

Souder, Miller & Associates•201 S. Halagueno St.•Carlsbad, NM 88220 (575) 689-8801

March 24, 2021

#5E29133-BG71

NMOCD District 1 1625 N. French Dr. Hobbs, New Mexico 88240

SUBJECT: Remediation Closure Report for the Seawolf 1-12 Federal 81H (NRM2028763451), Lea, County, New Mexico

To Whom it May Concern:

On behalf of Devon Energy Production Company, Souder, Miller & Associates (SMA) has prepared this Remediation Closure Report that describes the remediation of a release of liquids related to oil and gas production activities at the Seawolf 1-12 Federal 81H site. The site is in Unit C, Section 1, Township 26S, Range 33E, Lea County, New Mexico, on Federal land. Figure 1 illustrates the vicinity and site location on an USGS 7.5-minute quadrangle map.

Table 1 summarizes release information and Closure Criteria.

	Table 1: Release Information	on and Closure	Criteria
Name	Seawolf 1-12 Federal 81H	Company	Devon Energy Production Company
API Number	30-025-43762	Location	32.076852, -103.526662
Tracking Number	NRM2028763451		
Estimated Date of Release	9/28/2020	Date Reported to NMOCD	9/28/2020
Land Owner	Federal	Reported To	NMOCD, BLM
Source of Release	Underground flowline leak		
Released Volume	2 BBLS 12 BBLS	Released Material	Crude Oil & Produced Water
Recovered Volume	0 BBLS 7 BBLS	Net Release	7 BBLS
NMOCD Closure Criteria	<50 feet to groundwater		
SMA Response Dates	November 13, 2020 & February 11, 2021		

NRM2028763451

Seawolf 1-12 Federal 81H Remediation Closure Report March 24, 2021

1.0 Background

On September 28, 2020, a release was discovered at the Seawolf 1-12 Federal 81H site due to an underground flow-line leak. Initial response activities were conducted by Devon personnel, which included source elimination and site stabilization activities. Figure 1 illustrates the vicinity and site location; Figure 2 illustrates the release location. The C-141 form is included in Appendix A.

2.0 Site Information and Closure Criteria

The Seawolf 1-12 Federal 81H facility is located approximately 33 miles southeast of Carlsbad, New Mexico on State land at an elevation of approximately 3,661 feet above mean sea level (amsl).

Depth to Groundwater

Based upon Office of the State Engineer (NMOSE) well data (Appendix B), depth to groundwater in the area is estimated to be 167 feet below grade surface (bgs).

Wellhead Protection Area

There are no known water sources within ½-mile of the location, according to the New Mexico Office of the State Engineer (NMOSE) online water well database.

Distance to Nearest Significant Watercourse

The nearest significant watercourse is an unnamed playa, located approximately 5.0 miles to the southwest of the Seawolf 1-12 Federal 81H site.

Table 2 demonstrates the Closure Criteria applicable to this location. Figure 2 illustrates the site with 200 and 300-foot radii to indicate that it does not lie within a sensitive area as described in 19.15.29.12.C(4) NMAC.

Based on the lack of supportable groundwater data, the applicable NMOCD Closure Criteria for this site is for a groundwater depth of less than 50 feet bgs.

3.0 Release Characterization and Remediation Activities

On November 13, 2020, SMA personnel performed site delineation activities at the Seawolf 1-12 Federal 81H site. Soil samples were field-screened for chloride using an electrical conductivity (EC) meter and hydrocarbon impacts using a calibrated MiniRAE 3000 photoionization detector (PID) equipped with a 10.6 eV lamp.

A total of four sample locations (L1 - L4) were investigated using a hand-auger, to depths up to three feet bgs. A minimum of twelve samples were collected at each sampling location and field-screened using the methods above. A total of 12 samples were collected for laboratory analysis for total chloride using EPA Method 300.0; benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B; and motor, diesel and gasoline range organics (MRO, DRO, and GRO) by EPA Method 8015D. Figure 3A shows initial sample locations on the site, and Table 3A summarizes the sample results.

On February 11, 2021, SMA returned to the site to guide the excavation of contaminated soil. Samples were screened for chloride using an electrical conductivity (EC) meter and for hydrocarbon impacts using a calibrated MiniRAE 3000 photoionization detector (PID) equipped with a 10.6 eV lamp. The walls and base of the four excavations between the buried pipelines were extended until field screening results indicated that the NMOCD Closure Criteria would be met. NMOCD was notified on February 5, 2021 that closure samples were expected to be collected in two (2) business days.

Seawolf 1-12 Federal 81H Remediation Closure Report March 24, 2021

On February 11, 2021, SMA collected confirmation samples from the walls and base of the four excavation areas. Excavation Site 1 (CS1 -CS2 and CSW1 – CSW4), located on the western side of the Seawolf pad, measured 15 by 36 by 3 feet. Excavation Site 2 (CS3 – CS5 and CSW5 – CSW8), located to the east of Excavation Site 1 measured 20 by 37 by 4.5 feet. Excavation Site 3 (CS6 – CS8 and CSW9 – CSW12), located to the east of Excavation Site 2 measured 18 by 40 by 6 feet, while the eastern-most site, Excavation Site 4 (CS9 – CS10 and CSW13 – CSW14), measured 10 by 30 by 3.5 feet.

A total of 24 confirmation samples were collected for laboratory analysis for total chloride using EPA Method 300.0; benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B; and motor, diesel and gasoline range organics (MRO, DRO, and GRO) by EPA Method 8015D. Laboratory samples were collected in accordance with the sampling protocol included in Appendix C. Samples were placed into laboratory supplied glassware, labeled, and maintained on ice until delivery to Envirotech in Farmington, New Mexico.

Figure 3B shows the extent of the final excavation and closure sample locations. All field screening and laboratory results are summarized in Table 3A and 3B. Laboratory reports are included in Appendix D.

4.0 Site Recommendations

As demonstrated in Table 3B, all confirmation samples meet the Closure Criteria. The site has been remediated to meet the standards of Table I of 19.15.29.12 NMAC. Contaminated soils were removed and replaced with clean backfill material to return the surface to previous contours. The contaminated soil was transported and disposed of at Northern Delaware Basin Landfill near Jal, NM, an NMOCD-permitted disposal facility.

SMA recommends no further action and requests closure of Incident Number NRM2028763451.

NRM2028763451

Seawolf 1-12 Federal 81H Remediation Closure Report March 24, 2021

5.0 Scope and Limitations

The scope of our services included: assessment sampling; verifying release stabilization; regulatory liaison; remediation; and preparing this report. All work has been performed in accordance with generally accepted professional environmental consulting practices for oil and gas releases in the Permian Basin in New Mexico.

If there are any questions regarding this report, please contact either Ashley Maxwell at 505-325-7535 or Shawna Chubbuck at 970-565-4465.

Submitted by: SOUDER, MILLER & ASSOCIATES Reviewed by:

Ashley Maxwell Project Scientist

Shawna Chubbuck

rauna Chubbuck

Senior Scientist

REFERENCES:

New Mexico Office of the State Engineer (NMOSE) online water well database https://gis.ose.state.nm.us/gisapps/ose_pod_locations/; accessed 3/19/2021

New Mexico Oil Conservation District (NMOCD) online incident files database http://www.emnrd.state.nm.us/OCD/ocdgis.html/; accessed 12/14/2020

NRM2028763451

Seawolf 1-12 Federal 81H Remediation Closure Report March 24, 2021

ATTACHMENTS:

Figures:

Figure 1: Vicinity and Well Head Protection Map Figure 2: Surface Water Protection Map Figure 3A: Site and Initial Sample Location Map Figure 3B: Site and Confirmation Sample Location Map

Tables:

Table 2: NMOCD Closure Criteria JustificationTable 3A: Summary of Initial Sample ResultsTable 3B: Summary of Confirmation Sample Results

Appendices:

Appendix A: Form C141 Appendix B: NMOSE Wells Report Appendix C: Sampling Protocol & Field Notes Appendix D: Laboratory Analytical Reports Appendix E: Excavation Photo Log

FIGURES

Received by OCD: 4/6/2021 2:39:49 PM

Released to Imaging: 7/1/2021 9:03:57 AM

Received by OCD: 4/6/2021 2:39:49 PM

Received by OCD: 4/6/2021 2:39:49 PM

Released to Imaging: 7/1/2021 9:03:57 AM

TABLES

Site Information (19.15.29.11.A(2, 3, and 4) NMAC)	Source/Notes	
Depth to Groundwater (feet bgs)	167	New Mexico Office of the State Engineer
Hortizontal Distance From All Water Sources Within 1/2 Mile (ft)	N/A	USGS Topo Map
Hortizontal Distance to Nearest Significant Watercourse (ft)	7,729	Unnamed playa to the southwest

Closure Criteria (19.15.2	d Table 1 NMAC)					
	Closure Criteria (units in mg/kg)					
Depth to Groundwater		Chloride *numerical limit or background, whichever is greater	ТРН	GRO + DRO	BTEX	Benzene
< 50' BGS	Х	600	100		50	10
51' to 100'		10000	2500	1000	50	10
>100'		20000	2500	1000	50	10
Surface Water yes or no			if ye	s, then		
<300' from continuously flowing watercourse or other significant						
watercourse?	No					
<200' from lakebed, sinkhole or playa lake?						
Water Well or Water Source						
<500 feet from spring or a private, domestic fresh water well used by						
less than 5 households for domestic or stock watering purposes?	No					
<1000' from fresh water well or spring?	No					
Human and Other Areas		600	100			10
<300' from an occupied permanent residence, school, hospital, institution or church?	No	600	100		50	10
within incorporated municipal boundaries or within a defined municipal fresh water well field?	No					
)' from wetland? No						
ithin area overlying a subsurface mine No		1				
within an unstable area?	No	1				
within a 100-year floodplain?	No	1				

Table 3a: Initial Sample Results

Page 13 of 144

•

Devon Energy Seawolf 1-12 Fed 81H

Comple ID	Comulo Doto	Depth of Sample	Action	Metho	od 8021B		Metho	d 8015D		Method 300.0
Sample ID	Sample Date	(feet bgs)	Taken	BTEX	Benzene	GRO	DRO	MRO	Total TPH	Cl-
				mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
NM	IOCD Reclamat	ion Requirement (0-4 ft)	50	10				100	600
	NMOCD Clos	sure Criteria (>4 ft)		50	10					
		Surface		<0.1	<0.0250	<20.0	15,800	5,640	21,440	55,500
L1		2		<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	1,660
		3		<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	666
		Surface		<0.1	<0.0250	<20.0	17,900	8,100	26,000	60,700
L2		2		<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	1,450
	11/13/2020	3	Evenuate	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	263
	11/15/2020	Surface	Excavate	<0.1	<0.0250	<20.0	3,310	1,620	4,930	11,200
L3		2		<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	2,520
		3		<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	1,960
		Surface		<0.1	<0.0250	<20.0	15,700	6,890	22,590	62,800
L4		2		<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	2,120
		3		<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	3,250

"--" = Not Analyzed

BG: Background sample

Table 3b: Closure Sample Results Devon Energy Production Company Seawolf 1-12 Federal 81H

Sample ID	Sample	Depth of Sample	Metho	od 8021B		Metho	d 8015D		Method 300.0
Sample ID	Date	(feet bgs)	BTEX	Benzene	GRO	DRO	MRO	Total TPH	Cl-
		(leet bgs)	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
NM	OCD Closure	Criteria	50	10		-		100	600
CS1		3	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CS2		3	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CS3		4.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CS4		4.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CS5		4.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CS6		6	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CS7		6	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CS8		6	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CS9		3.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CS10		3.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW1		0-3	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW2	2/11/2021	0-3	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW3	2/11/2021	0-3	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW4		0-3	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW5		0-4.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW6		0-4.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW7		0-4.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW8		0-4.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW9		0-6	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW10		0-6	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW11		0-6	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW12		0-6	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW13		0-3.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0
CSW14		0-3.5	<0.1	<0.0250	<20.0	<25.0	<50.0	<95.0	<20.0

"-" = Not Analyzed

BG: Background sample

APPENDIX A FORM C141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 16cof 144

Incident ID	NRM2028763451
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Devon Energy Production Company	OGRID ₆₁₃₇	
Contact Name Lupe Carrasco	Contact Telephone	
Contact email Lupe.Carrasco@dvn.com	Incident # (assigned by OCD)	
Contact mailing address 6488 Seven Rivers Hwy Artesia, NM 88210		

Location of Release Source

Latitude 32.076852

Longitude _____.526662

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Seawolf 1 12 Fed 81H	Site Type Oil
Date Release Discovered 9/28/2020	API# (if applicable) 30-025-43762

Unit Letter	Section	Township	Range	County
С	1	26S	33E	Lea

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 2 BBLS	Volume Recovered (bbls) 0 BBLS
Produced Water	Volume Released (bbls) 12 BBLS	Volume Recovered (bbls) 7 BBLS
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release Unde	rground flow line leak.	

	eceived by OCD:	4/6/2021/2:39:49	^{PMM} State of]	New Mexico
--	-----------------	------------------	------------------------------	------------

il	Conservation	Division

Incident ID	NRM2028763451
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🔳 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Spill was not in containment.

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Kendra DeHoyos
Signature: Kendra DeHoyos

_{email:} Kendra.DeHoyos@dvn.com

OCD	Only
UUU	UIII

Ramona Marcus Received by:

Title: EHS Associate

Date: 10/12/2020

Telephone: 575-748-0167

Date: 10/13/2020

Page 2

Received by OCD: 4/6/2021 2:39:49 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 18 of 14
Incident ID	NRM2028763451
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?						
Did this release impact groundwater or surface water?						
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant						
watercourse?	🗌 Yes 🛛 No					
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No					
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔀 No					
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?						
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No					
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh						
water well field?	🗌 Yes 🛛 No					
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🔀 No					
Are the lateral extents of the release overlying a subsurface mine?						
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No					
	🗌 Yes 🖾 No					
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No					
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖂 No					

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

- Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 4/6/2021 2:39 Form C-141	:49 PM			Page 19 of 144
Form C-141			Incident ID	NRM2028763451
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations all operators are require public health or the environment. T failed to adequately investigate and addition, OCD acceptance of a C-14 and/or regulations. Printed Name:Lupe Carrasco Signature: <i>Lupe Carrasca</i> email:Lupe.Carrasco@dvn.co	a given above is true and complete to the d to report and/or file certain release not The acceptance of a C-141 report by the remediate contamination that pose a thr 41 report does not relieve the operator of	tifications and perform OCD does not relieve eat to groundwater, su f responsibility for co Tit Da	n corrective actions for rel the operator of liability sh urface water, human health mpliance with any other fe tle:EHS Professiona tte:4/1/2021	eases which may endanger nould their operations have n or the environment. In ederal, state, or local laws
OCD Only Received by:		Date•		
		Date:		

Page 6

Oil Conservation Division

Incident ID	NRM2028763451
District RP	
Facility ID	
Application ID	

Page 20 of 144

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following it	tems must be included in the closure report.
\boxtimes A scaled site and sampling diagram as described in 19.15.29.1	11 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and ren human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regula restore, reclaim, and re-vegetate the impacted surface area to the co accordance with 19.15.29.13 NMAC including notification to the C	ations. The responsible party acknowledges they must substantially inditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete.
Printed Name: Lupe Carrasco	Title:Environmental Professional
Signature: Lupe Carrasco	Date: 4/6/2021
email: <u>lupe.carrasco@dvn.com</u>	Telephone: <u>575-748-0176</u>
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.
Closure Approved by: Karen Collins	Date: <u>7/1/2021</u>
Printed Name: Karen Collins	Title:Enviro Spec

Page 21eoj	F 144	
------------	-------	--

	outs in blue, O	s) Calculator utputs in red				
Con	taminated Soil	measurement				
Area (squa	re feet)	Depth(inches)				
<u>252</u>	2	<u>0.750</u>				
ubic Feet of S	oil Impacted	<u>157.625</u>				
Barrels of Soi	I Impacted	28.10				
Soil Ty	/pe	Clay				
Barrels of Oil 100% Satu	-	<u>2.81</u>				
Saturation	Fluid presen	t with shovel/backhoe				
Estimated Barrels of Oil Released		2.81				
	Free Standing	Fluid Only				
Area (squa	re feet)	Depth(inches)				
<u>150</u>	<u>o</u>	<u>0.500</u>				
Standing	; fluid	<u>11.141</u>				
Total fluid	s spilled	<u>13.951</u>				
The second second						

APPENDIX B NMOSE WELLS REPORT

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(0	•					2=NE :	3=SW 4= ·gest)) AD83 UTM in me	ters)	(In feet)	
	POD Sub-	,		Q					0,	,			Depth	Depth	Water
POD Number	Code basin C	county	-	-	-	Sec	Tws	Rng		Х	Y	Distance		Water (
<u>C 02291</u>	CUB	LE	1	1	2	06	26S	34E	64082	25	3550140* 🌍	1785	220	160	60
C 03441 POD1	С	LE	4	1	2	06	26S	34E	64097	71	3550039 🌍	1920	250		
C 02292 POD1	CUB	LE	4	1	2	06	26S	34E	64099	92	3549987 🌍	1938	200	140	60
C 03442 POD1	С	LE	4	1	2	06	26S	34E	64105	56	3550028 🌍	2004	251		
<u>C 02295</u>	CUB	LE	2	2	4	12	26S	33E	63986	65	3547624 🌍	2418	250	200	50
C 02285 POD1	CUB	LE	1	4	4	03	26S	33E	63661	13	3548855 🌍	2657	220	220	0
<u>C 02288</u>	CUB	LE	4	4	4	03	26S	33E	63664	46	3548758 🌍	2667	220	180	40
<u>C 02289</u>	CUB	LE	4	4	4	03	26S	33E	63661	12	3548675* 🌍	2734	200	160	40
<u>C 02290</u>	CUB	LE	4	4	4	03	26S	33E	63653	38	3548770 🌍	2760	200	160	40
<u>C 02286</u>	CUB	LE	3	4	4	03	26S	33E	63647	70	3548714 🌍	2845	220	175	45
<u>C 02287</u>	С	LE	3	4	4	03	26S	33E	63642	27	3548708 🌍	2887	220		
<u>C 02313</u>	CUB	LE	2	3	3	26	25S	33E	63697	71	3552098* 🌍	3026	150	110	40
											Avera	ge Depth to	Water:	167 1	eet
												Minimum	Depth:	110 1	eet
												Maximum	Depth:	220 1	eet
Record Count: 12															

Record Count: 12

UTMNAD83 Radius Search (in meters):

Easting (X): 639055.178

Northing (Y): 3549903.8

Radius: 3250

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 23 of 144

APPENDIX C SAMPLING PROTOCOL & FIELD NOTES

Sampling Protocol

The soil samples were collected in laboratory supplied containers in accordance with this sampling protocol, immediately placed on ice and sent under standard chain-of-custody protocols to Envirotech in Farmington, New Mexico for analysis. A total of thirty-six (36) samples were collected for laboratory analysis for total chloride using EPA Method 300.0; benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B; and motor, diesel and gasoline range organics (MRO, DRO, and GRO) by EPA Method 8015D.

Sampling Analysis Field Quality Assurance Procedures

A unique sample numbering was used to identify each sample collected and designated for on-site and off-site laboratory analysis. The purpose of this numbering scheme was to provide a tracking system for the retrieval of analytical and field data on each sample. Sample identification numbers were recorded on sample labels or tags, field notes, chain-of-custody records (COC) and all other applicable documentation used during the project. Sample labels were affixed to all sample containers during sampling activities. Information was recorded on each sample container label at the time of sample collection. The information recorded on the labels were as follows: sample identification number; sample type (discrete or composite); site name and area/location number; analysis to be performed; type of chemical preservative present in container; date and time of sample collection; and sample collector's name and initials. All samples were packed in ice in an approved rigid body container, custody sealed signed and shipped to the appropriate laboratory via insured currier service.

COC procedures implemented for the project provided documentation of the handling of each sample from the time of collection until completion of laboratory analysis. A COC form serves as a legal record of possession of the sample. A sample is considered to be under custody if one or more of the following criteria are met: the sample is in the sampler's possession; the sample is in the sampler's view after being in possession; the sample was in the sampler's possession and then was placed into a locked area to prevent tampering; and/or the sample is in a designated secure area. Custody was documented throughout the project field sampling activities by a chain-of custody form initiated each day during which samples are collected. Container custody seals placed on either individual samples or on the rigid body container were used to ensure that no sample tampering occurs between the time the samples are placed into the containers and the time the containers are opened for analysis at the laboratory. Container custody seals were signed and dated by the individual responsible for completing the COC form contained within the container.

Engineering
 Environmental
 Surveying

www.soudermiller.com

Received by OCD: 4/6/2021 2:39:49 PM

SUBJECT Seawolf 1-12 Fed 81H PROJECT DATE Z-10-21 BY NG CLIENT Peron Energy CHECKED Weather! Fog/40° in morning Arrive on site @ 7:58 Fill out JSA Piscuss work with MMX Pre-marked dig Area MMX Equipment: Komatsu PC200 Excavator, 2-Belly Pumps, 1-side dump Continually run field screens to guide dig area Collect Samples: CSW-4, CS-5 (-3.5'), CSW-5 BG-1(-2'), BG-1(-3'), BG-1(-4') SMA Leave site @ 5:15 SOUDER, MILLER & ASSOCIATES Serving - New Mexico • Colorado • Arizona • Utah Released to Imaging: 7/1/2021 9:03:57 AM

02/11/2021

wi mmx personnel. Site had four open pits, location, met depth from 3' to 8' All open pits are located o Arrived on a series of gas wells. Area was fenced off due to the ranging in adjucent to of equipment. Vianty 41/2 depth 3 depth 6' depth 31/2 depth CSWS csw6 C542 37 1 CSW12 CSWIU, 0510 × 40 36' 30 , 5 655 (56) -D = D= A=A= A 14 csw7 15 101 WI NH

• A total of (24) Samples were calletered. Ten (10) base samples cs1 - cs10, and fiftur (15/ side wall samples (CSW1-CSW15). hundheld All samples were screened for chlorides, using 01 electroconditivity meter (EC). Samples were packaged for avalytical analysis.

APPENDIX D LABORATORY ANALYTICAL REPORTS

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Souder Miller Associates - Carlsbad

Project Name: Seawolf

Work Order: E011065

Job Number: 01058-0007

Received: 11/19/2020

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 11/25/20

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM009792018-1 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557-19-2 for data reported. Date Reported: 11/25/20

Ashley Maxwell 201 S Halagueno St. Carlsbad, NM 88220

Project Name: Seawolf Workorder: E011065 Date Received: 11/19/2020 10:00:00AM

Ashley Maxwell,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 11/19/2020 10:00:00AM, under the Project Name: Seawolf.

The analytical test results summarized in this report with the Project Name: Seawolf apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
L1-Surface	5
L1-2'	6
L1-3'	7
L2-Surface	8
L2-2'	9
L2-3'	10
L3-Surface	11
L3-2'	12
L3-3'	13
L4-Surface	14
L4-2'	15
L4-3'	16
QC Summary Data	17
QC - Volatile Organics by EPA 8021B	17
QC - Nonhalogenated Organics by EPA 8015D - GRO	18
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	19
QC - Anions by EPA 300.0/9056A	20
Definitions and Notes	21
Chain of Custody etc.	22

Received by OCD: 4/6/2021 2:39:49 PM

Sample Summary

		Sample Sum	mary		
Souder Miller Associates - Carlsbad		Project Name:	Seawolf		Reported:
201 S Halagueno St.		Project Number:	01058-0007		Reporteu.
Carlsbad NM, 88220		Project Manager:	Ashley Maxwell		11/25/20 08:29
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
L1-Surface	E011065-01A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L1-2'	E011065-02A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L1-3'	E011065-03A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L2-Surface	E011065-04A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L2-2'	E011065-05A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L2-3'	E011065-06A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L3-Surface	E011065-07A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L3-2'	E011065-08A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L3-3'	E011065-09A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L4-Surface	E011065-10A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L4-2'	E011065-11A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.
L4-3'	E011065-12A	Soil	11/13/20	11/19/20	Glass Jar, 4 oz.

	De De	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manag	er: 010:	wolf 58-0007 ley Maxwell			Reported: 11/25/2020 8:29:51AM
]	L1-Surface				
		E011065-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	:: IY		Batch: 2048001
Benzene	ND	0.0250	1	11/23/20	11/23/20	
Foluene	ND	0.0250	1	11/23/20	11/23/20	
Ethylbenzene	ND	0.0250	1	11/23/20	11/23/20	
o,m-Xylene	ND	0.0500	1	11/23/20	11/23/20	
p-Xylene	ND	0.0250	1	11/23/20	11/23/20	
Total Xylenes	ND	0.0250	1	11/23/20	11/23/20	
Surrogate: 4-Bromochlorobenzene-PID		98.9 %	70-130	11/23/20	11/23/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2048001	
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/23/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		78.7 %	70-130	11/23/20	11/23/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: AC		Batch: 2048004	
Diesel Range Organics (C10-C28)	15800	500	20	11/23/20	11/23/20	
Dil Range Organics (C28-C35)	5640	1000	20	11/23/20	11/23/20	
Surrogate: n-Nonane		106 %	50-200	11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst: NE			Batch: 2048002
Chloride	55500	400	20	11/23/20	11/23/20	

Sample Data

	S	ample D	ata			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numb Project Manag	er: 0103	wolf 58-0007 ley Maxwell			Reported: 11/25/2020 8:29:51AM
		L1-2'				
		E011065-02				
		Reporting				
Analyte	Result	Limit	Diluti	on Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	А	nalyst: IY		Batch: 2048001
Benzene	ND	0.0250	1	11/23/20	11/23/20	
Toluene	ND	0.0250	1	11/23/20	11/23/20	
Ethylbenzene	ND	0.0250	1	11/23/20	11/23/20	
o,m-Xylene	ND	0.0500	1	11/23/20	11/23/20	
p-Xylene	ND	0.0250	1	11/23/20	11/23/20	
Total Xylenes	ND	0.0250	1	11/23/20	11/23/20	
Surrogate: 4-Bromochlorobenzene-PID		99.8 %	70-130	11/23/20	11/23/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2048001	
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/23/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		80.1 %	70-130	11/23/20	11/23/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: AC		Batch: 2048004	
Diesel Range Organics (C10-C28)	ND	25.0	1	11/23/20	11/23/20	
Dil Range Organics (C28-C35)	ND	50.0	1	11/23/20	11/23/20	
Gurrogate: n-Nonane		99.5 %	50-200	11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	z/kg Analyst: NE		Batch: 2048002	
Chloride	1660	100	5	11/23/20	11/23/20	

	Sa	ample D	ata				
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manag		volf 58-0007 ley Maxwel	11			Reported: 11/25/2020 8:29:51AM
		L1-3'					
		E011065-03					
		Reporting					
Analyte	Result	Limit	Dilu	tion	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg		Analyst: IY			Batch: 2048001
Benzene	ND	0.0250	1	l	11/23/20	11/23/20	
Toluene	ND	0.0250	1	l	11/23/20	11/23/20	
Ethylbenzene	ND	0.0250	1	l	11/23/20	11/23/20	
p,m-Xylene	ND	0.0500	1	l	11/23/20	11/23/20	
o-Xylene	ND	0.0250	1	l	11/23/20	11/23/20	
Total Xylenes	ND	0.0250	1	l	11/23/20	11/23/20	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130		11/23/20	11/23/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY		Batch: 2048001	
Gasoline Range Organics (C6-C10)	ND	20.0	1	l	11/23/20	11/23/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		79.5 %	70-130		11/23/20	11/23/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: AC		Batch: 2048004	
Diesel Range Organics (C10-C28)	ND	25.0	1	1	11/23/20	11/23/20	
Oil Range Organics (C28-C35)	ND	50.0	1	l	11/23/20	11/23/20	
Surrogate: n-Nonane		89.6 %	50-200		11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	mg/kg Analyst: NE		Batch: 2048002		
Chloride	666	20.0	1	1	11/23/20	11/23/20	

	50	imple D	ala			
Souder Miller Associates - Carlsbad	Project Name:	Seav	volf			
201 S Halagueno St.	Project Number: 010:		58-0007			Reported:
Carlsbad NM, 88220	Project Manage	11/25/2020 8:29:51AM				
]	L2-Surface				
		E011065-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2048001
Benzene	ND	0.0250	1	11/23/20	11/23/20	
Toluene	ND	0.0250	1	11/23/20	11/23/20	
Ethylbenzene	ND	0.0250	1	11/23/20	11/23/20	
o,m-Xylene	ND	0.0500	1	11/23/20	11/23/20	
p-Xylene	ND	0.0250	1	11/23/20	11/23/20	
Fotal Xylenes	ND	0.0250	1	11/23/20	11/23/20	
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	11/23/20	11/23/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2048001	
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/23/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		80.5 %	70-130	11/23/20	11/23/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: AC		Batch: 2048004	
Diesel Range Organics (C10-C28)	17900	500	20	11/23/20	11/23/20	
Dil Range Organics (C28-C35)	8100	1000	20	11/23/20	11/23/20	
Surrogate: n-Nonane		115 %	50-200	11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: NE		Batch: 2048002
Chloride	60700	400	20	11/23/20	11/23/20	

	S	ample D	ata			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numb Project Manaş	er: 0103	volf 58-0007 ley Maxwell			Reported: 11/25/2020 8:29:51AM
		L2-2'				
		E011065-05				
Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Batch: 2048001		
Benzene	ND	0.0250	1	11/23/20	11/24/20	
Foluene	ND	0.0250	1	11/23/20	11/24/20	
Ethylbenzene	ND	0.0250	1	11/23/20	11/24/20	
,m-Xylene	ND	0.0500	1	11/23/20	11/24/20	
-Xylene	ND	0.0250	1	11/23/20	11/24/20	
Total Xylenes	ND	0.0250	1	11/23/20	11/24/20	
urrogate: 4-Bromochlorobenzene-PID		99.9 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2048001
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/24/20	
urrogate: 1-Chloro-4-fluorobenzene-FID		79.9 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: AC		Batch: 2048004
Diesel Range Organics (C10-C28)	ND	25.0	1	11/23/20	11/23/20	
Dil Range Organics (C28-C35)	ND	50.0	1	11/23/20	11/23/20	
Surrogate: n-Nonane		86.3 %	50-200	11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	Analyst: NE		Batch: 2048002
Chloride	1450	20.0	1	11/23/20	11/23/20	

	S	ample D	ata			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numb Project Manag	er: 0103	volf 58-0007 ley Maxwell			Reported: 11/25/2020 8:29:51AM
		L2-3'				
		E011065-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	lyst: IY		Batch: 2048001
Benzene	ND	0.0250	1	11/23/20	11/24/20	
Toluene	ND	0.0250	1	11/23/20	11/24/20	
Ethylbenzene	ND	0.0250	1	11/23/20	11/24/20	
p,m-Xylene	ND	0.0500	1	11/23/20	11/24/20	
o-Xylene	ND	0.0250	1	11/23/20	11/24/20	
Total Xylenes	ND	0.0250	1	11/23/20	11/24/20	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	lyst: IY		Batch: 2048001
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/24/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		79.8 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	lyst: AC		Batch: 2048004
Diesel Range Organics (C10-C28)	ND	25.0	1	11/23/20	11/23/20	
Oil Range Organics (C28-C35)	ND	50.0	1	11/23/20	11/23/20	
Surrogate: n-Nonane		90.3 %	50-200	11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	lyst: NE		Batch: 2048002
Chloride	263	20.0	1	11/23/20	11/23/20	

	25	ampie D	ลเล			
Souder Miller Associates - Carlsbad	Project Name:	Seav	wolf			
201 S Halagueno St.	Project Numbe	er: 010	58-0007	Reported:		
Carlsbad NM, 88220	Project Manage	er: Ash	ley Maxwell	11/25/2020 8:29:51AM		
]	L3-Surface				
]	E011065-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2048001
Benzene	ND	0.0250	1	11/23/20	11/24/20	
Toluene	ND	0.0250	1	11/23/20	11/24/20	
Ethylbenzene	ND	0.0250	1	11/23/20	11/24/20	
p,m-Xylene	ND	0.0500	1	11/23/20	11/24/20	
o-Xylene	ND	0.0250	1	11/23/20	11/24/20	
Total Xylenes	ND	0.0250	1	11/23/20	11/24/20	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2048001
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/24/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		79.8 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: AC		Batch: 2048004
Diesel Range Organics (C10-C28)	3310	25.0	1	11/23/20	11/23/20	
Oil Range Organics (C28-C35)	1620	50.0	1	11/23/20	11/23/20	
Surrogate: n-Nonane		99.3 %	50-200	11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: NE		Batch: 2048002
Chloride	11200	100	5	11/23/20	11/23/20	

	5	ample D	ala			
Souder Miller Associates - Carlsbad	Project Name:	: Seav	volf			
201 S Halagueno St.	Project Numb	er: 0103	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell			11/25/2020 8:29:51AM
		L3-2'				
		E011065-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: IY		Batch: 2048001
Benzene	ND	0.0250	1	11/23/20	11/24/20	
Toluene	ND	0.0250	1	11/23/20	11/24/20	
Ethylbenzene	ND	0.0250	1	11/23/20	11/24/20	
p,m-Xylene	ND	0.0500	1	11/23/20	11/24/20	
p-Xylene	ND	0.0250	1	11/23/20	11/24/20	
Total Xylenes	ND	0.0250	1	11/23/20	11/24/20	
Surrogate: 4-Bromochlorobenzene-PID		102 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: IY		Batch: 2048001
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/24/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		79.2 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: AC		Batch: 2048004
Diesel Range Organics (C10-C28)	ND	25.0	1	11/23/20	11/23/20	
Oil Range Organics (C28-C35)	ND	50.0	1	11/23/20	11/23/20	
Surrogate: n-Nonane		91.8 %	50-200	11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	nalyst: NE		Batch: 2048002
Chloride	2520	100	5	11/23/20	11/23/20	

	Di	ample D	ลเล			
Souder Miller Associates - Carlsbad	Project Name:	Seav	volf			
201 S Halagueno St.	Project Number	er: 0105	8-0007	Reported:		
Carlsbad NM, 88220	Project Manag	er: Ash	ey Maxwell			11/25/2020 8:29:51AM
		L3-3'				
		E011065-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: IY		Batch: 2048001
Benzene	ND	0.0250	1	11/23/20	11/24/20	
foluene	ND	0.0250	1	11/23/20	11/24/20	
Ethylbenzene	ND	0.0250	1	11/23/20	11/24/20	
o,m-Xylene	ND	0.0500	1	11/23/20	11/24/20	
p-Xylene	ND	0.0250	1	11/23/20	11/24/20	
Fotal Xylenes	ND	0.0250	1	11/23/20	11/24/20	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: IY		Batch: 2048001
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/24/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		79.7 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: AC		Batch: 2048004
Diesel Range Organics (C10-C28)	ND	25.0	1	11/23/20	11/23/20	
Dil Range Organics (C28-C35)	ND	50.0	1	11/23/20	11/23/20	
Surrogate: n-Nonane		90.8 %	50-200	11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: NE		Batch: 2048002
Chloride	1960	20.0	1	11/23/20	11/23/20	

	Sa	ample D	ata			
Souder Miller Associates - Carlsbad	Project Name:	: Seav	wolf			
201 S Halagueno St.	Project Numbe	er: 010	58-0007	Reported:		
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell	11/25/2020 8:29:51AM		
		L4-Surface				
		E011065-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys		Batch: 2048001	
Benzene	ND	0.0250	1	11/23/20	11/24/20	
Toluene	ND	0.0250	1	11/23/20	11/24/20	
Ethylbenzene	ND	0.0250	1	11/23/20	11/24/20	
o,m-Xylene	ND	0.0500	1	11/23/20	11/24/20	
o-Xylene	ND	0.0250	1	11/23/20	11/24/20	
Total Xylenes	ND	0.0250	1	11/23/20	11/24/20	
Surrogate: 4-Bromochlorobenzene-PID		98.2 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2048001
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/24/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		78.0 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - DRO/OR	O mg/kg	mg/kg	Analys	t: AC		Batch: 2048004
Diesel Range Organics (C10-C28)	15700	250	10	11/23/20	11/23/20	
Oil Range Organics (C28-C35)	6890	500	10	11/23/20	11/23/20	
Surrogate: n-Nonane		111 %	50-200	11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: NE		Batch: 2048002
Chloride	62800	400	20	11/23/20	11/23/20	
Anions by EPA 300.0/9056A Chloride	<u> </u>	mg/kg	Analys	t: NE		Batch: 2048

	S	ample D	ata							
Souder Miller Associates - Carlsbad	Project Name	e: Sea	wolf							
201 S Halagueno St.	Project Numl	Project Number: 01058-0007								
Carlsbad NM, 88220	Project Mana	11/25/2020 8:29:51AM								
		L4-2'								
		E011065-11								
		Reporting								
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes				
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: IY			Batch: 2048001				
Benzene	ND	0.0250	1	11/23/20	11/24/20					
oluene	ND	0.0250	1	11/23/20	11/24/20					
thylbenzene	ND	0.0250	1	11/23/20	11/24/20					
,m-Xylene	ND	0.0500	1	11/23/20	11/24/20					
-Xylene	ND	0.0250	1	11/23/20	11/24/20					
otal Xylenes	ND	0.0250	1	11/23/20	11/24/20					
urrogate: 4-Bromochlorobenzene-PID		101 %	70-130	11/23/20	11/24/20					
Ionhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2048001				
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/24/20					

Gasoline Range Organics (C6-C10)	ND	20.0		1	11/23/20	11/24/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		78.7 %	70-130		11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analys	st: AC		Batch: 2048004
Diesel Range Organics (C10-C28)	ND	25.0		1	11/23/20	11/23/20	
Oil Range Organics (C28-C35)	ND	50.0		1	11/23/20	11/23/20	
Surrogate: n-Nonane		90.5 %	50-200		11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analys	st: NE		Batch: 2048002
Chloride	2120	40.0		2	11/23/20	11/23/20	

	Sa	ample D	ata			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manag	er: 010	volf 58-0007 ley Maxwell			Reported: 11/25/2020 8:29:51AM
		L4-3'				
		E011065-12				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	lyst: IY		Batch: 2048001
Benzene	ND	0.0250	1	11/23/20	11/24/20	
Toluene	ND	0.0250	1	11/23/20	11/24/20	
Ethylbenzene	ND	0.0250	1	11/23/20	11/24/20	
o,m-Xylene	ND	0.0500	1	11/23/20	11/24/20	
p-Xylene	ND	0.0250	1	11/23/20	11/24/20	
Total Xylenes	ND	0.0250	1	11/23/20	11/24/20	
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	lyst: IY		Batch: 2048001
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/23/20	11/24/20	
Surrogate: 1-Chloro-4-fluorobenzene-FID		79.2 %	70-130	11/23/20	11/24/20	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	lyst: AC		Batch: 2048004
Diesel Range Organics (C10-C28)	ND	25.0	1	11/23/20	11/23/20	
Dil Range Organics (C28-C35)	ND	50.0	1	11/23/20	11/23/20	
Surrogate: n-Nonane		83.2 %	50-200	11/23/20	11/23/20	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	lyst: NE		Batch: 2048002
Chloride	3250	40.0	2	11/23/20	11/23/20	

QC Summary Data

Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220		Project Name: Project Number: Project Manager:	01	eawolf 058-0007 shley Maxwell				I	Reported: 11/25/2020 8:29:51AM
		Volatile O	rganics k	oy EPA 8021	B				Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2048001-BLK1)						Pre	pared: 11/2	23/20 Anal	yzed: 11/23/20
Benzene	ND	0.0250							
Toluene	ND	0.0250							
Ethylbenzene	ND	0.0250							
,m-Xylene	ND	0.0500							
-Xylene	ND	0.0250							
Total Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.74		8.00		96.8	70-130			
LCS (2048001-BS1)						Pre	pared: 11/2	23/20 Anal	lyzed: 11/23/20
Benzene	4.76	0.0250	5.00		95.3	70-130			
Toluene	4.89	0.0250	5.00		97.7	70-130			
Ethylbenzene	4.85	0.0250	5.00		96.9	70-130			
,m-Xylene	9.59	0.0500	10.0		95.9	70-130			
-Xylene	4.78	0.0250	5.00		95.6	70-130			
Total Xylenes	14.4	0.0250	15.0		95.8	70-130			
urrogate: 4-Bromochlorobenzene-PID	7.88		8.00		98.5	70-130			
Matrix Spike (2048001-MS1)				Sour	ce: E011	065-01 Pre	pared: 11/2	23/20 Anal	lyzed: 11/23/20
Benzene	5.27	0.0250	5.00	ND	105	54-133			
Toluene	5.40	0.0250	5.00	ND	108	61-130			
Ethylbenzene	5.35	0.0250	5.00	ND	107	61-133			
,m-Xylene	10.6	0.0500	10.0	ND	106	63-131			
-Xylene	5.23	0.0250	5.00	ND	105	63-131			
Total Xylenes	15.8	0.0250	15.0	ND	105	63-131			
urrogate: 4-Bromochlorobenzene-PID	7.67		8.00		95.9	70-130			
Matrix Spike Dup (2048001-MSD1)				Sour	ce: E011	065-01 Pre	pared: 11/2	23/20 Anal	lyzed: 11/23/20
Benzene	5.11	0.0250	5.00	ND	102	54-133	3.09	20	
Toluene	5.22	0.0250	5.00	ND	104	61-130	3.44	20	
Ethylbenzene	5.17	0.0250	5.00	ND	103	61-133	3.33	20	
,m-Xylene	10.2	0.0500	10.0	ND	102	63-131	3.43	20	
-Xylene	5.04	0.0250	5.00	ND	101	63-131	3.70	20	
Total Xylenes	15.3	0.0250	15.0	ND	102	63-131	3.52	20	

QC Summary Data

		QC D	uIIIIII	ary Data	L				
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220		Project Name: Project Number: Project Manager:	(Seawolf)1058-0007 Ashley Maxwell				1	Reported: 11/25/2020 8:29:51AM
	No	onhalogenated C	Organics	s by EPA 801	5D - G	RO			Analyst: IY
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2048001-BLK1)		6 6	6 6	6 6	,,,				lyzed: 11/23/20
,	ND	20.0				110	purea. 11/2	25/20 / ma	<i>yzea.</i> 11/25/20
Gasoline Range Organics (C6-C10) Surrogate: 1-Chloro-4-fluorobenzene-FID	6.71	20.0	8.00		83.9	70-130			
LCS (2048001-BS2)	0.71		0.00		00.0		epared: 11/2	23/20 Anal	lyzed: 11/23/20
Gasoline Range Organics (C6-C10)	46.3	20.0	50.0		92.5	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	6.44		8.00		80.5	70-130			
Matrix Spike (2048001-MS2)				Sour	ce: E011	065-01 Pre	epared: 11/2	23/20 Anal	lyzed: 11/23/20
Gasoline Range Organics (C6-C10)	48.4	20.0	50.0	ND	96.7	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	6.34		8.00		79.2	70-130			
Matrix Spike Dup (2048001-MSD2)				Sour	ce: E011	065-01 Pre	epared: 11/2	23/20 Anal	lyzed: 11/23/20
Gasoline Range Organics (C6-C10)	46.2	20.0	50.0	ND	92.3	70-130	4.68	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	6.26		8.00		78.2	70-130			

QC Summary Data

		QC BI		lary Data					
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220		Project Name: Project Number: Project Manager:		Seawolf 01058-0007 Ashley Maxwell				11/	Reported: /25/2020 8:29:51AM
	Nonh	alogenated Orga	anics b	y EPA 8015D	- DRO	/ORO			Analyst: AC
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2048004-BLK1)						Pre	pared: 11/2	23/20 Analy:	zed: 11/23/20
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C35)	ND ND	25.0 50.0							
Surrogate: n-Nonane	48.8		50.0		97.6	50-200			
LCS (2048004-BS1)						Pre	pared: 11/2	23/20 Analyz	zed: 11/23/20
Diesel Range Organics (C10-C28)	434	25.0	500		86.8	38-132			
Surrogate: n-Nonane	48.2		50.0		96.4	50-200			
Matrix Spike (2048004-MS1)				Sourc	e: E011	065-01 Pre	pared: 11/2	23/20 Analyz	zed: 11/23/20
Diesel Range Organics (C10-C28)	18000	500	500	15800	451	38-132			M2
Surrogate: n-Nonane	56.8		50.0		114	50-200			
Matrix Spike Dup (2048004-MSD1)				Sourc	e: E011	065-01 Pre	pared: 11/2	23/20 Analy	zed: 11/23/20
Diesel Range Organics (C10-C28)	14400	500	500	15800	NR	38-132	22.3	20	M2, R3
Surrogate: n-Nonane	55.4		50.0		111	50-200			

QC Summary Data

		•		•					
Souder Miller Associates - Carlsbad		Project Name:	S	eawolf					Reported:
201 S Halagueno St.		Project Number:	0	1058-0007					
Carlsbad NM, 88220		Project Manager	: A	shley Maxwell	l			1	1/25/2020 8:29:51AM
		Anions	by EPA	300.0/9056A	1				Analyst: NE
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2048002-BLK1)						Pre	pared: 11/2	23/20 Anal	yzed: 11/23/20
Chloride	ND	20.0							
LCS (2048002-BS1)						Pre	pared: 11/2	23/20 Anal	yzed: 11/23/20
Chloride	254	20.0	250		102	90-110			
Matrix Spike (2048002-MS1)				Sour	rce: E0110	065-01 Pre	pared: 11/2	23/20 Anal	yzed: 11/23/20
Chloride	53100	400	250	55500	NR	80-120			M4
Matrix Spike Dup (2048002-MSD1)				Sour	rce: E0110	065-01 Pre	pared: 11/2	23/20 Anal	yzed: 11/23/20
Chloride	56000	400	250	55500	173	80-120	5.31	20	M4

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Souder Miller Associates - Carlsbad	Project Name:	Seawolf	
201 S Halagueno St.	Project Number:	01058-0007	Reported:
Carlsbad NM, 88220	Project Manager:	Ashley Maxwell	11/25/20 08:29

- M2 Matrix spike recovery was outside quality control limits. The associated LCS spike recovery was acceptable.
- M4 Matrix spike recovery value is suspect since the analyte concentration in the sample is disproportionate to the spike level. The associated LCS spike recovery was acceptable.
- R3 The RPD exceeded the acceptance limit. LCS spike recovery met acceptance criteria.
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Proje	ect In	form	ation
1101		norm	acion

Client: 🕻	SMP	+		two	n				Bill To				L	ab U	se On	(10-11)		Т	AT		EF	A Progra	m
Project:	Sea	wol	Y AL		h m = f				ention: Devon		Lab	WO#	10	C	Job I	Num	ber		3D	RCR	RA	CWA	SDWA
Project N	2m	ger:	PABIN	ey iv	VO/DAI	ANEM			Iress: , State, Zip		K	0	ICA	0			50007		1				
Address: City, Stat	o Zin	3	- Plai	alg ver	JmA			-	ne:			1	1	1	Anaiy	sis a	nd Metho		1			Sta NM CO	
Phone:	.e, 21µ	Ca	r La Ig	ac, f	VIV	0.9%		Ema			LD LD	10											
Email:		Acl	les }	Sebe	chia	1.		Eme	d11:		801	8015				0						X TX OK	
Report d			- 1		-3.0	<u> </u>					DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	260	010	Chloride 300.0		MN	1X				
Time	Dat	1		No						Lab	/ORI	/DR((pv	VOC by 8260	Metals 6010	ride		- 'S			Se	8	
Sampled	Samp	oled	Matrix	Contai	iners S	ample ID				Number	DRO	GRO	BTE	VOC	Meti	Chlo		BGDOC - NM	BGDOC -			Rem	arks
11:00	11	3	Sorl	1-4	52	5	L	-5	urface	1								X					
11:05	1		1	1			U	10	21	2								1					
•									and the second se	the second s					1			++	-				
(1:10				+				1-3		3				_				\square			*		
11:15			1				L2	2-5	ivrface	4													
11:20							L2	2-2	21 . *	5											-		
11:2/5							LZ	- 3	51	6													
11:30							L3-	-Su	rface	F													
11:35							L3.	-2'	1	8													
11:40							L3			9													
11:45	1	-	1	7	1		H	~ s	nrface	10								1					
Addition	al Ins	truct	tions:		1	e t																	
									ing with or intentionally mislabelling the sar	nple location, date or												day they are sam subsequent days	pled or
time of collect				A	Date	or legal action	Time	by:	Received by: (Senature)	Date /		Time						1	ahU	se Onl	v		
leles	37	ear	1 1	9.	11/1	8120	2:3	3	Jun 29	11/18/2	020		143	23	Rece	eiveo	l on ice:				,		
Relinquish	ed by:	(Signa	ture)		Date/	1	Time		Received by: (Signature)	Date		Time			1					50			
X	m	\mathcal{L}	27	T	11/18	12020	164	10	alevalo	5 11/19	20	IC):C	Q	<u>T1</u>			<u>T2</u>				Т3	
alinguish	ed by:	(Signa	ture)		Date		Time		Received by: (Signature)	Date		Time			AVG	Ton	np °C				_		
ample Mat	rix: S - 9	Soil, Sd	- Solid, Sg	g - Sludge,	A - Aqu	eous, 0 - 0	ther		I	Containe	r Type	e: g - j	glass,	p - p		2	ag - ambi	er gla	SS, V	- VOA			
Note: Samp	les are d	discard	ed 30 day	s after res	ults are	reported u	nless othe		ements are made. Hazardous samples laboratory is limited to the amount pa	will be returned to c											e abo	ve samples is	applicab
The to those							50°	cy or the	accoratory is inniced to the amount pa	is for on the report.											10.0	A CONTRACTOR OF THE	
-	3	e	าง	irc	>t	e c	h	5795 USI	Highway 64, Farmington, NV 37401				F	'n (505)	532-188	1 Fx	(505) 632-186	5			envin	otech-inc.com	n
< -	-	-onal 15	Ana	lytica	lla	borate	ory	24 Hour	Emercency Response Phone (800) 362-131	79										labadmin	Den	virotech-inc.	om

Proiect	Information
inoject	monucion

Released to Imaging: 7/1/2021 9:03:57 AM

(

Client:	SMA		Devul	n	State		Bill To	=1			11. 1628	332280 - S C (2 A	se On	ly		IU	AT	E	PA Progra	ım
Project:	Seaw	olt				Attention:	Devon		Lab		10.	-	Job N	lumb	ber	1D	3D	RCRA	CWA	SDWA
<u>roject N</u>	lanager:	Ashley	ma	xwen		Address:	~	C	X		IC				,0007	-	I			
Tity Stat	201	S. Hal	aguer	1 88220		<u>City, State, Zij</u> Phone:)			1		_	Analy	sis an	nd Metho		1			ate
hone:		at 150ac	, y V //	68800	100 m 10	Email:			5	5									X	
mail:					I	-Indii.			DRO/ORO by 8015	GRO/DRO by 8015				0					TX OK	
Report d	ie pv:								Vd C	yd C	BTEX by 8021	260	010	Chloride 300.0		MN	¥			
Time	Date	1	No		N. C. S. L			Lab	/OR(/DR((ph	VOC by 8260	Metals 6010	ride		- '00	C-1			
Sampled	Sampled	Matrix	Containers	Sample ID				Number	DRO	GRO	BTE	VOC	Met	Chlo		BGDOC - NM	BGDOC -		Ren	narks
1:50	11/13	Soil	1-402		LY	-21		11								X	8			
	1	1	1			21		10								1				
11:35	1	L	L		24	- 5 '		12								-	+			
								10.00												
								(B) (414)								-				
								- (22.04)	-	1				-		-				
								1. 1999												
																-				
																+				
								100												
ddition	al Instru	ctions:							1		I		1 1	I			1	I		
(field sample	er), attest to t	he validity and a	authenticity of t	his sample. I am aw	are that tai	mpering with or inte	ntionally mislabelling the sample	location, date or											ie day they are sai n subsequent day:	
	the state of the s		1	for legal action. San				150	_	T_	81		leceived	packed	in ite at an avg				r subsequent day:	
/ /	by: (Sig		Date	Tim	e • • • • • • • •	Received b	v Signature)	Date 11/18/2	020	Time	43.	2						se Only		
	by: (Sigr		Date	18/20 2 Tim		Roceiver	y: (Signature)	Date	940	Time	73.	د	Rece	eived	on ice:	C	N N			
lennquisine	UV. (SIBI	7 AS		18/2020 Tim	164	NOP I	I LONDA	11/19/	a	1C):(Q	T1			т2			Т3	
etinquishe	ed by: (Sigr	nature)	Date	Tim	e		y: (Signature)	Date		Time			1.		Con the second		(1999) (1999)			Sere All
\mathcal{V}								i i i					AVG	Tem	ip °C	4				
ample Mat	ix: S - Soil, S	d - Solid, Sg -	Sludge, A - A	queous, O - Other				Containe	г Туре	e: g - i	glass,	p - p				er gla	ss, v -	VOA		
						-	ade. Hazardous samples will		lient or	r dispos	sed of a	at the o	client ex	pense	. The repor	t for th	ne analy	sis of the ab	ove samples i	s applicable
nly to those	e samples re	ceived by the	laboratory w	ith this COC. The	liability of	the laboratory is	limited to the amount paid fo	or on the report.									-			
	30	nvi	rot	ech	5705	US Hiskory 64 E-	mington, NM 87401					w /5050	637 400	11 Ew 1	505) 632-18(env	rotech-inc.co	m
	20	Analy	vtical L	ech	24 H		ponse Phone (800) 352-1879	_			r	1 (000)	302-100		0007032-180		-	abadmin@e	nvirolech-inc	com

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Souder Miller Associates - Carlsbad	Date Received:	11/19/20 10	:00		Work Order ID:	E011065
Phone:	(505) 325-7535	Date Logged In:	11/19/20 13	:12		Logged In By:	Alexa Michaels
Email:	ashley.maxwell@soudermiller.com	Due Date:	11/25/20 17	:00 (4 day TAT)			
Chain of	f Custody (COC)						
1. Does t	the sample ID match the COC?		Yes				
2. Does t	the number of samples per sampling site location matc	h the COC	Yes				
3. Were s	samples dropped off by client or carrier?		Yes	Carrier: F	ed Ex		
4. Was th	ne COC complete, i.e., signatures, dates/times, request	ed analyses?	Yes	_			
5. Were a	all samples received within holding time? Note: Analysis, such as pH which should be conducted in i.e, 15 minute hold time, are not included in this disucssion		Yes			Commen	ts/Resolution
Sample '	Turn Around Time (TAT)]			
	e COC indicate standard TAT, or Expedited TAT?		Yes		Email -	Ashley and Set	pastian
Sample	<u>Cooler</u>						
7. Was a	sample cooler received?		Yes				
8. If yes,	was cooler received in good condition?		Yes				
9. Was th	he sample(s) received intact, i.e., not broken?		Yes				
10. Were	e custody/security seals present?		No				
11. If yes	s, were custody/security seals intact?		NA				
	he sample received on ice? If yes, the recorded temp is 4°C, i Note: Thermal preservation is not required, if samples are minutes of sampling visible ice, record the temperature. Actual sample t	received w/i 15	Yes				
		emperature. <u>4</u>	<u>c</u>				
	Container aqueous VOC samples present?		No				
	VOC samples collected in VOA Vials?		NA				
	e head space less than 6-8 mm (pea sized or less)?		NA				
	a trip blank (TB) included for VOC analyses?		NA				
	non-VOC samples collected in the correct containers?		Yes				
	appropriate volume/weight or number of sample contained	ers collected?	Yes				
Field La							
	e field sample labels filled out with the minimum infor	mation:					
	Sample ID?		Yes				
	Date/Time Collected?		Yes	L			
	Collectors name?		No				
	<u>Preservation</u> s the COC or field labels indicate the samples were pre	served?	No				
	sample(s) correctly preserved?	.501 vou:	NA				
	o filteration required and/or requested for dissolved me	etals?	No				
	ase Sample Matrix		1.0				
	s the sample have more than one phase, i.e., multiphase	<u>-</u> ?	No				
	s, does the COC specify which phase(s) is to be analyz		No NA				
			1 1/ 1				
	ract Laboratory samples required to get sent to a subcontract laboratory		N-				
	a subcontract laboratory specified by the client and if a		No NA S	Subcontract Lab	NIA.		
'JU 11/00			INA N	MUNCORPORT L 9h	IN A		

Email - Ashley and Sebastian

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Souder Miller Associates - Carlsbad

Work Order: E102058

Job Number: 01058-0007

Received: 2/26/2021

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 3/2/21

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM009792018-1 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557-19-2 for data reported. Date Reported: 3/2/21

Ashley Maxwell 201 S Halagueno St. Carlsbad, NM 88220

Page 54 of 144

Project Name: Seawolf 1-12 Fed 81 H Workorder: E102058 Date Received: 2/26/2021 12:15:00PM

Ashley Maxwell,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 2/26/2021 12:15:00PM, under the Project Name: Seawolf 1-12 Fed 81 H.

The analytical test results summarized in this report with the Project Name: Seawolf 1-12 Fed 81 H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	7
CS1	7
CS2	8
CS3	9
CS4	10
CS5	11
CS6	12
CS7	13
CS8	14
CS9	15
CS10	16
CSW1	17
CSW2	18
CSW3	19
CSW4	20
CSW5	21
CSW6	22
CSW7	23
CSW8	24
CSW9	25
CSW10	26

•

Table of Contents (continued)

	CSW11	27
	CSW12	28
	CSW13	29
	CSW14	30
Q	C Summary Data	31
	QC - Volatile Organics by EPA 8021B	31
	QC - Nonhalogenated Organics by EPA 8015D - GRO	33
	QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	35
	QC - Anions by EPA 300.0/9056A	37
D	efinitions and Notes	39
С	hain of Custody etc.	40

Sample Summary

		Sample Sum	mar y		
Souder Miller Associates - Carlsbad		Project Name:	Seawolf 1-12 Fed 8	1 H	Reported:
201 S Halagueno St.		Project Number:	01058-0007		
Carlsbad NM, 88220		Project Manager:	Ashley Maxwell		03/02/21 12:30
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
CS1	E102058-01A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS2	E102058-02A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS3	E102058-03A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS4	E102058-04A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS5	E102058-05A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS6	E102058-06A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS7	E102058-07A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS8	E102058-08A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS9	E102058-09A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS10	E102058-10A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW1	E102058-11A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW2	E102058-12A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW3	E102058-13A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW4	E102058-14A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW5	E102058-15A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW6	E102058-16A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW7	E102058-17A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW8	E102058-18A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW9	E102058-19A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW10	E102058-20A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW11	E102058-21A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW12	E102058-22A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW13	E102058-23A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW14	E102058-24A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.

Case Narative:

Inclement weather impacted FedEx from one-day delivery service. Samples were held in cold storage by FedEx due to imclement weather. Sample hold time and temperature were impacted by Fedex delayed shipment. Sample analysis was performed per client request. See COC & SRC for sample hold time and recieved temperature.

		impic D	ata			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manage	r: 010:	wolf 1-12 Fed 81 I 58-0007 ley Maxwell	ł		Reported: 3/2/2021 12:30:43PM
		CS1				
]	E102058-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		97.5 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.5 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	:: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		98.8 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ample D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbo Project Manag	er: 0103	volf 1-12 Fed 8 58-0007 ley Maxwell	I H		Reported: 3/2/2021 12:30:43PM
Calisbau Nivi, 86220	Tiojeet Mailag					5/2/2021 12.50.451 W
		CS2				
		E102058-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
p,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.7 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		105 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manag	er: 010:	wolf 1-12 Fed 81 I 58-0007 ley Maxwell	ł		Reported: 3/2/2021 12:30:43PM
		CS3				
		E102058-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS		Batch: 2109037	
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/26/21	
urrogate: 4-Bromochlorobenzene-PID		95.7 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		97.5 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	:: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Gurrogate: n-Nonane		103 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	50	mpic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manage	r: 010:	wolf 1-12 Fed 81 1 58-0007 ley Maxwell	H		Reported: 3/2/2021 12:30:43PM
		CS4				
]	E102058-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS		Batch: 2109037	
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		95.5 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		99.1 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		101 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampic D	ata			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manag	er: 0103	wolf 1-12 Fed 81 58-0007 ley Maxwell	Н		Reported: 3/2/2021 12:30:43PM
		CS5				
		E102058-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		94.4 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.8 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		84.8 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	50	mpic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manag	er: 0103	wolf 1-12 Fed 81 58-0007 ley Maxwell	Н		Reported: 3/2/2021 12:30:43PM
		CS6				
]	E102058-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
p,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		97.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		84.3 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampie D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St.	Project Name Project Numb		wolf 1-12 Fed 81 58-0007		Reported: 3/2/2021 12:30:43PM	
Carlsbad NM, 88220	Project Manag		ley Maxwell			
		CS7				
		E102058-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		93.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.8 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		89.2 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

		impic D	aca			
Souder Miller Associates - Carlsbad	Project Name:		wolf 1-12 Fed	81 H		
201 S Halagueno St.	Project Numbe		58-0007			Reported:
Carlsbad NM, 88220	Project Manag	er: Ash	ley Maxwell			3/2/2021 12:30:43PM
		CS8				
	-	E102058-08				
		Reporting				
Analyte	Result	Limit	Dilutio	on Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ar	nalyst: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		92.5 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ar	nalyst: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: JL			Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		93.0 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ar	nalyst: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

		impic D				
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manag	er: 0103	volf 1-12 Fed 8 58-0007 ley Maxwell	1 H		Reported: 3/2/2021 12:30:43PM
		CS9				
		E102058-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	Analyst: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
o-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		96.8 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	lyst: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.5 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	lyst: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		96.7 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	lyst: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	0	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St.	Project Name Project Numb		wolf 1-12 Fed 81 58-0007		Reported: 3/2/2021 12:30:43PM	
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell			
		CS10				
		E102058-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
` oluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		94.0 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.7 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		94.7 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ample D	ala			
Souder Miller Associates - Carlsbad	Project Name	: Seav	wolf 1-12 Fed 81	Н		
201 S Halagueno St.	Project Numb	oer: 010	58-0007	Reported:		
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell			3/2/2021 12:30:43PM
		CSW1				
		E102058-11				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		93.2 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	ıt: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		93.3 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	3	ample D	ata			
Souder Miller Associates - Carlsbad	Project Name	: Seav	volf 1-12 Fed 81 1	Н		
201 S Halagueno St.	Project Numb	er: 0103	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Ash	ey Maxwell			3/2/2021 12:30:43PM
		CSW2				
		E102058-12				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
o-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		92.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		90.5 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	3	ample D	ลเล			
Souder Miller Associates - Carlsbad	Project Name		wolf 1-12 Fed 81 I	ł		
201 S Halagueno St.	Project Numb		58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell			3/2/2021 12:30:43PM
		CSW3				
		E102058-13				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		92.5 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.4 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		93.7 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

Sample Data						
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numl Project Mana	ber: 010:	wolf 1-12 Fed 81 1 58-0007 ley Maxwell	H		Reported: 3/2/2021 12:30:43PM
		CSW4				
		E102058-14				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	kg Analyst: RKS			Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		92.9 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.2 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	mg/kg Analyst: JL			Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		91.9 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	g Analyst: RAS		Batch: 2109038	
Chloride	ND	20.0	1	02/26/21	03/01/21	

	3	ample D	ลเล			
Souder Miller Associates - Carlsbad	Project Name	: Seav	wolf 1-12 Fed 81	Н		
201 S Halagueno St.	Project Numb	er: 0105	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell		3/2/2021 12:30:43PM	
		CSW5				
		E102058-15				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		93.3 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	ıt: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		92.8 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ample D	utu			
Souder Miller Associates - Carlsbad	Project Name:	: Seav	volf 1-12 Fed 81 1	ł		
201 S Halagueno St.	Project Numb	er: 0103	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell		3/2/2021 12:30:43PM	
		CSW6				
		E102058-16				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
o-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		93.0 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.7 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: JL			Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		97.7 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ample D	ลเล			
Souder Miller Associates - Carlsbad	Project Name:	: Seav	wolf 1-12 Fed 81	Н		
201 S Halagueno St.	Project Numb	er: 010	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell		3/2/2021 12:30:43PM	
		CSW7				
		E102058-17				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		94.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.4 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	ıt: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		63.3 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

		ample D	uta			
Souder Miller Associates - Carlsbad	Project Name:	Seav	volf 1-12 Fed 81	Н		
201 S Halagueno St.	Project Number	er: 0103	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell		3/2/2021 12:30:43PM	
		CSW8				
		E102058-18				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		98.3 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.7 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		74.4 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

		ample D	utu			
Souder Miller Associates - Carlsbad	Project Name:	Seav	volf 1-12 Fed 81 1	ł		
201 S Halagueno St.	Project Numb	er: 0103	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell		3/2/2021 12:30:43PM	
		CSW9				
		E102058-19				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
o-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		94.2 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g Analyst: JL			Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		81.7 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ample D	ลเล			
Souder Miller Associates - Carlsbad	Project Name	e: Seav	wolf 1-12 Fed 81	Н		
201 S Halagueno St.	Project Numb	oer: 010	58-0007			Reported:
Carlsbad NM, 88220	Project Mana	ger: Ash	ley Maxwell	3/2/2021 12:30:43PM		
		CSW10				
		E102058-20				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	/st: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		95.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	/st: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	vst: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		85.6 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	/st: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	R.	sample D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Nam Project Num Project Mana	ber: 010:	wolf 1-12 Fed 81 58-0007 ley Maxwell	Н		Reported: 3/2/2021 12:30:43PM
		CSW11				
		E102058-21				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: RKS		
Benzene	ND	0.0250	1	02/26/21	02/26/21	
` oluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		99.3 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2109034
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		99.2 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2109033
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Gurrogate: n-Nonane		82.1 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2109039
Chloride	ND	20.0	1	02/26/21	03/01/21	

	0	ample D	ala			
Souder Miller Associates - Carlsbad	Project Name	: Seav	wolf 1-12 Fed 81	Н		
201 S Halagueno St.	Project Numb	oer: 010	58-0007			Reported:
Carlsbad NM, 88220	Project Mana	ger: Ash	ley Maxwell		3/2/2021 12:30:43PM	
		CSW12				
		E102058-22				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	/st: RKS		Batch: 2109034
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		99.6 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	/st: RKS		Batch: 2109034
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		99.2 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	/st: JL		Batch: 2109033
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		85.4 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	/st: RAS		Batch: 2109039
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ample D	ala			
Souder Miller Associates - Carlsbad	Project Name	: Seav	wolf 1-12 Fed 81	Н		
201 S Halagueno St.	Project Numb	er: 0103	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell			3/2/2021 12:30:43PM
		CSW13				
		E102058-23				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS			Batch: 2109034
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Foluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		99.6 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	vst: RKS		Batch: 2109034
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		98.5 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	vst: JL		Batch: 2109033
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		84.4 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	vst: RAS		Batch: 2109039
Chloride	ND	20.0	1	02/26/21	03/01/21	

	D	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numb Project Manag	er: 010:	wolf 1-12 Fed 81 58-0007 ley Maxwell	Reported: 3/2/2021 12:30:43PM		
		CSW14				
		E102058-24				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: RKS		
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Foluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109034
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		98.8 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g/kg Analyst: JL			Batch: 2109033
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		88.4 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109039
Chloride	ND	20.0	1	02/26/21	03/01/21	

QC Summary Data

Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220		Project Name: Project Number: Project Manager:	01	eawolf 1-12 F 1058-0007 shley Maxwel					Reported: 3/2/2021 12:30:43PM
		Volatile Or	rganics k	oy EPA 802	21B				Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2109034-BLK1)						Pre	pared: 02/2	26/21 An	alyzed: 02/26/21
Benzene	ND	0.0250							
Toluene	ND	0.0250							
Ethylbenzene	ND	0.0250							
,m-Xylene	ND	0.0500							
-Xylene	ND	0.0250							
Total Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.75		8.00		96.9	70-130			
LCS (2109034-BS1)						Pre	pared: 02/2	26/21 An	alyzed: 02/26/21
Benzene	4.70	0.0250	5.00		94.1	70-130			
Toluene	4.98	0.0250	5.00		99.6	70-130			
Ethylbenzene	4.89	0.0250	5.00		97.7	70-130			
,m-Xylene	9.87	0.0500	10.0		98.7	70-130			
-Xylene	5.00	0.0250	5.00		99.9	70-130			
Total Xylenes	14.9	0.0250	15.0		99.1	70-130			
urrogate: 4-Bromochlorobenzene-PID	7.88		8.00		98.5	70-130			
Matrix Spike (2109034-MS1)				Sou	rce: E102	085-01 Pre	pared: 02/2	26/21 An	alyzed: 02/26/21
Benzene	4.64	0.0250	5.00	ND	92.8	54-133			
Toluene	4.93	0.0250	5.00	ND	98.5	61-130			
thylbenzene	4.83	0.0250	5.00	ND	96.7	61-133			
,m-Xylene	9.75	0.0500	10.0	ND	97.5	63-131			
-Xylene	4.94	0.0250	5.00	ND	98.8	63-131			
Total Xylenes	14.7	0.0250	15.0	ND	98.0	63-131			
Gurrogate: 4-Bromochlorobenzene-PID	7.99		8.00		99.9	70-130			
Matrix Spike Dup (2109034-MSD1)				Sou	rce: E102	085-01 Pre	pared: 02/2	26/21 An	alyzed: 02/26/21
Benzene	4.65	0.0250	5.00	ND	93.0	54-133	0.156	20	
Toluene	4.90	0.0250	5.00	ND	98.0	61-130	0.603	20	
Ethylbenzene	4.82	0.0250	5.00	ND	96.4	61-133	0.239	20	
,m-Xylene	9.73	0.0500	10.0	ND	97.3	63-131	0.194	20	
-Xylene	4.95	0.0250	5.00	ND	98.9	63-131	0.104	20	
Total Xylenes	14.7	0.0250	15.0	ND	97.9	63-131	0.0940	20	

QC Summary Data

Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220		Project Name: Project Number: Project Manager:	01	eawolf 1-12 F 1058-0007 shley Maxwel					Reported: 3/2/2021 12:30:43PM
		Volatile O	rganics l	by EPA 802	21B				Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2109037-BLK1)						Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Benzene	ND	0.0250							
Toluene	ND	0.0250							
Ethylbenzene	ND	0.0250							
,m-Xylene	ND	0.0500							
-Xylene	ND	0.0250							
Total Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.78		8.00		97.3	70-130			
LCS (2109037-BS1)	Prepared: 02/26/21 Ana								alyzed: 02/26/21
Benzene	4.57	0.0250	5.00		91.4	70-130			
Toluene	4.86	0.0250	5.00		97.3	70-130			
Ethylbenzene	4.74	0.0250	5.00		94.9	70-130			
,m-Xylene	9.68	0.0500	10.0		96.8	70-130			
-Xylene	4.94	0.0250	5.00		98.7	70-130			
Total Xylenes	14.6	0.0250	15.0		97.4	70-130			
Gurrogate: 4-Bromochlorobenzene-PID	7.77		8.00		97.1	70-130			
Matrix Spike (2109037-MS1)				Sou	rce: E102	058-01 Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Benzene	4.50	0.0250	5.00	ND	90.0	54-133			
Toluene	4.82	0.0250	5.00	ND	96.4	61-130			
Ethylbenzene	4.71	0.0250	5.00	ND	94.2	61-133			
,m-Xylene	9.60	0.0500	10.0	ND	96.0	63-131			
-Xylene	4.90	0.0250	5.00	ND	98.0	63-131			
Total Xylenes	14.5	0.0250	15.0	ND	96.7	63-131			
urrogate: 4-Bromochlorobenzene-PID	7.81		8.00		97.7	70-130			
Matrix Spike Dup (2109037-MSD1)				Sou	rce: E102	058-01 Pre	pared: 02/2	26/21 An	alyzed: 02/26/21
Benzene	4.43	0.0250	5.00	ND	88.6	54-133	1.60	20	
Toluene	4.72	0.0250	5.00	ND	94.4	61-130	2.10	20	
Ethylbenzene	4.61	0.0250	5.00	ND	92.2	61-133	2.10	20	
,m-Xylene	9.40	0.0500	10.0	ND	94.0	63-131	2.07	20	
-Xylene	4.80	0.0250	5.00	ND	96.0	63-131	2.08	20	
Total Xylenes	14.2	0.0250	15.0	ND	94.7	63-131	2.08	20	

QC Summary Data

		QC D	umm	ary Data	а				
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220		Project Name: Project Number: Project Manager	0	eawolf 1-12 Fo 1058-0007 Ashley Maxwel					Reported: 3/2/2021 12:30:43PM
	No	nhalogenated (Organics	by EPA 80	15D - G	RO			Analyst: RKS
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
	mg/kg	шукд	ing kg	ing/kg	70	70	70	70	Notes
Blank (2109034-BLK1)						Pre	pared: 02/2	26/21 Analy	yzed: 02/26/21
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.88		8.00		98.5	70-130			
LCS (2109034-BS2)						Pre	pared: 02/2	26/21 Anal	yzed: 02/26/21
Gasoline Range Organics (C6-C10)	51.2	20.0	50.0		102	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.97		8.00		99.6	70-130			
Matrix Spike (2109034-MS2)				Sou	rce: E102	085-01 Pre	pared: 02/2	26/21 Analy	yzed: 02/26/21
Gasoline Range Organics (C6-C10)	51.1	20.0	50.0	ND	102	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.03		8.00		100	70-130			
Matrix Spike Dup (2109034-MSD2)				Sou	rce: E102	085-01 Pre	pared: 02/2	26/21 Analy	yzed: 02/26/21
Gasoline Range Organics (C6-C10)	50.3	20.0	50.0	ND	101	70-130	1.68	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.14		8.00		102	70-130			

QC Summary Data

		QC D	u	ary Data	ц				
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220		Project Name: Project Number: Project Manager:	0	eawolf 1-12 Fe 1058-0007 Ashley Maxwel					Reported: 3/2/2021 12:30:43PM
	No	nhalogenated (Organics	by EPA 80	15D - G	RO			Analyst: RKS
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2109037-BLK1)						Pre	pared: 02/2	26/21 Anal	yzed: 02/26/21
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.61		8.00		95.1	70-130			
LCS (2109037-BS2)						Pre	pared: 02/2	26/21 Anal	yzed: 02/26/21
Gasoline Range Organics (C6-C10)	46.4	20.0	50.0		92.9	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.41		8.00		92.6	70-130			
Matrix Spike (2109037-MS2)				Sou	rce: E102(0 58-01 Pre	pared: 02/2	26/21 Anal	yzed: 02/26/21
Gasoline Range Organics (C6-C10)	46.1	20.0	50.0	ND	92.1	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.86		8.00		98.3	70-130			
Matrix Spike Dup (2109037-MSD2)				Sou	rce: E102	0 58-01 Pre	pared: 02/2	26/21 Anal	yzed: 02/26/21
Gasoline Range Organics (C6-C10)	45.7	20.0	50.0	ND	91.5	70-130	0.748	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.90		8.00		98.7	70-130			

QC Summary Data

		QU DI	umm	ialy Data					
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220		Project Name: Project Number: Project Manager:		Seawolf 1-12 Fee 01058-0007 Ashley Maxwell	181 H				Reported: 3/2/2021 12:30:43PM
	Nonh	alogenated Org	anics b	y EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2109033-BLK1)						Pre	pared: 02/2	26/21 Ana	lyzed: 02/26/21
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C35)	ND	50.0							
Surrogate: n-Nonane	51.0		50.0		102	50-200			
LCS (2109033-BS1)						Pre	pared: 02/2	26/21 Ana	lyzed: 02/26/21
Diesel Range Organics (C10-C28)	520	25.0	500		104	38-132			
Surrogate: n-Nonane	50.8		50.0		102	50-200			
Matrix Spike (2109033-MS1)				Sour	ce: E102	085-01 Pre	pared: 02/2	26/21 Ana	lyzed: 02/26/21
Diesel Range Organics (C10-C28)	481	25.0	500	ND	96.3	38-132			
Surrogate: n-Nonane	49.2		50.0		98.4	50-200			
Matrix Spike Dup (2109033-MSD1)				Sour	ce: E102	085-01 Pre	pared: 02/2	26/21 Ana	lyzed: 02/26/21
Diesel Range Organics (C10-C28)	489	25.0	500	ND	97.8	38-132	1.58	20	
Surrogate: n-Nonane	51.3		50.0		103	50-200			

QC Summary Data

		QC D	u I I I I I	ial y Data					
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220		Project Name: Project Number: Project Manager:		Seawolf 1-12 Fed 01058-0007 Ashley Maxwell	I 81 H				Reported: 3/2/2021 12:30:43PM
	Nonh	alogenated Org	anics b	y EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2109036-BLK1)						Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C35)	ND ND	25.0 50.0							
Surrogate: n-Nonane	53.4		50.0		107	50-200			
LCS (2109036-BS1)						Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Diesel Range Organics (C10-C28)	547	25.0	500		109	38-132			
Surrogate: n-Nonane	53.8		50.0		108	50-200			
Matrix Spike (2109036-MS1)				Sourc	e: E102	058-11 Pre	pared: 02/2	26/21 Ana	lyzed: 02/26/21
Diesel Range Organics (C10-C28)	540	25.0	500	ND	108	38-132			
Surrogate: n-Nonane	51.5		50.0		103	50-200			
Matrix Spike Dup (2109036-MSD1)				Sourc	e: E102	058-11 Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Diesel Range Organics (C10-C28)	538	25.0	500	ND	108	38-132	0.382	20	
Surrogate: n-Nonane	51.2		50.0		102	50-200			

QC Summary Data

			•	<i>J</i> –					
Souder Miller Associates - Carlsbad		Project Name:	:	Seawolf 1-12 Fe	ed 81 H				Reported:
201 S Halagueno St.		Project Number:		01058-0007					
Carlsbad NM, 88220		Project Manager:		Ashley Maxwel	1				3/2/2021 12:30:43PM
		Anions	by EPA	300.0/9056A	4				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2109038-BLK1)						Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	ND	20.0							
LCS (2109038-BS1)						Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	246	20.0	250		98.3	90-110			
Matrix Spike (2109038-MS1)				Sou	rce: E102	058-01 Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	248	20.0	250	ND	99.2	80-120			
Matrix Spike Dup (2109038-MSD1)				Sou	rce: E102	058-01 Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	246	20.0	250	ND	98.3	80-120	0.916	20	

QC Summary Data

			-	<i>.</i>					
Souder Miller Associates - Carlsbad		Project Name:	5	Seawolf 1-12 F	ed 81 H				Reported:
201 S Halagueno St.		Project Number:	(01058-0007					-
Carlsbad NM, 88220		Project Manager	: .	Ashley Maxwel	11				3/2/2021 12:30:43PM
		Anions	by EPA	300.0/90564	4				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2109039-BLK1)						Pre	epared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	ND	20.0							
LCS (2109039-BS1)						Pre	epared: 02/	26/21 Ana	lyzed: 03/01/21
Chloride	247	20.0	250		98.6	90-110			
Matrix Spike (2109039-MS1)				Sou	rce: E102	058-21 Pre	epared: 02/	26/21 Ana	lyzed: 03/01/21
Chloride	247	20.0	250	ND	98.8	80-120			
Matrix Spike Dup (2109039-MSD1)				Sou	rce: E102	058-21 Pre	epared: 02/	26/21 Ana	alyzed: 03/01/21
Chloride	249	20.0	250	ND	99.4	80-120	0.658	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

Souder Miller Associates - Carlsbad	Project Name:	Seawolf 1-12 Fed 81 H	
201 S Halagueno St.	Project Number:	01058-0007	Reported:
Carlsbad NM, 88220	Project Manager:	Ashley Maxwell	03/02/21 12:30

ND	Analyte NOT DETECTED at or above the reporting limit
	· · · · · · · · · · · · · · · · · · ·

- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Project Informatio	n					Chain of C	ustody											Pag	e o
Client: SMA					Bill To		1			1:	b H	Ol se Or	050	3-00		T AT	L E	PA Progr	
Project: Seguro	1F 1-1	2 Fed	BIH		ntion: Devor	1.61		Lab	WO#	ŧ		Job	Numb	er		3D	RCRA	CWA	SDWA
Project Manager:	Ashley	Max	well		ress:								06-						
Address: 20/ S City, State, Zip C	s. Hall	aguenc	00000	Contract of the	, State, Zip			PIN	12	au	121	Analy	/sis and	l Metho	d				tate
Phone:	arispa	a, NIM	,08220	Pho Ema			6	5	5									NM CC	UT AZ
Email:			1 10				-	8015	8015				0					TX OF	,
Report due by:			5					DRO/ORO by	GRO/DRO by	BTEX by 8021	8260	010	300.0		MN	×			
Time Date		No					Lab	/OR	/DR	γþλ	h 8	als 6	ride		- 00	C-1			
Sampled Sampled	Matrix	Containers	Sample ID				Number	DRO	GRO	BTE)	VOC by	Metals 6010	Chloride		BGDOC - NM	BGDOC		Re	marks
11:00 2/11/21	Soil	1-402	CSI				1								X				
11:05			CS2				2												
11:10			053				3												
11:15			cs4				4												
11:20			es5				5												
11:25			CS6				6												
11:30			CS7				7												
11:35			CS8				8					1							
11:40			CS9				9												
11:45 L	1	1	CSIO				10								1				
Additional Instruc	ctions:						ř.	•											
I, (field sampler), attest to th time of collection is conside					ng with or intentionally mislabelling	the sample locat	ion, date or	120	0									ne day they are si n subsequent da	
Relinquished by: (Sign	iature)	7 Date	Time	20	Received by: (Signature)	¢	Date 2.15.	-	Time	42	0	Bec	aived c	on ice:	L	ab Us	e Only		
Relinquished by: (Sign	nature)	/ Date	15-21 110		Received by: (Signature)	6	Date		lime							10 10 10 10 10 10 10 10 10 10 10 10 10 1		T2 \C	9
Relinquished by: (Sign	nature)	Date	Time	19	Received by: (Signature)	9	Date	DGI	Time									13	
	a calla ca	Cludes A As	0 Other (1	-			Cantainan	-		1				°C_IC					
	rded 30 days a	after results ar	e reported unless oth	er arrange	ments are made. Hazardous sa	imples will be re		i ype	disposi	glass, ed of a	p - po it the c	oly/pl client e	astic, a xpense.	g - ambe The repor	er gla: t for th	ss, v - e analy:	VOA sis of the ab	ove samples	is applicable
only to those samples re-	ceived by the	laboratory wi	th this COC. The liab	inty of the	laboratory is limited to the amo	ount paid for on	the report.									-			
Be	nvi	rot	ech	5795 US H	lighway 64, Famington, NM 37401	1 585 4070	1			Pr	1 (505)	532-18	E1 Fx (50	5) 632-186	5	-	envi	irotech-inc.ci	mc

amin@envirotech-inc.com

4

Project Information Chain of C	Custody											Page	e <u>~</u>
Client: SMA Bill To	1	1		1:	ah Ue	Ol se On		8-0		TAT		EPA Progr	am
Project: Seawolf 1-12 Fed 81H Project Manager: Ashley Marwell Address:		PE	W0#	205	58	Job	Num	-000-	1D	3D	RCR	A CWA	SDV
Address: City, State, Zip City, State, Zip Phone: Email: Email:		8015	8015	8021	-		/sis an 0.00	nd Meth				NM CO X TX OK	
Report due by: Time Date Sampled Matrix Sampled Sampled	Lab Number	DRO/ORO by	GRO/DRO by	BTEX by 80	VOC by 8260	Metals 6010	Chloride 30		BGDOC - NM	BGDOC - TX		Rer	marks
11:50 2/11/21 Soil 1402 CSW1	11								X			22	
11-35 CSW2	12					,							
12:00 CSW3	13			2									
12:05 CSW4	14												
12:10 CSW5	15												
12:15 CSW6	16												
12:20 CSW7	17												
12:25 CSW3	18												
12:30 CSW9	19												
12:35 CSW10	20												
Additional Instructions:	1									_			
I, (field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample loci time of collection is considered fraud and may be grounds for legal action. Sampled by:	ation <mark>, d</mark> ate or											ce the day they are sa °C on subsequent day	
Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Date 2/15/21 Date Time Received by: (Signature) Date 2/15/21 Calor	Date 2:15 Date	21	Time Time	43	0	1		on ice:		Y /(Jse Only		Q
Refroushed by: (Signature) Date Time Received by: (Signature)	Date		Time			AVG	Tem	p °C_1	0.0	9		_ <u>13 10</u>	<u>.</u>
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be	Containe returned to c											above samples	is applic

Analytical Laboratory 24 Hour Energency Response Phone (800) 352-1373

Pn (505) 632-1881 Fx (505) 632-1865

labadmin@envirolech-inc.com

3

Dente	mate Inc	1	
Proje	CT IF	itorn	natior

Released to

Imaging:

7/1/2021 9:03:57

AM

Bill To Client: SMA Lab Use Only TAT **EPA** Program AM 2/2(12 Project: Seawolf 1-12 Fed 81H Devon Attention: 1D 3D Lab WO# Job Number RCRA CWA SDWA 00580007 Project Manager: Ashley Maxwell Address: PEIOZO58 Address: City, State, Zip Amalysis and Method State City, State, Zip Phone: NM CO UT AZ Phone: Email: DRO/ORO by 8015 GRO/DRO by 8015 Email: TXIOK Chloride 300.0 BTEX by 8021 VOC by 8260 Metals 6010 BGDOC - NM Report due by: X GDOC -Lab Time Date No Sample ID Matrix Remarks Containers Sampled Sampled Number 21 -402 CSWII 12:40 2/11/21 501 CSW12 CSW13 22 12:45 23 12:50 CSW14 24 12:55 Additional Instructions: Samples requiring thermal preservation must be received on ice the day they are sampled or I, (field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample location, date or eceived packed in ice at an avg temp above 0 but less than 6 °C on subsequent days. time of collection is considered fraud and may be grounds for legal action. Sampled by: Time Relinquished by: (Signature) Received by: (Signature) Lab Use Only 15.2 1430 YND 2/15/21 2:30 Received on ice: Time Relinquished by: (Signature) Date (Signature 2.15.2 T1 10.2 T2 10.7 T3 10.8 440 Received by: (Signature) Date ime Refinquished by: (Signature) AVG Temp °C 10.0 Container Type: g - glass, p - poly/plastic, ag - amber glass, v - VOA Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at the client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for on the report. envirotech Analytical Laboratory envirotech-inc.com 5795 US Highway 64, Farmington, NM 87401 Pn (505) 532-1881 Fx (505) 632-1865 24 Hour Emergency Response Phone (800) 362-1879 labadmin@envirotech-inc.com

Page 3 of 3

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Souder Miller Associates - Carlsbad D	ate Received:	02/26/21	12:15	Work Order ID:	E102058
Phone:	(505) 325-7535 D	ate Logged In:	02/17/21	16:16	Logged In By:	Alexa Michaels
Email:		ue Date:	03/01/21	17:00 (1 day TAT)		
Chain o	<u>f Custody (COC)</u>					
	the sample ID match the COC?		Yes			
2. Does	the number of samples per sampling site location match	the COC	Yes			
3. Were	samples dropped off by client or carrier?		Yes	Carrier: <u>F</u>	ed Ex	
4. Was t	he COC complete, i.e., signatures, dates/times, requested	d analyses?	Yes			
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this disucssion.	e field,	No		Comment	ts/Resolution
Sample	<u>Turn Around Time (TAT)</u>				a 1 1.11	
6. Did th	ne COC indicate standard TAT, or Expedited TAT?		No		Samples were held in co	
<u>Sample</u>	<u>Cooler</u>				FedEx Express due to in	nclement weather.
7. Was a	sample cooler received?		Yes		Samples HD and Temp	were impacted by
8. If yes	, was cooler received in good condition?		Yes		FedEx Express delayed	
9. Was t	he sample(s) received intact, i.e., not broken?		Yes		requested sampless to b	•
10. Were	e custody/security seals present?		No		requested sumpress to e	e run.
11. If ye	s, were custody/security seals intact?		NA			
12. Was t	the sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are re- minutes of sampling		No			
13. If no	o visible ice, record the temperature. Actual sample te	mperature: 10	0.6°C			
	<u>Container</u>					
	aqueous VOC samples present?		No			
	VOC samples collected in VOA Vials?		NA			
16. Is th	e head space less than 6-8 mm (pea sized or less)?		NA			
17. Was	a trip blank (TB) included for VOC analyses?		NA			
18. Are	non-VOC samples collected in the correct containers?		Yes			
19. Is the	e appropriate volume/weight or number of sample container	s collected?	Yes			
Field La	abel					
	e field sample labels filled out with the minimum inform	nation:				
	Sample ID?		Yes			
	Date/Time Collected? Collectors name?		Yes			
	Preservation		No			
	s the COC or field labels indicate the samples were pres	erved?	No			
	sample(s) correctly preserved?		NA			
	b filteration required and/or requested for dissolved met	als?	No			
Multiph	ase Sample Matrix					
-	s the sample have more than one phase, i.e., multiphase	2	No			
	s, does the COC specify which phase(s) is to be analyze		NA			
Subcont	tract Laboratory					
	samples required to get sent to a subcontract laboratory	2	No			
29. Was	a subcontract laboratory specified by the client and if so	o who?	NA	Subcontract Lab	: NA	

Signature of client authorizing changes to the COC or sample disposition.

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Souder Miller Associates - Carlsbad

Work Order: E102058

Job Number: 01058-0007

Received: 2/26/2021

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 3/2/21

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM009792018-1 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557-19-2 for data reported. Date Reported: 3/2/21

Ashley Maxwell 201 S Halagueno St. Carlsbad, NM 88220

Page 97 of 144

Project Name: Seawolf 1-12 Fed 81 H Workorder: E102058 Date Received: 2/26/2021 12:15:00PM

Ashley Maxwell,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 2/26/2021 12:15:00PM, under the Project Name: Seawolf 1-12 Fed 81 H.

The analytical test results summarized in this report with the Project Name: Seawolf 1-12 Fed 81 H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	7
CS1	7
CS2	8
CS3	9
CS4	10
CS5	11
CS6	12
CS7	13
CS8	14
CS9	15
CS10	16
CSW1	17
CSW2	18
CSW3	19
CSW4	20
CSW5	21
CSW6	22
CSW7	23
CSW8	24
CSW9	25
CSW10	26

•

Table of Contents (continued)

	CSW11	27
	CSW12	28
	CSW13	29
	CSW14	30
Q	C Summary Data	31
	QC - Volatile Organics by EPA 8021B	31
	QC - Nonhalogenated Organics by EPA 8015D - GRO	33
	QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	35
	QC - Anions by EPA 300.0/9056A	37
D	efinitions and Notes	39
С	hain of Custody etc.	40

Sample Summary

		Sample Sum			
Souder Miller Associates - Carlsbad		Project Name:	Seawolf 1-12 Fed 8	1 H	Reported:
201 S Halagueno St.		Project Number:	01058-0007		-
Carlsbad NM, 88220		Project Manager:	Ashley Maxwell		03/02/21 12:30
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
CS1	E102058-01A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS2	E102058-02A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS3	E102058-03A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS4	E102058-04A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS5	E102058-05A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS6	E102058-06A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS7	E102058-07A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS8	E102058-08A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS9	E102058-09A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CS10	E102058-10A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
SW1	E102058-11A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW2	E102058-12A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW3	E102058-13A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW4	E102058-14A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW5	E102058-15A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW6	E102058-16A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW7	E102058-17A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW8	E102058-18A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW9	E102058-19A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW10	E102058-20A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW11	E102058-21A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW12	E102058-22A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW13	E102058-23A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.
CSW14	E102058-24A	Soil	02/11/21	02/26/21	Glass Jar, 4 oz.

Case Narative:

Inclement weather impacted FedEx from one-day delivery service. Samples were held in cold storage by FedEx due to imclement weather. Sample hold time and temperature were impacted by Fedex delayed shipment. Sample analysis was performed per client request. See COC & SRC for sample hold time and recieved temperature.

	D.	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manag	er: 010:	wolf 1-12 Fed 81 I 58-0007 ley Maxwell	ł		Reported: 3/2/2021 12:30:43PM
		CS1				
		E102058-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		97.5 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS		Batch: 2109037	
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.5 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	/kg Analyst: JL		Batch: 2109036	
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		98.8 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	St	impic D	aia			
Souder Miller Associates - Carlsbad	Project Name:		wolf 1-12 Fed 81	Н		
201 S Halagueno St.	Project Numbe		58-0007			Reported:
Carlsbad NM, 88220	Project Manag	er: Ash	ley Maxwell			3/2/2021 12:30:43PM
		CS2				
	-	E102058-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS		Batch: 2109037	
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.7 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		105 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	56	mpic D	ata			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbe Project Manage	er: 0103	wolf 1-12 Fed 81 H 58-0007 ley Maxwell	ł		Reported: 3/2/2021 12:30:43PM
	, ,	CS3	5			
]	E102058-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	:: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Foluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		95.7 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS		Batch: 2109037	
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		97.5 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	:: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		103 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	Di	ample D	ลเล			
Souder Miller Associates - Carlsbad	Project Name:	Seav	wolf 1-12 Fed 81	I H		
201 S Halagueno St.	Project Numbe	er: 010	58-0007	Reported:		
Carlsbad NM, 88220	Project Manag	ger: Ash	ley Maxwell			3/2/2021 12:30:43PM
		CS4				
		E102058-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/26/21	
urrogate: 4-Bromochlorobenzene-PID		95.5 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS		Batch: 2109037	
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		99.1 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g/kg Analyst: JL			Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		101 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numb Project Manag	oer: 010	wolf 1-12 Fed 81 58-0007 ley Maxwell	Н		Reported: 3/2/2021 12:30:43PM
		CS5				
		E102058-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
` oluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
o-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
urrogate: 4-Bromochlorobenzene-PID		94.4 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS		Batch: 2109037	
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.8 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g/kg Analyst: JL		Batch: 2109036	
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
urrogate: n-Nonane		84.8 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

		imple D				
Souder Miller Associates - Carlsbad	Project Name:		wolf 1-12 Fed 81 I	ł		
201 S Halagueno St.	Project Numbe		58-0007			Reported:
Carlsbad NM, 88220	Project Manage	er: Ash	ley Maxwell			3/2/2021 12:30:43PM
		CS6				
]	E102058-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		97.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	:: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		84.3 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ample D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numb Project Manag	er: 0103	wolf 1-12 Fed 81 58-0007 ley Maxwell	Н		Reported: 3/2/2021 12:30:43PM
		CS7				
		E102058-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	/st: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
o-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
urrogate: 4-Bromochlorobenzene-PID		93.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS		Batch: 2109037	
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
urrogate: 1-Chloro-4-fluorobenzene-FID		95.8 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g/kg Analyst: JL		Batch: 2109036	
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Gurrogate: n-Nonane		89.2 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numb Project Manag	er: 010	wolf 1-12 Fed 81 58-0007 ley Maxwell	Н		Reported: 3/2/2021 12:30:43PM
		CS8				
		E102058-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
` oluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
o-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
urrogate: 4-Bromochlorobenzene-PID		92.5 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
urrogate: 1-Chloro-4-fluorobenzene-FID		95.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		93.0 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

		imple D				
Souder Miller Associates - Carlsbad 201 S Halagueno St.	Project Name: Project Numbe		wolf 1-12 Fed 81 1 58-0007	Reported:		
Carlsbad NM, 88220	Project Manage	er: Ash	ley Maxwell			3/2/2021 12:30:43PM
		CS9				
]	E102058-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		96.8 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.5 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	kg Analyst: JL			Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		96.7 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	D	ampic D	ata			
Souder Miller Associates - Carlsbad 201 S Halagueno St.	Project Name Project Numb		wolf 1-12 Fed 81	H		Reported:
Carlsbad NM, 88220	Project Manag		ley Maxwell			3/2/2021 12:30:43PM
		CS10				
		E102058-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
p,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		94.0 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.7 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		94.7 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numb Project Mana	ber: 010	wolf 1-12 Fed 81 58-0007 ley Maxwell	Н		Reported: 3/2/2021 12:30:43PM
		CSW1				
		E102058-11				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: RKS		
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
p,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
o-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		93.2 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		93.3 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numb Project Mana	ber: 010	wolf 1-12 Fed 81 58-0007 ley Maxwell	Н		Reported: 3/2/2021 12:30:43PM
		CSW2				
		E102058-12				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		92.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	ıt: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		90.5 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numb Project Manaş	ber: 010	wolf 1-12 Fed 81 1 58-0007 ley Maxwell	ł		Reported: 3/2/2021 12:30:43PM
		CSW3				
		E102058-13				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: RKS		
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		92.5 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.4 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	:: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		93.7 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	G	ample D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numl Project Mana	ber: 010:	wolf 1-12 Fed 81 1 58-0007 ley Maxwell	H		Reported: 3/2/2021 12:30:43PM
		CSW4				
		E102058-14				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		92.9 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.2 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		91.9 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

		ampic D	ata			
Souder Miller Associates - Carlsbad 201 S Halagueno St.	Project Name: Project Numb		wolf 1-12 Fed 81 1 58-0007	Η		Reported:
Carlsbad NM, 88220	Project Manag		ley Maxwell	3/2/2021 12:30:43PM		
		CSW5				
		E102058-15				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		93.3 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		92.8 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numb Project Manag	ber: 010	wolf 1-12 Fed 81 I 58-0007 ley Maxwell	ł		Reported: 3/2/2021 12:30:43PM
		CSW6				
		E102058-16				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: RKS			Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		93.0 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.7 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	:: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		97.7 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numb Project Mana	ber: 010	wolf 1-12 Fed 81 58-0007 ley Maxwell	Н		Reported: 3/2/2021 12:30:43PM
		CSW7				
		E102058-17				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: RKS		
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
p,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		94.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.4 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	ng/kg Analyst: JL			Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		63.3 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	D		ata			
Souder Miller Associates - Carlsbad 201 S Halagueno St.	Project Name Project Numł		wolf 1-12 Fed 81	Н		Reported:
Carlsbad NM, 88220	Project Mana	iger: Ash	ley Maxwell			3/2/2021 12:30:43PM
		CSW8				
		E102058-18				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
o-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		98.3 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.7 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	ıt: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		74.4 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	6	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numb Project Manag	oer: 010	wolf 1-12 Fed 81 58-0007 ley Maxwell	Н		Reported: 3/2/2021 12:30:43PM
		CSW9				
		E102058-19				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Foluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
p-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		94.2 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.6 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	it: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		81.7 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ample D	ata			
Souder Miller Associates - Carlsbad	Project Name		volf 1-12 Fed 81	Н		
201 S Halagueno St.	Project Numb		58-0007		Reported:	
Carlsbad NM, 88220	Project Mana	ger: Ash	ley Maxwell			3/2/2021 12:30:43PM
		CSW10				
		E102058-20				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Benzene	ND	0.0250	1	02/26/21	02/27/21	
Toluene	ND	0.0250	1	02/26/21	02/27/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/27/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/27/21	
o-Xylene	ND	0.0250	1	02/26/21	02/27/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/27/21	
Surrogate: 4-Bromochlorobenzene-PID		95.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109037
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/27/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.1 %	70-130	02/26/21	02/27/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109036
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		85.6 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109038
Chloride	ND	20.0	1	02/26/21	03/01/21	

	D.	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name: Project Numbo Project Manag	umber: 01058-0007				Reported: 3/2/2021 12:30:43PM
		CSW11				
		E102058-21				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: RKS		Batch: 2109034
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
p,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		99.3 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109034
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		99.2 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109033
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		82.1 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109039
Chloride	ND	20.0	1	02/26/21	03/01/21	

	D		ata					
Souder Miller Associates - Carlsbad	3							
201 S Halagueno St.	Project Numb		58-0007			Reported:		
Carlsbad NM, 88220	Project Mana	ger: Ash	ley Maxwell	3/2/2021 12:30:43PM				
		CSW12						
		E102058-22						
		Reporting						
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes		
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: RKS		Batch: 2109034		
Benzene	ND	0.0250	1	02/26/21	02/26/21			
Toluene	ND	0.0250	1	02/26/21	02/26/21			
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21			
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21			
o-Xylene	ND	0.0250	1	02/26/21	02/26/21			
Total Xylenes	ND	0.0250	1	02/26/21	02/26/21			
Surrogate: 4-Bromochlorobenzene-PID		99.6 %	70-130	02/26/21	02/26/21			
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109034		
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21			
Surrogate: 1-Chloro-4-fluorobenzene-FID		99.2 %	70-130	02/26/21	02/26/21			
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109033		
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21			
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21			
Surrogate: n-Nonane		85.4 %	50-200	02/26/21	02/26/21			
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109039		
Chloride	ND	20.0	1	02/26/21	03/01/21			

	5	ample D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St.	Project Name Project Numb		volf 1-12 Fed 81 58-0007	Н		Reported:
Carlsbad NM, 88220	Project Mana		ley Maxwell		3/2/2021 12:30:43PM	
		CSW13				
		E102058-23				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: RKS		Batch: 2109034
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
o,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
p-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Fotal Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		99.6 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: RKS		Batch: 2109034
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		98.5 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2109033
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Dil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		84.4 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2109039
Chloride	ND	20.0	1	02/26/21	03/01/21	

	5	ampic D	ala			
Souder Miller Associates - Carlsbad 201 S Halagueno St. Carlsbad NM, 88220	Project Name Project Numb Project Mana	Reported: 3/2/2021 12:30:43PM				
		CSW14				
		E102058-24				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109034
Benzene	ND	0.0250	1	02/26/21	02/26/21	
Toluene	ND	0.0250	1	02/26/21	02/26/21	
Ethylbenzene	ND	0.0250	1	02/26/21	02/26/21	
p,m-Xylene	ND	0.0500	1	02/26/21	02/26/21	
o-Xylene	ND	0.0250	1	02/26/21	02/26/21	
Total Xylenes	ND	0.0250	1	02/26/21	02/26/21	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2109034
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/26/21	02/26/21	
Surrogate: 1-Chloro-4-fluorobenzene-FID		98.8 %	70-130	02/26/21	02/26/21	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2109033
Diesel Range Organics (C10-C28)	ND	25.0	1	02/26/21	02/26/21	
Oil Range Organics (C28-C35)	ND	50.0	1	02/26/21	02/26/21	
Surrogate: n-Nonane		88.4 %	50-200	02/26/21	02/26/21	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2109039
Chloride	ND	20.0	1	02/26/21	03/01/21	

QC Summary Data

	Project Name: Project Number: Project Manager:	0						Reported: 3/2/2021 12:30:43PM
	, 0		2					5/2/2021 12.50. 4 51 W
	volatile O	rganics	by EPA 802	IB				Analyst: RKS
Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
					Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
ND	0.0250							
ND	0.0250							
ND	0.0250							
ND	0.0500							
ND	0.0250							
ND	0.0250							
7.75		8.00		96.9	70-130			
			Prepared: 02/26/21 Analyzed: 02/26/					
4.70	0.0250	5.00		94.1	70-130			
4.98	0.0250	5.00		99.6	70-130			
4.89	0.0250	5.00		97.7	70-130			
9.87	0.0500	10.0		98.7	70-130			
5.00	0.0250	5.00		99.9	70-130			
14.9	0.0250	15.0		99.1	70-130			
7.88		8.00		98.5	70-130			
			Sou	rce: E102	085-01 Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
4.64	0.0250	5.00	ND	92.8	54-133			
4.93	0.0250	5.00	ND	98.5	61-130			
4.83	0.0250	5.00	ND	96.7	61-133			
9.75	0.0500	10.0	ND	97.5	63-131			
4.94	0.0250	5.00	ND	98.8	63-131			
14.7	0.0250	15.0	ND	98.0	63-131			
7.99		8.00		99.9	70-130			
			Sou	rce: E102	085-01 Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
4.65	0.0250	5.00	ND	93.0	54-133	0.156	20	
4.90	0.0250	5.00	ND	98.0	61-130	0.603	20	
4.82	0.0250	5.00	ND	96.4	61-133	0.239	20	
9.73	0.0500	10.0	ND	97.3	63-131	0.194	20	
4.95	0.0250	5.00	ND	98.9	63-131	0.104	20	
14.7	0.0250	15.0	ND	97.9	63-131	0.0940	20	
· · ·	ND ND ND ND ND ND ND ND ND ND 7.75 4.70 4.98 4.89 9.87 5.00 14.9 7.88 4.89 9.87 5.00 14.9 7.88 4.64 4.93 4.83 9.75 4.94 14.7 7.99 4.65 4.90 4.82 9.73 4.95	Arroy Constraint Project Number: Project Manager: Volatile Or Reporting Result Limit mg/kg mg/kg ND 0.0250 7.75	Project Number: 0 Project Manager: A Volatile Organics A Result Reporting Spike mg/kg mg/kg mg/kg ND 0.0250 ND A.70 0.0250 5.00 4.70 0.0250 5.00 4.89 0.0250 5.00 4.89 0.0250 5.00 4.89 0.0250 5.00 4.89 0.0250 5.00 4.83 0.0250 5.00 4.464 0.0250 5.00 4.64 0.0250 5.00 4.64 0.0250 5.00 4.83 0.0250 5.00 4.64 0.0250 5.00	Project Number: 01058-0007 Project Manager: Ashley Maxwel Volatile Organics by EPA 802 Result Reporting Spike Source mg/kg mg/kg mg/kg mg/kg ND 0.0250 mg/kg mg/kg 4.70 0.0250 mg/kg mg/kg 4.70 0.0250 5.00 mg/kg 4.70 0.0250 5.00 mg/kg 9.87 0.0500 10.0 mg/kg 9.87 0.0500 10.0 mg/kg 14.9 0.0250 5.00 ND 9.87 0.0500 10.0 ND 9.87 0.0500 10.0 ND 9.87 0.0500 10.0 ND 9.87 0.0500	Project Number: 01058-0007 Project Manager: Ashley Maxwell Volatile Organics by EPA 8021E Result Reporting Limit Spike Level Source Result Rec mg/kg mg/kg mg/kg mg/kg mg/kg % ND 0.0250 mg/kg mg/kg % ND 0.0250 mg/kg % A4.70 0.0250 5.00 94.1 4.98 0.0250 5.00 99.6 4.89 0.0250 5.00 99.7 7.75 8.00 98.7 5.00 0.0250 5.00 99.9 4.47 0.0250 5.00 99.9 14.9 0.0250 5.00 ND 7.88 8.00 98.5 99.1	Project Number: Moltose Manager: Ashley Maxwell Volatile Organics by EPA 8021B Result Reporting Limit Spike Level Source Result Rec Mac Rec Limits mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % ND 0.0250 mg/kg mg/kg mg/kg % Pre ND 0.0250 mg/kg 96.9 70-130 Pre ND 0.0250 mg/kg 99.6 70-130 Pre 4.70 0.0250 source Pre Pre 4.70 0.0250 5.00 94.1 70-130 9.87 0.0500 10.0 98.7 70-130 9.87 0.0500 10.0 98.7 70-130 7.88 8.00 99.9 70-130 7.83 8.00 99.9 70-130 7.83 0.0250 5.00 MD 98.5 70-130 7.83 0.0250 5.00 ND	Project Number: 01058-0007 Project Manager: Ashley Maxwell Spike Source Rec Limits RPD mg/kg mg/kg mg/kg mg/kg Result Rec Limits RPD mg/kg mg/kg mg/kg mg/kg mg/kg % % % ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 S.00 96.9 70-130 Prepared: 02/2 4.70 0.0250 5.00 99.7 70-130 Prepared: 02/2 4.98 0.0250 5.00 99.7 70-130 Prepared: 02/2 4.48 0.0250 5.00 99.7 70-130 Prepared: 02/2 4.64 0.0250 5.00 ND 96.	Project Number: 01058-0007 Project Manager: Ashley Maxwell Volatile Organics by EPA 8021B Result Reporting Spike Source Rec Rec Limits RPD Limit mg/kg mg/kg mg/kg mg/kg % % % % % ND 0.0250 ND 0.0250

QC Summary Data

	Project Name: Project Number: Project Manager:	0	eawolf 1-12 Fe 1058-0007 shley Maxwel					Reported: 3/2/2021 12:30:43PM	
	Volatile O	rganics l	by EPA 802	21B				Analyst: RKS	
Densit	Reporting L imit	Spike	Source	Daa	Rec	רוקא	RPD Limit		
mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	
					Pre	pared: 02/2	26/21 Ana	lyzed: 02/26/21	
ND	0.0250								
ND									
ND									
ND									
ND									
7.78		8.00		97.3	70-130				
				Prepared: 02/26/21 Analyzed: 02/26/					
4.57	0.0250	5.00		91.4	70-130				
4.86	0.0250	5.00		97.3	70-130				
4.74	0.0250	5.00		94.9	70-130				
9.68	0.0500	10.0		96.8	70-130				
4.94	0.0250	5.00		98.7	70-130				
14.6		15.0		97.4	70-130				
7.77		8.00		97.1	70-130				
			Sou	rce: E102	058-01 Pre	pared: 02/2	26/21 Ana	lyzed: 02/26/21	
4.50	0.0250	5.00	ND	90.0	54-133				
4.82	0.0250	5.00	ND	96.4	61-130				
4.71	0.0250	5.00	ND	94.2	61-133				
9.60	0.0500	10.0	ND	96.0	63-131				
4.90	0.0250	5.00	ND	98.0	63-131				
14.5	0.0250	15.0	ND	96.7	63-131				
7.81		8.00		97.7	70-130				
			Sou	rce: E102	058-01 Pre	pared: 02/2	26/21 Ana	lyzed: 02/26/21	
4.43	0.0250	5.00	ND	88.6	54-133	1.60	20		
4.72	0.0250	5.00	ND	94.4	61-130	2.10	20		
4.61	0.0250	5.00	ND	92.2	61-133	2.10	20		
9.40	0.0500	10.0	ND	94.0	63-131	2.07	20		
4.80	0.0250	5.00	ND	96.0	63-131	2.08	20		
14.2	0.0250	15.0	ND	94.7	63-131	2.08	20		
	ND ND ND ND ND ND 7.78 4.57 4.86 4.74 9.68 4.94 14.6 7.77 4.50 4.82 4.71 9.60 4.90 14.5 7.81 4.43 4.72 4.61 9.40 4.80	Project Manager: Volatile O Result mg/kg Reporting Limit mg/kg ND 0.0250 7.78	Project Manager: A Volatile Organics I Result Reporting Limit Spike Level mg/kg mg/kg mg/kg ND 0.0250 MD A.57 0.0250 5.00 4.57 0.0250 5.00 4.58 0.0250 5.00 4.43 0.0250 5.00 4.46 0.0250 5.00 4.50 0.0250 5.00 4.45 0.0250 5.00 4.50 0.0250 5.00 4.50 0.0250 5.00 4.50 0.0250 5.00 4.43 0.0250 5.00 4.43 0.0250 5.00 4.61 0.0250 5.00	Project Manager: Ashley Maxwed Volatile Organics by EPA 802 Result mg/kg Reporting Limit mg/kg Spike Level mg/kg Source Result mg/kg ND 0.0250 mg/kg mg/kg 4.57 0.0250 5.00 mg/kg 4.57 0.0250 5.00 mg/kg 4.56 0.0250 5.00 mg/kg 4.66 0.0250 5.00 mg/kg 4.50 0.0250 5.00 mg/kg 4.50 0.0250 5.00 mg/kg 4.50 0.0250 5.00 mg/kg 4.50 0.0250 5.00	Project Manager: Ashley Maxwell Volatile Organics by EPA 8021B Result Reporting Limit Spike Level Source Result Rec mg/kg mg/kg mg/kg mg/kg Rec ND 0.0250 mg/kg mg/kg mg/kg ND 0.0250 mg/kg 97.3 ND 0.0250 mg/kg 97.3 ND 0.0250 91.4 4.86 0.0250 97.3 4.57 0.0250 5.00 91.4 4.86 0.0250 5.00 94.9 9.68 0.0500 10.0 96.8 4.94 0.0250 5.00 97.4 7.77 8.00 97.1 97.4 4.50 0.0250 5.00 94.9 9.68 0.0500 10.0 96.8 4.94 0.0250 5.00 ND 7.77 8.00 97.1 96.6 4.50 0.0250 5.00 ND	Project Manager: Ashley Maxwell Volatile Organics by EPA 8021B Rec Result mg/kg mg/kg Spike Source Rec Limits mg/kg mg/kg mg/kg mg/kg Mg/kg % % ND 0.0250 mg/kg % % % % ND 0.0250 ND 0.0250 % % % % ND 0.0250 ND 0.0250 %	Project Manager: Ashley Maxwell Volatile Organics by EPA 8021B Result Reporting mg/kg Spike mg/kg Source Result Rec Preparet Rec Limits RPD % Mg/kg mg/kg mg/kg % % % % ND 0.0250 mg/kg % % % % ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND Prepared: 02/7 7.78 & 8.00 97.3 70-130 70-130 4.86 0.0250 5.00 91.4 70-130 4.486 0.0250 5.00 97.3 70-130 4.486 0.0250 5.00 97.4 70-130 4.486 0.0250 5.00 97.4 70-130 7.77 & 8.00 97.4 70-130 70-130 4.43 0.0250 5.00 ND 90.4 61-133 4.42 0.0250 5.	Ashley Maxwell Volatile Organics by EPA 8021B Result mg/kg Reporting Limit Spike Level Source Result Rec mg/kg Rec % RPD % RPD % RPD % RPD % ND 0.0250 mg/kg mg/kg %	

QC Summary Data

				ary Dan	-				
Souder Miller Associates - Carlsbad 201 S Halagueno St.		Project Name: Project Number:	-	eawolf 1-12 Fe 1058-0007	ed 81 H				Reported:
Carlsbad NM, 88220		Project Manager:	А	shley Maxwel	1				3/2/2021 12:30:43PM
	No	nhalogenated C	Organics	by EPA 801	15D - G	RO			Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2109034-BLK1)						Pre	pared: 02/2	26/21 An	alyzed: 02/26/21
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.88		8.00		98.5	70-130			
LCS (2109034-BS2)						Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Gasoline Range Organics (C6-C10)	51.2	20.0	50.0		102	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.97		8.00		99.6	70-130			
Matrix Spike (2109034-MS2)				Sour	rce: E102	085-01 Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Gasoline Range Organics (C6-C10)	51.1	20.0	50.0	ND	102	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.03		8.00		100	70-130			
Matrix Spike Dup (2109034-MSD2)				Sour	rce: E102	085-01 Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Gasoline Range Organics (C6-C10)	50.3	20.0	50.0	ND	101	70-130	1.68	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.14		8.00		102	70-130			

QC Summary Data

		QU N		I J Date					
Souder Miller Associates - Carlsbad 201 S Halagueno St.		Project Name: Project Number:		eawolf 1-12 Fe 1058-0007	ed 81 H				Reported:
Carlsbad NM, 88220		Project Manager:	А	shley Maxwel	1				3/2/2021 12:30:43PM
	No	nhalogenated C	Organics	by EPA 80	15D - G	RO			Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2109037-BLK1)						Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.61		8.00		95.1	70-130			
LCS (2109037-BS2)						Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Gasoline Range Organics (C6-C10)	46.4	20.0	50.0		92.9	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.41		8.00		92.6	70-130			
Matrix Spike (2109037-MS2)				Sou	rce: E102	058-01 Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Gasoline Range Organics (C6-C10)	46.1	20.0	50.0	ND	92.1	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.86		8.00		98.3	70-130			
Matrix Spike Dup (2109037-MSD2)				Sou	rce: E102	058-01 Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Gasoline Range Organics (C6-C10)	45.7	20.0	50.0	ND	91.5	70-130	0.748	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.90		8.00		98.7	70-130			

QC Summary Data

		$\mathbf{x} \circ \sim$		ary Date					
Souder Miller Associates - Carlsbad 201 S Halagueno St.		Project Name: Project Number:	_	eawolf 1-12 Fe 1058-0007	ed 81 H				Reported:
Carlsbad NM, 88220		Project Manager:	А	shley Maxwel	1			3	3/2/2021 12:30:43PM
	Nonh	alogenated Org	anics by	EPA 8015I) - DRO	/ORO			Analyst: JL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2109033-BLK1)						Pre	pared: 02/2	26/21 Analy	vzed: 02/26/21
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C35)	ND	50.0							
Surrogate: n-Nonane	51.0		50.0		102	50-200			
LCS (2109033-BS1)						Pre	pared: 02/2	26/21 Analy	/zed: 02/26/21
Diesel Range Organics (C10-C28)	520	25.0	500		104	38-132			
Surrogate: n-Nonane	50.8		50.0		102	50-200			
Matrix Spike (2109033-MS1)				Sou	rce: E102	085-01 Pre	pared: 02/2	26/21 Analy	/zed: 02/26/21
Diesel Range Organics (C10-C28)	481	25.0	500	ND	96.3	38-132			
Surrogate: n-Nonane	49.2		50.0		98.4	50-200			
Matrix Spike Dup (2109033-MSD1)				Sou	rce: E102	085-01 Pre	pared: 02/2	26/21 Analy	/zed: 02/26/21
Diesel Range Organics (C10-C28)	489	25.0	500	ND	97.8	38-132	1.58	20	
Surrogate: n-Nonane	51.3		50.0		103	50-200			

QC Summary Data

		QC D		ary Data					
Souder Miller Associates - Carlsbad 201 S Halagueno St.		Project Name: Project Number:		Seawolf 1-12 Fe 01058-0007	d 81 H				Reported:
Carlsbad NM, 88220		Project Manager:		Ashley Maxwell					3/2/2021 12:30:43PM
	Nonh	alogenated Org	anics by	y EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2109036-BLK1)						Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C35)	ND	50.0							
Surrogate: n-Nonane	53.4		50.0		107	50-200			
LCS (2109036-BS1)						Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Diesel Range Organics (C10-C28)	547	25.0	500		109	38-132			
Surrogate: n-Nonane	53.8		50.0		108	50-200			
Matrix Spike (2109036-MS1)				Sour	ce: E102	058-11 Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Diesel Range Organics (C10-C28)	540	25.0	500	ND	108	38-132			
Surrogate: n-Nonane	51.5		50.0		103	50-200			
Matrix Spike Dup (2109036-MSD1)				Sour	ce: E102	058-11 Pre	pared: 02/2	26/21 Ana	alyzed: 02/26/21
Diesel Range Organics (C10-C28)	538	25.0	500	ND	108	38-132	0.382	20	
Surrogate: n-Nonane	51.2		50.0		102	50-200			

QC Summary Data

		•		•					
Souder Miller Associates - Carlsbad		Project Name:	S	eawolf 1-12 F	ed 81 H				Reported:
201 S Halagueno St.		Project Number:	0	1058-0007					•
Carlsbad NM, 88220		Project Manager:	A	shley Maxwel	1				3/2/2021 12:30:43PM
		Anions	by EPA 3	300.0/9056 A	4				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2109038-BLK1)						Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	ND	20.0							
LCS (2109038-BS1)						Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	246	20.0	250		98.3	90-110			
Matrix Spike (2109038-MS1)				Sou	rce: E102	058-01 Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	248	20.0	250	ND	99.2	80-120			
Matrix Spike Dup (2109038-MSD1)				Sou	rce: E102	058-01 Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	246	20.0	250	ND	98.3	80-120	0.916	20	

QC Summary Data

		-		v					
Souder Miller Associates - Carlsbad		Project Name:	S	eawolf 1-12 F	ed 81 H				Reported:
201 S Halagueno St.		Project Number:	0	1058-0007					•
Carlsbad NM, 88220		Project Manager:	А	shley Maxwel	1				3/2/2021 12:30:43PM
		Anions	by EPA	300.0/90564	۸				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2109039-BLK1)						Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	ND	20.0							
LCS (2109039-BS1)						Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	247	20.0	250		98.6	90-110			
Matrix Spike (2109039-MS1)				Sou	rce: E1020	058-21 Pre	pared: 02/2	26/21 Ana	lyzed: 03/01/21
Chloride	247	20.0	250	ND	98.8	80-120			
Matrix Spike Dup (2109039-MSD1)				Sou	rce: E1020	058-21 Pre	pared: 02/2	26/21 Ana	ulyzed: 03/01/21
Chloride	249	20.0	250	ND	99.4	80-120	0.658	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Souder Miller Associates - Carlsbad	Project Name:	Seawolf 1-12 Fed 81 H	
201 S Halagueno St.	Project Number:	01058-0007	Reported:
Carlsbad NM, 88220	Project Manager:	Ashley Maxwell	03/02/21 12:30

ND	Analyte NOT DETECTED at or above the reporting limit
1.2	inalyte no r bbribe ribb at or above the reporting initi

- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Project Information	Chain	of Custody										Page	<u> </u>
Client: SMA	Bill To		-		1:	hllo		058-00		AT		PA Progra	
Project: Seawolf 1-12 Fed E Project Manager: Ashley Maxwo	Attention: Devon	1	Lab	WO#	ł		Job I	Number	1D	3D	RCRA	CWA	SDWA
Address: 201 S. Halaguene City, State, Zip Carlsbad, NM,	St. City, State, Zip	6						sis and Meth		1		Sta	ate
City, State, Zip Carlsbad, NM,	Bazzu Phone:		1.4.			EC.Pe 4			1	1			UTAZ
Phone:	Email:	1 and	015	015								X	
Email:			by 8(by 8(21	00	0	0.00	Σ			TX OK	
Report due by:		1	ORO	ORO	oy 80	y 82	601	de 3(Z	۰ ۲۲			
Time Date Matrix No Containers Sampled	nple ID	Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0	BGDOC - NM	BGDOC -		Ren	narks
11:00 2111/21 Soil 1-402	CSI	1							X				
11:05	CSZ	2											
11:10	<i>CS</i> 3	3											
(1:15	cs4	4											
11:20	cs5	5											
11:25	cs6	6											
11:30	57	7											
11:35	CS8	8											
11:40 0	59	9											
	:510	10							1	a l			
Additional Instructions:		Ř.											
I, (field sampler), attest to the validity and authenticity of this sa time of collection is considered fraud and may be grounds for I	Imple. I am aware that tampering with or intentionally mislabelling the sample agal action. Sampled by:	e location, date or	120	0				requiring thermal pre packed in ice at an av					
Relinquished by: (Signature) Date		Date 2.15.	21	Time	43	0	Rece	ived on ice:	Y	/ /N	e Only		
Relinquished by: (Signature) Date	21 1640 Received by: (Signature)	Date	2	Time	:15	Ċ.	 T1	0.2	Т2	10	7	T3 10	.8
Relinguished by: (Signature) Date	Time Received by: (Sighature)	Date		Time		8		Temp °C					
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueo	us, O - Other	Container	Type	:g-g	lass.			astic, ag - am			VOA		
Note: Samples are discarded 30 days after results are re	ported unless other arrangements are made. Hazardous samples wil	be returned to cl	ient or	dispos	ed of a	t the c	lient ex	pense. The repo	ort for th	e analy:	sis of the ab	ove samples is	applicable
only to those samples received by the laboratory with the	is COC. The liability of the laboratory is limited to the amount paid i	for on the report.											
Convirate	sch 5795 J3 Highway 64, Famirgtor, NV 37401				-						envi	rotech-inc.com	n
	oratory 24 Hour Emergeroy Response Phone (800) 362-1379	17	-		P	(939)	002-162	1 Fx (505) 632-11	:05	le le		nvirolech-inc.	1.00

0

Received by OCD: 4/6/2021 2:39:49 PM

4

Page _ / of _ 3_

Project Information					Chain of Cu	stody											Page	2
070													8-a	30-	7			
Client: SMA Project: Seawolf	-12 Fee	HIBK	Atten Addre				Lab	WO#			e On Job N	lumb	er	T.	AT I3D	RCRA	PA Progra	am SD
Project: Seawolf Project Manager: Ash	y Max	well	Addre			. Al	PE	100	ZOE	58	190	260	(000)					
Address:			p` <u>City, 9</u>	State, Zip		<u>k_</u>	AM	12/5	26/2	21	Analy	sis and	d Metho	d			Sta	ate
City, State, Zip			Phone Email	e:		<u> </u>											NM CO	UT
Phone:			<u>Email</u>	:		<u></u>	8015	8015									X	
Email:			5				þ	by 8	8021	8260	10	300.0		Σ	7,82		TX OK	
Report due by:						Lab	ORO	DRO	by 8	by 82	s 60	de 3		C-2	X1 - 0			
Time Date Matrix Sampled Sampled	No Containers S	Sample ID				Number	DRO/ORO	GRO/DRO by	BTEX by	voct	Metals 6010	Chloride		BGDOC - NM	BGDOC		Ren	marks
11:50 2/11/21 501	1-402	CSWI	6			11								X			7	
11-55		CSW2				12					,							
12:00		CSW3				13			9									
12:05		CSWY	7			14												
12:10		CSWS	5			15												
12:15		CSW6	2			16												
12:20		CSW7	2			17												
12:25		CSW8	,			18												
12:30		csw9	•			19												
12:35 1		CSWIC				20								T				
Additional Instructions:				25														
, (field sampler), attest to the validity ar time of collection is considered fraud ar	21		11 A	with or intentionally misl	labelling the sample locatio	n <mark>, d</mark> ate or											ne day they are sar n subsequent days	
Relinquished by: (Signature)	Date	Time	F 2:30	Received by: Bignatu		ate 2:15.	21	Time	130	0	Reco	ived	on ice:		ab Us	e Only		
Relinquished by: (Signature)	Date	Time		Received y: (Signatu		ate									-		T3 10	Q
Relfocushed by: (Signature)	Date	Time		Received by: (Signati	ure) D	ate	(XI)	Time					o°c IC				<u>T3 10</u>	·O
Sample Matrix: S - Soil, Sd - Solid, S	- Sludge A - An					ontainer	Type	· a - a	lace				ag - ambe			VOA		
Note: Samples are discarded 30 day			thes even a series	ante aco mada . Unance														is anal

Page 41 of 43

Received by OCD: 4/6/2021 2:39:49 PM

Page 136 of 144

Analytical Laboratory 24 Hour Energency Response Phone (800) 352-1373

Pn (505) 632-1881 Fx (505) 632-1865

labadmin@envirolech-inc.com

Dani	and the second second	1-5		1.000
Pro	PCT	Intor	mai	100

Released

to

Imaging:

7/1/2021 9:03:57

AM

Bill To Client: SMA Lab Use Only TAT **EPA** Program Am 2/2/2/2 Project: Seawolf 1-12 Fed 81H Devon Attention: 1D 3D Lab WO# Job Number RCRA CWA SDWA 00580007 Project Manager: Ashley Maxwell Address: PEIOZO58 Address: City, State, Zip Amalysis and Method State City, State, Zip Phone: NM CO UT AZ Phone: Email: DRO/ORO by 8015 GRO/DRO by 8015 Email: TXIOK Chloride 300.0 BTEX by 8021 VOC by 8260 Metals 6010 BGDOC - NM Report due by: X GDOC -Lab Time Date No Sample ID Matrix Remarks Containers Sampled Sampled Number 21 -402 CSWII 12:40 2/11/21 501 CSW12 CSW13 22 12:45 23 12:50 CSW14 24 12:55 Additional Instructions: Samples requiring thermal preservation must be received on ice the day they are sampled or I, (field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample location, date or eceived packed in ice at an avg temp above 0 but less than 6 °C on subsequent days. time of collection is considered fraud and may be grounds for legal action. Sampled by: Time Relinquished by: (Signature) Received by: (Signature) Lab Use Only 15.2 1430 YN 2/15/21 2:30 Received on ice: Time Relinquished by: (Signature) Date (Signature 2.15.2 T1 10.2 T2 10.7 T3 10.8 440 Received by: (Signature) Date ime Refinquished by: (Signature) AVG Temp °C 10.0 Container Type: g - glass, p - poly/plastic, ag - amber glass, v - VOA Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at the client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for on the report. envirotech Analytical Laboratory envirotech-inc.com 5795 US Highway 64, Farmington, NM 87401 Pn (505) 532-1881 Fx (505) 632-1865 24 Hour Emergency Response Phone (800) 362-1879 labadmin@envirotech-inc.com

Page 3 of 3

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

	Souder Miller Associates - Carlsbad	Date Received:	02/26/21	12:15	Work Order ID: E102058
Phone:	(505) 325-7535 E	Date Logged In:	02/17/21	16:16	Logged In By: Alexa Michaels
Email:	ashley.maxwell@soudermiller.com	Due Date:	03/01/21	17:00 (1 day TAT)	
Chain o	f Custody (COC)				
	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location match	n the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: F	ed Ex
4. Was t	ne COC complete, i.e., signatures, dates/times, requeste	d analyses?	Yes		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this discussion.		No		Comments/Resolution
Sample	<u>Turn Around Time (TAT)</u>				
6. Did tł	e COC indicate standard TAT, or Expedited TAT?		No		Samples were held in cold storage by
<u>Sample</u>	Cooler				FedEx Express due to inclement weather.
7. Was a	sample cooler received?		Yes		Samples HD and Temp were impacted by
	was cooler received in good condition?		Yes		FedEx Express delayed shipment. Client
9. Was t	ne sample(s) received intact, i.e., not broken?		Yes		requested sampless to be run.
10. Were	e custody/security seals present?		No		requested sampless to be run.
11. If ye	s, were custody/security seals intact?		NA		
12. Was t	he sample received on ice? If yes, the recorded temp is 4°C, i.e. Note: Thermal preservation is not required, if samples are r		No		
12 16	minutes of sampling visible ice, record the temperature. Actual sample te				
1 3. II DO		emperature: 10	0.6°C		
		emperature: <u>10</u>	<u>).6°C</u>		
<u>Sample</u>	<u>Container</u>	emperature: <u>IC</u>			
<u>Sample</u> 14. Are	Container aqueous VOC samples present?	emperature: <u>10</u>	<u>0.6°C</u> No NA		
<u>Sample</u> 14. Are 15. Are	Container aqueous VOC samples present? VOC samples collected in VOA Vials?	emperature: <u>10</u>	No		
Sample 14. Are 15. Are 16. Is th	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)?	mperature: <u>10</u>	No NA		
Sample 14. Are 15. Are 16. Is th 17. Was	Container aqueous VOC samples present? VOC samples collected in VOA Vials?	mperature: <u>1(</u>	No NA NA		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses?		No NA NA NA		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? a appropriate volume/weight or number of sample container		No NA NA NA Yes		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? a appropriate volume/weight or number of sample container	rs collected?	No NA NA NA Yes		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Were	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container blel e field sample labels filled out with the minimum inform Sample ID?	rs collected?	No NA NA NA Yes		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Were	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container blel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected?	rs collected?	No NA NA Yes Yes Yes		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Were	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name?	rs collected?	No NA NA Yes Yes		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Were Sample	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container the e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation	rs collected?	No NA NA Yes Yes Yes No		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Were Sample 21. Does	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were preserved.	rs collected?	No NA NA Yes Yes Yes No		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Were Sample 21. Does 22. Are	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were press sample(s) correctly preserved?	rs collected? nation: served?	No NA NA Yes Yes Yes No No NA		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Were 20. Were 21. Does 22. Are 24. Is lal	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container bel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation a the COC or field labels indicate the samples were press sample(s) correctly preserved? o filteration required and/or requested for dissolved met	rs collected? nation: served?	No NA NA Yes Yes Yes No		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Werd 20. Werd 20. Werd 21. Does 22. Are 24. Is lai Multiph	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation a the COC or field labels indicate the samples were prese sample(s) correctly preserved? o filteration required and/or requested for dissolved meta ase Sample Matrix	rs collected? nation: served? tals?	No NA NA Yes Yes Yes No No NA No		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Werd 20. Werd 21. Does 22. Are 24. Is lat Multiph 26. Does	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container the e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation a the COC or field labels indicate the samples were press sample(s) correctly preserved? o filteration required and/or requested for dissolved met ase Sample Matrix is the sample have more than one phase, i.e., multiphase	rs collected? nation: served? tals? ?	No NA NA Yes Yes Yes No No NA No		
Sample 14. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Were 20. Were 21. Does 22. Are 24. Is lat Multiph 26. Does 27. If ye	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container bel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation a the COC or field labels indicate the samples were prese sample(s) correctly preserved? o filteration required and/or requested for dissolved met ase Sample Matrix a the sample have more than one phase, i.e., multiphase s, does the COC specify which phase(s) is to be analyze	rs collected? nation: served? tals? ?	No NA NA Yes Yes Yes No No NA No		
Sample 14. Are 15. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Were 20. Were 21. Does 22. Are 24. Is lai Multiph 26. Does 27. If ye	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container bel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation a the COC or field labels indicate the samples were prese sample(s) correctly preserved? o filteration required and/or requested for dissolved met ase Sample Matrix is the sample have more than one phase, i.e., multiphase s, does the COC specify which phase(s) is to be analyze ract Laboratory.	rs collected? nation: served? tals? ? ed?	No NA NA Yes Yes Yes No No NA No NA		
Sample 14. Are 15. Are 15. Are 16. Is th 17. Was 18. Are 19. Is the Field La 20. Were 20. Were 21. Does 22. Are 24. Is lai Multiph 26. Does 27. If ye Subcont 28. Are	Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container bel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation a the COC or field labels indicate the samples were prese sample(s) correctly preserved? o filteration required and/or requested for dissolved met ase Sample Matrix a the sample have more than one phase, i.e., multiphase s, does the COC specify which phase(s) is to be analyze	rs collected? nation: served? tals? ? ed? ?	No NA NA Yes Yes Yes No No NA No	Subcontract Lab	- NA

Signature of client authorizing changes to the COC or sample disposition.

•

APPENDIX E EXCAVATION PHOTO LOG

Released to Imaging: 7/1/2021 9:03:57 AM

10 Feb 2021, 16:46:00

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	23163
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
kcollins	None	7/1/2021

CONDITIONS

Page 144 of 144

Action 23163