000 mg/L		X Yes No N/A	
Condensate Volume Released (bbls)			Volume Recovered (bbls)	
Natural Gas	Volume Released (Mcf)		Volume Recovered (Mcf)	
Other (describe)	Volume/Weight Released		Volume/Weight Recovered	
Cause of Release: 2" Poly pup joint spli	t on pipeline riser.			
	Ini	tial Response		
X The source of the r	elease has been stopped.			
X The impacted area l	nas been secured to protect human	n health and the en	vironment.	
X Release materials h	nave been contained via the use of	f berms or dikes, al	osorbent pad, or other containment devices	
V All free liquids and	recoverable materials have been	removed and many	and appropriately	

Previously submitted portions of the NMOCD Form C-141 are available on the NMOCD Imaging System.

2.0 INITIAL SITE ASSESSMENT

On November 9, 2020, Etech conducted an initial site assessment. During the initial site assessment, a series of test trenches were advanced within the release margins in an effort to determine the vertical extent of soil impacts. In addition, hand-augered soil bores were advanced at the inferred edges of the affected area in an effort to determine the horizontal extent of soil impacts. During the advancement of the test trenches and hand-augered soil bores, soil samples were collected and field-screened for the presence of Volatile Organic Compounds utilizing a Photoionization Detector (PID) and/or concentrations of chloride utilizing a Hach Quantab ® chloride test kit. Based on field observations and field test data, 16 delineation soil samples (TT1 @ Surface, TT1 @ 11', TT2 @ Surface, TT2 @6', TT3 @ Surface, TT3 @6', TT4 @ Surface, TT4 @7', TT5 @ Surface, TT5 @3', SH1 @ 2.5', NH1 @ 2.5', EH1 @ 2.5', EH2 @ 2.5', WH1 @ 2.5', and WH2 @ 2.5') were submitted to a certified commercial laboratory for analysis of benzene, toluene, ethylbenzene, and xylenes (BTEX); total petroleum hydrocarbons (TPH); and chloride.

Locations of the test trenches and hand-augered soil bores are depicted in Figure 3A, "Site and Sample Location Map - Delineation". Field data is provided in Appendix A. A soil chemistry table is provided as Table 1. Laboratory analytical reports are provided in Appendix B. General photographs of the release site are provided in Appendix C.

3.0 SITE CHARACTERIZATION AND CLOSURE CRITERIA

A search of groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE) and United States Geological Survey (USGS) was conducted in an effort to determine the horizontal distance to known water sources within a halfmile radius of the release site. Probable groundwater depth was determined using data generated by numeric models based on available water well data and published information. Depth to groundwater information is provided in Appendix D.

What is the shallowest depth to groundwater beneath the area affected by the release?	95	feet
Did the release impact groundwater or surface water?	Yes	X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes	X No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark?	Yes	X No
Are the lateral extents of the release within 300 feet of any occupied permanent residence, school, hospital, institution or church?	Yes	X No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes	X No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes	X No
Are the lateral extents of the release within the incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes	X No
Are the lateral extents of the release within 300 feet of a wetland?	Yes	X No
Are the lateral extents of the release overlying a subsurface mine?	Yes	X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes	X No
Are the lateral extents of the release within a 100-year floodplain?	Yes	X No
Did the release impact areas not on an exploration, development, production or storage site?	X Yes	No

NMOCD Siting Criteria data was gathered from available resources including Bureau of Land Management (BLM) and Playa Lakes Joint Venture (PLJV) shapefiles; topographic maps; NMOSE, USGS, and United States Fish & Wildlife Service (USFWS) databases; and aerial imagery. The results are depicted in Figures 1, 2, 4 & 5.

Although portions of the spill affected a low-lying area to the southeast of the point of release, GIS map data provided on the websites of the USFWS's National Wetlands Inventory and the PLJV project does not identify the depression as either a wetland or a probable playa. In addition, elevation data indicates the change in elevation across the depression is less than 4 feet, ranging from 3,143 feet in the approximate center of the depression (i.e., the lowest-lying point) to 3,146 feet along the periphery. An elevation profile is provided in Appendix E.

Review of GIS map data published by the BLM indicates the release site is in an area of "medium" potential for encountering karst and naturally occurring sinkholes. An area of "high" potential was identified approximately 1 mile to the east-southeast of the site. Although the release site is located in an area of medium potential for karst occurrence, which is considered by the NMOCD to be stable, additional investigation into the potential for groundwater impact was warranted.

A search of groundwater quality data in the USGS's National Water Information System indicated the historic concentration of chloride in the area is 340 mg/L, which exceeds the New Mexico Water Quality Control Commission (NMWQCC) standard of 250.0 mg/L specified in Section 20.6.2.3103 B.(1) of the New Mexico Administrative Code (NMAC).

On November 19, 2020, a groundwater sample was collected from a nearby public water supply system well in an effort to confirm the background concentration of chloride at/near the release site. The groundwater sample was submitted to a certified commercial laboratory for analysis of chloride and total dissolved solids (TDS). Laboratory analytical results indicated the chloride concentration was 356 mg/L, and the TDS concentration was 2,050 mg/L.

Since the background concentration of chloride in the groundwater in the area is above the NMWQCC standard of 250.0 mg/L, a less stringent clean-up level for chloride in soil is allowable than would typically be conferred to a site located in an area of medium to high karst potential. To illustrate this, based on the vertical extent of soil impacts determined during the initial site assessment, Etech utilized the American Petroleum Institute's (API) AMIGO Online Decision Support tool to model the migration of in-situ choride contamination to groundwater under the following scenarios: 1.) a 600 mg/kg chloride closure level, with excavation depths ranging from 5 to 10 feet below ground surface (bgs) (see Appendix G, pages 1 through 5), and 2.) a 10,000 mg/kg closure level, with a total excavation depth of 4 feet bgs (Appendix G, pages 6-10). (NOTE: TPH and BTEX were not detected below 4 feet bgs, and thus are not considered contaminants of concern at depth.)

Using the most conservative parameters possible for the release site in regard to depth to water (90 feet), aquifer porosity (0.3), soil profile (medium sand), etc., the model output indicates that the peak concentration of chloride in groundwater contributed by the in-situ contamination would be approximately 350.9 mg/L in 243.4 years under Scenario #1 (600 mg/kg closure level) and 379.2 mg/L in 219.7 years under Scenario #2 (10,000 mg/kg closure level). The migration models effectively demonstrate that a 10,000 mg/kg chloride closure level provides an "equal...protection of fresh water, public health and the environment" as a 600 mg/kg closure level, pursuant to Sections 19.15.29.13.E and 19.15.29.14.A(2) NMAC.

The locations of the USGS and public water supply wells are depicted in Figure 6. Groundwater quality data is provided in Appendix F. AMIGO chloride migration model data is provided in Appendix G.

Based on the information summarized above, Mewbourne Oil Company requests the following Closure Criteria and Reclamation Standards for the site:

Probable Depth to Groundwater	Constituent	Method	Closure Criteria	Reclamation Standard*
	Chloride	EPA 300.0 or SM4500 Cl B	10,000 mg/kg	600 mg/kg
	TPH (GRO + DRO + MRO)	EPA SW-846 Method 8015M Ext	2,500 mg/kg	100 mg/kg
95 feet	DRO + GRO	EPA SW-846 Method 8015M	1,000 mg/kg	-
	BTEX	EPA SW-846 Methods 8021b or 8260b	50 mg/kg	50 mg/kg
	Benzene	EPA SW-846 Methods 8021b or 8260b	10 mg/kg	10 mg/kg

* The NMOCD Reclamation Standard applies only to the top 4' of soil in non-production areas.

4.0 **REMEDIATION ACTIVITIES SUMMARY**

On November 10, 2020, Etech commenced remediation activities at the site. In accordance with NMOCD regulatory guidelines, impacted soil affected above the NMOCD Closure Criteria and/or NMOCD Reclamation Standard was excavated and stockpiled on-site, pending transfer to an NMOCD-approved surface waste facility for disposal. The floor and sidewalls of the excavation were advanced until field observations and test results suggested BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and/or NMOCD Reclamation Standard.

Etech also collected 7 excavation confirmation soil samples (EW1, EW2, EW3, EW5, EW6, EW7, and EW9). The soil samples were submitted to a certified commercial laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and/or the NMOCD Reclamation Standard in each of the submitted soil samples, with the exception of sample EW2, which exhibited a chloride concentration over the NMOCD Reclamation Standard of 600 mg/kg.

On November 11, 2020, Etech collected 2 excavation confirmation soil samples (EW4 E and EW8 B). The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and/or the NMOCD Reclamation Standard in each of the submitted soil samples.

On November 12, 2020, Etech collected 1 excavation confirmation soil sample (SW1 C). The soil sample was submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and/or the NMOCD Reclamation Standard.

On November 16, 2020, Etech collected 4 excavation confirmation soil samples (SW2, WW1 B, WW2 B, and WW3). The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and/or the NMOCD Reclamation Standard in each of the submitted soil samples.

As of November 30, 2020, approximately 5,020 cubic yards of impacted soil had been excavated and transported to an NMOCD-approved surface waste facility for disposal.

Soil sample locations and the footprint of the current excavation are depicted in Figure 3B, "Site and Sample Location Map - Excavation". Field data is provided in Appendix A.

5.0 PROPOSED REMEDIATION PLAN

Based on laboratory analytical results, site characteristics, and field observations made during the initial site assessment and subsequent remediation activities, Mewbourne Oil Company proposes the following remediation activities designed to advance the site toward an approved closure:

• Utilizing mechanical equipment, excavate impacted soil affected above the NMOCD Closure Criteria as follows:

- Approximately 3 feet bgs in the area characterized by sample point TT-5.
- Approximately 4 feet bgs in the areas characterized by sample points TT-1 through TT-4.

• The sidewalls of the excavated areas will be advanced until laboratory analytical results indicate impacted soil affected above the NMOCD Closure Criteria and/or the NMOCD Reclamation Standard has been removed.

• Excavated material will be temporarily stockpiled on-site, pending transfer to an NMOCD-approved facility for disposal.

• Upon excavating impacted soil affected above the NMOCD Closure Criteria and/or the NMOCD Reclamation Standard, collect the requisite excavation confirmation soil samples.

• Upon receiving laboratory analytical results from excavation confirmation soil samples, backfill the excavated area with locally sourced, non-impacted "like" material. The excavated area will then be compacted and contoured to match the surrounding topography.

• Upon completion of remediation activities, a *Remediation Summary and Soil Closure Request* will be prepared, detailing field activities and laboratory analytical results from confirmation soil samples.

6.0 SAMPLING PLAN

On November 10, 2020, Etech submitted a request to the NMOCD for an alternative sampling to include the collection of composite soil samples every 50 linear feet from the excavation sidewalls and every 400 square feet from the base of the excavated area (for an approximate total of 213 floor samples). The request was subsequently approved by the NMOCD.

7.0 TIMELINE AND ESTIMATED VOLUME OF SOIL TO BE REMEDIATED

Remediation activities commenced on November 10, 2020, and are expected to be completed within 90 days of receiving necessary approval(s) of the *Site Assessment Summary and Proposed Remediation Plan*. Based on laboratory analytical results, site characteristics, and field observations made during the initial site assessment and subsequent remediation activities, the total volume of soil remaining to be excavated is approximately 11,302 cubic yards.

8.0 **RESTORATION, RECLAMATION AND RE-VEGETATION PLAN**

Areas affected by remediation and closure activities will be substantially restored to the condition that existed prior to the release, to the extent practicable. Excavated areas will be backfilled with locally sourced, non-impacted "like" material placed at or near original relative positions. The affected area will be contoured and compacted to achieve erosion control, stability, and preservation of surface water flow to the extent practicable. Affected areas not on production pads and/or lease roads will be reseeded with an agency and/or landowner-approved seed mixture during the first favorable growing season following closure of the site.

9.0 LIMITATIONS

Etech Environmental & Safety Solutions, Inc., has prepared this Site Assessment Report and Proposed Remediation Plan to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents reference in the report and on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Mewbourne Oil Company. Use of the information contained in this report is prohibited without the consent of Etech and/or Mewbourne Oil Company.

10.0 DISTRIBUTION

Mewbourne Oil Company 4801 Business Park Blvd. Hobbs, NM 88240

New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 2 811 S. First Street Artesia, NM 88210

United States Department of the Interior Bureau of Land Management

620 E. Greene Street Carlsbad, NM 88220

(Electronic Submission)

Figure 1 Topographic Map

Received by OCD: 12/14/2020 2:43:28 PM

Figure 2 Aerial Proximity Map

Received by OCD: 12/14/2020 2:43:28 PM

Released to Imaging: 2/4/2021 3:15:47 PM

Figure 3A Site and Sample Location Map - Delineation

Received by OCD: 12/14/2020 2:43:28 PM

Released to Imaging: 2/4/2021 3:15:47 PM

•

Figure 3B Site and Sample Location Map - Excavation

Received by OCD: 12/14/2020 2:43:28 PM

Released to Imaging: 2/4/2021 3:15:47 PM

Table 1Concentrations of BTEX, TPH, and/or Chloride in Soil

.

TABLE 1 CONCENTRATIONS OF DENZENE DTEX. TOU AND CHI ODIDE IN SOIL											
	CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL										
Mewbourne Oil Company											
	Carlsbad Water Management System NMOCD Ref. #: nRM2030230289										
NMO	CD Closure C	riteria		10	50	-	-	1,000	-	2,500	10,000
NMOCD	Reclamation	Standard		10	50	-	-	-	-	100	600
					5 8021B		SW	7 846 8015M	Ext.		4500 Cl
	_	_	Soil			GRO	DRO	GRO +	ORO	ТРН	
Sample ID	Date	Depth	Status	Benzene	BTEX	C_6-C_{10}	C ₁₀ -C ₂₈	DRO	C ₂₈ -C ₃₆	C ₆ -C ₃₆	Chloride
				(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	C ₆ -C ₂₈ (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
TT1 @ Surface	11/9/2020	Surface	Excavated	ND	ND	ND	660	660	630	1,290	19,000
TT1 @ 11'	11/9/2020	11'	In-Situ	ND	ND	ND	ND	ND	ND	ND	440
TT2 @ Surface	11/9/2020	Surface	Excavated	ND	ND	ND	16.0	16.0	ND	16.0	23,000
TT2 @6'	11/9/2020	6'	In-Situ	ND	ND	ND	ND	ND	ND	ND	160
TT3 @ Surface	11/9/2020	Surface	In-Situ	ND	ND	ND	780	780	440	1,220	30,000
TT3 @6'	11/9/2020	6'	In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
TT4 @ Surface	11/9/2020	Surface	In-Situ	ND	ND	6.80	34.0	40.8	ND	40.8	27,000
TT4 @7'	11/9/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	200
	11/9/2020		In-Situ	ND	ND	ND	9.70	9.70	ND	9.70	30,000
TT5 @3'	11/9/2020	3'	In-Situ	ND	ND	ND	ND	ND	ND	ND	230
SH1 @ 2.5'	11/9/2020	2.5'	In-Situ	ND	ND	ND	ND	ND	ND	ND	74.0
NH1 @ 2.5'	11/9/2020	2.5'	In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
EH1 @ 2.5'	11/9/2020	2.5'	In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
EH2 @ 2.5'	11/9/2020	2.5'	In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
WH1 @ 2.5'	11/9/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	63.0
WH2 @ 2.5'	11/9/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
EW1	11/10/2020	0' - 4'	In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
EW2	11/10/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	1,600
EW3	11/10/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	310
EW5	11/10/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	71.0
EW6	11/10/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
EW7	11/10/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
EW9	11/10/2020			ND	ND	ND	ND	ND	ND	ND	84.0
EW4 E	11/11/2020			ND	ND	ND	ND	ND	ND	ND	ND
EW8 B	11/11/2020	-	In-Situ	ND	ND	ND	ND	ND	ND	ND	180
SW1 C	11/12/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
SW2	11/16/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
WW1 B	11/16/2020		In-Situ	ND	ND	ND	ND	ND	ND	ND	ND
WW2 B	11/16/2020	-	In-Situ	ND	ND	ND	ND	ND	ND	ND	76.0
WW3	11/16/2020	0' - 4'	In-Situ	ND	ND	ND	11.0	11.0	ND	ND	ND

NOTES:

- = Sample not analyzed for that constituent.

Bold text denotes a concentration that exceeds the NMOCD Closure Criteria

Appendix A Field Data and Soil Profile Logs

<i>f</i> 11:		
e 23 of		
Page	FCH	als
	Environmental & Safet	ty Solutions, Inc.

Sample Log

Date:

11/9/20

Project:	cums	Kelease
Project Num	ber:	3296

Latitude: 32.261438

Longitude: -104.163478

Sample ID	PID/Odor	Chloride Conc.	GPS
TTI@ Surface			
TTIQI'			
TTIQZ			
TTIQ3'			
TTIQU		5644	
TTIES		4848	
TTIQ6'			
TTIE 7'			
TTIES'		>2440	
TTI@q'		1016	
TTI @ 10'		516	
TTIQ IL'		464	
TTZ @ Surface			
TTZO 1'			
TT2 @ 2' TT2 @ 3'			
TTZ @ 4'			
TTZE5'		1632	
TT2 @, 6'		224	
TT3 @ Surface			
TT3 P1'			
TTJEZ			
TT 3@ 3'			
T30 4'		>2440	
TT 3@ 51		572	
TT3C6'		ND	
TT40 Surface			
TI 40 1'			
TT 48 2'			
TT 4@ 3'			
TT 40 4'		>2440	
TT 405		>2440	
11406	L	748	<u> </u>
TT 4@ 7'		268	
TT 50 Surface		ļ	
π 50 μ			
Sample Point = SP #1 @ ## etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b
Floor = FL #1 etc		Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
Sidewall = SW #1 etc		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Areas
Sample Point = SP #1 @ ## etc Floor = FL #1 etc Sidewall = SW #1 etc ## TT Sam	ples R	an @ Vard	

Floor = FL #1 etc

STT Samples Ran @ Vard

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

24 of 113	χ.
Ba Contental & Safety Solutions, Inc.	Sample Log Date: 11/9/20
Project: CWMS Release	

Project: CWMS Project Number:

13296

Latitude: 32.261438 Longitude: -104.163478

Sample ID	PID/Odor	Chloride Conc.	GPS
TT5@ 2'	-		
TT5@3'		572	
C MAMAMAR -	-		
CEREMONDED-	-		
a standard	-		
541@ 212'	-	120	
EHZ@Z'lz	-	ND	4
WHZ @ 2'12'	-	ND 1.	
WHI @ 21/2'		120	
EHI@ 2'12'	-	ND	u
NHI @ 21/2'	~	NO	
Contirmat	rion	Samples	4
EW I	None	148	
BWZ	None	412	
GW 3	None	516	
EW 4	None	516 1988	
EW 5	Nore	184	
EWG	Nane	274	
EW 7	Nane	316	
EW 8	None	1340	
SW 9	None	412	1
EW4B	None	876	
FLI@3'	- NOR	1988	
L 2@3'	-	1432	
EL3@3'		678	
FL 4 @2'	-	876	
EL5@3'	-	1432	
FL6 @ 3'	-	1432	
FL 703'		13-00	
L 803'	-	KUD	
Eg@2'	-	1422.	
FWO8B	-	184	
EW 4R		1616	
W 4C	-	1340	
RIN 4D		876	
WURF	-	364	
Sample Point = SP #1 @ ## etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b
Floor = FL #1 etc		Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
Sidewall = SW #1 etc		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Area
		son intended to be belened = SP #1 @ 4 in-Situ	ard bample rounds, center of comp Area

Sample Log

Date:

11/12/20

CWMS Project Number:

Project:

R 132

Latitude: 37.261433

Longitude: -104. 163428

Sample ID	PID/Odor	Chloride Conc.	GPS
SW IC'	none	316	
SW Z	none	\$ 120	
WW I		72440	
WWZ		72440	
FL 1@ 41		1252	
FL 2@ 4'		>2440	
FL 3@ 4'		1016	
FL 40 4'		748	
FL 50 4'		572	
FL 6@ 4'		628	
FL 7@ 4'		1016	
FL 8@ 4'		120	
EL 9@ 4'		364	
EL 10@ 3'		148	
FLIP 3'		812	
FL 120 41		628	
FL 130 4'		>2440	
FL 140 4'		1432	
FL 15@ 4'		>2440	
FL 16 @ 4'		1252	
FL 17@ 4'		224	
FL 18 @ 4'		>2440	
EL 1904		1432	
A 20 @ 4'		316	
WWIB		<120	
ww2B		268	
WW 3		184	
			the second se
-			
Samala Daint - 50 #1 @ ## atc		Fact Franch - TT 44 Q 44	Paramalan CD H1 @ th an CN H1L
Sample Point = SP #1 @ ## etc Floor = FL #1 etc Sidewall = SW #1 etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b
		Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
Sidewall = SW #1 etc		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Areas

Field Map

Project: CWMS Release

Received by OCD: 12/14/2020 2:43:28 PM

Date: 11/10/20

Appendix B Laboratory Analytical Reports

November 17, 2020

Lance Crenshaw Mewbourne Oil Company PO Box 5270 Hobbs, NM 88241 TEL: (575) 393-5905 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

RE: CWMS Release

OrderNo.: 2011574

Dear Lance Crenshaw:

Hall Environmental Analysis Laboratory received 16 sample(s) on 11/11/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.	Hall Environmental	Analysis	Laboratory,	Inc.
--	--------------------	-----------------	-------------	------

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company Project: CWMS Release				ample II ion Dat		1 @ Surface /9/2020	
Lab ID: 2011574-001	Matrix: SOIL		Recei	ved Dat	e: 11/	/11/2020 8:50:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analys	t: JMT
Chloride	19000	1500		mg/Kg	500) 11/16/2020 3:06:42 PN	1 56440
EPA METHOD 8015D MOD: GASOLINE R	RANGE					Analys	t: DJF
Gasoline Range Organics (GRO)	ND	4.6		mg/Kg	1	11/12/2020 11:22:47 P	M 56378
Surr: BFB	99.7	70-130		%Rec	1	11/12/2020 11:22:47 P	M 56378
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analys	t: BRM
Diesel Range Organics (DRO)	660	98		mg/Kg	10	11/12/2020 11:52:07 P	M 56379
Motor Oil Range Organics (MRO)	630	490		mg/Kg	10	11/12/2020 11:52:07 P	M 56379
Surr: DNOP	0	30.4-154	S	%Rec	10	11/12/2020 11:52:07 P	M 56379
EPA METHOD 8260B: VOLATILES SHOR	T LIST					Analys	t: DJF
Benzene	ND	0.023		mg/Kg	1	11/12/2020 11:22:47 P	M 56378
Toluene	ND	0.046		mg/Kg	1	11/12/2020 11:22:47 P	M 56378
Ethylbenzene	ND	0.046		mg/Kg	1	11/12/2020 11:22:47 P	M 56378
Xylenes, Total	ND	0.092		mg/Kg	1	11/12/2020 11:22:47 P	M 56378
Surr: 1,2-Dichloroethane-d4	92.4	70-130		%Rec	1	11/12/2020 11:22:47 P	M 56378
Surr: 4-Bromofluorobenzene	101	70-130		%Rec	1	11/12/2020 11:22:47 P	M 56378
Surr: Dibromofluoromethane	104	70-130		%Rec	1	11/12/2020 11:22:47 P	M 56378
Surr: Toluene-d8	91.3	70-130		%Rec	1	11/12/2020 11:22:47 P	M 56378

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 23

.

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company		Cl	ient Sample II	D: T7	F1 @ 11'	
Project: CWMS Release		(Collection Dat	e: 11	/9/2020	
Lab ID: 2011574-002	Matrix: SOIL		Received Dat	e: 11	/11/2020 8:50:00 A	М
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Anal	yst: CAS
Chloride	440	60	mg/Kg	20	11/14/2020 10:16:45	5 AM 56440
EPA METHOD 8015D MOD: GASOLINE	RANGE				Anal	yst: DJF
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	11/12/2020 11:49:56	6 PM 56378
Surr: BFB	104	70-130	%Rec	1	11/12/2020 11:49:56	6 PM 56378
EPA METHOD 8015M/D: DIESEL RANG	SE ORGANICS				Anal	yst: BRM
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	11/13/2020 12:15:23	3 AM 56379
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	11/13/2020 12:15:23	3 AM 56379
Surr: DNOP	97.1	30.4-154	%Rec	1	11/13/2020 12:15:23	3 AM 56379
EPA METHOD 8260B: VOLATILES SHO	ORT LIST				Anal	yst: DJF
Benzene	ND	0.023	mg/Kg	1	11/12/2020 11:49:56	6 PM 56378
Toluene	ND	0.046	mg/Kg	1	11/12/2020 11:49:56	6 PM 56378
Ethylbenzene	ND	0.046	mg/Kg	1	11/12/2020 11:49:56	6 PM 56378
Xylenes, Total	ND	0.093	mg/Kg	1	11/12/2020 11:49:56	6 PM 56378
Surr: 1,2-Dichloroethane-d4	92.0	70-130	%Rec	1	11/12/2020 11:49:56	6 PM 56378
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	1	11/12/2020 11:49:56	6 PM 56378
Surr: Dibromofluoromethane	103	70-130	%Rec	1	11/12/2020 11:49:56	6 PM 56378
Surr: Toluene-d8	90.5	70-130	%Rec	1	11/12/2020 11:49:56	6 PM 56378

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 23

Hall Environmental	Analysis	Laboratory,	Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT:	Mewbourne Oil Company		Cl	ient Sample II): TT	2 @ Surface
Project:	CWMS Release		(Collection Dat	e: 11	/9/2020
Lab ID:	2011574-003	Matrix: SOIL		Received Dat	e: 11	/11/2020 8:50:00 AM
Analyses		Result	RL	Qual Units	DF	Date Analyzed Batc
EPA METH	HOD 300.0: ANIONS					Analyst: JMT
Chloride		23000	1500	mg/Kg	50	0 11/16/2020 3:19:06 PM 5644
EPA METH	HOD 8015D MOD: GASOLINE	RANGE				Analyst: DJF
Gasoline F	Range Organics (GRO)	ND	4.9	mg/Kg	1	11/13/2020 12:17:06 AM 5637
Surr: Bl	FB	101	70-130	%Rec	1	11/13/2020 12:17:06 AM 5637
EPA METH	HOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst: BRN
Diesel Rai	nge Organics (DRO)	16	9.9	mg/Kg	1	11/13/2020 12:38:37 AM 5637
Motor Oil	Range Organics (MRO)	ND	50	mg/Kg	1	11/13/2020 12:38:37 AM 5637
Surr: DI	NOP	98.0	30.4-154	%Rec	1	11/13/2020 12:38:37 AM 5637
EPA METH	HOD 8260B: VOLATILES SHO	RT LIST				Analyst: DJF
Benzene		ND	0.025	mg/Kg	1	11/13/2020 12:17:06 AM 5637
Toluene		ND	0.049	mg/Kg	1	11/13/2020 12:17:06 AM 5637
Ethylbenzo	ene	ND	0.049	mg/Kg	1	11/13/2020 12:17:06 AM 5637
Xylenes, T	Total	ND	0.099	mg/Kg	1	11/13/2020 12:17:06 AM 5637
Surr: 1,	2-Dichloroethane-d4	92.4	70-130	%Rec	1	11/13/2020 12:17:06 AM 5637
Surr: 4-	Bromofluorobenzene	101	70-130	%Rec	1	11/13/2020 12:17:06 AM 5637
Surr: Di	ibromofluoromethane	101	70-130	%Rec	1	11/13/2020 12:17:06 AM 5637
Surr: To	oluene-d8	89.7	70-130	%Rec	1	11/13/2020 12:17:06 AM 5637

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 23

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company		Cl	ient Sample II	D: TT	[2 @ 6'	
Project: CWMS Release		(Collection Dat	e: 11	/9/2020	
Lab ID: 2011574-004	Matrix: SOIL		Received Dat	e: 11	/11/2020 8:50:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: CAS
Chloride	160	60	mg/Kg	20	11/14/2020 11:06:08 A	M 56440
EPA METHOD 8015D MOD: GASOLINE	RANGE				Analys	t: DJF
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	11/13/2020 3:26:48 AM	1 56378
Surr: BFB	94.9	70-130	%Rec	1	11/13/2020 3:26:48 AN	1 56378
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analys	t: BRM
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	11/13/2020 1:02:01 AM	1 56379
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	11/13/2020 1:02:01 AM	1 56379
Surr: DNOP	101	30.4-154	%Rec	1	11/13/2020 1:02:01 AN	1 56379
EPA METHOD 8260B: VOLATILES SHO	ORT LIST				Analys	t: DJF
Benzene	ND	0.023	mg/Kg	1	11/13/2020 3:26:48 AM	1 56378
Toluene	ND	0.047	mg/Kg	1	11/13/2020 3:26:48 AN	1 56378
Ethylbenzene	ND	0.047	mg/Kg	1	11/13/2020 3:26:48 AN	1 56378
Xylenes, Total	ND	0.093	mg/Kg	1	11/13/2020 3:26:48 AN	1 56378
Surr: 1,2-Dichloroethane-d4	94.9	70-130	%Rec	1	11/13/2020 3:26:48 AN	1 56378
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	11/13/2020 3:26:48 AN	1 56378
Surr: Dibromofluoromethane	107	70-130	%Rec	1	11/13/2020 3:26:48 AN	1 56378
Surr: Toluene-d8	88.0	70-130	%Rec	1	11/13/2020 3:26:48 AM	1 56378

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р Reporting Limit
- RL

Page 4 of 23

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT:	Mewbourne Oil Company		Cl	ient Sample II	D: TT	ГЗ @ Surface		
Project:	CWMS Release	Collection Date: 11/9/2020						
Lab ID:	2011574-005	Matrix: SOIL		Received Dat	e: 11	/11/2020 8:50:00 AM		
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch	
EPA MET	THOD 300.0: ANIONS					Analyst	: JMT	
Chloride		30000	1500	mg/Kg	50	0 11/16/2020 3:31:30 PM	56440	
EPA MET	THOD 8015D MOD: GASOLINE	RANGE				Analyst	DJF	
Gasoline	e Range Organics (GRO)	ND	4.9	mg/Kg	1	11/13/2020 3:53:53 AM	56378	
Surr: I	BFB	100	70-130	%Rec	1	11/13/2020 3:53:53 AM	56378	
EPA MET	THOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	BRM	
Diesel R	ange Organics (DRO)	780	9.5	mg/Kg	1	11/13/2020 1:25:18 AM	56379	
Motor Oi	il Range Organics (MRO)	440	47	mg/Kg	1	11/13/2020 1:25:18 AM	56379	
Surr: I	DNOP	109	30.4-154	%Rec	1	11/13/2020 1:25:18 AM	56379	
EPA MET	THOD 8260B: VOLATILES SHO	ORT LIST				Analyst	DJF	
Benzene	9	ND	0.024	mg/Kg	1	11/13/2020 3:53:53 AM	56378	
Toluene		ND	0.049	mg/Kg	1	11/13/2020 3:53:53 AM	56378	
Ethylben	izene	ND	0.049	mg/Kg	1	11/13/2020 3:53:53 AM	56378	
Xylenes,	Total	ND	0.098	mg/Kg	1	11/13/2020 3:53:53 AM	56378	
Surr:	1,2-Dichloroethane-d4	93.8	70-130	%Rec	1	11/13/2020 3:53:53 AM	56378	
Surr: 4	4-Bromofluorobenzene	99.1	70-130	%Rec	1	11/13/2020 3:53:53 AM	56378	
Surr: I	Dibromofluoromethane	106	70-130	%Rec	1	11/13/2020 3:53:53 AM	56378	
Surr:	Toluene-d8	87.7	70-130	%Rec	1	11/13/2020 3:53:53 AM	56378	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 23

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company		Cli	ient Sample II): TT	73 @ 6'	
Project: CWMS Release		(Collection Dat	e: 11,	/9/2020	
Lab ID: 2011574-006	Matrix: SOIL		Received Dat	e: 11	/11/2020 8:50:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: CAS
Chloride	ND	60	mg/Kg	20	11/14/2020 11:55:31 A	M 56440
EPA METHOD 8015D MOD: GASOLINE I	RANGE				Analys	t: DJF
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	11/13/2020 4:20:58 AM	/ 56378
Surr: BFB	99.8	70-130	%Rec	1	11/13/2020 4:20:58 AM	1 56378
EPA METHOD 8015M/D: DIESEL RANGE	E ORGANICS				Analys	t: BRM
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	11/13/2020 1:48:32 AM	/ 56379
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	11/13/2020 1:48:32 AM	1 56379
Surr: DNOP	111	30.4-154	%Rec	1	11/13/2020 1:48:32 AM	/ 56379
EPA METHOD 8260B: VOLATILES SHOP	RT LIST				Analys	t: DJF
Benzene	ND	0.024	mg/Kg	1	11/13/2020 4:20:58 AM	/ 56378
Toluene	ND	0.048	mg/Kg	1	11/13/2020 4:20:58 AM	/ 56378
Ethylbenzene	ND	0.048	mg/Kg	1	11/13/2020 4:20:58 AM	1 56378
Xylenes, Total	ND	0.096	mg/Kg	1	11/13/2020 4:20:58 AM	1 56378
Surr: 1,2-Dichloroethane-d4	93.0	70-130	%Rec	1	11/13/2020 4:20:58 AM	1 56378
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	11/13/2020 4:20:58 AM	1 56378
Surr: Dibromofluoromethane	105	70-130	%Rec	1	11/13/2020 4:20:58 AM	1 56378
Surr: Toluene-d8	89.4	70-130	%Rec	1	11/13/2020 4:20:58 AM	1 56378

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 23

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Comp	pany	Cli	ient Sample II	D: T	Г4 @ Surface			
Project: CWMS Release		Collection Date: 11/9/2020						
Lab ID: 2011574-007	Matrix: SOIL		Received Dat	e: 11	/11/2020 8:50:00 AM			
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analyst	: JMT		
Chloride	27000	1500	mg/Kg	50	0 11/16/2020 3:43:55 PM	56440		
EPA METHOD 8015D MOD: GA	SOLINE RANGE				Analyst	DJF		
Gasoline Range Organics (GRO)	6.8	4.9	mg/Kg	1	11/13/2020 3:13:40 AM	56381		
Surr: BFB	102	70-130	%Rec	1	11/13/2020 3:13:40 AM	56381		
EPA METHOD 8015M/D: DIESE	EL RANGE ORGANICS				Analyst	BRM		
Diesel Range Organics (DRO)	34	9.5	mg/Kg	1	11/13/2020 5:37:32 AM	56385		
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/13/2020 5:37:32 AM	56385		
Surr: DNOP	92.1	30.4-154	%Rec	1	11/13/2020 5:37:32 AM	56385		
EPA METHOD 8260B: VOLATI	LES SHORT LIST				Analyst	DJF		
Benzene	ND	0.025	mg/Kg	1	11/13/2020 3:13:40 AM	56381		
Toluene	ND	0.049	mg/Kg	1	11/13/2020 3:13:40 AM	56381		
Ethylbenzene	ND	0.049	mg/Kg	1	11/13/2020 3:13:40 AM	56381		
Xylenes, Total	ND	0.099	mg/Kg	1	11/13/2020 3:13:40 AM	56381		
Surr: 1,2-Dichloroethane-d4	112	70-130	%Rec	1	11/13/2020 3:13:40 AM	56381		
Surr: 4-Bromofluorobenzene	99.9	70-130	%Rec	1	11/13/2020 3:13:40 AM	56381		
Surr: Dibromofluoromethane	109	70-130	%Rec	1	11/13/2020 3:13:40 AM	56381		
Surr: Toluene-d8	98.1	70-130	%Rec	1	11/13/2020 3:13:40 AM	56381		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 23

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company Project: CWMS Release	Client Sample ID: TT4 @ 7' Collection Date: 11/9/2020					
Lab ID: 2011574-008	Matrix: SOIL	SOIL Received Date: 11/11/2020 8:50:00 AM				
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	200	60	mg/Kg	20	11/14/2020 12:20:12 PM	A 56440
EPA METHOD 8015D MOD: GASOLINE RANGE Analyst: D						DJF
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/13/2020 4:38:44 AM	56381
Surr: BFB	102	70-130	%Rec	1	11/13/2020 4:38:44 AM	56381
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS					Analyst	BRM
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	11/13/2020 7:13:32 AM	56385
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	11/13/2020 7:13:32 AM	56385
Surr: DNOP	91.7	30.4-154	%Rec	1	11/13/2020 7:13:32 AM	56385
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst	DJF
Benzene	ND	0.025	mg/Kg	1	11/13/2020 4:38:44 AM	56381
Toluene	ND	0.050	mg/Kg	1	11/13/2020 4:38:44 AM	56381
Ethylbenzene	ND	0.050	mg/Kg	1	11/13/2020 4:38:44 AM	56381
Xylenes, Total	ND	0.10	mg/Kg	1	11/13/2020 4:38:44 AM	56381
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	1	11/13/2020 4:38:44 AM	56381
Surr: 4-Bromofluorobenzene	94.7	70-130	%Rec	1	11/13/2020 4:38:44 AM	56381
Surr: Dibromofluoromethane	106	70-130	%Rec	1	11/13/2020 4:38:44 AM	56381
Surr: Toluene-d8	105	70-130	%Rec	1	11/13/2020 4:38:44 AM	56381

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 23

.
Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company	Client Sample ID: TT5 @ Surface Collection Date: 11/9/2020									
Project: CWMS Release										
Lab ID: 2011574-009	Matrix: SOIL	Matrix: SOIL Received Date: 11/11/2020 8:50								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS					Analyst	: JMT				
Chloride	30000	1500	mg/Kg	50	0 11/16/2020 4:21:07 PN	56440				
EPA METHOD 8015D MOD: GASOLINE	RANGE				Analyst	DJF				
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	11/13/2020 6:03:53 AN	I 56381				
Surr: BFB	107	70-130	%Rec	1	11/13/2020 6:03:53 AN	I 56381				
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	BRM				
Diesel Range Organics (DRO)	9.7	9.6	mg/Kg	1	11/13/2020 7:37:38 AN	56385				
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/13/2020 7:37:38 AN	56385				
Surr: DNOP	107	30.4-154	%Rec	1	11/13/2020 7:37:38 AN	56385				
EPA METHOD 8260B: VOLATILES SHO	ORT LIST				Analyst	: DJF				
Benzene	ND	0.024	mg/Kg	1	11/13/2020 6:03:53 AN	56381				
Toluene	ND	0.047	mg/Kg	1	11/13/2020 6:03:53 AN	I 56381				
Ethylbenzene	ND	0.047	mg/Kg	1	11/13/2020 6:03:53 AN	I 56381				
Xylenes, Total	ND	0.095	mg/Kg	1	11/13/2020 6:03:53 AN	I 56381				
Surr: 1,2-Dichloroethane-d4	107	70-130	%Rec	1	11/13/2020 6:03:53 AN	I 56381				
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	11/13/2020 6:03:53 AN	56381				
Surr: Dibromofluoromethane	109	70-130	%Rec	1	11/13/2020 6:03:53 AN	56381				
Surr: Toluene-d8	104	70-130	%Rec	1	11/13/2020 6:03:53 AN	I 56381				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 9 of 23

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company	Client Sample ID: TT5 @ 3' Collection Date: 11/9/2020								
Project: CWMS Release		(Collection Dat	e: 11	/9/2020				
Lab ID: 2011574-010	Matrix: SOIL Received Date: 11/11/2020 8:50:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst:	CAS			
Chloride	230	60	mg/Kg	20	11/14/2020 12:44:56 PN	1 56440			
EPA METHOD 8015D MOD: GASOLINE F	RANGE				Analyst:	DJF			
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	11/13/2020 6:32:25 AM	56381			
Surr: BFB	100	70-130	%Rec	1	11/13/2020 6:32:25 AM	56381			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	BRM			
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	11/13/2020 8:01:21 AM	56385			
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/13/2020 8:01:21 AM	56385			
Surr: DNOP	84.3	30.4-154	%Rec	1	11/13/2020 8:01:21 AM	56385			
EPA METHOD 8260B: VOLATILES SHOP	RT LIST				Analyst:	DJF			
Benzene	ND	0.024	mg/Kg	1	11/13/2020 6:32:25 AM	56381			
Toluene	ND	0.047	mg/Kg	1	11/13/2020 6:32:25 AM	56381			
Ethylbenzene	ND	0.047	mg/Kg	1	11/13/2020 6:32:25 AM	56381			
Xylenes, Total	ND	0.094	mg/Kg	1	11/13/2020 6:32:25 AM	56381			
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	1	11/13/2020 6:32:25 AM	56381			
Surr: 4-Bromofluorobenzene	99.1	70-130	%Rec	1	11/13/2020 6:32:25 AM	56381			
Surr: Dibromofluoromethane	119	70-130	%Rec	1	11/13/2020 6:32:25 AM	56381			
Surr: Toluene-d8	99.2	70-130	%Rec	1	11/13/2020 6:32:25 AM	56381			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 10 of 23

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company Project: CWMS Release	Client Sample ID: SH1 @ 2.5' Collection Date: 11/9/2020								
Lab ID: 2011574-011	Matrix: SOIL Received Date: 11/11/2020 8:50:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	CAS			
Chloride	74	60	mg/Kg	20	11/14/2020 12:57:17 PI	M 56440			
EPA METHOD 8015D MOD: GASOLINE R	ANGE				Analyst	DJF			
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	11/13/2020 11:21:11 AI	M 56381			
Surr: BFB	97.0	70-130	%Rec	1	11/13/2020 11:21:11 AI	M 56381			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM			
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	11/13/2020 8:25:15 AM	56385			
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	11/13/2020 8:25:15 AM	56385			
Surr: DNOP	81.7	30.4-154	%Rec	1	11/13/2020 8:25:15 AM	56385			
EPA METHOD 8260B: VOLATILES SHOR	T LIST				Analyst	DJF			
Benzene	ND	0.024	mg/Kg	1	11/13/2020 11:21:11 AI	M 56381			
Toluene	ND	0.047	mg/Kg	1	11/13/2020 11:21:11 AI	M 56381			
Ethylbenzene	ND	0.047	mg/Kg	1	11/13/2020 11:21:11 AI	M 56381			
Xylenes, Total	ND	0.094	mg/Kg	1	11/13/2020 11:21:11 AI	M 56381			
Surr: 1,2-Dichloroethane-d4	111	70-130	%Rec	1	11/13/2020 11:21:11 AI	M 56381			
Surr: 4-Bromofluorobenzene	95.2	70-130	%Rec	1	11/13/2020 11:21:11 AI	M 56381			
Surr: Dibromofluoromethane	118	70-130	%Rec	1	11/13/2020 11:21:11 Al	M 56381			
Surr: Toluene-d8	97.8	70-130	%Rec	1	11/13/2020 11:21:11 Al	M 56381			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit
- Page 11 of 23

Hall Environmental	Analysis	Laboratory,	Inc.
	•		

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company	Client Sample ID: NH1 @ 2.5'								
Project: CWMS Release	Collection Date: 11/9/2020								
Lab ID: 2011574-012	Matrix: SOIL	/11/2020 8:50:00 AM							
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst:	CAS			
Chloride	ND	60	mg/Kg	20	11/14/2020 1:09:38 PM	56440			
EPA METHOD 8015D MOD: GASOLINE I	RANGE				Analyst:	DJF			
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	11/13/2020 11:49:32 AM	56381			
Surr: BFB	102	70-130	%Rec	1	11/13/2020 11:49:32 AM	56381			
EPA METHOD 8015M/D: DIESEL RANGE	E ORGANICS				Analyst:	BRM			
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	11/13/2020 8:49:07 AM	56385			
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/13/2020 8:49:07 AM	56385			
Surr: DNOP	63.0	30.4-154	%Rec	1	11/13/2020 8:49:07 AM	56385			
EPA METHOD 8260B: VOLATILES SHOP	RT LIST				Analyst:	DJF			
Benzene	ND	0.024	mg/Kg	1	11/13/2020 11:49:32 AM	56381			
Toluene	ND	0.047	mg/Kg	1	11/13/2020 11:49:32 AM	56381			
Ethylbenzene	ND	0.047	mg/Kg	1	11/13/2020 11:49:32 AM	56381			
Xylenes, Total	ND	0.095	mg/Kg	1	11/13/2020 11:49:32 AM	56381			
Surr: 1,2-Dichloroethane-d4	105	70-130	%Rec	1	11/13/2020 11:49:32 AM	56381			
Surr: 4-Bromofluorobenzene	99.0	70-130	%Rec	1	11/13/2020 11:49:32 AM	56381			
Surr: Dibromofluoromethane	106	70-130	%Rec	1	11/13/2020 11:49:32 AM	56381			
Surr: Toluene-d8	95.1	70-130	%Rec	1	11/13/2020 11:49:32 AM	56381			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit
- Page 12 of 23

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company	Client Sample ID: EH1 @ 2.5' Collection Date: 11/9/2020								
Project: CWMS Release									
Lab ID: 2011574-013	Matrix: SOIL	Matrix: SOIL Received Date: 11/11/2020 8:50:							
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analys	t: CAS			
Chloride	ND	60	mg/Kg	20	11/14/2020 1:21:58 PM	1 56440			
EPA METHOD 8015D MOD: GASOLINE	RANGE				Analys	t: DJF			
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/13/2020 12:17:58 P	M 56381			
Surr: BFB	100	70-130	%Rec	1	11/13/2020 12:17:58 P	M 56381			
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analys	t: BRM			
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	11/13/2020 9:13:06 AM	1 56385			
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	11/13/2020 9:13:06 AM	1 56385			
Surr: DNOP	39.4	30.4-154	%Rec	1	11/13/2020 9:13:06 AM	1 56385			
EPA METHOD 8260B: VOLATILES SHO	ORT LIST				Analys	t: DJF			
Benzene	ND	0.025	mg/Kg	1	11/13/2020 12:17:58 P	M 56381			
Toluene	ND	0.050	mg/Kg	1	11/13/2020 12:17:58 P	M 56381			
Ethylbenzene	ND	0.050	mg/Kg	1	11/13/2020 12:17:58 P	M 56381			
Xylenes, Total	ND	0.10	mg/Kg	1	11/13/2020 12:17:58 P	M 56381			
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	11/13/2020 12:17:58 P	M 56381			
Surr: 4-Bromofluorobenzene	98.4	70-130	%Rec	1	11/13/2020 12:17:58 P	M 56381			
Surr: Dibromofluoromethane	110	70-130	%Rec	1	11/13/2020 12:17:58 P	M 56381			
Surr: Toluene-d8	102	70-130	%Rec	1	11/13/2020 12:17:58 P	M 56381			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL
 - Reporting Limit

Page 13 of 23

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company Project: CWMS Release	Client Sample ID: EH2 @ 2.5' Collection Date: 11/9/2020								
Lab ID: 2011574-014	Matrix: SOIL Received Date: 11/11/2020 8:50:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst:	CAS			
Chloride	ND	60	mg/Kg	20	11/14/2020 1:34:19 PM	56440			
EPA METHOD 8015D MOD: GASOLINE R	ANGE				Analyst:	DJF			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/13/2020 12:46:25 PM	56381			
Surr: BFB	101	70-130	%Rec	1	11/13/2020 12:46:25 PM	56381			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	BRM			
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	11/13/2020 9:37:03 AM	56385			
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	11/13/2020 9:37:03 AM	56385			
Surr: DNOP	50.5	30.4-154	%Rec	1	11/13/2020 9:37:03 AM	56385			
EPA METHOD 8260B: VOLATILES SHOR	T LIST				Analyst:	DJF			
Benzene	ND	0.024	mg/Kg	1	11/13/2020 12:46:25 PM	56381			
Toluene	ND	0.049	mg/Kg	1	11/13/2020 12:46:25 PM	56381			
Ethylbenzene	ND	0.049	mg/Kg	1	11/13/2020 12:46:25 PM	56381			
Xylenes, Total	ND	0.098	mg/Kg	1	11/13/2020 12:46:25 PM	56381			
Surr: 1,2-Dichloroethane-d4	108	70-130	%Rec	1	11/13/2020 12:46:25 PM	56381			
Surr: 4-Bromofluorobenzene	95.4	70-130	%Rec	1	11/13/2020 12:46:25 PM	56381			
Surr: Dibromofluoromethane	107	70-130	%Rec	1	11/13/2020 12:46:25 PM	56381			
Surr: Toluene-d8	102	70-130	%Rec	1	11/13/2020 12:46:25 PM	56381			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 14 of 23

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported:	11/17/2020
----------------	------------

CLIENT: Mewbourne Oil Company	Client Sample ID: WH1 @ 2.5'									
Project: CWMS Release	Collection Date: 11/9/2020									
Lab ID: 2011574-015	Matrix: SOIL	Matrix: SOIL Received Date: 11/11/2020								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS					Analys	t: CAS				
Chloride	63	60	mg/Kg	20	11/14/2020 2:11:21 PN	1 56440				
EPA METHOD 8015D MOD: GASOLINE	RANGE				Analys	t: DJF				
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/13/2020 1:14:55 PN	1 56381				
Surr: BFB	104	70-130	%Rec	1	11/13/2020 1:14:55 PN	1 56381				
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analys	t: BRM				
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	11/13/2020 10:00:58 A	M 56385				
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	11/13/2020 10:00:58 A	M 56385				
Surr: DNOP	37.8	30.4-154	%Rec	1	11/13/2020 10:00:58 A	M 56385				
EPA METHOD 8260B: VOLATILES SHO	RT LIST				Analys	t: DJF				
Benzene	ND	0.024	mg/Kg	1	11/13/2020 1:14:55 PN	1 56381				
Toluene	ND	0.049	mg/Kg	1	11/13/2020 1:14:55 PN	1 56381				
Ethylbenzene	ND	0.049	mg/Kg	1	11/13/2020 1:14:55 PN	1 56381				
Xylenes, Total	ND	0.098	mg/Kg	1	11/13/2020 1:14:55 PN	1 56381				
Surr: 1,2-Dichloroethane-d4	109	70-130	%Rec	1	11/13/2020 1:14:55 PN	1 56381				
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	11/13/2020 1:14:55 PN	1 56381				
Surr: Dibromofluoromethane	111	70-130	%Rec	1	11/13/2020 1:14:55 PN	1 56381				
Surr: Toluene-d8	102	70-130	%Rec	1	11/13/2020 1:14:55 PN	1 56381				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 15 of 23

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011574

Date Reported: 11/17/2020

CLIENT: Mewbourne Oil Company Project: CWMS Release	Client Sample ID: WH2 @ 2.5' Collection Date: 11/9/2020								
Lab ID: 2011574-016	Matrix: SOIL Received Date: 11/11/2020 8:50:00 AM								
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS						Analyst	CAS		
Chloride	ND	60		mg/Kg	20	11/14/2020 2:23:41 PM	56440		
EPA METHOD 8015D MOD: GASOLINE R	ANGE					Analyst	DJF		
Gasoline Range Organics (GRO)	ND	4.6		mg/Kg	1	11/13/2020 1:43:33 PM	56381		
Surr: BFB	102	70-130		%Rec	1	11/13/2020 1:43:33 PM	56381		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	BRM		
Diesel Range Organics (DRO)	ND	9.6		mg/Kg	1	11/13/2020 10:24:49 AM	1 56385		
Motor Oil Range Organics (MRO)	ND	48		mg/Kg	1	11/13/2020 10:24:49 AM	/ 56385		
Surr: DNOP	29.6	30.4-154	S	%Rec	1	11/13/2020 10:24:49 AN	1 56385		
EPA METHOD 8260B: VOLATILES SHOR	T LIST					Analyst	DJF		
Benzene	ND	0.023		mg/Kg	1	11/13/2020 1:43:33 PM	56381		
Toluene	ND	0.046		mg/Kg	1	11/13/2020 1:43:33 PM	56381		
Ethylbenzene	ND	0.046		mg/Kg	1	11/13/2020 1:43:33 PM	56381		
Xylenes, Total	ND	0.092		mg/Kg	1	11/13/2020 1:43:33 PM	56381		
Surr: 1,2-Dichloroethane-d4	109	70-130		%Rec	1	11/13/2020 1:43:33 PM	56381		
Surr: 4-Bromofluorobenzene	99.8	70-130		%Rec	1	11/13/2020 1:43:33 PM	56381		
Surr: Dibromofluoromethane	111	70-130		%Rec	1	11/13/2020 1:43:33 PM	56381		
Surr: Toluene-d8	97.3	70-130		%Rec	1	11/13/2020 1:43:33 PM	56381		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

Page 16 of 23

Client: Project:		ourne Oil Con 5 Release	npany								
Sample ID: MB-56440 SampType: mblk TestCode: EPA Method 300.0: Anions											
Client ID:	Client ID: PBS Batch ID: 56440 RunNo: 73376										
Prep Date:	11/14/2020	Analysis Da	ate: 1 1	/14/2020	5	SeqNo: 25	583230	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-56440	SampTy	/pe: Ics	5	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch	ID: 564	440	F	RunNo: 73	3376				
Prep Date:	11/14/2020	Analysis Da	ate: 11	/14/2020	S	SeqNo: 2	583240	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	94.3	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 23

WO#: 2011574 17-Nov-20

Client: Mewbou Project: CWMS	rne Oil Company Release	1							
U									
Sample ID: MB-56364	SampType: N					8015M/D: Die	sel Rang	e Organics	
Client ID: PBS	Batch ID: 5			RunNo: 73		11 11 or P			
Prep Date: 11/11/2020	Analysis Date:	11/12/2020	5	SeqNo: 25	580072	Units: %Rec			
Analyte	Result PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	11	10.00		107	30.4	154			
Sample ID: LCS-56364	SampType: L	.CS	Tes	tCode: EP	PA Method	8015M/D: Die	sel Rang	e Organics	
Client ID: LCSS	Batch ID: 5	6364	F	RunNo: 73	3311				
Prep Date: 11/11/2020	Analysis Date:	11/12/2020	S	SeqNo: 25	580073	Units: %Rec			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	5.2	5.000		104	30.4	154			
Sample ID: MB-56379	SampType: N	IBLK	Tes	tCode: EP	PA Method	8015M/D: Die	sel Rang	e Organics	
Client ID: PBS	Batch ID: 5			RunNo: 73			. 3	₩ · ·	
Prep Date: 11/11/2020	Analysis Date:	11/12/2020	S	SeqNo: 25	580174	Units: mg/K	a		
Analyte	, Result PQL		SPK Ref Val			•	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND 1		SFK Rei Vai	%REC	LowLimit	HighLimit	70KFD	REDLIIIII	Quai
Motor Oil Range Organics (MRO)	ND 5								
Surr: DNOP	12	10.00		125	30.4	154			
Sample ID: LCS-56379	SampType: L	.CS	Tes	tCode: EP	PA Method	8015M/D: Die	sel Rang	e Organics	
Client ID: LCSS	Batch ID: 5	6379	F	RunNo: 73	3311				
Prep Date: 11/11/2020	Analysis Date:	11/12/2020	S	SeqNo: 25	580184	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	49 1		0	98.3	70	130			
Surr: DNOP	5.3	5.000		106	30.4	154			
Sample ID: 2011574-007AMS	SampType: N	IS	Tes	tCode: EP	PA Method	8015M/D: Die	sel Rang	e Organics	
Client ID: TT4 @ Surface	Batch ID: 5	6385	F	RunNo: 73	3324				
Prep Date: 11/11/2020	Analysis Date:	11/13/2020	S	SeqNo: 25	580666	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	89 9.	7 48.69	33.96	112	15	184			
Surr: DNOP	13	14.61		90.1	30.4	154			
Sample ID: 2011574-007AMS	D SampType: N	ISD	Tes	tCode: EP	PA Method	8015M/D: Die	sel Rang	e Organics	
		6385	F	RunNo: 73	3324				
Client ID: TT4 @ Surface	Batch ID: 5	0000							
Client ID: TT4 @ Surface Prep Date: 11/11/2020	Batch ID: 5 Analysis Date:			SeqNo: 25	580667	Units: mg/K	g		
		11/13/2020		SeqNo: 25 %REC	580667 LowLimit	Units: mg/K HighLimit	g %RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

2011574

17-Nov-20

WO#:

Client:		ne Oil Comp	any								
Project:	CWMS R	elease									
Sample ID:	2011574-007AMSD	SampType	: MSI	D	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID:	TT4 @ Surface	Batch ID	: 563	85	F	RunNo: 7	3324				
Prep Date:	11/11/2020	Analysis Date	: 11/	13/2020	S	eqNo: 2	580667	Units: mg/Kg	g		
Analyte		Result F	QL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		14		14.66		95.6	30.4	154	0	0	
Sample ID:	LCS-56385	SampType	: LCS	3	Tes	tCode: EF	PA Method	8015M/D: Die	sel Rang	e Organics	
Client ID:	LCSS	Batch ID	: 563	85	R	RunNo: 7	3324				
Prep Date:	11/11/2020	Analysis Date	: 11/	13/2020	S	eqNo: 2	580726	Units: mg/K	g		
Analyte		Result F	QL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	46	10	50.00	0	92.4	70	130			
Surr: DNOP		3.3		5.000		66.5	30.4	154			
Sample ID:	MB-56385	SampType	: MBI	LK	Tes	tCode: EF	PA Method	8015M/D: Die	sel Rang	e Organics	
Client ID:	PBS	Batch ID	: 563	85	F	RunNo: 7	3324				
Prep Date:	11/11/2020	Analysis Date	: 11/	13/2020	S	eqNo: 2	580730	Units: mg/Kg	g		
Analyte		Result F	QL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	Organics (DRO)	ND	10								
-	e Organics (MRO)	ND	50								
Surr: DNOP		9.0		10.00		90.4	30.4	154			
Sample ID:	MB-56424	SampType	: MBI	LK	Tes	tCode: EF	PA Method	8015M/D: Die	sel Rang	e Organics	
Client ID:	PBS	Batch ID	: 564	24	R	RunNo: 7	3324				
Prep Date:	11/13/2020	Analysis Date	: 11/	14/2020	S	eqNo: 2	582778	Units: %Rec			
Analyte		Result F	QL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		0		10.00		0	30.4	154			S
Sample ID:	LCS-56424	SampType	: LCS		Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID:	LCSS	Batch ID	: 564	24	R	RunNo: 7:	3324				
Prep Date:	11/13/2020	Analysis Date	: 11/	14/2020	S	eqNo: 2	582780	Units: %Rec			
Analyte		Result F	QL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		0		5.000		0	30.4	154			S

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

2011574

17-Nov-20

WO#:

Client:MewbourProject:CWMS F	rne Oil Co Release	ompany										
Sample ID: mb-56381	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: Volat	iles Short	List			
Client ID: PBS	Batc	h ID: 56	381	F	RunNo: 7	3317						
Prep Date: 11/11/2020	Analysis I	Date: 11	/13/2020	S	SeqNo: 2	580507	Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	0.025										
Toluene	ND	0.050										
Ethylbenzene	ND	0.050										
Xylenes, Total	ND	0.10										
Surr: 1,2-Dichloroethane-d4	0.53		0.5000		107	70	130					
Surr: 4-Bromofluorobenzene	0.50		0.5000		99.3	70	130					
Surr: Dibromofluoromethane	0.52		0.5000		104	70	130					
Surr: Toluene-d8	0.51		0.5000		102	70	130					
Sample ID: Ics-56381	Samp	Type: LC	S4	TestCode: EPA Method 8260B: Volatiles Short List								
Client ID: BatchQC	Bato	h ID: 56	381	F	RunNo: 7 :	3317						
Prep Date: 11/11/2020	Analysis I	Date: 11	/13/2020	S	SeqNo: 2	580521	Units: mg/K	(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	1.0	0.025	1.000	0	101	80	120					
Toluene	1.0	0.050	1.000	0	102	80	120					
Ethylbenzene	1.1	0.050	1.000	0	107	80	120					
Xylenes, Total	3.3	0.10	3.000	0	110	80	120					
Surr: 1,2-Dichloroethane-d4	0.53		0.5000		107	70	130					
Surr: 4-Bromofluorobenzene	0.48		0.5000		96.8	70	130					
Surr: Dibromofluoromethane	0.51		0.5000		102	70	130					
Surr: Toluene-d8	0.49		0.5000		98.5	70	130					
Sample ID: 2011574-008ams	Samp	Type: MS	54	Tes	List							
Client ID: TT4 @ 7'	Bato	h ID: 56	381	F	RunNo: 7	3317						
Prep Date: 11/11/2020	Analysis I	Date: 11	/13/2020	S	BeqNo: 2	580538	Units: mg/K	(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	1.0	0.023	0.9381	0	110	71.1	115					
Toluene	1.1	0.047	0.9381	0	117	79.6	132					
Ethylbenzene	1.1	0.047	0.9381	0	119	83.8	134					
Xylenes, Total	3.6	0.094	2.814	0	127	82.4	132					
Surr: 1,2-Dichloroethane-d4	0.48		0.4690		103	70	130					
					00 5		120					
Surr: 4-Bromofluorobenzene	0.45		0.4690		96.5	70	130					
	0.45 0.50		0.4690 0.4690		96.5 106	70 70	130					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	2011574
	17_Nov_20

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Mewbourne Oil Company

Project: CWMS F	Release													
Sample ID: 2011574-008amsc	d Samp [*]	Туре: МS	SD4	TestCode: EPA Method 8260B: Volatiles Short List										
Client ID: TT4 @ 7'	Batc	h ID: 56	381	RunNo: 73317										
Prep Date: 11/11/2020	Analysis I	Date: 1 1	1/13/2020 SeqNo: 2580543			Units: mg/Kg								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene	1.1	0.024	0.9690	0	110	71.1	115	0	20					
Toluene	1.1	0.048	0.9690	0	114	79.6	132	0	20					
Ethylbenzene	1.1	0.048	0.9690	0	114	83.8	134	0	20					
Xylenes, Total	3.5	0.097	2.907	0	121	82.4	132	0	20					
Surr: 1,2-Dichloroethane-d4	0.53		0.4845		109	70	130	0	0					
Surr: 4-Bromofluorobenzene	0.47		0.4845		96.9	70	130	0	0					
Surr: Dibromofluoromethane	0.52		0.4845		107	70	130	0	0					
Surr: Toluene-d8	0.49		0.4845		101	70	130	0	0					
Sample ID: mb-56378	Samp	Type: ME	BLK	Tes	tCode: EF	PA Method	8260B: Volat	tiles Short	List					
Client ID: PBS	Bato	Batch ID: 56378			RunNo: 7	3322								
Prep Date: 11/11/2020	Analysis I	Analysis Date: 11/12/2020		S	BeqNo: 2	580606	Units: mg/K	٢g						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene	ND	0.025												
Toluene	ND	0.050												
Ethylbenzene	ND	0.050												
Xylenes, Total	ND	0.10												
Surr: 1,2-Dichloroethane-d4	0.48		0.5000		96.7	70	130							
Surr: 4-Bromofluorobenzene	0.51		0.5000		101	70	130							
Surr: Dibromofluoromethane	0.52		0.5000		104	70	130							
Surr: Toluene-d8	0.47		0.5000		94.1	70	130							
Sample ID: Ics-56378	Samp	Type: LC	S4	Tes	tCode: EF	PA Method	8260B: Volat	tiles Short	List					
Client ID: BatchQC	Batc	h ID: 56	378	F	RunNo: 7	3322								
Prep Date: 11/11/2020	Analysis I	Date: 1 1	/12/2020	S	BeqNo: 2	580607	Units: mg/K	(g						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene	1.1	0.025	1.000	0	107	80	120							
Toluene	1.0	0.050	1.000	0	103	80	120							
Ethylbenzene	0.99	0.050	1.000	0	99.4	80	120							
Xylenes, Total	2.9	0.10	3.000	0	98.3	80	120							
	0.46		0.5000		91.9	70	130							
Surr: 1,2-Dichloroethane-d4	0.40		0.0000		• • • •									
Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene	0.52		0.5000		103	70	130							
							130 130							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	2011574

Project: CWMS Re	ne Oil Company elease										
Sample ID: Ics-56381	SampType: LC	S	Test	Code: EF	PA Method	8015D Mod:	Gasoline	Range			
Client ID: LCSS	Batch ID: 563	381	R	unNo: 73	3317						
Prep Date: 11/11/2020	Analysis Date: 11	/12/2020	S	eqNo: 2	580574	Units: mg/K	(g				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Organics (GRO)	22 5.0	25.00	0	88.7	70	130					
Surr: BFB	520	500.0		104	70	130					
Sample ID: 2011574-007ams	SampType: MS	;	Test	Code: EF	PA Method	8015D Mod:	Gasoline	Range			
Client ID: TT4 @ Surface	Batch ID: 563	381	R	unNo: 73	3317						
Prep Date: 11/11/2020	Analysis Date: 11	/13/2020	S	eqNo: 2	580576	Units: mg/K	(g				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Organics (GRO)	29 4.7	23.58	6.844	93.3	49.2	122					
Surr: BFB	470	471.7		101	70	130					
Sample ID: 2011574-007amsd	SampType: MS	D	Test	Code: EF	PA Method	8015D Mod:	Gasoline I	Range			
Client ID: TT4 @ Surface	Batch ID: 563	381	R	unNo: 73	3317						
Prep Date: 11/11/2020	Analysis Date: 11	/13/2020	S	eqNo: 2	580577	Units: mg/K	g				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Organics (GRO)	35 4.8	23.97	6.844	116	49.2	122	18.6	20			
Surr: BFB	510	479.4		106	70	130	0	0			
Sample ID: mb-56381	SampType: ME	BLK	Test	Code: EF	PA Method	8015D Mod:	Gasoline I	Range			
Client ID: PBS	Batch ID: 563	381	R	unNo: 73	3317						
Prep Date: 11/11/2020	Analysis Date: 11	/13/2020	S	eqNo: 2	580581	Units: mg/K	(g				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Organics (GRO)	ND 5.0										
Surr: BFB	520	500.0		104	70	130					
Sample ID: mb-56378	SampType: ME	BLK	Test	Code: EF	PA Method	8015D Mod:	Gasoline I	Range			
Client ID: PBS	Batch ID: 563	378	R	unNo: 73	3322						
Prep Date: 11/11/2020	Analysis Date: 11	/12/2020	S	eqNo: 2	580707	Units: mg/K	(g				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Organics (GRO) Surr: BFB	ND 5.0 510	500.0		101	70	130					
Sample ID: Ics-56378	SampType: LC	s	Test	Code: EF	PA Method	8015D Mod:	Gasoline	Range			
Client ID: LCSS	Batch ID: 563			unNo: 7				-			
	Analysis Date: 11	/12/2020		eqNo: 2		Units: mg/K	(g				
Analyte	Result PQL		SPK Ref Val	%REC	LowLimit	HighLimit	- %RPD	RPDLimit	Qual		

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

2011574

17-Nov-20

WO#:

Client: Project:	Mewbourne C CWMS Relea	1	any								
110јеси.	C W M5 Kelea	50									
Sample ID: Ics-563	378 \$	SampTyp	e: LC	S	Tes	Code: EF	PA Method	8015D Mod:	Gasoline	Range	
Client ID: LCSS		Batch ID: 56378			F	unNo: 73	3322				
Prep Date: 11/11	rep Date: 11/11/2020 Analysis Date: 11/12/2020		SeqNo: 2580722			Units: mg/K	g				
Analyte	Re	sult F	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organio	s (GRO)	20	5.0	25.00	0	81.4	70	130			
Surr: BFB		500		500.0		100	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 23

2011574

17-Nov-20

WO#:

Page	52	of	113	3

•

HAL ENV		2:43:28 PM Fal	TEL	Environmen 2 505-345-39 bsite: clients	490 Albuquerg 275 FAX:	11 Hawkii nue, NM 8 505-345-	San	Page Sample Log-In Check List					
Client Name	Mewbourn	ne Oil Compan	Work (Order Numb	ber: 201	1574			RcptNo: 1				
Received By	: Juan Ro	jas	11/11/20	20 8:50:00	AM		Jun	ren by					
Completed E	y: Emily M	ocho	11/11/20	20 9:27:15	AM								
Reviewed By	And		11/11/0										
Chain of C	<u>ustody</u>												
1. Is Chain c	f Custody com	plete?			Yes	\checkmark	No)	Not Present				
2. How was	he sample del	ivered?			Cou	rier							
Log In													
3. Was an at	tempt made to	cool the sampl	es?		Yes	~	No						
4. Were all s	amples receive	ed at a tempera	ure of >0° C to	o 6.0°C	Yes		No						
5. Sample(s)	in proper cont	ainer(s)?			Yes		No						
6. Sufficient	ample volume	for indicated te	st(s)?		Yes	~	No						
7. Are sample	es (except VO/	A and ONG) pro	perly preserve	d?	Yes	V	No						
8. Was prese	rvative added	to bottles?			Yes		No	V	NA 🗌				
		vith headspace		SA?	Yes				NA 🗹				
10. Were any	sample contai	ners received b	roken?		Yes		No		# of preserved bottles checked				
11. Does pape (Note disc		ottle labels? hain of custody)		Yes		No		for pH: (<2 or >12 unless noted)				
12. Are matric	es correctly ide	entified on Chair	n of Custody?		Yes	\checkmark	No		Adjusted?				
13. Is it clear v	what analyses	were requested	?		Yes	\checkmark	No						
14. Were all h (If no, notif		ble to be met? authorization.)			Yes	\checkmark	No		Checked by: JR 11/11/20				
Special Hai	ndling (if ap	plicable)											
15. Was clien	t notified of all	discrepancies v	vith this order?		Yes		No		NA 🔽				
Per	son Notified:	[Date:	1								
By \	Whom:		~~~~~	Via:	eM	ail 🗌	Phone	Fax	🗌 In Person				
Reg	arding:	1											
Clie	nt Instructions:												
16. Additiona	l remarks:												
17. Cooler II				1									
Cooler 1	No Temp 1.1	C Condition Good	Seal Intact Yes	Seal No	Seal D	ate	Signed	Ву					
2	2.3	Good	Yes										
3	3.6	Good	Yes										
4	1,3	Good	Yes										

Received by OCD: 12/14/2020 2:43:28 PM Page HALL Hall Environmental Analysis Laboratory ENVIRONMENTAL 4901 Hawkins NE ANALYSIS Albuquerque, NM 87109 LABORATORY TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com Sample Log-In Check List

Client Name:	Mewbourne	Oil Company	y Work	Order Num	ber: 2011574		RcptNo: 1
Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By	
5	3.7	Good	Yes				

Page 2 of 2

		urne Oil C	Istody Record	Turn-Around XStandar Project Nam	d б 100	M Rush			B			EN' YSI	1000	7.55 2.3			
					e:					ww	w.hal	lenviro	nment	al.com	1		
Vailing	Address	S:		CWMS Rele	ase			49	01 H	awkins	NE -	Albuq	uerqu	e, NM	87109	E.	
-				Project #:				Т	el. 50	5-345-	3975	Fax	Fax 505-345-4107				
Phone #	# :			13296	2			_			A	nalysis	s Req	uest		-	an h
email or	r Fax#:			Project Mana	•		/ MRO)			1111					11		
	Package:			Lance Crens	haw		N/C	/ TMB's (8021)									
☐ Stan Accredi			Level 4 (Full Validation) mpliance	Sampler:	Leonel Mojica		DRO	3's (8									
		□ A2 Other		On Ice:				TM									
	(Type)			# of Coolers:)(GF	BE /									
				Cooler Temp	O(including CF): 5	e Checkwist	015	/ MTBE /									
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL NO. 2011574	TPH:8015D(GRO	BTEX /	÷								
11/9/20		Soil	TT1 @ Surface	Jar - 1	Ice/Cool	001	x	х	x	-							
11/9/20		Soil	TT1 @ 11'	Jar - 1	Ice/Cool	002	x	x	x								
11/9/20		Soil	TT2 @ Surface	Jar - 1	Ice/Cool	003	x	x	x								
11/9/20		Soil	TT2 @ 6'	Jar - 1	Ice/Cool	004	x	х	x	1							
11/9/20		Soil	TT3 @ Surface	Jar - 1	Ice/Cool	005	x	х	x					Ĩ			
11/9/20		Soil	TT3 @ 6'	Jar - 1	Ice/Cool	006	x	x	x								
11/9/20		Soil	TT4 @ Surface	Jar - 1	Ice/Cool	007	x	х	x								
11/9/20		Soil	TT4 @ 7'	Jar - 1	Ice/Cool	008	x	х	x								- 1-
11/9/20		Soil	TT5 @ Surface	Jar - 1	Ice/Cool	009	x	х	x				-				1.1
11/9/20		Soil	TT5 @ 3'	Jar - 1	Ice/Cool	010	x	х	x								
11/9/20		Soil	SH1 @ 2.5'	Jar - 1	Ice/Cool	011	x	х	x						1, 2'		
11/9/20		Soil	NH1 @ 2.5'	Jar - 1	Ice/Cool	012	x	х	x					te î le			
Date:	Time:	Relinquish		Received by: Via: Date Time					nail res nv.com		: rrunn	els@r	newbo	ourne.c	om an	d	
Date: VIIII	Time: 1900	Relinquish	ed by:	Received by: Via. Date Time													

Client:	Mewbo	ourne Oil (Istody Record	XStandar Project Nam		1 Rush		HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com										
Mailing	Addres	s:		CWMS Rele														
				Project #:	ase			4901 Hawkins NE - Albuquerque, NM 87109										
Dhone	ш.							-	Т	el. 50)5-345	-	-		5-345-	1		-
Phone	#. or Fax#:			13296			Analysis Request											
· Collection of	Package		Level 4 (Full Validation)	Project Manager: Lance Crenshaw			RO / MRC	/ TMB's (8021)										
	litation:	Az Co	mpliance	Sampler:	Leonel Mojica			/ DF	B's									
		□ Other	Sector Concerns of the	On Ice:		🗆 No		R S	TM									
	O (Type)			# of Coolers Cooler Temp	5 D(including CF): Cee	(heck)	ct	5D(G	TBE /									
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL N 20115	lo.	TPH:8015D(GRO / DRO / MRO)	BTEX / MTBE	CI-								
11/9/20		Soil	EH1 @ 2.5'	Jar - 1	Ice/Cool	013			1	x								1
11/9/20		Soil	EH2 @ 2.5'	Jar - 1	Ice/Cool	014			x	x								
11/9/20		Soil	WH1 @ 2.5'	Jar - 1	Ice/Cool	015		x	x	x				100				
11/9/20		Soil	WH2 @ 2.5'	Jar - 1	Ice/Cool	DILe			х	х								
				1														
													-					
											_		-	-		-		-
Date:	Time:	Relinquish	ed by:	Received by:	Via:	Date Ti	me	Der										
11-10	1300	lan	h	alumming "10/20 1200			300				iv.com		rrunn	ieis@	mewb	ourne.c	om and	J
Date:	Time:		ed by:	Received by: Via: Date Time COUNTER 11/17/20 8150														

12.78 DM

Pag 55 of 113

November 25, 2020

Lance Crenshaw Mewbourne Oil Company PO Box 5270 Hobbs, NM 88241 TEL: (575) 393-5905 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

RE: CWMs Release

OrderNo.: 2011887

Dear Lance Crenshaw:

Hall Environmental Analysis Laboratory received 14 sample(s) on 11/18/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2011887

Date Reported: 11/25/2020

	v	• • •					Date Reported. 11/25/20	20				
CLIENT:	Mewbourne Oil Company		Cl	ient Sa	mple II	D: EV	V 1					
Project:	CWMs Release		(Collect	ion Dat	e: 11/	/10/2020					
							eived Date: 11/18/2020 8:00:00 AM					
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA MET	HOD 300.0: ANIONS						Analyst:	VP				
Chloride		ND	60		mg/Kg	20	11/23/2020 8:24:06 PM	56600				
EPA MET	HOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst:	mb				
Diesel Ra	ange Organics (DRO)	ND	9.7		mg/Kg	1	11/21/2020 11:58:42 AM	1 56575				
Motor Oil	Range Organics (MRO)	ND	48		mg/Kg	1	11/21/2020 11:58:42 AM	1 56575				
Surr: D	NOP	110	30.4-154		%Rec	1	11/21/2020 11:58:42 AM	1 56575				
EPA MET	HOD 8015D: GASOLINE RANGE	E					Analyst:	NSB				
Gasoline	Range Organics (GRO)	ND	5.0		mg/Kg	1	11/23/2020 9:56:18 AM	56571				
Surr: B	FB	89.3	75.3-105		%Rec	1	11/23/2020 9:56:18 AM	56571				
EPA MET	HOD 8021B: VOLATILES						Analyst:	NSB				
Benzene		ND	0.025		mg/Kg	1	11/23/2020 9:56:18 AM	56571				
Toluene		ND	0.050		mg/Kg	1	11/23/2020 9:56:18 AM	56571				
Ethylbenz	zene	ND	0.050		mg/Kg	1	11/23/2020 9:56:18 AM	56571				
Xylenes,	Total	ND	0.099		mg/Kg	1	11/23/2020 9:56:18 AM	56571				
Surr: 4	-Bromofluorobenzene	99.1	80-120		%Rec	1	11/23/2020 9:56:18 AM	56571				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 18

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2011887

Date Reported: 11/25/2020

CLIENT: Mewbourne Oil CompanyProject: CWMs ReleaseLab ID: 2011887-002	Client Sample ID: EW 2 Collection Date: 11/10/2020 Matrix: SOIL Received Date: 11/18/2020 8:00:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	: VP			
Chloride	1600	61	mg/Kg	20	11/23/2020 9:01:20 PM	56600			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: mb			
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	11/21/2020 12:27:47 P	M 56575			
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/21/2020 12:27:47 P	M 56575			
Surr: DNOP	102	30.4-154	%Rec	1	11/21/2020 12:27:47 P	M 56575			
EPA METHOD 8015D: GASOLINE RANG	E				Analyst	: NSB			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/23/2020 11:06:36 A	M 56571			
Surr: BFB	91.5	75.3-105	%Rec	1	11/23/2020 11:06:36 A	M 56571			
EPA METHOD 8021B: VOLATILES					Analyst	: NSB			
Benzene	ND	0.024	mg/Kg	1	11/23/2020 11:06:36 A	M 56571			
Toluene	ND	0.049	mg/Kg	1	11/23/2020 11:06:36 A	M 56571			
Ethylbenzene	ND	0.049	mg/Kg	1	11/23/2020 11:06:36 A	M 56571			
Xylenes, Total	ND	0.098	mg/Kg	1	11/23/2020 11:06:36 A	M 56571			
Surr: 4-Bromofluorobenzene	101	80-120	%Rec	1	11/23/2020 11:06:36 A	M 56571			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 18

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011887

Date Reported: 11/25/2020

CLIENT: Mewbourne Oil Company Project: CWMs Release	Client Sample ID: EW 3 Collection Date: 11/10/2020								
Lab ID: 2011887-003	Matrix: SOIL Received Date: 11/18/2020 8:00:00 A								
Analyses	Result	RL	Qual Units	DF	Date Analyzed Batch				
EPA METHOD 300.0: ANIONS					Analyst: VP				
Chloride	310	60	mg/Kg	20	11/23/2020 9:13:45 PM 56600				
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: mb				
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	11/21/2020 12:37:31 PM 56575				
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/21/2020 12:37:31 PM 56575				
Surr: DNOP	94.6	30.4-154	%Rec	1	11/21/2020 12:37:31 PM 56575				
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB				
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/23/2020 12:17:25 PM 56571				
Surr: BFB	90.4	75.3-105	%Rec	1	11/23/2020 12:17:25 PM 56571				
EPA METHOD 8021B: VOLATILES					Analyst: NSB				
Benzene	ND	0.025	mg/Kg	1	11/23/2020 12:17:25 PM 56571				
Toluene	ND	0.050	mg/Kg	1	11/23/2020 12:17:25 PM 56571				
Ethylbenzene	ND	0.050	mg/Kg	1	11/23/2020 12:17:25 PM 56571				
Xylenes, Total	ND	0.10	mg/Kg	1	11/23/2020 12:17:25 PM 56571				
Surr: 4-Bromofluorobenzene	99.0	80-120	%Rec	1	11/23/2020 12:17:25 PM 56571				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 18

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2011887

Date Reported: 11/25/2020

	J.						20			
CLIENT: N	Iewbourne Oil Company		Cl	ient Sampl	e ID: E	W 5				
Project: C	CWMs Release	Collection Date: 11/10/2020								
Lab ID: 2	011887-004	Matrix: SOIL		Received 1	Date: 1	1/18/2020 8:00:00 AM				
Analyses		Result	RL	Qual Uni	ts Dl	F Date Analyzed	Batch			
EPA METH	OD 300.0: ANIONS					Analyst	VP			
Chloride		71	59	mg/	Kg 20	0 11/23/2020 9:26:09 PM	56600			
EPA METH	OD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	mb			
Diesel Rang	ge Organics (DRO)	ND	9.3	mg/	Kg 1	11/21/2020 12:47:18 PM	/ 56575			
Motor Oil R	ange Organics (MRO)	ND	46	mg/	Kg 1	11/21/2020 12:47:18 PM	/ 56575			
Surr: DN	OP	102	30.4-154	%R	ec 1	11/21/2020 12:47:18 PN	1 56575			
EPA METH	OD 8015D: GASOLINE RANG	E				Analyst	NSB			
Gasoline R	ange Organics (GRO)	ND	4.9	mg/	Kg 1	11/23/2020 12:40:53 PM	/ 56571			
Surr: BFI	В	90.6	75.3-105	%R	ec 1	11/23/2020 12:40:53 PN	/ 56571			
EPA METH	OD 8021B: VOLATILES					Analyst	NSB			
Benzene		ND	0.025	mg/	Kg 1	11/23/2020 12:40:53 PM	/ 56571			
Toluene		ND	0.049	mg/	Kg 1	11/23/2020 12:40:53 PM	/ 56571			
Ethylbenzer	ne	ND	0.049	mg/	Kg 1	11/23/2020 12:40:53 PN	/ 56571			
Xylenes, To	otal	ND	0.099	mg/	Kg 1	11/23/2020 12:40:53 PM	/ 56571			
Surr: 4-B	Bromofluorobenzene	100	80-120	%R	ec 1	11/23/2020 12:40:53 PM	/ 56571			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 18

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2011887

Date Reported: 11/25/2020

CLIENT: Mewbourne Oil Company Project: CWMs Release Lab ID: 2011887-005	Client Sample ID: EW 6 Collection Date: 11/10/2020 Matrix: SOIL Received Date: 11/18/2020 8:00:00 AM							
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analyst	: VP		
Chloride	ND	60	mg/Kg	20	11/23/2020 9:38:34 PM	56600		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	mb		
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	11/21/2020 12:57:07 PM	A 56575		
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	11/21/2020 12:57:07 PM	A 56575		
Surr: DNOP	102	30.4-154	%Rec	1	11/21/2020 12:57:07 PM	A 56575		
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB		
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/23/2020 1:04:24 PM	56571		
Surr: BFB	89.8	75.3-105	%Rec	1	11/23/2020 1:04:24 PM	56571		
EPA METHOD 8021B: VOLATILES					Analyst	NSB		
Benzene	ND	0.025	mg/Kg	1	11/23/2020 1:04:24 PM	56571		
Toluene	ND	0.050	mg/Kg	1	11/23/2020 1:04:24 PM	56571		
Ethylbenzene	ND	0.050	mg/Kg	1	11/23/2020 1:04:24 PM	56571		
Xylenes, Total	ND	0.10	mg/Kg	1	11/23/2020 1:04:24 PM	56571		
Surr: 4-Bromofluorobenzene	98.2	80-120	%Rec	1	11/23/2020 1:04:24 PM	56571		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 18

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011887

Date Reported: 11/25/2020

CLIENT: Mewbourne Oil Company		Cl	ient Sample II	D: EV	N 7					
Project: CWMs Release	Collection Date: 11/10/2020									
Lab ID: 2011887-006	Matrix: SOIL		Received Dat	e: 11.	/18/2020 8:00:00 AM					
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS					Analyst	: VP				
Chloride	ND	60	mg/Kg	20	11/23/2020 9:50:58 PM	56600				
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: mb				
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	11/21/2020 1:06:58 PM	56575				
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/21/2020 1:06:58 PM	56575				
Surr: DNOP	110	30.4-154	%Rec	1	11/21/2020 1:06:58 PM	56575				
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	: NSB				
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/23/2020 1:28:05 PM	56571				
Surr: BFB	90.4	75.3-105	%Rec	1	11/23/2020 1:28:05 PM	56571				
EPA METHOD 8021B: VOLATILES					Analyst	: NSB				
Benzene	ND	0.025	mg/Kg	1	11/23/2020 1:28:05 PM	56571				
Toluene	ND	0.050	mg/Kg	1	11/23/2020 1:28:05 PM	56571				
Ethylbenzene	ND	0.050	mg/Kg	1	11/23/2020 1:28:05 PM	56571				
Xylenes, Total	ND	0.10	mg/Kg	1	11/23/2020 1:28:05 PM	56571				
Surr: 4-Bromofluorobenzene	99.0	80-120	%Rec	1	11/23/2020 1:28:05 PM	56571				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 18

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2011887

Date Reported: 11/25/2020

	ě	,					Date Reported. 11/23/20	20			
CLIENT: 1	Mewbourne Oil Company		Cl	ient Sa	mple II	D: EV	V 9				
Project: (CWMs Release	Collection Date: 11/10/2020									
Lab ID: 2	2011887-007	Matrix: SOIL		Receiv	ed Dat	e: 11/	18/2020 8:00:00 AM				
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch			
EPA METH	IOD 300.0: ANIONS						Analyst:	VP			
Chloride		84	59		mg/Kg	20	11/23/2020 10:28:11 PM	1 56600			
EPA METH	OD 8015M/D: DIESEL RANG	E ORGANICS					Analyst:	mb			
Diesel Rar	nge Organics (DRO)	ND	9.6		mg/Kg	1	11/21/2020 1:16:58 PM	56575			
Motor Oil F	Range Organics (MRO)	ND	48		mg/Kg	1	11/21/2020 1:16:58 PM	56575			
Surr: DN	NOP	99.9	30.4-154		%Rec	1	11/21/2020 1:16:58 PM	56575			
EPA METH	OD 8015D: GASOLINE RANG	GE					Analyst:	NSB			
Gasoline F	Range Organics (GRO)	ND	4.9		mg/Kg	1	11/23/2020 1:51:47 PM	56571			
Surr: BF	B	90.8	75.3-105		%Rec	1	11/23/2020 1:51:47 PM	56571			
EPA METH	IOD 8021B: VOLATILES						Analyst:	NSB			
Benzene		ND	0.025		mg/Kg	1	11/23/2020 1:51:47 PM	56571			
Toluene		ND	0.049		mg/Kg	1	11/23/2020 1:51:47 PM	56571			
Ethylbenze	ene	ND	0.049		mg/Kg	1	11/23/2020 1:51:47 PM	56571			
Xylenes, T	otal	ND	0.098		mg/Kg	1	11/23/2020 1:51:47 PM	56571			
Surr: 4-I	Bromofluorobenzene	99.2	80-120		%Rec	1	11/23/2020 1:51:47 PM	56571			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 18

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011887

Date Reported: 11/25/2020

CLIENT: Mewbourne Oil Company		Cl	ient Sample I	D: EV	V4 E				
Project: CWMs Release	Collection Date: 11/11/2020								
Lab ID: 2011887-008	Matrix: SOIL		Received Dat	e: 11/	/18/2020 8:00:00 AM				
Analyses	Result	RL	Qual Units	DF	Date Analyzed Batch				
EPA METHOD 300.0: ANIONS					Analyst: VP				
Chloride	ND	60	mg/Kg	20	11/23/2020 10:40:35 PM 56600				
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: mb				
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	11/21/2020 1:26:58 PM 56575				
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/21/2020 1:26:58 PM 56575				
Surr: DNOP	96.4	30.4-154	%Rec	1	11/21/2020 1:26:58 PM 56575				
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB				
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/23/2020 2:15:27 PM 56571				
Surr: BFB	89.4	75.3-105	%Rec	1	11/23/2020 2:15:27 PM 56571				
EPA METHOD 8021B: VOLATILES					Analyst: NSB				
Benzene	ND	0.024	mg/Kg	1	11/23/2020 2:15:27 PM 56571				
Toluene	ND	0.049	mg/Kg	1	11/23/2020 2:15:27 PM 56571				
Ethylbenzene	ND	0.049	mg/Kg	1	11/23/2020 2:15:27 PM 56571				
Xylenes, Total	ND	0.097	mg/Kg	1	11/23/2020 2:15:27 PM 56571				
Surr: 4-Bromofluorobenzene	97.0	80-120	%Rec	1	11/23/2020 2:15:27 PM 56571				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 18

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011887

Date Reported: 11/25/2020

CLIENT:Mewbourne Oil CompanyProject:CWMs ReleaseLab ID:2011887-009	Client Sample ID: EW8 B Collection Date: 11/11/2020 Matrix: SOIL Received Date: 11/18/2020 8:00:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	MRA			
Chloride	180	60	mg/Kg	20	11/24/2020 2:36:55 PM	56623			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: mb			
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	11/21/2020 1:36:59 PM	56575			
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	11/21/2020 1:36:59 PM	56575			
Surr: DNOP	77.0	30.4-154	%Rec	1	11/21/2020 1:36:59 PM	56575			
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	: NSB			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/23/2020 2:38:50 PM	56571			
Surr: BFB	90.1	75.3-105	%Rec	1	11/23/2020 2:38:50 PM	56571			
EPA METHOD 8021B: VOLATILES					Analyst	: NSB			
Benzene	ND	0.025	mg/Kg	1	11/23/2020 2:38:50 PM	56571			
Toluene	ND	0.049	mg/Kg	1	11/23/2020 2:38:50 PM	56571			
Ethylbenzene	ND	0.049	mg/Kg	1	11/23/2020 2:38:50 PM	56571			
Xylenes, Total	ND	0.099	mg/Kg	1	11/23/2020 2:38:50 PM	56571			
Surr: 4-Bromofluorobenzene	98.4	80-120	%Rec	1	11/23/2020 2:38:50 PM	56571			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 9 of 18

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011887

Date Reported: 11/25/2020

CLIENT:Mewbourne Oil CompanyProject:CWMs ReleaseLab ID:2011887-010	Client Sample ID: SW 1 C Collection Date: 11/12/2020 Matrix: SOIL Received Date: 11/18/2020 8:00:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	MRA			
Chloride	ND	60	mg/Kg	20	11/24/2020 2:49:20 PM	56623			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: mb			
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	11/21/2020 1:47:00 PM	56575			
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	11/21/2020 1:47:00 PM	56575			
Surr: DNOP	81.3	30.4-154	%Rec	1	11/21/2020 1:47:00 PM	56575			
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/23/2020 3:02:09 PM	56571			
Surr: BFB	95.3	75.3-105	%Rec	1	11/23/2020 3:02:09 PM	56571			
EPA METHOD 8021B: VOLATILES					Analyst	: NSB			
Benzene	ND	0.025	mg/Kg	1	11/23/2020 3:02:09 PM	56571			
Toluene	ND	0.049	mg/Kg	1	11/23/2020 3:02:09 PM	56571			
Ethylbenzene	ND	0.049	mg/Kg	1	11/23/2020 3:02:09 PM	56571			
Xylenes, Total	ND	0.099	mg/Kg	1	11/23/2020 3:02:09 PM	56571			
Surr: 4-Bromofluorobenzene	104	80-120	%Rec	1	11/23/2020 3:02:09 PM	56571			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 10 of 18

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011887

Date Reported: 11/25/2020

CLIENT: Mewbourne Oil Company Project: CWMs Release	Client Sample ID: SW 2 Collection Date: 11/16/2020									
Lab ID: 2011887-011	Matrix: SOIL Received Date: 11/18/2020 8:00:00 AN									
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS					Analyst	MRA				
Chloride	ND	60	mg/Kg	20	11/24/2020 3:26:35 PM	56623				
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: mb				
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	11/21/2020 1:57:00 PM	56575				
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/21/2020 1:57:00 PM	56575				
Surr: DNOP	90.9	30.4-154	%Rec	1	11/21/2020 1:57:00 PM	56575				
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	NSB				
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/23/2020 4:12:17 PM	56571				
Surr: BFB	93.6	75.3-105	%Rec	1	11/23/2020 4:12:17 PM	56571				
EPA METHOD 8021B: VOLATILES					Analyst	: NSB				
Benzene	ND	0.025	mg/Kg	1	11/23/2020 4:12:17 PM	56571				
Toluene	ND	0.050	mg/Kg	1	11/23/2020 4:12:17 PM	56571				
Ethylbenzene	ND	0.050	mg/Kg	1	11/23/2020 4:12:17 PM	56571				
Xylenes, Total	ND	0.10	mg/Kg	1	11/23/2020 4:12:17 PM	56571				
Surr: 4-Bromofluorobenzene	102	80-120	%Rec	1	11/23/2020 4:12:17 PM	56571				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 11 of 18

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011887

Date Reported: 11/25/2020

CLIENT: Mewbourne Oil Company Project: CWMs Release	Client Sample ID: WW 3 Collection Date: 11/16/2020								
Lab ID: 2011887-012	Matrix: SOIL	/18/2020 8:00:00 AM							
Analyses	Result	RL	RL Qual Units		DF Date Analyzed				
EPA METHOD 300.0: ANIONS					Analyst	MRA			
Chloride	ND	61	mg/Kg	20	11/24/2020 3:38:59 PM	56623			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: mb			
Diesel Range Organics (DRO)	11	9.4	mg/Kg	1	11/21/2020 2:07:01 PM	56575			
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	11/21/2020 2:07:01 PM	56575			
Surr: DNOP	94.9	30.4-154	%Rec	1	11/21/2020 2:07:01 PM	56575			
EPA METHOD 8015D: GASOLINE RANGE	1				Analyst	NSB			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/23/2020 4:35:39 PM	56571			
Surr: BFB	92.1	75.3-105	%Rec	1	11/23/2020 4:35:39 PM	56571			
EPA METHOD 8021B: VOLATILES					Analyst	: NSB			
Benzene	ND	0.025	mg/Kg	1	11/23/2020 4:35:39 PM	56571			
Toluene	ND	0.049	mg/Kg	1	11/23/2020 4:35:39 PM	56571			
Ethylbenzene	ND	0.049	mg/Kg	1	11/23/2020 4:35:39 PM	56571			
Xylenes, Total	ND	0.099	mg/Kg	1	11/23/2020 4:35:39 PM	56571			
Surr: 4-Bromofluorobenzene	101	80-120	%Rec	1	11/23/2020 4:35:39 PM	56571			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 12 of 18

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011887

Date Reported: 11/25/2020

CLIENT:Mewbourne Oil CompanyProject:CWMs ReleaseLab ID:2011887-013	Client Sample ID: WW 1 B Collection Date: 11/16/2020 Matrix: SOIL Received Date: 11/18/2020 8:00:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	MRA			
Chloride	ND	60	mg/Kg	20	11/24/2020 3:51:25 PM	56623			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: mb			
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	11/21/2020 2:17:02 PM	56575			
Motor Oil Range Organics (MRO)	ND	51	mg/Kg	1	11/21/2020 2:17:02 PM	56575			
Surr: DNOP	95.0	30.4-154	%Rec	1	11/21/2020 2:17:02 PM	56575			
EPA METHOD 8015D: GASOLINE RANG	E				Analyst	: NSB			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/23/2020 4:58:57 PM	56571			
Surr: BFB	93.0	75.3-105	%Rec	1	11/23/2020 4:58:57 PM	56571			
EPA METHOD 8021B: VOLATILES					Analyst	: NSB			
Benzene	ND	0.025	mg/Kg	1	11/23/2020 4:58:57 PM	56571			
Toluene	ND	0.049	mg/Kg	1	11/23/2020 4:58:57 PM	56571			
Ethylbenzene	ND	0.049	mg/Kg	1	11/23/2020 4:58:57 PM	56571			
Xylenes, Total	ND	0.098	mg/Kg	1	11/23/2020 4:58:57 PM	56571			
Surr: 4-Bromofluorobenzene	101	80-120	%Rec	1	11/23/2020 4:58:57 PM	56571			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 13 of 18

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2011887

Date Reported: 11/25/2020

CLIENT: Mewbourne Oil Company Project: CWMs Release Lab ID: 2011887-014	Client Sample ID: WW 2 B Collection Date: 11/16/2020								
Analyses	Matrix: SOIL Result	RL	Received Date: 11/18/2020 8:00:00 AN RL Qual Units DF Date Analyzed						
EPA METHOD 300.0: ANIONS					Analyst	. MRA			
Chloride	76	60	mg/Kg	20	5				
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: mb			
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	11/21/2020 2:27:03 PM	56575			
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/21/2020 2:27:03 PM	56575			
Surr: DNOP	89.7	30.4-154	%Rec	1	11/21/2020 2:27:03 PM	56575			
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/23/2020 5:22:16 PM	56571			
Surr: BFB	92.8	75.3-105	%Rec	1	11/23/2020 5:22:16 PM	56571			
EPA METHOD 8021B: VOLATILES					Analyst	: NSB			
Benzene	ND	0.025	mg/Kg	1	11/23/2020 5:22:16 PM	56571			
Toluene	ND	0.049	mg/Kg	1	11/23/2020 5:22:16 PM	56571			
Ethylbenzene	ND	0.049	mg/Kg	1	11/23/2020 5:22:16 PM	56571			
Xylenes, Total	ND	0.099	mg/Kg	1	11/23/2020 5:22:16 PM	56571			
Surr: 4-Bromofluorobenzene	101	80-120	%Rec	1	11/23/2020 5:22:16 PM	56571			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 14 of 18

Client: Project:	Mewbou CWMs R	rne Oil Coi Release	npany									
Sample ID: I	MB-56600	SampT	ype: ME	BLK	Tes							
Client ID:	PBS	Batch	1D: 56	600	RunNo: 73569							
Prep Date:	11/23/2020	Analysis Date: 11/23/2020			SeqNo: 2591794			Units: mg/K	g			
Analyte Chloride		Result ND	PQL 1.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Sample ID:	LCS-56600	SampT	ype: LC	S	Tes	tCode: El	PA Method	300.0: Anion	s			
Client ID:	LCSS	Batch	ID: 56	600	F	RunNo: 7 ;	3569					
Prep Date:	11/23/2020	Analysis Date: 11/23/2020			SeqNo: 2591795			Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		14	1.5	15.00	0	93.6	90	110				
Sample ID: I	MB-56623	SampT	ype: m k	olk	Tes	tCode: El	PA Method	300.0: Anion	s			
Client ID:	PBS	Batch	ID: 56	623	F	RunNo: 7 :	3590					
Prep Date:	11/24/2020	Analysis D	ate: 1 1	1/24/2020	S	SeqNo: 2	593314	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		ND	1.5									
Sample ID:	LCS-56623	SampT	ype: Ics	5	Tes	tCode: El	PA Method	300.0: Anion:	s			
Client ID:	LCSS	Batch	Batch ID: 56623 RunNo: 73590									
Prep Date:	11/24/2020	Analysis D	ate: 1 1	1/24/2020	S	SeqNo: 2	593315	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		15	1.5	15.00	0	96.8	90	110				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 18

2011887

25-Nov-20

WO#:

Page 71 of 113

Client:		me Oil Co	mpany									
Project:	CWMs R	elease										
Sample ID: N	/IB-56575	SampT	ype: ME	BLK	TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: F	PBS	Batch	n ID: 56	575	RunNo: 73544							
Prep Date:	11/20/2020	Analysis Date: 11/21/2020			SeqNo: 2590644			Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Org	ganics (DRO)	ND	10									
Motor Oil Range	Organics (MRO)	ND	50									
Surr: DNOP		11		10.00		110	30.4	154				
Sample ID: L	CS-56575	SampT	ype: LC	S	Tes	Code: EF	PA Method	8015M/D: Di	esel Rang	e Organics		
Client ID: L	CSS	Batch	n ID: 56	575	F	unNo: 7	3544					
Prep Date:	11/20/2020	Analysis D	ate: 11	/21/2020	S	eqNo: 2	590647	Units: mg/	٢g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Org	ganics (DRO)	59	10	50.00	0	118	70	130				
Surr: DNOP		5.0		5.000		101	30.4	154				
Sample ID: 2	011887-001AMS	SampT	ype: MS	5	TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: E	EW 1	Batch	n ID: 56	575	RunNo: 73544							
Prep Date:	11/20/2020	Analysis D	ate: 11	/21/2020	S	eqNo: 2	590649	Units: mg/k	٢g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Org	ganics (DRO)	42	9.6	47.85	3.941	80.2	15	184				
Surr: DNOP		2.7		4.785		56.2	30.4	154				
Sample ID: 2	011887-001AMS) SampT	ype: MS	D	TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: E	EW 1	Batch	n ID: 56	575	F	unNo: 7	3544					
Prep Date:	11/20/2020	Analysis D	ate: 11	/21/2020	S	590651	Units: mg/Kg					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Org	ganics (DRO)	46	9.9	49.36	3.941	84.9	15	184	8.08	23.9		
Surr: DNOP		3.4		4.936		68.8	30.4	154	0	0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2011887

25-Nov-20

WO#:
QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Mewbour CWMs R	rne Oil Cor elease	npany								
	mb-56571	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID:	PBS	Batch	ID: 56	571	F	RunNo: 7	3565				
Prep Date:	11/20/2020	Analysis D	ate: 1 1	1/23/2020	S	eqNo: 2	591453	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	ND	5.0					-			
Surr: BFB		890		1000		88.8	75.3	105			
Sample ID:	lcs-56571	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID:	LCSS	Batch	ID: 56	571	F	RunNo: 7	3565				
Prep Date:	11/20/2020	Analysis D	ate: 1 1	1/23/2020	S	eqNo: 2	591454	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	23	5.0	25.00	0	92.5	72.5	106			
Surr: BFB		990		1000		99.2	75.3	105			
Sample ID:	2011887-002ams	SampT	ype: MS	6	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Sample ID: Client ID:		•	ype: M\$ ID: 56			tCode: El RunNo: 7		8015D: Gasc	line Rang	e	
Client ID:		•	ID: 56	571	F		3565	8015D: Gasc Units: mg/K	0	e	
Client ID:	EW 2	Batch	ID: 56	571 1/23/2020	F	RunNo: 7 :	3565		0	e RPDLimit	Qual
Client ID: Prep Date: Analyte	EW 2	Batch Analysis D	ID: 56 ate: 1 1	571 1/23/2020	F	RunNo: 7 SeqNo: 2	3565 591457	Units: mg/K	.g		Qual
Client ID: Prep Date: Analyte	EW 2 11/20/2020	Batch Analysis D Result	ID: 56 : ate: 1 1 PQL	571 I/23/2020 SPK value	F S SPK Ref Val	RunNo: 7 SeqNo: 2 %REC	3565 591457 LowLimit	Units: mg/K HighLimit	.g		Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB	EW 2 11/20/2020	Batch Analysis D Result 21 1000	ate: 11 PQL 5.0	571 1/23/2020 SPK value 24.90 996.0	F S SPK Ref Val 0	RunNo: 7 SeqNo: 2 %REC 83.6 101	3565 591457 LowLimit 61.3 75.3	Units: mg/K HighLimit 114	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB	EW 2 11/20/2020 ge Organics (GRO)	Batch Analysis D Result 21 1000 SampT	ate: 11 PQL 5.0	571 1/23/2020 SPK value 24.90 996.0	F S SPK Ref Val 0 Tes	RunNo: 7 SeqNo: 2 %REC 83.6 101	3565 591457 LowLimit 61.3 75.3 PA Method	Units: mg/K HighLimit 114 105	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID: Client ID:	EW 2 11/20/2020 ge Organics (GRO)	Batch Analysis D Result 21 1000 SampT	ype: M \$	571 1/23/2020 SPK value 24.90 996.0 50 571	F S SPK Ref Val 0 Tes F	RunNo: 7 SeqNo: 2 %REC 83.6 101 tCode: El	3565 591457 LowLimit 61.3 75.3 PA Method 3565	Units: mg/K HighLimit 114 105	g %RPD line Rang	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID: Client ID:	EW 2 11/20/2020 ge Organics (GRO) 2 2011887-002amsd EW 2	Batch Analysis D Result 21 1000 SampT Batch	ype: M \$	571 1/23/2020 SPK value 24.90 996.0 50 571 1/23/2020	F S SPK Ref Val 0 Tes F	RunNo: 7: SeqNo: 2: %REC 83.6 101 Code: El RunNo: 7: SeqNo: 2:	3565 591457 LowLimit 61.3 75.3 PA Method 3565	Units: mg/K HighLimit 114 105 8015D: Gaso	g %RPD line Rang	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID: Client ID: Prep Date: Analyte	EW 2 11/20/2020 ge Organics (GRO) 2 2011887-002amsd EW 2	Batch Analysis D Result 21 1000 I SampT Batch Analysis D	ype: M S ate: 1 1 <u>PQL</u> 5.0 ype: M S i ID: 56 ate: 1 1	571 1/23/2020 SPK value 24.90 996.0 50 571 1/23/2020	F SPK Ref Val 0 Tes F S	RunNo: 7: SeqNo: 2: %REC 83.6 101 Code: El RunNo: 7: SeqNo: 2:	3565 591457 LowLimit 61.3 75.3 PA Method 3565 591458	Units: mg/K HighLimit 114 105 8015D: Gaso Units: mg/K	Gg %RPD line Rang	RPDLimit e	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 18

2011887

25-Nov-20

WO#:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:MewbouProject:CWMs F	rne Oil Co Release	mpany								
-				.	10		0004D 1/-1-1			
Sample ID: mb-56571		Type: ME					8021B: Volat	lles		
Client ID: PBS		h ID: 56			RunNo: 7					
Prep Date: 11/20/2020	Analysis [Date: 11	1/23/2020	Ş	SeqNo: 2	591494	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.98		1.000		98.2	80	120			
Sample ID: LCS-56571	Samp ⁻	Гуре: LC	S	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: LCSS	Batc	h ID: 56	571	F	RunNo: 7	3565				
Prep Date: 11/20/2020	Analysis [Date: 1 1	1/23/2020	S	SeqNo: 2	591495	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.90	0.025	1.000	0	90.2	80	120			
Toluene	0.94	0.050	1.000	0	93.5	80	120			
Ethylbenzene	0.94	0.050	1.000	0	93.8	80	120			
Xylenes, Total	2.8	0.10	3.000	0	93.5	80	120			
Surr: 4-Bromofluorobenzene	1.0		1.000		103	80	120			
Sample ID: 2011887-001ams	Samp ⁻	Гуре: МS	3	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: EW 1	Batc	h ID: 56	571	F	RunNo: 7	3565				
Prep Date: 11/20/2020	Analysis [Date: 1 1	1/23/2020	S	SeqNo: 2	591497	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.89	0.025	0.9990	0	89.3	76.3	120			
Toluene	0.94	0.050	0.9990	0	94.1	78.5	120			
Ethylbenzene	0.95	0.050	0.9990	0	94.9	78.1	124			
Xylenes, Total	2.9	0.10	2.997	0.01645	94.6	79.3	125			
Surr: 4-Bromofluorobenzene	0.98		0.9990		98.3	80	120			
Sample ID: 2011887-001ams	d Samp ⁻	Гуре: МS	SD	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID: EW 1	Batc	h ID: 56	571	F	RunNo: 7	3565				
Prep Date: 11/20/2020	Analysis [Date: 1 1	1/23/2020	S	SeqNo: 2	591498	Units: mg/k	(g		
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.84	0.024	0.9775	0	85.9	76.3	120	6.01	20	
Toluene	0.90	0.049	0.9775	0	92.3	78.5	120	4.08	20	
Ethylbenzene	0.91	0.049	0.9775	0	93.4	78.1	124	3.80	20	
Xylenes, Total	2.8	0.098	2.933	0.01645	93.5	79.3	125	3.35	20	
Surr: 4-Bromofluorobenzene	0.97		0.9775		98.8	80	120	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2011887

25-Nov-20

WO#:

HALL HALL ENVIRON ANALYSIS LABORAT	ll Environmer L: 505-345-3 ebsite: client	490 Albuquerg 975 F.A.X:	I Hawl ue, NM 505-34	kins NE 1 87109 5-4107	Sar	nple Log-In Check L	Page 7		
Client Name: Me	wbourne Oil Comp	any Work	Order Num	ber: 201	887			RcptNo: 1	
Received By: Ei	nily Mocho	11/18/2	020 8:00:00	AM					
Completed By: Er	nily Mocho	11/18/2	020 9:06:03	AM					
Reviewed By: 57	DA 11.18.20	1							
Chain of Custod	<u>v</u>								
1. Is Chain of Custo	dy complete?			Yes	~	No		Not Present	
2. How was the sam	ple delivered?			Cou	ier				
<u>Log In</u>									
3. Was an attempt m	ade to cool the san	nples?		Yes	V	No		NA 🗌	
4. Were all samples	received at a tempe	rature of >0° C	to 6.0°C	Yes	~	No			
5. Sample(s) in prop	er container(s)?			Yes	~	No			
6. Sufficient sample v	volume for indicated	test(s)?		Yes	~	No			
7. Are samples (exce	pt VOA and ONG)	properly preserve	d?	Yes	~	No			
8. Was preservative	added to bottles?			Yes		No		NA 🗔	
9. Received at least	I vial with headspace	e <1/4" for AQ V	OA?	Yes		No			
10. Were any sample				Yes		No	V		/
								# of preserved bottles checked	/
11. Does paperwork m				Yes	V	No		for pH:	
	s on chain of custo					41		(<2 or >12 unless Adjusted?	noted)
12. Are matrices corre				Yes		No	_	rigusted	
 13. Is it clear what ana 14. Were all holding tir 				Yes		No		Checked by: JR 11	101-
	mes able to be met mer for authorization			Yes	 	No		Checked by. JI- III	101
Special Handling	(if applicable)								
15. Was client notified	of all discrepancie	s with this order?	e.	Yes		No		NA 🗹	
Person Noti	fied:	_	Date	-	-				
By Whom:	- T		Via:	eM	ail 🗌	Phone	Fax	🗌 In Person	
Regarding:	1								
Client Instru	ctions:								
16. Additional remark	S:								
17. Cooler Informati	on								
	emp °C Conditio	n Seal Intact	Seal No	Seal D	ate	Signed	Ву		
1 0.5		Yes							
2 1.3	3 Good	Yes							

Page 1 of 1

Client:	Chain Mew	of-C	ustody Record	Turn-Around Standard Project Nam	d D Rush	to hold for		802	1,8	ŀ	IA N	AL	Y	SIS	S L		30		NT	AL	
Mailing	Addres	s:		C WMS 1	Delense			49	01 F								om M 87	100			: 12/
				Project #:	Louin JL				el. 5(-4107				14/2
Phone	#:			13296								_	and the second	-		uest	1.000				20
email o	or Fax#:			Project Man	ager: Lan	ce Crinshaw	E	Ô					SO4			lf)					2:43
QA/QC	Package ndard	:	□ Level 4 (Full Validation)	Joel	Lowry	ce Cransbau	s (8021)	DRO / MRO)	PCB's		8270SIMS		PO4, S			t/Absei					43:28 PM
Accred	itation:	🗆 Az Co	ompliance	Sampler:			TMB'	DR		÷.	327C		NO ₂ ,			sen					
	the state of the s	□ Othe	r	On Ice:	Z Yes	🗆 No	-	RO	es/8	504	ы	s			(YC	(Pre					
) (Type)	T		# of Coolers	C(including CF): 0.9	5±0=0.5 (°C)	MTBE	D(G	icide	poq	3310	letal	NO ₃ ,	4	ni-V	orm					
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	1.320=1.3	BTEX / N	TPH:8015D(GRO	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310	RCRA 8 Metals	Cl, F, Br,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)					
Wioha		Seil	EWI	1	Ici	001	X	X					X							1	1
11/10/20		Soil	EW2	T	Tec	002	V	X					X	611	1			+	+	1	1
11/10/24		Sol	Ews	l	Lee	003	X	X					X					+	+	+	1
Molz	þ	Soil	EW5	1	Ice	004	X	X					X				1		+	1	
11/10/20		Soil	EW6	1	Ice	005	X	X	1 - 1				X								T
11/20/20		Soil	EW7	1	Ice	006	X	X					X							1	1
11/20/20	>	Soil	EW9		Ice	007	X	X					X								
11/11/20	-	Soil	EW4B	1	Ice	008	X	X					X	111							
1/11/20		Soil	EW8B	1	Ice	009	X	×					X		11						
11/12/20		Soil	SWIC	1	Ice	010	X	×					X					T			
11/16/20		Soil	SWZ	1	ICE	011	X	x					X								
11/16/20 Date:		Soil	WW 3	i	ICC	0/2	X	X					A							T	
11/	Time: 1600 Time: 1000	Relinquish	min	Received by: Received by:	Via: Via:	Date Time <u>11/1720 1600</u> Date Time	Ren E	Mo Mo	ii iil	Ve Pr	50	11 et	S	the	o nv	And	dy?	por	for	300 A BTE	Dage 76.0
	1900 f necessary	, samples sut	omitted to Hall Environmental may be subc		Kritr li	s. This serves as notice of this	Se	bility	ADV SU	LT b-cont	acted	data	will be	clear	v notat	tod on	the and	alutical	report		f113

Released to Imaging: 2/4/2021 3:15:47 PM

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Client:	4.4	-of-C		Project Nam				old R sh	er E	80	21				YS	SIS	S L		30		NTA TOF	
Mailing	Addres	s:		CWM	S Rela	ease				49	01 H	lawk	ins N	NE -	Alb	ouque	erqu	e, NI	M 87	109		
				Project #: 1320						Te	el. 50)5-34	45-3	-	-	-	-	3312.20	4107			
Phone	#: or Fax#:			154°		1	2							A	-	sis	Req	uest		-		der
2012	Package		□ Level 4 (Full Validation)	Joel	ager: Lance Lows	7	nsha	w	TMB's (8021)	DRO / MRO)	PCB's		8270SIMS		PO4, SO4			Coliform (Present/Absent)				
Accred		□ Az C □ Othe	ompliance r	Sampler: On Ice:	Ø Yes	□ No			-	-	s/8082	504.1)	or 827(S	3, NO ₂ ,		(AC	(Preser				
) (Type)	T	T	# of Coolers: Cooler Temr	2 D(including CF): 0.9	stu: c	5	(°C)	/ MTBE	5D(GF	sticide	thod	8310	Metal	Br, NO ₃ ,	(A)	(Semi-VOA)	iform				
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	1.73	10 - 4.1 1EAL N 1189 1	2	BTEX / N	TPH:8015D(GRO	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	CIDF, Br	8260 (VOA)	8270 (Se	Total Col				
1/16/20		Soil	WWIB	l	ICE	Em	00t	013	х						X							
1/16/20		Soil	WWZB	t	ICE	nlisho	002	014	X	X					X						_	
																		_			+	
-																					_	
_											_										-	
Date:	Time:	Relinguis	hed by:	Received by: /	Via:	Dat	te Tir	ne	Ren	narks	S:		50.0	1 11	nta	ct		Δ				
Date: [17 20	Time: 1900	Relinquis	hed by:	Received by:	Via: QUAILEY	11/1 Dat		1600 ne 800	Z	Em	ail 1	í Pr	ies.	lte	s t ech	-0 1 - 1 - 1	- c	300	> on ho	120 My Id	E Fe	PH B

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Appendix C Photographic Log

Appendix D Depth to Groundwater Information

Received by OCD: 12/14/2020 2:43:28 PM

Released to Imaging: 2/4/2021 3:15:47 PM

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates th POD has been replaced & no longer serves a water right file.)	- been tep	laced, ned,		` 1			/ 2=NE : est to larg	3=SW 4=S	SE) NAD83 U	TM in m	neters)	(In f	eet)	
	erosed)	POD						5 / .			,	(,	
		Sub-		QQQ)								•	Water
POD Number	Code	basin	County	64 16 4	Sec	Tws	Rng	Х	- -	Y	DistanceDe	othWellDept	hWater C	olumn
<u>C 03031</u>		С	ED	1 3 3	35	23S	27E	578315	356920)6* 🌍	701	150	67	83
										Avera	ge Depth to Wat	er:	67 fe	et
											Minimum De	pth:	67 fe	eet
											Maximum Dep	oth:	67 fe	eet
Record Count: 1														
UTMNAD83 Rad	<u>lius Search (ir</u>	1 meters	<u>):</u>											
Easting (X):	578790.16		North	ing (Y):	3569	721.75	5		Radius:	804.67				
*UTM location was deriv	ved from PLSS	- see Helj	þ											
The data is furnished by thaccuracy, completeness, re								derstanding	that the OS	E/ISC ma	ake no warranties,	expressed or in	nplied, conce	rning the
· •	-										WATER COL			

10/20/20 10:16 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

New Mexico Office of the State Engineer **Point of Diversion Summary**

			· I	ers are 1= rters are s			W 4=SE)	(NAD83 U	JTM in meters)	
Well Tag	POD	Number		Q16 Q		-	<i>,</i>	X	Y	
0	C 0	3031	1	3 3		23S		578315	3569206* 🌍	
Driller Lic	ense:	685	Drille	r Comp	any:	BR	AZEAL,	, JOHN		
Driller Nai	me:	WAYNE BRAZEA	L							
Drill Start	Date:	06/10/2004	Drill F	inish D	ate:	0	6/16/200)4 P	lug Date:	
Log File D	ate:	06/24/2004	PCW	Rcv Da	te:			S	ource:	Shallow
Pump Type	e:		Pipe D	lischar	ge Siz	e:		Ε	stimated Yield:	50 GPM
Casing Size	e:	6.00	Depth	Well:		1	50 feet	D	epth Water:	67 feet
X	Wate	er Bearing Stratifica	ations:]	Гор	Botton	Descr	iption		
					139	150) Other/	/Unknown		
X		Casing Perfor	ations:]	Гор	Botton	1			
					90	150)			

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

10/20/20 10:18 AM

POINT OF DIVERSION SUMMARY

Released to Imaging: 2/4/2021 3:15:47 PM

Received by OCD: 12/14/2020 2:43:28 PM

Science for a changing world

National Water Information System: Web Interface

USGS Water Resources

Contact USGS Search USGS

Data Category: Groundwater

Geographic Area:
 United States

✓ GO

Click to hideNews Bulletins

• Introducing The Next Generation of USGS Water Data for the Nation

• Full News 🔊

Groundwater levels for the Nation

Search Results -- 1 sites found

Agency code = usgs

site_no list = • 321624104094801

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321624104094801 23S.27E.26.323332

Eddy County, New Mexico Latitude 32°16'24", Longitude 104°09'48" NAD27 Land-surface elevation 3,139 feet above NAVD88 The depth of the well is 156 feet below land surface. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

 Table of data

 Tab-separated data

 Graph of data

 Reselect period

Date	Time	? Water- level date- time accuracy	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Water- level accuracy	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Wate level appr statu
1954-02-16		D	107.19			2		U		U	I.
1955-01-17		D	112.42			2	R	R U		U	J
1956-01-10		D	108.77			2		U		U	J
1957-01-09		D	119.35			2	Р	р U		U	J
1958-01-16		D	104.74			2		U		U	J
1959-01-09		D	119.29			2	Ρ	• U		U	J
1960-01-15		D	104.10			2		U		U	J
1961-01-13		D	102.31			2		U		U	J
1962-01-19		D	97.86			2		U		U	J
1963-01-22		D	102.16			2		U		U	J
1964-01-20		D	104.21			2		U		U	J
1965-01-14		D	117.68			2	Р	р U		U	J
1966-01-05		D	115.60			2		U		U	J
1967-01-19		D	113.96			2		U		U	J
1968-01-26		D	112.32			2		U		U	J
1969-01-28		D	111.92			2		U		U	J
1970-01-20		D	112.49			2		U		U	J
1971-01-14		D	120.74			2		U		U	J
972-01-12		D	121.66			2		U		U	J
.973-01-05		D	123.34			2		U		U	J
974-01-16		D	121.74			2		U		U	l.

Released to Imaging: 2/4/2021 3:15:47 PM

Receive Date	d by OCI Time): 12/14/2020 ? Water- level date- time accuracy	<i>2:43:28 P</i> Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Water- level accuracy	? Status	? Method of measurement	? Measuring agency	Page 91 of ? Source of measurement	113 ? Wate level appr statu
1975-01-16		D	123.56			2		U		U	J
1976-01-13		D	122.91			2		U		U	J
1977-01-13		D	125.05			2		U		U	J
1978-01-23		D	128.42			2		U		U	J
1979-01-18		D	129.94			2		U		U	J
1981-05-20		D	126.56			2		U		U	J
1983-01-25		D	124.79			2		U		U	J
1988-02-11		D	110.98			2		U		U	J

		Explanation
Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level accuracy	2	Water level accuracy to nearest hundredth of a foot
Status		The reported water-level measurement represents a static level
Status	Р	Site was being pumped.
Status	R	Site had been pumped recently.
Method of measurement	U	Unknown method.
Measuring agency		Not determined
Source of measurement	U	Source is unknown.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2020-10-20 12:12:24 EDT 1.49 0.24 nadww01 USA.gov

Appendix E Elevation Profile

Appendix F Groundwater Quality Data

Released to Imaging: 2/4/2021 3:15:47 PM

•

#	
# File created on 2020-11-2 #	25 11:36:36 EST
# U.S. Geological Survey #	
	ted water-quality data for stations in the National Water -quality database. Explanation of codes found in this file are d data.
<pre># The data you have secured # not received Director's a # The data are released on</pre>	d from the USGS NWISWeb database may include data that have approval and as such are provisional and subject to revision. the condition that neither the USGS nor the United States iable for any damages resulting from its authorized or
<pre># To view additional data- # one result per row, expansion</pre>	quality attributes, output the results using these options: nded attributes. Additional precautions are at: sgs.gov/tutorials/water-quality-data/help-using-the-water-quality-data-retrieval-system#Data_retrievals_precautions
#	
# agency_cd	- Agency Code
# site_no # sample_dt	- USGS site number - Begin date
	- begin udle
<pre># sample_tm # sample_end_dt</pre>	- Begin time - End date
<pre># sample_end_dt # sample_end_tm</pre>	- End time
<pre># sample_start_time_datum_</pre>	
# cm_datum_ribty_cd	- Time datum reliability code - Agency Collecting Sample Code
# coll_ent_cd # medium_cd	- Sample Medium Code
# tu id	- Taxonomic unit code
	- Body part code
<pre># body_part_id # parm cd</pre>	- Parameter code
<u>Ferrun</u> _een	
# remark_cd # result va	
<pre># result_va # val_qual_tx # meth_cd</pre>	- Parameter value - Result value qualifier code
# vai_quai_tx # meth cd	- Method code
# dqi cd	- Data-quality indicator code
# rpt lev va	- Reporting level
# rpt_lev_cd	- Reporting level type
# lab_std_va	- Lab standard deviation
# anl ent cd	- Analyzing entity code
#	
<pre># The following parameters</pre>	are included:
	water, unfiltered, calculated, milligrams per liter
	, water, unfiltered, milligrams per liter
	ing capacity, water, unfiltered, fixed endpoint (pH 4.5) titration, field, milligrams per liter as calcium carbonate
# 00440 - Bicarbonate, wa	ater, unfiltered, fixed endpoint (pH 4.5) titration, field, milligrams per liter
	er, unfiltered, fixed endpoint (pH 8.3) titration, field, milligrams per liter
	r, filtered, milligrams per liter
# 00945 - Sulfate, water	, filtered, milligrams per liter
# 00950 - Fluoride, wate	r, filtered, milligrams per liter
# 00955 - Silica, water,	filtered, milligrams per liter as SiO2
#	
<pre># Description of sample_sta</pre>	art_time_datum_cd:
alagsad to Imaging 2/4/2021 2.1	15.47 PM

```
Page 97 of 113
```

```
# MDT - Mountain Daylight Time
#
# Description of tm_datum_rlbty_cd:
# T - Transferred
#
# Description of coll_ent_cd and anl_ent_cd:
#
# Description of medium_cd:
# WG - Groundwater
# Description of tu id:
# https://www.itis.gov/
#
# Description of body_part_id:
#
# Description of remark_cd:
#
# Description of val_qual_tx:
# Description of meth_cd:
# ALGOR - Computation by NWIS algorithm
#
# Description of dqi cd:
# A - Historical data
#
# Description of rpt_lev_cd:
#
# Data for the following sites are included:
  USGS 321340104090001 245.27E.12.300
#
#
                site no sample dt
                                        sample tm
                                                         sample end dt sample end tm sample start time datum cd
                                                                                                                          tm datum rlbty cd
agency cd
coll ent cd
                medium cd
                                tu_id body_part_id
                                                         parm cd remark cd
                                                                                 result va
                                                                                                  val qual tx
                                                                                                                  meth cd dqi cd rpt lev va
rpt lev cd
                lab std va
                                anl ent cd
5s
       15s
                10d
                        5d
                                10d
                                        5d
                                                 3s
                                                                 8s
                                                                         3s
                                                                                 11s
                                                                                         11s
                                                                                                                  12s
                                                                                                                           5s
                                                                                                                                                   12s
                                                         1s
                                                                                                  5s
                                                                                                          1s
                                                                                                                                   5s
                                                                                                                                           1s
        11s
6s
                8s
USGS
        321340104090001 1974-05-30
                                        14:40
                                                                 MDT
                                                                         Т
                                                                                          WG
                                                                                                                  00191
                                                                                                                                   0.00003
                                                                                                                                                   ALGOR
А
USGS
                                                                                                                  00405
        321340104090001 1974-05-30
                                        14:40
                                                                 MDT
                                                                         Т
                                                                                          WG
                                                                                                                                   7.2
А
USGS
        321340104090001 1974-05-30
                                        14:40
                                                                 MDT
                                                                         Т
                                                                                          WG
                                                                                                                  00410
                                                                                                                                   117
А
USGS
                                                                         Т
                                                                                          WG
                                                                                                                  00440
                                                                                                                                   143
        321340104090001 1974-05-30
                                        14:40
                                                                 MDT
А
USGS
        321340104090001 1974-05-30
                                        14:40
                                                                 MDT
                                                                         Т
                                                                                          WG
                                                                                                                  00445
                                                                                                                                   0.0
А
USGS
        321340104090001 1974-05-30
                                        14:40
                                                                 MDT
                                                                         Т
                                                                                         WG
                                                                                                                  00940
                                                                                                                                   340
А
USGS
        321340104090001 1974-05-30
                                        14:40
                                                                 MDT
                                                                         Т
                                                                                          WG
                                                                                                                  00945
                                                                                                                                   1300
А
USGS
                                                                                          WG
        321340104090001 1974-05-30
                                        14:40
                                                                 MDT
                                                                         Т
                                                                                                                  00950
                                                                                                                                   0.60
Α
USGS
                                                                 MDT
                                                                         Т
                                                                                          WG
                                                                                                                  00955
                                                                                                                                   17.0
        321340104090001 1974-05-30
                                        14:40
А
```


November 23, 2020

LANCE CRENSHAW Etech Environmental & Safety Solutions P.O. Box 301 Lovington, NM 88260

RE: CARLSBAD WATER MANAGMENT SYSTEM RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 11/20/20 16:25.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-20-13. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	11/20/2020	Sampling Date:	11/19/2020
Reported:	11/23/2020	Sampling Type:	Water
Project Name:	CARLSBAD WATER MANAGMENT SYSTEM	Sampling Condition:	** (See Notes)
Project Number:	13296	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: OTIS WELL #5 (H003089-01)

Chloride, SM4500Cl-B	mg,	/L	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride*	356	4.00	11/23/2020	ND	100	100	100	0.00	
TDS 160.1	mg,	/L	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
TDS*	2050	5.00	11/23/2020	ND	494	98.8	500	0.971	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflictes or successors arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mite Sigh

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

ARDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240	2111 Beechwood, Abilene, TX 79603
(505) 393-2326 FAX (505) 393-2476	(325) 673-7001 FAX (325)673-7020

Company Name	mpany Name: ETech Environmental 7 Sadety Solutions, 2						Ene	THE BILL TO					ANALYSIS REQUEST										
Project Manage	": Lance Cruns	shaw					.,		P.(0. #	k											T	T
Address: P.D.	Bay 301								Co	mp	any	1: 4	ETech E	nu -					S				
City: LEVIAS	ton	State: NM	Zip	: 7	82	60			At	tn:									DO				
Phone #: 575	HN - 396-2378	Fax #: 575-	391	-1	42	>			Ad	Idre	SS:					· · · ·			L.				
Project #: 132	96	Project Owne	r: //	len	bur	m			City:						10	Σ		I	SI				
Project Name:	artsbad Water 1	nonagment s	ste	M	Re	lea	Se		St	ate:			Zip:		ě	15	BTEX	Texas TPH	UO UO				
Project Location	n: Rural Eddy	county, N	M	_	_				Ph	one	#:				Chlorides	80			ati	TDS			
Sampler Name:	ject Name Larisbad Water Marajnuat system Rilease ject Location: PUral Eddy COUNTY, NM npler Name: Miglel Ramine MATRIX						Fa	x #:		_	_		물	TPH 8015	B	Xa	Ö	F					
FOR LAB USE ONLY					-	M	ATRI	X	-	PR	ESE	RV.	SAMPLI	NG	O	a		Te	ite				
Lab I.D. <i>H003089</i>	Sample		(G)RAB OR (C)OMP	# CONTAINERS		WASTEWATER	OIL	SLUDGE	OTHER :	ACID/BASE:	ICE / COOL	OTHER :	DATE	TIME					Complete Cations/Anion				
1	otis Well #5		G	1	X								1.19.20		X					X			
	10 01 10															-				-		_	-
							+	-	-						-		-						
							+	-	-							-						 	
				-			+-	+	-		-						-						
					-		+	+	-		-						-						+
						-	+	+	+								-						
							+	1														-	1
								1	1														
ensiyees. All clearns include services. In no event shell C effiliates or successors arise Relinquished By	KO	er cause whatsoever shall be sequential dameges, including too of services hereunder by C Date: 11-20-20 Time: 1625	deeme withou ardinal	d warve at limita regar	id unle	ss meide usineits f wheth By:	interrup	bing ani pbons i claim	d rece tees d is bas	rved by	or los	dinal w	nthen 30 days after allia incurred by cf above stated rear	completion of the subside one or otherwise one or otherwise one of the subside one of the subside one or otherwise one of the subside of the	the applicat anes ine. esult: it: S.	D Ye	s Ø cHI	No	Add'l I				
Relinquished By	y:	Date: Time:	Re	ceiv	ved I	By:							7	email	resu	lts		ec.					
	: (Circle One) - Bus - Other:	24.3é :	#1	3	1		Infa	act		-	1	ECK (Initi	ED BY: als)	p	m	a	ef	rcl	n Cr	1.	(0~		

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

Appendix G Chloride Migration Models

Depth to Water	Meters	Feet	95	=	2895.60 cm
User provided moist bulk density (rho m)	0 kg/m ³				
	U Kg/III	1550 kg/m ³ - Mois	st bulk densi	ty used	in calculations
Dry Bulk Density (rho) =	1415 kg/m ³	-			
Default Vol. Moist. Content (Theta_v) =	0.135				
Calculated moist bulk density (rho_m) =	1550 kg/m ³				

Trench TT1													
		If a Composite	Sample from a I	Depth Inter	val			Grab S	amples				
Sample		Feet			Meters		z		Z		Z	Chl. Conc.	Chl. Load Depth Int.
Number													
(increasing	Top of	Bottom of		Top of	Bottom of			Depth for		Depth for	Assigned		
depth)	Sample	Sample	Ave. Depth	Sample	Sample	Ave. Depth	Feet	sample	Meters	sample	depth in cm	mg/kg	kg/m ²
1							10	10	0	0	304.8	516	2.44
2							11	11	0	0	335.28	440	0.23
3													0.60
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													
											Chlo	ride load (kg/m ²)	3.27

-

Trench TT2													
	H	f a Composite	Sample from a	Depth Int	erval			Grab S	amples				
Sample		Feet			Meters		Z		Z		Z	Chl. Conc.	Chl. Load Depth Int.
Number													
(increasing	Top of	Bottom of		Top of	Bottom of			Depth for		Depth for	Assigned		
depth)	Sample	Sample	Ave. Depth	Sample	Sample	Ave. Depth	feet	sample	meters	sample	depth in cm	mg/kg	kg/m ²
1							6	6	0	0	182.88	160	0.45
2 3													
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14 15													
16													
10													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													
											Chlo	ride load (kg/m ²)	0.45

•

Trench TT3													
	I	f a Composite	Sample from	a Depth Ir	nterval			Grab Sa	amples				
Sample		Feet			Meters		Z		Z		Z	Chl. Conc.	Chl. Load Depth Int.
Number													
	Top of	Bottom of		Top of	Bottom of			Depth for		Depth for	Assigned		
depth)	Sample	Sample	Ave. Depth	Sample	Sample	Ave. Depth		sample	meters	sample	depth in cm	mg/kg	kg/m ²
1							6	6	0	0	182.88	59	0.17
2													
3													
4													
5													
6													
7													
8													
9													
10 11													
12 13													
13													
14													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26											1		
27													
28													
29													
30													
											Chlor	ide load (kg/m ²)	0.17

.

	lf a	a Composite	Sample fror	n a Depth	Interval			Grab Sa	mples				
Sample		Feet			Meters		Z		z		Z	Chl. Conc.	Chl. Load Depth Int
Number													
increasing	Top of	Bottom of		Top of	Bottom of			Depth for		Depth for	Assigned		
depth)	Sample	Sample	Ave. Depth	Sample	Sample	Ave. Depth	feet	sample	meters	sample	depth in cm	mg/kg	kg/m ²
1							7	7	0	0	213.36	200	0.66
2													
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16 17													
17													
19													
20													
20													
22													
23													
24													
20 21 22 23 24 25 26 27 28													
26													
27													
28													
29													
30													

	Proportional Area Weights	Chl. Load of each Borehole	Equal Area Weights	Boring Chl. Load times Proport. Of Area
Trench TT1	0.00	3.27	1.00	0.00
Trench TT2	0.00	0.45	1.00	0.00
Trench TT3	0.00	0.17	1.00	0.00
Trench TT4	0.00	0.66	1.00	0.00
	0		4]
Averaged Chlorid	e Load of All Bor	eholes	1.14	kg/m²

•

Depth to Water	Meters	Feet	95	=	2895.60 cm
	2 harta 3				
User provided moist bulk density (rho_m)	0 kg/m ³	1550 kg/m³ - Mois	t hulk donoit	w wood i	in colouistions
Dry Bulk Density (rho) =	1415 kg/m ³	1550 Kg/m - Mois	t bulk densit	y used i	in calculations
Default Vol. Moist. Content (Theta_v) =	0.135				
Calculated moist bulk density (rho_m) =	1550 kg/m ³				

Trench TT1		If a Composite	Sample from a	Depth Inte	val		Grab Samples						
Sample		Feet	oumpro nom u		Meters		Z	0.020	Z		z	Chl. Conc.	Chl. Load Depth Int.
Number							-		-		-		• <u>-</u> •••• •••
(increasing	Top of	Bottom of		Top of	Bottom of			Depth for		Depth for	Assigned		
depth)	Sample	Sample	Ave. Depth	Sample	Sample	Ave. Depth	Feet	sample	Meters		depth in cm	mg/kg	kg/m ²
1	Campio	Campio	Ave. Dopti	Campio	Campio	TWO. Dopan	4	4	0	0	121.92	5644	10.67
2							5	5	0	0	152.4	4848	2.48
3							8	8	0	0	243.84	2440	5.16
4							9	9	0	0	274.32	1016	0.82
5							10	10	0	Ō	304.8	516	0.36
6							11	11	0	0	335.28	440	0.23
7													0.60
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30												ride load (kg/m ²)	20.31

-

Number increasing sample Dop d Sample Bottom of Sample Nue. Depth Sample Depth for Sample Depth for Sample Assigned depth in cm Impkg 1 <th>Trench TT2</th> <th colspan="12">ench TT2</th>	Trench TT2	ench TT2												
Sample Feet Top of Bottom of Ave. Depth Sample Sa		If a Composite Sample from a Depth Interval							Grab Samples					
Top of bepthof Bottom of sample Top of Ave. Depth Somple Depth for sample Assigned meters Sample Assigned depth in cm 1 5 5 0 0 152.4 1632 3.86 2 5 5 0 0 152.4 169.0 152.4 169.0 152.4 169.0 0.4 152.4 169.0 0.42 3 4 5 5 0 0 152.4 160.0 0.42 4 5 5 6 0 0 152.8 160.0 0.42 6 6 6 6 0 0 152.8 160.0 0.42 10 10 1 14 <td>Sample</td> <td></td> <td>Feet</td> <td></td> <td></td> <td>Meters</td> <td></td> <td>Z</td> <td></td> <td>Z</td> <td></td> <td>Z</td> <td>Chl. Conc.</td> <td>Chl. Load Depth Int.</td>	Sample		Feet			Meters		Z		Z		Z	Chl. Conc.	Chl. Load Depth Int.
Sample Sample Ave. Depth Sample Ave. Depth Sample Net Sample depth months months kg/m² 1 1 5 0 0 152.4 386 0.42 3.86 2 3 6 6 0 0 152.4 160 0.42 3 6 6 6 0 0 182.48 160 0.42 3 6 6 6 0 0 182.48 160 0.42 3 6 6 6 6 0 0 182.48 160 0.42 7	Number													
Sample Sample Ave. Depth Sample Ave. Depth Sample Net Sample depth months months kg/m² 1 1 5 0 0 152.4 386 0.42 3.86 2 3 6 6 0 0 152.4 160 0.42 3 6 6 6 0 0 182.48 160 0.42 3 6 6 6 0 0 182.48 160 0.42 3 6 6 6 6 0 0 182.48 160 0.42 7	(increasing	Top of	Bottom of		Top of				Depth for		Depth for	Assigned		
1 5 5 0 0 152.4 1632 3.86 2 6 6 0 0 182.88 160 0.42 3 4 5 6 6 0 0 182.88 160 0.42 4 5 6 6 0 0 182.88 160 0.42 5 6 6 6 0 0 182.88 160 0.42 6 7	depth)	Sample	Sample	Ave. Depth	Sample	Sample	Ave. Depth	feet	sample	meters		depth in cm	mg/kg	kg/m ²
2 3 6 6 0 0 182.88 160 0.42 3 4 5 <	1							5	5	0	0		1632	3.86
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	2							6	6	0	0	182.88	160	0.42
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	3													
7 8 9 9 9 10 11 11 12 12 13 13 14 15 16 16 16 17 16 18 16 19 16 10 16 16 16 17 16 18 16 19 16 20 16 21 16 22 16 23 16 24 16 25 16 26 16 27 16 28 16 30 16	4													
7 8 9 9 9 10 11 11 12 12 13 13 14 15 16 16 16 17 16 18 16 19 16 10 16 16 16 17 16 18 16 19 16 20 16 21 16 22 16 23 16 24 16 25 16 26 16 27 16 28 16 30 16	5													
8 9 9 10 10 11 11 11 12 13 13 14 14 14 15 14 16 14 17 16 18 14 19 14 19 14 20 14 21 14 22 14 23 14 24 14 25 14 26 14 27 14 28 14 29 14 30 14	6													
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	7													
10 11 11 12 12 13 13 14 14 14 15 14 16 14 17 14 18 14 19 14 14 14	8													
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	9													
12 13 14 15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30														
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30														
14 15 16 17 17 18 19 20 21 22 23 23 24 25 26 27 28 29 30 30														
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30														
16 17 17 18 18 19 20 10 20 10 21 10 22 10 23 10 24 10 25 10 26 10 27 10 28 10 29 30														
17 18 19 20 21 22 23 24 25 26 27 28 29 30	15													
18 19 20 21 22 23 24 25 26 27 28 29 30														
19 20 21 22 23 24 25 26 27 28 29 30														
20 21 21 22 22 23 23 24 25 26 26 27 28 29 30 30														
21 22 23 24 25 26 27 28 29 30														
22 23 24 25 26 27 28 29 30														
23 24 25 26 27 28 29 30														
24 25 26 27 28 29 30														
25 26 27 28 29 30	23													
26 27 28 29 30	24													
27 28 29 30														
28 29 30														
29 30	28													
30	29													
	30													
												Chlor	ride load (kg/m ²)	4.28

•

Trench TT3	rench TT3												
	If a Composite Sample from a Depth Interval							Grab Samples					
Sample		Feet			Meters		z		z		Z	Chl. Conc.	Chl. Load Depth Int.
Number													
(increasing	Top of	Bottom of		Top of	Bottom of			Depth for		Depth for	Assigned		
depth)	Sample	Sample	Ave. Depth	Sample	Sample	Ave. Depth	feet	sample	meters	sample	depth in cm	mg/kg	kg/m ²
1					•		5	5	0	0	152.4	2440	5.76
2							6	6	0	0	182.88	59	0.59
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16 17													
17													
18													
20													
20													
21													
22													
24													
25													
26													
27													
28													
29													
30													
			_								Chlor	ide load (kg/m ²)	6.35

.

Trench TT4													
	If a Composite Sample from a Depth Interval							Grab Samples					
Sample		Feet			Meters		Z		Z		Z	Chl. Conc.	Chl. Load Depth Int.
Number													
(increasing	Top of	Bottom of		Top of	Bottom of			Depth for		Depth for	Assigned		
depth)	Sample	Sample	Ave. Depth	Sample	Sample	Ave. Depth	feet	sample	meters	sample	depth in cm	mg/kg	kg/m ²
1							4	4	0	0	121.92	2440	4.61
2							5	5	0	0	152.4	2440	1.15
3							6	6	0	0	182.88	748	0.75
4							7	7	0	0	213.36	200	0.22
5													0.02
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27 28													
28													
29													
30											I		0.70
											Chlorid	e load (kg/m ²)	6.76

	Proportional Area Weights	Chl. Load of each Borehole	Equal Area Weights	Boring Chl. Load times Proport. Of Area
Trench TT1	0.00	20.31	1.00	0.00
Trench TT2	0.00	4.28	1.00	0.00
Trench TT3	0.00	6.35	1.00	0.00
Trench TT4	0.00	6.76	1.00	0.00
	0		4	
Averaged Chlorid	9.43	kg/m²		

.

District I 1625 N. French Dr., Hobbs, NM 88240

District II

District IV

Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

District III 1000 Rio Brazos Rd., Aztec, NM 87410

CONDITI	ONS

Action 11566

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS OF APPROVAL

Operator:				OGRID:	Action Number:	Action Type:
	MEWBOURNE OIL CO	P.O. Box 5270	Hobbs, NM88241	14744	11566	C-141
					-	
OCD	Condition					
Reviewer						
ceads	Based on the GPS coordinates	s provided in this remediation	on plan and C-141 application, this site is loo	ated in an area of high karst potential. The	remediation of this release	shall be treated as if it
	occurred less than 50' to group	d water per 19 15 12 C (4)	NMAC			