

June 3, 2021

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Closure Report ConocoPhillips Phillips E State #29 Flowline Release Unit Letter P, Section 14, Township 17 South, Range 33 East Lea County, New Mexico 1RP-5778 Incident Identification (ID) NRM1930943618

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from the Phillips E State 29 well (API No. 30-025-25434) flowline. The release point is located approximately 50 feet (ft) west of the Phillips E State 29 lease pad, and approximately 40 feet north of the flowline header. The release footprint is located in the Public Land Survey System (PLSS) Unit Letter P, Section 14, Township 17 South, Range 33 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.829179°, -103.627889°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on October 4, 2019. As documented on the C-141 form, a flowline from the Phillips E State 29 well ruptured causing the release of approximately 5 barrels (bbls) of produced water and 1 bbl of oil encompassing an area of approximately 281 square feet (Figure 3). During initial response no volume of liquid was reported recovered. The New Mexico Oil Conservation District (NMOCD) received the C-141 report form for the release on October 16, 2019, and subsequently assigned the Site the Remediation Permit (RP) number 1RP-5778 and Incident Identification (ID) NRM1930943618.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

The Site is within a New Mexico oil and gas production area. According to the New Mexico Office of the State Engineers (NMOSE) database, there are seven (7) water wells within a $\frac{1}{2}$ mile (800-meter) radius of the Site with an average depth to groundwater at 151 feet (ft) below ground surface (bgs). The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action

levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the RRALs for the Site are as follows:

Constituent	Site RRALs
Chloride	10,000 mg/kg
ТРН	2,500 mg/kg
BTEX	50 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
ТРН	100 mg/kg
BTEX	50 mg/kg

INITIAL ASSESSMENT ACTIVITIES AND SAMPLING RESULTS

According to information provided by COP, the initial release footprint was reported as a visibly impacted area beneath the Phillips E State 29 well flowline near the header located approximately 50 feet west of the Phillips E State 29 lease pad. As a portion of initial response, in December 2019, COP personnel collected a total of eighteen (18) samples from seven (7) boring locations to attempt to achieve vertical and horizontal delineation. Four borings (SP-1 through SP-4) were installed within the release extent and samples were collected at the surface, at a depth of 1 ft bgs, and at a depth of 3 ft bgs. Additionally, three borings (BG-5 through BG-7) were completed around the release perimeter and soil samples were collected from surface and a depth of 1 ft bgs from each boring for a total of six (6). The samples were submitted to Cardinal Laboratories in Hobbs, NM and analyzed for chlorides using EPA Method SM4500CI-B, TPH using EPA Method 8015M, and BTEX using EPA Method 8021B. The initial release extent and sample locations are shown on Figure 3.

The results of the initial assessment sampling event are summarized in Table 1. Analytical results associated with five (5) of the seven (7) boring locations exceeded the reclamation requirement for TPH (100 mg/kg) in the surface samples. The exceptions were at boring locations BG-5 and BG-6. The analytical results associated with all the soil samples collected from the release interior exceeded the reclamation concentration for TPH (100 mg/kg) in the upper three feet. SP-1, located closest to the release point, exceeded the reclamation requirement for chloride (600 mg/kg) at a depth of 1-foot bgs, and exceeded the total BTEX RRAL in the surface sample (although the benzene specific RRAL was not exceeded). All other sample results were below the Site RRALs for BTEX and chloride.

INITIAL RESPONSE

Based on the assessment data collected, evidence of historical impact was discovered outside of the identified release footprint. In accordance with 19.15.29.8. B. (4) NMAC that states "the responsible party may commence remediation immediately after discovery of a release", ConocoPhillips elected to begin remediation of the impacted area. The footprint of the release was excavated by COP personnel with heavy equipment to approximately 1 to 1.5-feet below ground surface (bgs) to remove the visually impacted soils. Approximately 200 cubic yards of visually impacted soil was excavated from within the release footprint, as well as from areas surrounding the release extent. The approximate release extent, sampling locations, and the extents of the initial response activities are shown in Figure 3.

INITIAL REMEDIATION WORK PLAN SUBMITTAL

A Release Characterization Work Plan was prepared by COP and submitted to the NMOCD on January 9, 2020. The report described the initial assessment activities and results. The work plan was denied by Cristina Eads of the NMOCD via email on February 27, 2020. The following reasons for denial were included in the email:

"The horizontal extent of the release has not been delineated. Please keep in mind Closure Criteria for Soil Impacted by a Release include GRO+DRO as a constituent with the limit of 1000 mg/kg. Though the rule allows to keep soil in place with 1000 mg/kg GRO+DRO and 2500 mg/kg TPH, the horizonal boundaries/background samples of the release should show soil to contain no more than 100 mg/kg TPH.

The Remediation Plan pages were not included with this submittal."

ADDITIONAL SITE ASSESSMENT AND SAMPLING RESULTS

On March 10, 2020, Tetra Tech visited the release Site to visually inspect the release area, assess current conditions, and map the excavated extents from the initial response activities. During the visit, an approximate 80-ft by 50-ft area was observed to have been excavated to roughly 1.5 feet below the surrounding surface grade. (Figure 3).

In order to achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling on May 12, 2020 on behalf of ConocoPhillips. A total of six (6) borings (BH-1 through BH-6) were installed using an air rotary drill rig. One boring (BH-2) was intended to capture the vertical extent of contamination inside the original 1RP-5778 footprint, however, it was unclear to the field crew where the initial footprint was as a result of the existing excavation. However, BH-2 was completed just north of the original footprint. Thus, both borings BH-1 and BH-2 serve as vertical delineation for the historical impact outside of the 1RP-5778 footprint. These borings were completed within the excavated area to depths of 20 feet bgs. The remaining four (4) borings (BH-3 through BH-6) were installed around the perimeter (north, south, east, and west) of the excavated extent to horizontally delineate the both the 1RP-5778 release and the surrounding historical impact.

A total of thirty-two (32) samples were collected from the six (6) borings and submitted to Pace Analytical National Center for Testing & Innovation in Nashville, Tennessee to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix C. Boring locations are shown in Figure 3.

The results of the additional assessment event are summarized in Table 2. The analytical results associated with the BH-3 boring location exceeded the Site TPH RRAL of 100 mg/kg in the 0-1' sample interval. The analytical results associated with the BH-4 boring location also exceeded the Site TPH RRAL at the 0-1' and 2-3' intervals. Both BH-3 and BH-4 are outside the footprint of the release and are assumed to represent historical legacy impact. The analytical results associated with the BTEX chloride or TPH Site RRALs of 50 mg/kg, 600 mg/kg and 100 mg/kg, respectively.

ADDITIONAL SITE DELINEATION AND SAMPLING RESULTS

To complete vertical delineation and achieve additional horizontal delineation of the release to the south and west, Tetra Tech personnel returned to the Site on September 17, 2020 to conduct soil sampling. A total of four (4) additional borings (BH-7 through BH-10) were installed with a combination of an air rotary rig and hand auger. Boring BH-7 was completed inside the original 1RP-5778 footprint (at a distance of 3 feet from the approximate release point) with the drilling rig. Boring BH-7 was completed at a total depth of 27' bgs.

The remainder of the borings were located along the perimeter of the excavated area and completed with a hand auger. A total of sixteen (16) samples were collected and submitted to Pace and again analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Boring locations are shown in Figure 3.

As noted, boring BH-7 was completed to provide vertical delineation within the original release footprint. Analytical results associated with the BH-7 location exceeded the TPH RRAL of 100 mg/kg in the 0-1 and 2-3' sample intervals. Analytical results from both borings BH-8 and BH-10 were below Site RRALs and provided horizontal delineation east of BH-3. Analytical results from boring BH-9 were below Site RRALs and provided horizontal delineation to the south. Therefore, the release is fully delineated following the September 2020 additional assessment activities. Results are shown in Table 2.

REMEDIATION WORK PLAN AND ALTERNATIVE CONFIRMATION SAMPLE PLAN

The Release Characterization Work Plan (Work Plan) was prepared by Tetra Tech on behalf of ConocoPhillips and submitted to NMOCD on October 22, 2020 with fee application payment PO Number YM842-201022-C-1410. The Work Plan described the results of the release assessment and provided characterization of the impact at the site. The Work Plan was approved via email by Cristina Eads on Thursday, December 24, 2020.

Cristina Eads stated the following conditions of the approval:

- *"For areas around the sample points SP #1-4 and BH-4, the minimum depth of excavation will be 3.5' below ground surface.*
- For the proposed 3' excavation area, samples will not represent more than 200 square feet.
- Samples collected from the existing excavation will need to be collected from at least 6" from the surface for floor and sidewall samples."

REMEDIATION ACTIVITIES AND CONFIRMATION SAMPLING

From February 25, 2021 through March 17, 2021, Tetra Tech personnel were onsite to supervise the remediation activities proposed in the approved Work Plan, including excavation, disposal, and confirmation sampling. Impacted soils were excavated until a representative sample from the walls and bottom of the excavation had a field screening value inferred as lower than the RRALs for the Site. Once field screening was completed, confirmation floor and sidewall samples were collected for laboratory analysis to verify that the impacted materials were properly removed. Each confirmation sample laboratory analytical result was directly compared to the proposed RRALs to demonstrate compliance.

Per the approved Alternative Confirmation Sampling Plan and the conditions thereof, confirmation samples were collected such that each discrete sample (sidewall and floor) were representative of no more than 500 square feet of excavated area < 3 ft bgs and no more than 200 square feet of excavated area > 3 bgs. A total of sixteen (16) floor sample locations and fifty-one (51) sidewall sample locations were collected during the remedial activities. Confirmation sidewall sample locations were categorized with the cardinal direction (N, E, S, W) followed by SW-#. Confirmation floor sample locations were labeled with "FS"-#. Selected areas required additional excavation to collect a representative sample that was below the respective RRALs for that location. As the analytical results associated with these sample locations exceeded the respective RRAL, additional excavation was conducted at those locations until field screening results indicated closure criteria were attained.

Iterative confirmation samples were located to encompass the original sample locations that triggered removal (nomenclature defined in Table 1) post-additional excavation. If the sidewall area was expanded due to unacceptable confirmation sample results, the parentheses indicate the expansion iteration. For floor samples, the parentheses indicate the excavation floor depth from which the sample was collected.

Collected confirmation samples were placed into laboratory-provided sample containers, transferred under chain-of-custody, and analyzed within appropriate holding times by Pace Analytical (Pace). The soil

ConocoPhillips

samples were analyzed for TPH (DRO and ORO) by EPA Method 8015, TPH Low Fraction (GRO) by EPA Method 8015D, BTEX by EPA Method 8021B, and chlorides by EPA Method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C.

Per the NMOCD approved Work Plan and the conditions thereof, the eastern portion of the initial excavation was excavated one (1) additional foot below existing grade (for a total of 2.5 ft below surrounding grade) in the north, east, and southeast. The immediate area surrounding the release extent and the area southeast of the header was excavated three and a half (3.5) feet below pre-release grade. Areas along two steel surface lines in the release footprint were hand dug to the maximum extent practicable to remove impacted soil.

If analytical results associated with sample locations exceeded the reclamation requirements for TPH, additional excavation was conducted at those locations until field screening results indicated closure criteria were attained. Iterative confirmation samples were located to encompass the original sample locations that triggered removal post-additional excavation. Thus, a total of three (3) floor and fifteen (15) sidewall samples were collected following the additional excavation work, and final laboratory analytical results confirmed all constituents were below the established RRALs and/or reclamation requirements. The results of the February and March 2021 confirmation sampling events are summarized in Table 3. Excavated areas, depths and confirmation sample locations are shown in Figure 4.

All the excavated material was transported offsite for proper disposal. Approximately 470 cubic yards of material were transported to the R360 facility in Hobbs, New Mexico. Photographs from the excavated areas prior to backfill are provided in Appendix D. Once confirmation sampling activities were completed and associated analytical results were below the RRALs, the excavated areas were backfilled with clean material to surface grade. The remediated areas contain soil backfill consisting of suitable material to establish vegetation at the site. Copies of the waste manifests are included in Appendix E.

As prescribed in the Work Plan, the backfilled areas were seeded to aid in revegetation. Based on the soils at the site and the approved Work Plan, the New Mexico State Land Office (NMSLO) Sandy Loam (SL) Sites Seed Mixture was used for seeding and was planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture was spread by cart-pulled seed drill equipped with a depth regulator. Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate.

CONCLUSION

ConocoPhillips respectfully requests closure of this release based on the confirmation sampling results and remediation activities performed. The final C-141 forms are enclosed in Appendix A. If you have any questions concerning the remediation activities for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely, Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager cc: Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips

Greg W. Pope, P.G. Program Manager

TETRA TECH, INC.

LIST OF ATTACHMENTS

Figures:

Figure 1 – Site Location Map

Figure 2 – Topographic Map

Figure 3 – Initial Response and Release Assessment

Figure 4 – Remediation Extent and Confirmation Sample Locations

Tables:

Table 1 – Summary of Analytical Results – Initial Assessment

Table 2 - Summary of Analytical Results - Additional Assessment

Table 3 – Summary of Analytical Results – Confirmation Sampling

Appendices:

Appendix A – C-141 Forms

Appendix B – Site Characterization Data

Appendix C - Laboratory Analytical Data

Appendix D – Photographic Documentation

Appendix E – Waste Manifests

ConocoPhillips

FIGURES

TABLE

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT - 1RP-5778 CONOCOPHILLIPS PHILLIPS E STATE UNIT 29 FLOWLINE RELEASE LEA COUNTY, NM

									BTEX	2								TP	H ³		
Sample ID	Sample Date	Sample Depth	Chlorid	le ¹	Benzer	ie	Toluer	ne	Ethylben	zene	Total Xyl	enes	Total B	TEX	GRO	1	DRO		EXT DI	RO	Total TPH
• •	• • •			•		-		-						-	C ₆ - C	10	>C ₁₀ -	C ₂₈	>C ₂₈ -	C ₃₆	
		ft. bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		SURFACE	416		4.65		63.6		56.0		156		281		4920		25700		5390		36010
SP #1	12/19/2019	1	1100		< 0.050		0.167		0.386		1.13		1.68		52.3		1120		430		1602
		3	576		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		626		260		886
		SURFACE	320		< 0.200		0.721		1.87		14.4		17.0		491		19500		4360		24351
SP #2	12/19/2019	1	320		< 0.050		0.339		< 0.050		10.1		10.5		687		6890		1700		9277
		3	176		< 0.500		< 0.500		7.43	QM-07	14.8	QM-07	22.2		490		5900		1520		7910
		SURFACE	80.0		< 0.050		< 0.050		0.433		1.36		1.79		239		27500		5780		33519
SP #3	12/19/2019	1	64.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 50.0		11500		2700		14200
		3	64.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		106		38.0		144
				1								1		1		1					
		SURFACE	32.0		< 0.200		< 0.200		2.04		4.60		6.64		387		38400		7310		46097
SP #4	12/19/2019	1	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		13.8		1120		405		1539
		3	64.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		456		153		609
		SURFACE	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		12.2		15.9		28.1
BG #5	12/19/2019	1	112		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		270		87.5		358
		SURFACE	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		289		289		578
BG #6	12/19/2019	1	48.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0	_	<30.0
		· ·	10.0		10.050		. 0.050		10.050		.0.150		10.000		1 10.0		1 1010		1 10:0		-5616
BG #7	12/19/2019	SURFACE	80.0		< 0.050		< 0.050		0.126		0.426		0.552		80.3		3320		745		4145
23 #/	12,13/2013	1	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		432		260		692

NOTES:

ppm

TPH

Released to Imaging: 8/6/2021 11:09:22 AM

ft. Feet bgs Below ground surface

Bold and italicized values indicate exceedance of proposed RRALs

Shaded rows indicate depth intervals proposed for excavation and remediation

QUALIFIERS:

QM-07 The spike recovery was outside acceptance limits for MS and/or MSD. The batch was accepted based

on acceptable LCS recovery.

GRO Gasoline range organics

Parts per million

mg/kg Milligrams per kilogram

Total Petroleum Hydrocarbons

DRO Diesel range organics

1 Method SM4500Cl-B

2 Method 8260B

3 Method 8015M

Page 13 of 263

TABLE 2 SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT - 1RP-5778 CONOCOPHILLIPS PHILLIPS E STATE UNIT 29 FLOWLINE RELEASE LEA COUNTY, NM

			Field Come	- December		BTEX ²												TPH	1 ³			
Course in 1D	Council a Data	Sample Depth Interval	Field Screel	ning Results	Chloride1	loride ¹ Be			Taluana		Calculture and		Total Video of		TableTEV	GRO ⁴		DRO		ORO		Total TPH
Sample ID	Sample Date	interval	Chloride	PID			Benzene		Toluene		Ethylbenzen	9	Total Xylenes		Total BTEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	pm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		2-3	195	2.8	69.3		< 0.00120		0.00168	J	< 0.00299		0.00195	J	0.00363	< 0.120		< 4.79		1.26	ΒJ	1.26
		4-5	189	1.4	109		< 0.00105		< 0.00526		< 0.00263		< 0.00684		-	< 0.105		< 4.21		0.375	ΒJ	0.375
BH-1	5/12/2020	6-7	262	1.1	167		< 0.00108		< 0.00542		< 0.00271		< 0.00705		-	< 0.108		< 4.34		0.430	ΒJ	0.430
DIFI	5/12/2020	9-10	-	1.1	117		< 0.00107		< 0.00533		< 0.00266		< 0.00692		-	< 0.107		< 4.26		1.78	J	1.78
		14-15	-	1.3	-		-		-		-		-		-	-		-		-		-
		19-20	283	0.9	-		-		-		-		-		-	-		-		-		-
		2-3	I -	2.4	40.8		< 0.00107	1	< 0.00537		< 0.00268		< 0.00698		-	< 0.107	Ι	8.05		7.41		15.5
		4-5	188	2.1	34.3		< 0.00104		< 0.00522		< 0.00261		< 0.00678		-	< 0.104		< 4.17		0.862	J	0.862
DU 2	5/42/2020	6-7	192	1.2	121		< 0.00113		< 0.00567		< 0.00283		< 0.00737		-	< 0.113		< 4.53		0.556	J	0.556
BH-2	5/12/2020	9-10	141	1.4	81.4		< 0.00109		< 0.00545		< 0.00272		< 0.00708		-	< 0.109		1.90	J	1.83	J	3.73
		14-15	-	1.8	-		-		-		-		-		-	-		-		-		-
		19-20	-	1.9	-		-		-		-		-		-	-		-		-		-
		0-1	394	3.4	43.7	1	< 0.00104	1	< 0.00520	Τ	< 0.00260		< 0.00675		-	0.0349	J	46.0		105		151
		2-3	201	0.9	121		< 0.00104		< 0.00521		< 0.00261		< 0.00678		-	0.0256	J	< 4.17		0.736	J	0.762
BH-3	5/12/2020	4-5	169	1.1	99.8		< 0.00104		< 0.00521		< 0.00260		< 0.00677		-	0.0415	J	< 4.17		0.814	J	0.856
		6-7	180	1.4	48.0		< 0.00105		< 0.00527		< 0.00263		< 0.00685		-	< 0.105		< 4.22		1.49	J	1.49
		9-10	99.8	1.0	27.9		< 0.00106		< 0.00530		< 0.00265		< 0.00689		-	0.0578	ΒJ	< 4.24		2.34	J	2.40
		0-1	160	2.1	27.1		< 0.00104		0.00158	J	< 0.00259		< 0.00673		0.00158	0.118		52.3		117		169
		2-3	278	0.9	121		< 0.00131		< 0.00654		0.00366		0.0207		0.0244	0.111	ВJ	174		106		280
BH-4	5/12/2020	4-5	212	1.8	283		< 0.00104		< 0.00522		< 0.00261		< 0.00679		-	0.0475	ВJ	5.51		6.46		12.0
		6-7	198	0.9	380		< 0.00104		< 0.00522		< 0.00261		< 0.00678		-	< 0.104	1	23.1		22.4		45.5
		9-10	181	1.1	239		< 0.00107		< 0.00534		< 0.00267		< 0.00695		-	< 0.107		2.26	1 J3	1.92	J	4.18
		0-1	212	2.4	33.0	1	< 0.00111	1	< 0.00553		< 0.00277		< 0.00719		-	< 0.111	1	6.29		10.5		16.8
		2-3	154	1.4	17.3	J	< 0.00105		< 0.00524		< 0.00262		< 0.00681		-	< 0.105		1.75	J	2.02	J	3.77
BH-5	5/12/2020	4-5	109	1.1	22.2		< 0.00103		< 0.00515		< 0.00258		< 0.00670		-	< 0.103		< 4.12		1.05	J	1.05
		6-7	141	0.9	17.5	J	< 0.00107		< 0.00535		< 0.00267		< 0.00695		-	< 0.107		< 4.28		0.510	J	0.510
		9-10	210	1.5	91.2		< 0.00108		< 0.00541		< 0.00271		< 0.00704		-	< 0.108		< 4.33		< 4.33		-
		0-1	125	1.1	< 20.6	T	< 0.00103	1	< 0.00515	T	< 0.00257		< 0.00669		-	< 0.103	T	6.43		16.0		22.4
		2-3	113	1.8	12.5	J	< 0.00103		< 0.00517	+	< 0.00259		< 0.00672		-	< 0.103	\mathbf{t}	4.00	J	6.32	в	10.3
BH-6	5/12/2020	4-5	101	2.1	16.3	J	< 0.00103	\mathbf{T}	< 0.00516	+	< 0.00258		< 0.00670		-	< 0.103	\mathbf{t}	< 4.13		1.58	BJ	1.58
		6-7	97.3	1.2	29.0	1	< 0.00104		< 0.00518		< 0.00259		< 0.00674		-	< 0.104		< 4.15		1.35	ВJ	1.35
		9-10	91.7	0.9	37.4	1	< 0.00114		< 0.00570		< 0.00285		< 0.00741		-	0.0529	ВJ	2.66	J	0.841	ВJ	3.55

Received by OCD: 6/2/2021 11:23:08 PM

TABLE 2 SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT - 1RP-5778 CONOCOPHILLIPS PHILLIPS E STATE UNIT 29 FLOWLINE RELEASE LEA COUNTY, NM

			Field Screer	aina Dasulta			-				BTEX ²								TPH	3		
Sample ID	Sample Date	Sample Depth Interval	Field Screen	ling Results	Chloride1		Benzene		Toluene		Ethylbenzene		Total Xylenes		Total BTEX	GR0 ⁴		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	PID			Delizene		roidelle		Ethylbenzene		rotal xylenes	·	Total DIEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	рр	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	-	-	168		< 0.00106		0.00157	J	0.00116	J	0.00682	J	0.00955	< 2.65		283		550		833
		2-3	-	-	108		0.00680	J	0.00215	J	0.00332		0.00965		0.02192	< 2.63		109		168		277
		4-5	-	-	20.1	J	< 0.00109		< 0.00544		< 0.00272		0.00213	J	0.00213	< 2.72		< 4.15		< 4.15		-
		6-7	154	16.4	74.2		< 0.00133		< 0.00666		< 0.00333		0.00210	J	0.00210	< 3.33		< 4.55		< 4.55		-
BH-7	9/17/2020	9-10	87	35.3	39.1		< 0.00118		< 0.00588		< 0.00294		0.00126	J	0.00126	< 2.94		2.10	J	1.81	J	3.91
5117	5/17/2020	14-15	298	8.8	34.1		< 0.00108		< 0.00540		< 0.00270		0.00177	J	0.00177	< 2.70		< 4.13		< 4.13		-
		17-18	320	3.6	-		-		-		-		-		-	-		-		-		-
		19-20	162	20.8	77.6		< 0.00130		0.00254	J	< 0.00326		0.00228	J	0.00482	< 3.26		2.48	J	1.79	J	4.27
		24-25	194	5.9	74.9		< 0.00114		< 0.00572		0.00106	J	0.00198	J	0.00304	< 2.86		< 4.29		< 4.29		-
		26-27	384	2.3	62.9		< 0.00183		< 0.00915		< 0.00458		< 0.0119		-	< 4.58		< 4.29		< 4.29		-
		0-1	118	19.2	24.6		< 0.00113		< 0.00563		< 0.00281		0.00196	J	0.00196	< 2.81		2.84	J	11.3		14.14
BH-8	9/17/2020	2-3	100	4.4	244		< 0.00108		< 0.00540		< 0.00270		< 0.00702		-	< 2.70		< 4.09		1.55	J	1.55
		3-4	141	6.2	171		< 0.00107		< 0.00537		< 0.00269		< 0.00698		-	< 2.69		< 4.10		< 4.10		-
		0-1	155	5.4	< 21.3		< 0.00137		< 0.00684		< 0.00342		0.00249	J	0.00249	< 3.42		13.2		42.6		55.8
BH-9	9/17/2020	2-3	158	9.8	68.5		< 0.00110		< 0.00549		< 0.00275		0.00131	J	0.00131	< 2.75		3.13	J	6.64		9.77
		3-4	55	11.4	10.3	J	< 0.00105		< 0.00527		< 0.00263		< 0.00685		-	< 2.63		< 4.10		1.07	J	1.07
BH-10	9/17/2020	0-1	45	180	< 21.4		< 0.00144		< 0.00722		< 0.00362		0.00133	J	0.00133	< 3.62		4.93		23.2		28.1

NOTES:

Released to Imaging: 8/6/2021 11:09:22 AM

ft. Feet

bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

NS Interval not sampled

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

Bold and italicized values indicate exceedance of proposed RRALs

Shaded rows indicate depth intervals proposed for excavation and remediation

1 EPA Method 300.0

2 EPA Method 8260B 3 EPA Method 8015

4 EPA Method 8015D/GRO

QUALIFIERS:

B The same analyte is found in the associated blank.

J The identification of the analyte is acceptable; the reported value is an estimate.

J3 The associated batch QC was outside the established quality control range for precision.

.

TABLE 3 SUMMARY OF ANALYTICAL RESULTS CONFIRMATION SAMPLING - 1RP-5778 CONOCOPHILLIPS PHILLIPS E STATE UNIT 29 FLOWLINE LEA COUNTY, NM

											BTEX ²								TPH	3		
		Sample Depth	Field Screen	ning Results	Chloride ¹											GRO ⁴		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	PID			Benzene		Toluene		Ethylbenzen	e	Total Xylene	s	Total BTEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
FS-1	2/25/2021	1.5	34.5	1.9	12.5	J	< 0.00108		< 0.00538		< 0.00269	1	< 0.00699		-	0.0521	B J J3	15.4	1	52.6		68.1
FS-2	2/25/2021	1.5	59.4	1.8	13.5	J	< 0.00106		< 0.00532		< 0.00266		< 0.00691		-	0.0580	B J J3	34.8		122		157
FS-2 (2.5')*	3/5/2021	2.5	99	8.8	204		< 0.00109		0.00208	J	< 0.00272		0.00296	J	-	< 0.104		10.8		22.9		33.7
FS-3	2/25/2021	1.5	33.9	3.0	9.72	J	< 0.00105		< 0.00527		< 0.00264		< 0.00685		-	0.0558	B J J3	9.34		27.5		36.9
FS-4	2/25/2021	1.5	55.3	2.8	13.4	J	< 0.00110		< 0.00548		< 0.00274		< 0.00712		-	0.0546	B J J3	3.60	J	8.81		12.5
FS-5	2/26/2021	1	111	2.1	62.2		< 0.00105		< 0.00523		< 0.00261		0.00199	ΒJ	0.00199	< 0.102		4.27		18.5		22.8
FS-6	2/26/2021	1	56.6	2.4	31.4		< 0.00106		< 0.00531		< 0.00266		0.00186	ВJ	0.00186	< 0.103		< 4.13		3.56	J	3.56
FS-7	3/5/2021	3.5	105	11.1	57.0		< 0.00111		0.00209	J	< 0.00278		0.00354	1	0.00563	< 0.106		31.6		62.3		93.9
FS-8	3/5/2021	3.5	117	10.9	46.8		< 0.00110		0.00185	J	< 0.00276		0.00259	J	0.00444	< 0.105		52.7		79.2		132
FS-8 (4')*	3/9/2021	4	-	4.2	59.9		< 0.00209		< 0.0104		< 0.00522		< 0.0136		-	< 5.22		12.7		18.2		30.9
FS-9	3/5/2021	3.5	112	11.6	72.7		< 0.00119		0.00203	J	< 0.00297		0.00285		0.00488	< 0.109		34.7		82.3		117
FS-9 (4')*	3/9/2021	4	-	6.1	107		< 0.00152		< 0.00759		< 0.00380		< 0.00987		-	< 3.80		3.39	J	6.06		9.45
FS-10	3/5/2021	3.5	110	7.0	75.7		< 0.00113		0.00181	J	< 0.00281		0.00228	J	0.00409	< 0.106		26.5		60.7		87.2
FS-11	3/5/2021	3.5	297	2.4	491		< 0.00133		0.00223	J	< 0.00332		0.00303	J	0.00526	< 0.116		< 4.65		2.36	ΒJ	2.36
FS-12	3/5/2021	3.5	134	1.7	160		< 0.00107		0.00204	J	< 0.00268		0.00278	J	0.00482	< 0.103		3.20	J	8.24		11.4
FS-13	3/5/2021	3.5	213	4.3	192		< 0.00108		0.00164	J	< 0.00271		0.00231	J	0.00395	< 0.104		< 4.17		2.98	ΒJ	2.98
CSW-1	3/5/2021	-	120	3.1	107		< 0.00114		0.00231	J	< 0.00286	Γ	0.00438	J	0.00669	0.0441	J	15.9	1	40.3		56.2
CSW-2	3/5/2021	-	101	1.9	97.2		< 0.00115		0.00191	J	0.000852	J	0.00247	1	0.00523	< 0.107		15.6		49.3		64.9
CSW-3	3/5/2021	-	143	2.7	114		< 0.00114		0.00207	J	< 0.00286		0.00286	1	0.00493	< 0.107		10.7		37.9		48.6
CSW-4	3/5/2021	-	98	4.9	45.9		< 0.00112		0.00203	J	< 0.00280		0.00272	J	0.00475	< 0.106		30.2		75.7		106
CSW-4 (5')*	3/17/2021	-			126		< 0.00158		< 0.00790		< 0.00395		< 0.0103		-	1.47	J	4.84		18.2		24.5
CSW-5	3/5/2021	-	115	5.5	71.6		< 0.00110		0.00201	J	< 0.00275		0.00275	J	0.00476	< 0.105		23.4		59.3		82.7
CSW-6	3/5/2021	-	112	5.2	69.2		< 0.00110		0.00192	J	< 0.00275		0.00258	J	0.00450	< 0.105		17.9		47.3		65.2
CSW-7	3/5/2021	-	115	9.0	87.9		< 0.00110		0.00213	J	< 0.00276		0.00281	J	0.00494	< 0.105		61.2		118		179
CSW-7 (2')*	3/9/2021	-	-	3.2	38.2		< 0.00195		< 0.00974		< 0.00487		< 0.0127		-	< 4.87		34.8		48.2		83.0
CSW-8	3/5/2021	-	104	14.2	74.7		< 0.00124		0.00216	J	< 0.00309		0.00303	J	0.00519	< 0.112		46.9		102		149
CSW-8 (2')*	3/9/2021	-	-	2.5	51.1		< 0.00152		< 0.00759		< 0.00380		< 0.00987		-	< 3.80		8.41		16.7		25.1
CSW-9	3/5/2021	-	123	9.3	69.9		< 0.00112		0.00183	J	< 0.00280		0.00222	J	0.00405	< 0.106		80.7		158		239
CSW-9 (2')	3/9/2021	-	-	0.4	92.5		< 0.00191		< 0.00953		< 0.00477		< 0.0124		-	< 4.77		37.3		103		140
CSW-9 (4')*	3/12/2021	-			122		< 0.00113		< 0.00563		< 0.00282		< 0.00732		-	< 0.106		7.35		19.9		27.3
CSW-10	3/5/2021	-	135	8.8	136		< 0.00111		0.00201	J	< 0.00277		0.00255	J	0.00456	< 0.105		33.2		112		145
CSW-10 (2')	3/9/2021	-	-	2.9	132		< 0.00195		< 0.00973		< 0.00487		< 0.0126		-	< 4.87		74.5		205		280
CSW-10 (4')*	3/12/2021	-			142		< 0.00130		< 0.00649		< 0.00324		0.00120	J	0.00120	< 0.115		8.58		21.6		30.2
CSW-11	3/5/2021	-	162	9.6	96.4		< 0.00108		0.00182	J	< 0.00270		0.00379	J	0.00561	< 0.104		52.2		151		203
CSW-11 (2')	3/9/2021	-	-	3.9	19.7	J	< 0.00150		< 0.00752		< 0.00376		< 0.00978		-	< 3.76		71.4		217		288
CSW-11 (4')*	3/12/2021	-			114		< 0.00120		0.00345	J	< 0.00300		0.00171	J	0.00516	< 0.110		7.10		22.2		29.3
NSW-1	2/25/2021	-	147	0.5	29.1		< 0.00111		< 0.00554		< 0.00277		< 0.00720		-	1.33	J3	492		920		1413
NSW-1 (4')*	3/3/2021	-	21.4	2.0	47.8		< 0.00121		< 0.00607		< 0.00303		< 0.00789		-	0.0368	J	17.9		63.2		81.1

TABLE 3 SUMMARY OF ANALYTICAL RESULTS CONFIRMATION SAMPLING - 1RP-5778 CONOCOPHILLIPS PHILLIPS E STATE UNIT 29 FLOWLINE LEA COUNTY, NM

			cial di Camara								BTEX ²								TPH	3		
		Sample Depth	Field Screen	ning Results	Chloride ¹		_									GRO ⁴		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	PID	1		Benzene		Toluene		Ethylbenzen	e	Total Xylene	25	Total BTEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	om	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
ESW-1	2/25/2021	-	147	1.2	16.6	1	< 0.00109		< 0.00546	Τ	< 0.00273	Γ	< 0.00710		-	0.623	J3	12.0		37.1		49.7
ESW-2	2/25/2021	-	148	2.4	35.3		< 0.00110		< 0.00549		< 0.00275		< 0.00714		-	0.212	B J3	34.9		162		197
ESW-2 (4')	3/3/2021	-	56.8	2.1	38.6		< 0.00120		< 0.00601		< 0.00300		< 0.00781		-	< 0.110		46.0		188		234
ESW-2 (6')*	3/9/2021	-	-	0.9	< 21.0		< 0.00127		< 0.00635		< 0.00317		< 0.00825		-	< 3.17		6.09		30.5		36.6
ESW-3	2/25/2021	-	144	2.1	46.3		< 0.00106		< 0.00528		< 0.00264		< 0.00687		-	0.131	B J3	12.1		60.7		72.9
ESW-4	2/25/2021	-	135	1.3	34.6		< 0.00110		< 0.00548		< 0.00274		< 0.00712		-	0.0987	B J J3	30.4		138		168
ESW-4 (4')	3/3/2021	-	71.1	2.7	58.6		< 0.00120		< 0.00599		< 0.00299		< 0.00779		-	0.0351	J	33.1		136		169
ESW-4 (6')*	3/9/2021	-	-	2.7	126		< 0.00172		< 0.00861		< 0.00430		< 0.0112		-	< 4.30		3.92	J	9.22		13.1
ESW-5	2/25/2021	-	418	2.3	164		< 0.00111		< 0.00555		< 0.00277		< 0.00721		-	0.112	B J3	9.84		45.0		55.0
ESW-6	2/26/2021	-	121	4.6	71.8		< 0.00106		< 0.00528		< 0.00264		0.00151	ΒJ	0.00151	< 0.103		4.63	J3 J6	26.5		31.1
SSW-1	2/26/2021	-	50.2	2.5	< 20.5		< 0.00105		< 0.00527		< 0.00263		0.00130	ΒJ	0.00130	< 0.103		41.6		195		237
SSW-1 (4')	3/3/2021	-	40.1	2.0	237		< 0.00108		< 0.00540		< 0.00270		< 0.00702		-	0.0435	J	76.0		198		274
SSW-1 (6')*	3/9/2021	-	-	1.8	130		< 0.00147		< 0.00735		< 0.00367		< 0.00955		-	< 3.67		6.03		7.45		13.5
SSW-2	2/26/2021	-	44.6	3.3	< 20.9		< 0.00109		< 0.00547		< 0.00273		0.00104	ΒJ	0.00104	< 0.105		120		870		990
SSW-2 (4')	3/3/2021	-	33.8	2.1	159		< 0.00106		< 0.00529		< 0.00264		< 0.00687		-	0.0281	J	82.7		211		294
SSW-2 (6')*	3/9/2021	-	-	2.9	125		< 0.00202		< 0.0101		< 0.00507		< 0.0132		-	< 5.07		3.11	J	4.71		7.82
WSW-1	2/26/2021	-	90.1	5.8	41.7		< 0.00109		< 0.00546	1	< 0.00273	1	0.00106	ΒJ	0.00106	< 0.105		11.6		51.0		62.6
WSW-2	2/26/2021	-	78.8	6.4	< 21.3		< 0.00113		< 0.00567		< 0.00284		< 0.00738		-	< 0.107		11.3		61.7		73.0
WSW-3	2/26/2021	-	241	4.0	79.8		< 0.00112		< 0.00560		< 0.00280		< 0.00728		-	< 0.106		37.1		235		272
WSW-3 (4')*	3/3/2021	-	67.2	3.3	75.4		< 0.00116		< 0.00578		< 0.00289		< 0.00752		-	0.0415	J	22.5		70.7		93.2
WSW-4	2/26/2021	-	111	5.5	20.4	J	< 0.00112		< 0.00558		< 0.00279		0.00109	ΒJ	0.00109	< 0.106		57.5		271		329
WSW-4 (4')	3/3/2021	-	88.4	2.8	122		< 0.00113		< 0.00566		< 0.00283		< 0.00736		-	0.0510	J	39.5		111		151
WSW-4 (6')*	3/9/2021	-	-	1.1	125		< 0.00141		< 0.00704		< 0.00352		0.00187	J	0.00187	0.935	J	4.31	1	9.41		14.7
WSW-5	2/26/2021	-	108	3.1	31.5		< 0.00109		< 0.00546		< 0.00273		< 0.00710		-	< 0.105		111		638		749
WSW-5 (4')	3/3/2021	-	79.9	2.6	129		< 0.00112		< 0.00561		< 0.00281		< 0.00730		-	0.0281	J	72.3		208		280
WSW-5 (8')*	3/9/2021	-	-	2.2	< 21.0		< 0.00112		< 0.00558		< 0.00279		< 0.00726		-	0.981	J	8.20		11.6		20.8
WSW-6	2/26/2021	-	89.9	7.5	< 20.9		< 0.00109		< 0.00546		< 0.00273		< 0.00710		-	< 0.105		40.7		211		252
WSW-6 (4')	3/3/2021	-	63.0	1.9	120		< 0.00113		< 0.00563		< 0.00281		< 0.00731		-	0.0254	J	50.2	J6	142		192
WSW-6 (6')*	3/3/2021	-	-	0.8	< 20.9		< 0.00140		< 0.00699		< 0.00350		< 0.00909		-	< 3.50		6.27		22.3		28.6

NOTES:

ft. Feet

bgs Below ground surface ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

- DRO Diesel range organics
- ORO Oil range organics
- 1 EPA Method 300.0
- 2 EPA Method 8260B
- 3 EPA Method 8015
- 4 EPA Method 8015D/GRO

Bold and italicized values indicate exceedance of proposed RRALs

Gold highlight represents soil horizons that were removed during deepening of excavation floors.

Green highlight represents soil intervals that were removed during horizontal expansion of excavation sidewalls.

* These iterative samples are located to encompass the original sample location that triggered removal, with further excavation in each area indicated in ().

QUALIFIERS:

B The same analyte is found in the associated blank.

J The identification of the analyte is acceptable; the reported value is an estimate.

J3 The associated batch QC was outside the established quality control range for precision.

J6 The sample matrix interfered with the ability to make any accurate determination; spike value is too low.

.

APPENDIX A C-141 Forms

Received by OCD: 10/16/2019 11:01:00 AM Received by OCD: 6/2/2021/11:23:08 PMM

> District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NRM1930943618
District RP	1RP-5778
Facility ID	fGRL0916228606
Application ID	pRM1930943884

Release Notification

Responsible Party

Responsible Party ConocoPhillips Company	OGRID 217817
Contact Name Gustavo Fejervary	Contact Telephone 432/210-7037
Contact email g.fejervary@cop.com	Incident # (assigned by OCD)
Contact mailing address 5735 SW 7000 Andrews.	TX 79714

Location of Release Source

Latitude 32.82910

Longitude -103.62790 (NAD 83 in decimal degrees to 5 decimal places)

Site Name Phillips State Unit 29 Flowline leak	Site Type flowline
Date Release Discovered 10/4/19	API# (if applicable)

Unit Letter	Section	Township	Range	County
Р	14	17S	33E	Lea

Surface Owner: 🔽 State 🗌 Federal 🗌 Tribal 🗌 Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 1	Volume Recovered (bbls) 0
Produced Water	Volume Released (bbls) 5	Volume Recovered (bbls) 0
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release Flowline rupture

Oil Conservation Division

Incident ID	NRM1930943618
District RP	1RP-5778
Facility ID	fGRL0916228606
Application ID	pRM1930943884

Page 20 of 263

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🛛 No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
Yes, email sent to E	Bradford Billings, District 1 spill reporting email address and Dylan Rose-Coss

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

I The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Gustavo Fejervary	Title: Environmental Coordinator
Signature: email:g.fejervary@cop.com	Date: <u>10/16/19</u> Telephone: <u>432/210-7037</u>
OCD Only Received by: Ramona Marcus	Date: 11/05/2019

Page 3

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)					
Did this release impact groundwater or surface water?						
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🕅 No					
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔀 No					
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗶 No					
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔀 No					
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No					
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🔀 No					
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No					
Are the lateral extents of the release overlying a subsurface mine?	Yes X No					
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes X No					
Are the lateral extents of the release within a 100-year floodplain?	Yes X No					
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No					

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 6/2/202	1711 223 208 PMM State of New Mexico	Page 22 0					
			Incident ID				
Page 4	Oil Conservation Division		District RP				
			Facility ID				
			Application ID				
regulations all operators are public health or the environm failed to adequately investig addition, OCD acceptance of and/or regulations. Printed Name: Signature:	rmation given above is true and complete to the required to report and/or file certain release not ment. The acceptance of a C-141 report by the C ate and remediate contamination that pose a three f a C-141 report does not relieve the operator of	ifications and perform co OCD does not relieve the eat to groundwater, surfa responsibility for compl	prrective actions for rele operator of liability sho ce water, human health iance with any other feo	eases which may endanger ould their operations have or the environment. In deral, state, or local laws			
OCD Only							
Received by:		Date:					

Received by OCD: 6/2/2021 711 23:08 PMM State of New Mexico

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

<u>Remediation Plan Checklist</u> : Each of the following items must be	included in the plan.
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12 Proposed schedule for remediation (note if remediation plan time 	2(C)(4) NMAC
Deferral Requests Only: Each of the following items must be conj	firmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around prodeconstruction.	oduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health,	the environment, or groundwater.
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file co which may endanger public health or the environment. The acceptant liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local la	ertain release notifications and perform corrective actions for releases ce of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, cceptance of a C-141 report does not relieve the operator of
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
\square Approved \square Approved with Attached Conditions of A	Approval Denied Deferral Approved
Signature: Justan 2	Date:

Page 5

Page 6

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following it	tems must be included in the closure report.							
A scaled site and sampling diagram as described in 19.15.29.11 NMAC								
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)								
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)							
Description of remediation activities								
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rer human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the co accordance with 19.15.29.13 NMAC including notification to the O	Ations. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete.							
OCD Only								
Received by:	Date:							
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.							
Closure Approved by:	Date:							
Printed Name:	Title:							

APPENDIX B Site Characterization Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POI been re O=orph C=the fi closed)	placed, aned,		(quarters are 1=NW 2=NE 3=SW (quarters are smallest to							,				
mory	00300)	POD		largest)						(N	(NAD83 UTM in meters)		(In fe	(In feet)	
		Sub-		Q	Q	Q								Wa	ater
POD Number	Code	basin	County	64	16	4 S	ec	Tws	Rng	Х	Y	DistanceDept	thWellDept	hWaterCol	umn
L 01880 POD8		L	LE	3	3	3 .	13	17S	33E	628772	3633188 🌍	343	320		
<u>L 01881</u>		L	LE	3	3	3 -	13	17S	33E	628778	3633100* 🌍	357	242		
<u>L 01881</u>	R	L	LE	3	3	3 .	13	17S	33E	628778	3633100* 🌍	357	242		
<u>L 01880</u>		L	LE	3	4	3 -	13	17S	33E	629181	3633106* 🌍	755	245		
L 01880 S2		L	LE	2	1	3 -	13	17S	33E	628972	3633702* 🌍	757	235	151	84
<u>L 01884</u>		L	LE	1	4	3 ·	13	17S	33E	629181	3633306* 🌍	764	250		
<u>L 01884</u>	R	L	LE	1	4	3 -	13	17S	33E	629181	3633306* 🌍	764	250		
											Aver	age Depth to Wa	ter:	151 feet	t
												Minimum Dep	th:	151 feet	t
												Maximum Dep	th:	151 feet	t
Record 7 Count: UTMNAD83 Radius Search (in meters):															
Easting (X): 628428.37 Northing (Y): 3633174.39									Radius: 800						
*UTM location was deriv	ed from PL	.SS - see	Help												

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/30/20 4:16 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Water Bodies

NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

APPENDIX C Laboratory Analytical Data

Received by OCD: 6/2/2021 11:23:08 PM

ANALYTICAL REPORT March 01, 2021

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1320475 02/26/2021 212C-MD-02425 Phillips E State 29 Release

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Entire Report Reviewed By:

Enica Mc Neese

Erica McNeese Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

Mount Juliet, TN 37122 615-758-5858 800-767-5859 12065 Lebanon Rd www.pacenational.com

Released to Imaging: %%72021 11:09:22 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1320475

DATE/TIME: 03/01/21 17:36

PAGE: 1 of 24

Page 30 of 263

Ср Тс ŚS Cn Sr ʹQc Gl AI Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
NSW-1 L1320475-01	6
ESW-1 L1320475-02	7
ESW-2 L1320475-03	8
ESW-3 L1320475-04	9
ESW-4 L1320475-05	10
ESW-5 L1320475-06	11
FS-1 L1320475-07	12
FS-2 L1320475-08	13
FS-3 L1320475-09	14
FS-4 L1320475-10	15
Qc: Quality Control Summary	16
Total Solids by Method 2540 G-2011	16
Wet Chemistry by Method 300.0	17
Volatile Organic Compounds (GC) by Method 8015D/GRO	18
Volatile Organic Compounds (GC/MS) by Method 8260B	19
Semi-Volatile Organic Compounds (GC) by Method 8015	20
GI: Glossary of Terms	21
Al: Accreditations & Locations	22
Sc: Sample Chain of Custody	23

PROJECT: 212C-MD-02425

SDG: L1320475

DATE/TIME: 03/01/21 17:36

PAGE: 2 of 24 Received by OCD: 6/2/2021 11:23:08 PM

SAMPLE SUMMARY

ONE LAB. NAT Rage 32 of 263

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

NSW-1 L1320475-01 Solid			Collected by John Thurston	Collected date/time 02/25/2110:00	Received da 02/26/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1626462	1	02/26/21 14:12	02/26/21 14:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1626622	1	02/26/21 20:56	02/27/21 02:24	MSP	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626723	1	02/26/2119:48	02/28/21 05:14	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626785	1	02/26/2119:48	02/27/21 13:55	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1626714	10	02/27/21 16:53	02/28/21 14:06	CAG	Mt. Juliet, TN
ESW-1 L1320475-02 Solid			Collected by John Thurston	Collected date/time 02/25/21 10:08	Received da 02/26/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1626462	1	02/26/21 14:12	02/26/21 14:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1626622	1	02/26/21 20:56	02/27/21 03:31	MSP	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626723	1	02/26/21 19:48	02/28/21 05:38	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626785	1	02/26/21 19:48	02/27/21 14:15	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1626714	1	02/27/21 16:53	02/28/21 12:17	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
ESW-2 L1320475-03 Solid			John Thurston	02/25/2110:16	02/26/2109	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1626462	1	02/26/21 14:12	02/26/2114:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1626622	1	02/26/21 20:56	02/27/21 03:48	MSP	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626723	1	02/26/2119:48	02/28/21 06:02	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626785	1	02/26/2119:48	02/27/21 14:34	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1626714	5	02/27/21 16:53	02/28/21 16:47	TJD	Mt. Juliet, TN
ESW-3 L1320475-04 Solid			Collected by John Thurston	Collected date/time 02/25/21 10:24	Received da 02/26/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1626462	1	02/26/21 14:12	02/26/2114:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1626622	1	02/26/21 20:56	02/27/21 04:05	MSP	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626723	1	02/26/21 19:48	02/28/21 06:26	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626785	1	02/26/21 19:48	02/27/21 14:53	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1626714	1	02/27/21 16:53	02/28/21 18:09	TJD	Mt. Juliet, TN
ESW-4 L1320475-05 Solid			Collected by John Thurston	Collected date/time 02/25/21 10:32	Received da 02/26/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1626462	1	02/26/21 14:12	02/26/21 14:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1626622	1	02/26/21 20:56	02/27/21 04:21	MSP	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626723	1.01	02/26/21 19:48	02/28/21 06:50	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626785	1	02/26/21 19:48	02/27/21 15:12	ACG	Mt. Juliet, TN

PROJECT: 212C-MD-02425

SDG: L1320475 DATE/TIME: 03/01/21 17:36

3 с

PAGE: 3 of 24 Received by OCD: 6/2/2021 11:23:08 PM

SAMPLE SUMMARY

ONE LAB. NAT Rage 33 of 263

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

ESW-5 L1320475-06 Solid			Collected by John Thurston	Collected date/time 02/25/2110:40	Received da 02/26/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1626462	1	02/26/21 14:12	02/26/21 14:23	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1626622	1	02/26/21 20:56	02/27/21 05:12	MSP	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626723	1	02/26/21 19:48	02/28/21 07:14	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626785	1	02/26/21 19:48	02/27/21 15:31	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1626714	1	02/27/21 16:53	02/28/21 11:50	CAG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	ite/time
FS-1 L1320475-07 Solid			John Thurston	02/25/2110:48	02/26/21 09	:55
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1626462	1	02/26/21 14:12	02/26/21 14:23	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1626622	1	02/26/21 20:56	02/27/21 05:29	MSP	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626723	1	02/26/21 19:48	02/28/21 07:38	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626785	1	02/26/21 19:48	02/27/21 15:50	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1626714	1	02/27/21 16:53	02/28/21 18:36	TJD	Mt. Juliet, Th
			Collected by	Collected date/time	Received da	te/time
FS-2 L1320475-08 Solid			John Thurston	02/25/2110:56	02/26/21 09	:55
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1626462	1	02/26/21 14:12	02/26/21 14:23	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1626622	1	02/26/21 20:56	02/27/21 05:46	MSP	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626723	1	02/26/21 19:48	02/28/21 08:02	ACG	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626785	1	02/26/21 19:48	02/27/21 16:10	ACG	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1626714	5	02/27/21 16:53	02/28/21 15:26	TJD	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	ite/time
FS-3 L1320475-09 Solid			John Thurston	02/25/21 11:04	02/26/21 09	:55
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Tatal Salida by Mathed 2E40 C 2011	WC1626462	1			KDW	Mt Juliot T
Total Solids by Method 2540 G-2011	WG1626462	1	02/26/21 14:12	02/26/2114:23	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1626622	1	02/26/21 20:56	02/27/21 06:03	MSP	Mt. Juliet, Th
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626723	1	02/26/21 19:48	02/28/21 08:26	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626785	1	02/26/2119:48	02/27/21 16:29	ACG	Mt. Juliet, Th
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1626714	1	02/27/21 16:53	02/28/21 17:14	TJD	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	
FS-4 L1320475-10 Solid			John Thurston	02/25/21 11:12	02/26/2109	:55
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1626462	1	02/26/21 14:12	02/26/21 14:23	KDW	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1626622	1	02/26/21 20:56	02/27/21 06:20	MSP	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626723	1	02/26/21 19:48	02/28/21 08:50	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626785	1	02/26/21 19:48	02/27/21 16:48	ACG	Mt. Juliet, TI
volutile organic compounds (co/ms) by method ozoob	· · · · •		02/27/21 16:53		-	,

PROJECT: 212C-MD-02425

SDG: L1320475 DATE/TIME: 03/01/21 17:36

ме: 7:36 PAGE: 4 of 24

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica Mc Neese

Erica McNeese Project Manager

PROJECT: 212C-MD-02425

SDG: L1320475 DATE 03/01/

DATE/TIME: 03/01/21 17:36 PAGE: 5 of 24

Reseived by OCD: 6/2/2021 11:23:08 PM

SAMPLE RESULTS - 01

Â

Sc

Collected date/time: 02/25/2110:00

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	94.9		1	02/26/2021 14:23		WG1626462		
		0	·	02/20/202111.20	' ·	W01020+02		
	y by Method 300. Result (dry)		MDL (dry)		Dilution	Analysis	Batch	
	y by Method 300.	Qualifier	MDL (dry)				Batch	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
[PH (GC/FID) Low Fraction	1.33	<u>J3</u>	0.0229	0.105	1	02/28/2021 05:14	WG1626723
(S) a,a,a-Trifluorotoluene(FID)	91.4			77.0-120		02/28/2021 05:14	WG1626723

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	02/27/2021 13:55	WG1626785
Toluene	U		0.00144	0.00554	1	02/27/2021 13:55	<u>WG1626785</u>
Ethylbenzene	U		0.000816	0.00277	1	02/27/2021 13:55	WG1626785
Total Xylenes	U		0.000974	0.00720	1	02/27/2021 13:55	WG1626785
(S) Toluene-d8	95.4			75.0-131		02/27/2021 13:55	WG1626785
(S) 4-Bromofluorobenzene	96.9			67.0-138		02/27/2021 13:55	WG1626785
(S) 1,2-Dichloroethane-d4	81.4			70.0-130		02/27/2021 13:55	WG1626785

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	492		17.0	42.1	10	02/28/2021 14:06	WG1626714
C28-C40 Oil Range	920		2.89	42.1	10	02/28/2021 14:06	WG1626714
(S) o-Terphenyl	46.2			18.0-148		02/28/2021 14:06	WG1626714

Received by OCD: 6/2/2021 11:23:08 PM

Collected date/time: 02/25/2110:08

SAMPLE RESULTS - 02 L1320475

ONE LAB. NAT Rage 36 of 263

Â

Sc

Total Solids by Method 2540 G-2011

						10	Cn
	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	95.6		1	02/26/2021 14:23	WG1626462	-	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	16.6	J	9.62	20.9	1	02/27/2021 03:31	WG1626622

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	baten	
TPH (GC/FID) Low Fraction	0.623	<u>J3</u>	0.0227	0.105	1	02/28/2021 05:38	WG1626723	
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120		02/28/2021 05:38	WG1626723	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000510	0.00109	1	02/27/2021 14:15	WG1626785
Toluene	U		0.00142	0.00546	1	02/27/2021 14:15	<u>WG1626785</u>
Ethylbenzene	U		0.000805	0.00273	1	02/27/2021 14:15	WG1626785
Total Xylenes	U		0.000961	0.00710	1	02/27/2021 14:15	<u>WG1626785</u>
(S) Toluene-d8	96.8			75.0-131		02/27/2021 14:15	<u>WG1626785</u>
(S) 4-Bromofluorobenzene	98.4			67.0-138		02/27/2021 14:15	<u>WG1626785</u>
(S) 1,2-Dichloroethane-d4	82.8			70.0-130		02/27/2021 14:15	WG1626785

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.0		1.68	4.18	1	02/28/2021 12:17	WG1626714
C28-C40 Oil Range	37.1		0.287	4.18	1	02/28/2021 12:17	WG1626714
(S) o-Terphenyl	48.3			18.0-148		02/28/2021 12:17	WG1626714

DATE/TIME: 03/01/21 17:36
SAMPLE RESULTS - 03

ONE LAB. NAT Rage 37. of 263

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 02/25/21 10:16

						l'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	95.3		1	02/26/2021 14:23	WG1626462	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	35.3		9.65	21.0	1	02/27/2021 03:48	WG1626622

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	baten	
TPH (GC/FID) Low Fraction	0.212	B J3	0.0228	0.105	1	02/28/2021 06:02	WG1626723	
(S) a,a,a-Trifluorotoluene(FID)	96.1			77.0-120		02/28/2021 06:02	<u>WG1626723</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000513	0.00110	1	02/27/2021 14:34	WG1626785
Toluene	U		0.00143	0.00549	1	02/27/2021 14:34	<u>WG1626785</u>
Ethylbenzene	U		0.000809	0.00275	1	02/27/2021 14:34	WG1626785
Total Xylenes	U		0.000966	0.00714	1	02/27/2021 14:34	<u>WG1626785</u>
(S) Toluene-d8	94.6			75.0-131		02/27/2021 14:34	WG1626785
(S) 4-Bromofluorobenzene	96.9			67.0-138		02/27/2021 14:34	<u>WG1626785</u>
(S) 1,2-Dichloroethane-d4	81.7			70.0-130		02/27/2021 14:34	WG1626785

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	34.9		8.45	21.0	5	02/28/2021 16:47	WG1626714
C28-C40 Oil Range	162		1.44	21.0	5	02/28/2021 16:47	WG1626714
(S) o-Terphenyl	43.6			18.0-148		02/28/2021 16:47	WG1626714

SAMPLE RESULTS - 04

ONE LAB. NAT Rage 38 of 263

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 02/25/2110:24

						 1'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	97.2		1	02/26/2021 14:23	WG1626462	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	46.3		9.46	20.6	1	02/27/2021 04:05	WG1626622

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.131	B J3	0.0223	0.103	1	02/28/2021 06:26	WG1626723	
(S) a,a,a-Trifluorotoluene(FID)	96.2			77.0-120		02/28/2021 06:26	WG1626723	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000494	0.00106	1	02/27/2021 14:53	<u>WG1626785</u>
Toluene	U		0.00137	0.00528	1	02/27/2021 14:53	<u>WG1626785</u>
Ethylbenzene	U		0.000779	0.00264	1	02/27/2021 14:53	WG1626785
Total Xylenes	U		0.000930	0.00687	1	02/27/2021 14:53	<u>WG1626785</u>
(S) Toluene-d8	96.2			75.0-131		02/27/2021 14:53	WG1626785
(S) 4-Bromofluorobenzene	98.1			67.0-138		02/27/2021 14:53	<u>WG1626785</u>
(S) 1,2-Dichloroethane-d4	83.1			70.0-130		02/27/2021 14:53	WG1626785

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.1		1.66	4.11	1	02/28/2021 18:09	<u>WG1626714</u>
C28-C40 Oil Range	60.7		0.282	4.11	1	02/28/2021 18:09	<u>WG1626714</u>
(S) o-Terphenyl	47.1			18.0-148		02/28/2021 18:09	WG1626714

Collected date/time: 02/25/2110:32

SAMPLE RESULTS - 05 L1320475

ONE LAB. NAT Rage 39 of 263

Â

Sc

Total Solids by Method 2540 G-2011

						l'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	95.4		1	02/26/2021 14:23	WG1626462	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn	
Chloride	34.6		9.64	21.0	1	02/27/2021 04:21	WG1626622			

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analista		Quaimer			Dilution	,	Baten	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0987	<u>B J J3</u>	0.0229	0.106	1.01	02/28/2021 06:50	WG1626723	
(S) a,a,a-Trifluorotoluene(FID)	95.2			77.0-120		02/28/2021 06:50	WG1626723	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000512	0.00110	1	02/27/2021 15:12	WG1626785
Toluene	U		0.00142	0.00548	1	02/27/2021 15:12	WG1626785
Ethylbenzene	U		0.000808	0.00274	1	02/27/2021 15:12	WG1626785
Total Xylenes	U		0.000964	0.00712	1	02/27/2021 15:12	WG1626785
(S) Toluene-d8	95.8			75.0-131		02/27/2021 15:12	WG1626785
(S) 4-Bromofluorobenzene	96.3			67.0-138		02/27/2021 15:12	WG1626785
(S) 1,2-Dichloroethane-d4	81.5			70.0-130		02/27/2021 15:12	WG1626785

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	30.4		8.44	21.0	5	02/28/2021 16:20	WG1626714
C28-C40 Oil Range	138		1.44	21.0	5	02/28/2021 16:20	WG1626714
(S) o-Terphenyl	37.9			18.0-148		02/28/2021 16:20	<u>WG1626714</u>

Collected date/time: 02/25/2110:40

SAMPLE RESULTS - 06 L1320475

ONE LAB. NAT Rage 40 of 263

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

_	2						l'Cn
		Result	Qualifier	Dilution	Analysis	Batch	Cp
Α	nalyte	%			date / time		2
Т	otal Solids	94.8		1	02/26/2021 14:23	WG1626462	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	164		9.70	21.1	1	02/27/2021 05:12	WG1626622

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.112	<u>B J3</u>	0.0229	0.105	1	02/28/2021 07:14	WG1626723	
(S) a,a,a-Trifluorotoluene(FID)	96.4			77.0-120		02/28/2021 07:14	WG1626723	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000518	0.00111	1	02/27/2021 15:31	WG1626785
Toluene	U		0.00144	0.00555	1	02/27/2021 15:31	WG1626785
Ethylbenzene	U		0.000818	0.00277	1	02/27/2021 15:31	WG1626785
Total Xylenes	U		0.000976	0.00721	1	02/27/2021 15:31	WG1626785
(S) Toluene-d8	95.3			75.0-131		02/27/2021 15:31	WG1626785
(S) 4-Bromofluorobenzene	96.8			67.0-138		02/27/2021 15:31	WG1626785
(S) 1,2-Dichloroethane-d4	81.7			70.0-130		02/27/2021 15:31	WG1626785

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.84		1.70	4.22	1	02/28/2021 11:50	WG1626714
C28-C40 Oil Range	45.0		0.289	4.22	1	02/28/2021 11:50	WG1626714
(S) o-Terphenyl	41.2			18.0-148		02/28/2021 11:50	WG1626714

SAMPLE RESULTS - 07 L1320475

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 02/25/21 10:48

						1°Cr	ς.
	Result	Qualifier	Dilution	Analysis	Batch)
Analyte	%			date / time		2	
Total Solids	96.4		1	02/26/2021 14:23	<u>WG1626462</u>	Tc	

Wet Chemistry by Method 300.0

Wet Chemistry by	y Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	12.5	J	9.55	20.8	1	02/27/2021 05:29	WG1626622	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time	<u></u>	
TPH (GC/FID) Low Fraction	0.0521	<u>B J J3</u>	0.0225	0.104	1	02/28/2021 07:38	WG1626723	
(S) a,a,a-Trifluorotoluene(FID)	98.0			77.0-120		02/28/2021 07:38	WG1626723	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00108	1	02/27/2021 15:50	WG1626785
Toluene	U		0.00140	0.00538	1	02/27/2021 15:50	WG1626785
Ethylbenzene	U		0.000792	0.00269	1	02/27/2021 15:50	WG1626785
Total Xylenes	U		0.000946	0.00699	1	02/27/2021 15:50	WG1626785
(S) Toluene-d8	95.6			75.0-131		02/27/2021 15:50	WG1626785
(S) 4-Bromofluorobenzene	97.1			67.0-138		02/27/2021 15:50	WG1626785
(S) 1,2-Dichloroethane-d4	82.3			70.0-130		02/27/2021 15:50	WG1626785

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.4		1.67	4.15	1	02/28/2021 18:36	WG1626714
C28-C40 Oil Range	52.6		0.284	4.15	1	02/28/2021 18:36	WG1626714
(S) o-Terphenyl	56.9			18.0-148		02/28/2021 18:36	<u>WG1626714</u>

SDG: L1320475

SAMPLE RESULTS - 08

ONE LAB. NAT Rage 42 of 263

GI

AI

Sc

Collected date/time: 02/25/2110:56

(S)

a,a,a-Trifluorotoluene(FID)

Total Solids b	y Method 2540 G	G-2011						
	Result	<u>Qualif</u>	ier Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	96.9		1	02/26/2021 14:23	}	WG1626462		
Wet Chemistr	y by Method 300	.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	13.5	J	9.49	20.6	1	02/27/2021 05:46	WG1626622	
Volatile Organ	nic Compounds (0	GC) by Me	ethod 8015	D/GRO				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		

02/28/2021 08:02

02/28/2021 08:02

WG1626723

WG1626723

Analyte mg/kg mg/kg mg/kg TPH (GC/FID) Low Fraction 0.0580 B J J3 0.0224 0.103 1

Volatile Organic Compounds (GC/MS) by Method 8260B

97.5

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000497	0.00106	1	02/27/2021 16:10	WG1626785
Toluene	U		0.00138	0.00532	1	02/27/2021 16:10	<u>WG1626785</u>
Ethylbenzene	U		0.000784	0.00266	1	02/27/2021 16:10	WG1626785
Total Xylenes	U		0.000936	0.00691	1	02/27/2021 16:10	WG1626785
(S) Toluene-d8	94.6			75.0-131		02/27/2021 16:10	WG1626785
(S) 4-Bromofluorobenzene	96.9			67.0-138		02/27/2021 16:10	WG1626785
(S) 1,2-Dichloroethane-d4	81.3			70.0-130		02/27/2021 16:10	WG1626785

77.0-120

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	34.8		8.30	20.6	5	02/28/2021 15:26	WG1626714
C28-C40 Oil Range	122		1.41	20.6	5	02/28/2021 15:26	<u>WG1626714</u>
(S) o-Terphenyl	54.5			18.0-148		02/28/2021 15:26	WG1626714

SDG: L1320475 DATE/TIME: 03/01/21 17:36

SAMPLE RESULTS - 09 L1320475

ONE LAB. NAT Rage 3 of 263

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 02/25/21 11:04

						L'C	n
	Result	Qualifier	Dilution	Analysis	Batch		Ρ
Analyte	%			date / time		2	_
Total Solids	97.4		1	02/26/2021 14:23	<u>WG1626462</u>	Tc	2

Wet Chemistry by Method 300.0

Wet Chemistry by	v Method 300	0.0						3	³Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	L	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	⁴ Cn
Chloride	9.72	J	9.45	20.5	1	02/27/2021 06:03	WG1626622		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0558	<u>B J J3</u>	0.0223	0.103	1	02/28/2021 08:26	WG1626723	
(S) a,a,a-Trifluorotoluene(FID)	98.1			77.0-120		02/28/2021 08:26	WG1626723	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	02/27/2021 16:29	WG1626785
Toluene	U		0.00137	0.00527	1	02/27/2021 16:29	WG1626785
Ethylbenzene	U		0.000777	0.00264	1	02/27/2021 16:29	WG1626785
Total Xylenes	U		0.000928	0.00685	1	02/27/202116:29	WG1626785
(S) Toluene-d8	96.0			75.0-131		02/27/2021 16:29	WG1626785
(S) 4-Bromofluorobenzene	96.0			67.0-138		02/27/2021 16:29	WG1626785
(S) 1,2-Dichloroethane-d4	81.9			70.0-130		02/27/2021 16:29	WG1626785

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.34		1.65	4.11	1	02/28/2021 17:14	WG1626714
C28-C40 Oil Range	27.5		0.281	4.11	1	02/28/2021 17:14	WG1626714
(S) o-Terphenyl	60.0			18.0-148		02/28/2021 17:14	WG1626714

SDG: L1320475

DATE/TIME: 03/01/21 17:36

PAGE: 14 of 24

SAMPLE RESULTS - 10 L1320475

ONE LAB. NAT Page 44 of 203

AI

Sc

Collected date/time: 02/25/2111:12

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	95.4		1	02/26/2021 14:2	23	WG1626462		
Wet Chemistry by	Method 300	.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	13.4	J	9.64	21.0	1	02/27/2021 06:20	WG1626622	
Volatile Organic C	Compounds (G	GC) by Met	hod 8015:	D/GRO				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0546	<u>B J J3</u>	0.0227	0.105	1	02/28/2021 08:50	WG1626723	
(S) a,a,a-Trifluorotoluene(FID)	97.5			77.0-120		02/28/2021 08:50	WG1626723	
1,0,0-111100101010101010101010								

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000512	0.00110	1	02/27/2021 16:48	WG1626785
Toluene	U		0.00142	0.00548	1	02/27/2021 16:48	WG1626785
Ethylbenzene	U		0.000808	0.00274	1	02/27/2021 16:48	WG1626785
Total Xylenes	U		0.000964	0.00712	1	02/27/2021 16:48	WG1626785
(S) Toluene-d8	96.3			75.0-131		02/27/2021 16:48	WG1626785
(S) 4-Bromofluorobenzene	96.5			67.0-138		02/27/2021 16:48	WG1626785
(S) 1,2-Dichloroethane-d4	82.4			70.0-130		02/27/2021 16:48	WG1626785

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.60	J	1.69	4.19	1	02/28/2021 17:42	WG1626714
C28-C40 Oil Range	8.81		0.287	4.19	1	02/28/2021 17:42	WG1626714
(S) o-Terphenyl	46.5			18.0-148		02/28/2021 17:42	WG1626714

SDG: L1320475

Reg @ q 6 by 8 4 b 2/2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1320475-01,02,03,04,05,06,07,08,09,10

[°]Qc

Gl

Â

Sc

Method Blank (MB)

(MB) R3625679-1 02/26/2114:23								
MB Result	MB Qualifier	MB MDL	MB RDL					
%		%	%					
0.00100								
	2/26/21 14:23 MB Result %	2/26/21 14:23 MB Result <u>MB Qualifier</u> %	2/26/21 14:23 MB Result <u>MB Qualifier</u> MB MDL % %	2/26/21 14:23 MB Result MB Qualifier MB MDL MB RDL % % %				

L1320475-01 Original Sample (OS) • Duplicate (DUP)

L1320475-01 Origin	nal Sample	(OS) • Dup	olicate (DUP)						
(OS) L1320475-01 02/26/21 14:23 • (DUP) R3625679-3 02/26/21 14:23										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	%	%		%		%				
Total Solids	94.9	94.1	1	0.862		10				

Laboratory Control Sample (LCS)

(LCS) R3625679-2 02	LCS) R3625679-2 02/26/2114:23									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	%	%	%	%						
Total Solids	50.0	50.0	99.9	85.0-115						

SDG: L1320475

DATE/TIME: 03/01/21 17:36

PAGE: 16 of 24

Reg @ q & by & CD2 \$ 2/2021 11:23:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1320475-01,02,03,04,05,06,07,08,09,10

Ср

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3625713-1 02/27/21 00:49							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
Chloride	U		9.20	20.0			

L1320475-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1320475-01 02/2	27/21 02:24 • (DUP)) R3625713-3	02/27/21	02:40		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	29.1	27.8	1	4.72		20

L1320501-01 Original Sample (OS) • Duplicate (DUP)

	1320501-01 Original Sample (OS) • Duplicate (DUP) DS) L1320501-01 02/27/21 06:37 • (DUP) R3625713-6 02/27/21 06:54								
(OS) L1320501-01	02/27/21 06:37 • (DUP)) R3625713-6	02/27/21	06:54					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁸ Al	
Analyte	mg/kg	mg/kg		%		%			
Chloride	60.7	59.0	1	2.96		20		[°] Sc	

Laboratory Control Sample (LCS)

(LCS) R3625713-2 02/27	CS) R3625713-2 02/27/21 01:06									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Chloride	200	204	102	90.0-110						

L1320475-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1320475-01 02/27/21 02:24 • (MS) R3625713-4 02/27/21 02:57 • (MSD) R3625713-5 02/27/21 03:14												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	527	29.1	578	582	104	105	1	80.0-120			0.722	20

PROJECT: 212C-MD-02425

SDG: L1320475

DATE/TIME: 03/01/21 17:36

PAGE: 17 of 24

Reg cive by 89D 3/2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1320475-01,02,03,04,05,06,07,08,09,10

ONE LAB. NAT Rage A. of 263

¹Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)							
(MB) R3625855-3 02/27/21 23:39								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
TPH (GC/FID) Low Fraction	0.0410	J	0.0217	0.100				
(S) a,a,a-Trifluorotoluene(FID)	99.1			77.0-120				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3625855-1 02/27	/21 22:27 • (LCS	D) R3625855	5-2 02/27/21 22	2:51						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	4.30	5.44	78.2	98.9	72.0-127		<u>J3</u>	23.4	20
(S) a,a,a-Trifluorotoluene(FID)				104	108	77.0-120				

L1320360-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1320360-02 02/28	(OS) L1320360-02 02/28/21 02:27 • (MS) R3625855-4 02/28/21 10:25 • (MSD) R3625855-5 02/28/21 10:49											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	4.73	1.91	4.81	4.59	102	97.0	1	10.0-151			4.68	28
(S) a,a,a-Trifluorotoluene(FID)					118	108		77.0-120				

DATE/TIME: 03/01/21 17:36

PAGE: 18 of 24 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1320475-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(MB) R3625834-3	02/27/21 10:22

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	95.0			75.0-131
(S) 4-Bromofluorobenzene	95.4			67.0-138
(S) 1,2-Dichloroethane-d4	84.6			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3625834-1 02/27	/21 09:05 • (LCS	D) R3625834	-2 02/27/2109	9:24							Ē
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	L
Benzene	0.125	0.135	0.130	108	104	70.0-123			3.77	20	
Ethylbenzene	0.125	0.115	0.112	92.0	89.6	74.0-126			2.64	20	
Toluene	0.125	0.116	0.113	92.8	90.4	75.0-121			2.62	20	Ē
Xylenes, Total	0.375	0.329	0.303	87.7	80.8	72.0-127			8.23	20	
(S) Toluene-d8				91.9	93.8	75.0-131					L
(S) 4-Bromofluorobenzene				96.7	95.7	67.0-138					
(S) 1,2-Dichloroethane-d4				92.3	88.4	70.0-130					

L1320588-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1320588-01 02/27/2	21 18:43 • (MS) F	3625834-4 0	2/27/21 19:21 •	(MSD) R36258	34-5 02/27/21	19:41						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.113	U	0.0892	0.0348	78.9	30.8	1	10.0-149		J3	87.7	37
Ethylbenzene	0.113	U	0.0804	0.0297	71.2	26.3	1	10.0-160		J3	92.1	38
Toluene	0.113	U	0.0799	0.0317	70.7	28.1	1	10.0-156		<u>J3</u>	86.4	38
Xylenes, Total	0.337	U	0.210	0.0871	62.3	25.8	1	10.0-160		<u>J3</u>	82.7	38
(S) Toluene-d8					94.6	97.0		75.0-131				
(S) 4-Bromofluorobenzene					95.3	96.8		67.0-138				
(S) 1,2-Dichloroethane-d4					83.4	84.1		70.0-130				

SDG: L1320475 DATE/TIME: 03/01/21 17:36

GI

AI

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1320475-01,02,03,04,05,06,07,08,09,10

Cn

Â

Sc

Method Blank (MB)

	(D)				
(MB) R3625843-1 02/2	8/21 06:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	58.7			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3625843-2 02/	28/21 06:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	29.0	58.0	50.0-150	
(S) o-Terphenyl			79.3	18.0-148	

L1320467-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1320467-02 02/28/	21 08:54 • (MS)	R3625843-3	02/28/21 08:13	• (MSD) R3625	5843-4 02/28/	21 08:27						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
C10-C28 Diesel Range	49.8	491	748	1080	450	1050	5	50.0-150	$\underline{\vee}$	<u> J3 V</u>	36.7	20
(S) o-Terphenyl					43.8	53.8		18.0-148				

DATE/TIME: 03/01/21 17:36

PAGE: 20 of 24

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
/IDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
J	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Jncertainty Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 212C-MD-02425

SDG: L1320475 DATE/TIME: 03/01/21 17:36

PAGE: 21 of 24

Received by OCD: 6/2/2021 11:23:08 PM CCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN, 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
eanada			

Pace Analytical National 1313 Point Mallard Parkway SE Suite B Decatur, AL, 35601

Alabama	40160		
ANSI National Accreditation Board	L2239	-	
Pace Analytical National	660 Bercut Dr. Ste. C Sacra	amento, CA, 95811	
California	2961	Oregon	CA300002
Minnesota	006-999-465	Washington	C926
North Dakota	R-214		
Pace Analytical National	6000 South Eastern Avenue	e Ste 9A Las Vegas, NV, 8	9119
Nevada	NV009412021-1	-	
Pace Analytical National	1606 E. Brazos Street Suite	D Victoria, TX, 77901	
Texas	T104704328-20-18	_	

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Page 51 o ONE LAB. NATIONWIDE.	f <u>26</u> 3
oratory. No other lab is as of the network tivity, decreasing CHOICE.	¹ Cp
	² Tc
-0S-15-05	³ Ss
000032021-1	•••
75	4
002	°Cn
00003	
42	-
v375	⁵Sr
/21704	
40	6
0069	Qc
15	
200002	⁷ Gl
-02979	
000356	
004002	8

PROJECT: 212C-MD-02425

SDG: L1320475

DATE/TIME: 03/01/21 17:36

PAGE: 22 of 24

Analysis Request of Chain of Custody Record

 Page 52 of 263

 Page : 1 of 1

Tł				901 V Midlar (432)	nd, T	exas	s 797	'01	uite 10 T 32) 68	el	(12	45				Ð									
Client Name:	Conoco Phillips	Site Manager		Chr	ristian	Llull				-	-	ANALYSIS REQUEST (Circle or Specify Method No.)															
Project Name:	Phillips E State 29 Release	Contact Info:	Contact Info: Email: christian.llull@tetratech.com Phone: (512) 338-1667						1	1	1	(Cir	cle	or	Sp 	bec	ify	Me	etho 	bd	No	.)				
Project Location: (county, state)				212	2C-MD	-0242	25					1															
nvoice to: Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7		79701								-			6												list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		John	Thurs	ston]	- MRG		Se Hg	Se Hg]	tached		
Comments: COPTET	RA Acctnum											8260B	TX1005 (Ext to C35) 8015M (GRO - DRO - ORO - MRO)		otal Metals Ag As Ba Cd Cr Pb Se Hg	Cd Cr Pb			4)C/625				S	eral Water Chemistry (see attached list) n/Cation Balance		
		SAMP	LING	M	ATRIX	PR		RVA	TIVE		(N)	BTEX	TX1005 (Ext to C35) 8015M (GRO - DRO		As Ba C	As Ba	Volatiles		60B / 62	ol. 8270	08			ate TDS	eral Water Chemisti n/Cation Balance		
L1326475 LAB#	SAMPLE IDENTIFICATION	YEAR: 2021	1. A	T		Γ				AINE	ED (Y	21B	5M (G	SC	als Ag	tals A	atiles ni Vol:		ol. 82	emi. V	82 / 6	estos	300.0	Sulfate	Vater Vater	R	
(LAB USE)		DATE TH		WATER	SOIL	HCL	HNO ₃ ICE		NONE	# CONTAINERS	FILTERED (Y/N)		TPH 801	PAH 8270C	Total Meta	4	TCLP Volati TCLP Semi	RCI	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol. 8270C/625	PCB's 8082 / 608	PLM (Asbestos)	Chloride 300.0	4	General V Anion/Cat	TPH 8015R	
-01	NSW-1	2/25/2021	10:00	Γ	X			х		1	N	X	X							Τ	T	T	X	T	T	Γ	Π
02	ESW-1	2/25/2021	10:08		x			x		1	N	X	X									T	X				Τ
03	ESW-2	2/25/2021	10:16		X			x		1	N	X	X										х				
04	ESW-3	2/25/2021	10:24		X			x		1	N	X	X										X				
05	ESW-4	2/25/2021	10:32		X			x		1	N	X	X										x				
06	ESW-5	2/25/2021	10:40		X			x		1	N	X	X										X				
07	FS-1	2/25/2021	10:48		X			x		1	N	X	X										x				
08	FS-2	2/25/2021	10:56		X			X		1	N	X	X										X				
09	FS-3	2/25/2021	11:04		X			X		1	N	X	X										X				
15	FS-4	2/25/2021	11:12		X			X		1	N	X	X										x				
Relinquished by:	Date: Time: 2/25/21 130(Received by:				D	ate:		Time:			1	LAB			1] St	landa			/	(
Relinquished by:	Date: Time:	Received by:				D	ate:		Time:			Sam				-1		2				y (24	\checkmark)8 hr.	r. 72	hr.	
	Data	Dessing 4 his	in the second			0	ator		Time			7-1=.6				2	Rush Charges Authorized										
Relinquished by:	Date: Time:	Wind	Received by: Date: Time: Winh Philler 02/26/21 09:55						55						C] Sp	ecial	Repo	rt Lin	nits or	TRRF	Rep	ort				
		ÓRIGIMA	L COPY	1	922	20	81	-	-			(Circ	cle) H	AN	DDE	IVER	RED	FED	DEX	UPS	5 7	Frackin	ng #:	_			

Released to Imaging: 8/6/2021 11:09:22 AM

Pace Analytical National Center fo	or Testing & Innov	/ation		
Cooler Receipt F	orm			
Client: COPIE	TRA	L1326475		
Cooler Received/Opened On: 2 / 26 / 21	Temperature:	.6		
Received By: Gisely Quiles				
Signature: Mich hills	S AN AND AND AN	· 100		
			The Long La	
Receipt Check List	NP	Yes	No	
COC Seal Present / Intact?	/			
COC Signed / Accurate?		/		
Bottles arrive intact?		/		
Correct bottles used?	(1) (1) (1) (1) (1) (1) (1) (1)	1	Star B 1500	
Sufficient volume sent?		/		
If Applicable		8. JEP 612	Mr. Bart	
VOA Zero headspace?				
Preservation Correct / Checked?			in starting	

ANALYTICAL REPORT March 02, 2021

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1321044 02/27/2021 212C-MD-02425 Phillips E State 29 Release

Report To:

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Тс ŚS Cn Sr Qc Gl AI Sc

Ср

Page 54 of 263

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: %%72021 11:09:22 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1321044

DATE/TIME: 03/02/21 14:27

PAGE: 1 of 29

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
FS-5 L1321044-01	7
FS-6 L1321044-02	8
ESW-6 L1321044-03	9
SSW-1 L1321044-04	10
SSW-2 L1321044-05	11
WSW-1 L1321044-06	12
WSW-2 L1321044-07	13
WSW-3 L1321044-08	14
WSW-4 L1321044-09	15
WSW-5 L1321044-10	16
WSW-6 L1321044-11	17
Qc: Quality Control Summary	18
Total Solids by Method 2540 G-2011	18
Wet Chemistry by Method 300.0	20
Volatile Organic Compounds (GC) by Method 8015D/GRO	21
Volatile Organic Compounds (GC/MS) by Method 8260B	23
Semi-Volatile Organic Compounds (GC) by Method 8015	24
GI: Glossary of Terms	25
Al: Accreditations & Locations	26
Sc: Sample Chain of Custody	27

Released to Imaging: 0/0/2021 11:09:22 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02425

SDG: L1321044 DATE/TIME: 03/02/21 14:27

PAGE: 2 of 29

SAMPLE SUMMARY

ONE LAB. NAT Rage 56 of 263

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

FS-5 L1321044-01 Solid			Collected by John Thurston	Collected date/time 02/26/2110:00	Received dat 02/27/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1627352	1	03/01/21 09:09	03/01/21 09:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1627510	1	03/01/21 14:06	03/01/21 17:54	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1627521	1	02/27/21 13:35	03/02/21 05:20	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626911	1	02/27/21 13:35	02/28/21 01:47	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1627077	1	02/28/21 16:15	03/01/21 12:35	AEG	Mt. Juliet, TN
FS-6 L1321044-02 Solid			Collected by John Thurston	Collected date/time 02/26/2110:08	Received dat 02/27/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1627352	1	03/01/21 09:09	03/01/21 09:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1627510	1	03/01/21 14:06	03/01/21 18:32	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626726	1	02/27/21 13:35	03/01/21 02:17	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626911	1	02/27/21 13:35	02/28/21 02:07	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1627077	1	02/28/21 16:15	03/01/21 08:59	AEG	Mt. Juliet, TN
ESW-6 L1321044-03 Solid			Collected by John Thurston	Collected date/time 02/26/21 10:16	Received dat 02/27/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1627352	1	03/01/21 09:09	03/01/21 09:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1627510	1	03/01/21 14:06	03/01/21 18:42	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626726	1	02/27/21 13:35	03/01/21 03:01	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626911	1	02/27/21 13:35	02/28/21 02:25	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1627077	1	02/28/21 16:15	03/01/21 09:13	AEG	Mt. Juliet, TN
SSW-1 L1321044-04 Solid			Collected by John Thurston	Collected date/time 02/26/21 10:24	Received dat 02/27/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1627352	1	03/01/21 09:09	03/01/21 09:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1627510	1	03/01/21 14:06	03/01/21 18:51	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1627521	1	02/27/21 13:35	03/02/21 05:42	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626911	1	02/27/21 13:35	02/28/21 02:44	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1627077	2	02/28/21 16:15	03/01/21 10:34	AEG	Mt. Juliet, TN
SSW-2 L1321044-05 Solid			Collected by John Thurston	Collected date/time 02/26/21 10:32	Received dat 02/27/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1627352	1	03/01/21 09:09	03/01/21 09:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1627510	1	03/01/21 14:06	03/01/21 19:01	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626726	1	02/27/21 13:35	03/01/21 03:45	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626911	1	02/27/21 13:35	02/28/21 03:03	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1627077	20	02/28/21 16:15	03/01/21 11:54	AEG	Mt. Juliet, TN

PROJECT: 212C-MD-02425

SDG: L1321044 DATE/TIME: 03/02/21 14:27

94 3 (

PAGE: 3 of 29

SAMPLE SUMMARY

ONE LAB. NAT Rage 57 of 263

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

WSW-1 L1321044-06 Solid			Collected by John Thurston	Collected date/time 02/26/2110:40	Received da 02/27/21 09:	
	Datala	Dilution				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1627352	1	03/01/21 09:09	03/01/21 09:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1627510	1	03/01/21 14:06	03/01/21 19:29	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1627521	1	02/27/21 13:35	03/02/21 06:04	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626911	1	02/27/21 13:35	02/28/21 03:22	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1627077	1	02/28/21 16:15	03/01/21 09:53	AEG	Mt. Juliet, TN
WSW-2 L1321044-07 Solid			Collected by John Thurston	Collected date/time 02/26/21 10:48	Received da 02/27/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	- j	
Total Solids by Method 2540 G-2011	WG1627352	1	03/01/21 09:09	03/01/21 09:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1627510	1	03/01/21 14:06	03/01/21 19:39	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1627521	1	02/27/21 13:35	03/02/21 06:27	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626911	1	02/27/21 13:35	02/28/21 03:41	DWR	Mt. Juliet, TM
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1627077	1	02/28/21 16:15	03/01/21 10:07	AEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-3 L1321044-08 Solid			John Thurston	02/26/2110:56	02/27/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1627352	1	03/01/21 09:09	03/01/21 09:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1627510	1	03/01/21 14:06	03/01/21 19:48	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626726	1	02/27/21 13:35	03/01/21 04:51	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626911	1	02/27/21 13:35	02/28/21 04:00	DWR	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1627077	2	02/28/21 16:15	03/01/21 10:47	AEG	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	
WSW-4 L1321044-09 Solid			John Thurston	02/26/21 11:04	02/27/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1627352	1	03/01/21 09:09	03/01/21 09:19	KDW	Mt. Juliet, Tl
Wet Chemistry by Method 300.0	WG1627510	1	03/01/21 14:06	03/01/21 19:58	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626726	1	02/27/21 13:35	03/01/21 05:13	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626911	1	02/27/21 13:35	02/28/21 04:19	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1627077	2	02/28/21 16:15	03/01/21 11:01	AEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-5 L1321044-10 Solid			John Thurston	02/26/21 11:12	02/27/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1627353	1	03/01/21 09:00	03/01/21 09:08	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1627510	1	03/01/21 14:06	03/01/21 20:07	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1626726	1	02/27/21 13:35	03/01/21 05:35	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1626911	1	02/27/21 13:35	02/28/21 04:38	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1627077	20	02/28/21 16:15	03/01/21 12:08	AEG	Mt. Juliet, TN

Released to Imaging: % 5/2021 11:09:22 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02425

SDG: L1321044 DATE/TIME: 03/02/21 14:27

PAGE: 4 of 29

SAMPLE SUMMARY

ONE LAB. NAT Rage 58 of 263

		Collected by	Collected date/time	Received dat	te/time
		John Thurston	02/26/21 11:20	02/27/21 09:	15
Batch	Dilution	Preparation	Analysis	Analyst	Location
		date/time	date/time		
WG1627353	1	03/01/21 09:00	03/01/21 09:08	KDW	Mt. Juliet, TN
WG1627510	1	03/01/21 14:06	03/01/21 20:26	ELN	Mt. Juliet, TN
WG1626726	1	02/27/21 13:35	03/01/21 05:57	ACG	Mt. Juliet, TN
WG1626911	1	02/27/21 13:35	02/28/21 04:57	DWR	Mt. Juliet, TN
WG1627077	2	02/28/21 16:15	03/01/21 11:14	AEG	Mt. Juliet, TN
	WG1627353 WG1627510 WG1626726 WG1626911	WG1627353 1 WG1627510 1 WG1626726 1 WG1626911 1	Batch Dilution Preparation date/time WG1627353 1 03/01/21 09:00 WG1627510 1 03/01/21 14:06 WG1626726 1 02/27/21 13:35 WG1626911 1 02/27/21 13:35	John Thurston 02/26/21 11:20 Batch Dilution Preparation date/time Analysis WG1627353 1 03/01/21 09:00 03/01/21 09:08 WG1627510 1 03/01/21 14:06 03/01/21 09:26 WG1626726 1 02/27/21 13:35 03/01/21 05:57 WG1626911 1 02/27/21 13:35 02/28/21 04:57	John Thurston 02/26/21 11:20 02/27/21 09: Batch Dilution Preparation date/time Analysis Analyst WG1627353 1 03/01/21 09:00 03/01/21 09:08 KDW WG1627510 1 03/01/21 14:06 03/01/21 20:26 ELN WG1626726 1 02/27/21 13:35 03/01/21 05:57 ACG WG1626911 1 02/27/21 13:35 02/28/21 04:57 DWR

Ср

Released to Imaging: 0/0/2021 11:09:22 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02425

SDG: L1321044 DATE/TIME: 03/02/21 14:27

7

PAGE: 5 of 29

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: %%72021 11:09:22 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02425

SDG: L1321044 DATE/TIME: 03/02/21 14:27

Г**IME:** 1 14:27 PAGE: 6 of 29

SAMPLE RESULTS - 01

ΆI

Sc

Collected date/time: 02/26/2110:00

	Result	Qualifier	r Dilution	Analysis		Batch	
Analyte	%			date / time			
Total Solids	97.8		1	03/01/2021 09:19		WG1627352	
Wet Chemistry	by Method 300.0 Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
		Qualifier			Dilution		Batch
						date / time	
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Analyte Chloride	mg/kg 62.2		тд/кд 9.41	20.5	1	03/01/2021 17:54	WG1627510
Chloride	62.2		9.41	20.5	1		<u>WG1627510</u>
Chloride		C) by Met	9.41	20.5	1		<u>WG1627510</u>

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQC
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	03/02/2021 05:20	WG1627521	
(S) a,a,a-Trifluorotoluene(FID)	92.0			77.0-120		03/02/2021 05:20	<u>WG1627521</u>	⁷ Gl

Sample Narrative:

L1321044-01 WG1627521: Previous run also had low IS/SURR recovery. Matrix effect.

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00105	1	02/28/2021 01:47	<u>WG1626911</u>
Toluene	U		0.00136	0.00523	1	02/28/2021 01:47	<u>WG1626911</u>
Ethylbenzene	U		0.000771	0.00261	1	02/28/2021 01:47	<u>WG1626911</u>
Total Xylenes	0.00199	<u>B J</u>	0.000920	0.00680	1	02/28/2021 01:47	<u>WG1626911</u>
(S) Toluene-d8	102			75.0-131		02/28/2021 01:47	<u>WG1626911</u>
(S) 4-Bromofluorobenzene	94.6			67.0-138		02/28/2021 01:47	<u>WG1626911</u>
(S) 1,2-Dichloroethane-d4	91.7			70.0-130		02/28/2021 01:47	WG1626911

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.27		1.65	4.09	1	03/01/2021 12:35	WG1627077
C28-C40 Oil Range	18.5		0.280	4.09	1	03/01/2021 12:35	<u>WG1627077</u>
(S) o-Terphenyl	49.7			18.0-148		03/01/2021 12:35	WG1627077

Collected date/time: 02/26/21 10:08

SAMPLE RESULTS - 02 L1321044

ONE LAB. NAT Rage 61 of 263

Â

Sc

Total Solids by Method 2540 G-2011

						1°C	n
	Result	Qualifier	Dilution	Analysis	Batch		Ρ
Analyte	%			date / time		2	_
Total Solids	97.0		1	03/01/2021 09:19	WG1627352	Tc	2

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	⁴ Cn
Chloride	31.4		9.49	20.6	1	03/01/2021 18:32	WG1627510		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	bach	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	03/01/2021 02:17	WG1626726	
(S) a,a,a-Trifluorotoluene(FID)	92.8			77.0-120		03/01/2021 02:17	WG1626726	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000496	0.00106	1	02/28/2021 02:07	WG1626911
Toluene	U		0.00138	0.00531	1	02/28/2021 02:07	<u>WG1626911</u>
Ethylbenzene	U		0.000783	0.00266	1	02/28/2021 02:07	WG1626911
Total Xylenes	0.00186	<u>B J</u>	0.000935	0.00691	1	02/28/2021 02:07	<u>WG1626911</u>
(S) Toluene-d8	101			75.0-131		02/28/2021 02:07	WG1626911
(S) 4-Bromofluorobenzene	95.4			67.0-138		02/28/2021 02:07	<u>WG1626911</u>
(S) 1,2-Dichloroethane-d4	83.9			70.0-130		02/28/2021 02:07	WG1626911

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	03/01/2021 08:59	WG1627077
C28-C40 Oil Range	3.56	J	0.283	4.13	1	03/01/2021 08:59	WG1627077
(S) o-Terphenyl	45.6			18.0-148		03/01/2021 08:59	WG1627077

SDG: L1321044

SAMPLE RESULTS - 03 L1321044

ONE LAB. NAT Rage 62 of 263

Â

Sc

Collected date/time: 02/26/21 10:16 Total Solids by Method 2540 G-2011

	victilou 2040 0-2	.011				 1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	97.3		1	03/01/2021 09:19	WG1627352	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	71.8		9.46	20.6	1	03/01/2021 18:42	WG1627510	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	03/01/2021 03:01	WG1626726	
(S) a,a,a-Trifluorotoluene(FID)	93.3			77.0-120		03/01/2021 03:01	WG1626726	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000493	0.00106	1	02/28/2021 02:25	<u>WG1626911</u>
Toluene	U		0.00137	0.00528	1	02/28/2021 02:25	<u>WG1626911</u>
Ethylbenzene	U		0.000779	0.00264	1	02/28/2021 02:25	<u>WG1626911</u>
Total Xylenes	0.00151	<u>B J</u>	0.000930	0.00687	1	02/28/2021 02:25	<u>WG1626911</u>
(S) Toluene-d8	98.0			75.0-131		02/28/2021 02:25	<u>WG1626911</u>
(S) 4-Bromofluorobenzene	104			67.0-138		02/28/2021 02:25	<u>WG1626911</u>
(S) 1,2-Dichloroethane-d4	95.4			70.0-130		02/28/2021 02:25	WG1626911

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.63	<u>J3 J6</u>	1.66	4.11	1	03/01/2021 09:13	WG1627077
C28-C40 Oil Range	26.5		0.282	4.11	1	03/01/2021 09:13	WG1627077
(S) o-Terphenyl	41.2			18.0-148		03/01/2021 09:13	WG1627077

SAMPLE RESULTS - 04 L1321044

ONE LAB. NAT Rage 63 of 263

Â

Sc

Collected date/time: 02/26/21 10:24 Total Solids by Method 2540 G-2011

		OTT				 1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	97.4		1	03/01/2021 09:19	<u>WG1627352</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	U		9.45	20.5	1	03/01/2021 18:51	WG1627510	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	03/02/2021 05:42	WG1627521	
(S) a,a,a-Trifluorotoluene(FID)	94.7			77.0-120		03/02/2021 05:42	WG1627521	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	02/28/2021 02:44	<u>WG1626911</u>
Toluene	U		0.00137	0.00527	1	02/28/2021 02:44	<u>WG1626911</u>
Ethylbenzene	U		0.000777	0.00263	1	02/28/2021 02:44	WG1626911
Total Xylenes	0.00130	<u>B J</u>	0.000927	0.00685	1	02/28/2021 02:44	<u>WG1626911</u>
(S) Toluene-d8	96.9			75.0-131		02/28/2021 02:44	WG1626911
(S) 4-Bromofluorobenzene	103			67.0-138		02/28/2021 02:44	<u>WG1626911</u>
(S) 1,2-Dichloroethane-d4	96.1			70.0-130		02/28/2021 02:44	WG1626911

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	41.6		3.31	8.21	2	03/01/2021 10:34	WG1627077
C28-C40 Oil Range	195		0.563	8.21	2	03/01/2021 10:34	WG1627077
(S) o-Terphenyl	45.3			18.0-148		03/01/2021 10:34	WG1627077

SDG: L1321044

Collected date/time: 02/26/2110:32

SAMPLE RESULTS - 05 L1321044

ONE LAB. NAT Rage 64 of 263

Â

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	95.5		1	03/01/2021 09:19	WG1627352	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴ Cn
Chloride	U		9.63	20.9	1	03/01/2021 19:01	WG1627510		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	03/01/2021 03:45	WG1626726	
(S) a,a,a-Trifluorotoluene(FID)	92.1			77.0-120		03/01/2021 03:45	WG1626726	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000511	0.00109	1	02/28/2021 03:03	<u>WG1626911</u>
Toluene	U		0.00142	0.00547	1	02/28/2021 03:03	<u>WG1626911</u>
Ethylbenzene	U		0.000806	0.00273	1	02/28/2021 03:03	<u>WG1626911</u>
Total Xylenes	0.00104	<u>B J</u>	0.000962	0.00711	1	02/28/2021 03:03	<u>WG1626911</u>
(S) Toluene-d8	96.2			75.0-131		02/28/2021 03:03	<u>WG1626911</u>
(S) 4-Bromofluorobenzene	103			67.0-138		02/28/2021 03:03	<u>WG1626911</u>
(S) 1,2-Dichloroethane-d4	96.1			70.0-130		02/28/2021 03:03	WG1626911

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	120		33.7	83.7	20	03/01/2021 11:54	WG1627077
C28-C40 Oil Range	870		5.74	83.7	20	03/01/2021 11:54	WG1627077
(S) o-Terphenyl	64.2	<u>J7</u>		18.0-148		03/01/2021 11:54	WG1627077

Represented by OCD: 6/2/2021 11:23:08 PM

SAMPLE RESULTS - 06 L1321044

ONE LAB. NAT Rage 65 of 263

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 02/26/21 10:40

						1'C	n
	Result	Qualifier	Dilution	Analysis	Batch		Ρ
Analyte	%			date / time		2	_
Total Solids	95.6		1	03/01/2021 09:19	WG1627352	T	С

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0 ³ S									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴ Cn
Chloride	41.7		9.62	20.9	1	03/01/2021 19:29	WG1627510		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	03/02/2021 06:04	WG1627521	
(S) a,a,a-Trifluorotoluene(FID)	92.6			77.0-120		03/02/2021 06:04	WG1627521	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000510	0.00109	1	02/28/2021 03:22	<u>WG1626911</u>
Toluene	U		0.00142	0.00546	1	02/28/2021 03:22	<u>WG1626911</u>
Ethylbenzene	U		0.000805	0.00273	1	02/28/2021 03:22	WG1626911
Total Xylenes	0.00106	<u>B J</u>	0.000961	0.00710	1	02/28/2021 03:22	<u>WG1626911</u>
(S) Toluene-d8	95.8			75.0-131		02/28/2021 03:22	WG1626911
(S) 4-Bromofluorobenzene	104			67.0-138		02/28/2021 03:22	<u>WG1626911</u>
(S) 1,2-Dichloroethane-d4	98.8			70.0-130		02/28/2021 03:22	WG1626911

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11.6		1.68	4.18	1	03/01/2021 09:53	WG1627077
C28-C40 Oil Range	51.0		0.287	4.18	1	03/01/2021 09:53	WG1627077
(S) o-Terphenyl	51.3			18.0-148		03/01/2021 09:53	WG1627077

Collected date/time: 02/26/21 10:48

SAMPLE RESULTS - 07 L1321044

ONE LAB. NAT Page 66 of 263

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	93.7		1	03/01/2021 09:19	WG1627352	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	Cn
Chloride	U		9.82	21.3	1	03/01/2021 19:39	WG1627510		~11

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	03/02/2021 06:27	WG1627521	
(S) a,a,a-Trifluorotoluene(FID)	93.4			77.0-120		03/02/2021 06:27	<u>WG1627521</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000530	0.00113	1	02/28/2021 03:41	<u>WG1626911</u>
Toluene	U		0.00148	0.00567	1	02/28/2021 03:41	<u>WG1626911</u>
Ethylbenzene	U		0.000836	0.00284	1	02/28/2021 03:41	<u>WG1626911</u>
Total Xylenes	U		0.000999	0.00738	1	02/28/2021 03:41	<u>WG1626911</u>
(S) Toluene-d8	94.5			75.0-131		02/28/2021 03:41	<u>WG1626911</u>
(S) 4-Bromofluorobenzene	103			67.0-138		02/28/2021 03:41	<u>WG1626911</u>
(S) 1,2-Dichloroethane-d4	99.1			70.0-130		02/28/2021 03:41	<u>WG1626911</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11.3		1.72	4.27	1	03/01/2021 10:07	WG1627077
C28-C40 Oil Range	61.7		0.292	4.27	1	03/01/2021 10:07	WG1627077
(S) o-Terphenyl	54.5			18.0-148		03/01/2021 10:07	WG1627077

SDG: L1321044

SAMPLE RESULTS - 08 L1321044

ONE LAB. NAT Rage 67 of 263

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 02/26/21 10:56

						 1'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	94.3		1	03/01/2021 09:19	WG1627352	Tc

Wet Chemistry by Method 300.0

Wet Chemistry b	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	79.8		9.75	21.2	1	03/01/2021 19:48	WG1627510	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamer	ma/ka	mg/kg	Dilution	date / time	Batem	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	03/01/2021 04:51	WG1626726	
(S) a,a,a-Trifluorotoluene(FID)	92.7			77.0-120		03/01/2021 04:51	WG1626726	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000523	0.00112	1	02/28/2021 04:00	<u>WG1626911</u>
Toluene	U		0.00146	0.00560	1	02/28/2021 04:00	<u>WG1626911</u>
Ethylbenzene	U		0.000826	0.00280	1	02/28/2021 04:00	WG1626911
Total Xylenes	U		0.000986	0.00728	1	02/28/2021 04:00	<u>WG1626911</u>
(S) Toluene-d8	98.9			75.0-131		02/28/2021 04:00	WG1626911
(S) 4-Bromofluorobenzene	100			67.0-138		02/28/2021 04:00	<u>WG1626911</u>
(S) 1,2-Dichloroethane-d4	89.6			70.0-130		02/28/2021 04:00	WG1626911

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	37.1		3.41	8.48	2	03/01/2021 10:47	WG1627077
C28-C40 Oil Range	235		0.581	8.48	2	03/01/2021 10:47	WG1627077
(S) o-Terphenyl	55.6			18.0-148		03/01/2021 10:47	WG1627077

SDG: L1321044

Revergine dipy OCD: 6/2/2021 11:23:08 PM

Collected date/time: 02/26/21 11:04

SAMPLE RESULTS - 09

ONE LAB. NAT Rage 68 of 263

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

						I'C	ⁿ
	Result	Qualifier	Dilution	Analysis	Batch		-P
Analyte	%			date / time		2	
Total Solids	94.6		1	03/01/2021 09:19	WG1627352	T	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	20.4	J	9.73	21.2	1	03/01/2021 19:58	WG1627510

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Dilation	date / time	Batch	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	03/01/2021 05:13	WG1626726	
(S) a,a,a-Trifluorotoluene(FID)	90.9			77.0-120		03/01/2021 05:13	WG1626726	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000521	0.00112	1	02/28/2021 04:19	WG1626911
Toluene	U		0.00145	0.00558	1	02/28/2021 04:19	WG1626911
Ethylbenzene	U		0.000822	0.00279	1	02/28/2021 04:19	WG1626911
Total Xylenes	0.00109	<u>B J</u>	0.000981	0.00725	1	02/28/2021 04:19	WG1626911
(S) Toluene-d8	95.6			75.0-131		02/28/2021 04:19	WG1626911
(S) 4-Bromofluorobenzene	104			67.0-138		02/28/2021 04:19	WG1626911
(S) 1,2-Dichloroethane-d4	98.6			70.0-130		02/28/2021 04:19	WG1626911

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	57.5		3.41	8.46	2	03/01/2021 11:01	WG1627077
C28-C40 Oil Range	271		0.580	8.46	2	03/01/2021 11:01	<u>WG1627077</u>
(S) o-Terphenyl	50.3			18.0-148		03/01/2021 11:01	WG1627077

SAMPLE RESULTS - 10

AI

Sc

Collected date/time: 02/26/21 11:12

	ethod 2540 G	Qualifier	er Dilution	Analysis		Patch		
Analyte	%	Quanner	<u>Dilution</u>	date / time		Batch		
Total Solids	95.6		1	03/01/2021 09:0)8	WG1627353		
Wet Chemistry by	/ Method 300.	.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	31.5		9.63	20.9	1	03/01/2021 20:07	WG1627510	
Volatile Organic (Compounds (G	GC) by Me	thod 8015	D/GRO				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Analyte								
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	03/01/2021 05:35	WG1626726	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000510	0.00109	1	02/28/2021 04:38	<u>WG1626911</u>
Toluene	U		0.00142	0.00546	1	02/28/2021 04:38	<u>WG1626911</u>
Ethylbenzene	U		0.000805	0.00273	1	02/28/2021 04:38	<u>WG1626911</u>
Total Xylenes	U		0.000961	0.00710	1	02/28/2021 04:38	<u>WG1626911</u>
(S) Toluene-d8	95.4			75.0-131		02/28/2021 04:38	<u>WG1626911</u>
(S) 4-Bromofluorobenzene	104			67.0-138		02/28/2021 04:38	<u>WG1626911</u>
(S) 1,2-Dichloroethane-d4	95.6			70.0-130		02/28/2021 04:38	WG1626911

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	111		33.7	83.7	20	03/01/2021 12:08	WG1627077
C28-C40 Oil Range	638		5.73	83.7	20	03/01/2021 12:08	<u>WG1627077</u>
(S) o-Terphenyl	64.4	<u>J7</u>		18.0-148		03/01/2021 12:08	WG1627077

SDG: L1321044

SAMPLE RESULTS - 11

ŚS

Cn

Â

Sc

Collected date/time: 02/26/2111:20

	Result	Qualifier	Dilution	Analysis	Patch
	Result	Qualifier	Dilution	,	Batch
Analyte	%			date / time	
Total Solids	95.6		1	03/01/2021 09:08	WG1627353

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.62	20.9	1	03/01/2021 20:26	WG1627510

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.10101	date / time	201011	6
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	03/01/2021 05:57	WG1626726	
(S) a,a,a-Trifluorotoluene(FID)	90.6			77.0-120		03/01/2021 05:57	WG1626726	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000510	0.00109	1	02/28/2021 04:57	<u>WG1626911</u>
Toluene	U		0.00142	0.00546	1	02/28/2021 04:57	WG1626911
Ethylbenzene	U		0.000805	0.00273	1	02/28/2021 04:57	WG1626911
Total Xylenes	U		0.000961	0.00710	1	02/28/2021 04:57	<u>WG1626911</u>
(S) Toluene-d8	102			75.0-131		02/28/2021 04:57	WG1626911
(S) 4-Bromofluorobenzene	95.4			67.0-138		02/28/2021 04:57	<u>WG1626911</u>
(S) 1,2-Dichloroethane-d4	94.5			70.0-130		02/28/2021 04:57	WG1626911

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	40.7		3.37	8.37	2	03/01/2021 11:14	WG1627077
C28-C40 Oil Range	211		0.573	8.37	2	03/01/2021 11:14	<u>WG1627077</u>
(S) o-Terphenyl	60.3			18.0-148		03/01/2021 11:14	WG1627077

Reg cive by 9 615 2/2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

°Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Dialik					1 CD
(MB) R3626347-1 (J3/01/21 09:19				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.000				
					³ Ss

L1320999-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1320999-01 03	3/01/21 09:19 • (D	UP) R3626347-3	; 03/01/21	09:19		
	Original Re	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	87.9	85.5	1	2.79		10

Laboratory Control Sample (LCS)

(LCS) R3626347-2 03/0)1/21 09:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1321044 DATE/TIME: 03/02/21 14:27

PAGE: 18 of 29

Reg cive cby 9615 3/2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1321044-10,11

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blan										
(MB) R3626345-1	03/01/21 09:08					Ср				
	MB Result	MB Qualifier	MB MDL	MB RDL		2				
Analyte	%		%	%		Tc				
Total Solids	0.00100									
						³ Ss				

L1321061-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1321061-01 03/01/2	109:08 • (DUP)	R3626345-3	03/01/21 0	9:08		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	55.6	55.1	1	0.947		10

Laboratory Control Sample (LCS)

(LCS) R3626345-2 03/01/21 09:08						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		
Total Solids	50.0	50.0	100	85.0-115		

DATE/TIME: 03/02/21 14:27

PAGE: 19 of 29
Regering to 50 00/2/2021 11:23:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1321044-01,02,03,04,05,06,07,08,09,10,11

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3626342-1 03/01/21 17:25							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
Chloride	U		9.20	20.0			

L1321044-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1321044-01 03/01/21	1 17:54 • (DUP) R	3626342-3 (03/01/21 18	:04		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	62.2	58.5	1	6.22		20

L1321044-10 Original Sample (OS) • Duplicate (DUP)

L1321044-10 Original Sample (OS) • Duplicate (DUP)									
OS) L1321044-10 03/01/	(21 20:07 • (DUP)	R3626342-6	03/01/21	20:17					
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	mg/kg	mg/kg		%		%			
Chloride	31.5	33.4	1	5.69		20			

Laboratory Control Sample (LCS)

(LCS) R3626342-2 03/01	CS) R3626342-2 03/01/21 17:35							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Chloride	200	190	95.1	90.0-110				

L1321044-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1321044-01 03/01/21	(OS) L1321044-01 03/01/21 17:54 • (MS) R3626342-4 03/01/21 18:13 • (MSD) R3626342-5 03/01/21 18:23											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	511	62.2	572	565	99.6	98.2	1	80.0-120			1.26	20

Released to	Imaging? 8/8/2021 11:09:22 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1321044

DATE/TIME: 03/02/21 14:27

PAGE: 20 of 29

Reg co a by 89D 6/2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAT Rage 74 of 263

⁺Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3626042-2 03/01/21 00:33								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
TPH (GC/FID) Low Fraction	U		0.0217	0.100				
(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120				

Laboratory Control Sample (LCS)

(LCS) R3626042-1 02/28/2	21 23:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.11	111	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			115	77.0-120	

L1320002-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1320002-01 03/01/2	(OS) L1320002-01 03/01/21 06:20 • (MS) R3626042-3 03/01/21 09:38 • (MSD) R3626042-4 03/01/21 10:00											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	121	U	129	132	107	109	25	10.0-151			2.30	28
(S) a,a,a-Trifluorotoluene(FID)					112	113		77.0-120				

Sample Narrative:

OS: MEOH prep only

DATE/TIME: 03/02/21 14:27 PAGE: 21 of 29

Reserve to by 950 6/2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAT Rage 75 of 263

Method Blank (MB)

(MB) R3626350-2 03/02/21 04:01								
Analyte	mg/kg		mg/kg	mg/kg				
TPH (GC/FID) Low Fraction	U		0.0217	0.100				
(S) a,a,a-Trifluorotoluene(FID)	98.6			77.0-120				

Laboratory Control Sample (LCS)

(LCS) R3626350-1 03/02	2/21 03:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.89	107	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			115	77.0-120	

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

DATE/TIME: 03/02/2114:27 PAGE: 22 of 29

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

	1				
(MB) R3626121-2 02/28/2	21 01:28				— Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ Ss
Toluene	U		0.00130	0.00500	
Xylenes, Total	0.00232	J	0.000880	0.00650	4
(S) Toluene-d8	102			75.0-131	C
(S) 4-Bromofluorobenzene	96.3			67.0-138	
(S) 1,2-Dichloroethane-d4	94.3			70.0-130	⁵ S

Laboratory Control Sample (LCS)

(LCS) R3626121-1 02/28	/21 00:32					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	΄GΙ
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.126	101	70.0-123		8
Ethylbenzene	0.125	0.128	102	74.0-126		
Toluene	0.125	0.117	93.6	75.0-121		9
Xylenes, Total	0.375	0.338	90.1	72.0-127		Sc
(S) Toluene-d8			92.1	75.0-131		
(S) 4-Bromofluorobenzene			110	67.0-138		
(S) 1,2-Dichloroethane-d4			106	70.0-130		

DATE/TIME: 03/02/21 14:27

PAGE: 23 of 29 Qc

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1321044-01,02,03,04,05,06,07,08,09,10,11

⁺Cn

Gl

Â

Sc

Method Blank (MB)

	10)				
(MB) R3625970-1 03/0	1/21 03:57				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	42.6			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3625970-2 03/	/01/21 04:11				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	26.7	53.4	50.0-150	
(S) o-Terphenyl			62.3	18.0-148	

L1321044-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1321044-03 03/01/2	21 09:13 • (MS) R	3625970-3 03	3/01/21 09:26 •	(MSD) R36259	970-4 03/01/21	09:40						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	51.2	4.63	16.3	34.1	22.9	58.0	1	50.0-150	<u>J6</u>	<u>J3</u>	70.5	20
(S) o-Terphenyl					35.4	67.0		18.0-148				

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 212C-MD-02425

SDG: L1321044 DATE/TIME: 03/02/21 14:27

PAGE: 25 of 29

Received by OCD: 6/2/2021 11:23:08 PM CCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN, 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

Pace Analytical National 1313 Point Mallard Parkway SE Suite B Decatur, AL, 35601

Alabama	40160		
ANSI National Accreditation Board	L2239		
Pace Analytical National	660 Bercut Dr. Ste. C Sacrar	mento, CA, 95811	
California	2961	Oregon	CA300002
Minnesota	006-999-465	Washington	C926
North Dakota	R-214		
Pace Analytical National	6000 South Eastern Avenue	Ste 9A Las Vegas, NV, 8	9119
Nevada	NV009412021-1		
Pace Analytical National	1606 E. Brazos Street Suite D	Victoria, TX, 77901	
Texas	T104704328-20-18		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Released to Imaging: %/6/2021 11:09:22 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1321044

DATE/TIME: 03/02/21 14:27

Τс Ss Cn Sr Qc Gl AI Sc

Page 79 of 263 ONE LAB. NATIONWIDE.

Analysis Request of Chain of Custody Record

Page 80 of 263
Page : 1 of 2

TŁ	Tetra Tech, Inc.				901 W Midlar (432)	nd, Te	exas	7970)	D1	Te 100 Te 32) 68	el	1										(F	-21	7	
lient Name:	Conoco Phillips	Site Manager		Chri	istian l	lull	-					A	NAL	YSI		EQI			c			Mad	ha	d M		
Project Name:	Phillips E State 29 Release	Contact Info:			ail: chr					h.com		1	1	1				or	Sp	eci	lity i		no	d N	0.)	11
Project Location: county, state)	Lea County, New Mexico	Project #:		212	C-MD-	0242	25					1														
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01												5										list)		
Receiving Laboratory:	Pace Analytical	Sampler Sign	nature:		John	Thurs	ton						Can Dao			Se Hg						10	0	(see attached		
comments: COPTET	RA Acctnum											8260B			Ag As Ba Cd Cr Pb	Cd Cr Pb			4	0C/625			2	istry (see a	10	911
		SAMP	LING	M	ATRIX	PR		RVA		ss	(N/A)	Ĕ	Ext to C3		As Ba C	P Metals Ag As Ba	atiles		50B / 62	Vol. 827(P			Chemist	lance	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2021					100	1		CONTAINERS	ED (Y		TX1005 (E	20C		etals Ag	inaures mi Vola		/ol. 82(Semi. V	0 1 7 90	bestos)	8	Water Che	n/Cation Balan	SR
(LAB USE)	U1321044	DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	NONE	# CONT	FILTERED	1×1	XT HAT	PAH 8270C	Total Me	TCLP Metals A	TCLP Semi Volatiles	RCI	GC/MS Vol. 8260B / 624	GC/MS Semi, Vol. 8270C/625 DCD's and / Eng	NORM	PLM (Asbestos)	Chlorido	Chloride Sulfate 103 General Water Chemistry	Anion/Ca	TPH 8015R
-01	FS-5	2/26/2021	10:00		X			х		1	N	х	1	×									х			
-02	FS-6	2/26/2021	10:08		Х			x		1	N	X	1	X									Х	5		- 3
-03	ESW-6	2/26/2021	10:16		Х			X		1	Ν	Х	1	X	10	1	1 de	- M			1	34	X			
rel	SSW-1	2/26/2021	10:24		Х			X		1	Ν	Х	1	X							1		Х	8		
-05	SSW-2	2/26/2021	10:32		Х			X		1	Ν	X	1	X									х			
-06	WSW-1	2/26/2021	10:40	-	Х			х		1	Ν	X		X					12	-			х			
-09	WSW-2	2/26/2021	10:48		Х			х		1	Ν	X		X								1	х			
-28	WSW-3	2/26/2021	10:56		Х			X		1	Ν	Х		X									х			
-06	WSW-4	2/26/2021	11:04		х	12		x		1	N	X		X	1								Х			1
10	WSW-5	2/26/2021	11:12	1	X			X	-	1	Ν	X		X									Х			
Relinquished by:	Date: Time: 2/12/12 1500	Received by: Alem		~	2	1/2	ate: 7/		Time:	91	15a	~		B U		F	REM	Sta	S: anda	ird						
Relinquished by:	2/26/21 13 00 Date: Time:	Received by:					ate:	_	Time:			-	nple 1			re	_	_				24 1		8 hr.	72 h	r.
Relinquished by:	Date: Time:	Received by:				Di	ate:	-	Time:	_								_				norized		Report	rt	

Analysis Request of Chain of Custody Record

Page: 2 of 2

TŁ	Tetra Tech, Inc.			ľ	Midlar		exas			te 100 To 2) 68	el									1				-			F.
lient Name:	Conoco Phillips	Site Manage	er:	Chris	stian	Llull						A	NAL	YSI					_				1		1		
Project Name:	Phillips E State 29 Release	Contact Info) :					l@tetra -1667	tech	.com		1	1	I		Cir	cle	or	Sp 	ec	ify	Me	tho 		10.		1
Project Location: county, state)	Lea County, New Mexico	Project #:		2120	C-MD	-0242	5					1															
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	1										11					1ª		2			2		ist)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:	J	John 7	Thurs	ton			2		1	OBO - MRO		Se Hg	Se Hg		Ø	1					(see attached list)			
comments: COPTET	RA Acctnum											8260B	- 12		As Ba Cd Cr Pb Se Hg	Cd Cr Pb	-	1	4	8270C/625	N.L.						
		SAMF	PLING	MA	TRIX			RVATI	VE	SS	î	Ě	TX1005 (Ext to C35) 8015M (GRO - DRO		As Ba C	Ag As Ba (tiles		0B / 62		20			hemistry	ance		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2021		T		Π				AINEF	(N/A) DE	1.1	TX1005 (Ext	00	Ag	Metals Ag	aues ni Volatiles		ol. 826	emi. Vo	182 / DU	estos)	300.0	Vater Che	ion/Cation Balance	R	
(LAB USE)	L1321044	DATE	TIME	WATER	SOIL	НСГ	HNO ₃	ICE NONE		# CONTAINERS	FILTERED	BTEX 80	TPH TX1	PAH 8270C	Total Metals	TCLP Me	TCLP Semi Vo	RCI	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol.	PCB's 8082 / 608 NORM	N I	Chloride	General Water Chemistry	Anion/Cal	TPH 8015R	НОГР
-11	WSW-6	2/26/2021	11:20	1.000	X			Х		1	Ν	х)	<									х				
			ger an a																								
				╉┼	+	+	-		_			H		+	-		+		$\left \right $	+		H	+	+			+
		1			+								+	+				\top	H			Ħ	1	\uparrow		+	+
		1					2			-	1-12		1													\Box	T
教授 学校 (1)					-	-						\square		1			-			_	_					\vdash	+
							_			1. 1. 1.	10.20	$\left \right $	-	+	192		12		\mathbb{H}	+	+	-	-	+	H	H	+
					+				-			╉╢	+	+		+	+	+	H			10	.	+	1-1		+
	Date: Time: 2/26/21 1500	Received by: Down		c	2	Da		, Tin 21	ne:	:1	Say		LAE			F		-	anda							7	
Relinquished by:	Date: Time:	Received by:				Da	te:	Tin	ne:			Sam	iple T	empe	ratur	e	X	RU	ISH:	Sam	e Day	(241	ir.)	8 hr.	72 h	r.	
Relinquished by:	Dete	Descinding		_														Ru	sh Cł	harge	s Auth	orized					
tennquisned by.	Date: Time:	Received by:				Da	te:	Tin	ne:			1						Sp	ecial	Repo	ırt Limi	ts or T	RRP	Repoi	rt		
Released to Imagin	ng: 8/6/2021 11:09:22 AM	ORIGINA	L COPY		5	2 4	1.	0-1	= 2 1	3.9		(Cir	cle)	HAN	DE	LIVEF	RED	FED	DEX)	UPS	S Tr	acking	g #: _				

Pace Analytical National Ce	enter for Testing & Innov	vation	
Cooler R	eceipt Form		
Client: COPTETRA		4321	044
Cooler Received/Opened On: 2 / 27/	21 Temperature:	3.9C	
Received By: Glenn Enloe		YN MALES	Section of
Signature: I for all		1.16.10	Non-Maria
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?			
COC Signed / Accurate?	And and the second state of the second states	-/_	
Bottles arrive intact?		1	
Correct bottles used?	and the second	1	
Sufficient volume sent?			
If Applicable	And the second second second	A CONTRACTOR	-
VOA Zero headspace?			and the second
Preservation Correct / Checked?	A REAL PROPERTY AND A REAL PROPERTY AND	Contract of the second	The series
	No. 2 Advantage of the second s		

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1322696 03/04/2021 212C-MD-02425 Phillips E State 29 Release

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Τс ŚS Cn Sr Qc Gl AI Sc

Ср

Page 83 of 263

Entire Report Reviewed By:

Chu, top

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: %%72021 11:09:22 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02425

SDG: L1322696

(

DATE/TIME: 03/05/21 17:34

PAGE: 1 of 23

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
NSW-1 (4') L1322696-01	6
ESW-2 (4') L1322696-02	7
ESW-4 (4') L1322696-03	8
SSW-1 (4') L1322696-04	9
SSW-2 (4') L1322696-05	10
WSW-3 (4') L1322696-06	11
WSW-4 (4') L1322696-07	12
WSW-5 (4') L1322696-08	13
WSW-6 (4') L1322696-09	14
Qc: Quality Control Summary	15
Total Solids by Method 2540 G-2011	15
Wet Chemistry by Method 300.0	17
Volatile Organic Compounds (GC) by Method 8015D/GRO	18
Volatile Organic Compounds (GC/MS) by Method 8260B	19
Semi-Volatile Organic Compounds (GC) by Method 8015	20
GI: Glossary of Terms	21
Al: Accreditations & Locations	22
Sc: Sample Chain of Custody	23

PROJECT: 212C-MD-02425

SDG: L1322696 DATE/TIME: 03/05/21 17:34

TIME: 21 17:34 PAGE: 2 of 23

SAMPLE SUMMARY

ONE LAB. NAT Rage 85 of 263

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

NSW-1 (4') L1322696-01 Solid			Collected by John Thurston	Collected date/time 03/03/21 11:05	Received da 03/04/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1629435	1	03/04/2113:40	03/04/21 13:52	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1629492	1	03/04/21 13:56	03/04/21 17:43	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1629526	1	03/04/21 11:41	03/04/21 17:10	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1629581	1	03/04/21 11:41	03/05/21 01:46	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1629472	1	03/04/21 19:35	03/05/21 05:12	JDG	Mt. Juliet, TN
ESW-2 (4') L1322696-02 Solid			Collected by John Thurston	Collected date/time 03/03/21 11:10	Received da 03/04/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1629435	1	03/04/2113:40	03/04/21 13:52	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1629492	1	03/04/21 13:56	03/04/21 18:12	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1629526	1	03/04/21 11:41	03/04/21 17:32	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1629581	1	03/04/21 11:41	03/05/21 02:05	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1629472	5	03/04/21 19:35	03/05/21 15:27	JDG	Mt. Juliet, TN
ESW-4 (4') L1322696-03 Solid			Collected by John Thurston	Collected date/time 03/03/21 11:15	Received da 03/04/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
menou	Daten	Diation	date/time	date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1629436	1	03/04/2113:30	03/04/21 13:39	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1629492	1	03/04/21 13:56	03/04/21 18:31	MCG	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1629526	1	03/04/21 11:41	03/04/21 17:54	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8013D/ORO	WG1629581	1	03/04/2111:41	03/05/21 02:24	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1629472	5	03/04/21 19:35	03/05/21 15:14	JDG	Mt. Juliet, T
SSW-1 (4') L1322696-04 Solid			Collected by John Thurston	Collected date/time 03/03/21 11:20	Received da 03/04/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1629436	1			KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1629436 WG1629492	1	03/04/21 13:30 03/04/21 13:56	03/04/21 13:39 03/04/21 18:40	KDW MCG	Mt. Juliet, Tr Mt. Juliet, Th
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1629492 WG1629526	1 1	03/04/21 13:56	03/04/21 18:16	BMB	Mt. Juliet, Th Mt. Juliet, Th
Volatile Organic Compounds (GC/MS) by Method 80150/GRO	WG1629526 WG1629581	1	03/04/21 11:41	03/05/21 02:43	JHH	Mt. Juliet, Th Mt. Juliet, Th
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1629381 WG1629472	10	03/04/2111:41	03/05/21 06:31	JDG	Mt. Juliet, Th Mt. Juliet, Th
SSW-2 (4') L1322696-05 Solid			Collected by John Thurston	Collected date/time 03/03/21 11:25	Received da 03/04/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1629436	1	03/04/2113:30	03/04/21 13:39	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1629492	1	03/04/2113:56	03/04/21 18:50	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1629526	1	03/04/21 11:41	03/04/21 18:39	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1629581	1	03/04/21 11:41	03/05/21 03:03	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1629472	10	03/04/21 19:35	03/05/21 06:56	JDG	Mt. Juliet, TN

PROJECT: 212C-MD-02425

SDG: L1322696 DATE/TIME: 03/05/21 17:34

ИЕ: 17:34 PAGE: 3 of 23

Received by OCD: 6/2/2021 11:23:08 PM	SAMPLE S	SUMN	IARY		ONE L	.AB. NAT Røg
WSW-3 (4') L1322696-06 Solid			Collected by John Thurston	Collected date/time 03/03/21 11:30	Received da 03/04/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1629436	1	03/04/21 13:30	03/04/21 13:39	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1629492	1	03/04/21 13:56	03/04/21 18:59	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1629526	1	03/04/21 11:41	03/04/21 19:01	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1629581	1	03/04/21 11:41	03/05/21 03:22	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1629472	1	03/04/21 19:35	03/05/21 05:25	JDG	Mt. Juliet, TN
			Collected by	Collected date/time		
WSW-4 (4') L1322696-07 Solid			John Thurston	03/03/21 11:35	03/04/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1629436	1	03/04/2113:30	03/04/21 13:39	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1629492	1	03/04/2113:56	03/04/21 19:28	MCG	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1629526	1	03/04/21 11:41	03/04/21 19:23	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1629581	1	03/04/21 11:41	03/05/21 03:41	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1629472	2	03/04/21 19:35	03/05/21 15:40	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-5 (4') L1322696-08 Solid			John Thurston	03/03/21 11:40	03/04/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1629436	1	03/04/2113:30	03/04/21 13:39	KDW	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1629492	1	03/04/21 13:56	03/04/21 19:37	MCG	Mt. Juliet, TN
	WG1629526	1	03/04/21 11:41	03/04/21 19:45	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1029520			03/05/21 04:00	JHH	Mt. Juliet, TN
	WG1629526 WG1629581	1	03/04/21 11:41	03/05/21 04.00		
olatile Organic Compounds (GC/MS) by Method 8260B		1 10	03/04/21 11:41 03/04/21 19:35	03/05/21 07:48	JDG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 WSW-6 (4') L1322696-09 Solid	WG1629581					te/time
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 WSW-6 (4') L1322696-09 Solid	WG1629581		03/04/21 19:35 Collected by	03/05/21 07:48 Collected date/time	JDG Received da	te/time
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 WSW-6 (4') L1322696-09 Solid	WG1629581 WG1629472 Batch	10	03/04/21 19:35 Collected by John Thurston	03/05/21 07:48 Collected date/time 03/03/21 11:45	JDG Received da 03/04/21 09:	te/time 15
olatile Organic Compounds (GC/MS) by Method 8260B emi-Volatile Organic Compounds (GC) by Method 8015 VSW-6 (4') L1322696-09 Solid fethod otal Solids by Method 2540 G-2011	WG1629581 WG1629472	10	03/04/21 19:35 Collected by John Thurston Preparation	03/05/21 07:48 Collected date/time 03/03/21 11:45 Analysis	JDG Received da 03/04/21 09:	te/time 15 Location
olatile Organic Compounds (GC/MS) by Method 8260B emi-Volatile Organic Compounds (GC) by Method 8015 VSW-6 (4') L1322696-09 Solid Method otal Solids by Method 2540 G-2011 /et Chemistry by Method 300.0	WG1629581 WG1629472 Batch WG1629436 WG1629492	10 Dilution	03/04/21 19:35 Collected by John Thurston Preparation date/time 03/04/21 13:30 03/04/21 13:56	03/05/21 07:48 Collected date/time 03/03/21 11:45 Analysis date/time	JDG Received da 03/04/21 09: Analyst KDW MCG	te/time 15 Location Mt. Juliet, TN Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 WSW-6 (4') L1322696-09 Solid Method Fotal Solids by Method 2540 G-2011 Net Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO	WG1629581 WG1629472 Batch WG1629436 WG1629492 WG1629526	10 Dilution	03/04/21 19:35 Collected by John Thurston Preparation date/time 03/04/21 13:30 03/04/21 13:56 03/04/21 11:41	03/05/21 07:48 Collected date/time 03/03/21 11:45 Analysis date/time 03/04/21 13:39 03/04/21 19:47 03/04/21 20:07	JDG Received da 03/04/21 09: Analyst KDW MCG BMB	te/time 15 Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 NSW-6 (4') L1322696-09 Solid Method Total Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0	WG1629581 WG1629472 Batch WG1629436 WG1629492	10 Dilution	03/04/21 19:35 Collected by John Thurston Preparation date/time 03/04/21 13:30 03/04/21 13:56	03/05/21 07:48 Collected date/time 03/03/21 11:45 Analysis date/time 03/04/21 13:39 03/04/21 19:47	JDG Received da 03/04/21 09: Analyst KDW MCG	te/time 15 Location Mt. Juliet, TN Mt. Juliet, TN

PROJECT: 212C-MD-02425

SDG: L1322696

PAGE: 4 of 23

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: %/6/2021 11:09:22 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1322696

DATE/TIME: 03/05/21 17:34

PAGE: 5 of 23 Received by OCD: 6/2/2021 11:23:08 PM Collected date/time: 03/03/21 11:05

SAMPLE RESULTS - 01 L1322696

ONE LAB. NAT Rage 88 of 263

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	90.4		1	03/04/2021 13:52	WG1629435	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	47.8		10.2	22.1	1	03/04/2021 17:43	WG1629492	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg	duamer	mg/kg	mg/kg	Dilution	date / time	baten	6	⁶ G
TPH (GC/FID) Low Fraction	0.0368	J	0.0240	0.111	1	03/04/2021 17:10	WG1629526	L	_
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		03/04/2021 17:10	WG1629526	7	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000567	0.00121	1	03/05/2021 01:46	<u>WG1629581</u>
Toluene	U		0.00158	0.00607	1	03/05/2021 01:46	<u>WG1629581</u>
Ethylbenzene	U		0.000894	0.00303	1	03/05/2021 01:46	<u>WG1629581</u>
Total Xylenes	U		0.00107	0.00789	1	03/05/2021 01:46	<u>WG1629581</u>
(S) Toluene-d8	93.7			75.0-131		03/05/2021 01:46	<u>WG1629581</u>
(S) 4-Bromofluorobenzene	98.3			67.0-138		03/05/2021 01:46	<u>WG1629581</u>
(S) 1,2-Dichloroethane-d4	80.5			70.0-130		03/05/2021 01:46	WG1629581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	17.9		1.78	4.43	1	03/05/2021 05:12	WG1629472
C28-C40 Oil Range	63.2		0.303	4.43	1	03/05/2021 05:12	WG1629472
(S) o-Terphenyl	47.9			18.0-148		03/05/2021 05:12	WG1629472

Reseived by 10 CD: 6/2/2021 11:23:08 РМ

Collected date/time: 03/03/21 11:10

SAMPLE RESULTS - 02 L1322696

ONE LAB. NAT Rage 89 of 263

ΆI

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		90.9		1	03/04/2021 13:52	WG1629435	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	38.6		10.1	22.0	1	03/04/2021 18:12	WG1629492	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	03/04/2021 17:32	WG1629526	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		03/04/2021 17:32	WG1629526	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000561	0.00120	1	03/05/2021 02:05	WG1629581
Toluene	U		0.00156	0.00601	1	03/05/2021 02:05	WG1629581
Ethylbenzene	U		0.000886	0.00300	1	03/05/2021 02:05	WG1629581
Total Xylenes	U		0.00106	0.00781	1	03/05/2021 02:05	WG1629581
(S) Toluene-d8	93.3			75.0-131		03/05/2021 02:05	WG1629581
(S) 4-Bromofluorobenzene	97.2			67.0-138		03/05/2021 02:05	WG1629581
(S) 1,2-Dichloroethane-d4	80.1			70.0-130		03/05/2021 02:05	WG1629581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	46.0		8.86	22.0	5	03/05/202115:27	WG1629472
C28-C40 Oil Range	188		1.51	22.0	5	03/05/202115:27	WG1629472
(S) o-Terphenyl	67.7			18.0-148		03/05/2021 15:27	WG1629472

Collected date/time: 03/03/21 11:15

SAMPLE RESULTS - 03 L1322696

ONE LAB. NAT Rage 90 of 263

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		91.0		1	03/04/2021 13:39	WG1629436	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	58.6		10.1	22.0	1	03/04/2021 18:31	WG1629492	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0351	J	0.0238	0.110	1	03/04/2021 17:54	WG1629526	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		03/04/2021 17:54	WG1629526	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000559	0.00120	1	03/05/2021 02:24	WG1629581
Toluene	U		0.00156	0.00599	1	03/05/2021 02:24	<u>WG1629581</u>
Ethylbenzene	U		0.000883	0.00299	1	03/05/2021 02:24	WG1629581
Total Xylenes	U		0.00105	0.00779	1	03/05/2021 02:24	<u>WG1629581</u>
(S) Toluene-d8	94.3			75.0-131		03/05/2021 02:24	WG1629581
(S) 4-Bromofluorobenzene	97.2			67.0-138		03/05/2021 02:24	<u>WG1629581</u>
(S) 1,2-Dichloroethane-d4	81.1			70.0-130		03/05/2021 02:24	WG1629581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	33.1		8.85	22.0	5	03/05/2021 15:14	WG1629472
C28-C40 Oil Range	136		1.51	22.0	5	03/05/2021 15:14	<u>WG1629472</u>
(S) o-Terphenyl	73.9			18.0-148		03/05/2021 15:14	WG1629472

Reserved by OCD: 6/2/2021 11:23:08 PM Collected date/time: 03/03/21 11:20

SAMPLE RESULTS - 04 L1322696

ONE LAB. NAT Rage 91 of 263

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	-		0 115	D:1	A 1 -		-	Ср
	ĸ	esult	Qualifier	Dilution	Analysis	Batch	L	
Analyte	%				date / time		_ F	2
Total Solids	9	5.1		1	03/04/2021 13:39	WG1629436		Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	237		9.57	20.8	1	03/04/2021 18:40	WG1629492	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Dilution	date / time	batem	e
TPH (GC/FID) Low Fraction	0.0435	J	0.0226	0.104	1	03/04/2021 18:16	WG1629526	L
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		03/04/2021 18:16	WG1629526	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000505	0.00108	1	03/05/2021 02:43	WG1629581
Toluene	U		0.00140	0.00540	1	03/05/2021 02:43	WG1629581
Ethylbenzene	U		0.000796	0.00270	1	03/05/2021 02:43	WG1629581
Total Xylenes	U		0.000951	0.00702	1	03/05/2021 02:43	WG1629581
(S) Toluene-d8	94.1			75.0-131		03/05/2021 02:43	WG1629581
(S) 4-Bromofluorobenzene	97.4			67.0-138		03/05/2021 02:43	WG1629581
(S) 1,2-Dichloroethane-d4	79.9			70.0-130		03/05/2021 02:43	WG1629581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	76.0		16.7	41.6	10	03/05/2021 06:31	WG1629472
C28-C40 Oil Range	198		2.85	41.6	10	03/05/2021 06:31	WG1629472
(S) o-Terphenyl	69.1			18.0-148		03/05/2021 06:31	WG1629472

DATE/TIME:

Regeived by 10 CD: 6/2/2021 11:23:08 РМ Collected date/time: 03/03/21 11:25

SAMPLE RESULTS - 05 L1322696

ONE LAB. NAT Rage 92 of 263

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.2		1	03/04/2021 13:39	WG1629436	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	159		9.46	20.6	1	03/04/2021 18:50	WG1629492	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Dilution	date / time	bach	1
TPH (GC/FID) Low Fraction	0.0281	J	0.0223	0.103	1	03/04/2021 18:39	WG1629526	[
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		03/04/2021 18:39	WG1629526	-

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000494	0.00106	1	03/05/2021 03:03	WG1629581
Toluene	U		0.00137	0.00529	1	03/05/2021 03:03	WG1629581
Ethylbenzene	U		0.000779	0.00264	1	03/05/2021 03:03	WG1629581
Total Xylenes	U		0.000930	0.00687	1	03/05/2021 03:03	WG1629581
(S) Toluene-d8	94.2			75.0-131		03/05/2021 03:03	WG1629581
(S) 4-Bromofluorobenzene	97.9			67.0-138		03/05/2021 03:03	WG1629581
(S) 1,2-Dichloroethane-d4	80.4			70.0-130		03/05/2021 03:03	WG1629581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	82.7		16.6	41.1	10	03/05/2021 06:56	<u>WG1629472</u>
C28-C40 Oil Range	211		2.82	41.1	10	03/05/2021 06:56	<u>WG1629472</u>
(S) o-Terphenyl	72.3			18.0-148		03/05/2021 06:56	WG1629472

Repaired by QGD: 6/2/2021 11:23:08 PM Collected date/time: 03/03/21 11:30

SAMPLE RESULTS - 06 L1322696

ONE LAB. NAT Rage 93 of 263

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	—	Ср
Analyte		%			date / time		i	2
Total Solids		92.7		1	03/04/2021 13:39	WG1629436	_	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	75.4		9.92	21.6	1	03/04/2021 18:59	WG1629492	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.100.011	date / time		6
TPH (GC/FID) Low Fraction	0.0415	J	0.0234	0.108	1	03/04/2021 19:01	WG1629526	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		03/04/2021 19:01	WG1629526	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000540	0.00116	1	03/05/2021 03:22	<u>WG1629581</u>
Toluene	U		0.00150	0.00578	1	03/05/2021 03:22	<u>WG1629581</u>
Ethylbenzene	U		0.000853	0.00289	1	03/05/2021 03:22	WG1629581
Total Xylenes	U		0.00102	0.00752	1	03/05/2021 03:22	WG1629581
(S) Toluene-d8	94.1			75.0-131		03/05/2021 03:22	WG1629581
(S) 4-Bromofluorobenzene	97.6			67.0-138		03/05/2021 03:22	WG1629581
(S) 1,2-Dichloroethane-d4	80.4			70.0-130		03/05/2021 03:22	WG1629581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	22.5		1.74	4.31	1	03/05/2021 05:25	WG1629472
C28-C40 Oil Range	70.7		0.295	4.31	1	03/05/2021 05:25	WG1629472
(S) o-Terphenyl	44.9			18.0-148		03/05/2021 05:25	WG1629472

Regived by OGD: 6/2/2021 11:23:08 PM Collected date/time: 03/03/21 11:35

SAMPLE RESULTS - 07

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.8		1	03/04/2021 13:39	WG1629436	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	122		9.81	21.3	1	03/04/2021 19:28	WG1629492	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0510	J	0.0231	0.107	1	03/04/2021 19:23	WG1629526	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		03/04/2021 19:23	<u>WG1629526</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000529	0.00113	1	03/05/2021 03:41	WG1629581
Toluene	U		0.00147	0.00566	1	03/05/2021 03:41	<u>WG1629581</u>
Ethylbenzene	U		0.000834	0.00283	1	03/05/2021 03:41	<u>WG1629581</u>
Total Xylenes	U		0.000996	0.00736	1	03/05/2021 03:41	<u>WG1629581</u>
(S) Toluene-d8	93.6			75.0-131		03/05/2021 03:41	<u>WG1629581</u>
(S) 4-Bromofluorobenzene	97.4			67.0-138		03/05/2021 03:41	<u>WG1629581</u>
(S) 1,2-Dichloroethane-d4	80.0			70.0-130		03/05/2021 03:41	WG1629581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	39.5		3.43	8.53	2	03/05/2021 15:40	WG1629472
C28-C40 Oil Range	111		0.584	8.53	2	03/05/2021 15:40	WG1629472
(S) o-Terphenyl	55.1			18.0-148		03/05/2021 15:40	WG1629472

Collected date/time: 03/03/21 11:40

SAMPLE RESULTS - 08 L1322696

ONE LAB. NAT Rage 95 of 263

ΆI

Sc

Total Solids by Method 2540 G-2011

						10	Cn
	Result	Qualifier	Dilution	Analysis	Batch		~P
Analyte	%			date / time		2	
Total Solids	94.2		1	03/04/2021 13:39	WG1629436	17	Гс

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	129		9.76	21.2	1	03/04/2021 19:37	WG1629492	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0281	J	0.0230	0.106	1	03/04/2021 19:45	WG1629526	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		03/04/2021 19:45	WG1629526	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000524	0.00112	1	03/05/2021 04:00	<u>WG1629581</u>
Toluene	U		0.00146	0.00561	1	03/05/2021 04:00	<u>WG1629581</u>
Ethylbenzene	U		0.000827	0.00281	1	03/05/2021 04:00	WG1629581
Total Xylenes	U		0.000988	0.00730	1	03/05/2021 04:00	<u>WG1629581</u>
(S) Toluene-d8	93.3			75.0-131		03/05/2021 04:00	WG1629581
(S) 4-Bromofluorobenzene	96.3			67.0-138		03/05/2021 04:00	WG1629581
(S) 1,2-Dichloroethane-d4	82.3			70.0-130		03/05/2021 04:00	WG1629581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	72.3		17.1	42.5	10	03/05/2021 07:48	WG1629472
C28-C40 Oil Range	208		2.91	42.5	10	03/05/2021 07:48	WG1629472
(S) o-Terphenyl	63.3			18.0-148		03/05/2021 07:48	WG1629472

SDG: L1322696

Repsinedby QGD: 6/2/2021 11:23:08 PM Collected date/time: 03/03/21 11:45

SAMPLE RESULTS - 09 L1322696

ONE LAB. NAT Rage 96 of 263

ΆI

Sc

Total Solids by Method 2540 G-2011

						10	2n
	Result	Qualifier	Dilution	Analysis	Batch		-h
Analyte	%			date / time		2	
Total Solids	94.1		1	03/04/2021 13:39	WG1629436	T	Гс

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cr
Chloride	120		9.78	21.3	1	03/04/2021 19:47	WG1629492	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.101.011	date / time		e
TPH (GC/FID) Low Fraction	0.0254	J	0.0231	0.106	1	03/04/2021 20:07	WG1629526	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		03/04/2021 20:07	WG1629526	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000526	0.00113	1	03/05/2021 04:19	<u>WG1629581</u>
Toluene	U		0.00146	0.00563	1	03/05/2021 04:19	<u>WG1629581</u>
Ethylbenzene	U		0.000829	0.00281	1	03/05/2021 04:19	WG1629581
Total Xylenes	U		0.000990	0.00731	1	03/05/2021 04:19	<u>WG1629581</u>
(S) Toluene-d8	93.8			75.0-131		03/05/2021 04:19	WG1629581
(S) 4-Bromofluorobenzene	96.9			67.0-138		03/05/2021 04:19	<u>WG1629581</u>
(S) 1,2-Dichloroethane-d4	81.4			70.0-130		03/05/2021 04:19	WG1629581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	50.2	<u>J6</u>	17.1	42.5	10	03/05/2021 08:14	WG1629472
C28-C40 Oil Range	142		2.91	42.5	10	03/05/2021 08:14	WG1629472
(S) o-Terphenyl	69.1			18.0-148		03/05/2021 08:14	WG1629472

SDG: L1322696

Reserved by OQD3 12/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1322696-01,02

Ср

[°]Qc

Gl

Â

Sc

Method Blank (MB)

(MB) R3627649-1	03/04/21 13:52				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	⁻Tc
Total Solids	0.00100				
					³ Ss

L1322304-01 Original Sample (OS) • Duplicate (DUP)

L1322304-01 C	riginal Sample	(OS) • Dup	plicate (DUP)				
(OS) L1322304-01 0	3/04/21 13:52 • (DUP)) R3627649-3	03/04/21	13:52				
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	%	%		%		%		
Total Solids	75.4	77.3	1	2.46		0		

Laboratory Control Sample (LCS)

(LCS) R3627649-2 03	3/04/21 13:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1322696

DATE/TIME: 03/05/21 17:34

PAGE: 15 of 23

Reg cive cby OQD3 6/2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1322696-03,04,05,06,07,08,09

Gl

Â

Sc

Method Blank (MB)

(MB) R3627632-1 0					
(112) 11002, 002 . 0	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00100				

L1321250-01 Original Sample (OS) • Duplicate (DUP)

L1321250-01 O	.1321250-01 Original Sample (OS) • Duplicate (DUP)										
(OS) L1321250-01 0)3/04/21 13:39 • (DUP)	, R3627632-3	03/04/21	13:39							
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	%	%		%		%					
Total Solids	76.7	74.0	1	3.57		10					

Laboratory Control Sample (LCS)

(LCS) R3627632-2 03	3/04/21 13:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1322696

DATE/TIME: 03/05/21 17:34

PAGE: 16 of 23

Req @ q 6 by 9 9 by 2/2021 11:23:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1322696-01,02,03,04,05,06,07,08,09

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3627648-1 03	3/04/21 15:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1320769-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1320769-10 03/04	/21 16:27 • (DUP)	R3627648-3	03/04/21	16:37		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

L1322696-02 Original Sample (OS) • Duplicate (DUP)

L1322696-02	2 Original Sample	e (OS) • Du	uplicate	(DUP)		
(OS) L1322696-02	03/04/21 18:12 • (DUP) R3627648-6	6 03/04/21	18:21		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	38.6	45.3	1	16.0		20

Laboratory Control Sample (LCS)

(LCS) R3627648-2 03/04	CS) R3627648-2 03/04/21 15:09							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Chloride	200	195	97.6	90.0-110				

L1322696-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1322696-01 03/04/21 17:43 • (MS) R3627648-4 03/04/21 17:53 • (MSD) R3627648-5 03/04/21 18:02												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	553	47.8	635	647	106	108	1	80.0-120			1.91	20

Released to	Imaging? 8/8/2021 11:09:22 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1322696

DATE/TIME: 03/05/21 17:34

PAGE: 17 of 23

Reserve 6 2 9 6 2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1322696-01,02,03,04,05,06,07,08,09

ONE LAB. NAPage 100 of 263

¹Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

))				1 Cp
(MB) R3627442-2 03/04	/21 12:02				 Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	⁻Tc
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120	³ Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3627442-1 03/04/	/21 10:56 • (LCSI	D) R3627442-	3 03/04/21 12:4	16						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	6.16	5.58	112	101	72.0-127			9.88	20
(S) a,a,a-Trifluorotoluene(FID)				108	107	77.0-120				

L1321511-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1321511-01 03/04/21	(OS) L1321511-01 03/04/21 14:14 • (MS) R3627442-4 03/04/21 14:58 • (MSD) R3627442-5 03/04/21 15:20											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	123	0.600	107	127	86.5	103	25	10.0-151			17.1	28
(S) a,a,a-Trifluorotoluene(FID)					106	109		77.0-120				

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

L1322696-01,02,03,04,05,06,07,08,09

(MB) R3627640-2 03/05/	21 01:27				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	3
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	93.9			75.0-131	
(S) 4-Bromofluorobenzene	97.4			67.0-138	L
(S) 1,2-Dichloroethane-d4	80.9			70.0-130	Ş

Laboratory Control Sample (LCS)

(LCS) R3627640-1 03/04	4/21 22:17					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	ľ
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.138	110	70.0-123		
Ethylbenzene	0.125	0.112	89.6	74.0-126		
Toluene	0.125	0.116	92.8	75.0-121		Ē
Xylenes, Total	0.375	0.310	82.7	72.0-127		
(S) Toluene-d8			92.6	75.0-131		L
(S) 4-Bromofluorobenzene			97.6	67.0-138		
(S) 1,2-Dichloroethane-d4			86.8	70.0-130		

L1322696-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1322696-09 03/05/	DS) L1322696-09 03/05/21 04:19 • (MS) R3627640-3 03/05/21 08:08 • (MSD) R3627640-4 03/05/21 08:27											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.141	U	0.125	0.174	88.8	124	1	10.0-149			33.1	37
Ethylbenzene	0.141	U	0.102	0.142	72.3	101	1	10.0-160			32.9	38
Toluene	0.141	U	0.104	0.146	74.2	104	1	10.0-156			33.5	38
Xylenes, Total	0.422	U	0.290	0.394	68.8	93.3	1	10.0-160			30.3	38
(S) Toluene-d8					91.8	91.7		75.0-131				
(S) 4-Bromofluorobenzene					96.5	97.4		67.0-138				
(S) 1,2-Dichloroethane-d4					82.0	83.1		70.0-130				

SDG: L1322696

DATE/TIME: 03/05/21 17:34 [°]Qc

GI

AI

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1322696-01,02,03,04,05,06,07,08,09

Cn

Â

Sc

Method Blank (MB)

	10)				
(MB) R3627761-1 03/05	5/21 04:04				1
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	1
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	58.9			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3627761-2 03/0	5/21 04:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	32.2	64.4	50.0-150	
(S) o-Terphenyl			63.7	18.0-148	

L1322696-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1322696-09 03/05/	/21 08:14 • (MS)	R3627761-3 0	3/05/21 08:28	• (MSD) R3627	761-4 03/05/2	21 08:41						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	53.1	50.2	61.3	72.1	21.0	41.4	10	50.0-150	<u>J6</u>	<u>J6</u>	16.2	20
(S) o-Terphenyl					69.5	71.5		18.0-148				

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.

5	The identified for the unaryte is deceptable, the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

SDG: L1322696

Received by OCD: 6/2/2021 11:23:08 PM CCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN, 37122

Alahama	10000	Nakaala	
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio–VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Page 104 of 263 ONE LAB. NATIONWIDE.

PROJECT: 212C-MD-02425

SDG: L1322696

DATE/TIME: 03/05/21 17:34

PAGE: 22 of 23

Received by OCD: 6/2/2021 11:23:08 PM Analysis Request of Chain of Custody Record							J167 Page 105 of 2 Page : 1 of 2							263													
Tetra Tech, Inc.				901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946																							
Client Name:	Conoco Phillips	Site Manage	Site Manager: Christian Llull									ANALYSIS REQUEST															
Project Name:	Phillips E State 29 Release	Contact Info					mail: christian.llull@tetratech.com hone: (512) 338-1667							L	(Ci 	rcle) 	r S	pec	ify:	Ме 	eth)	bo	No 	.)		
Project Location: (county, state)	Lea County, New Mexico	Project #:	Project #: 212C-MD-02425																								
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701										-											list)					
Receiving Laboratory:	Pace Analytical	Sampler Sig	Sampler Signature: John Thurston						1	- MPC		Se Hg	Se Hg								ached						
Comments: COPTET	RA Acctnum											8260B	5) 20 - OBO		d Cr Pb S	Cd Cr Pb			4)C/625			ç	IUS istry (see att			
11322644		SAMP YEAR: 2021	SAMPLING YEAR: 2021		MATRIX		PRESERV METHO				(V/N)	BTEX	PH TX1005 (Ext to C35) PH 8015M (GRO - DRO - ORO - MRO)	(פאט - חי	Ag As Ba C	s Ag As Ba	es Volatiles		8260B / 62	ii. Vol. 8270 1 кля	~~~~	tos)		sultate 1L ater Chemisti	Balance		
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX100		Fotal Metals Ag As Ba Cd Cr Pb Se Hg	ICLP Metals A	I CLP Semi Volatiles	RCI	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol. 8270C/625 DCRIs. RNR7 / 608	NORM	PLM (Asbestos)	8	Chioride Suitate IDS General Water Chemistry (see attached	Anion/Cation Balance	TPH 8015R	НОГР
-01	NSW-1 (4')	3/3/2021	11:05	É	X	-	-	X	-	1	N	Х	>	-				-	Ĭ		. 2		X				-
02	ESW-2 (4')	3/3/2021	11:10		X			X		1	N	х)	(x		T		
03	ESW-4 (4')	3/3/2021	11:15		X			X		1	N	х)	(x				
oll	SSW-1 (4')	3/3/2021	11:20		X			X		1	N	Х)	(x			\square	
65	SSW-2 (4')	3/3/2021	11:25		X		13	х		1	N	х	>	(x				
06	WSW-3 (4')	3/3/2021	11:30		X			х		1	N	Х	>	(х				
67	WSW-4 (4')	3/3/2021	11:35		X			Х		1	N	Х	>	(х				
68	WSW-5 (4')	3/3/2021	11:40		X			х		1	N	Х	>	(х				
6g	WSW-6 (4')	3/3/2021	11:45		X			х		1	N	х	>	(Х				
Relinquished by:	Date: Time: 3/3/21 1640		Received by: Date: Time:									LAB USE ONLY							$\widehat{}$								
Relinquished by:	Date: Time:	Received by:	Received by: Date: Time:							R	Sample Temperature RUSH: Same Day (24 hr.) 8 hr						8 hr.	72 1	ır.								
Relinquished by:	Date: Time:	Received by:	Received by: Date: Time: Patricia Wichceel 34210915							15	Special Report Limite or TPRP. Par							Repo	rt								
Correct bottles u	te: <u>Y</u> N VOA Zero Headspace: Y tact: <u>Y</u> N Pres.Correct/Check: Y		LI COPY	l	1-4	(=)		2/10	<u>~1</u>	<u>ل</u>	(Cir	cle) I	HANI	D DEI	LIVEF	RED	FED	Ø	UPS	Tra	ackin	g #: _				

ANALYTICAL REPORT March 09, 2021

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1323927 03/06/2021 212C-MD-02425 Phillips E State 29 Release

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Entire Report Reviewed By:

Enica Mc Neese

Erica McNeese Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

Mount Juliet, TN 37122 615-758-5858 800-767-5859 12065 Lebanon Rd www.pacenational.com

Released to Imaging: %%72021 11:09:22 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1323927

DATE/TIME: 03/09/21 14:15

PAGE: 1 of 39

Page 106 of 263

Ср Тс ŚS Cn Sr Qc Gl AI Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
CSW-1 L1323927-01	8
CSW-2 L1323927-02	9
CSW-3 L1323927-03	10
CSW-4 L1323927-04	11
CSW-5 L1323927-05	12
CSW-6 L1323927-06	13
CSW-7 L1323927-07	14
CSW-8 L1323927-08	15
CSW-9 L1323927-09	16
CSW-10 L1323927-10	17
CSW-11 L1323927-11	18
FS-2 (2.5') L1323927-12	19
FS-7 L1323927-13	20
FS-8 L1323927-14	21
FS-9 L1323927-15	22
FS-10 L1323927-16	23
FS-11 L1323927-17	24
FS-12 L1323927-18	25
FS-13 L1323927-19	26
Qc: Quality Control Summary	27
Total Solids by Method 2540 G-2011	27
Wet Chemistry by Method 300.0	30
Volatile Organic Compounds (GC) by Method 8015D/GRO	31
Volatile Organic Compounds (GC/MS) by Method 8260B	33
Semi-Volatile Organic Compounds (GC) by Method 8015	34
GI: Glossary of Terms	35
Al: Accreditations & Locations	36
Sc: Sample Chain of Custody	37

PROJECT: 212C-MD-02425

SDG: L1323927 DATE/TIME: 03/09/2114:15

ME: 14:15 PAGE: 2 of 39

SAMPLE SUMMARY

ONE LAB. NAPage 108 of 263

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

CSW-1 L1323927-01 Solid			Collected by John Thurston	Collected date/time 03/05/21 08:45	Received da 03/06/21 10:		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1630802	1	03/07/21 15:42	03/07/21 15:57	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 16:52	ST	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 08:31	DWR	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 09:54	DWR	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/08/21 11:50	JN	Mt. Juliet, TN	
			Collected by John Thurston	Collected date/time 03/05/21 08:55	Received da 03/06/21 10:		
CSW-2 L1323927-02 Solid				00/00/21 00:00	00/00/2110.		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Total Solids by Method 2540 G-2011	WG1630802	1	03/07/21 15:42	03/07/21 15:57	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 17:01	ST	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/06/21 23:41	DWR	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 10:13	DWR	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 13:26	JN	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
CSW-3 L1323927-03 Solid			John Thurston	03/05/21 09:05	03/06/21 10:	10	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1630802	1	03/07/21 15:42	03/07/21 15:57	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 17:10	ST	Mt. Juliet, TI	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 00:03	DWR	Mt. Juliet, TI	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/2110:32	DWR	Mt. Juliet, TI	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 13:39	JN	Mt. Juliet, Ti	
			Collected by John Thurston	Collected date/time 03/05/21 09:15	Received date/time 03/06/21 10:10		
CSW-4 L1323927-04 Solid			John mulston	03/03/21 03.13	03/00/2110.	10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Total Solids by Method 2540 G-2011	WG1630802	1	03/07/21 15:42	03/07/21 15:57	KDW	Mt. Juliet, Ti	
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 17:29	ST	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1631235	1	03/06/21 19:05	03/09/21 04:19	TPR	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 10:51	DWR	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 13:53	JN	Mt. Juliet, TN	
CSW-5 L1323927-05 Solid			Collected by John Thurston	Collected date/time 03/05/21 09:25			
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
method	Baten	Dilution	date/time	date/time	Analyst	Location	
Total Solids by Method 2540 G-2011	WG1630803	1	03/07/21 16:15	03/07/21 16:45	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 17:39	ST	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 00:47	DWR	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 11:10	DWR	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 14:20	JN	Mt. Juliet, TN	

Released to Imaging: % 5/2021 11:09:22 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02425

SDG: L1323927 DATE/TIME: 03/09/2114:15

1E: 4:15 PAGE: 3 of 39
SAMPLE SUMMARY

ONE LAB. NAPage 109 of 263

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

CSW-6 L1323927-06 Solid			Collected by John Thurston	Collected date/time 03/05/21 09:35	Received da 03/06/21 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1630803	1	03/07/21 16:15	03/07/21 16:45	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/2117:48	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 01:37	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 11:29	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 14:06	JN	Mt. Juliet, TN
CSW-7 L1323927-07 Solid			Collected by John Thurston	Collected date/time 03/05/21 09:45	Received da 03/06/21 10:	
Method	Batch	Dilution	Preparation	Applycic	Applyct	Location
wiethou	BdtCII	Dilution	date/time	Analysis date/time	Analyst	LUCALION
Total Solids by Method 2540 G-2011	WG1630803	1	03/07/21 16:15	03/07/21 16:45	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 17:58	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 01:59	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 11:48	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 15:00	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
CSW-8 L1323927-08 Solid			John Thurston	03/05/21 09:55	03/06/2110:	10
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1630803	1	03/07/21 16:15	03/07/21 16:45	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 18:26	ST	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 02:21	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/2112:07	DWR	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 15:14	JN	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
CSW-9 L1323927-09 Solid			John Thurston	03/05/2110:05	03/06/21 10:	10
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1630803	1	03/07/21 16:15	03/07/21 16:45	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 18:36	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 02:43	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/2112:26	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 15:27	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
CSW-10 L1323927-10 Solid			John Thurston	03/05/21 10:15	03/06/2110:	10
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1630803	1	03/07/21 16:15	03/07/21 16:45	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 18:45	ST	Mt. Juliet, TM
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 03:05	DWR	Mt. Juliet, Th
	WG1630088	1	03/06/21 19:05	03/08/21 12:45	DWR	Mt. Juliet, Th
Volatile Organic Compounds (GC/MS) by Method 8260B	W01031013	1	00/00/21 10.00	03/00/21 12.73	DAN	m. Junci, II

Released to Imaging: % 2021 11:09:22 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02425

SDG: L1323927 DATE/TIME: 03/09/2114:15

PAGE: 4 of 39

SAMPLE SUMMARY

ONE LAB. NAPage 110 of 263

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

CSW-11 L1323927-11 Solid			Collected by John Thurston	Collected date/time 03/05/2110:35	Received da 03/06/21 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1630803	1	03/07/21 16:15	03/07/21 16:45	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 18:55	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 03:27	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 13:04	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 14:47	JN	Mt. Juliet, TN
			Collected by	Collected date/time		
FS-2 (2.5') L1323927-12 Solid			John Thurston	03/05/2110:40	03/06/2110:	10
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1630803	1	03/07/21 16:15	03/07/21 16:45	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 19:04	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 03:49	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 13:24	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 09:19	JN	Mt. Juliet, Th
			Collected by	Collected date/time	Received da	te/time
FS-7 L1323927-13 Solid			John Thurston	03/05/21 10:45	03/06/21 10:	10
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1630803	1	03/07/21 16:15	03/07/21 16:45	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 19:14	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 04:11	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 13:43	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 09:32	JN	Mt. Juliet, TN
			Collected by John Thurston	Collected date/time 03/05/21 10:50	Received da 03/06/21 10:	
FS-8 L1323927-14 Solid				00/00/2110.00		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1630803	1	03/07/21 16:15	03/07/21 16:45	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 19:52	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 04:33	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 14:02	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 12:18	JN	Mt. Juliet, Th
FS-9 L1323927-15 Solid			Collected by John Thurston	Collected date/time 03/05/21 10:55	Received da 03/06/21 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
meurou	Datti	DilutiOII	date/time	date/time	niaiyst	LUCALIUIT
Total Solids by Method 2540 G-2011	WG1630805	1	03/07/21 16:00	03/07/21 16:12	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 20:21	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 04:55	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 14:21	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 12:59	JN	Mt. Juliet, TN

PROJECT: 212C-MD-02425

SDG: L1323927 DATE/TIME: 03/09/2114:15

PAGE: 5 of 39

f**26**3

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLE S	SUMN	IARY		ONE I	AB. NA Page
			Collected by John Thurston	Collected date/time 03/05/21 11:00	Received da 03/06/21 10:	
/lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1630805	1	03/07/21 16:00	03/07/21 16:12	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 20:30	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 05:17	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 14:40	DWR	Mt. Juliet, TN
iemi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 12:32	JN	Mt. Juliet, TN
-S-11 L1323927-17 Solid			Collected by John Thurston	Collected date/time 03/05/21 11:05	Received da 03/06/21 10:	
<i>A</i> ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1630805	1	03/07/21 16:00	03/07/21 16:12	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 20:40	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 05:39	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 14:59	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 08:52	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
-S-12 L1323927-18 Solid			John Thurston	03/05/21 11:10	03/06/21 10:	10
Aethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1630805	1	03/07/21 16:00	03/07/21 16:12	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1630923	1	03/08/21 15:01	03/08/21 20:49	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1630688	1	03/06/21 19:05	03/07/21 06:31	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1631013	1	03/06/21 19:05	03/08/21 15:18	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1630544	1	03/06/21 16:46	03/07/21 08:38	JN	Mt. Juliet, TN
			Collected by John Thurston	Collected date/time 03/05/21 11:15	Received da 03/06/21 10:	
		D:1 .:				
FS-13 L1323927-19 Solid		Dilution	Preparation date/time	Analysis date/time	Analyst	Location
<i>l</i> ethod	Batch					
Tethod Total Solids by Method 2540 G-2011	WG1630805	1	03/07/21 16:00	03/07/21 16:12	KDW	
Tethod Total Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0	WG1630805 WG1630923	1	03/07/21 16:00 03/08/21 15:01	03/07/21 16:12 03/08/21 20:59	ST	Mt. Juliet, TN
/lethod Total Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO	WG1630805 WG1630923 WG1630688	1 1	03/07/21 16:00 03/08/21 15:01 03/06/21 19:05	03/07/21 16:12 03/08/21 20:59 03/07/21 07:47	ST DWR	Mt. Juliet, TN Mt. Juliet, TN
Tethod Total Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0	WG1630805 WG1630923	1	03/07/21 16:00 03/08/21 15:01	03/07/21 16:12 03/08/21 20:59	ST	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN

PROJECT: 212C-MD-02425

SDG: L1323927

DATE/TIME: 03/09/2114:15

PAGE: 6 of 39

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica Mc Neese

Erica McNeese Project Manager

PROJECT: 212C-MD-02425

SDG: L1323927

DATE/TIME: 03/09/21 14:15

PAGE: 7 of 39

SAMPLE RESULTS - 01 L1323927

AI

Sc

Collected date/time: 03/05/21 08:45

Total Solids b	y Method 2540 (G-2011						1	
	Result	Qualif	ier Dilution	Analysis		Batch			р
Analyte	%			date / time				2	_
Total Solids	93.4		1	03/07/2021 15	:57	WG1630802		Ť	С
Wet Chemistry	y by Method 300).0						³ S	s
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 C	'n
Chloride	107		9.85	21.4	1	03/08/2021 16:52	WG1630923		11

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0441	J	0.0232	0.107	1	03/07/2021 08:31	WG1630688
(S) a,a,a-Trifluorotoluene(FID)	93.5			77.0-120		03/07/2021 08:31	WG1630688

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000533	0.00114	1	03/08/2021 09:54	WG1631013
Toluene	0.00231	J	0.00149	0.00571	1	03/08/2021 09:54	<u>WG1631013</u>
Ethylbenzene	U		0.000842	0.00286	1	03/08/2021 09:54	WG1631013
Total Xylenes	0.00438	J	0.00101	0.00743	1	03/08/2021 09:54	<u>WG1631013</u>
(S) Toluene-d8	102			75.0-131		03/08/2021 09:54	WG1631013
(S) 4-Bromofluorobenzene	94.8			67.0-138		03/08/2021 09:54	<u>WG1631013</u>
(S) 1,2-Dichloroethane-d4	86.8			70.0-130		03/08/2021 09:54	WG1631013

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.9		1.72	4.28	1	03/08/2021 11:50	WG1630544
C28-C40 Oil Range	40.3		0.293	4.28	1	03/08/2021 11:50	<u>WG1630544</u>
(S) o-Terphenyl	45.7			18.0-148		03/08/2021 11:50	WG1630544

Collected date/time: 03/05/21 08:55

SAMPLE RESULTS - 02 L1323927

ONE LAB. NAPagev114 of 263

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.1		1	03/07/2021 15:57	<u>WG1630802</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemisti	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cr
Chloride	97.2		9.88	21.5	1	03/08/2021 17:01	WG1630923	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Bateri	
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	03/06/2021 23:41	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	92.1			77.0-120		03/06/2021 23:41	<u>WG1630688</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000536	0.00115	1	03/08/2021 10:13	<u>WG1631013</u>
Toluene	0.00191	J	0.00149	0.00574	1	03/08/2021 10:13	<u>WG1631013</u>
Ethylbenzene	0.000852	J	0.000846	0.00287	1	03/08/2021 10:13	<u>WG1631013</u>
Total Xylenes	0.00247	J	0.00101	0.00746	1	03/08/2021 10:13	<u>WG1631013</u>
(S) Toluene-d8	102			75.0-131		03/08/2021 10:13	<u>WG1631013</u>
(S) 4-Bromofluorobenzene	92.2			67.0-138		03/08/2021 10:13	<u>WG1631013</u>
(S) 1,2-Dichloroethane-d4	85.2			70.0-130		03/08/2021 10:13	<u>WG1631013</u>

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.6		1.73	4.30	1	03/07/202113:26	WG1630544
C28-C40 Oil Range	49.3		0.294	4.30	1	03/07/202113:26	WG1630544
(S) o-Terphenyl	57.8			18.0-148		03/07/2021 13:26	WG1630544

Collected date/time: 03/05/21 09:05

SAMPLE RESULTS - 03 L1323927

Â

Sc

Total Solids by Method 2540 G-2011

						I'C	`n
	Result	Qualifier	Dilution	Analysis	Batch		·P
Analyte	%			date / time		2	_
Total Solids	93.4		1	03/07/2021 15:57	WG1630802	ŤΤ	С

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn	
Chloride	114		9.85	21.4	1	03/08/2021 17:10	WG1630923			

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		0
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	03/07/2021 00:03	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	91.7			77.0-120		03/07/2021 00:03	WG1630688	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
		Quaimer	MDL (ury)		Dilution	,	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000534	0.00114	1	03/08/2021 10:32	WG1631013
Toluene	0.00207	J	0.00149	0.00571	1	03/08/2021 10:32	WG1631013
Ethylbenzene	U		0.000842	0.00286	1	03/08/2021 10:32	WG1631013
Total Xylenes	0.00286	Ţ	0.00101	0.00743	1	03/08/2021 10:32	WG1631013
(S) Toluene-d8	102			75.0-131		03/08/2021 10:32	WG1631013
(S) 4-Bromofluorobenzene	89.9			67.0-138		03/08/2021 10:32	WG1631013
(S) 1,2-Dichloroethane-d4	85.8			70.0-130		03/08/2021 10:32	WG1631013

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.7		1.72	4.28	1	03/07/2021 13:39	WG1630544
C28-C40 Oil Range	37.9		0.293	4.28	1	03/07/2021 13:39	WG1630544
(S) o-Terphenyl	55.3			18.0-148		03/07/2021 13:39	WG1630544

Collected date/time: 03/05/21 09:15

SAMPLE RESULTS - 04 L1323927

ONE LAB. NAPagev116 of 263

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	- 0	Эþ
Analyte		%			date / time		2	_
Total Solids		94.4		1	03/07/2021 15:57	WG1630802	_ [² T	С

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0 3										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn	
Chloride	45.9		9.75	21.2	1	03/08/2021 17:29	WG1630923			

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analista		Quanner			Dilution	,	baten	1	6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	03/09/2021 04:19	WG1631235	L	_
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-120		03/09/2021 04:19	WG1631235		⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000523	0.00112	1	03/08/2021 10:51	WG1631013
Toluene	0.00203	J	0.00146	0.00560	1	03/08/2021 10:51	<u>WG1631013</u>
Ethylbenzene	U		0.000825	0.00280	1	03/08/2021 10:51	WG1631013
Total Xylenes	0.00272	J	0.000985	0.00728	1	03/08/2021 10:51	<u>WG1631013</u>
(S) Toluene-d8	102			75.0-131		03/08/2021 10:51	WG1631013
(S) 4-Bromofluorobenzene	90.9			67.0-138		03/08/2021 10:51	<u>WG1631013</u>
(S) 1,2-Dichloroethane-d4	85.7			70.0-130		03/08/2021 10:51	WG1631013

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	30.2		1.71	4.24	1	03/07/202113:53	WG1630544
C28-C40 Oil Range	75.7		0.290	4.24	1	03/07/202113:53	WG1630544
(S) o-Terphenyl	45.8			18.0-148		03/07/2021 13:53	WG1630544

Collected date/time: 03/05/21 09:25

SAMPLE RESULTS - 05 L1323927

ONE LAB. NAPagev117 of 263

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	95.3		1	03/07/2021 16:45	WG1630803		Тс

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	71.6		9.65	21.0	1	03/08/2021 17:39	WG1630923		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	03/07/2021 00:47	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	91.5			77.0-120		03/07/2021 00:47	<u>WG1630688</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000513	0.00110	1	03/08/2021 11:10	WG1631013
Toluene	0.00201	J	0.00143	0.00549	1	03/08/2021 11:10	WG1631013
Ethylbenzene	U		0.000810	0.00275	1	03/08/2021 11:10	WG1631013
Total Xylenes	0.00275	J	0.000967	0.00714	1	03/08/2021 11:10	WG1631013
(S) Toluene-d8	102			75.0-131		03/08/2021 11:10	WG1631013
(S) 4-Bromofluorobenzene	90.5			67.0-138		03/08/2021 11:10	WG1631013
(S) 1,2-Dichloroethane-d4	85.8			70.0-130		03/08/2021 11:10	WG1631013

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	23.4		1.69	4.20	1	03/07/2021 14:20	<u>WG1630544</u>
C28-C40 Oil Range	59.3		0.288	4.20	1	03/07/2021 14:20	<u>WG1630544</u>
(S) o-Terphenyl	46.2			18.0-148		03/07/2021 14:20	WG1630544

Collected date/time: 03/05/21 09:35

SAMPLE RESULTS - 06 L1323927

ONE LAB. NAPagev118 of 263

ΆI

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		1	2
Total Solids	95.3		1	03/07/2021 16:45	WG1630803		Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	69.2		9.65	21.0	1	03/08/2021 17:48	WG1630923	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	03/07/2021 01:37	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	91.4			77.0-120		03/07/2021 01:37	<u>WG1630688</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000513	0.00110	1	03/08/2021 11:29	<u>WG1631013</u>
Toluene	0.00192	J	0.00143	0.00549	1	03/08/2021 11:29	<u>WG1631013</u>
Ethylbenzene	U		0.000810	0.00275	1	03/08/2021 11:29	WG1631013
Total Xylenes	0.00258	J	0.000967	0.00714	1	03/08/2021 11:29	<u>WG1631013</u>
(S) Toluene-d8	104			75.0-131		03/08/2021 11:29	WG1631013
(S) 4-Bromofluorobenzene	92.0			67.0-138		03/08/2021 11:29	<u>WG1631013</u>
(S) 1,2-Dichloroethane-d4	84.6			70.0-130		03/08/2021 11:29	WG1631013

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	17.9		1.69	4.20	1	03/07/2021 14:06	WG1630544
C28-C40 Oil Range	47.3		0.288	4.20	1	03/07/2021 14:06	WG1630544
(S) o-Terphenyl	48.8			18.0-148		03/07/2021 14:06	WG1630544

Collected date/time: 03/05/21 09:45

SAMPLE RESULTS - 07 L1323927

ONE LAB. NAPagev119 of 263

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	95.1		1	03/07/2021 16:45	<u>WG1630803</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	87.9		9.67	21.0	1	03/08/2021 17:58	WG1630923	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.10101	date / time		
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	03/07/2021 01:59	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-120		03/07/2021 01:59	WG1630688	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000515	0.00110	1	03/08/2021 11:48	<u>WG1631013</u>
Toluene	0.00213	J	0.00143	0.00552	1	03/08/2021 11:48	WG1631013
Ethylbenzene	U		0.000813	0.00276	1	03/08/2021 11:48	WG1631013
Total Xylenes	0.00281	J	0.000971	0.00717	1	03/08/2021 11:48	<u>WG1631013</u>
(S) Toluene-d8	102			75.0-131		03/08/2021 11:48	WG1631013
(S) 4-Bromofluorobenzene	92.5			67.0-138		03/08/2021 11:48	WG1631013
(S) 1,2-Dichloroethane-d4	84.8			70.0-130		03/08/2021 11:48	WG1631013

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	61.2		1.69	4.21	1	03/07/2021 15:00	WG1630544
C28-C40 Oil Range	118		0.288	4.21	1	03/07/2021 15:00	WG1630544
(S) o-Terphenyl	42.7			18.0-148		03/07/2021 15:00	WG1630544

Collected date/time: 03/05/21 09:55

SAMPLE RESULTS - 08 L1323927

ONE LAB. NAPagev120 of 263

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	89.4		1	03/07/2021 16:45	WG1630803	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	Wet Chemistry by Method 300.0 3S										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch				
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴ Cn		
Chloride	74.7		10.3	22.4	1	03/08/2021 18:26	WG1630923				

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Ŭ
TPH (GC/FID) Low Fraction	U		0.0243	0.112	1	03/07/2021 02:21	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	92.1			77.0-120		03/07/2021 02:21	WG1630688	7 (

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000578	0.00124	1	03/08/2021 12:07	WG1631013
Toluene	0.00216	Ţ	0.00161	0.00618	1	03/08/2021 12:07	WG1631013
Ethylbenzene	U		0.000912	0.00309	1	03/08/2021 12:07	WG1631013
Total Xylenes	0.00303	J	0.00109	0.00804	1	03/08/2021 12:07	WG1631013
(S) Toluene-d8	101			75.0-131		03/08/2021 12:07	WG1631013
(S) 4-Bromofluorobenzene	92.5			67.0-138		03/08/2021 12:07	WG1631013
(S) 1,2-Dichloroethane-d4	84.5			70.0-130		03/08/2021 12:07	WG1631013

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	46.9		1.80	4.47	1	03/07/2021 15:14	<u>WG1630544</u>
C28-C40 Oil Range	102		0.306	4.47	1	03/07/2021 15:14	<u>WG1630544</u>
(S) o-Terphenyl	32.3			18.0-148		03/07/2021 15:14	WG1630544

Collected date/time: 03/05/21 10:05

SAMPLE RESULTS - 09 L1323927

ONE LAB. NAPagev121 of 263

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.3		1	03/07/2021 16:45	WG1630803	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	69.9		9.75	21.2	1	03/08/2021 18:36	WG1630923		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	03/07/2021 02:43	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		03/07/2021 02:43	<u>WG1630688</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000523	0.00112	1	03/08/2021 12:26	<u>WG1631013</u>
Toluene	0.00183	J	0.00146	0.00560	1	03/08/2021 12:26	<u>WG1631013</u>
Ethylbenzene	U		0.000826	0.00280	1	03/08/2021 12:26	WG1631013
Total Xylenes	0.00222	J	0.000986	0.00729	1	03/08/2021 12:26	<u>WG1631013</u>
(S) Toluene-d8	104			75.0-131		03/08/2021 12:26	<u>WG1631013</u>
(S) 4-Bromofluorobenzene	92.8			67.0-138		03/08/2021 12:26	<u>WG1631013</u>
(S) 1,2-Dichloroethane-d4	84.6			70.0-130		03/08/2021 12:26	WG1631013

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	80.7		1.71	4.24	1	03/07/202115:27	WG1630544
C28-C40 Oil Range	158		0.290	4.24	1	03/07/2021 15:27	WG1630544
(S) o-Terphenyl	55.6			18.0-148		03/07/2021 15:27	WG1630544

SDG: L1323927

SAMPLE RESULTS - 10

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/05/21 10:15

						I'C	'n
	Result	Qualifier	Dilution	Analysis	Batch		Ψ
Analyte	%			date / time		2	_
Total Solids	94.9		1	03/07/2021 16:45	WG1630803	ŤΤ	С

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	136		9.69	21.1	1	03/08/2021 18:45	WG1630923

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Dilution	date / time	bach	
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	03/07/2021 03:05	WG1630688	[
(S) a,a,a-Trifluorotoluene(FID)	91.5			77.0-120		03/07/2021 03:05	WG1630688	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	03/08/2021 12:45	<u>WG1631013</u>
Toluene	0.00201	J	0.00144	0.00554	1	03/08/2021 12:45	<u>WG1631013</u>
Ethylbenzene	U		0.000817	0.00277	1	03/08/2021 12:45	WG1631013
Total Xylenes	0.00255	J	0.000975	0.00720	1	03/08/2021 12:45	<u>WG1631013</u>
(S) Toluene-d8	102			75.0-131		03/08/2021 12:45	WG1631013
(S) 4-Bromofluorobenzene	91.8			67.0-138		03/08/2021 12:45	<u>WG1631013</u>
(S) 1,2-Dichloroethane-d4	85.6			70.0-130		03/08/2021 12:45	WG1631013

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	33.2		1.70	4.21	1	03/07/2021 14:33	WG1630544
C28-C40 Oil Range	112		0.289	4.21	1	03/07/2021 14:33	WG1630544
(S) o-Terphenyl	46.9			18.0-148		03/07/2021 14:33	WG1630544

SAMPLE RESULTS - 11 L1323927

Sr

Â

Sc

Collected date/time: 03/05/21 10:35

	Result	Qualifie	r Dilution	Analysis		Batch		
Analyte	%		-	date / time				
Total Solids	96.1		1	03/07/202116	:45	WG1630803		
Wet Chemistr	ry by Method 300	.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	-							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	03/07/2021 03:27	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	92.2			77.0-120		03/07/2021 03:27	WG1630688	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000505	0.00108	1	03/08/2021 13:04	<u>WG1631013</u>
Toluene	0.00182	J	0.00140	0.00540	1	03/08/2021 13:04	<u>WG1631013</u>
Ethylbenzene	U		0.000796	0.00270	1	03/08/2021 13:04	<u>WG1631013</u>
Total Xylenes	0.00379	J	0.000951	0.00702	1	03/08/2021 13:04	<u>WG1631013</u>
(S) Toluene-d8	102			75.0-131		03/08/2021 13:04	<u>WG1631013</u>
(S) 4-Bromofluorobenzene	91.4			67.0-138		03/08/2021 13:04	<u>WG1631013</u>
(S) 1,2-Dichloroethane-d4	83.8			70.0-130		03/08/2021 13:04	WG1631013

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	52.2		1.67	4.16	1	03/07/2021 14:47	WG1630544
C28-C40 Oil Range	151		0.285	4.16	1	03/07/2021 14:47	<u>WG1630544</u>
(S) o-Terphenyl	50.2			18.0-148		03/07/2021 14:47	WG1630544

Reseized by DCD: 6/2/2021 11:23:08 PM Collected date/time: 03/05/21 10:40

SAMPLE RESULTS - 12

ONE LAB. NAPagev124 of 263

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

,						Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	95.8		1	03/07/2021 16:45	WG1630803	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	204		9.60	20.9	1	03/08/2021 19:04	WG1630923	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guaimer	mg/kg	mg/kg	Dilution	date / time	buch	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	03/07/2021 03:49	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	91.3			77.0-120		03/07/2021 03:49	<u>WG1630688</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000508	0.00109	1	03/08/2021 13:24	WG1631013
Toluene	0.00208	J	0.00141	0.00544	1	03/08/2021 13:24	WG1631013
Ethylbenzene	U		0.000802	0.00272	1	03/08/2021 13:24	WG1631013
Total Xylenes	0.00296	J	0.000957	0.00707	1	03/08/2021 13:24	WG1631013
(S) Toluene-d8	102			75.0-131		03/08/2021 13:24	WG1631013
(S) 4-Bromofluorobenzene	91.9			67.0-138		03/08/2021 13:24	WG1631013
(S) 1,2-Dichloroethane-d4	83.3			70.0-130		03/08/2021 13:24	WG1631013

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.8		1.68	4.17	1	03/07/2021 09:19	WG1630544
C28-C40 Oil Range	22.9		0.286	4.17	1	03/07/2021 09:19	<u>WG1630544</u>
(S) o-Terphenyl	43.1			18.0-148		03/07/2021 09:19	WG1630544

SDG: L1323927

SAMPLE RESULTS - 13

Ss

Cn

Â

Sc

Collected date/time: 03/05/21 10:45

Total Solids by Meth	$100 2040 0^{-2}$	2011				1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.6		1	03/07/2021 16:45	<u>WG1630803</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	57.0		9.72	21.1	1	03/08/2021 19:14	WG1630923	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	03/07/2021 04:11	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	92.3			77.0-120		03/07/2021 04:11	WG1630688	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	03/08/2021 13:43	<u>WG1631013</u>
Toluene	0.00209	Ţ	0.00145	0.00557	1	03/08/2021 13:43	<u>WG1631013</u>
Ethylbenzene	U		0.000821	0.00278	1	03/08/2021 13:43	WG1631013
Total Xylenes	0.00354	Ţ	0.000980	0.00724	1	03/08/2021 13:43	<u>WG1631013</u>
(S) Toluene-d8	102			75.0-131		03/08/2021 13:43	WG1631013
(S) 4-Bromofluorobenzene	91.6			67.0-138		03/08/2021 13:43	<u>WG1631013</u>
(S) 1,2-Dichloroethane-d4	84.5			70.0-130		03/08/2021 13:43	WG1631013

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	31.6		1.70	4.23	1	03/07/2021 09:32	WG1630544
C28-C40 Oil Range	62.3		0.290	4.23	1	03/07/2021 09:32	<u>WG1630544</u>
(S) o-Terphenyl	36.0			18.0-148		03/07/2021 09:32	WG1630544

SAMPLE RESULTS - 14

Sr

Â

Sc

Collected date/time: 03/05/2110:50

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	95.1		1	03/07/2021 16:45	WG1630803		
Wet Chemistr	v by Method 300 ()					
Wet Chemistr	y by Method 300.0		l (drv)	RDI (drv) Dili	ution Analysis	Batch	
Wet Chemistr Analyte	y by Method 300.0 Result (dry) ^{mg/kg}	Qualifier MD	DL (dry) J/kg	RDL (dry) Dilu mg/kg	lution Analysis date / time	Batch	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.1000	date / time	Baton
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	03/07/2021 04:33	WG1630688
(S) a,a,a-Trifluorotoluene(FID)	92.0			77.0-120		03/07/2021 04:33	WG1630688

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000515	0.00110	1	03/08/2021 14:02	WG1631013
Foluene	0.00185	J	0.00143	0.00552	1	03/08/2021 14:02	WG1631013
Ethylbenzene	U		0.000813	0.00276	1	03/08/2021 14:02	WG1631013
otal Xylenes	0.00259	J	0.000971	0.00717	1	03/08/2021 14:02	WG1631013
(S) Toluene-d8	103			75.0-131		03/08/2021 14:02	WG1631013
(S) 4-Bromofluorobenzene	91.4			67.0-138		03/08/2021 14:02	WG1631013
(S) 1,2-Dichloroethane-d4	84.9			70.0-130		03/08/2021 14:02	WG1631013

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	52.7		1.69	4.21	1	03/07/2021 12:18	WG1630544
C28-C40 Oil Range	79.2		0.288	4.21	1	03/07/2021 12:18	<u>WG1630544</u>
(S) o-Terphenyl	34.4			18.0-148		03/07/2021 12:18	WG1630544

SAMPLE RESULTS - 15 L1323927

Â

Sc

Collected date/time: 03/05/21 10:55

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	91.4		1	03/07/2021 16:12	r	WG1630805		
	y by Method 300.(0	·	05/07/2021 10.12	2	<u>WG1050805</u>		
			MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	y by Method 300.0	Qualifier	MDL (dry) mg/kg				Batch	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	03/07/2021 04:55	WG1630688
(S) a,a,a-Trifluorotoluene(FID)	92.1			77.0-120		03/07/2021 04:55	WG1630688

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000555	0.00119	1	03/08/2021 14:21	WG1631013
oluene	0.00203	J	0.00154	0.00594	1	03/08/2021 14:21	WG1631013
Ethylbenzene	U		0.000876	0.00297	1	03/08/2021 14:21	WG1631013
otal Xylenes	0.00285	J	0.00105	0.00772	1	03/08/2021 14:21	WG1631013
(S) Toluene-d8	102			75.0-131		03/08/2021 14:21	WG1631013
(S) 4-Bromofluorobenzene	90.3			67.0-138		03/08/2021 14:21	WG1631013
(S) 1,2-Dichloroethane-d4	84.4			70.0-130		03/08/2021 14:21	WG1631013

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	34.7		1.76	4.37	1	03/07/202112:59	WG1630544
C28-C40 Oil Range	82.3		0.300	4.37	1	03/07/202112:59	<u>WG1630544</u>
(S) o-Terphenyl	37.2			18.0-148		03/07/2021 12:59	WG1630544

SDG: L1323927

SAMPLE RESULTS - 16

Ss

Cn

Â

Sc

Collected date/time: 03/05/21 11:00 Total Solids by Method 2540 G-2011

	vietnou 2040 0-2	.011				 1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ch
Analyte	%			date / time		2
Total Solids	94.1		1	03/07/2021 16:12	<u>WG1630805</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	75.7		9.77	21.2	1	03/08/2021 20:30	WG1630923	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	03/07/2021 05:17	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		03/07/2021 05:17	<u>WG1630688</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000525	0.00113	1	03/08/2021 14:40	<u>WG1631013</u>
Toluene	0.00181	J	0.00146	0.00563	1	03/08/2021 14:40	<u>WG1631013</u>
Ethylbenzene	U		0.000829	0.00281	1	03/08/2021 14:40	WG1631013
Total Xylenes	0.00228	J	0.000990	0.00731	1	03/08/2021 14:40	<u>WG1631013</u>
(S) Toluene-d8	102			75.0-131		03/08/2021 14:40	WG1631013
(S) 4-Bromofluorobenzene	91.5			67.0-138		03/08/2021 14:40	<u>WG1631013</u>
(S) 1,2-Dichloroethane-d4	84.4			70.0-130		03/08/2021 14:40	WG1631013

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	26.5		1.71	4.25	1	03/07/202112:32	WG1630544
C28-C40 Oil Range	60.7		0.291	4.25	1	03/07/202112:32	<u>WG1630544</u>
(S) o-Terphenyl	46.4			18.0-148		03/07/2021 12:32	WG1630544

SAMPLE RESULTS - 17

AI

Sc

Collected date/time: 03/05/21 11:05

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	86.0		1	03/07/2021 16:1	า	WC1C20005		
	by Method 300.					WG1630805		
		O Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	by Method 300.		MDL (dry) mg/kg				Batch	

Result (dry) Qualifier MDL (dry) RDL (dry) Dilution Analysis Batch mg/kg mg/kg Qc Analyte mg/kg date / time TPH (GC/FID) Low Fraction U 0.0252 0.116 03/07/2021 05:39 WG1630688 1 (S) 92.1 77.0-120 03/07/2021 05:39 WG1630688 Gl a,a,a-Trifluorotoluene(FID)

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000620	0.00133	1	03/08/2021 14:59	WG1631013
Toluene	0.00223	Ţ	0.00173	0.00664	1	03/08/2021 14:59	WG1631013
Ethylbenzene	U		0.000978	0.00332	1	03/08/2021 14:59	WG1631013
Total Xylenes	0.00303	Ţ	0.00117	0.00863	1	03/08/2021 14:59	WG1631013
(S) Toluene-d8	103			75.0-131		03/08/2021 14:59	WG1631013
(S) 4-Bromofluorobenzene	92.6			67.0-138		03/08/2021 14:59	WG1631013
(S) 1,2-Dichloroethane-d4	84.4			70.0-130		03/08/2021 14:59	WG1631013

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.87	4.65	1	03/07/2021 08:52	WG1630544
C28-C40 Oil Range	2.36	<u>B J</u>	0.319	4.65	1	03/07/2021 08:52	<u>WG1630544</u>
(S) o-Terphenyl	45.7			18.0-148		03/07/2021 08:52	WG1630544

SAMPLE RESULTS - 18 L1323927

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/05/21 11:10

,						L'C	'n
	Result	Qualifier	Dilution	Analysis	Batch		Ч
Analyte	%			date / time		2	_
Total Solids	96.6		1	03/07/2021 16:12	WG1630805	T	С

Wet Chemistry by Method 300.0

Wet Chemistry I	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	160		9.52	20.7	1	03/08/2021 20:49	WG1630923	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0225	0.103	1	03/07/2021 06:31	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	90.8			77.0-120		03/07/2021 06:31	WG1630688	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000500	0.00107	1	03/08/2021 15:18	<u>WG1631013</u>
Toluene	0.00204	J	0.00139	0.00535	1	03/08/2021 15:18	<u>WG1631013</u>
Ethylbenzene	U		0.000789	0.00268	1	03/08/2021 15:18	WG1631013
Total Xylenes	0.00278	J	0.000942	0.00696	1	03/08/2021 15:18	<u>WG1631013</u>
(S) Toluene-d8	104			75.0-131		03/08/2021 15:18	<u>WG1631013</u>
(S) 4-Bromofluorobenzene	92.8			67.0-138		03/08/2021 15:18	<u>WG1631013</u>
(S) 1,2-Dichloroethane-d4	85.1			70.0-130		03/08/2021 15:18	WG1631013

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.20	J	1.67	4.14	1	03/07/2021 08:38	WG1630544
C28-C40 Oil Range	8.24		0.284	4.14	1	03/07/2021 08:38	<u>WG1630544</u>
(S) o-Terphenyl	61.2			18.0-148		03/07/2021 08:38	WG1630544

SAMPLE RESULTS - 19 L1323927

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/05/21 11:15

		.011				
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	96.0		1	03/07/2021 16:12	WG1630805	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	192		9.58	20.8	1	03/08/2021 20:59	WG1630923	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	batch	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	03/07/2021 07:47	WG1630688	
(S) a,a,a-Trifluorotoluene(FID)	91.4			77.0-120		03/07/2021 07:47	WG1630688	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000506	0.00108	1	03/08/2021 15:37	WG1631013
Toluene	0.00164	J	0.00141	0.00542	1	03/08/2021 15:37	WG1631013
Ethylbenzene	U		0.000798	0.00271	1	03/08/2021 15:37	WG1631013
Total Xylenes	0.00231	J	0.000953	0.00704	1	03/08/2021 15:37	WG1631013
(S) Toluene-d8	102			75.0-131		03/08/2021 15:37	WG1631013
(S) 4-Bromofluorobenzene	90.1			67.0-138		03/08/2021 15:37	WG1631013
(S) 1,2-Dichloroethane-d4	83.9			70.0-130		03/08/2021 15:37	WG1631013

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	03/07/2021 09:05	WG1630544
C28-C40 Oil Range	2.98	<u>B J</u>	0.285	4.17	1	03/07/2021 09:05	<u>WG1630544</u>
(S) o-Terphenyl	37.0			18.0-148		03/07/2021 09:05	WG1630544

Reg @ 46 by 060 2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1323927-01,02,03,04

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Didni					1 Cn
(MB) R3628593-1	03/07/21 15:57				Ch
	MB Result	MB Qualifier	MB MDL	1B RDL	2
Analyte	%		%		Tc
Total Solids	0.00100				
					³ Ss

L1323927-01 Original Sample (OS) • Duplicate (DUP)

L1323927-01 Origi	nal Sample	(OS) • Dup	olicate (DUP)		
(OS) L1323927-01 03/07/	/21 15:57 • (DUP)	R3628593-3	03/07/21	15:57		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.4	95.3	1	2.09		10

Laboratory Control Sample (LCS)

(LCS) R3628593-2 03/0	(LCS) R3628593-2 03/07/21 15:57									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	%	%	%	%						
Total Solids	50.0	50.0	100	85.0-115						

SDG: L1323927

DATE/TIME: 03/09/21 14:15

PAGE: 27 of 39

Reg @ 46 by 060 g/2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1323927-05,06,07,08,09,10,11,12,13,14

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	(MB)				1 Cp
(MB) R3628595-1	03/07/21 16:45				СР
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.00100				
					³ Ss

L1323927-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1323927-05 03	3/07/21 16:45 • (D	UP) R3628595-3	3 03/07/2′	1 16:45		
	Original Res	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	95.3	94.7	1	0.616		10

Laboratory Control Sample (LCS)

(LCS) R3628595-2 03	3/07/21 16:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1323927

DATE/TIME: 03/09/21 14:15

PAGE: 28 of 39

Reg cive by OGD &/2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1323927-15,16,17,18,19

Qc

GI

Â

Sc

Method Blank (MB)

Method Bidlin					^{1}Cn
(MB) R3628594-1	03/07/21 16:12				Ch
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.00100				
					³ Ss

L1323927-15 Original Sample (OS) • Duplicate (DUP)

L1323927-15 Origir	nal Sample	(OS) • Dup	olicate (DUP)		
(OS) L1323927-15 03/07/2	(21 16:12 • (DUP)	R3628594-3	03/07/211	6:12		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	91.4	93.2	1	1.95		10

Laboratory Control Sample (LCS)

(LCS) R3628594-2 03	3/07/21 16:12				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1323927

DATE/TIME: 03/09/21 14:15

PAGE: 29 of 39

Reg cive by OGD & 2/2021 11:23:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1323927-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

Method Blan	K (IVIB)						
(MB) R3628552-1	03/08/21 16:17						
	MB Result	MB Qualifier	MB MDL	MB RDL			2
Analyte	mg/kg		mg/kg	mg/kg			Tc
Chloride	U		9.20	20.0			
							³ Ss
L1323927-03	Original Sample	e (OS) • Du	plicate ((DUP)			4
(OS) L1323927-03	03/08/21 17:10 • (DUP) R3628552-3	03/08/21	17:20			Cr
	Original Result (dry)	t DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁵Sr
Analyte	mg/kg	mg/kg		%		%	
<u> </u>		445				<u></u>	

L1323927-03 Original Sample (OS) • Duplicate (DUP)

L1323927-13 Original Sample (OS) • Duplicate (DUP)

L1323927-13 Orig	inal Sample	(OS) • Dup	olicate (DUP)		
(OS) L1323927-13 03/0	8/21 19:14 • (DUP)	R3628552-4	03/08/21	19:23		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	57.0	57.3	1	0.526		20

Laboratory Control Sample (LCS)

(LCS) R3628552-2 03/08	8/21 16:26				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	192	96.1	90.0-110	

L1323927-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1323927-13 03/08/21 19:14 • (MS) R3628552-5 03/08/21 19:33 • (MSD) R3628552-6 03/08/21 19:42												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	528	57.0	596	569	102	97.0	1	80.0-120			4.51	20

Released to	Imaging? 8/8/2021 11:09:22 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1323927

DATE/TIME: 03/09/21 14:15

PAGE: 30 of 39

Reg cive by OGD 8/2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1323927-01,02,03,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

)				l'cn
(MB) R3628448-2 03/06	/21 22:32				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	96.7			77.0-120	³ Ss

Laboratory Control Sample (LCS)

(LCS) R3628448-1 03/06	S) R3628448-1 03/06/21 21:48								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
TPH (GC/FID) Low Fraction	5.50	6.54	119	72.0-127					
(S) a.a.a-Trifluorotoluene(FID)			115	77.0-120					

Res cive by 02 B. 56/2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Method Blank (MB)

Method Blank (MB)				
(MB) R3628647-2 03/09/	/21 03:21				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	96.4			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3628647-1 03/09	5) R3628647-1 03/09/21 02:27								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
TPH (GC/FID) Low Fraction	5.50	5.30	96.4	72.0-127					
(S) a.a.a-Trifluorotoluene(FID)			105	77.0-120					

DATE/TIME: 03/09/21 14:15 PAGE: 32 of 39 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1323927-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Τс

Ss

Cn

Sr

ິQc

GI

A

Sc

Method Blank (MB)

(MB) R3628658-2 03/08/	/21 08:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	102			75.0-131
(S) 4-Bromofluorobenzene	92.1			67.0-138
(S) 1,2-Dichloroethane-d4	86.3			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3628658-1 03/08	3/21 07:59					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	ľ
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.112	89.6	70.0-123		8
Ethylbenzene	0.125	0.104	83.2	74.0-126		
Toluene	0.125	0.108	86.4	75.0-121		ſ
Xylenes, Total	0.375	0.308	82.1	72.0-127		ľ
(S) Toluene-d8			98.7	75.0-131		L
(S) 4-Bromofluorobenzene			92.4	67.0-138		
(S) 1,2-Dichloroethane-d4			92.6	70.0-130		

L1323927-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1323927-13 03/08/2	DS) L1323927-13 03/08/21 13:43 • (MS) R3628658-3 03/08/21 16:15 • (MSD) R3628658-4 03/08/21 16:34											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.139	U	0.0685	0.0555	49.2	39.8	1	10.0-149			21.0	37
Ethylbenzene	0.139	U	0.0653	0.0519	46.9	37.3	1	10.0-160			22.8	38
Toluene	0.139	0.00209	0.0700	0.0557	48.8	38.5	1	10.0-156			22.9	38
Xylenes, Total	0.418	0.00354	0.188	0.157	44.2	36.8	1	10.0-160			18.1	38
(S) Toluene-d8					101	102		75.0-131				
(S) 4-Bromofluorobenzene					91.4	93.5		67.0-138				
(S) 1,2-Dichloroethane-d4					85.8	85.9		70.0-130				

SDG: L1323927 DATE/TIME: 03/09/21 14:15

PAGE: 33 of 39 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY 1323927-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Cn

Â

Sc

Method Blank (MB)

	D)				- Ľ
(MB) R3628140-1 03/07	7/21 08:12				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	0.793	J	0.274	4.00	
(S) o-Terphenyl	60.5			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3628140-2 03/0	07/21 08:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	37.0	74.0	50.0-150	
(S) o-Terphenyl			79.1	18.0-148	

L1323927-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L13239	OS) L1323927-09 03/07/21 15:27 • (MS) R3628140-3 03/07/21 15:40 • (MSD) R3628140-4 03/07/21 15:54												
		Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte		mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Dies	el Range	53.0	80.7	129	133	91.8	97.8	1	50.0-150			2.43	20
(S) o-Terphe	enyl					67.3	80.6		18.0-148				

DATE/TIME: 03/09/21 14:15 PAGE: 34 of 39

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
В	The same analyte is found in the associated blank.

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1323927

Received by OCD: 6/2/2021 11:23:08 PM CCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN, 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio–VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee ^{1 4}	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

ONE LAB. NATIONWIDE.

PROJECT: 212C-MD-02425

SDG: L1323927

DATE/TIME: 03/09/21 14:15

PAGE: 36 of 39 Received by OCD: 6/2/2021 11:23:08 PM Analysis Request of Chain of Custody Record

TŁ	Tetra Tech, Inc.			ľ	Midla		exas	97970 9	01	iite 10 T 32) 68	el		Ċ	ļ	419	90		475			U	31	23	92	7	
lient Name:	Conoco Phillips	Site Manage	r:	Chris	stian	Llull						A	IAL	YSI		EQI										
Project Name:	Phillips E State 29 Release	Contact Info	:					@tet		h.com		1	1	1	() 	Ciro 	cle	or	S		ify 	Me 	the	od N	lo.)	T
Project Location: county, state)	Lea County, New Mexico	Project #:		2120	-MD	-024	25					1														
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01										11					1							list)	1.1612	
leceiving Laboratory:	Pace Analytical	Sampler Sig	nature:	J	ohn	Thurs	ston					1	- MRO		Se Hg	SeHg	1							ached li		
comments: COPTET	RA Acctnum											8260B	C36) DRO - ORO - MRO)		d Cr Pb	Cd Cr Pb	1		24	0C/625				IUS istry (see att		
		SAMP	LING	MA	TRIX	PR		RVAT		SS	î	BTEX	GRO-D		As Ba	As Ba	selles		8260B / 624	1. 827				E	ance	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2021			Т	\top	Π	T	T	INER	(N/A) D		M (GF	0	8	A U	Volatiles			mi. Vol.	8082 / 608	stos)	0.0	Water Che	n Bala	
LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO ₃	NONF		# CONTAINERS	FILTERED	BTEX 8021B	TPH 8015M (PAH 8270C	Fotal Metals	TCLP Metals	TCLP Semi	SCI	3C/MS Vol.	SC/MS Semi.	VORM	PLM (Asbestos)	Chloride 300.0	Seneral Wa	Inion/Cation Balance	PH 8015R
-01	CSW-1	3/5/2021	8:45		x			x	T	1	N	X	X				T		Ŭ			Ħ	X			1
-07.	CSW-2	3/5/2021	8:55		×		Π	x	T	1	N	X	X			+	t				+	Ħ	x		T	1
-03	CSW-3	3/5/2021	9:05		x		Π	x		1	N	x	X								T	\square	X		T	T
-04	CSW-4	3/5/2021	9:15		x			x		1	N	x	X		75		T					П	x			T
-05	CSW-5	3/5/2021	9:25		×		Π	x	\top	1	N	X	X	П		+	t				+	Ħ	x		1	1
-06	CSW-6	3/5/2021	9:35	T	x		Π	x		1	N	X	X	Π		T	T				+	Ħ	x		+	+
-07	CSW-7	3/5/2021	9:45		x		Π	x		1	N	X	X	Π		T	T		1		- 19	П	x		+	+
-08	CSW-8	3/5/2021	9:55		×		Π	x		1	N	X	X	Π		T	T			T	T	П	x		T	
-09	CSW-9	3/5/2021	10:05		x		Π	x		1	N	X	X	Π		1	T	\square		1	\top	Ħ	x	\top	+	+
-10	CSW-10	3/5/2021	10:15		×	T	Π	x		1	N	x	X			1	T				+	Ħ	x	\square		+
elinquished by:	Date: Time: 3/5/21 1500	Received by: B. Ba		-	1.4	3/6	ate:		ime:	107	10			US		R	EM	Sta	S: anda	rd		_				
telinquished by:	Date: Time:	Received by:				Da	ate:	Т	ime:			Sam	ole Te	mper	ature		_	_				(24 h orized		8 hr.	72 hr.	
telinquished by:	Date: Time:	Received by:				Da	ate:	Т	ime:								C	Spe	ecial	Repor	t Limit	s or T	RRP	Report	_	tari i
	ng: 8/6/2021 11:09:22Дм 0813 02	ORIGINA	L COPY	,	2.1	+.0	10	100)./				(Circ	le) H	AND	DEL	VER		FED	EX)	UPS	Tra	acking)#: _		4	

Received by OCD: 6/2/2021 11:23:08 PM Analysis Request of Chain of Custody Record

TŁ	Tetra Tech, Inc.					nd, 1	exas		1	ite 100 Te 32) 682	a l								U	B	Ŕ	39	2	7	-		
lient Name:	Conoco Phillips	Site Manage	r:	Chri	stian I	Llull						A	AL	YSI					~	2.1							
Project Name:	Phillips E State 29 Release	Contact Info						@tetra -1667	tech	n.com		1	Î.	11	(0			or	Sp 	ec	:ify 	Me	eth 	bo	No	.) 	1
Project Location: county, state)	Lea County, New Mexico	Project #:		212	C-MD-	-024	25																				
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701																							list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		John 1	Thu	ston						ORO - MRO)		Pb Se Hg	Seng	ť								attached		
Comments: COPTETF	RA Acctnum											8260B			Cd Cr Pb					8270C/625			and the second		(see	17	
	2 K	SAMP	LING	MA	TRIX	PF		RVATI	VE	RS	(N/A)	X	RO-		As Ba C	As ba	Volatiles				08			ate TDS	Water Chemistry ation Balance		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2021			Τ	Γ	Π			AINE		8021B		g	Is Ag	als A	ni Vola			Semi. Vol.	82 / 6	(Asbestos)	300.0	Sulfate	ater Con Ba	or	
LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		# CONTAINERS	FILTERED	X	TPH TX1005 TPH 8015M (PAH 8270C	Total Metals Ag As Ba Cd Cr Pb S	TCLP Volatili	TCLP Semi	RCI	GC/MS Vol.	GC/MS Se	PCB's 8082 / 608 NORM	PLM (Asb	Chloride 3	Chloride	General Water Chemi Anion/Cation Balance	TPH 8015R	
-11	CSW-11	3/5/2021	10:35	Π	x	T	Π	х		1	Ν	x	X									T	х			PT	T
-12	FS-2 (2.5')	3/5/2021	10:40		x			х		1	N	х	x										X		and le		
-13	FS-7	3/5/2021	10:45		X			х		1	N	х	X		100			din.				1	х			14	2
-14	FS-8	3/5/2021	10:50		Х			X		1	Ν	х	X										х				
-15	FS-9	3/5/2021	10:55		х			х		1	N	х	X										x			1000	
-110	FS-10	3/5/2021	11:00		х			x		1	Ν	х	×										x				
-17	FS-11	3/5/2021	11:05		х			х		1	Ν	х	X										х				
-18	FS-12	3/5/2021	11:10		х			х		1	N	х	X										х				
-19	FS-13	3/5/2021	11:15		x			x		1	N	х	X			-				4	-		X		1	\square	
Relinguished by:	Date: Time:	Received by					ate:	Tir	ne:				10.01			R	EM/	ARK	<u>.</u>	-						Ш	
APP.	3/5/21 1500		und		1.0	3/2		21		100	Ð		LAB	US			C	Sta	andai			1	_				
Relinquished by:	Date: Time:	Received by					ate:	Tir	ne:			Sam	ple Te	mper	ature		_	_			ne Day	1	/)8 hr.	. 72	hr.	
Relinquished by:	Date: Time:	Received by				0	ate:	Tir	ne:												ort Limi	_	210	PRep	ort		_
		ORIGINA	AL COPY		0	2.1	A7 +.0	60 5 D · 1				(Cire	cle) H	AND	DELI	VER	ED(FED	EX	UPS	S Tr	rackin	ng #:	_	-	_	

Released to Imaging: 8/6/2021 11:09:22 AM

Pace Analytical National Center for	Testing & Inno	vation	
Cooler Receipt Fo	rm		
Client: COPTETRA		132397	27
Cooler Received/Opened On: 3 / 6 / 21	Temperature:	0.1	
Received By: Bill Barras		and the second	
Signature: B. Bauan			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?	/		at a cal
COC Signed / Accurate?		1/	
Bottles arrive intact?		1	
Correct bottles used?	1. 原語語 四、酒、	1/	S. Part
Sufficient volume sent?			1012
If Applicable		and the second	and the second
VOA Zero headspace?			A section of
Preservation Correct / Checked?	1 2 2 2 2 2 2 2 2	Contraction of the second	

Page 145 of 263

Analyti	ical® ANALYT	ICAL REPORT	¹ Cp
			² Tc
	ConocoPhillips - Te	tra Tech	³ Ss
	Sample Delivery Group:	L1324887	⁴ Cn
	Samples Received:	03/10/2021	⁵Sr
	Project Number:	212C-MD-02425	
	Description:	Phillips E State 29 Release	⁶ Qc
	Report To:	Christian Llull	⁷ Gl
		901 West Wall	⁸ AI
		Suite 100	9
		Midland, TX 79701	ଁSc

Entire Report Reviewed By:

Erica Mc Neese

Erica McNeese Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com 12065 Lebanon Rd

Released to Imaging: %%/2021 11:09:22 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1324887

DATE/TIME: 03/12/21 14:50

PAGE: 1 of 32

TABLE OF CONTENTS

	Page	<i>146</i>	of	263
--	------	------------	----	-----

Cp: Cover Page	1					
Tc: Table of Contents	2					
Ss: Sample Summary	3					
Cn: Case Narrative						
Sr: Sample Results	7					
CSW-7 (2') L1324887-01	7					
CSW-8 (2') L1324887-02	8					
CSW-9 (2') L1324887-03	9					
CSW-10 (2') L1324887-04	10					
CSW-11 (2') L1324887-05	11					
FS-8 (4') L1324887-06	12					
FS-9 (4') L1324887-07	13					
ESW-2 (6') L1324887-08	14					
ESW-4 (6') L1324887-09	15					
WSW-6 (6') L1324887-10	16					
SSW-1 (6') L1324887-11	17					
SSW-2 (6') L1324887-12	18					
WSW-4 (6') L1324887-13	19					
WSW-5 (8') L1324887-14	20					
Qc: Quality Control Summary	21					
Total Solids by Method 2540 G-2011	21					
Wet Chemistry by Method 300.0	23					
Volatile Organic Compounds (GC) by Method 8015D/GRO	24					
Volatile Organic Compounds (GC/MS) by Method 8260B	26					
Semi-Volatile Organic Compounds (GC) by Method 8015	27					
GI: Glossary of Terms	29					
Al: Accreditations & Locations	30					
Sc: Sample Chain of Custody	31					

PROJECT: 212C-MD-02425

SDG: L1324887 DATE/TIME:

03/12/21 14:50

PAGE: 2 of 32

SAMPLE SUMMARY

Page 147 of 263

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

CSW-7 (2') L1324887-01 Solid			Collected by John Thurston	Collected date/time 03/09/21 08:55	Received da 03/10/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1632437	1	03/10/21 15:31	03/10/21 15:37	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1632608	1	03/10/21 20:21	03/11/21 01:26	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632512	37.5	03/09/21 08:55	03/10/21 17:38	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1633030	1.5	03/09/21 08:55	03/11/21 12:42	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1632440	1	03/11/21 01:26	03/11/21 12:57	WCR	Mt. Juliet, TN
			Collected by John Thurston	Collected date/time 03/09/21 09:05	Received da 03/10/21 09:	
CSW-8 (2') L1324887-02 Solid			John mulston	03/03/21 03:03	03/10/21 03.	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1632437	1	03/10/21 15:31	03/10/21 15:37	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1632608	1	03/10/21 20:21	03/11/21 01:36	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632512	32	03/09/21 09:05	03/10/21 18:00	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1633030	1.28	03/09/21 09:05	03/11/21 13:01	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1632440	1	03/11/21 01:26	03/12/21 12:47	JDG	Mt. Juliet, TN
			Collocted by	Collocted data History	Docoluod d-	to/time
CSW-9 (2') L1324887-03 Solid			Collected by John Thurston	Collected date/time 03/09/21 09:15	03/10/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Batem	Bildtion	date/time	date/time	, indijot	Location
Total Solids by Method 2540 G-2011	WG1632437	1	03/10/21 15:31	03/10/21 15:37	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1632608	1	03/10/21 20:21	03/11/21 01:45	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632512	43.5	03/09/21 09:15	03/10/21 18:22	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1633030	1.74	03/09/21 09:15	03/11/21 13:20	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1632440	5	03/11/21 01:26	03/11/21 14:08	WCR	Mt. Juliet, TN
CCW/ 10 (21) 1 122 1007 04 C-154			Collected by John Thurston	Collected date/time 03/09/21 09:25	Received da 03/10/21 09:	
CSW-10 (2') L1324887-04 Solid			Sonn marston			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1632437	1	03/10/21 15:31	03/10/21 15:37	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1632608	1	03/10/21 20:21	03/11/21 01:55	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632512	44.3	03/09/21 09:25	03/10/21 18:44	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1633030	1.77	03/09/21 09:25	03/11/21 13:39	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1632440	5	03/11/21 01:26	03/11/21 14:21	WCR	Mt. Juliet, TN
CSW-11 (2') L1324887-05 Solid			Collected by John Thurston	Collected date/time 03/09/21 09:35	Received da 03/10/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1632437	1	03/10/21 15:31	03/10/21 15:37	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1632608	1	03/10/21 20:21	03/11/21 02:04	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632512	30	03/09/21 09:35	03/10/21 19:06	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1633030	1.2	03/09/21 09:35	03/11/21 13:58	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1632440	10	03/11/21 01:26	03/11/21 14:34	WCR	Mt. Juliet, TN

PROJECT: 212C-MD-02425

SDG: L1324887 DATE/TIME: 03/12/21 14:50

PAGE: 3 of 32

Method

Method

Method

Method

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Page 148 of 263 SAMPLE SUMMARY Received date/time Collected by Collected date/time John Thurston 03/09/21 09:45 03/10/21 09:00 FS-8 (4') L1324887-06 Solid Batch Dilution Preparation Analysis Analyst Location date/time date/time Τс WG1632437 1 03/10/21 15:31 03/10/21 15:37 CMK Mt. Juliet, TN WG1632608 1 03/10/21 20:21 03/11/21 02:14 MCG Mt. Juliet, TN Ss Volatile Organic Compounds (GC) by Method 8015D/GRO WG1632512 43 03/09/21 09:45 03/10/21 19:28 ADM Mt. Juliet, TN 03/09/21 09:45 03/11/21 14:17 Volatile Organic Compounds (GC/MS) by Method 8260B WG1633030 1.72 AV Mt. Juliet, TN Semi-Volatile Organic Compounds (GC) by Method 8015 WG1632440 1 03/11/21 01:26 03/12/21 13:00 JDG Mt. Juliet, TN Cn Collected by Collected date/time Received date/time Sr John Thurston 03/09/21 09:55 03/10/21 09:00 FS-9 (4') L1324887-07 Solid Batch Dilution Preparation Analysis Analyst Location Qc date/time date/time WG1632437 1 03/10/21 15:31 03/10/21 15:37 CMK Mt. Juliet, TN Gl WG1632608 1 03/10/21 20:21 03/11/21 02:33 MCG Mt. Juliet, TN 03/09/21 09:55 03/10/21 19:50 Volatile Organic Compounds (GC) by Method 8015D/GRO WG1632512 32.3 ADM Mt. Juliet, TN Volatile Organic Compounds (GC/MS) by Method 8260B WG1633030 1.29 03/09/21 09:55 03/11/21 14:36 AV Mt. Juliet, TN AI WCR Semi-Volatile Organic Compounds (GC) by Method 8015 WG1632440 03/11/21 01:26 03/11/21 13.10 Mt. Juliet, TN 1 Śc Collected by Collected date/time Received date/time John Thurston 03/09/21 11:05 03/10/21 09:00 ESW-2 (6') L1324887-08 Solid Batch Dilution Preparation Analysis Analyst Location date/time date/time WG1632437 1 03/10/21 15:31 03/10/21 15:37 CMK Mt. Juliet, TN 03/10/21 20:21 MCG WG1632608 1 03/11/21 03:01 Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1632512 29 03/09/21 11:05 03/10/21 20:12 ADM Mt. Juliet, TN Volatile Organic Compounds (GC/MS) by Method 8260B WG1633030 1.16 03/09/21 11:05 03/11/21 14:55 AV Mt. Juliet, TN Semi-Volatile Organic Compounds (GC) by Method 8015 WG1632440 1 03/11/21 01:26 03/11/21 13:29 WCR Mt. Juliet, TN Collected by Collected date/time Received date/time John Thurston 03/09/21 11:10 03/10/21 09:00 ESW-4 (6') L1324887-09 Solid Batch Dilution Preparation Analysis Analyst Location date/time date/time WG1632439 03/11/21 08:58 03/11/21 09:06 CMK 1 Mt. Juliet, TN WG1632608 1 03/10/21 20:21 03/11/21 03:11 MCG Mt. Juliet, TN 03/10/21 20:34 Volatile Organic Compounds (GC) by Method 8015D/GRO WG1632512 37 03/09/21 11:10 ADM Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B	WG1633030	1.48	03/09/21 11:10	03/11/21 15:14	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1632440	1	03/11/21 01:26	03/11/21 12:18	WCR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-6 (6') L1324887-10 Solid			John Thurston	03/09/21 10:55	03/10/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1632439	1	03/11/21 08:58	03/11/21 09:06	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1632608	1	03/10/21 20:21	03/11/21 03:21	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632512	32.3	03/09/21 10:55	03/10/21 20:56	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1633030	1.29	03/09/21 10:55	03/11/21 15:33	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1632440	1	03/11/21 01:26	03/11/21 12:44	WCR	Mt. Juliet, TN

PROJECT: 212C-MD-02425

SDG: L1324887

SAMPLE SUMMARY

Page 149 of 263

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

SSW-1 (6') L1324887-11 Solid			Collected by John Thurston	Collected date/time 03/09/21 10:35	03/10/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1632439	1	03/11/21 08:58	03/11/21 09:06	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1632608	1	03/10/21 20:21	03/11/21 03:30	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632718	30.5	03/09/21 10:35	03/11/21 10:14	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1633030	1.22	03/09/21 10:35	03/11/21 15:52	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1632440	1	03/11/21 01:26	03/11/21 12:05	WCR	Mt. Juliet, TN
			Collected by John Thurston	Collected date/time 03/09/21 10:40	Received da 03/10/21 09:	
SSW-2 (6') L1324887-12 Solid				03/09/21 10:40	03/10/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1632439	1	03/11/21 08:58	03/11/21 09:06	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1632608	1	03/10/21 20:21	03/11/21 03:40	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632718	44.3	03/09/21 10:40	03/11/21 10:36	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1633030	1.77	03/09/21 10:40	03/11/21 16:11	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1632440	1	03/11/21 01:26	03/11/21 11:52	WCR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-4 (6') L1324887-13 Solid			Collected by John Thurston	Collected date/time 03/09/21 10:45	Received da 03/10/21 09:	
WSW-4 (6') L1324887-13 Solid Method	Batch	Dilution	-			
Method	Batch WG1632439	Dilution	John Thurston Preparation	03/09/21 10:45 Analysis	03/10/21 09:	00 Location
Method Total Solids by Method 2540 G-2011			John Thurston Preparation date/time	03/09/21 10:45 Analysis date/time	03/10/21 09: Analyst	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1632439	1	John Thurston Preparation date/time 03/11/21 08:58	03/09/21 10:45 Analysis date/time 03/11/21 09:06	03/10/21 09: Analyst CMK	Location Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632439 WG1632608 WG1632718	1 1 29.8	John Thurston Preparation date/time 03/11/21 08:58 03/10/21 20:21 03/09/21 10:45	03/09/21 10:45 Analysis date/time 03/11/21 09:06 03/11/21 03:49 03/11/21 10:58	03/10/21 09: Analyst CMK MCG ACG	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
	WG1632439 WG1632608	1	John Thurston Preparation date/time 03/11/21 08:58 03/10/21 20:21	03/09/21 10:45 Analysis date/time 03/11/21 09:06 03/11/21 03:49	03/10/21 09: Analyst CMK MCG	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1632439 WG1632608 WG1632718 WG1633030	1 1 29.8 1.19	John Thurston Preparation date/time 03/11/21 08:58 03/10/21 20:21 03/09/21 10:45 03/09/21 10:45	03/09/21 10:45 Analysis date/time 03/11/21 09:06 03/11/21 03:49 03/11/21 10:58 03/11/21 16:48	03/10/21 09: Analyst CMK MCG ACG AV WCR	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632439 WG1632608 WG1632718 WG1633030	1 1 29.8 1.19	John Thurston Preparation date/time 03/11/21 08:58 03/10/21 20:21 03/09/21 10:45 03/09/21 10:45 03/11/21 01:26 Collected by	03/09/21 10:45 Analysis date/time 03/11/21 09:06 03/11/21 03:49 03/11/21 10:58 03/11/21 16:48 03/11/21 12:31 Collected date/time	03/10/21 09: Analyst CMK MCG ACG AV WCR Received da	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 WSW-5 (8') L1324887-14 Solid Method	WG1632439 WG1632608 WG1632718 WG1633030 WG1632440	1 1 29.8 1.19 1	John Thurston Preparation date/time 03/11/21 08:58 03/10/21 20:21 03/09/21 10:45 03/09/21 10:45 03/11/21 01:26 Collected by John Thurston Preparation	03/09/21 10:45 Analysis date/time 03/11/21 09:06 03/11/21 03:49 03/11/21 10:58 03/11/21 10:58 03/11/21 12:31 Collected date/time 03/09/21 10:50 Analysis	03/10/21 09: Analyst CMK MCG ACG AV WCR Received da 03/10/21 09:	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 WSW-5 (8') L1324887-14 Solid Method Total Solids by Method 2540 G-2011	WG1632439 WG1632608 WG1632718 WG1633030 WG1632440 Batch	1 1 29.8 1.19 1 Dilution	John Thurston Preparation date/time 03/11/21 08:58 03/10/21 20:21 03/09/21 10:45 03/09/21 10:45 03/09/21 10:45 03/11/21 01:26 Collected by John Thurston Preparation date/time	03/09/21 10:45 Analysis date/time 03/11/21 09:06 03/11/21 03:49 03/11/21 10:58 03/11/21 10:58 03/11/21 12:31 Collected date/time 03/09/21 10:50 Analysis date/time	03/10/21 09: Analyst CMK MCG ACG AV WCR Received da 03/10/21 09: Analyst	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 WSW-5 (8') L1324887-14 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1632439 WG1632608 WG1632718 WG1633030 WG1632440 Batch WG1632439	1 129.8 1.19 1 Dilution	John Thurston Preparation date/time 03/11/21 08:58 03/10/21 20:21 03/09/21 10:45 03/09/21 10:45 03/09/21 10:26 Collected by John Thurston Preparation date/time 03/11/21 08:58	03/09/21 10:45 Analysis date/time 03/11/21 09:06 03/11/21 03:49 03/11/21 10:58 03/11/21 16:48 03/11/21 12:31 Collected date/time 03/09/21 10:50 Analysis date/time 03/11/21 09:06	03/10/21 09: Analyst CMK MCG ACG AV WCR Received da 03/10/21 09: Analyst CMK	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 WSW-5 (8') L1324887-14 Solid	WG1632439 WG1632608 WG1632718 WG1633030 WG1632440 Batch WG1632439 WG1632608	1 129.8 1.19 1 Dilution	John Thurston Preparation date/time 03/11/21 08:58 03/10/21 20:21 03/09/21 10:45 03/09/21 10:45 03/11/21 01:26 Collected by John Thurston Preparation date/time 03/11/21 08:58 03/10/21 20:21	03/09/21 10:45 Analysis date/time 03/11/21 09:06 03/11/21 03:49 03/11/21 10:58 03/11/21 16:48 03/11/21 12:31 Collected date/time 03/09/21 10:50 Analysis date/time 03/11/21 09:06 03/11/21 09:06	03/10/21 09: Analyst CMK MCG ACG AV WCR Received da 03/10/21 09: Analyst CMK MCG	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time 00

PROJECT: 212C-MD-02425

SDG: L1324887 DATE/TIME: 03/12/21 14:50 PAGE: 5 of 32

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica Mc Neese

Erica McNeese Project Manager

Released to Imaging: %/6/2021 11:09:22 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1324887

DATE/TIME: 03/12/21 14:50

PAGE: 6 of 32

Collected date/time: 03/09/21 08:55

SAMPLE RESULTS - 01 L1324887

Â

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	84.8		1	03/10/2021 15:37	WG1632437	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴ Cn
Chloride	38.2		10.9	23.6	1	03/11/2021 01:26	WG1632608		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
	Result (ury)	Qualifier	WDL (ury)	KDL (ury)	Dilution	Analysis	Batch	6	3
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		1.06	4.87	37.5	03/10/2021 17:38	WG1632512	L	
(S) a,a,a-Trifluorotoluene(FID)	97.5			77.0-120		03/10/2021 17:38	WG1632512	7	GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000911	0.00195	1.5	03/11/2021 12:42	<u>WG1633030</u>
Toluene	U		0.00253	0.00974	1.5	03/11/2021 12:42	<u>WG1633030</u>
Ethylbenzene	U		0.00144	0.00487	1.5	03/11/2021 12:42	<u>WG1633030</u>
Total Xylenes	U		0.00171	0.0127	1.5	03/11/2021 12:42	<u>WG1633030</u>
(S) Toluene-d8	106			75.0-131		03/11/2021 12:42	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	100			67.0-138		03/11/2021 12:42	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	92.8			70.0-130		03/11/2021 12:42	WG1633030

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	34.8		1.90	4.72	1	03/11/2021 12:57	<u>WG1632440</u>
C28-C40 Oil Range	48.2		0.323	4.72	1	03/11/2021 12:57	<u>WG1632440</u>
(S) o-Terphenyl	39.8			18.0-148		03/11/2021 12:57	WG1632440

SDG: L1324887

Collected date/time: 03/09/21 09:05

SAMPLE RESULTS - 02

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	90.5		1	03/10/2021 15:37	WG1632437	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	51.1		10.2	22.1	1	03/11/2021 01:36	WG1632608	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Qualifier	MDL (ury)	KDL (ury)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		(
TPH (GC/FID) Low Fraction	U		0.823	3.80	32	03/10/2021 18:00	WG1632512	
(S) a,a,a-Trifluorotoluene(FID)	98.2			77.0-120		03/10/2021 18:00	WG1632512	7(

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000709	0.00152	1.28	03/11/2021 13:01	<u>WG1633030</u>
Toluene	U		0.00197	0.00759	1.28	03/11/2021 13:01	<u>WG1633030</u>
Ethylbenzene	U		0.00112	0.00380	1.28	03/11/2021 13:01	<u>WG1633030</u>
Total Xylenes	U		0.00134	0.00987	1.28	03/11/2021 13:01	<u>WG1633030</u>
(S) Toluene-d8	106			75.0-131		03/11/2021 13:01	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	100			67.0-138		03/11/2021 13:01	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	95.2			70.0-130		03/11/2021 13:01	WG1633030

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.41		1.78	4.42	1	03/12/2021 12:47	WG1632440
C28-C40 Oil Range	16.7		0.303	4.42	1	03/12/2021 12:47	WG1632440
(S) o-Terphenyl	50.5			18.0-148		03/12/2021 12:47	WG1632440

SDG: L1324887

Collected date/time: 03/09/21 09:15

SAMPLE RESULTS - 03 L1324887

Â

Sc

Total Solids by Method 2540 G-2011

						 1°Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	94.3		1	03/10/2021 15:37	WG1632437	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	92.5		9.76	21.2	1	03/11/2021 01:45	WG1632608	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (uly)	Qualifier	MDL (ury)	KDL (ury)	Dilution	Analysis	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	U		1.03	4.77	43.5	03/10/2021 18:22	WG1632512	
(S) a,a,a-Trifluorotoluene(FID)	97.2			77.0-120		03/10/2021 18:22	WG1632512	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000891	0.00191	1.74	03/11/2021 13:20	<u>WG1633030</u>
Toluene	U		0.00248	0.00953	1.74	03/11/2021 13:20	<u>WG1633030</u>
Ethylbenzene	U		0.00140	0.00477	1.74	03/11/2021 13:20	<u>WG1633030</u>
Total Xylenes	U		0.00168	0.0124	1.74	03/11/2021 13:20	<u>WG1633030</u>
(S) Toluene-d8	107			75.0-131		03/11/2021 13:20	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	101			67.0-138		03/11/2021 13:20	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	90.8			70.0-130		03/11/2021 13:20	WG1633030

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	37.3		8.54	21.2	5	03/11/2021 14:08	WG1632440
C28-C40 Oil Range	103		1.45	21.2	5	03/11/2021 14:08	<u>WG1632440</u>
(S) o-Terphenyl	68.7			18.0-148		03/11/2021 14:08	WG1632440

Received by OCP: 6/2/2021 11:23:08 PM Collected date/time: 03/09/21 09:25

SAMPLE RESULTS - 04 L1324887

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.0		1	03/10/2021 15:37	WG1632437	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	/ by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	132		9.79	21.3	1	03/11/2021 01:55	WG1632608	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quaimer	ma/ka	mg/kg	Dilution	date / time	Bateri	
,	шу/ку		5 5	5 5	44.0		W01022512	
TPH (GC/FID) Low Fraction	U		1.06	4.87	44.3	03/10/2021 18:44	WG1632512	
(S) a,a,a-Trifluorotoluene(FID)	97.1			77.0-120		03/10/2021 18:44	WG1632512	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000910	0.00195	1.77	03/11/2021 13:39	<u>WG1633030</u>
Toluene	U		0.00253	0.00973	1.77	03/11/2021 13:39	<u>WG1633030</u>
Ethylbenzene	U		0.00143	0.00487	1.77	03/11/2021 13:39	<u>WG1633030</u>
Total Xylenes	U		0.00172	0.0126	1.77	03/11/2021 13:39	<u>WG1633030</u>
(S) Toluene-d8	106			75.0-131		03/11/2021 13:39	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	102			67.0-138		03/11/2021 13:39	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	88.3			70.0-130		03/11/2021 13:39	<u>WG1633030</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	74.5		8.56	21.3	5	03/11/2021 14:21	WG1632440
C28-C40 Oil Range	205		1.46	21.3	5	03/11/2021 14:21	<u>WG1632440</u>
(S) o-Terphenyl	49.2			18.0-148		03/11/2021 14:21	WG1632440

SDG: L1324887

Reserved by 29D: 6/2/2021 11:23:08 PM Collected date/time: 03/09/21 09:35

SAMPLE RESULTS - 05 L1324887

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	87.9		1	03/10/2021 15:37	WG1632437	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0								
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	19.7	J	10.5	22.8	1	03/11/2021 02:04	WG1632608	СП

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.816	3.76	30	03/10/2021 19:06	WG1632512
(S) a,a,a-Trifluorotoluene(FID)	96.9			77.0-120		03/10/2021 19:06	WG1632512

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000702	0.00150	1.2	03/11/2021 13:58	<u>WG1633030</u>
Toluene	U		0.00196	0.00752	1.2	03/11/2021 13:58	<u>WG1633030</u>
Ethylbenzene	U		0.00111	0.00376	1.2	03/11/2021 13:58	WG1633030
Total Xylenes	U		0.00133	0.00978	1.2	03/11/2021 13:58	<u>WG1633030</u>
(S) Toluene-d8	107			75.0-131		03/11/2021 13:58	WG1633030
(S) 4-Bromofluorobenzene	98.1			67.0-138		03/11/2021 13:58	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	93.0			70.0-130		03/11/2021 13:58	<u>WG1633030</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	71.4		18.3	45.5	10	03/11/2021 14:34	WG1632440
C28-C40 Oil Range	217		3.12	45.5	10	03/11/2021 14:34	WG1632440
(S) o-Terphenyl	69.7			18.0-148		03/11/2021 14:34	WG1632440

SDG: L1324887

Reseiged by OCD: 6/2/2021 11:23:08 PM Collected date/time: 03/09/21 09:45

SAMPLE RESULTS - 06 L1324887

Â

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	88.1		1	03/10/2021 15:37	WG1632437	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	59.9		10.4	22.7	1	03/11/2021 02:14	WG1632608	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (uly)	Qualifier	MDL (ury)	KDL (ury)	Dilution	Analysis	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		QC
TPH (GC/FID) Low Fraction	U		1.13	5.22	43	03/10/2021 19:28	WG1632512	
(S) a,a,a-Trifluorotoluene(FID)	96.2			77.0-120		03/10/2021 19:28	<u>WG1632512</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000975	0.00209	1.72	03/11/2021 14:17	<u>WG1633030</u>
Toluene	U		0.00272	0.0104	1.72	03/11/2021 14:17	<u>WG1633030</u>
Ethylbenzene	U		0.00154	0.00522	1.72	03/11/2021 14:17	WG1633030
Total Xylenes	U		0.00183	0.0136	1.72	03/11/2021 14:17	<u>WG1633030</u>
(S) Toluene-d8	106			75.0-131		03/11/2021 14:17	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	101			67.0-138		03/11/2021 14:17	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	92.4			70.0-130		03/11/2021 14:17	WG1633030

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.7		1.83	4.54	1	03/12/2021 13:00	WG1632440
C28-C40 Oil Range	18.2		0.311	4.54	1	03/12/2021 13:00	WG1632440
(S) o-Terphenyl	45.2			18.0-148		03/12/2021 13:00	WG1632440

SDG: L1324887

SAMPLE RESULTS - 07 L1324887

۶r

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/09/21 09:55

						 1 Cm
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	91.0		1	03/10/2021 15:37	WG1632437	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0 3									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	107		10.1	22.0	1	03/11/2021 02:33	WG1632608		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (uly)	Qualifier	WDL (ury)	KDL (ury)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		(
TPH (GC/FID) Low Fraction	U		0.825	3.80	32.3	03/10/2021 19:50	WG1632512	
(S) a,a,a-Trifluorotoluene(FID)	95.3			77.0-120		03/10/2021 19:50	WG1632512	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000708	0.00152	1.29	03/11/2021 14:36	<u>WG1633030</u>
Toluene	U		0.00198	0.00759	1.29	03/11/2021 14:36	<u>WG1633030</u>
Ethylbenzene	U		0.00112	0.00380	1.29	03/11/2021 14:36	<u>WG1633030</u>
Total Xylenes	U		0.00134	0.00987	1.29	03/11/2021 14:36	<u>WG1633030</u>
(S) Toluene-d8	106			75.0-131		03/11/2021 14:36	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	99.5			67.0-138		03/11/2021 14:36	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	96.3			70.0-130		03/11/2021 14:36	WG1633030

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.39	J	1.77	4.40	1	03/11/2021 13:10	WG1632440
C28-C40 Oil Range	6.06		0.301	4.40	1	03/11/2021 13:10	WG1632440
(S) o-Terphenyl	59.0			18.0-148		03/11/2021 13:10	WG1632440

SDG: L1324887

Reseived by OCD: 6/2/2021 11:23:08 РМ Collected date/time: 03/09/21 11:05

SAMPLE RESULTS - 08 L1324887

Â

Sc

Total Solids by Method 2540 G-2011

	Decult	Qualifier	Dilution	Analysis	Datah	C C	Ср
Ameliate	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time	1101000 107	2	
Total Solids	95.2		1	03/10/2021 15:37	WG1632437		I C

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	U		9.66	21.0	1	03/11/2021 03:01	WG1632608		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
	Result (ury)	Qualifier	WDL (ury)	KDL (ury)	Dilution	Analysis	Batch	6	6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.688	3.17	29	03/10/2021 20:12	WG1632512	L	
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120		03/10/2021 20:12	WG1632512	7	GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000593	0.00127	1.16	03/11/2021 14:55	<u>WG1633030</u>
Toluene	U		0.00165	0.00635	1.16	03/11/2021 14:55	<u>WG1633030</u>
Ethylbenzene	U		0.000935	0.00317	1.16	03/11/2021 14:55	<u>WG1633030</u>
Total Xylenes	U		0.00112	0.00825	1.16	03/11/2021 14:55	<u>WG1633030</u>
(S) Toluene-d8	106			75.0-131		03/11/2021 14:55	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	98.5			67.0-138		03/11/2021 14:55	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	93.1			70.0-130		03/11/2021 14:55	WG1633030

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.09		1.69	4.20	1	03/11/2021 13:29	WG1632440
C28-C40 Oil Range	30.5		0.288	4.20	1	03/11/2021 13:29	WG1632440
(S) o-Terphenyl	46.8			18.0-148		03/11/2021 13:29	WG1632440

SDG: L1324887

Collected date/time: 03/09/21 11:10

SAMPLE RESULTS - 09 L1324887

Â

Sc

Total Solids by Method 2540 G-2011

-						l'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	91.1		1	03/11/2021 09:06	WG1632439	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
Result (dry) <u>Qualifier</u> MDL (dry) RDL (dry) Dilution Analysis <u>Batch</u>										
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴Cn	
Chloride	126		10.1	22.0	1	03/11/2021 03:11	WG1632608		CII	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (uly)	Qualifier	WDL (ury)	KDL (ury)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		G
TPH (GC/FID) Low Fraction	U		0.934	4.30	37	03/10/2021 20:34	WG1632512	
(S) a,a,a-Trifluorotoluene(FID)	97.5			77.0-120		03/10/2021 20:34	WG1632512	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000804	0.00172	1.48	03/11/2021 15:14	<u>WG1633030</u>
Toluene	U		0.00223	0.00861	1.48	03/11/2021 15:14	<u>WG1633030</u>
Ethylbenzene	U		0.00127	0.00430	1.48	03/11/2021 15:14	WG1633030
Total Xylenes	U		0.00151	0.0112	1.48	03/11/2021 15:14	<u>WG1633030</u>
(S) Toluene-d8	107			75.0-131		03/11/2021 15:14	WG1633030
(S) 4-Bromofluorobenzene	101			67.0-138		03/11/2021 15:14	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	95.5			70.0-130		03/11/2021 15:14	WG1633030

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.92	J	1.77	4.39	1	03/11/2021 12:18	WG1632440
C28-C40 Oil Range	9.22		0.301	4.39	1	03/11/2021 12:18	WG1632440
(S) o-Terphenyl	47.9			18.0-148		03/11/2021 12:18	WG1632440

SDG: L1324887

Repsivedby (BGD: 6/2/2021 11:23:08 PM Collected date/time: 03/09/21 10:55

SAMPLE RESULTS - 10 L1324887

۶r

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.5		1	03/11/2021 09:06	<u>WG1632439</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	U		9.63	20.9	1	03/11/2021 03:21	WG1632608	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quaimer	ma/ka	mg/kg	Dilution	date / time	Daten	
TPH (GC/FID) Low Fraction	U		0.759	3.50	32.3	03/10/2021 20:56	WG1632512	
(S) a,a,a-Trifluorotoluene(FID)	96.6			77.0-120		03/10/2021 20:56	WG1632512	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000652	0.00140	1.29	03/11/2021 15:33	<u>WG1633030</u>
Toluene	U		0.00182	0.00699	1.29	03/11/2021 15:33	<u>WG1633030</u>
Ethylbenzene	U		0.00103	0.00350	1.29	03/11/2021 15:33	<u>WG1633030</u>
Total Xylenes	U		0.00123	0.00909	1.29	03/11/2021 15:33	<u>WG1633030</u>
(S) Toluene-d8	108			75.0-131		03/11/2021 15:33	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	101			67.0-138		03/11/2021 15:33	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		03/11/2021 15:33	WG1633030

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.27		1.69	4.19	1	03/11/2021 12:44	WG1632440
C28-C40 Oil Range	22.3		0.287	4.19	1	03/11/2021 12:44	WG1632440
(S) o-Terphenyl	55.7			18.0-148		03/11/2021 12:44	WG1632440

SDG: L1324887

Reseived by OCD: 6/2/2021 11:23:08 PM Collected date/time: 03/09/21 10:35

SAMPLE RESULTS - 11 L1324887

Â

Sc

Total Solids by Method 2540 G-2011

						Cp
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	89.9		1	03/11/2021 09:06	WG1632439	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300	0.0						³ S	is
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	Cn
Chloride	130		10.2	22.2	1	03/11/2021 03:30	WG1632608		-11

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
	Result (ury)	Qualifier	WDL (ury)	KDL (ury)	Dilution	Allalysis	Batch	E	6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.797	3.67	30.5	03/11/2021 10:14	WG1632718	L	
(S) a,a,a-Trifluorotoluene(FID)	96.9			77.0-120		03/11/2021 10:14	WG1632718	7	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000686	0.00147	1.22	03/11/2021 15:52	<u>WG1633030</u>
Toluene	U		0.00191	0.00735	1.22	03/11/2021 15:52	<u>WG1633030</u>
Ethylbenzene	U		0.00108	0.00367	1.22	03/11/2021 15:52	<u>WG1633030</u>
Total Xylenes	U		0.00129	0.00955	1.22	03/11/2021 15:52	<u>WG1633030</u>
(S) Toluene-d8	107			75.0-131		03/11/2021 15:52	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	97.6			67.0-138		03/11/2021 15:52	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		03/11/2021 15:52	<u>WG1633030</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.03		1.79	4.45	1	03/11/2021 12:05	WG1632440
C28-C40 Oil Range	7.45		0.305	4.45	1	03/11/2021 12:05	WG1632440
(S) o-Terphenyl	50.3			18.0-148		03/11/2021 12:05	WG1632440

SDG: L1324887

DATE/TIME: 03/12/21 14:50 PAGE: 17 of 32 **Ведејуеф** by OCD: 6/2/2021 11:23:08 РМ Collected date/time: 03/09/21 10:40

SAMPLE RESULTS - 12 L1324887

۶r

Â

Sc

Total Solids by Method 2540 G-2011

						Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.6		1	03/11/2021 09:06	WG1632439	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	4 Cn	
Chloride	125		10.0	21.8	1	03/11/2021 03:40	WG1632608		CII	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
	Result (uly)	Qualifier	MDL (ury)	KDL (ury)	Dilution	Analysis	Batch	e	6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		1.10	5.07	44.3	03/11/2021 10:36	WG1632718	L	
(S) a,a,a-Trifluorotoluene(FID)	97.9			77.0-120		03/11/2021 10:36	WG1632718	5	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000946	0.00202	1.77	03/11/2021 16:11	<u>WG1633030</u>
Toluene	U		0.00263	0.0101	1.77	03/11/2021 16:11	<u>WG1633030</u>
Ethylbenzene	U		0.00149	0.00507	1.77	03/11/2021 16:11	<u>WG1633030</u>
Total Xylenes	U		0.00178	0.0132	1.77	03/11/2021 16:11	<u>WG1633030</u>
(S) Toluene-d8	106			75.0-131		03/11/2021 16:11	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	100			67.0-138		03/11/2021 16:11	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	94.8			70.0-130		03/11/2021 16:11	WG1633030

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.11	J	1.76	4.37	1	03/11/2021 11:52	WG1632440
C28-C40 Oil Range	4.71		0.299	4.37	1	03/11/2021 11:52	<u>WG1632440</u>
(S) o-Terphenyl	63.6			18.0-148		03/11/2021 11:52	WG1632440

SDG: L1324887

Rergined by QGD: 6/2/2021 11:23:08 РМ

Collected date/time: 03/09/21 10:45

SAMPLE RESULTS - 13 L1324887

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	90.9		1	03/11/2021 09:06	<u>WG1632439</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	Cn
Chloride	125		10.1	22.0	1	03/11/2021 03:49	WG1632608		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Patch	I	
	Result (uly)	Qualifier	MDL (uly)	KDL (ury)	Dilution	Alldiysis	Batch		6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	0.935	J	0.766	3.53	29.8	03/11/2021 10:58	WG1632718	l	
(S) a,a,a-Trifluorotoluene(FID)	97.2			77.0-120		03/11/2021 10:58	WG1632718		⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

Result (dry) Qualifier MDL (dry) RDL (dry) Dilution Analysis Batch Analyte mg/kg mg/kg mg/kg date / time date / time Benzene U 0.000658 0.00141 1.19 03/11/202116:48 WG1633030 Toluene U 0.00183 0.00704 1.19 03/11/202116:48 WG1633030 Ethylbenzene U 0.00183 0.00352 1.19 03/11/202116:48 WG1633030 Total Xylenes 0.00187 J 0.00124 0.00916 1.19 03/11/202116:48 WG1633030 (S) Toluene-d8 109 - 75.0-131 03/11/202116:48 WG1633030 (S) 4-Bromofluorobenzene 97.7 - 67.0-138 03/11/202116:48 WG1633030 (S) 1,2-Dichloroethane-d4 94.1 - 70.0-130 03/11/202116:48 WG1633030								
Benzene U 0.000658 0.00141 1.19 03/11/2021 16:48 WG1633030 Toluene U 0.00183 0.00704 1.19 03/11/2021 16:48 WG1633030 Ethylbenzene U 0.00104 0.00352 1.19 03/11/2021 16:48 WG1633030 Total Xylenes 0.00187 J 0.00124 0.00916 1.19 03/11/2021 16:48 WG1633030 (S) Toluene-d8 109 75.0-131 03/11/2021 16:48 WG1633030 (S) 4-Bromofluorobenzene 97.7 67.0-138 03/11/2021 16:48 WG1633030		Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Toluene U 0.00183 0.00704 1.19 03/11/2021 16:48 WG1633030 Ethylbenzene U 0.00104 0.00352 1.19 03/11/2021 16:48 WG1633030 Total Xylenes 0.00187 J 0.00124 0.00916 1.19 03/11/2021 16:48 WG1633030 (S) Toluene-d8 109 75.0-131 03/11/2021 16:48 WG1633030 (S) 4-Bromofluorobenzene 97.7 67.0-138 03/11/2021 16:48 WG1633030	Analyte	mg/kg		mg/kg	mg/kg		date / time	
Ethylbenzene U 0.00104 0.00352 1.19 03/11/2021 16:48 WG1633030 Total Xylenes 0.00187 J 0.00124 0.00916 1.19 03/11/2021 16:48 WG1633030 (S) Toluene-d8 109 75.0-131 03/11/2021 16:48 WG1633030 (S) 4-Bromofluorobenzene 97.7 67.0-138 03/11/2021 16:48 WG1633030	Benzene	U		0.000658	0.00141	1.19	03/11/2021 16:48	<u>WG1633030</u>
Total Xylenes 0.00187 J 0.00124 0.00916 1.19 03/11/2021 16:48 WG1633030 (s) Toluene-d8 109 75.0-131 03/11/2021 16:48 WG1633030 (s) 4-Bromofluorobenzene 97.7 67.0-138 03/11/2021 16:48 WG1633030	Toluene	U		0.00183	0.00704	1.19	03/11/2021 16:48	<u>WG1633030</u>
(S) Toluene-d8 109 75.0-131 03/11/2021 16:48 WG1633030 (S) 4-Bromofluorobenzene 97.7 67.0-138 03/11/2021 16:48 WG1633030	Ethylbenzene	U		0.00104	0.00352	1.19	03/11/2021 16:48	<u>WG1633030</u>
(S) 4-Bromofluorobenzene 97.7 67.0-138 03/11/2021 16:48 WG1633030	Total Xylenes	0.00187	J	0.00124	0.00916	1.19	03/11/2021 16:48	<u>WG1633030</u>
	(S) Toluene-d8	109			75.0-131		03/11/2021 16:48	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4 94.1 70.0-130 03/11/2021 16:48 WG1633030	(S) 4-Bromofluorobenzene	97.7			67.0-138		03/11/2021 16:48	<u>WG1633030</u>
	(S) 1,2-Dichloroethane-d4	94.1			70.0-130		03/11/2021 16:48	<u>WG1633030</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.31	J	1.77	4.40	1	03/11/2021 12:31	<u>WG1632440</u>
C28-C40 Oil Range	9.41		0.301	4.40	1	03/11/2021 12:31	<u>WG1632440</u>
(S) o-Terphenyl	47.0			18.0-148		03/11/2021 12:31	WG1632440

SDG: L1324887

<u> Retesine diby 89D: 6/2/2021 11:23:08 РМ</u> Collected date/time: 03/09/21 10:50

SAMPLE RESULTS - 14 L1324887

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.4		1	03/11/2021 09:06	<u>WG1632439</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300	0.0						3	Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	Cn
Chloride	U		9.64	21.0	1	03/11/2021 03:59	WG1632608		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (dry)	Qualifier	MDL (ury)	RDL (ury)	Dilution	Alidiysis	Balch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	0.981	J	0.605	2.79	25.5	03/11/2021 11:20	WG1632718	
(S) a,a,a-Trifluorotoluene(FID)	97.3			77.0-120		03/11/2021 11:20	WG1632718	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000521	0.00112	1.02	03/11/2021 17:07	<u>WG1633030</u>
Toluene	U		0.00146	0.00558	1.02	03/11/2021 17:07	<u>WG1633030</u>
Ethylbenzene	U		0.000823	0.00279	1.02	03/11/2021 17:07	<u>WG1633030</u>
Total Xylenes	U		0.000983	0.00726	1.02	03/11/2021 17:07	<u>WG1633030</u>
(S) Toluene-d8	107			75.0-131		03/11/2021 17:07	<u>WG1633030</u>
(S) 4-Bromofluorobenzene	99.3			67.0-138		03/11/2021 17:07	<u>WG1633030</u>
(S) 1,2-Dichloroethane-d4	95.3			70.0-130		03/11/2021 17:07	<u>WG1633030</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.20		1.69	4.19	1	03/11/2021 16:29	WG1632445
C28-C40 Oil Range	11.6		0.287	4.19	1	03/11/2021 16:29	<u>WG1632445</u>
(S) o-Terphenyl	70.9			18.0-148		03/11/2021 16:29	WG1632445

SDG: L1324887

Reg cive cby O QD 7/2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1324887-01,02,03,04,05,06,07,08

Page 165 of 263

GI

Â

Sc

Method Blank (MB)

Method Blank	(IVIB)						1
(MB) R3629633-1 0	3/10/21 15:37						
	MB Result	MB Qualifier	MB MDL	MB RDL			2
Analyte	%		%	%			
Total Solids	0.00100						
							3

L1324880-01 Original Sample (OS) • Duplicate (DUP)

Laboratory Control Sample (LCS)

(LCS) R3629633-2 03/10	0/21 15:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1324887

DATE/TIME: 03/12/21 14:50

PAGE: 21 of 32

Res cive thy Data 6/2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1324887-09,10,11,12,13,14

Page 166 of 263

GI

Â

Sc

Method Blank (MB)

	<u> </u>				
(MB) R3629754-1 (03/11/21 09:06 MB Result	MP Qualifier	MB MDL	MB RDL	
Analyte	Wid Result %	MB Qualifier	%	%	
Total Solids	0.000				

L1324887-10 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> Limits

Laboratory Control Sample (LCS)

(LCS) R3629754-2 03	/11/21 09:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1324887

DATE/TIME: 03/12/21 14:50

PAGE: 22 of 32

Reg @ q 6 by 2 6 D 8 /2/2021 11:23:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1324887-01,02,03,04,05,06,07,08,09,10,11,12,13,14

Method Blank (MB)

(MB) R3629540-1	03/10/21 22:42				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
Chloride	U		9.20	20.0	
					³ Ss
					0.0

L1324278-01 Original Sample (OS) • Duplicate (DUP)

<u> </u>						
1/21 00:20 • (DUP)	R3629540-6	03/11/21 C	0:29			
Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier		
mg/kg	mg/kg		%		6	
1670	1670	5	0.0385		.0	
_	11/21 00:20 • (DUP) Original Result mg/kg	11/21 00:20 • (DUP) R3629540-6 Original Result DUP Result mg/kg mg/kg	11/21 00:20 • (DUP) R3629540-6 03/11/21 0 Original Result DUP Result Dilution mg/kg mg/kg	mg/kg mg/kg %	11/21 00:20 • (DUP) R3629540-6 03/11/21 00:29 Original Result DUP Result Dilution DUP RPD DUP Qualifier DL Li mg/kg mg/kg %	I1/21 00:20 • (DUP) R3629540-6 O3/11/21 00:29 Original Result DUP Result Dilution DUP RPD DUP Qualifier DUP RPD Limits mg/kg mg/kg %

L1324887-06 Original Sample (OS) • Duplicate (DUP)

L1324887-06 O	riginal Sample	(OS) • Duj	plicate	(DUP)		
(OS) L1324887-06 03	3/11/21 02:14 • (DUP)	R3629540-7	03/11/21 0	2:23		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	59.9	66.1	1	9.76		20

Laboratory Control Sample (LCS)

(LCS) R3629540-2 03/10)/21 22:51				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	197	98.3	90.0-110	

L1324278-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1324278-01 03/10/2	OS) L1324278-01 03/10/21 23:42 • (MS) R3629540-4 03/11/21 00:01 • (MSD) R3629540-5 03/11/21 00:10												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	500	1710	2190	2230	95.3	103	1	80.0-120	E	E	1.79	20	

Released to	Imaging? 8/8/2021 11:09:22 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1324887

DATE/TIME: 03/12/21 14:50

PAGE: 23 of 32

Reg @ q 6 by 2 GB . 26/2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1324887-01.02.03.04.05.06.07.08.09.10

Page 168 of 263

⁺Cn

Sr

ີQc

GI

AI

Sc

Method Blank (MB)

(MB) R3629391-2 03/10/2	21 14:43				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	⁻Tc
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	97.9			77.0-120	³ Ss

Laboratory Control Sample (LCS)

(LCS) R3629391-1 03/10/	21 13:59				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.06	110	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			113	77.0-120	

L1324880-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1324880-02 03/10/	/21 16:32 • (MS)	R3629391-3 0	3/11/21 00:58 • ((MSD) R36293	391-4 03/11/21 0	01:20						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	149	26.6	173	180	98.2	103	25	10.0-151			4.29	28
(S) a,a,a-Trifluorotoluene(FID)					111	112		77.0-120				

DATE/TIME: 03/12/21 14:50

PAGE: 24 of 32

Reserved by 290 86/2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Page 169 of 263

°Cn

Sr

Qc

Gl

AI

Sc

Method Blank (MB)

	9				
(MB) R3629574-3 03/11/2	21 03:37				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	98.6			77.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3629574-1 03/11/2	1 02:26 • (LCSD) R3629574-2	03/11/21 02:53							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.28	4.64	96.0	84.4	72.0-127			12.9	20
(S) a,a,a-Trifluorotoluene(FID)				111	109	77.0-120				

L1324887-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1324887-11 03/11/21	10:14 • (MS) R36	629574-4 03/1	1/21 12:04 • (MS	D) R3629574-	5 03/11/21 12:2	6						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	202	U	160	160	79.2	79.2	30.5	10.0-151			0.000	28
(S) a,a,a-Trifluorotoluene(FID)					102	102		77.0-120				

SDG: L1324887 DATE/TIME: 03/12/21 14:50 PAGE: 25 of 32

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1324887-01.02.03.04.05.06.07.08.09.10.11.12.13.14

(MB) R3629905-3 03/11/2	1 11:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	107			75.0-131
(S) 4-Bromofluorobenzene	98.4			67.0-138
(S) 1,2-Dichloroethane-d4	92.9			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3629905-1 03/11/2	(LCS) R3629905-1 03/11/21 10:12 • (LCSD) R3629905-2 03/11/21 10:30											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		GI
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Benzene	0.125	0.111	0.110	88.8	88.0	70.0-123			0.905	20		8
Ethylbenzene	0.125	0.111	0.111	88.8	88.8	74.0-126			0.000	20		AI
Toluene	0.125	0.114	0.114	91.2	91.2	75.0-121			0.000	20		9
Xylenes, Total	0.375	0.328	0.329	87.5	87.7	72.0-127			0.304	20		Sc
(S) Toluene-d8				108	107	75.0-131						
(S) 4-Bromofluorobenzene				96.9	99.9	67.0-138						
(S) 1,2-Dichloroethane-d4				95.0	97.6	70.0-130						

PAGE: 26 of 32

Тс

Ss

Cn

Sr

Qc

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1324887-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3629575-1 03/11/	/21 08:10				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	0.274	J	0.274	4.00	
(S) o-Terphenyl	64.1			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3629575-2 03/	11/21 08:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	39.6	79.2	50.0-150	
(S) o-Terphenyl			68.6	18.0-148	

L1322356-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1322356-03 03/11/	/21 09:55 • (MS)	R3629575-3 0	3/11/21 10:08 • (MSD) R36295	575-4 03/11/211	0:21						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	49.1	337	226	226	0.000	0.000	100	50.0-150	$\underline{\vee}$	$\underline{\vee}$	0.000	20
(S) o-Terphenyl					76.8	80.8		18.0-148	<u>J7</u>	<u>J7</u>		

DATE/TIME: 03/12/21 14:50

PAGE: 27 of 32

⁺Cn

Â

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3629958-1 03/11/	/21 15:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	1.01	J	0.274	4.00
(S) o-Terphenyl	60.2			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3629958-2 03/	1/21 15:35								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
C10-C28 Diesel Range	50.0	40.1	80.2	50.0-150					
(S) o-Terphenyl			92.5	18.0-148					

L1322914-23 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1322914-23 03/11/2	21 15:48 • (MS) R3	3629958-3 03	/11/21 16:01 • (I	MSD) R362995	8-4 03/11/21 16	6:15							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	9
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	Sc
C10-C28 Diesel Range	49.8	U	38.0	36.0	76.3	72.0	1	50.0-150			5.41	20	
(S) o-Terphenyl					89.3	84.2		18.0-148					

DATE/TIME: 03/12/21 14:50

PAGE: 28 of 32

Page 172 of 263

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷GI

Å١

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1324887

Received by OCD: 6/2/2021 11:23:08 PM CCREDITATIONS & LOCATIONS

Page	174	of 263
------	-----	--------

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1324887

Analysis Request of Chain of Custody Record

901 West Wall Street, Suite 100 s 79701 Tetra Tech, Inc. TŁ 1324887 82-4559 Fax (432) 682-3946 **ALYSIS REQUEST** Site Manager: Christian Llull **Client Name: Conoco Phillips** (Circle or Specify Method No.) Email: christian.llull@tetratech.com Contact Info: Phillips E State 29 Release **Project Name:** Phone: (512) 338-1667 **Project Location:** 212C-MD-02425 Project #: Lea County, New Mexico (county, state) Accounts Pavable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 St) MRO) Pb Se Hg Sampler Signature: John Thurston **Receiving Laboratory:** Pace Analytical ORO als Ag As Ba Cd Cr Pb S itals Ag As Ba Cd Cr Pb 25 Comments: COPTETRA Acctnum DRO. TDS stry (Ext to C35) PRESERVATIV SAMPLING MATRIX 5M (GRO -E METHOD 3260B / BTE (N/X) CONTAINERS YEAR: 2021 005 SAMPLE IDENTIFICATION LAB # LTERED X 801 ATE HOLD LAB USE HNO3 IONE CLP DATE TIME E 1C BO ONLY X X N X X CSW-7 (2') 3/9/2021 8:55 X 2 X N X 9:05 X X 3/9/2021 CSW-8 (2') X N X X 3/9/2021 9:15 X 0 CSW-9 (2') C N X X X X 3/9/2021 9:25 X CSW-10 (2') N X X X 9:35 X 1 X 05 3/9/2021 CSW-11 (2') X N х 1 X 9:45 X X FS-8 (4') 3/9/2021 d X X N X X FS-9 (4') 3/9/2021 9:55 X X X X 3/9/2021 11:05 X N X ESW-2 (6') 9 X N X X ESW-4 (6') 3/9/2021 11:10 X X 10:55 X N X X X 1 WSW-6 (6') 3/9/2021 REMARKS: Date: Time: Relinquished by: Date: Time: Received by: LAB USE Standard 19 3/10/2 1530 9:00 12 M203 hlld an Time RUSH: Same Day 24 hr.)48 hr. 72 hr. Date: Date: Time: Received by: Relinquished by: 1.6=2=1.4 H20t Rush Charges Authorized Date: Time: Relinquished by: Date: Time Received by: Special Report Limits or TRRP Report Sample Receipt Checklist If Applicable RIGINAL COPY (Circle) HAND DELIVERED FEDE UPS Tracking #: COC Seal Present/Intact: Y /N COC Signed/Accurate: _Y_N VOA Zero Headspace: _Y_N Bottles arrive intact: _Y_N Pres.Correct/Check: _Y_N 1922 0813 0977 Bottles arrive intact: Released to Tmaging: 8/6/2021 11:09:22 AM Suiticler A F _n/hw. TY N

Page 175 of 263

Page: 1 of 2

Analysis Request of Chain of Custody Record

Page 176 of 263

	Tetra Tech, Inc.				82-45		x (432	2) 68	2-39	46			_		-							_	15	24	08	1
Client Name:	Conoco Phillips	Site Manager: Christian Llull										IAL	YSI					~								
Project Name:	Phillips E State 29 Release	Contact Int	fo:	Email: christian.llull@tetratech. Phone: (512) 338-1667				ch.con	1	1	1	(Cle	or 	Sp	bec	ITY	Me	the	d I	No.	1	1		
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-ME	0-02	425				-															
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7	a 100 Midland, Texas 79701																								
Receiving Laboratory		Sampler Si	John Thurston							MRON	(ONIIM	Hg	Hg								ched list)					
Comments: COPTE	TRA Acctnum							-	-			90B	C35) DRO - ORO - MROV		r Pb Se	Cr Pb Se			10	225				see attached		
		SAM	PLING	MA	TRIX	P	RESE E ME					BTEX 8260			Ba Cd C	s Ba Cd	es		B / 624	8270C/625		2	TDS	mistry (nce	
LAB #	SAMPLE IDENTIFICATION	YEAR: 202	1		Τ	t	Π	Τ	T	NERS	N/W)	8	TX1005 (Ext to 8015M (GRO -	-	Ag As	s Ag A	Volatiles		8260	5 Semi. Vol. 8082 / 608		stos)	Sulfate	ter Ch	Cation Bala	1
(LAB USE)		DATE	TIME	NATER	SOIL	HCL	HNO3	CE	NONE	# CONTAINERS	ILTERED (Y/N)	3TEX 8021B	TPH R015M	AH 8270C	fotal Metals Ag As Ba Cd Cr Pb Se Hg	CCLP Metal	TCLP Semi	SCI	SC/MS Vol. 8260B / 624	3C/MS Semi. Vol. PCB's 8082 / 608	NORM	PLM (Asbestos)	Chloride Sul	13	Anion/Catio	L'IL OUTON
	SSW-1 (6')	3/9/2021	10:35		×	T		X		1	N	X	X			T	T			T	E	-	x		1	-
the strange	SSW-2 (6')	3/9/2021	10:40		×			x		1	N	X	X	(T			T			x	Π	T	-
	WSW-4 (6')	3/9/2021	10:45		x			x		1	Ν	X	X	(1	x			
	WSW-5 (8')	3/9/2021	10:50		×			×	-	1	N	×	×			_	-		_	+			×		-	
								+					+				+			+			+		+	-
1	to the second					-		+					-							-					-	
		-			_	-		-					-			-	-			+		-	-		-	
Relinquished by:	Date: Time: 3/9/21 1530	Received by	U lin	the	5		ate:		Time:	00		L	AB OI	US		F	REM/	ARK	S: andar	d		-	-			
Relinquished by:	Date: Time:	Received by	y:			_	ate:	_	Time:			Sam	ple To	empe	ratur	e4	_		ISH: sh Ch			1	/	8 hr.	72 h	1. A.
Relinquished by:	Date: Time:	Received by	y:			D	ate:	٦	îme:			A	3	0	+									Repor	t	
	Sample Receipt Checklist /Intact:_Y_NIf Applicable		AL COPY	-	-		-	-	-					-			-	-	-	_	_	rackir	-		_	_

Page 177 of 263

ConocoPhillips - Tetra Tech

March 16, 2021

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1326630 03/13/2021 212C-MD-02425 Phillips E State 29 Release

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Тс Ss Cn Sr [′]Qc Gl AI Sc

Entire Report Reviewed By:

Enica Mc Neese

Erica McNeese Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: %%72021 11:09:22 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1326630

DATE/TIME: 03/16/21 15:10 PAGE: 1 of 18

TABLE OF CONTENTS

Ср

Ss

Cn

Sr

Qc

GI

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
CSW-9 (4') L1326630-01	5
CSW-10 (4') L1326630-02	6
CSW-11 (4') L1326630-03	7
Qc: Quality Control Summary	8
Total Solids by Method 2540 G-2011	8
Wet Chemistry by Method 300.0	9
Volatile Organic Compounds (GC) by Method 8015D/GRO	10
Volatile Organic Compounds (GC/MS) by Method 8260B	12
Semi-Volatile Organic Compounds (GC) by Method 8015	14
GI: Glossary of Terms	15
Al: Accreditations & Locations	16
Sc: Sample Chain of Custody	17

PROJECT: 212C-MD-02425

SDG: L1326630 DATE/TIME: 03/16/21 15:10

ME: 15:10 **PAGE:** 2 of 18

SAMPLE SUMMARY

Collected by Collected date/time Received date/time John Thurston 03/12/21 10:00 03/13/21 09:00 CSW-9 (4') L1326630-01 Solid Method Batch Dilution Preparation Analysis Analyst Location date/time date/time Total Solids by Method 2540 G-2011 WG1634703 1 03/15/21 08:28 03/15/21 08:38 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 WG1633355 1 03/13/21 17:07 03/14/21 00:54 ELN Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1634274 03/13/21 12:46 03/14/21 17:48 ACG Mt. Juliet, TN 1 Volatile Organic Compounds (GC/MS) by Method 8260B Mt. Juliet, TN WG1634286 1 03/13/21 12:46 03/13/21 21:18 JAH Semi-Volatile Organic Compounds (GC) by Method 8015 WG1634491 Mt. Juliet, TN 1 03/14/21 17:52 03/15/21 10:26 TJD

CSW-10 (4') L1326630-02 Solid			Collected by John Thurston	Collected date/time 03/12/21 10:11	Received da 03/13/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1634703	1	03/15/21 08:28	03/15/21 08:38	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/14/21 01:13	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1634274	1	03/13/21 12:46	03/14/21 18:10	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1634286	1	03/13/21 12:46	03/13/21 21:37	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1634491	1	03/14/21 17:52	03/15/21 10:40	TJD	Mt. Juliet, TN

CSW-11 (4') L1326630-03 Solid			Collected by John Thurston	Collected date/time 03/12/21 10:20	Received da 03/13/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1634703	1	03/15/21 08:28	03/15/21 08:38	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/14/21 01:22	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1634780	1	03/13/21 12:46	03/16/21 08:53	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1635064	1	03/13/21 12:46	03/15/21 23:39	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1634491	1	03/14/21 17:52	03/15/21 10:53	TJD	Mt. Juliet, TN

Page 179 of 263

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

Śc

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica Mc Neese

Erica McNeese Project Manager

PROJECT: 212C-MD-02425

SDG: L1326630 DATE/TIME:

03/16/21 15:10

PAGE: 4 of 18
Reseived by QCD: 6/2/2021 11:23:08 PM Collected date/time: 03/12/21 10:00

SAMPLE RESULTS - 01

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	94.1		1	03/15/2021 08:38	WG1634703		Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	122		9.78	21.3	1	03/14/2021 00:54	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	03/14/2021 17:48	WG1634274	
(S) a,a,a-Trifluorotoluene(FID)	91.0			77.0-120		03/14/2021 17:48	WG1634274	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000526	0.00113	1	03/13/2021 21:18	WG1634286
Toluene	U		0.00146	0.00563	1	03/13/2021 21:18	WG1634286
Ethylbenzene	U		0.000830	0.00282	1	03/13/2021 21:18	WG1634286
Total Xylenes	U		0.000991	0.00732	1	03/13/2021 21:18	WG1634286
(S) Toluene-d8	102			75.0-131		03/13/2021 21:18	WG1634286
(S) 4-Bromofluorobenzene	93.5			67.0-138		03/13/2021 21:18	WG1634286
(S) 1,2-Dichloroethane-d4	79.4			70.0-130		03/13/2021 21:18	WG1634286

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.35		1.71	4.25	1	03/15/2021 10:26	WG1634491
C28-C40 Oil Range	19.9		0.291	4.25	1	03/15/2021 10:26	WG1634491
(S) o-Terphenyl	65.3			18.0-148		03/15/2021 10:26	WG1634491

Reserved by QCP: 6/2/2021 11:23:08 PM Collected date/time: 03/12/21 10:11

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

-						Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	87.1		1	03/15/2021 08:38	<u>WG1634703</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	142		10.6	23.0	1	03/14/2021 01:13	WG1633355	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quaimer	ma/ka	mg/kg	Dilution	date / time	baten	
TPH (GC/FID) Low Fraction	11		0.0249	0.115	1	03/14/2021 18:10	WG1634274	
(S)	0		0.0215		I			1
a,a,a-Trifluorotoluene(FID)	91.4			77.0-120		03/14/2021 18:10	WG1634274	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000606	0.00130	1	03/13/2021 21:37	WG1634286
Toluene	U		0.00169	0.00649	1	03/13/2021 21:37	WG1634286
Ethylbenzene	U		0.000956	0.00324	1	03/13/2021 21:37	WG1634286
Total Xylenes	0.00120	Ţ	0.00114	0.00843	1	03/13/2021 21:37	WG1634286
(S) Toluene-d8	102			75.0-131		03/13/2021 21:37	WG1634286
(S) 4-Bromofluorobenzene	93.4			67.0-138		03/13/2021 21:37	WG1634286
(S) 1,2-Dichloroethane-d4	80.4			70.0-130		03/13/2021 21:37	WG1634286

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.58		1.85	4.59	1	03/15/2021 10:40	WG1634491
C28-C40 Oil Range	21.6		0.315	4.59	1	03/15/2021 10:40	WG1634491
(S) o-Terphenyl	62.7			18.0-148		03/15/2021 10:40	WG1634491

Ss Cn

Sr

Â

Sc

Reserved by QGD: 6/2/2021 11:23:08 PM Collected date/time: 03/12/21 10:20

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

-	-	Result	Qualifier	Dilution	Analysis	Patch	C	С
,	Analyte	«	Qualifier	Dilution	date / time	Batch		_
_	Total Solids	91.0		1	03/15/2021 08:38	WG1634703	2 Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	114		10.1	22.0	1	03/14/2021 01:22	WG1633355	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
• • • •		Qualifier			Dilution	,	Baten	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	03/16/2021 08:53	<u>WG1634780</u>	
(S) a,a,a-Trifluorotoluene(FID)	91.9			77.0-120		03/16/2021 08:53	WG1634780	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	qualifier	mg/kg	mg/kg	Bhation	date / time	Butch
Benzene	U		0.000560	0.00120	1	03/15/2021 23:39	WG1635064
Toluene	0.00345	J	0.00156	0.00600	1	03/15/2021 23:39	<u>WG1635064</u>
Ethylbenzene	U		0.000884	0.00300	1	03/15/2021 23:39	<u>WG1635064</u>
Total Xylenes	0.00171	J	0.00106	0.00779	1	03/15/2021 23:39	<u>WG1635064</u>
(S) Toluene-d8	101			75.0-131		03/15/2021 23:39	<u>WG1635064</u>
(S) 4-Bromofluorobenzene	99.9			67.0-138		03/15/2021 23:39	<u>WG1635064</u>
(S) 1,2-Dichloroethane-d4	107			70.0-130		03/15/2021 23:39	WG1635064

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.10		1.77	4.40	1	03/15/2021 10:53	<u>WG1634491</u>
C28-C40 Oil Range	22.2		0.301	4.40	1	03/15/2021 10:53	<u>WG1634491</u>
(S) o-Terphenyl	59.0			18.0-148		03/15/2021 10:53	WG1634491

³Ss ⁴Cn

Sr

Â

Sc

Reg @ q & by Q 9 D: 3/2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1326630-01,02,03

Page 184 of 263

GI

Â

Sc

Method Blank (MB)

іетпод віалк (IVIB)						
1B) R3630913-1 03/	/15/21 08:38						1
	MB Result	MB Qualifier	MB MDL	MB RDL			ī
nalyte	%		%	%			
otal Solids	0.000						

L1326630-02 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result Dilution DUP RPD DUP Qualifier DUP RPD Limits
Analyte % % % % % %

Laboratory Control Sample (LCS)

(LCS) R3630913-2 03/15	5/21 08:38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1326630

DATE/TIME: 03/16/21 15:10

PAGE: 8 of 18

Reprint to 2605 th 2/2021 11:23:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1326630-01,02,03

Page 185 of 263

Тс

Ss

Method Blank (MB)

(MB) R3630539-1 03/1	13/21 20:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1324058-01 Original Sample (OS) • Duplicate (DUP)

J	24058-01 Original Sample (OS) • Duplicate (DOP)										
(OS) L1324058-01 03/13/2			03/13/21 2	:1:15							
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	mg/kg	mg/kg		%		%					
Chloride	24.2	24.6	1	1.95	J	20					

L1326630-01 Original Sample (OS) • Duplicate (DUP)

L1326630-01 Origir	al Sample	(OS) • Dup	olicate (DUP)		
(OS) L1326630-01 03/14/2	1 00:54 • (DUP)	R3630539-6	03/14/21	01:03		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	122	121	1	0.930		20

Laboratory Control Sample (LCS)

(LCS) R3630539-2 03/13	8/21 20:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	194	96.9	90.0-110	

L1324058-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1324058-01 03/13/2	21 21:06 • (MS) F	3630539-4 0	3/13/21 21:24 • (MSD) R36305	39-5 03/13/21	21:34						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	632	24.2	602	603	91.4	91.6	1	80.0-120			0.226	20

Released to	Imaging? 8/8/2021	11:09:22 AM
	ConocoPhillips - Tetra	Tech

1

PROJECT: 212C-MD-02425

SDG: L1326630

DATE/TIME: 03/16/21 15:10

PAGE: 9 of 18

Res @ 46 3 2 207 4/2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Page 186 of 263

⁺Cn

Sr

ີQc

GI

AI

Sc

Method Blank (MB)

(MB) R3630742-2 03/14/2	21 13:46				1
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
PH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	97.0			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3630742-1 03/14	/21 13:02				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.51	118	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			115	77.0-120	

L1324352-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1324352-01 03/14/2	21 21:28 • (MS) R	3630742-3 03	3/14/21 22:12 • (I	MSD) R363074	42-4 03/14/212	22:35						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	563	97.2	455	435	63.6	60.0	100	10.0-151			4.53	28
(S) a,a,a-Trifluorotoluene(FID)					100	99.9		77.0-120				

DATE/TIME: 03/16/21 15:10

Reg @ et by Q 9 B: 6/2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Page 187 of 263

Method Blank (MB)

(MB) R3631111-2 03/16/21	04:19			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	97.6			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3631111-1 03/16/21	03:21				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.54	101	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			113	77.0-120	

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

DATE/TIME: 03/16/21 15:10 PAGE: 11 of 18 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1326630-01,02

Method Blank (MB)

Method Bialik (MD)				1
(MB) R3630860-2 03/13/2	21 17:43				Ċ
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	T
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ S
Toluene	U		0.00130	0.00500	Ľ
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	102			75.0-131	C
(S) 4-Bromofluorobenzene	92.7			67.0-138	
(S) 1,2-Dichloroethane-d4	80.3			70.0-130	⁵ S

Laboratory Control Sample (LCS)

(LCS) R3630860-1 03/13	/2116:46					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	΄GΙ
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.116	92.8	70.0-123		8
Ethylbenzene	0.125	0.114	91.2	74.0-126		A
Toluene	0.125	0.118	94.4	75.0-121		9
Xylenes, Total	0.375	0.331	88.3	72.0-127		Sc
(S) Toluene-d8			101	75.0-131		
(S) 4-Bromofluorobenzene			92.7	67.0-138		
(S) 1,2-Dichloroethane-d4			82.9	70.0-130		

DATE/TIME: 03/16/21 15:10

PAGE: 12 of 18

Page 188 of 263

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 189 of 263

Ср

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3631098-3 03/15/2	21 21:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	103			75.0-131
(S) 4-Bromofluorobenzene	98.2			67.0-138
(S) 1,2-Dichloroethane-d4	102			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3631098-1 03/15/2	21 20:14 • (LCSD) R3631098-2	03/15/21 20:33	3							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	GI 🖌
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.121	0.125	96.8	100	70.0-123			3.25	20	8
Ethylbenzene	0.125	0.104	0.107	83.2	85.6	74.0-126			2.84	20	AI
Toluene	0.125	0.114	0.118	91.2	94.4	75.0-121			3.45	20	9
Xylenes, Total	0.375	0.314	0.323	83.7	86.1	72.0-127			2.83	20	Sc
(S) Toluene-d8				101	100	75.0-131					
(S) 4-Bromofluorobenzene				95.3	94.7	67.0-138					
(S) 1,2-Dichloroethane-d4				107	104	70.0-130					

DATE/TIME: 03/16/21 15:10 PAGE: 13 of 18 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Page 190 of 263

⁺Cn

⁵Sr

GI

Â

Sc

Method Blank (MB)

MB) R3630732-1 03/15	5/21 07:30				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	65.2			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3630732-2 03/1	5/21 07:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	40.6	81.2	50.0-150	
(S) o-Terphenyl			94.4	18.0-148	

DATE/TIME: 03/16/21 15:10 PAGE: 14 of 18

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1326630 DATE/TIME: 03/16/21 15:10

Received by OCD: 6/2/2021 11:23:08 PM CCREDITATIONS & LOCATIONS

Page	<i>192</i>	of .	263
------	------------	------	-----

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
lorida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Centucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
laine	TN00003	Texas ⁵	LAB0152
faryland	324	Utah	TN000032021-11
lassachusetts	M-TN003	Vermont	VT2006
/lichigan	9958	Virginia	110033
linnesota	047-999-395	Washington	C847
Aississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
PA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1326630

)

Received by OCD: 6/2/2021 11:23:08 PM

Analysis Re	equest of Chain of Custody Record							(F	196	5							18.5				F	Page			of	1
F] Tetra Tech, Inc.				901	Midla Tel	and, I (43)	II Stree Texas 2) 682- 2) 682-	797	701 19	0				24	The Local Control of C		24				1				-	
Client Name:	Conoco Phillips	Site Manage	er: 👔	Chri	stian	Llull												NAL									E
Project Name:	Phillips E State 29 Release	Contact Info	Contact Info: Email: christian.llull@tetratech.com Phone: (512) 338-1667											(Ci 	ircl	e c	or S	spe 	ecif	y N III	leti	hoo	d N 	o.) 	I.		
Project Locatio (county, state)														Carlow Carlo					1	61.8 × 1							
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas	79701		41.45 9		14.			-														10		list)		
Receiving Labo	oratory: Pace Analytical	Sampler Sig	nature:	-	John ⁻	Thurs	ton	1	1		1		ORO - MRO		e Hg	Se Hg							1.		attached li		
Comments:	COPTETRA Acctnum	8	(ski								1	8260B	C35) DRO - ORO		Cd Cr Pb S	Ag As Ba Cd Cr Pb Se Hg		Naile I	4	0C/625	State of the state						
		SAMP	LING	MA	TRIX	PR		RVAT	IVE	SS	(N/A)	BTEX	GRO - D		As Ba (As Ba		Volatiles	0B / 624	8				te TI	hemist	5	14.08
LAB #	SAMPLE IDENTIFICATION	YEAR: 2021			1.4	1				AINERS				- 1	als Ag	als Ag	Volatiles	ni Vola	ol. 8260B	ami. Vo	82 / 60	estos)	00.00	Sulfate	/ater C	e e	
(LAB USE) ONLY)	L1326630	DATE	TIME	WATER	SOIL	HCL	-INO3	ICE		¢ CONT	FILTERED	\mathbf{X}	PH 8015M (AH 8270	otal Meta	CLP Metals	CLP Vola	TCLP Semi-	SC/MS Vol.	GC/MS Semi. Vol.	PCB's 8082 / 608	PLM (Asbestos)	Chloride 300.0	Chloride	General Water Chemistry (see Anion/Cation Balance	FPH 8015R	НОГР
-01	CSW-9 (4')	3/12/2021	10:00	-	x			X		1	N	X	X	LL L	-			- 4				2 0	X	0		-	I
-02	CSW-10 (4')	3/12/2021	10:11		X			х		1	N	х	×										X			\square	
-03	CSW-11 (4')	3/12/2021	10:20		x		1.15	Х		1	Ν	х	×		100								X			-	
			A.C.							5.900 C.	1								1								N.
			- 2.0	+	-				1							A	24		1.0			-					
				+	+	+	-						+	-			+										
		1	Karakan	++	-							10	10				+					-				+	-
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									and a second			+		+	Η			-					1				+
Salation and					20					1		\square			Η	H						+				+	+
Relinquished by	Date: Time: 3/12/20 150	Received by:				Date	9:	Time		t. } -		1	LAE				REN	S	KS: tand	ard							
Relinquished by:	: Date: ' Time:	Received by:				Date	9:	Time	ĸ			Sam	ole Te	mpe	ratur	e	1	X R				1	-)8 hr	r. 72	hr.	
Relinquished by:	: Date: Time:	Received by:		un	7	Date 3/	13	Time [2(700	>													P Rep	ort		
an Matairi an		ORIGINA	L COPY	1	(10	6	ar	2	0	12	(Circ	le) H	AND	DEI	LIVE	RED	FE	DEX) UP	S 1	racki	ng #:				
Released to 1	Imaging: 8/6/2021 11:09:22 AM			F	ed	(4)	4.	193	0	98	67		UP	'A3	; 1	4.6	+	0=	:4	.0			-	4	AND Y		. 100

Page 193 of 263

Pace Analytical National Center fo	or Testing & Innov	/ation	
Cooler Receipt F	orm		
Client: COPTETRA		0132	6630
Cooler Received/Opened On: 3 / 3 / 21	Temperature:	4.0	
Received By: Olivia Turner			E. P. V.
Signature: Oliving Curry			See. 30
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?	and the second s	e san rege San San Angeles	
COC Signed / Accurate?	State of the State	/	
Bottles arrive intact?		111	
Correct bottles used?		1.	1 all a
Sufficient volume sent?		1/	
If Applicable		Harris Margaret	C. B. C. R.
VOA Zero headspace?	the second s		deres and the second
Preservation Correct / Checked?		C. Stall	a the state

Received by OCD: 6/2/2021 11:23:08 PM

Page 195 of 263

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: %%72021 11:09:22 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02425

SDG: L1328144

DATE/TIME: 03/19/21 16:11 PAGE: 1 of 13

TABLE OF CONTENTS

Ср

Ss

Cn

Sr

Qc

GI

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
CSW-4 (5') L1328144-01	5
Qc: Quality Control Summary	6
Total Solids by Method 2540 G-2011	6
Wet Chemistry by Method 300.0	7
Volatile Organic Compounds (GC) by Method 8015D/GRO	8
Volatile Organic Compounds (GC/MS) by Method 8260B	9
Semi-Volatile Organic Compounds (GC) by Method 8015	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

PROJECT: 212C-MD-02425

SDG: L1328144

DATE/TIME: 03/19/21 16:11 **PAGE:** 2 of 13 Received by OCD: 6/2/2021 11:23:08 PM

SAMPLE SUMMARY

Page 197 of 263

CSW-4 (5') L1328144-01 Solid			Collected by John Thurston	Collected date/time 03/17/21 13:00	Received dat 03/18/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1636922	1	03/19/21 08:15	03/19/21 08:30	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1636858	1	03/18/21 14:56	03/18/21 19:43	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1636890	35.5	03/17/21 13:00	03/19/21 05:47	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1636902	1.42	03/17/21 13:00	03/18/21 20:06	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1637105	1	03/18/21 16:36	03/19/21 08:22	DMG	Mt. Juliet, TN

Ср

Released to Imaging: 0/0/2021 11:09:22 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02425

SDG: L1328144 DATE/TIME: 03/19/21 16:11

TIME: 21 16:11 PAGE: 3 of 13

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

PROJECT: 212C-MD-02425

SDG: L1328144

DATE/TIME: 03/19/21 16:11 PAGE: 4 of 13 Received by GCD: 6/2/2021 11:23:08 PM Collected date/time: 03/17/21 13:00

SAMPLE RESULTS - 01 L1328144

۶r

ΆI

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.8		1	03/19/2021 08:30	WG1636922	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	126		9.81	21.3	1	03/18/2021 19:43	WG1636858	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Qualifier		,	Dilution	,	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	1.47	Ţ	0.857	3.95	35.5	03/19/2021 05:47	WG1636890	
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		03/19/2021 05:47	WG1636890	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000738	0.00158	1.42	03/18/2021 20:06	WG1636902
Toluene	U		0.00206	0.00790	1.42	03/18/2021 20:06	WG1636902
Ethylbenzene	U		0.00117	0.00395	1.42	03/18/2021 20:06	WG1636902
Total Xylenes	U		0.00139	0.0103	1.42	03/18/2021 20:06	WG1636902
(S) Toluene-d8	104			75.0-131		03/18/2021 20:06	WG1636902
(S) 4-Bromofluorobenzene	103			67.0-138		03/18/2021 20:06	WG1636902
(S) 1,2-Dichloroethane-d4	106			70.0-130		03/18/2021 20:06	WG1636902

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.84		1.72	4.27	1	03/19/2021 08:22	<u>WG1637105</u>
C28-C40 Oil Range	18.2		0.292	4.27	1	03/19/2021 08:22	<u>WG1637105</u>
(S) o-Terphenyl	61.2			18.0-148		03/19/2021 08:22	WG1637105

SDG: L1328144 DATE/TIME: 03/19/21 16:11

Reg cire cby 8602 2/2/2021 11:23:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1328144-01

Page 200 of 263

Qc

GI

Â

Sc

Method Blank (MB)

3/19/21 08:30				
MB Result	MB Qualifier	MB MDL	MB RDL	
%		%	%	
0.00100				
	/19/21 08:30 MB Result %	/19/21 08:30 MB Result <u>MB Qualifier</u> %	/19/21 08:30 MB Result <u>MB Qualifier</u> MB MDL % %	/19/21 08:30 MB Result MB Qualifier MB MDL MB RDL % % %

L1328144-01 Original Sample (OS) • Duplicate (DUP)

L1328144-01 Origin	nal Sample (OS) • Dup	licate (L	JUP)		
(OS) L1328144-01 03/19/2	21 08:30 • (DUP)	R3632771-3 (03/19/21 08	8:30		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.8	93.2	1	0.586		10

Laboratory Control Sample (LCS)

(LCS) R3632771-2 03/19	9/21 08:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 03/19/21 16:11

PAGE: 6 of 13

Reg cire 6 by 8 6 b 8/2/2021 11:23:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1328144-01

Page 201 of 263

Τс

Ss

Method Blank (MB)

(MB) R3632582-1 03/1	8/21 18:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1326445-02 Original Sample (OS) • Duplicate (DUP)

L1326445-02 Or	iginal Sample	(OS) • Dup	olicate	(DUP)		
(OS) L1326445-02 03/	18/21 20:20 • (DUP) R3632582-5	03/18/21	20:30		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	471	469	1	0.574		20

L1327234-01 Original Sample (OS) • Duplicate (DUP)

OS) L1327234-01 03/18/21 21:46 • (DUP) R3632582-6 03/18/21 21:56 Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD Limits	1327234-01 Original Sample (OS) • Duplicate (DUP)									
Original Result DOP Result Dilution DOP RPD <u>DOP Qualifier</u> Limits	DS) L1327234-01 03/18/	8/21 21:46 • (DUP) R3	R3632582-6 03/18/2	21 21:56						
		Original Result	DUP Result Diluti	ion DUP RPD	DUP Qualifier					
Analyte mg/kg mg/kg % %	analyte	mg/kg	mg/kg	%		%				
Chloride 27700 27500 100 0.751 20	hloride	27700	27500 100	0.751		20				

Laboratory Control Sample (LCS)

(LCS) R3632582-2 03/18	CS) R3632582-2 03/18/21 18:41								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Chloride	200	186	92.8	90.0-110					

L1328144-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1328144-01 03/18/21 19:43 • (MS) R3632582-3 03/18/21 19:52 • (MSD) R3632582-4 03/18/21 20:01												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	533	126	669	687	102	105	1	80.0-120			2.68	20

Released to	Imaging? 8/8/2021	11:09:22 AM
	ConocoPhillips - Tetra	Tech

PROJECT: 212C-MD-02425

SDG: L1328144

DATE/TIME: 03/19/21 16:11

PAGE: 7 of 13

Reg cive by 860 6/2/2021 11:23:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1328144-01

Page 202 of 263

Method Blank (MB)

Method Blank (MB	3)					1	
(MB) R3632556-3 03/19/21 03:26							
	MB Result	MB Qualifier	MB MDL	MB RDL		2	
Analyte	mg/kg		mg/kg	mg/kg		Тс	
TPH (GC/FID) Low Fraction	U		0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		³ Ss	

Laboratory Control Sample (LCS)

"	101.00.10				
(LCS) R3632556-2 03/19	9/21 02:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.61	102	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			104	77.0-120	

	³ Ss
1	
	⁴ Cn
	⁵Sr
	⁶ Qc
1	7
	[′] Gl
1	
	⁸ Al
1	
	°Sc

DATE/TIME: 03/19/21 16:11 PAGE: 8 of 13 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 203 of 263

Ср

Гс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3632531-3 03/18/2	1 14:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	99.6			75.0-131
(S) 4-Bromofluorobenzene	104			67.0-138
(S) 1,2-Dichloroethane-d4	119			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3632531-1 03/18/2	21 12:48 • (LCSD) R3632531-2	03/18/21 13:07								7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	Í GI
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.114	0.117	91.2	93.6	70.0-123			2.60	20	8
Ethylbenzene	0.125	0.120	0.125	96.0	100	74.0-126			4.08	20	AI
Toluene	0.125	0.116	0.119	92.8	95.2	75.0-121			2.55	20	9
Xylenes, Total	0.375	0.362	0.353	96.5	94.1	72.0-127			2.52	20	Sc
(S) Toluene-d8				99.2	98.7	75.0-131					
(S) 4-Bromofluorobenzene				103	102	67.0-138					
(S) 1,2-Dichloroethane-d4				120	119	70.0-130					

SDG: L1328144 DATE/TIME: 03/19/21 16:11 PAGE: 9 of 13 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1328144-01

Page 204 of 263

⁺Cn

⁵Sr

GI

Â

Sc

Method Blank (MB)

Method Blank (M	B)								
(MB) R3632562-1 03/19/21 07:52									
	MB Result	MB Qualifier	MB MDL	MB RDL	Г				
Analyte	mg/kg		mg/kg	mg/kg					
C10-C28 Diesel Range	U		1.61	4.00					
C28-C40 Oil Range	U		0.274	4.00					
(S) o-Terphenyl	57.4			18.0-148					

Laboratory Control Sample (LCS)

(LCS) R3632562-2 03/19	9/21 08:07				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	37.6	75.2	50.0-150	
(S) o-Terphenyl			78.7	18.0-148	

DATE/TIME: 03/19/21 16:11

PAGE: 10 of 13

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1328144 DATE/TIME: 03/19/21 16:11

Received by OCD: 6/2/2021 11:23:08 PM CCREDITATIONS & LOCATIONS

Page	206	of	263
------	-----	----	-----

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
lorida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
entucky ¹⁶	KY90010	South Carolina	84004002
entucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
laine	TN00003	Texas ⁵	LAB0152
faryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Aichigan	9958	Virginia	110033
linnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1328144

С 0 Received by OCD: 6/2/2021 11:23:08 PM

Analysis Request of Chain of Custody Record

Page 207 of 263

Page: 1 of 1

TŁ	Tetra Tech, Inc.				901	Mi	dland el (4	all St 1, Tex 32) 6 32) 6	(as 7 82-4	559	100	L132814																
Client Name: Conoco Phillips		Site Manage	Site Manager: Ch		istian	Llu	I.						-									UES						
Project Name:	Phillips E State 29 Release	Contact Info	o:					ull@te -1667		ech.co	m		1	1	(Ci	rcl	e o 	r S	pe	city		eth	bo	No.	.) 			
Project Location: (county, state)	Lea County, New Mexico	Project #:	Project #: 2			12C-MD-02425											-											
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701						-	-					1	5			3	-		Contraction of the			-	list)		13		
Receiving Laboratory:			gnature:		John	Thu	irstor	١		ľ.	r.E		GW C		Se Hg	b Se Hg		T		1254				(see attached list)			2	
Comments: COPTE	TRA Acctnum											8260B	TX1005 (Ext to C35)	20-02	Ag As Ba Cd Cr Pb Se Hg	Cd Cr Pb			24	8270C/625	-		TUC	try (see a	-		2	
	5141	SAM	PLING	MA	ATRIX PRESERVATI METHOD					(V/N)	BTEX	(Ext to C		As Ba (As Ba	otilac	diller	50B / 62	ol. 827	9	12		3	lance		10		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2021	YEAR: 2021		~									TX1005 (E	70C		etals Ag	olatiles		Vol. 82(Semi. V	5 1 700	bestos)	300.0 Sulfata	Water (nion/Cation Balance	LO.	
(LAB USE)		DATE	TIME	WATER	SOIL	ICH.	HNO3	ICE	NONE	1100 W	# CONTAIL	BTEX 8	XT HHT	PAH 8270C	Total Metals	TCLP M	TCLP Volatiles	RCI	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol.	NORM	PLM (Asbestos)	Chloride 300.0	General Water	Anion/Catior		НОГР	
	CSW-4 (5')	3/17/2021	13:00		х		-	X		1	N	Х	1	x				1					х	1			-	
			-		-	+	-		-	-	1				-	12	-	-			+		+	-	-			
		-			+	+	+	+	+	┢	+		+	+	+	\vdash	-	+	\vdash	+	+	\mathbb{H}	+	+	\vdash	+		
										t								1										
																					_				\square			
					-	+	+	$\left \right $		+	-			+	+		-	+	\vdash	-	+	+	+	-		+	-	
						+	+			┢	33			1				+		1.1	+	+	+	+	++	0	100	
and Series		17						1	Tent.		1	-	9								T						10	
Relinquished by	Date: Time: 2/17/21 14:30	Received by	n Enlo	e			ate:		ime:	a	m			BU				S	(S : anda	ard	-	-	_					
Relinquished by:	Date: Time:	Received by				D	ate:	Т	ime:	1		San	nple T	emp	eratu	re	[K R	JSH:	Sam	e Day	(24)	hr.)	8 hr.	72 hr.			
	· · · · · · · · · · · · · · · · · · ·	-			-	-				Ŧ	-		7+	,1=	. 8	5	C	R	ish C	harge	s Auth	norized	1		0	2		
Relinquished by:	Date: Time:	Received by	. –			D	ate:	T S	ime:				A				E	Sp	ecial	Repo	rt Limi	its or T	RRP	Repor	t			
COC Signed/Acc	Sample Receipt Checklist nt/Intact:_Y_N If Applicable surate: _Y_N VOA Zero Headspace: _Y_N	ORIGIN	AL COPY				-		-			(Ci	rcle)	HAN	D DE	LIVE	RED	FEI	DEX	UPS	T	rackin	g #: _	_		_		
Bottles arrive Correct bottle Released to Imagi	intact: Y_N Pres.Correct/Check: Y_N is used: Y_N ing: 8/6/2021 11:09:22 AM 5 m8/hr: Y_N	F	ED-E	X:	19	12	22	(79	21	3	04	1-1															

B065

APPENDIX D Photographic Documentation

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View south. 1RP-5778 release footprint.	1
212C-MD-02425	SITE NAME	Phillips E State #29 Flowline Release	2/26/2021

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north. 1RP-5778 release footprint.	2
212C-MD-02425	SITE NAME	Phillips E State #29 Flowline Release	2/26/2021

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north. Excavation within the 1RP-5778 release footprint.	3
212C-MD-02425	SITE NAME	Phillips E State #29 Flowline Release	3/5/2021

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north. Excavation activities within the 1RP-5778 release footprint.	4
212C-MD-02425	SITE NAME	Phillips E State #29 Flowline Release	3/5/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02425	DESCRIPTION	View west. Excavation near the northern extent.	5
	SITE NAME	Phillips E State #29 Flowline Release	3/10/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02425	DESCRIPTION	View north. Excavation activities near the southern extent.	6
	SITE NAME	Phillips E State #29 Flowline Release	3/10/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02425	DESCRIPTION	View northeast. Southern portion of the excavated area.	7
	SITE NAME	Phillips E State #29 Flowline Release	3/10/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02425	DESCRIPTION	View north. Excavation area near header.	8
	SITE NAME	Phillips E State #29 Flowline Release	3/10/2021

•

APPENDIX E Waste Manifests

Received by OCD: 6/2/2021 11:23 RECEIVER ONMENTAL SOLUTIONS Permian Basin		Custome Ordered AFE #: PO #: Manifest Manif. D Hauler: Driver Truck # Card #	Customer #: CRI2190 Ordered by: JOHN THURSTON AFE #: PO #: Manifest #: 1 Manif. Date: 2/25/2021 Hauler: MCNABB PARTNERS Driver JESUS Truck # M31				Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	25434			
Facility: CRI											
Product / Serv	vice					Q	uantity U	nits			
Contaminated	Soil (RC	CRA Exemp	ot)				18.00	yards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51		0.00	0.00	0						
Generator Cer	rtificatio	n Statemen	t of Wast	e Statu	s	Negerije Negerije					
I hereby certify to 1988 regulatory X RCRA Exern RCRA Non- characteristics en amended. The f MSDS Infor	that accord determina npt: Oil F -Exempt: 0 stablished following o	ding to the Re ation, the abo ield wastes go Oil field wast in RCRA reg documentation	esource Co ve describe enerated fro te which is gulations, 4 on is attache	nservatio ed waste om oil ar non-haza 0 CFR 2 ed to den	on and Recover is: ad gas explora ardous that do 61.21-261.24 of nonstrate the a	tion and p es not exc or listed h bove-des	production ceed the mi azardous w cribed was	operations and nimum standar aste as defined te is non-hazar	are not mixed ds for waste ha in 40 CFR, pa dous. (Check th	with nor zardous rt 261, s ne appro	n-exempt wast by ubpart D, as

Customer Approval

THIS IS NOT AN INVOICE!

Approved By: _____

Date:

Received by OCD: 6/2/2021 11:23.	Customer #:	JOHN THURSTON	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name:	700-1196101 Page 215 of 263 O6UJ9A000H7J 2/25/2021 CONOCOPHILLIPS 25434 PHILLIPS E STATE
Permian Basin	Hauler: Driver Truck # Card # Job Ref #	MCNABB PARTNERS GUMER M32	Well #: Field: Field #: Rig: County	029 NON-DRILLING LEA (NM)
Facility: CRI				
Product / Service		Quantity	Units	
Contaminated Soil (RCRA Exempt	t)	18.00) yards	

Generator Certification Statement of Waste Status

pH

0.00

CI

0.00

Cond.

0.00

Cell

Lab Analysis: 50/51

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

TDS

%Solids

0

 <u>X</u> RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _ MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature	C	¥11	
		-	<u> </u>	
Customer Approval		V		

THIS IS NOT AN INVOICE!

Approved By:

Date:

PCI/GM

H2S

MR/HR

% Oil

Weight

Received by OCD: 6/2/2021 11:23 RB3600 ENVIRONMENTAL SOLUTIONS Permian Basin		Custom Ordere AFE #: PO #: Manifes Manif. I Hauler: Driver Truck # Card #	Customer #: CRI2190 Ordered by: JOHN THURS AFE #: PO #: Manifest #: 3 Manif. Date: 2/25/2021 Hauler: MCNABB PAR Driver FRANKIE Truck # M83			Bid #: ON Date: Generator: Generator #: Well Ser. #: Well Name:		25434			
Facility: CRI											
Product / Serv	ice					Q	uantity U	nits			
Contaminated Soil (RCRA Exempt)					20.00 yards						
	Cell	pН	CI	Cond	d. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0 0						

Generator Certification Statement of Waste Status

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

<u>X</u> RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _ MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Date:
Received by OCD: 6/2/2021 11:23	esistemer:	CONOCOPHILLIPS	Ticket #:	700-1196216 Pag	ge 217 of 263
	Customer #:	CRI2190	Bid #:	O6UJ9A000H7J	
DOCO	Ordered by:	JOHN THURSTON	Date:	2/26/2021	
	AFE #:		Generator:	CONOCOPHILLIPS	
	PO #:		Generator #:		
ENVIRONMENTAL	Manifest #:	4	Well Ser. #:		
SOLUTIONS	Manif. Date:	2/26/2021		PHILLIPS E STATE	
Permian Basin	Hauler:	MCNABB PARTNERS	Well #:	029	
Fermian Dasin	Driver	JESUS	Field:		
	Truck #	M31	Field #:		
	Card #		Rig:	NON-DRILLING	
	Job Ref #		County	LEA (NM)	
Facility: CRI					
Product / Service		Qu	antity Units		
			19 00 varde		

Contaminated	CRA Exe	mpt)		18.00 yards							
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

_____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge _____Other (Provide description above)

Driver/ Agent Signature R360 Representative Signature

Customer Approval	
	THIS IS NOT AN INVOICE!
Approved By:	Date:

Received by			Custom	ter #: Cl d by: JC st #: 5 Date: 2/ M JE	ONOCOPHIL RI2190 DHN THURS 26/2021 CNABB PAR ESUS 31	TON	E C C V V F F F F	Ficket #: Bid #: Date: Generator: #: Vell Ser. #: Vell Name: Vell #: Field: Field #: Rig: County	12121213213	00H7J PHILLIPS E STATE LLING	
Facility: CRI											
Product / Serv	ice	STE DUE IN	的行动的是多			Q	uantity Un	its			
Contaminated	Soil (R	CRA Exem	pt)				18.00 ya	ards			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by			Custome	er #: Cl by: JC : #: 6 ate: 2/ M JE M	ONOCOPHIL RI2190 DHN THURS 26/2021 CNABB PAR ESUS 31	TON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-11962 O6UJ9A0 2/26/2021 CONOCC 25434 PHILLIPS 029 NON-DRI LEA (NM)	DOH7J PHILLIPS E STATE LLING	ge 219 of 263
Facility: CRI											
Product / Serv	ice					Qı	uantity U	nits			
Contaminated	Soil (RC	RA Exem	ot)				18.00 y	/ards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by C RCS ENVIRONMENTA SOLUTION Permian Basin			Customer: Customer a Ordered by AFE #: PO #: Manifest #: Manif. Date Hauler: Driver Truck # Card # Job Ref #	#: CR r: JO : 7 e: 3/2 MC	HN THURST 2/2021 CNABB SER' JMER	ON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-11968 O6UJ9A00 3/2/2021 CONOCO 25434 PHILLIPS 029 NON-DRII LEA (NM)	DOHGD PHILLIPS E STATE	ne 220 of 263
Facility: CRI											
Product / Serv	ice		[h.]] [基-11]_3	Ninkal I		Q	uantity U	nits			
Contaminated	Soil (R	CRA Exem	pt)				18.00	yards			
	Cell	pН		ond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lah Analysis		0.00		0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

R360 Representative Signature Driver/ Agent Signature

Customer Approval

Lab Analysis: 50/51

THIS IS NOT AN INVOICE!

Approved By:

SOLUTIOI Permian Basin	Radility: CRI Product / Service		23: Custon Custon Ordere AFE #: PO #: Manife Manif. Hauler Driver Truck : Card # Job Re	ner #: C d by: J ⁱ st #: 8 Date: 3 : M G # N	CONOCOPHILLIPS CRI2190 JOHN THURSTON 8 3/2/2021 MCNABB PARTNERS GUMER M32			Ficket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field #: Field #: Rig: County	700-11968 O6UJ9A00 3/2/2021 CONOCOI 25434 PHILLIPS 029 NON-DRII LEA (NM)	00HGD PHILLIPS E STATE	ge 221 of 263
Facility: CRI								And the state of the state of the state			and the second
Product / Serv	vice				Constant and the	Q	uantity U	nits	A REPORTS A		A A A A A A A A A A A A A A A A A A A
Contaminated	Soil (R	CRA Exen	npt)				18.00 y	vards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	the second s	0.00	0.00	0.00	0						
Generator Centrify	rtificatio	on Stateme	ent of Wa Resource	ste Staf	t us tion and Recov	ery Act (R	CRA) and	the US Envir	onmental Pro	otection Ag	ency's July

1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)

MSDS Information

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

SOLUTIO	R360 ENVIRONMENTAL SOLUTIONS		Custon Ordere AFE #: PO #: Manife Manif. Hauler Driver Truck # Card #	Customer #: CRI2190 Ordered by: JOHN THURSTON AFE #: PO #: Manifest #: 2 Manif. Date: 3/2/2021 Hauler: MCNABB PARTN				Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	25434		
Facility: CRI											
Product / Serv	ice					Q	uantity U	nits			
Contaminated	Soil (R	CRA Exem	pt)				10.00 y	vards			
	Cell	pН	CI	Cond	d. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.0	0 0						
Generator Cer	tificatio	n Statemer	nt of Was	ste Sta	itus				ant side		

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	Qu
	THIS IS NOT AN INVOICE!

Approved By:

Received by RRG ENVIRONMENT SOLUTION Permian Basin	BE		3: Merri Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CRI21 JOHN 10 3/2/20	THURS 21 BB PAR	TON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-11969 O6UJ9A00 3/2/2021 CONOCOF 25434 PHILLIPS I 029 NON-DRIL LEA (NM)	0HGD PHILLIPS E STATE	
Facility: CRI											
Product / Serv	vice					Qı	antity U	nits			
Contaminated	Soil (R	CRA Exem	pt)				18.00	yards			
	Cell	pН	CI Cor	nd. %	Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00 0.0	00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by RRG ENVIRONMENT SOLUTION Permian Basin			Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CRI2 JOHN 11 3/2/20	N THURT 021 ABB PAR	SON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	25434	00HGD PHILLIPS E STATE	
Facility: CRI											
Product / Serv	ice	R. Daver				Q	uantity U	Inits		1. 【美国語》	
Contaminated	Soil (RC	RA Exemp	ot)				18.00	yards			
	Cell	pН	CI Cor	id.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00 0.0		0						
Generator Cer	tificatio	n Statemer	t of Waste St	atus		A at (D	(CRA) and	the US Enviro	onmental Pro	tection A	gency's July
_ RCRA Non- characteristics es	determina npt: Oil F Exempt: stablished	tion, the abo ield wastes g Oil field was in RCRA re	enerated from c te which is non-	aste is: oil and hazard FR 261. odemoi	gas explora lous that do .21-261.24 nstrate the ysis _ P	ation and j bes not ex- or listed h above-des rocess Kn	broduction ceed the m azardous v cribed was owledge	operations and inimum standar vaste as defined ste is non-hazar Other (Pro	l are not mixe rds for waste d in 40 CFR, dous. (Checl	ed with no hazardou part 261, k the appr	on-exempt wast is by subpart D, as opriate items):
Driver/ Agent	Signatu	re		10 2000	R360	Represe	ntative S	ignature			

Custome	r Ap	prova	al
---------	------	-------	----

Approved By: _____

Received by O Received by O Received by O Solutions Permian Basin	86		Customer: Customer: Customer # Ordered by AFE #: PO #: Manifest #: Manif. Date Hauler: Driver Truck # Card # Job Ref #	: CRI JOH 12 : 3/2/	NABB PART NY	ON		Ticket #. Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County		DOHGD PHILLIPS E STATE	ge 225 of 263
Facility: CRI									COLORADO AN INC.	P. Santa and	THE REAL PROPERTY OF
Product / Servic	e	The factor		- CARLE		Qu	antity U				New York Street, South of
Contaminated S	Soil (RC	RA Exemp	t)				10.00				
Lab Analysis: 5	Cell 60/51	рН 0.00		ond. .00	%Solids 0	TDS	PCI/GM	I MR/HR	H2S	% Oil	Weight
Generator Certi I hereby certify tha 1988 regulatory de X RCRA Exemp RCRA Non-E characteristics esta amended. The fol MSDS Inform	at accord eterminat ot: Oil Fie Exempt: C ablished	ing to the Re- tion, the above eld wastes ge Dil field wast in RCRA reg	esource Conse ve described v enerated from te which is no gulations, 40 (vn is attached	ervation waste is oil and n-haza CFR 26 to dem	n and Recove s: d gas explorat rdous that doo 51.21-261.24 o constrate the a alysis Pro	ion and pr es not exce r listed ha bove-desc ocess Kno	oduction eed the mi zardous w ribed was wledge	operations and inimum standar vaste as defined te is non-hazar Other (Pro	are not mixe rds for waste I in 40 CFR, rdous. (Checl	ed with nor hazardous part 261, s k the appro	n-exempt waste by ubpart D, as priate items):
Driver/ Agent S	ignatur	8			R360 F	Represen	tative Si	gnature			
Customer Appr	roval									_	
			Tŀ	IS	IS NOT	AN IN	IVOIC	CE!	Ø		
Approved By: _						Da	ate:				

Received by OCD: 6/2/2021 11:23	Customer #:	JOHN THURSTON	Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-1197027 Page 226 of 20 O6UJ9A000HGD 3/3/2021 CONOCOPHILLIPS 25434 PHILLIPS E STATE 029 NON-DRILLING LEA (NM)	53
Facility: CRI					1000
Product / Service			Quantity Units		
Contaminated Soil (RCRA Exemp	ot)		18.00 yards		
Cell pH	CI Cor	nd. %Solids TDS	PCI/GM MR/HR	H2S % Oil Weight	

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

0

Driver/ Agent Signature

Lab Analysis: 50/51

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

	Received by OCD: 6/2/2021 T1:23		Custo Ordere AFE # PO #: Manife	mer #: (ed by: : est #: Date: ; f: (# 1	CONOCOPHIL CRI2190 JOHN THURS 14 3/3/2021 MCNABB PAR GUMER M32	ΓΟΝ	Bid #: FON Date: Generator: Generator #: Well Ser. #: Well Name:			25434			
Facility: CRI													
Product / Serv	/ice					Q	uantity U	nits		and the state of the			
Contaminated	I Soil (R	CRA Exen	npt)				18.00 y	/ards					
	Cell	pН	CI	Cond	. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight		
Lab Analysis:		0.00	0.00	0.00	0								
Generator Ce	rtificatio	on Stateme	ent of Wa	ste Sta	tus				un entel De	testion A a	anavia July		

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

 <u>X</u> RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _ MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 6/2/2021 11:23	Customer #:	CONOCOPHILLIPS CRI2190 JOHN THURSTON 15 3/3/2021 MCNABB PARTNERS URIEL M82	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-1197029 Page 228 of 263 O6UJ9A000HGD 3/3/2021 CONOCOPHILLIPS 25434 PHILLIPS E STATE 029 NON-DRILLING LEA (NM)
Facility: CRI				
Product / Service		Quant	tity Units	
Contaminated Soil (RCRA Exemp	t)	2	20.00 yards	

oomamatot	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight	
Lab Analysis:	and the second	0.00	0.00	0.00	0							

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

<u>X</u> RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste
 <u>RCRA Non-Exempt</u>: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge _____Other (Provide description above)

Driver/ Agent Signature R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

R3600 CRI2190 Bid #: O6UJ9A000HGD Ordered by: JOHN THURSTON Date: 3/3/2021 Ordered by: JOHN THURSTON Date: 3/3/2021 AFE #: PO #: Generator: CONOCOPHILLIPS PO #: Manifest #: 16 Well Ser. #: 25434 Manif. Date: 3/3/2021 Well Name: PHILLIPS E STATE Hauler: MCNABB PARTNERS Well #: 029 Driver GUMER Field: Truck # M32 Card # Job Ref # County LEA (NM)	Received by	OCD: 6/	2/2021 11:23	:08 PM	0				Ticket #:	700-11970	63 Pa	ge 229 of 263
Ordered by: JOHN THURSTON Date: 3/3/2021 AFE #: Generator: CONOCOPHILLIPS P0 #: Manifest #: 16 Well Ser. #: 25434 Manif. Date: 3/3/2021 Well Name: PHILLIPS E STATE Manif. Date: 3/3/2021 Well Name: PHILLIPS E STATE Manif. Date: 3/3/2021 Well Name: PHILLIPS E STATE Hauler: MCNABB PARTNERS Well #: 029 Driver GUMER Field: Truck # Truck # M32 Field #: Gounty Job Ref # County LEA (NM) LEA (NM) Froduct / Service Quantity Units Contaminated Soil (RCRA Exempt) 18.00 yards Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight											S. S. Sameran	8 y
AFE #: Generator: CONOCOPHILLIPS PO #: Generator: CONOCOPHILLIPS PO #: Manifest #: 16 Well Ser. #: 25434 Manif. Date: 3/3/2021 Well Name: PHILLIPS E STATE Manif. Date: 3/3/2021 Well Name: PHILLIPS E STATE Hauler: MCNABB PARTNERS Well #: 029 Driver GUMER Field: Truck # Truck # M32 Field #: County LEA (NM) Facility: CRI Product / Service Quantity Units Contaminated Soil (RCRA Exempt) 18.00 yards 18.00 yards Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight				Ordered b	v JO	HN THURST	ON					
ENVIRONMENTAL SOLUTIONS Manifest #: 16 Well Ser. #: 25434 Manif. Date: 3/3/2021 Well Name: PHILLIPS E STATE Hauler: MCNABB PARTNERS Well #: 029 Driver GUMER Field: Truck # M32 Field #: Card # County LEA (NM) Facility: CRI Product / Service Quantity Units Contaminated Soil (RCRA Exempt) 18.00 yards Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Veight 0.00 0.00		315			<i>j</i>					CONOCOF	PHILLIPS	
SOLUTIONS Manif. Date: 3/3/2021 Well Name: PHILLIPS E STATE Permian Basin Hauler: MCNABB PARTNERS Well #: 029 Driver GUMER Field: Truck # M32 Field #: Card # County LEA (NM) Job Ref # Product / Service Contaminated Soil (RCRA Exempt) 18.00 yards Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight												
Permian Basin Hauler: MCNABB PARTNERS Well #: 029 Driver GUMER Field: Truck # M32 Field #: Card # Rig: NON-DRILLING Job Ref # County LEA (NM)		1940 B		Manifest #								
Permian Basin Induction GUMER Field: Driver GUMER Field: Truck # M32 Field #: Card # Rig: NON-DRILLING Job Ref # County LEA (NM) Facility: CRI Product / Service Quantity Units Contaminated Soil (RCRA Exempt) 18.00 yards Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight	SOLUTIO	NS 🖌							그런 가지 않는 것 가프로 가지 않았어?		ESTATE	
Truck # M32 Field #: Card # Rig: NON-DRILLING Job Ref # County LEA (NM) Facility: CRI Product / Service Quantity Units Contaminated Soil (RCRA Exempt) 18.00 yards Cell pH CI Cond. % Solids TDS PCI/GM MR/HR H2S % Oil Weight	Permian Basir	n		terret of the			INERS			029		
Card # Rig: NON-DRILLING Job Ref # County Facility: CRI Product / Service Quantity Units Contaminated Soil (RCRA Exempt) 18.00 yards Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight				and the second								
Job Ref # County LEA (NM) Facility: CRI Quantity Units Product / Service Quantity Units Contaminated Soil (RCRA Exempt) 18.00 yards Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight					MIO	-				NON-DRIL	LING	
Product / Service Quantity Units Contaminated Soil (RCRA Exempt) 18.00 yards Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight									1000 C	LEA (NM)		
Contaminated Soil (RCRA Exempt) 18.00 yards Cell pH Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight	Facility: CRI											
Cell pH CI Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight	Product / Serv	lice					Q	uantity U	nits		· · · · · · · · · · · · · · · · · · ·	
Gen pri or Gond. Adonadi i Bo i da chi and	Contaminated	I Soil (R	CRA Exemp	t)				18.00	yards			
0.00		Cell	На	CI C	ond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
	Lab Analysis:	and the second second second second		0.00 (0.00	0			2.00			
Generator Certification Statement of Waste Status	Generator Ce	rtificatio	n Statemen	t of Waste	Status							

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	
	THIS IS NOT AN INVOICE!

Approved By:

Date: _____

Received by C REG ENVIRONMENT SOLUTION Permian Basin			Custor	mer #: C ed by: J : : Date: 3 :	ONOCOPHILI RI2190 OHN THURST 7 /3/2021 MCNABB PART ESUS 131	ON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-11970 06UJ9A00 3/3/2021 CONOCO 25434 PHILLIPS 029 NON-DRII LEA (NM)	DOHGD PHILLIPS E STATE	ge 230 of 263
Facility: CRI											
Product / Serv	ice	Shipe Mark				Q	uantity U	nits		States Ser	の時代になった。
Contaminated	Soil (RC	RA Exen	npt)				18.00	yards			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cer I hereby certify t 1988 regulatory X RCRA Exen _ RCRA Non- characteristics er amended. The f MSDS Info	hat accord determina npt: Oil F Exempt: stablished ollowing	ding to the ation, the al ield wastes Oil field w in RCRA documenta	Resource pove descr generated aste which	Conserva ibed wast from oil is non-ha s, 40 CFR ched to d	tion and Recove e is: and gas explorat zardous that do 261.21-261.24 c emonstrate the a	tion and p es not exc or listed h bove-des	production ceed the mi azardous w cribed was	operations and nimum standat	are not mix rds for waste d in 40 CFR, dous. (Chec	ed with nor hazardous part 261, s k the appro	n-exempt waste by ubpart D, as priate items):

Driver/ Agent Signature	R360 Representative Signature	ANC 3

Customer Approval	现在已未到分别

Approved By: _____

Received by	BE		Custo Ordero AFE # PO #: Manife	mer #: C ed by: J(: : Date: 3/ r: M JI # M	ONOCOPHIL RI2190 DHN THURS 8 /3/2021 ICNABB PAR ESUS I31	ΤΟΝ		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	25434	00HGD PHILLIPS E STATE LLING	
Facility: CRI											
Product / Serv	vice					Q	uantity U	nits			
Contaminated	I Soil (R	CRA Exen	npt)				18.00 y	vards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00	0.00	0						
Generator Cer I hereby certify 1988 regulatory	that acco	rding to the	Resource	Conservat	ion and Recove	ery Act (R	CRA) and t	he US Enviro	onmental Pro	otection Ag	ency's July

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

_____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS	IS	NOT	AN	INVOICE!	N
------	----	-----	----	----------	---

Approved By:

Received by OCD: 6/2/2021 11:23			Customer: CONOCOPHIL Customer #: CRI2190 Ordered by: JOHN THURS AFE #: PO #: Manifest #: 19 Manif. Date: 3/3/2021 Hauler: MCNABB PAR Driver GUMER Truck # M32 Card # Job Ref #			ΤΟΝ		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	25434		
Facility: CRI											
	No. of Concession		ten and a second and	100/11/2013						ANG-MARKER H	
Product / Serv	vice					Q	uantity U	nits		The state of the	
Contaminated	Soil (RC	CRA Exem	ot)				18.00	yards			
	Cell	pН	CI	Cond	d. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.0	0 0						
Generator Cer	tificatio	n Statemer	nt of Wast	e Sta	atus						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information _____ RCRA Hazardous Waste Analysis _____ Process Knowledge _____ Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 6/2/2021 T1:23		3:08 Gener: CONOCOPHILLIPS Customer #: CRI2190 Ordered by: JOHN THURSTON AFE #: PO #: Manifest #: 20 Manif. Date: 3/4/2021 Hauler: MCNABB PARTNERS Driver GUMER Truck # M32 Card # Job Ref #				Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-1197208 O6UJ9A0001 3/4/2021 CONOCOPH 25434 PHILLIPS E 029 NON-DRILLI LEA (NM)				
Facility: CRI											
Product / Serv	ice						uantity U	nits			
Contaminated	Soil (RC	RA Exem	pt)			ìĈ	18.00	yards			
Lab Analysis:	Cell 50/51	рН 0.00	CI 0.00	Cond. 0.00	%Solids 0	TDS	PCI/GN	1 MR/HR	H2S	% Oil	Weight
Generator Cer I hereby certify th 1988 regulatory of X RCRA Exem RCRA Non- characteristics es amended. The fo MSDS Infor Driver/ Agent \$	hat accord determina pt: Oil Fi Exempt: C tablished ollowing d mation	ling to the F tion, the abo eld wastes g Dil field was in RCRA re locumentati RCRA F	Resource C ove descril generated f ste which i egulations, on is attac	Conservat oed wast from oil a s non-ha 40 CFR hed to de	ion and Recove e is: and gas explor zardous that de 261.21-261.24 emonstrate the analysis _ P	ation and poes not exe or listed h above-des rocess Kn	production ceed the mi azardous w cribed was	operations and inimum standar vaste as defined te is non-hazar Other (Pro	are not mixed ds for waste ha in 40 CFR, par dous (Check th	with nor zardous rt 261, si ie appro	n-exempt waste by ubpart D, as opriate items):

Approved By: _____

Customer Approval

Received by OCD: 6/2/2021 T1:2: RECEIVED BY OCD: 6/2/2021 T1:2: PR3600 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer #:	JOHN THURST	ON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County		OHGD PHILLIPS E STATE	
Facility: CRI								
Product / Service			Q	uantity U	nits			
Contaminated Soil (RCRA Exem	ot)		12	20.00	yards			
Cell pH	Cl Con	d. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51 0.00	0.00 0.0	0 0						
Generator Certification Statemen I hereby certify that according to the R 1988 regulatory determination, the abo X RCRA Exempt: Oil Field wastes g RCRA Non-Exempt: Oil field wast characteristics established in RCRA re amended. The following documentation MSDS Information RCRA H Driver/ Agent Signature	esource Conservive described wa enerated from o te which is non- gulations, 40 CF on is attached to	vation and Recove iste is: il and gas explorat hazardous that doo rR 261.21-261.24 o demonstrate the a e Analysis Pro	tion and p es not exc r listed ha bove-desc ocess Kno	roduction ceed the mi azardous w cribed was	operations and nimum standar vaste as defined te is non-hazar Other (Prov	are not mixe ds for waste lin 40 CFR, j dous. (Check	d with nor hazardous part 261, si the appro	n-exempt wast by ubpart D, as priate items):
Customer Approval			ALLI					The second s
	TH	S IS NOT		VOIC				

Approved By: _____

Date: _____

RS	Received by OCD: 6/2/2021 11:23		3: Custome Custome Ordered AFE #: PO #: Manifest Manif. D Hauler: Driver Truck # Card # Job Ref	er #: C by: J(#: 2: ate: 3. N A N	CONOCOPHILLIPS CRI2190 JOHN THURSTON 22 3/4/2021 MCNABB PARTNERS ACIE M80			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-1197234 O6UJ9A000HH 3/4/2021 CONOCOPHIL 25434 PHILLIPS E ST 029 NON-DRILLIN LEA (NM)	IO LIPS	ge 235 of 263
Facility: CRI											
Product / Serv	ice	1.5	1.111	建原的		Qı	uantity U	nits			
Contaminated	Soil (R	CRA Exem	pt)			12	-20.00	yards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S %	6 Oil	Weight
Lab Analysis:		0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ______MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge _____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature	
Customer Approval	V	

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 6/		Customer	#: CF yy: JC te: 3/4 GI GI	OHN THURST 4/2021 CNABB PART JMER	ON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-11972 O6UJ9A00 3/4/2021 CONOCOF 25434 PHILLIPS 029 NON-DRIL LEA (NM)	OHHO PHILLIPS E STATE	ge 236 of 263
Facility: CRI										
Product / Service					Q	uantity U	nits			
Contaminated Soil (R	CRA Exem	pt)			10	18.00	yards			
Cell	Ha	CI C	ond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51	0.00	0.00	0.00	0						
Generator Certification I hereby certify that acco 1988 regulatory determint X RCRA Exempt: Oil I RCRA Non-Exempt: characteristics establishe amended. The following MSDS Information Driver/ Agent Signatu	rding to the F nation, the abo Field wastes g Oil field was d in RCRA ro documentati RCRA I	Resource Con ove described generated from ste which is n egulations, 40 on is attached	servati l waste n oil a on-haz CFR 2 d to dei	on and Recove is: nd gas explorat cardous that doo 261.21-261.24 o monstrate the a nalysis Pro	tion and p es not exc r listed ha bove-des ocess Kno	roduction ceed the mini- azardous w cribed was	operations and inimum standar vaste as defined te is non-hazar Other (Pro	are not mixe ds for waste in 40 CFR, dous. (Check	ed with nor hazardous part 261, si the appro	n-exempt waste by ubpart D, as priate items):
Customer Approval	N. S.		- inter		17 (T) (V E)		V			
		т	HIS	IS NOT	AN II	NVOIO	E!			
Approved By:					D	ate:				

Received by OCD: 6/2/2021 11:23: RB3600 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer #:	JOHN THURSTON	Gene Well	#: erator: erator #: Ser. #: Name: #: I: I #:	700-119724 O6UJ9A000 3/4/2021 CONOCOP 25434 PHILLIPS E 029 NON-DRILI LEA (NM)	DHHO PHILLIPS	e 237 of 263
Facility: CRI							
Product / Service		G	uantity Units				
Contaminated Soil (RCRA Exemp	t)	(1 10:00 yards	;			
Cell pH	CI Con	d. %Solids TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51 0.00	0.00 0.0	0 0					
Generator Certification Statemen	t of Waste St	atus			A SHALL AND A SHALL AND		
I hereby certify that according to the Re 1988 regulatory determination, the abov X RCRA Exempt: Oil Field wastes ge RCRA Non-Exempt: Oil field waste characteristics established in RCRA reg amended. The following documentation MSDS Information RCRA H Driver/ Agent Signature	esource Conserve ve described was enerated from o e which is non- gulations, 40 CF n is attached to	vation and Recovery Act (I iste is: il and gas exploration and hazardous that does not ex FR 261.21-261.24 or listed l demonstrate the above-de e Analysis Process Kr	production opera ceed the minimu azardous waste a scribed waste is n	tions and m standar as defined aon-hazan ther (Prov	are not mixed ds for waste l Nn 40 CFR, p dous. (Check	d with non nazardous part 261, su the approp	-exempt waste by ibpart D, as
Customer Approval					<u> </u>		
	тні	S IS NOT AN I	NVOICE!				

Approved By:

Received by OCD: 6/2/2021 11:23: RECEIVER ON MENTAL SOLUTIONS Permian Basin Facility: CBI			Custo Order AFE # PO #: Manif	emer #: red by: #: est #: . Date: r: r : # #	CRI2 JOH 25 3/4/2	IN THURS 2021 NABB PAR NER	TON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-1197 06UJ9A0 3/4/2021 CONOCC 25434 PHILLIPS 029 NON-DRI LEA (NM)	00HH0 PHILLIPS E STATE LLING	
Facility: CRI												
Product / Serv	lice	14. (* 17					Q	uantity U	nits	的最高潮		
Contaminated	Soil (R	CRA Exem	npt)				1	0 18.00	yards			
	Cell	pН	CI	Con	d.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.0	0	0						
Generator Cer	tificatio	n Stateme	ent of Wa	aste Sta	itus							20月1日至1
I hereby certify t 1988 regulatory X RCRA Exen RCRA Non- characteristics es	determin 1pt: Oil F Exempt:	ation, the ab field wastes Oil field wa	ove descr generated iste which	ribed wa l from oi i is non-l	ste is: l and nazaro	gas explora dous that do	tion and p es not exc	production of the mi	operations and nimum standar	are not mix ds for waste	ed with nor hazardous	n-exempt waste

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous (Check the appropriate items): _______MSDS Information ______RCRA Hazardous Waste Analysis ______Process Knowledge ______Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature		
			-
Customer Approval		V	

THIS IS NOT AN INVOICE!

Approved By:

Date: _____

Received by OCD: 6/2/2021 11:23: RECEIVED BY OCD: 6/2/2021 11:23: ENVIRONMENTAL SOLUTIONS Permian Basin	Customer #: CRI21 Ordered by: JOHN AFE #: PO #: Manifest #: 26 Manif. Date: 3/4/20	THURSTON 21 ABB PARTNERS	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	O6UJ9A000HH0 3/4/2021 CONOCOPHILLIPS	
Facility: CRI					
Product / Service		Qı	antity Units		
Contaminated Soil (RCRA Exemp	ot)	ć	1 -10.00 yards		
Cell pH	CI Cond. %	6Solids TDS	PCI/GM MR/HR	H2S % Oil	Weight
Lab Analysis: 50/51 0.00	0.00 0.00	0			
Generator Certification Statemer I hereby certify that according to the R 1988 regulatory determination, the abo X RCRA Exempt: Oil Field wastes g RCRA Non-Exempt: Oil field was characteristics established in RCRA re amended. The following documentation MSDS Information RCRA H Driver/ Agent Signature Customer Approval	esource Conservation a ve described waste is: enerated from oil and g te which is non-hazardo gulations, 40 CFR 261.2 on is attached to demons	as exploration and p ous that does not exc 21-261.24 or listed ha strate the above-desc sis Process Kno	roduction operations and eed the minimum standar zardous waste as defined cribed waste is non-hazar	are not mixed with no ds for waste hazardou in 40 CFR, part 261, dous. (Check the appr	on-exempt wasto s by subpart D, as opriate items):

Approved By: _____

Received by OC REG ENVIRONMENT SOLUTION Permian Basir			Custon Ordere AFE #: PO #: Manife Manif. Hauler Driver Truck : Card #	Customer #: CRI2190 Ordered by: JOHN THURSTON AFE #: PO #: Manifest #: 27 Manif. Date: 3/5/2021 Hauler: MCNABB PARTNERS					Ticket #:700-1197339Page 2.Bid #:O6UJ9A000HH0Date:3/5/2021Generator:CONOCOPHILLIPSGenerator #:Vell Ser. #:Well Ser. #:25434Well Name:PHILLIPS E STATEWell #:029Field:Field #:Rig:NON-DRILLINGCountyLEA (NM)			
Facility: CRI												
Product / Serv	lice			XE C		Q	uantity U	Inits				
Contaminated	I Soil (R	CRA Exem	pt)			12	20.00	yards				
	Cell	pН	CI	Con	nd. %Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight	
Lab Analysis:		0.00	0.00	0.0								
1988 regulatory X RCRA Exer _ RCRA Non characteristics e amended. The f	that accord determinant of the off off off off off the determinant off off off off off off off off off off	ding to the l ation, the ab field wastes Oil field wa l in RCRA r documentat	Resource (ove descr generated ste which egulations ion is atta	Conser ibed wa from o is non- s, 40 CI ched to	vation and Recov	ation and p bes not exc or listed has above-des	production seed the m azardous v cribed was	operations and inimum standa vaste as defined ste is non-hazar	l are not mixed rds for waste h d in 40 CFR, p rdous. (Check	d with nor nazardous part 261, s the appro	n-exempt waste by ubpart D, as priate items):	
Driver/ Agent	Signatu	re		ton and	R360	Represe	ntative S	ignature				
					Ct	`				÷.		
Customer Ap	proval			-		2						
				тн	IS IS NOT	AN II	NVOIO	CE!				
Approved By:						D	ate:					

.

Received by OCD: 6/2/2021 11:23: RECEIVED AND AND AND AND AND AND AND AND AND AN			Customer Ordered k AFE #: PO #: Manifest # Manif. Da	r#:C by:J #:2	ONOCOPHII RI2190 OHN THURS 8 /5/2021			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name:	O6UJ9A000HH0 3/5/2021 CONOCOPHILLIP		
			Hauler: Driver Truck # Card #	Hauler: MCNABB PARTNER Driver FRANKIE Truck # M83				Well #: Field: Field #: Rig: County	NON-DRILLING LEA (NM)		
Facility: CRI											
Product / Serv	ice					Q	uantity U	nits			
Contaminated Soil (RCRA Exempt)					12-20.00 yards						
	Cell	рН	CI C	Cond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____ Process Knowledge ____ Other (Provide description above)

Driver/ Agent Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Date:

R360 Representative Signature

Received by OCD: 6/2 RR36 ENVIRONMENTAL SOLUTIONS Permian Basin		Custome Ordered AFE #: PO #: Manifes	er #: CR by: JO t #: 29 Date: 3/5 MC GU M3	HN THURST /2021 NABB PART	TON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	25434	0HH0 PHILLIPS E STATE	
Facility: CRI										
Product / Service		(Hinter)	7		Q	uantity U	nits			
Contaminated Soil (R	CRA Exem	ot)			10	18.00	yards			
Cell	pН	CI	Cond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51	0.00	0.00	0.00	0						
Generator Certification I hereby certify that acconstruction 1988 regulatory determine X RCRA Exempt: Oil I RCRA Non-Exempt: characteristics establishes amended. The following MSDS Information Driver/ Agent Signature Customer Approval	rding to the R ation, the abo Field wastes g Oil field was d in RCRA re documentatio RCRA H	esource Co ove describ generated fr ate which is gulations, on on is attach	onservatio ed waste i rom oil an s non-haza 40 CFR 20 red to dem	n and Recove s: d gas explora ardous that do 61.21-261.24 c nonstrate the a alysis Pr	tion and p es not exc or listed has bove-des rocess Kno	production beed the mi azardous w cribed was	operations and inimum standar vaste as definec te is non-hazar Other (Pro	are not mixe rds for waste I in 40 CFR, j dous. (Check	d with nor hazardous part 261, s the appro	n-exempt wast by ubpart D, as priate items):

Approved By: _____

Date: _____

Oroduct / Service Quantity Units Contaminated Soil (RCRA Exempt) U	Received by OCD: 6/2/2021 11:23	LUTIONS Manif. Date: 3/5/2021 Hauler MCNABB PARTNERS				Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	25434		
Contaminated Soil (RCRA Exempt) U	Facility: CRI								
Cell pH Cl Cond. % Solids TDS PCI/GM MR/HR H2S % Oil Weight Lab Analysis: 50/51 0.00 0.00 0 0 0 0 Generator Certification Statement of Waste Status	Product / Service			Q	uantity U	nits			A CALLER PROPERTY
Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight Lab Analysis: 50/51 0.00 0.00 0 0 0 0 Generator Certification Statement of Waste Status Interesting to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste	Contaminated Soil (RCRA Exemp	pt)		U	10.00	yards			
Lab Analysis: 50/51 0.00 0.00 0 0 Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste			nd %Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste a RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information RCRA Hazardous Waste Analysis Process Knowledge Other (Provide description above) Driver/ Agent Signature				511 (1993-1992). 					
THIS IS NOT AN INVOICE!	I hereby certify that according to the R 1988 regulatory determination, the abo X RCRA Exempt: Oil Field wastes g RCRA Non-Exempt: Oil field was characteristics established in RCRA re amended. The following documentation	Resource Conserver ove described war generated from constended from constended ste which is non- egulations, 40 Cl on is attached to	vation and Recove aste is: oil and gas explorat -hazardous that doo FR 261.21-261.24 o o demonstrate the a e Analysis Pro	ion and p es not exc r listed ha bove-desc ocess Kno	production seed the m azardous v cribed was pwledge	operations and inimum standa vaste as defined ste is non-hazan Other (Pro	d are not mixed rds for waste h d in 40 CFR, pa rdous. (Check t	l with nor azardous art 261, si the appro	n-exempt waste by ubpart D, as priate items):
	Customer Approval						J		
		тн	IS IS NOT	AN II	NVOIO	CE!			
Approved By: Date:	Approved By:			D	ate:				

t6UJ9A01HTS8 Released to Imaging: 8/6/2021 11:09:22 AM

Received by C RECE ENVIRONMENT SOLUTIO Permian Basin	BE		Custome	r#:C by:J #:3 ate:3 N F N	JOHN THURSTON			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-11973 O6UJ9A00 3/5/2021 CONOCO 25434 PHILLIPS 029 NON-DRIL LEA (NM)	PHILLIPS E STATE	
Facility: CRI											
Product / Serv	vice					Q	uantity U	nits	- instantion		
Contaminated	Soil (R	CRA Exem	pt)			12	20.00	<i>j</i> ards			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cer	tificatio	n Stateme	nt of Waste	State	us						Negitieth)

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information RCRA Hazardous Waste Analysis Process Knowledge Other (Provide Constraints)

	_ KCKA Hazardous waste Analy	sis _ Tibeess Knowledge		(spriprion doove)
Driver/ Agent Signatu	re	R360 Representative S	Signature	

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by RRG ENVIRONMENT, SOLUTION Permian Basin		/2021 11:23	Otdered by: AFE #: PO #: Manifest #: Manif. Date Hauler: Driver Truck # Card # Job Ref #	CRI2 MAR 32 3/5/2	VIN SORIV 2021 JABB PAR ⁻ IER	WEI		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-1197382 O6UJ9A000H 3/5/2021 CONOCOPHI 25434 PHILLIPS E S 029 NON-DRILLIN LEA (NM)	H0 LLIPS STATE	ge 245 of 263
Facility: CRI											
Product / Serv	ice				al even	Q	uantity L	Jnits		and the second	
Contaminated	Soil (RC	RA Exemp	ot)			10	-18.00	yards			
	Cell	pН		nd.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:				00	0						
Generator Cer	tificatior	1 Statemen	t of Waste S	tatus				A MERCENSING			
I hereby certify t 1988 regulatory X RCRA Exer RCRA Non- characteristics e	hat accord determina npt: Oil Fi Exempt: (stablished	ding to the Re tion, the abo ield wastes go Oil field wast in RCRA res	esource Conse ve described v enerated from te which is no gulations, 40 C	vaste is vaste is oil and n-hazar CFR 26	: gas explora dous that do 1.21-261.24 (ation and p bes not exc or listed h	roduction eed the mazardous v	operations and inimum standa waste as define	l are not mixed v rds for waste ha	with nor zardous t 261, s	n-exempt waste by ubpart D, as
MSDS Info	rmation	_ RCRA H	lazardous Was	te Anal	lysis _ Pi	rocess Kno	owledge	_ Other (Pro	vide description	above)	F
Driver/ Agent	Signatur	e			R360	Represei L	ntative S	ignature			

Approved By:

Customer Approval

Received by C RRG ENVIRONMENT/ SOLUTION Permian Basin			Custome Custome Ordered AFE #: PO #: Manifest Manif. Da Hauler: Driver Truck # Card # Job Ref	er #: CR by: JOI #: 33 ate: 3/5 MC TO M0	HN THURST /2021 NABB PART NY	ON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-119740 06UJ9A000 3/5/2021 CONOCOPI 25434 PHILLIPS E 029 NON-DRILL LEA (NM)	HHO HILLIPS STATE	ge 246 of 263
Facility: CRI											
Product / Serv	ice					Q	uantity L	Inits		The state	
Contaminated	Soil (RC	RA Exem	ot)			LP	10	yards			
	Cell	pН		Cond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00	0.00	0						
Generator Cer I hereby certify t 1988 regulatory X RCRA Exen _ RCRA Non- characteristics es amended. The f _ MSDS Infor Driver/ Agent Customer App	hat accord determina npt: Oil F Exempt: (stablished ollowing o rmation Signatu	ding to the R tion, the abo ield wastes g Oil field was in RCRA re documentation RCRA H	esource Co ove describe generated fro ste which is gulations, 4 on is attach	onservation ed waste i om oil an non-haza 40 CFR 2 ed to den	n and Recover s: d gas explora ardous that do 61.21-261.24 c nonstrate the a alysis Pr	tion and p es not ex or listed h bove-des ocess Kn	production ceed the m azardous v scribed was	operations and inimum standa waste as defined ste is non-hazan Other (Pro	l are not mixed rds for waste h d in 40 CFR, p dous. (Check	l with non azardous art 261, si the approj	-exempt waste by ibpart D, as

Approved By: _____

Date: _____

Received by REG ENVIRONMENT, SOLUTION Permian Basin			Custon Ordere AFE #: PO #: Manife Manif. Hauler Driver Truck : Card # Job Re	ner #: CF d by: JC st #: 34 Date: 3/4 : M Ff # M	HN THURST	ON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-11977 O6UJ9A00 3/8/2021 CONOCO 25434 PHILLIPS 029 NON-DRI LEA (NM)	DOHHO PA	ge 247 of 263
Facility: CRI											
Product / Serv	rice					Q	uantity l				
Contaminated	Soil (R	CRA Exem	ipt)			12	20.00	yards			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GI	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
characteristics e amended. The f MSDS Info	that accor determina npt: Oil F -Exempt: stablishec following rmation	ding to the lation, the ab rield wastes Oil field wasted in RCRA r documentat _ RCRA	Resource ove descr generated aste which regulations ion is atta	Conservat ibed waste from oil a is non-ha s, 40 CFR ched to de	ion and Recover e is: and gas explora zardous that do 261.21-261.24 emonstrate the analysis _ P	ntion and poes not ex- or listed h above-des rocess Kn	production ceed the n azardous scribed wa owledge	n operations an ninimum standa waste as define ste is non-haza	d are not mix ards for wast d in 40 CFR rdous. (Cheo	xed with nor e hazardous , part 261, s ck the appro	n-exempt waste s by subpart D, as opriate items):
Driver/ Agent	Signatu	re	COLORADO NEV CON	Devision of the second second	1300	represe	manvec	ignature	Contraction of the second second second	Contraction of the local division of the loc	the state of the s

Customer Approval	
	THIS IS NOT AN INVOICE!

Approved By:

Date: _____

Received by C RR3 ENVIRONMENTA SOLUTION Permian Basin			3:08 PM Custor Ordere AFE #: PO #: Manife Manif. Hauler Driver Truck Card # Job Re	ner #: C ed by: J(est #: 3: Date: 3. 	ONOCOPHIL RI2190 OHN THURS 5 /8/2021 ICNABB PAR ESUS 131	ΓΟΝ		Ficket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-11977 O6UJ9A00 3/8/2021 CONOCO 25434 PHILLIPS 029 NON-DRII LEA (NM)	DOHHO ^{P A} PHILLIPS E STATE	ge 248 of 263
Facility: CRI				-							
Product / Serv	ice				市内の市内の目的	Q	uantity U				
Contaminated	Soil (R	CRA Exem	ipt)			10	18.00)	vards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00	0.00	0						
Generator Cer I hereby certify t 1988 regulatory X RCRA Exen RCRA Non-	hat accordetermin	ding to the ation, the ab	Resource	Conserva ibed wast	tion and Recov	ation and r	production	operations and	d are not mix	ed with not	n-exempt waste

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ______MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge _____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	
	THIS IS NOT AN INVOICE!
Approved By:	Date:

Approved By: _____

Received by			Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	JOHN THI 36 3/8/2021			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-1197892 O6UJ9A000HH 3/8/2021 CONOCOPHILI 25434 PHILLIPS E ST 029 NON-DRILLING LEA (NM)	0 LIPS ATE	e 249 of 263
Facility: CRI								and a state of the		
Product / Serv	ice				G	uantity L	Inits			
Contaminated	Soil (RC	RA Exemp	it)		10	_18.00	yards			
	Cell	pН	CI Cor	nd. %Sol	ids TDS	PCI/GN	MR/HR	H2S %	Oil	Weight
Lab Analysis:			0.00 0.0	0 0			2.00			
Generator Cer	tification	n Statemen	t of Waste S	tatus						
1988 regulatory X RCRA Exer _ RCRA Non- characteristics e amended. The f _ MSDS Info	determina npt: Oil Fi Exempt: 0 stablished ollowing o rmation	tion, the abo eld wastes g Oil field was in RCRA re documentatic RCRA H	ve described w enerated from o te which is non gulations, 40 C which is attached to	aste is: oil and gas es -hazardous tl FR 261.21-26 o demonstrat e Analysis	xploration and nat does not ex 51.24 or listed l	production ceed the m azardous v scribed wa lowledge	operations and inimum standa waste as defined ste is non-hazan Other (Pro	onmental Protection I are not mixed with rds for waste haza d in 40 CFR, part 2 rdous. (Check the vide description a	th non- rdous l 261, su approp	-exempt wast by bpart D, as
Driver/ Agent	Signatui	re			Soo Neprese	intativo o	.3			

Approved By: _____

Customer Approval

Received by OCD: 6/2/2021 11:23: RB3600 ENVIRONMENTAL SOLUTIONS Permian Basin	ConstantConstantCustomer #:CRI2190Ordered by:JOHN THURSTONAFE #:JOHN THURSTONPO #:37Manifest #:37Manif. Date:3/8/2021Hauler:MCNABB PARTNERSDriverFRANKIETruck #M83Card #Job Ref #	Ticket #:700-1197893Page 250 of 263Bid #:O6UJ9A000HH0Date:3/8/2021Generator:CONOCOPHILLIPSGenerator #:Well Ser. #:Well Ser. #:25434Well Name:PHILLIPS E STATEWell #:029Field:Field #:Rig:NON-DRILLINGCountyLEA (NM)
Facility: CRI		
Product / Service	Quar	ntity Units
Contaminated Soil (RCRA Exemp)))2	20 .00 y ards
Cell pH Lab Analysis: 50/51 0.00	CI Cond. %Solids TDS P 0.00 0.00 0	CI/GM MR/HR H2S % Oil Weight
Generator Certification Statemen	t of Waste Status	
1988 regulatory determination, the abov X RCRA Exempt: Oil Field wastes ge _ RCRA Non-Exempt: Oil field wast characteristics established in RCRA reg amended. The following documentatio	ve described waste is: enerated from oil and gas exploration and prod the which is non-hazardous that does not exceed gulations, 40 CFR 261.21-261.24 or listed hazar	

Approved By:

Customer Approval

Received by OCD: 6/2/2021 T1:23	Customer #:	JOHN THURSTON	Ticke Bid # Date Gen Well Well S Well Field Field Rig: Cou	700-1197896 Page 251 of 263 O6UJ9A000HH0 3/8/2021 CONOCOPHILLIPS 25434 PHILLIPS E STATE 029 NON-DRILLING LEA (NM)			
Facility: CRI							
Product / Service			Quantity Units	ATT STATE			
Contaminated Soil (RCRA Exem	pt)		() -10.00 yards	S			
Cell pH	CI Cor	nd. %Solids TD	S PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51 0.00	0.00 0.0						
Generator Certification Statemer I hereby certify that according to the F 1988 regulatory determination, the abo X RCRA Exempt: Oil Field wastes g RCRA Non-Exempt: Oil field was characteristics established in RCRA re amended. The following documentation MSDS Information RCRA 1	Resource Conserved described we described we generated from one stee which is non egulations, 40 C on is attached to	vation and Recovery Ac aste is: bil and gas exploration an -hazardous that does not FR 261.21-261.24 or liste b demonstrate the above-	nd production opera exceed the minimu d hazardous waste described waste is	ations and ım standa as defined non-hazaı	l are not mixed rds for waste h d in 40 CFR, pa rdous (Check t	with nor azardous art 261, su he appro	n-exempt waste by ubpart D, as priate items):
Driver/ Agent Signature		R360 Repre	sentative Signa	ture	(T)		
Customer Approval					V		
	тн	IS IS NOT AN	INVOICE!	!			
Approved By:			Date:				

Received by C RRG ENVIRONMENTA SOLUTION Permian Basin	Custon Ordere AFE #: PO #: Manife Manif. Hauler Driver Truck i Card #	Customer #:CRI2190Bid #:O6000000000000000000000000000000000000							ge 252 of 263			
Facility: CRI												CHARLEN SHOW FROM F
Product / Serv	ice	and the states				Section 1	Q	uantity l				and the factor of the second
Contaminated	Soil (RO	RA Exem	npt)				IC)_18.00	yards			
	Cell	pН	CI	Con		6Solids	TDS	PCI/GI	M MR/HR	H2S	% Oil	Weight
Lab Analysis: Generator Cer I hereby certify t 1988 regulatory X RCRA Exem	tificatio hat accor determina	ding to the ation, the at	Resource	Conser ibed wa	atus vation a aste is:	as evolor	ation and r	oroduction	n operations and	d are not mix	ed with not	n-exempt waste
_ RCRA Non- characteristics en	Exempt: stablished	Oil field wa l in RCRA	aste which regulations	is non s, 40 Cl ched to	-hazardo FR 261.2 demon	ous that d 21-261.24 Istrate the rsis _ I	or listed h above-des Process Kn	ceed the h azardous cribed wa owledge	waste as define aste is non-haza Other (Pro	d in 40 CFR rdous (Chec	, part 261, s	subpart D, as opriate items):
Driver/ Agent	Signatu	re				R360	Represe	ntative S	Signature			
Customer Ap	proval			7 22 200	No.	A PARTY AND				and the second se		
				ΤН	IS IS	NO	Γ ΑΝ Ι	NVOI	CE!			
Approved By:		2					C	Date:			_	

Received by OCD: 6/2/2021 11:23		Custom Ordered AFE #: PO #: Manifes Manif. E Hauler: Driver Truck # Card # Job Ref	er #: by: t #: Date:	JOHN THURST	ON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-11980 O6UJ9A00 3/9/2021 CONOCO 25434 PHILLIPS 029 NON-DRII LEA (NM)	DOHHO PHILLIPS E STATE	ge 253 of 263	
Facility: CRI										and the second second	
Product / Serv	ice				生产的不能, 天下之	Q	uantity U	nits		A CALL	
Contaminated	Soil (R	CRA Exem	pt)			0	_10.00	yards			
	Cell	pН	CI	Con	nd. %Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00	0.0							
Generator Cer	rtificatio	on Stateme	nt of Was	te St	tatus					testion A a	anav's July

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 6/2/2021 T1:23	Customer #: C Ordered by: J AFE #: PO #: Manifest #: 4 Manif. Date: 3 Hauler: N Driver	CONOCOPHILL CRI2190 IOHN THURST 41 8/9/2021 MCNABB PART JESUS M31	ON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-1198063 O6UJ9A000 3/9/2021 CONOCOPH 25434 PHILLIPS E 029 NON-DRILL LEA (NM)	ge 254 of 263	
Facility: CRI								
Product / Service	1		QL	antity U	nits			
Contaminated Soil (RCRA Exem	pt)		10		ýards			
Cell pH	Cl Cond	. %Solids	TDS	PCI/GN	I MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51 0.00	0.00 0.00	0						
Generator Certification Statement I hereby certify that according to the F 1988 regulatory determination, the abo X RCRA Exempt: Oil Field wastes g RCRA Non-Exempt: Oil field was characteristics established in RCRA re amended. The following documentati MSDS Information RCRA I Driver/ Agent Signature	Resource Conserva- ove described was generated from oil ste which is non-h egulations, 40 CFI on is attached to o	ation and Recove te is: and gas explorat azardous that do & 261.21-261.24 c demonstrate the a Analysis Pr	tion and p es not exc or listed ha bove-desc ocess Kno	roduction eed the m azardous v cribed was	operations and inimum standa vaste as defined te is non-hazan Other (Pro	l are not mixed rds for waste h d in 40 CFR, p rdous. (Check	d with non nazardous part 261, su the approp	n-exempt waste by ubpart D, as priate items):
Customer Approval					ATTEN DE LE TUD	V	the second	
	THI	S IS NOT	AN II	NVOI	CE!			
Approved By:			D	ate:				

Received by OCD: 6/2/2021T1:23		3: Custome Custome Ordered AFE #: PO #: Manifest Manif. Da Hauler: Driver Truck # Card # Job Ref :	r #: CF by: JC #: 42 ate: 3/9 M(TC M(9/2021 CNABB PART	ON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-1198150 O6UJ9A000H 3/9/2021 CONOCOPH 25434 PHILLIPS E \$ 029 NON-DRILLI LEA (NM)	IHO ILLIPS STATE		
Facility: CRI											
Product / Serv	ice				States -	Q	uantity L	Inits			
Contaminated	Soil (RC	CRA Exem	pt)			(J. 10.00	yards			
	Cell	pН		Cond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00	0.00	0						
Generator Cer	tificatio	n Stateme	nt of Wast	e Statu	IS						
Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _ MSDS Information RCRA Hazardous Waste Analysis Process Knowledge Other (Provide description above) Driver/ Agent Signature R360 Representative Signature											

Approved By:

Customer Approval

	Received by OCD: 6/2/2021 11:23			ner #: 0 st #: 4 Date: 3 : 1	CONOCOPHILI CRI2190 JOHN THURST 43 3/10/2021 MCNABB PAR JOE M81	ON	B G G V V V F F F F	icket #: bid #: Generator: Generator #: Vell Ser. #: Vell Name: Vell #: Field : Field #: Rig: County	700-11982 O6UJ9A00 3/10/2021 CONOCO 25434 PHILLIPS 029 NON-DRII LEA (NM)	DOHHO PHILLIPS E STATE LLING	ge 256 of 263
Facility: CRI											
Product / Serv	ice		Acritica			QL	antity Un	its			
Contaminated	Soil (R	CRA Exem	ipt)			10	- <u>18.00 y</u> a	ards			
	Cell	рH	CI	Conc	I. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00	0.00) 0						
Generator Cei	rtificatio	n Stateme	nt of Wa	ste Sta	tus		TO BEARING THE				

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	
	THIS IS NOT AN INVOICE!
Approved By:	Date:

Approved By:

Received by OCD: 6/2/2021 11:23		Customer	#: C y: J t: 1 te: 3	CONOCOPHILL CRI2190 IOHN THURST I7 3/10/2021 MCNABB PART JOSH M75	EN		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-119830 06UJ9A000 3/10/2021 CONOCOP 25434 PHILLIPS E 029 NON-DRILLI LEA (NM)	DHHO HILLIPS	ge 257 of 263	
Facility: CRI											
Product / Serv	ice					Q	uantity U	nits	が信仰に清朝		
Contaminated		CRA Exem	pt)			12	17.00	yards			
	Cell	pН		Cond	. %Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00	0.00) 0						
Generator Cer	tificatio	on Statemer	nt of Waste	Sta	tus		14. S. S. S.		C. W. C.	a state of the sta	

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste
 _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

______ KCKA Non-Exempt. On neu waste which is non-hazardous that does not exceed the instantial does not exceed

Driver/ Agent Signature	R360 Representative Signature	
Customer Approval		

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 6/2/2021 11:23	Customer #:	CONOCOPHILL CRI2190 JOHN THURST 45 3/10/2021 MCNABB PART JOE M81	ON	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	06UJ9A000HH0 3/10/2021 CONOCOPHILLIPS 25434		re 258 of 263
Facility: CRI							
Product / Service			Quantity L	Jnits	and the second		
Contaminated Soil (RCRA Exemp	ot)		12 17.00	yards			
Cell pH	CI Cor	nd. %Solids	TDS PCI/GI	M MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51 0.00	0.00 0.0	0 00					

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signatur	e
- Alle		
Customer Approval		N
	THIS IS NOT AN INVOICE!	y
Approved By:	Date:	

	Received by OCD: 6/2/2021 11:23		Customer: Customer: Ordered by AFE #: PO #: Manifest # Manif. Dat Hauler: Driver Truck # Card # Job Ref #	#: CF y: JO : 46 e: 3/1 M(JC	CRI2190 Bid #: O6U JOHN THURSTON Date: 3/10. Generator: CON 46 Well Ser. #: 2543 3/10/2021 Well Name: PHIL MCNABB PARTNERS Well #: 029 JOSH Field: Field #: M75 Field #: Rig:		25434 PHILLIPS	PHILLIPS	ge 259 of 263		
Facility: CRI											
Product / Serv	vice			1-5-5		Q	antity U	nits			
Contaminated	Soil (R	CRA Exemp	ot)			12	17.00	yards			
	Cell	pН	CI C	ond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00		0.00	0						
Generator Cer I hereby certify	rtificatio that accor	n Statemen ding to the R	t of Waste	Statu servati	s on and Recove	ery Act (R	CRA) and	the US Envir	onmental Pro	otection Ag	ency's July

1988 regulatory determination, the above described waste is:

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by C RECEIVER ENVIRONMENT SOLUTION Permian Basir	BE		Custor Ordere AFE # PO #: Manife	mer #: ed by: : est #: Date: : #	CONOC CRI2190 JOHN T 47 3/12/202 MCNAB TONY M02	0 "HURS" 21	TON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-11989 O6UJ9A00 3/12/2021 CONOCOI 25434 PHILLIPS 029 NON-DRIL LEA (NM)	OOHHO PHILLIPS E STATE	
Facility: CRI												
Product / Serv	/ice					N. Call	Q	uantity U	Inits			
Contaminated	Soil (RC	RA Exem	npt)				U	10.00	yards			
	Cell	Hq	CI	Con	d. %S	Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.0	0	0						
Generator Cei	rtification	n Stateme	ent of Wa	ste Sta	atus							
I hereby certify t 1988 regulatory X RCRA Exer RCRA Non- characteristics e amended. The f MSDS Infor	determina npt: Oil Fi -Exempt: (stablished following o	tion, the ab ield wastes Oil field wa in RCRA i documentat	ove descri generated aste which regulations ion is attac	ibed wa from oi is non-l s, 40 CF ched to	ste is: 1 and gas hazardous R 261.21- demonstr	explora s that do -261.24 o ate the a	ation and p bes not exc or listed has above-dese	roduction eed the mi azardous w cribed was	operations and inimum standar vaste as defined ste is non-hazar	are not mixe rds for waste 1 in 40 CFR, dous. (Check	ed with nor hazardous part 261, s c the appro	n-exempt wast by ubpart D, as priate items):
Driver/ Agent	Signatu	re				R360	Represei	ntative Si	ignature			
Customer Ap	proval			тні	SISI	NOT	AN II		CE!		,	
Approved By:							D	ate:	5	/		

Received by OCD: 6/2/2021 Received by OCD: 6/2/2021 PR360 ENVIRONMENTAL SOLUTIONS Permian Basin	11:23:00 Customer: Customer # Ordered by: AFE #: PO #: Manifest #: Manif. Date Hauler: Driver Truck # Card # Job Ref #	JOHN THURS	ΓΟΝ	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-1200059 O6UJ9A000H 3/17/2021 CONOCOPH 25434 PHILLIPS E S 029 NON-DRILLII LEA (NM)	H0 ILLIPS STATE	ge 261 of 263
Facility: CRI						N. T. Co. and the	
Product / Service	1996年1月1日第1日		Qu	antity Units			
Contaminated Soil (RCRA I	Exempt)			6.00 yards			
Cell pH		nd. %Solids	TDS	PCI/GM MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51 0.0	0.00 0	.00 0					
Generator Certification Sta I hereby certify that according to 1988 regulatory determination, X RCRA Exempt: Oil Field w RCRA Non-Exempt: Oil field characteristics established in Ro amended. The following docur MSDS Information _ R Driver/ Agent Signature	the Resource Consecutive the above described wastes generated from a waste which is no CRA regulations, 40 Constant of the standard constant on is attached	ervation and Recov waste is: oil and gas explor n-hazardous that de CFR 261.21-261.24 to demonstrate the ste AnalysisF	ation and pr bes not exce or listed has above-desc rocess Know	oduction operations and ed the minimum standa zardous waste as define ribed waste is non-haza	d are not mixed ards for waste ha d in 40 CFR, pa rdous. (Check th	with noi zardous rt 261, s ne appro	n-exempt waste by ubpart D, as priate items):

Approved By:

Customer Approval

Date:

E

Received by OCD: 6/2/2021 11:2 RB3600 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer #: C Ordered by: J AFE #: PO #: Manifest #: 4 Manif. Date: 3 Hauler: M Driver C	CONOCOPHILL CRI2190 OHN THURST 9 8/17/2021 MCNABB PART GUMER M32	ON		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-12000 O6UJ9A00 3/17/2021 CONOCOF 25434 PHILLIPS 029 NON-DRIL LEA (NM)	OHHO ^{T "S} PHILLIPS E STATE	re 262 of 263
Facility: CRI								
Product / Service			Qı	antity U	Inits			
Contaminated Soil (RCRA Exen	npt)			8.00	yards			
Cell pH	CI Cond	. %Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51 0.00	0.00 0.00	0 0						
Generator Certification Stateme I hereby certify that according to the 1988 regulatory determination, the al X RCRA Exempt: Oil Field wastes RCRA Non-Exempt: Oil field wastes characteristics established in RCRA amended. The following documenta MSDS Information _ RCRA	Resource Conservation ove described was generated from oil aste which is non-h regulations, 40 CFI	ation and Recove the is: and gas exploration azardous that do & 261.21-261.24 c demonstrate the a Analysis Pr	tion and p es not exc or listed ha bove-desc ocess Kno	roduction seed the m azardous v cribed was owledge	operations and inimum standa waste as define ste is non-haza Other (Pro	l are not mixe rds for waste d fi 40 CFR, rdous. (Checl	ed with nor hazardous part 261, s k the appro	n-exempt waste by ubpart D, as priate items):
Driver/ Agent Signature		R360 F	Represer	ntative S	ignature	<u>MI</u>		
Customer Approval						/		
	тни	S IS NOT	AN II	NVOI	CE!			
Approved By:			D	ate:				

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	30451
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
chensley	None	8/6/2021

Page 263 of 263 CONDITIONS

Action 30451