

March 16, 2021

Mr. Mike Bratcher New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request Limestone Compressor Station Overspray Incident Number: nRM2032830684 Lea County, New Mexico

Dear Mr. Bratcher:

Lucid Energy Group (Lucid) presents the following Closure Request detailing site assessment and soil sampling activities at the Limestone compressor station (Site) in Unit B, Section 35, Township 24 South, Range 34 East, in Lea County, New Mexico under surface ownership of the New Mexico State Lands (NMSLO) (Figure 1). The purpose of the site assessment and soil sampling activities was to confirm the presence or absence of impacts to soil associated with a release of natural gas and condensate at the Site and subsequent biological treatment of impacted soil. Based on field observations, field screening, and laboratory analytical results from soil sampling activities, Lucid is submitting this Closure Request. Lucid requests no further action for this site. Listed below is a brief summation of the Site details in Table 1.

Table 1: Site and Release information						
Name	Limestone Compressor Station Overspray					
Company	Lucid Energy Delaware					
Incident Number	nRM2032830684					
Location	32.268060° -103.437368°					
Estimated Date of Release	9/27/2020					
Date reported to NMOCD	10/15/2020					
Landowner	New Mexico State Land Office					
Reported to	NMOCD District II and NMSLO					
Source of Release	Condensate tank					
Released Material	Natural Gas Condensate					
Released Volume	~5 bbls, 420MCF					
Recovered Volume	~5 bbls					
Net Release	420 MCF					
Nearest Waterway	4.9 miles southeast					

Depth to Groundwater	Estimated to be >100'
Nearest Domestic Water source	Greater than 1000'
Lucid Activity Dates	9/27-9/30, 10/14, 10/21

1.0 RELEASE BACKGROUND

On September 27, 2020, a pumper noticed the Limestone compressor station tanks overflowing into containment and spraying a mist of pipeline liquids and condensate onto NMSLO land north of the pad. Approximately 5 barrels (Bbls) of natural gas condensate/oil were released into containment. Approximately 420 MCF of natural gas was released to atmosphere and the surrounding environment. Lucid reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form C-141 (Form C-141) on November 9, 2020 which was received and assigned Incident Number nRM2032830684 on November 23, 2020. Lucid was initially planning to submit a closure request along with the initial release notification however staining observed on the surface and scheduling conflicts prevented prompt characterization resulting in the delayed notification submittal. The Form C-141 is provided as Appendix A.

2.0 SITE CHARACTERIZATION

Lucid characterized the Site according to Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest groundwater well data attained from the New Mexico Office of the State Engineer (NMOSE). The United States Geological Survey groundwater database showed no wells within a reasonable proximity to the Site. The closest permitted groundwater well, CP-01708, with depth to groundwater data is located approximately 0.67 miles directly east of the Site. The groundwater well has a reported depth to the artesian aquifer of approximately >750 feet bgs. The Site is greater than 300 feet from any continuously flowing or significant watercourse. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, or church. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is located greater than 300 feet from a wetland. The Site is located in a low-potential karst area. The surface geology of the Site is comprised mostly of the Simona series sand and some of the Tonuco series. The Simona series is described as gravish-brown, fine-grained, shallow, well drained, soil formed in calcareous sandy sediments. The Tonuco series is described as a brown to reddish-brown, fine-grained, excessively drained soil from coarse textured alluvium from various sources. During surface sampling activities of the Site the Simona series was encountered throughout at 0 to 1 feet bgs. Karst potential receptors identified during site characterization are displayed in Figure 1. NMOSE groundwater data for surrounding wells is presented in Appendix C.

3.0 CLOSURE CRITERIA

In lieu of attaining a definitive groundwater depth via listed methods and lacking current groundwater information within reasonable proximity, Lucid remediated the Site according to the strictest closure criteria relevant to groundwater depth of <50 feet bgs, listed in NMAC 19.15.29 Table 1 Closure Criteria (Closure Criteria). Based on the results of the site characterization, the following Closure Criteria apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons TPH: 100 mg/kg
- Chloride: 600 mg/kg

4.0 INITIAL RESPONSE

During the response to the release, Lucid personnel contracted a vacuum truck to remove any standing liquids that collected in the tank battery containment. Pipeline liquids and condensate that impacted the surrounding surface and the nearby road were scraped up using a backhoe. The subject back pressure valve was repaired, and surface samples were collected by a Lucid EHSR technician. The locations of samples are presented in Figure 2 and laboratory analytical results are summarized in Table 2. The complete laboratory analytical report is included in Appendix D.

5.0 DELINEATION SOIL SAMPLING ACTIVITIES

On September 28, Lucid personnel conducted site investigative activities to evaluate the release extent and current conditions. Light surface staining was visually observed in the overspray area north of the road while some heavier staining was observed in the immediate proximity of the tanks and in the road directly north of the tanks. Aerial site photos collected by Unmanned Aerial Systems (UAS) showed the distribution of the overspray. Photographic documentation was conducted during the Site visit and a Photographic Log is included in Appendix B.

Lucid personnel conducted delineation activities to define the horizontal extent of the impacted area. Utilizing a hand trowel and/or shovel, ten surface samples (HA-1 through HA-5) were collected within and around the release footprint to verify the presence or absence of soil impacts. Samples were collected in the soils of the overspray area and where the scraped road contacts the overspray area. Surface soil samples were collected at approximately 3-6 inches bgs and at 10-12 inches bgs. Field screening indicated that vertical impacts were minimal due to the nature of the overspray release. Sampled depths are approximations due to the composition and nature of the fine-grained sands of the Simona series. The locations of samples are presented in Figure 2 and laboratory analytical results are summarized in Table 2.

Field screening was conducted for chloride using Hach[®] chloride QuanTab[®] test strips. Field screening was conducted for hydrocarbon volatile organic compounds (VOCs) using a MiniRAE[®] Lite+ PID Monitor. The soil samples were placed directly into a pre-cleaned glass jar, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were shipped at or below 4 degrees Celsius (°C), under strict chain-of-custody (COC) procedures, to Hall Laboratories (Hall) in Albuquerque, New Mexico, for analysis of BTEX following United States EPA Method 8021B; TPH-GRO, TPH-DRO, and TPH-MRO following EPA Method 8015M/D; and/or chloride following EPA Method 300.0. The complete laboratory analytical report is included in Appendix D. Additionally, photographic documentation from delineation activities is also included in Appendix B.

6.0 **REMEDIATION ACTIVITIES**

Remediation activities began immediately during the initial response to the overspray event. On September 27, Lucid personnel and A2Z Services (A2Z) began remedial activities at the Site. One initial in situ Micro-Blaze® bioremedial treatment was applied to the immediate surface area around the tank battery and throughout the overspray area including the road north of the tank battery. In lieu of attaining a definitive groundwater depth via listed methods and lacking current groundwater information nearby, Lucid remediated the Site in conjunction with the strictest closure criteria relevant to groundwater depth of <50 feet bgs, listed in NMAC 19.15.29 Table 1. The closest groundwater well is approximately 0.67 miles to the east of the Site, groundwater well data from NMOSE are listed in Appendix C.

On September 30 and again on October 14, A2Z was onsite to apply two more in situ Micro-Blaze[®] bioremedial treatments to the overspray surface area and with additional attention to the vegetation. Samples were again field screened for hydrocarbon VOCs and chlorides with no impacts detected. After receipt of the analytical results from initial delineation sampling one sample, HA-1-S at 3-6 inches bgs, returned with TPH detected at 156 ppm mostly in the MRO and DRO hydrocarbon range. On October 21, a five-point composite sample HA-6-C-S, was collected relative to HA-1-S. Field screening of the sample indicated no remaining hydrocarbon nor chloride impacts. Sample HA-6-C-S was sent to Hall for further analysis.

Field screening was conducted for chloride using Hach[®] chloride QuanTab[®] test strips. Field screening was conducted for hydrocarbon VOCs using a MiniRAE Lite+ PID Monitor. The soil samples were placed directly into a pre-cleaned glass jar, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were shipped at or below 4° C, under strict COC procedures, to Hall, for analysis of BTEX following United States EPA Method 8021B; TPH-GRO, TPH-DRO, and TPH-MRO following EPA Method 8015M/D; and/or chloride following EPA Method 300.0. The complete laboratory analytical report is included in Appendix D. Additionally, photographic documentation from remediation activities is also included in Appendix B.

7.0 ANALYTICAL

All overspray area composite sample locations (HA-6-C-S) analyzed for chloride and hydrocarbon concentrations yielded concentrations below the Closure Criteria. All other delineation grab samples indicated BTEX, TPH-GRO, TPH-DRO, TPH-MRO, and Total TPH concentrations below the applicable Closure Criteria at multiple depths. Hydrocarbon and chloride impacts have been delineated vertically and laterally. Soil sample analytical results are reported in Table 2. The complete laboratory analytical report is included in Appendix D.

8.0 CLOSURE REQUEST

Based on the analytical data indicating hydrocarbon and chloride impacts have been delineated and the bioremediation of impacted surface material and vegetation, Lucid respectfully requests closure of the Site and no further action associated with Incident Number nRM2032830684. Lucid will commence corrective action to address reseeding the Site once temperatures have risen adequately for more effective revegetation. If you have any questions or comments, please do not hesitate to contact Mr. Michael Gant at 314-330-7876.

Sincerely,

LUCID ENERGY GROUP

Michael Gant Environmental Coordinator

cc: Ryan Mann, NMSLO Emily Hernandez, NMOCD Robert Hamlet, NMOCD Victoria Venegas, NMOCD

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Delineation Soil Sample Locations

Table 2	Soil Analytical Results
Appendix A	Form C-141
Appendix B	Photographic Log
Appendix C	NMOSE Groundwater Data
Appendix D	Laboratory Analytical Reports

.

FIGURES

•

eceivei	d by OCD: 3	/16/2021 9	·35:51 AM											Page 8	s of
	2	\mathbf{S}^{1}	6	5	4	3	2	1	6	33	4	3	5-1	sy	5
5	11	12	7	ware Basin Rd	9	10	-J 11	12	7	8	-3500 M	SAN SIMON RIDGE	11	12	0
	- En	100	K			Y-		1	and	- 2	2 Sa		8		\vdash
	14	13	18	17	16	15	14	13	18	17	16	15	14	13	8.
	PL			1m	T 23 S R	34 E 2	2 1				T 23 S	R 35 E		2 2 1	t
5	72,1 2350 PM	24	19	20	21 21 21	22	23	24	19	20	21	22	23	24	10
		PLOCK	-Er	22	obe	5		Limes	stone Site	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3		2	25	
	26	25	30	29	28 Pure	27	26	23	30	29	28	27	2623	25	1
×L	Rd			25	5	TT	X	1			3 8		2		
	35	36	31	32	33	34	35	36	31	32	33	34	35	36	
2-7	-			Shell Rd 3604 ft		~				~ 5			20		t
	2	1	6	3609 F	4	3	2	An, 1 10000	6	5	4	3	2	1	
2			1		XU		53	00	1	20	171	17	.3493 ft	- S	1
	11	12	7	8	9	10	211	12	7	8	9	10	11	12	
1		-	0		1 Li	_	13							Ga	aines
	14	13	18	17	16	15	3500 R 14	13	18	17	16		Lea		
F	W NM High			1	T-24-S-F	R-34-E		3 5	22		T-24-	Eddy		And	rews
			10	20	21	22	23	24	19	20	21				_
	23	24	19	20	21	22	23	15°	5	20	1		oving	Winkler	
Ē	1	VadaLIN	1		5			XC	1	-2	R	leeves		~ /	_

up eet 0 Site

Karst Critical High Medium Low

v F Coordinate System NAD 1983 StatePlane New Mexico East FIPS 3001 Feet 0 5,000 10,000 Feet Figure 1: Site Location Map Limestone Overspray Eddy County, NM 32.2686268°, -103.4373459°

	1											
	32	HA-2-N	9/30/2020	9/30/2020				/	HA-5-Cente	er 9/30/202	0 9/30/2020	C C C C C C C C C C C C C C C C C C C
	1000	Depth	3-6"	10-12"	Mar al Part				Depth	3-6"	10-12"	14 miles
	-	BTEX	<50	<50	- maximal Max	TP MAR. W	71 M. W.		BTEX	<50	<50	and the second
		Total TPH	<100	<100					Total TPH	<100	<100	11 11 11
1		Chloride	<60	<60	A A	A 174 A	2 . /.		Chloride	<60	<60	Martin and
1		-	的命令行	alt	to the	A. Story	14 / Gat			a Say &		
1		HA-4-W	9/30/2020	9/30/2020	Not the second		/	5	HA-3-E	9/30/2020	9/30/2020	10 22
.]		Depth	3-6"	10-12"		* * /	TWO'	1	Depth	3-6"	10-12"	Carlos States
	and the second s	BTEX	<50	<50					BTEX	<50	<50	PPE-10
1.		Total TPH	<100	<100		spec.		a group	Total TPH	<100	<100	S. A. Barris
3		Chloride	<60	<60		A RAY	a ser a		Chloride	<60	<60	和 一百日
1:			Mary - Mary					A she ist	12.934		SFT PET	Sales L
4			A line and			Patter A	Ares	AND AN	Pla series			- 615
	23.	HA-1-S	9/30/2020	9/30/2020	Nov.		S- 34	1	HA-6-C-S	10/21/2020		C. K.Z.
*		Depth	3-6"	10-12"		TALINE AND ST		L. Leas	Depth	NA		Part of the second
1.		BTEX	<50	<50	WA BEAN	and a start of a		7 11 1	BTEX	<50		and the fi
A.		Total TPH	156	<100				interest in the	Total TPH	<100		C. C. Martin
And And Park		Chloride	<60	<60			2	A BAS	Chloride	<60		The second
AL LUR	The Contraction											
					A THE WHE	and the state of the state	and the main of the second sec		A STATE OF STATE	14 N	Kan	
下行借		- 1++	Contraction of the second s		Pet # *							
												and the second
To At	4		-	A CAR & + Grades		and the second second	i · Cha		i Minute Mart	mailine		
		*				State State	to any ing the					U HARRAN
Berne State	1 and			a ser have the t		A AND A A A A A A A A A A A A A A A A A	(. *			CLARE AP + 1	The real open	William .
 Sample 				De				a H	1		A A A A A A A A A A A A A A A A A A A	
Power	[.] Lines Battery (Emission So		1 State								2	-
Heavy	Overspray Area								and the	1 1 1 S	1 a la	
Light C	Overspray Area	111							4-16-23		4 -	
A The cold	A. 1. 1. 1. 193	in a later			A A A A A A A A A A A A A A A A A A A	The set			I I I			

NOTES:

 Analytical Values are given in mg/Kg (ppm).
 Analytical Values in yellow shading exceed NMED RRAL's.

Figure 2: Limestone Sample Location Limestone Overspray Lea County, NM 32.2682516°, -103.4373533°

•

TABLES

Table 2 Soil Sample Analytical Results Limestone Compressor Station Lea County, NM

Sample ID	Depth (feet)	Date	Benzene	Toluene	Ethyl-benzene	Xylenes	BTEX	TPH (GRO)	TPH (DRO)	TPH (MRO)	Total TPH	Chlorides
HA-1-S	3-6"	9/30/2020	<.023	<.047	<.047	<.093	<50	<4.7	36	120	156	<60
HA-1-S	10-12"	9/30/2020	<.024	<.049	<.049	<.098	<50	<4.9	<9.5	<47	<100	<60
HA-2-N	3-6"	9/30/2020	<.023	<.046	<.046	<.092	<50	<4.6	<9.5	<48	<100	<60
HA-2-N	10-12"	9/30/2020	<.023	<.047	<.047	<.094	<50	<4.7	<8.9	<44	<100	<60
HA-3-E	3-6"	9/30/2020	<.024	<.048	<.048	<.097	<50	<4.8	<9.3	<47	<100	<60
HA-3-E	10-12"	9/30/2020	<.024	<.048	<.048	<.095	<50	<4.8	<10	<50	<100	<60
HA-4-W	3-6"	9/30/2020	<.024	<.048	<.048	<.097	<50	<4.8	<8.8	<44	<100	<60
HA-4-W	10-12"	9/30/2020	<.024	<.049	<.049	<.097	<50	<4.9	<9.9	<49	<100	<60
HA-5-Center	3-6"	9/30/2020	<.023	<.046	<.046	<.092	<50	<4.6	<9.5	<48	<100	<60
HA-5-Center	10-12"	9/30/2020	<.023	<.047	<.047	<.093	<50	<4.7	<9.8	<49	<100	<60
HA-6-C-S	3-6"	10/21/2020	<.023	<.046	<.046	<.093	<50	<4.6	<9.8	<49	<100	<60
NMOCD Table		Limite	10		Total B	TEX: 50			Total T	PH: 100		600

Notes:

All sample results are in milligrams per kilogram

NMOCD = New Mexico Oil Conservation Division

Table 1 Closure Limits = In accordance with 19.15.29 Release Rule

NA = Not Analyzed

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes

TPH = Total Petroleum Hydrocarbons

GRO = Gasoline Range Organics DRO = Diesel Range Organics

MRO = Motor Oil Range Organics

Exceeds NMOCD limit

.

Appendix A

Form C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Lucid Energy Delaware	OGRID 372422	
Contact Name Michael Gant	Contact Telephone 3143307876	
Contact email MGant@lucid-energy.com	Incident # (assigned by OCD)	
Contact mailing address 201 South 4th Street		

Location of Release Source

Latitude 32.268060°

Longitude -103.437368°

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Limestone Compressor Station	Site Type Natural gas compressor station
Date Release Discovered 9/26/2020	API# (if applicable)

Unit Letter	Section	Township	Range	County
В	35	23S	34E	Lea

Surface Owner: State State Federal Tribal Private (Name: New Mexico State Land Office

Nature and Volume of Release

Materi	al(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)					
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)					
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)					
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No					
Condensate	Volume Released (bbls) <5 bbls	Volume Recovered (bbls) 0 bbls					
🗹 Natural Gas	Volume Released (Mcf) 420 MCF	Volume Recovered (Mcf) 0 MCF					
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)					
Cause of Release During routine operations Lucid personnel noticed a tank was overpressured and had sprayed a mixture of natural gas and condensate to the area north of the tank battery.							

Page	2
rage	4

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 📈 No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

 \bigvee The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Immediately following discovery of the overspray area construction services were deployed to scrape impacted material from the roadway and road ditch. A MicroBlaze treatment was applied to the area immediately around the tank battery and another treatment applied to the vegetation north of the lease road.

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Micahel Gant

Title: Environmental Coordinator

Signature: Mgant email: MGant@lucid-energy.com

Telephone: 3143307876

OCD Only

Received by:

Date:

Received by OCD: 3/16/2021 9:35:51 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 15 of 52
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🖉 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗹 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗹 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 📈 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗹 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
 Field data
- Data table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- ☑ Topographic/Aerial maps
- ☑ Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Incident ID District RP Facility ID Application ID
Facility ID Application ID ay knowledge and understand that pursuant to OCD rules and
Application ID by knowledge and understand that pursuant to OCD rules and
y knowledge and understand that pursuant to OCD rules and
Environmental Coordinator 3/16/2021 one: <u>3143307876</u>

Received by OCD: 3/16/2021 9:35:51 AM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

Page 5

Scaled sitemap with GPS coordinates showing delineation points

Estimated volume of material to be remediated

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. \checkmark Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Title: Environmental Coordinator Printed Name: Michael Gant _____ Date: 3/16/2021 Signature: Mgant _{email:} MGant@lucid-energy.com Telephone: 3143307876 **OCD Only** Received by: Date: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Signature: Date:

•

Incident ID	NRM2032830684
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

 \checkmark Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Michael Gant Title: Environmental Coordinator

Signature:MGantDate:3/16/2021email:MGant@lucid-energy.comTelephone:314-330-7876

Telephone: 314-330-7876

OCD Only

Page 6

Received by: Cristina Eads

Date: 04/12/2021

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by: Justan 2	Date: 06/30/2021
Printed Name: Cristina Eads	Title: Environmental Specialist

•

Appendix B

Photographic Log

Page 1 of 2

Initial Overspray Looking West (9/26/20)

Initial Overspray Looking Northwest (9/26/20)

Overspray Area North of Road Looking East (9/28/20)

Tank Battery North of Road Looking South (9/28/20)

Page 2 of 2

Appendix B: Photographic Log 09/26/20-10/15/2020 Pirate State BRY Line

Overspray Area South of Road Looking North (9/28/20)

Overspray Area South of Road Looking North (10/15/20)

Site Aerial (9/28/20)

Site Aerial (10/12/20)

•

Appendix C

Groundwater Data

Limestone Station nearby water wells

11/18/2020, 3:34:53 PM **GIS WATERS PODs**

0 Pending

OSE District Boundary

SiteBoundaries

USDA FSA, GeoEye, Maxar, Esri, HERE, iPC, U.S. Department of Energy Office of Legacy Management, Esri, HERE, Garmin, iPC

WR File Number:	CP 01708		Subbasin: CP	Cross Ret	ference:	-	
Primary Purpose:	EXP EXP	LORATION	ſ				
Primary Status:	PMT PER	MIT					
Total Acres:			Subfile: -			Header:	-
Total Diversion:	0		Cause/Case: -				
Agent:	ATKINS ENG	GR ASSOC I	INC				
Contact:	JESSICA AT	KINS					
Owner:	LIMESTONE	LIVESTOC	CK LLC				
Contact:	BILL ANGE	LL					
ments on File	S	tatus		From/			
Trn # Doc File	/Act 1		nsaction Desc.	То	Acres	Diversion	Consumpti
<u>get</u> 624758 EXPL 2018- mages	05-25 PMT	APR CP	01708 POD1	Т	0	0	

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/16/20 10:41 AM

WATER RIGHT SUMMARY

.

Appendix D

Laboratory Analytical Reports

October 06, 2020

Michael Gant Lucid Energy Delaware 201 South 4th St. Artesia, NM 88210 TEL: (575) 513-8988 FAX:

RE: Limestone Station

OrderNo.: 2010003

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Michael Gant:

Hall Environmental Analysis Laboratory received 10 sample(s) on 10/1/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Project:

Lab ID:

CLIENT: Lucid Energy Delaware

2010003-001

Limestone Station

Analytical Report Lab Order 2010003

Hall	Environmen	tal Ana	lysis L	Laboratory	, Inc.

Date Reported: 10/6/2020

Client Sample ID: HA.1.S.3-6"	
Collection Date: 9/30/2020 12:30:00 PM	
Received Date: 10/1/2020 8:00:00 AM	

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	JMT
Chloride	ND	60	mg/Kg	20	10/3/2020 5:50:28 PM	55628
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	BRM
Diesel Range Organics (DRO)	36	8.6	mg/Kg	1	10/2/2020 9:23:15 AM	55592
Motor Oil Range Organics (MRO)	120	43	mg/Kg	1	10/2/2020 9:23:15 AM	55592
Surr: DNOP	102	30.4-154	%Rec	1	10/2/2020 9:23:15 AM	55592
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	10/2/2020 11:15:56 PM	55589
Surr: BFB	94.8	75.3-105	%Rec	1	10/2/2020 11:15:56 PM	55589
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	ND	0.023	mg/Kg	1	10/2/2020 11:15:56 PM	55589
Toluene	ND	0.047	mg/Kg	1	10/2/2020 11:15:56 PM	55589
Ethylbenzene	ND	0.047	mg/Kg	1	10/2/2020 11:15:56 PM	55589
Xylenes, Total	ND	0.093	mg/Kg	1	10/2/2020 11:15:56 PM	55589
Surr: 4-Bromofluorobenzene	108	80-120	%Rec	1	10/2/2020 11:15:56 PM	55589

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 14

Project:

Lab ID:

CLIENT: Lucid Energy Delaware

2010003-002

Limestone Station

Analytical Report Lab Order 2010003

Hall Environmental	Analysis	Laboratory,	Inc.

Lab Order 2010003 Date Reported: 10/6/2020

Client Sample ID: HA.1.S.10-12" Collection Date: 9/30/2020 12:35:00 PM Received Date: 10/1/2020 8:00:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JMT
Chloride	ND	60	mg/Kg	20	10/3/2020 6:02:48 PM	55628
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	BRM
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	10/2/2020 9:32:45 AM	55592
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	10/2/2020 9:32:45 AM	55592
Surr: DNOP	104	30.4-154	%Rec	1	10/2/2020 9:32:45 AM	55592
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	10/2/2020 11:39:27 PM	55589
Surr: BFB	88.1	75.3-105	%Rec	1	10/2/2020 11:39:27 PM	55589
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	ND	0.024	mg/Kg	1	10/2/2020 11:39:27 PM	55589
Toluene	ND	0.049	mg/Kg	1	10/2/2020 11:39:27 PM	55589
Ethylbenzene	ND	0.049	mg/Kg	1	10/2/2020 11:39:27 PM	55589
Xylenes, Total	ND	0.098	mg/Kg	1	10/2/2020 11:39:27 PM	55589
Surr: 4-Bromofluorobenzene	105	80-120	%Rec	1	10/2/2020 11:39:27 PM	55589

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 14

Analytical Report

Hall	Enviror	nmental	Anal	lysis l	Labora	tory,	Inc.

Lab Order 2010003

Date Reported: 10/6/2020

CLIENT: Lucid Energy Delaware Project: Limestone Station			ient Sample II Collection Date		A.2.N.3-6" 80/2020 12:40:00 PM	
Lab ID: 2010003-003	Matrix: SOIL		Received Date	e: 10	/1/2020 8:00:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	ЈМТ
Chloride	ND	60	mg/Kg	20	10/3/2020 6:15:08 PM	55628
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	10/2/2020 9:42:16 AM	55592
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/2/2020 9:42:16 AM	55592
Surr: DNOP	98.0	30.4-154	%Rec	1	10/2/2020 9:42:16 AM	55592
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	10/3/2020 12:03:01 AM	55589
Surr: BFB	91.3	75.3-105	%Rec	1	10/3/2020 12:03:01 AM	55589
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	ND	0.023	mg/Kg	1	10/3/2020 12:03:01 AM	55589
Toluene	ND	0.046	mg/Kg	1	10/3/2020 12:03:01 AM	55589
Ethylbenzene	ND	0.046	mg/Kg	1	10/3/2020 12:03:01 AM	55589
Xylenes, Total	ND	0.092	mg/Kg	1	10/3/2020 12:03:01 AM	55589
Surr: 4-Bromofluorobenzene	106	80-120	%Rec	1	10/3/2020 12:03:01 AM	55589

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 14

.

Surr: 4-Bromofluorobenzene

Analytical Report

Lab Order 2010003

Date Reported: 10/6/2020

10/3/2020 12:26:35 AM 55589

CLIENT: Lucid Energy Delaware		Cl	ient Sample II	D:HA	A.2.N.10-12"			
Project: Limestone Station	Collection Date: 9/30/2020 12:45:00 PM							
Lab ID: 2010003-004	Matrix: SOIL		Received Dat	e:10	/1/2020 8:00:00 AM			
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analyst	: JMT		
Chloride	ND	60	mg/Kg	20	10/3/2020 6:27:29 PM	55628		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM		
Diesel Range Organics (DRO)	ND	8.9	mg/Kg	1	10/2/2020 9:51:47 AM	55592		
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	10/2/2020 9:51:47 AM	55592		
Surr: DNOP	102	30.4-154	%Rec	1	10/2/2020 9:51:47 AM	55592		
EPA METHOD 8015D: GASOLINE RANG	E				Analyst	RAA		
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	10/3/2020 12:26:35 AM	55589		
Surr: BFB	88.3	75.3-105	%Rec	1	10/3/2020 12:26:35 AM	55589		
EPA METHOD 8021B: VOLATILES					Analyst	RAA		
Benzene	ND	0.023	mg/Kg	1	10/3/2020 12:26:35 AM	55589		
Toluene	ND	0.047	mg/Kg	1	10/3/2020 12:26:35 AM	55589		
Ethylbenzene	ND	0.047	mg/Kg	1	10/3/2020 12:26:35 AM	55589		
Xylenes, Total	ND	0.094	mg/Kg	1	10/3/2020 12:26:35 AM	55589		

103

80-120

%Rec

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 14

Analytical Report

Hall Environmental	Analysis	Laboratory.	Inc.

Lab Order 2010003

Date Reported: 10/6/2020

CLIENT: Lucid Energy DelawareClient Sample ID: HA.3.E.3-6"Project: Limestone StationCollection Date: 9/30/2020 12:50:00						
Lab ID: 2010003-005	Matrix: SOIL	·			/1/2020 8:00:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst:	ЈМТ
Chloride	ND	60	mg/Kg	20	10/3/2020 6:39:49 PM	55628
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	BRM
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	10/2/2020 10:01:19 AM	55592
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	10/2/2020 10:01:19 AM	55592
Surr: DNOP	67.5	30.4-154	%Rec	1	10/2/2020 10:01:19 AM	55592
EPA METHOD 8015D: GASOLINE RANGE					Analyst:	RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	10/3/2020 12:50:10 AM	55589
Surr: BFB	88.2	75.3-105	%Rec	1	10/3/2020 12:50:10 AM	55589
EPA METHOD 8021B: VOLATILES					Analyst:	RAA
Benzene	ND	0.024	mg/Kg	1	10/3/2020 12:50:10 AM	55589
Toluene	ND	0.048	mg/Kg	1	10/3/2020 12:50:10 AM	55589
Ethylbenzene	ND	0.048	mg/Kg	1	10/3/2020 12:50:10 AM	55589
Xylenes, Total	ND	0.097	mg/Kg	1	10/3/2020 12:50:10 AM	55589
Surr: 4-Bromofluorobenzene	105	80-120	%Rec	1	10/3/2020 12:50:10 AM	55589

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 14

Project:

Lab ID:

CLIENT: Lucid Energy Delaware

2010003-006

Limestone Station

Analytical Report Lab Order 2010003

Hall Environmental	Analysis	Laboratory.	Inc.
			/

Lab Order **2010003** Date Reported: **10/6/2020**

Client Sample ID: HA.3.E.10-12" Collection Date: 9/30/2020 12:55:00 PM Received Date: 10/1/2020 8:00:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JMT
Chloride	ND	60	mg/Kg	20	10/3/2020 6:52:10 PM	55628
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	BRM
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	10/2/2020 10:10:53 AM	55592
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	10/2/2020 10:10:53 AM	55592
Surr: DNOP	55.1	30.4-154	%Rec	1	10/2/2020 10:10:53 AM	55592
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	10/3/2020 1:13:42 AM	55589
Surr: BFB	87.9	75.3-105	%Rec	1	10/3/2020 1:13:42 AM	55589
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	ND	0.024	mg/Kg	1	10/3/2020 1:13:42 AM	55589
Toluene	ND	0.048	mg/Kg	1	10/3/2020 1:13:42 AM	55589
Ethylbenzene	ND	0.048	mg/Kg	1	10/3/2020 1:13:42 AM	55589
Xylenes, Total	ND	0.095	mg/Kg	1	10/3/2020 1:13:42 AM	55589
Surr: 4-Bromofluorobenzene	105	80-120	%Rec	1	10/3/2020 1:13:42 AM	55589

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 14

Analytical Report

Hall	Enviror	nmental	Anal	lysis l	Labora	tory,	Inc.

Lab Order 2010003

Date Reported: 10/6/2020

CLIENT: Lucid Energy Delaware Project: Limestone Station	Client Sample ID: HA.4.W.3-6" Collection Date: 9/30/2020 1:00:00 F						
Lab ID: 2010003-007	Matrix: SOIL		Received Date	e: 10	/1/2020 8:00:00 AM		
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS					Analyst:	ЈМТ	
Chloride	ND	60	mg/Kg	20	10/3/2020 7:04:30 PM	55628	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	BRM	
Diesel Range Organics (DRO)	ND	8.8	mg/Kg	1	10/2/2020 10:20:27 AM	55592	
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	10/2/2020 10:20:27 AM	55592	
Surr: DNOP	51.6	30.4-154	%Rec	1	10/2/2020 10:20:27 AM	55592	
EPA METHOD 8015D: GASOLINE RANGE					Analyst:	RAA	
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	10/3/2020 1:37:11 AM	55589	
Surr: BFB	93.0	75.3-105	%Rec	1	10/3/2020 1:37:11 AM	55589	
EPA METHOD 8021B: VOLATILES					Analyst:	RAA	
Benzene	ND	0.024	mg/Kg	1	10/3/2020 1:37:11 AM	55589	
Toluene	ND	0.048	mg/Kg	1	10/3/2020 1:37:11 AM	55589	
Ethylbenzene	ND	0.048	mg/Kg	1	10/3/2020 1:37:11 AM	55589	
Xylenes, Total	ND	0.097	mg/Kg	1	10/3/2020 1:37:11 AM	55589	
Surr: 4-Bromofluorobenzene	105	80-120	%Rec	1	10/3/2020 1:37:11 AM	55589	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 14

Ethylbenzene

Xylenes, Total

Surr: 4-Bromofluorobenzene

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2010003

10/3/2020 2:00:45 AM

10/3/2020 2:00:45 AM

10/3/2020 2:00:45 AM

55589

55589

55589

Date Reported: 10/6/2020

CLIENT: Lucid Energy Delaware Project: Limestone Station Lab ID: 2010003-008	Client Sample ID: HA.4.W.10-12" Collection Date: 9/30/2020 1:05:00 PM Matrix: SOIL Received Date: 10/1/2020 8:00:00 AM					
Analyses	Result		Qual Units		Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: ЈМТ
Chloride	ND	60	mg/Kg	20	10/3/2020 7:16:51 PM	55628
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst	BRM
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	10/2/2020 10:30:02 AM	55592
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/2/2020 10:30:02 AM	55592
Surr: DNOP	62.8	30.4-154	%Rec	1	10/2/2020 10:30:02 AM	55592
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	10/3/2020 2:00:45 AM	55589
Surr: BFB	91.2	75.3-105	%Rec	1	10/3/2020 2:00:45 AM	55589
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	ND	0.024	mg/Kg	1	10/3/2020 2:00:45 AM	55589
Toluene	ND	0.049	mg/Kg	1	10/3/2020 2:00:45 AM	55589

ND

ND

106

0.049

0.097

80-120

mg/Kg

mg/Kg

%Rec

1

1

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 14

Analytical Report
Lab Order 2010003

Date Reported: 10/6/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Lucid Energy Delaware Client Sample ID: HA.5.Center.3-6"							
Project: Limestone Station	Collection Date: 9/30/2020 1:10:00 PM						
Lab ID: 2010003-009	Matrix: SOIL Received Date: 10/1/2020 8:00:00 AM						
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS					Analyst	: JMT	
Chloride	ND	60	mg/Kg	20	10/3/2020 7:29:11 PM	55628	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM	
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	10/2/2020 10:39:39 AM	55592	
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/2/2020 10:39:39 AM	55592	
Surr: DNOP	57.6	30.4-154	%Rec	1	10/2/2020 10:39:39 AM	55592	
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA	
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	10/3/2020 2:24:12 AM	55589	
Surr: BFB	95.5	75.3-105	%Rec	1	10/3/2020 2:24:12 AM	55589	
EPA METHOD 8021B: VOLATILES					Analyst	RAA	
Benzene	ND	0.023	mg/Kg	1	10/3/2020 2:24:12 AM	55589	
Toluene	ND	0.046	mg/Kg	1	10/3/2020 2:24:12 AM	55589	
Ethylbenzene	ND	0.046	mg/Kg	1	10/3/2020 2:24:12 AM	55589	
Xylenes, Total	ND	0.092	mg/Kg	1	10/3/2020 2:24:12 AM	55589	
Surr: 4-Bromofluorobenzene	106	80-120	%Rec	1	10/3/2020 2:24:12 AM	55589	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 14

.

Project:

Lab ID:

CLIENT: Lucid Energy Delaware

2010003-010

Limestone Station

Analytical Report
Lab Order 2010003

Hall	Environmenta	al Ana	lysis l	Laborat	tory, Inc.

Lab Order **2010003** Date Reported: **10/6/2020**

Client Sample ID: HA.5.Center.10-12 Collection Date: 9/30/2020 1:15:00 PM Received Date: 10/1/2020 8:00:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	ЈМТ
Chloride	ND	60	mg/Kg	20	10/3/2020 7:41:32 PM	55628
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst	BRM
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	10/2/2020 10:49:18 AM	55592
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/2/2020 10:49:18 AM	55592
Surr: DNOP	63.1	30.4-154	%Rec	1	10/2/2020 10:49:18 AM	55592
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	10/3/2020 2:47:39 AM	55589
Surr: BFB	89.2	75.3-105	%Rec	1	10/3/2020 2:47:39 AM	55589
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	ND	0.023	mg/Kg	1	10/3/2020 2:47:39 AM	55589
Toluene	ND	0.047	mg/Kg	1	10/3/2020 2:47:39 AM	55589
Ethylbenzene	ND	0.047	mg/Kg	1	10/3/2020 2:47:39 AM	55589
Xylenes, Total	ND	0.093	mg/Kg	1	10/3/2020 2:47:39 AM	55589
Surr: 4-Bromofluorobenzene	106	80-120	%Rec	1	10/3/2020 2:47:39 AM	55589

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 14
Client: Project:		Energy Delaw	/are										
Sample ID: MB	-55628	SampT	ype: mb	olk	Tes								
Client ID: PBS	Client ID: PBS Batch ID: 55628				F	RunNo: 72	2381						
Prep Date: 10	Prep Date: 10/3/2020 Analysis Date: 10/3/2020					SeqNo: 2538760 Uni				Units: mg/Kg			
Analyte Chloride		Result ND	PQL 1.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Sample ID: LCS	6-55628	SampT	ype: Ics		Tes	tCode: EF	PA Method	300.0: Anion	s				
Client ID: LCS	SS	Batch	ID: 556	628	F	RunNo: 72	2381						
Prep Date: 10	/3/2020	Analysis D	ate: 10	/3/2020	S	SeqNo: 25	538761	Units: mg/K	g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Chloride		14	1.5	15.00	0	90.0	90	110					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL

Page 11 of 14

2010003

14-Oct-20

WO#:

Reporting Limit

	Energy Delay	ware										
Sample ID: LCS-55592	SampT	ype: LC	S	TestCode: EPA Method 8015M/D: Diesel Range Organics								
Client ID: LCSS	Batch	n ID: 55	592	F	RunNo: 72	2349						
Prep Date: 10/1/2020	Analysis D	Date: 10	/2/2020	SeqNo: 2537631 Units: mg/Kg				g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Diesel Range Organics (DRO)	47	10	50.00	0	94.4	70	130					
Surr: DNOP	4.9		5.000		97.3	30.4	154					
Sample ID: MB-55592	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics			
Client ID: PBS	Batch	n ID: 55	592	F	RunNo: 72	2349						
Prep Date: 10/1/2020	Analysis D	Date: 10	/2/2020	S	SeqNo: 25	537632	Units: mg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Diesel Range Organics (DRO)	ND	10										
Motor Oil Range Organics (MRO)	ND	50										
Surr: DNOP	10		10.00		102	30.4	154					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 14

2010003

14-Oct-20

	Lucid Energy Delaware Limestone Station										
Sample ID: Ics-55589	SampT	ype: LC	S	TestCode: EPA Method 8015D: Gasoline Range							
Client ID: LCSS	Batch	ID: 55	589	RunNo: 72336							
Prep Date: 10/1/2020	SeqNo: 2538217 Units: n				g						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	22	5.0	25.00	0	88.9	72.5	106				
Surr: BFB	980		1000		98.5	75.3	105				
Sample ID: MB-55589	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e		
Client ID: PBS	Batch	ID: 55	589	F	RunNo: 72	2336					
Prep Date: 10/1/2020	Analysis D	ate: 10	/2/2020	S	SeqNo: 2	538218	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	ND	5.0									
Surr: BFB	890		1000		88.8	75.3	105				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
 - J Analyte detected below quantitation limits
 - P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 14

2010003

14-Oct-20

	l Energy Delay stone Station	ware									
Project: Lime	stone Station										
Sample ID: LCS-55589	Samp	Гуре: LC	S	TestCode: EPA Method 8021B: Volatiles							
Client ID: LCSS	Batc	h ID: 55	h ID: 55589 RunNo: 72336								
Prep Date: 10/1/2020	Analysis [Date: 10)/2/2020	S	SeqNo: 2	538244	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.93	0.025	1.000	0	92.6	80	120				
Toluene	0.98	0.050	1.000	0	98.2	80	120				
Ethylbenzene	0.99	0.050	1.000	0	98.8	80	120				
Xylenes, Total	3.0	0.10	3.000	0	100	80	120				
Surr: 4-Bromofluorobenzene	1.1		1.000		107	80	120				
Sample ID: MB-55589	Samp	Гуре: МЕ	BLK	Tes	TestCode: EPA Method 8021B: Volatiles						
Client ID: PBS	Batc	h ID: 55	589	F	RunNo: 72	2336					
Prep Date: 10/1/2020	Analysis [Date: 10)/2/2020	S	SeqNo: 2	538245	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	0.025									
Toluene	ND	0.050									
Ethylbenzene	ND	0.050									
Xylenes, Total	ND	0.10									
Surr: 4-Bromofluorobenzene	1.0		1.000		104	80	120				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 14

2010003

14-Oct-20

HALL ENVIRONMENTAL ANALYSIS LABORATORY		TEL: 505-345-39	4901 Hawki Ibuquerque, NM	ins NE 87109 Sam -4107	nple Log-In Check List
Client Name:	Lucid Energy Delaware	Work Order Numb	er: 2010003		RcptNo: 1
Received By:	Juan Rojas	10/1/2020 8:00:00 A	М	Wansay .	
Completed By:	Juan Rojas	10/1/2020 8:21:43 A	М	Guarant	
Reviewed By:	SPA 10,1.	20			
Chain of Cus	tody				
1. Is Chain of C	ustody complete?		Yes 🗹	No 🗌	Not Present
2. How was the	sample delivered?		Courier		
Log In		-			
 Was an atten 	npt made to cool the samples	?	Yes 🔽	No 🗌	NA
4. Were all sam	oles received at a temperatur	e of >0° C to 6.0°C	Yes 🔽	No 🗌	
5. Sample(s) in	proper container(s)?		Yes 🔽	No 🗌	
6. Sufficient sam	ple volume for indicated test	(s)?	Yes 🗸	No 🗌	
7. Are samples (except VOA and ONG) prope	rly preserved?	Yes 🗹	No 🗌	
8. Was preserva	tive added to bottles?		Yes 🗌	No 🔽	NA 🗌
9. Received at le	ast 1 vial with headspace <1	4" for AQ VOA?	Yes	No 🗌	NA 🗹
0. Were any sar	nple containers received brok	en?	Yes	No 🗹	# of preserved
1. Does paperwo	ork match bottle labels?		Yes 🔽	No 🗌	bottles checked for pH:
	ancies on chain of custody)			_	(<2 or >12 unless noted)
	correctly identified on Chain c	f Custody?	Yes 🗹	No 🗌	Adjusted?
	t analyses were requested?		Yes 🗹	No 🗌	Cup Hiles
	ng times able to be met? ustomer for authorization.)		Yes 🔽	No	Checked by: <u>9M 01120</u>
pecial Handl	ing (if applicable)				
5. Was client no	tified of all discrepancies with	this order?	Yes	No 🗌	NA 🔽
Person	Notified:	Date			
By Who	m:	Via:	eMail	Phone 🗌 Fax	In Person
Regardi	ng:				
Client Ir	nstructions:				
16. Additional rer	marks:				
7. Cooler Infor	mation				
Cooler No	the second se	Seal Intact Seal No	Seal Date	Signed By	
1	2.3 Good				

Page 1 of 1

Received by OCD: 3/16/2021	:35:51 AM			Page 42 of 52
HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	DB (Method 504.1) AHs by 8310 or 8270SIMS SCRA 8 Metals SF, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ S20 (VOA) S20 (Semi-VOA) otal Coliform (Present/Absent) otal Coliform (Present/Absent)			Date Time Remarks: $\begin{array}{c c} \begin{array}{c c} Date & Time \\ \hline \\ $
1 H	8081 Pesticides/8082 PCB's			- ans fur
490 Te	ГРН:8015D(GRO / DRO / MRO)	XXXXXX	XXXX	Remarks:
	BTEX / MTBE / TMB' (8021)	\times \times \times \times \times \times \times		s possi
Bedray	0 0.11-7.3 (°C)	- 067 - 005 - 001	4192 200-	Date Time $\frac{9}{30}20$ 144 Date Time $\frac{10}{10}$ 8 $\frac{10}{20}$ $\frac{10}{10}$ 8 $\frac{10}{20}$ res. This serves as notice of this
me:	ACLE 6 MCLE 6 MC 2 MC 2 MC 2 MC 2 MC 2 MC 2 MC 2 MC 2	TCE		Via: Via: A COWNEW
Turn-Around Ti □ Standard Project Name: LAMCS-1 Project #:	Project Manager:	ClozSil		Received by: Received by
O O	r Fax#: Ma avrit@ / ucld= energy, com Project Manager: Package:	1230 5 HA.Z.N.3-6" 1240 HA.Z.S.3-6" 1246 HA.Z.S.3-6" 1245 HA.Z.S.10-12" 1260 HA.S.F.3-6" 1260 HA.S.F.10-12"	1300 HA, 4. W. 3-6" 1305 HA, 4. W. 10-12" 1310 HA, S. Cinter 3-6" 1315 HAS. Center 10-12	Time: Relinquished)by: Received by: Mia: WWW Received by: Mia: Time: Relinquished by: Mia: Received by WWW Via: Time: Relinquished by: Nia: Received by WWW Via: Received by WWW WAR I necessary, samples adomitted to Hall Environmental may be subcontracted to other accredited laboratories.
Chain Client: Mailing Address: Mailing Address:	email o aAvac aAvac Accredit Dete		N N N N	Date: Time: 7/20/0 1440 Date: Time: 9/50/20 19.00 If necessary,

Released to Imaging: 6/30/2021 4:58:38 PM

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

November 06, 2020

Michael Gant Lucid Energy Delaware 201 South 4th St. Artesia, NM 88210 TEL: FAX:

OrderNo.: 2010C75

RE: Limestone

Dear Michael Gant:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/29/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Project:

CLIENT: Lucid Energy Delaware

Limestone

Analytical Report
Lab Order 2010C75

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/6/2020 Client Sample ID: HA-6-C-S Collection Date: 10/21/2020 11:30:00 AM Pageiyad Date: 10/20/2020 8:00:00 AM

Lab ID:	2010C75-001	Matrix: SOIL	Received Date: 10/29/2020 8:00:00 AM								
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch				
ΕΡΑ ΜΕΊ	THOD 300.0: ANIONS					Analyst:	VP				
Chloride		ND	60	mg/Kg	20	11/2/2020 9:05:04 PM	56160				
EPA MET	THOD 8015D MOD: GASOLI	NE RANGE				Analyst:	DJF				
Gasoline	e Range Organics (GRO)	ND	4.6	mg/Kg	1	10/30/2020 11:00:02 PM	1 56112				
Surr: I	BFB	101	70-130	%Rec	1	10/30/2020 11:00:02 PM	1 56112				
EPA MET	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst:	BRM				
Diesel R	ange Organics (DRO)	ND	9.8	mg/Kg	1	10/29/2020 9:44:35 PM	56116				
Motor Oi	il Range Organics (MRO)	ND	49	mg/Kg	1	10/29/2020 9:44:35 PM	56116				
Surr: I	DNOP	96.7	30.4-154	%Rec	1	10/29/2020 9:44:35 PM	56116				
EPA MET	THOD 8260B: VOLATILES S	HORT LIST				Analyst:	DJF				
Benzene)	ND	0.023	mg/Kg	1	10/30/2020 11:00:02 PM	1 56112				
Toluene		ND	0.046	mg/Kg	1	10/30/2020 11:00:02 PM	1 56112				
Ethylben	izene	ND	0.046	mg/Kg	1	10/30/2020 11:00:02 PM	1 56112				
Xylenes,	Total	ND	0.093	mg/Kg	1	10/30/2020 11:00:02 PM	1 56112				
Surr: 7	1,2-Dichloroethane-d4	92.2	70-130	%Rec	1	10/30/2020 11:00:02 PM	1 56112				
Surr: 4	4-Bromofluorobenzene	104	70-130	%Rec	1	10/30/2020 11:00:02 PM	1 56112				
Surr: I	Dibromofluoromethane	109	70-130	%Rec	1	10/30/2020 11:00:02 PM	1 56112				
Surr:	Toluene-d8	106	70-130	%Rec	1	10/30/2020 11:00:02 PM	1 56112				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 6

Client: Project:	Lucid Er Limestor	cid Energy Delaware nestone											
Sample ID: MB-	56160	SampT	ype: ME	BLK	TestCode: EPA Method 300.0: Anions								
Client ID: PBS Batch ID: 56160				F	RunNo: 73082								
Prep Date: 11/2/2020 Analysis Date: 11/2/2020					5	SeqNo: 2569572 Units: mg/Kg							
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Chloride		ND	1.5										
Sample ID: LCS-	56160	SampT	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anion	s				
Client ID: LCS	S	Batcl	n ID: 56	160	F	RunNo: 73	3082						
Prep Date: 11/2	2/2020	Analysis D	/2/2020	SeqNo: 2569573			Units: mg/K	g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Chloride		14	1.5	15.00	0	91.1	90	110					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 6

2010C75

06-Nov-20

Client: Project:	Lucid Ene Limestone	0.	vare									
Sample ID: N	/B-56116	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics		
Client ID: P	PBS	Batch	n ID: 56'	116	F	unNo: 7	3025					
Prep Date:	10/29/2020	Analysis D)ate: 10	/29/2020	S	eqNo: 2	567193	Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Org	ganics (DRO)	ND	10					5				
Motor Oil Range	Organics (MRO)	ND	50									
Surr: DNOP	• · · /	9.0		10.00		90.2	30.4	154				
Sample ID: L	.CS-56116	6116 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics										
Client ID: L	css	Batch	n ID: 56	116	F	RunNo: 73025						
Prep Date:	10/29/2020	Analysis D	ate: 10	/29/2020	S	SeqNo: 2	567194	Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Org	ganics (DRO)	42	10	50.00	0	84.8	70	130				
Surr: DNOP		4.6		5.000		92.3	30.4	154				
Sample ID: 2	010C70-005AMS	SampT	ype: MS	5	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics		
Client ID: B	BatchQC	Batch	n ID: 56	116	F	unNo: 7	3028					
Prep Date:	10/29/2020	Analysis D	ate: 10	/30/2020	S	eqNo: 2	568474	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Org	ganics (DRO)	1300	19	47.30	1564	-583	15	184			S	
Surr: DNOP		4.7		4.730		99.4	30.4	154				
Sample ID: 2	010C70-005AMSE) SampT	уре: МS	D	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics		
Client ID: B	BatchQC	Batch	n ID: 56	116	F	anNo: 7 :	3028					
Prep Date:	10/29/2020	Analysis D	ate: 10	/30/2020	S	SeqNo: 2	568475	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Org	ganics (DRO)	1600	20	48.92	1564	23.6	15	184	20.0	23.9		
Surr: DNOP		4.9		4.892		101	30.4	154	0	0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 3 of 6

2010C75

06-Nov-20

=

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Lucid En Project: Limestor	iergy Delav ie	ware								
Sample ID: mb-56112	Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8260B: Volat	iles Short	List	
Client ID: PBS	Batc	h ID: 56	112	F	RunNo: 7	3049				
Prep Date: 10/29/2020	Analysis [Date: 10	/30/2020	ç	SeqNo: 2	567865	Units: mg/Kg			
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025		or rentian var	/01120	LOWEIN	- ingri Linin	Jord D		Quui
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.42		0.5000		83.8	70	130			
Surr: 4-Bromofluorobenzene	0.53		0.5000		105	70	130			
Surr: Dibromofluoromethane	0.48		0.5000		96.5	70	130			
Surr: Toluene-d8	0.51		0.5000		103	70	130			
Sample ID: Ics-56112	Samp	Туре: LC	S4	Tes	tCode: EF	PA Method	8260B: Volat	iles Short	List	
Client ID: BatchQC	Batc	h ID: 56	112	F	RunNo: 7 :	3049				
Prep Date: 10/29/2020	Analysis [Date: 10	/30/2020	S	SeqNo: 2	567866	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.89	0.025	1.000	0	89.4	80	120			
Toluene	1.0	0.050	1.000	0	103	80	120			
Ethylbenzene	1.0	0.050	1.000	0	99.5	80	120			
Xylenes, Total	3.2	0.10	3.000	0	108	80	120			
Surr: 1,2-Dichloroethane-d4	0.44		0.5000		89.0	70	130			
Surr: 4-Bromofluorobenzene	0.49		0.5000		97.1	70	130			
Surr: Dibromofluoromethane	0.53		0.5000		106	70	130			
Surr: Toluene-d8	0.52		0.5000		105	70	130			
Sample ID: 2010c72-002ams	Samp	Туре: МS	64	Tes	tCode: EF	PA Method	8260B: Volat	iles Short	List	
Client ID: BatchQC	Batc	h ID: 56	112	F	RunNo: 7:	3049				
Prep Date: 10/29/2020	Analysis [Date: 10	/30/2020	S	SeqNo: 2	567869	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.91	0.025	0.9804	0	92.7	71.1	115			
Toluene	1.1	0.049	0.9804	0	108	79.6	132			
Ethylbenzene	1.1	0.049	0.9804	0	110	83.8	134			
Xylenes, Total	3.3	0.098	2.941	0	111	82.4	132			
Surr: 1,2-Dichloroethane-d4	0.43		0.4902		87.8	70	130			
Surr: 4-Bromofluorobenzene	0.49		0.4902		99.9	70	130			
Surr: Dibromofluoromethane	0.50		0.4902		102	70	130			
Call: Disteriorinolia of officiation										

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 4 of 6

2010C75

06-Nov-20

Client:	Lucid Energy Delaware
Project:	Limestone
1	

Sample ID: 2010c72-002amsd	SampT	SampType: MSD4 TestCode: EPA Method 8260B: Volatiles Short List								
Client ID: BatchQC	IC Batch ID: 56112 RunNo: 73049									
Prep Date: 10/29/2020 Analysis Date: 10/30/2020				5	SeqNo: 2					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.94	0.025	0.9852	0	95.3	71.1	115	3.24	20	
Toluene	1.1	0.049	0.9852	0	110	79.6	132	1.92	20	
Ethylbenzene	1.1	0.049	0.9852	0	110	83.8	134	0.0955	20	
Xylenes, Total	3.3	0.099	2.956	0	111	82.4	132	0.835	20	
Surr: 1,2-Dichloroethane-d4	0.43		0.4926		87.9	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.51		0.4926		103	70	130	0	0	
Surr: Dibromofluoromethane	0.52		0.4926		106	70	130	0	0	
Surr: Toluene-d8	0.51		0.4926		105	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 6

WO#: 2010C75

Client:	Lucid Ene	ergy Delaw	vare										
Project:	Limeston	e											
Sample ID:	: mb-56112	SampT	ype: ME	BLK	TestCode: EPA Method 8015D Mod: Gasoline Range								
Client ID:	PBS	Batch	ID: 56	112	F	RunNo: 7	3049						
Prep Date:	10/29/2020	Analysis D	ate: 10)/30/2020	S	SeqNo: 2	567890	Units: mg/K	(g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Rang	ge Organics (GRO)	ND	5.0										
Surr: BFB		520		500.0		103	70	130					
Sample ID:	: lcs-56112	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range			
Client ID:	LCSS	112	RunNo: 73049										
Prep Date:	ate: 10/29/2020 Analysis Date: 10/30/2020					SeqNo: 2							
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Rang	ge Organics (GRO)	22	5.0	25.00	0	87.6	70	130					
Surr: BFB		520		500.0		104	70	130					
Sample ID:	: 2010c72-001ams	SampT	ype: MS	3	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range			
Client ID:	BatchQC	Batch	ID: 56	112	F	RunNo: 7	3049						
Prep Date:	10/29/2020	Analysis Da	ate: 10)/30/2020	5	SeqNo: 2	567893	Units: mg/K	g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Rang	ge Organics (GRO)	21	5.0	24.88	0	84.8	49.2	122					
Surr: BFB		510		497.5		102	70	130					
Sample ID:	: 2010c72-001amsd	SampT	ype: MS	SD	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range			
Client ID:	BatchQC	Batch	ID: 56	112	F	RunNo: 7	3049						
Prep Date:	10/29/2020	Analysis Da	ate: 10)/30/2020	S	SeqNo: 2	567894	Units: mg/K	(g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
7 (1) (1) (0)													
	ge Organics (GRO)	22	4.8	23.90	0	90.0	49.2	122	2.04	20			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 6 of 6

2010C75

06-Nov-20

WO#:

Released to Imaging: 6/30/2021 4:58:38 PM

Page	50	0	f 52
- "a"	~ ~	~	

•

HALL HALL ENVIRC ANALYS LABOR	DNMENT/ SIS		TE.	L: 505-345-3	ntal Analysis L 4901 Ha Albuquerque, 1 975 FAX: 505- s.hallenvironm	twkins NE NM 87109 -345-4107	Sar	nple Log-In C	Pag heck List
Client Name:	Lucid Energ	gy Delaware	Work	Order Numl	per: 2010C7	5		RcptNo:	1
Received By:	Emily Mod	cho	10/29/2	020 8:00:00	AM				
Completed By:	Emily Mod	cho	10/29/2	020 9:07:08	AM				
Reviewed By:	DAD	10/29/2	0						
Chain of Cust	ody								
1. Is Chain of Cus	stody comp	lete?			Yes 🖌	N	o 🗌	Not Present	
2. How was the s	ample deliv	ered?			Courier				
Log In 3. Was an attemp	t made to c	ool the samp	es?		Yes ✔	N	o 🗌		
4. Were all sample	es received	at a temperat	ure of >0° C	to 6.0°C	Yes 🗹	N	0	NA 🗌	
5. Sample(s) in pr	oper contai	iner(s)?			Yes 🗹	N	o 🗌		
6. Sufficient samp	le volume fo	or indicated te	st(s)?		Yes 🗹	No			
7. Are samples (ex	xcept VOA	and ONG) pro	perly preserve	ed?	Yes 🔽	No			
8. Was preservativ	ve added to	bottles?			Yes	No		NA 🗌	
9. Received at lea	st 1 vial wit	h headspace	<1/4" for AQ V	'OA?	Yes	No		NA 🗸	
10. Were any same	ole containe	ers received b	oken?		Yes	N	o 🗸		TO
11.Does paperworl					Yes 🗸	No		# of preserved bottles checked for pH:	10/28
(Note discrepan					163				>12 unless noted)
12. Are matrices co	rrectly iden	tified on Chair	of Custody?		Yes 🔽	No		Adjusted?	
13. Is it clear what a	analyses we	ere requested	?		Yes 🗸	No			
14. Were all holding (If no, notify cus					Yes 🗹	No		Checked by:	
Special Handlir	ng (if app	olicable)							
15. Was client noti	fied of all di	screpancies v	vith this order?	•	Yes 🗌	N	•	NA 🔽	
Person N	lotified:		ana ang ang ang ang ang ang ang ang ang	Date:			an month and of		
By Whon	n:			Via:	eMail	Phone	Fax	In Person	
Regardin	g:		i konstan perior solekari de eta bah kar			1 4 2 8 7 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9		an an annan an chuidh na bhann an an ann an t	
Client Ins	structions:				and the Analytic and Analytic and An	an an Aldela Magazanak			
16. Additional rem	arks:								
17. <u>Cooler Inform</u>	nation								
Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed	d By		
	2.0	Good	Yes						
2	1.5	Good	Yes						

Page 1 of 1

Rec	eived	l by ()CD	: 3/1	6/20	21 9:	35:5	I AM						Т										Pag	ge 5.	1 of 5
	FNVTPONMENTAL	.>	tal.com	37109				edA\t	UƏSƏ					_												
	IVT	ANALYSIS L	onmen	Idnerd	Fax 505					(AC		-	S) 02 A) 09						 	-	 	-			Seal intact SM 10/20/20	
	L	s S	envii	Albu	Ľ.	Analysis	⁺OS	'≉Od	' ⁷ 0	N ' ^ɛ	ON	şı, l)-, Е	Q	\times					1		-			5	1
			hall	ч Ш	75	Ar	- 74		Ŧ				3 AAC	~	-	7.2	1	5.5			1		-		SI	
	HALL			4901 Hawkins NE	505-345-3975		\$	SMIS	0728	or 8	015	y 8;	d sH/	44											let	
	4			awki	5-34				(1.	709	po	цıә	M) 80	ЪЭ											wto	
				01 H	el. 50		S	PCB'	280)8/s	əpic	oitee	91 Pe	08									.;		~	
			100	49	Tel		(OF	IM / C	שצי	/ O2	19)(GF	19D	08:H	ЧΤ	\succ								Remarks:		Seci	
5							(12	:08) ទ	WB,	L /	38	LW	/ X3_	LЯ	\times								Ren			
M	Turn-Around Time: S Jacob	X Standard X Rush (Ch.	Project Name:	Limestone	Project #:		Project Manager:	Michael Cant	Sampler: AA G	68363		Cooler Temp(including CF): 2.2-0.2=2.0 (°C)	1.7-0.2=1 HEAL	Type and # Type 2010c15	402Sollar ICE 001								Received by: Via: Date Time	Car Ivia 11	Received by: Via: Date Time	\sim
	Chain-of-Custody Record	Lucid Energy		Mailing Address: On C C		#: 314 330 7 87 C	email or Fax#: megantelucid-energy, com Project Manager:	QA/QC Package:	1: 🗆 Az Con		EDD (Type)			Sample Name	10/24/1130 S HA.6.C.S		1. Ø. 1						Time: Relinquished by	9/11	Time: Relinquished by:	EM COURIER IC
		Client:		Mailing		Phone #:	email c	QA/QC Packa	Accred	D NELAC				Date	10/24	1945- 1945-							Date:	~//	Date:	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
LUCID ENERGY DELAWARE, LLC	372422
201 S. Fourth Street	Action Number:
Artesia, NM 88210	20880
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
ceads	None	6/30/2021

Page 52 of 52

Action 20880