Received by OCD: 5/19/2021 10:07:25 AM Received by OCD: -/25/2020 11:33:40 AM

> District I 1625 N, French Dr., Hobbs, NM 88240 District II 811 S, First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S, St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 1 of 126

Incident ID	NRM2020924128
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380
Contact Name Kyle Littrell	Contact Telephone 432-221-7331
Contact email Kyle_Littrell@xtoenergy.com	Incident # (assigned by OCD)
Contact mailing address 522 W. Mermod, Carlsbad, NM 88220	

Location of Release Source

Latitude _____32.01871

Longitude	-103.93655
(NAD 83 in decimal degrees to 5 deci	mal places)

Site Name Ross Draw 25 North	Site Type Tank Battery
Date Release Discovered 7-10-2020	API# (if applicable)

Unit Letter	Section	Township	Range	County
В	25	26S	29E	Eddy

Surface Owner: State 💌 Federal 🗌 Tribal 💭 Private (Name.

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
▶ Produced Water	Volume Released (bbls) 40	Volume Recovered (bbls) 40
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release A 10" Victaulic tee leaked produced water inside the lined containment of the battery. An inspection of the liner determined that it was not in working condition. A third-party contractor has been retained for remediation activities.

ge 2	Oil Conservation Division	Incident		NRM2020924128
	On Conservation Division	District		
		Facility Applica		
		Applica		
Was this a major	If YES, for what reason(s) does the response	ible party consider this a majo	or release?	,
release as defined by 19.15.29.7(A) NMAC?	A release equal to or greater than 25 barrels			
Yes No				
If YES, was immediate n	otice given to the OCD? By whom? To who	m? When and by what mean	s (phone, o	email. etc)?
Yes, by Kyle Littrell to 'E	Bratcher, Mike, EMNRD'; 'Venegas, Victoria,	EMNRD'; 'Hamlet, Robert, E		
Morgan, Crisha A; blm_n	m_cfo_spill@blm.gov via email on Saturday	July 11, 2020 8:25 AM.		
	Initial Re	sponse		
The responsible	party must undertake the following actions immediately	nless they could create a safety haz	ard that wou	ld result in injury
	ease has been stopped. Is been secured to protect human health and th	e environment		
	-		ontoin	nt devices
	ave been contained via the use of berms or dil	,	containme	nt devices.
	ecoverable materials have been removed and			
TC 11.41	1 1 1 1 1 1 1 1 1 1 1			
If all the actions describe	d above have <u>not</u> been undertaken, explain w	ny:		
If all the actions describe NA	d above have <u>not</u> been undertaken, explain w	ıy:		
	d above have <u>not</u> been undertaken, explain w	ıy:		
	d above have <u>not</u> been undertaken, explain w	ıy:		
	d above have <u>not</u> been undertaken, explain w	ıy:		
	d above have <u>not</u> been undertaken, explain w	ıy:		
NA			iscovery	of a release. If remediatic
NA Per 19.15.29.8 B. (4) NM has begun, please attach	IAC the responsible party may commence rer a narrative of actions to date. If remedial ef	nediation immediately after d forts have been successfully	completed	d or if the release occurre
NA Per 19.15.29.8 B. (4) NM has begun, please attach	IAC the responsible party may commence rer	nediation immediately after d forts have been successfully	completed	d or if the release occurre
NA Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info	IAC the responsible party may commence ren a narrative of actions to date. If remedial ef nt area (see 19.15.29.11(A)(5)(a) NMAC), pla rmation given above is true and complete to the ba	nediation immediately after d forts have been successfully ase attach all information near st of my knowledge and underst	completed eded for cl	d or if the release occurre osure evaluation. rsuant to OCD rules and
NA Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are	IAC the responsible party may commence ren a narrative of actions to date. If remedial ef nt area (see 19.15.29.11(A)(5)(a) NMAC), pla	nediation immediately after d forts have been successfully ease attach all information nea st of my knowledge and underst cations and perform corrective ac	completed eded for cl and that pu	d or if the release occurre losure evaluation. rsuant to OCD rules and cleases which may endanger
NA Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmer I hereby certify that the info regulations all operators are public health or the environ failed to adequately investig	IAC the responsible party may commence ren a narrative of actions to date. If remedial et nt area (see 19.15.29.11(A)(5)(a) NMAC), pla rmation given above is true and complete to the be required to report and/or file certain release notifi- ment. The acceptance of a C-141 report by the OC pate and remediate contamination that pose a threat	nediation immediately after d forts have been successfully ease attach all information nea- st of my knowledge and underst cations and perform corrective ac D does not relieve the operator of to groundwater, surface water, h	completed eded for cl and that pu ctions for re of liability s numan heal	d or if the release occurre losure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
NA Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmer I hereby certify that the info regulations all operators are public health or the environ failed to adequately investig	IAC the responsible party may commence rer a narrative of actions to date. If remedial ef nt area (see 19.15.29.11(A)(5)(a) NMAC), pla rmation given above is true and complete to the be required to report and/or file certain release notifim ment. The acceptance of a C-141 report by the OC	nediation immediately after d forts have been successfully ease attach all information nea- st of my knowledge and underst cations and perform corrective ac D does not relieve the operator of to groundwater, surface water, h	completed eded for cl and that pu ctions for re of liability s numan heal	d or if the release occurre losure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
NA Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations.	IAC the responsible party may commence reprint a narrative of actions to date. If remedial effort area (see 19.15.29.11(A)(5)(a) NMAC), play rmation given above is true and complete to the bar required to report and/or file certain release notifimment. The acceptance of a C-141 report by the OC ate and remediate contamination that pose a threat of a C-141 report does not relieve the operator of response to the operato	nediation immediately after d forts have been successfully ease attach all information nea st of my knowledge and underst ations and perform corrective ac D does not relieve the operator o to groundwater, surface water, h sponsibility for compliance with	completed eded for cl and that pu ctions for re of liability s numan heal any other :	d or if the release occurre losure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In federal, state, or local laws
NA Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmer I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: Kyle Littr	IAC the responsible party may commence ref a narrative of actions to date. If remedial ef nt area (see 19.15.29.11(A)(5)(a) NMAC), plo rmation given above is true and complete to the be required to report and/or file certain release notifi- ment. The acceptance of a C-141 report by the OC ate and remediate contamination that pose a threat of a C-141 report does not relieve the operator of re- rell	nediation immediately after d forts have been successfully ease attach all information nea st of my knowledge and underst ations and perform corrective ac D does not relieve the operator o to groundwater, surface water, h sponsibility for compliance with Title:	completed eded for cl and that pu ctions for re of liability s numan heal any other :	d or if the release occurre losure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In federal, state, or local laws
NA Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: Kyle Littr	IAC the responsible party may commence ref a narrative of actions to date. If remedial ef nt area (see 19.15.29.11(A)(5)(a) NMAC), plo rmation given above is true and complete to the be required to report and/or file certain release notifi- ment. The acceptance of a C-141 report by the OC ate and remediate contamination that pose a threat of a C-141 report does not relieve the operator of re- rell	nediation immediately after d forts have been successfully ease attach all information neu- st of my knowledge and underst cations and perform corrective ac D does not relieve the operator of to groundwater, surface water, h sponsibility for compliance with Title: SH&E Supervisor Date: 7-23-20	completed eded for cl and that pu tions for re of liability s numan heal any other	d or if the release occurre losure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In federal, state, or local laws
NA Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: Kyle Littr	IAC the responsible party may commence ref a narrative of actions to date. If remedial ef nt area (see 19.15.29.11(A)(5)(a) NMAC), plo rmation given above is true and complete to the be required to report and/or file certain release notifi- ment. The acceptance of a C-141 report by the OC ate and remediate contamination that pose a threat of a C-141 report does not relieve the operator of re- rell	nediation immediately after d forts have been successfully ease attach all information neu- st of my knowledge and underst cations and perform corrective ac D does not relieve the operator of to groundwater, surface water, h sponsibility for compliance with Title: SH&E Supervisor Date: 7-23-20	completed eded for cl and that pu tions for re of liability s numan heal any other	d or if the release occurre losure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In federal, state, or local laws
NA Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations.	IAC the responsible party may commence ref a narrative of actions to date. If remedial ef nt area (see 19.15.29.11(A)(5)(a) NMAC), plo rmation given above is true and complete to the be required to report and/or file certain release notifi- ment. The acceptance of a C-141 report by the OC ate and remediate contamination that pose a threat of a C-141 report does not relieve the operator of re- rell	nediation immediately after d forts have been successfully ease attach all information nea st of my knowledge and underst ations and perform corrective ac D does not relieve the operator o to groundwater, surface water, h sponsibility for compliance with Title:	completed eded for cl and that pu tions for re of liability s numan heal any other	d or if the release occurre losure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In federal, state, or local laws
NA Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmer I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: Kyle Littr	IAC the responsible party may commence ref a narrative of actions to date. If remedial ef nt area (see 19.15.29.11(A)(5)(a) NMAC), plo rmation given above is true and complete to the be required to report and/or file certain release notifi- ment. The acceptance of a C-141 report by the OC ate and remediate contamination that pose a threat of a C-141 report does not relieve the operator of re- rell	nediation immediately after d forts have been successfully ease attach all information neu- st of my knowledge and underst cations and perform corrective ac D does not relieve the operator of to groundwater, surface water, h sponsibility for compliance with Title: SH&E Supervisor Date: 7-23-20	completed eded for cl and that pu tions for re of liability s numan heal any other	d or if the release occurre losure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In federal, state, or local laws

Form C-141 State of N

Page 3

State of New Mexico Oil Conservation Division

Incident ID	NRM2020924128
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>51-100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes Ӣ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗹 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗹 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes Ӣ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 💋 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🖉 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗹 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗹 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔽 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
 Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Acrial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

ceived by OCD: 5/19/2021	10:07:25 AM				Page 4 of
Form C-141 State of New Mexic		со		Incident ID	NRM2020924128
Page 4 Oil Conservation		vision		District RP	
			-	Facility ID	
				Application ID	
public health or the environment failed to adequately investig	Spokel	by the OCD does se a threat to grou rator of responsib Title:	not relieve the oundwater, surface	pperator of liability sh e water, human health ince with any other for al Manager	hould their operations have n or the environment. In
Received by:			Date:		

Page 5

Form C-141 State of New Mexico Oil Conservation Division

Incident ID	NRM2020924128
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	e included in the plan.		
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 			
Deferral Requests Only: Each of the following items must be con	firmed as part of any request for deferral of remediation.		
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.			
\square Extents of contamination must be fully delineated.			
\square Contamination does not cause an imminent risk to human health	h, the environment, or groundwater.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.			
Printed Name: Kyle Littrell	Title: Environmental Manager		
Signature:	Date: 05/18/2021		
email: kyle.littroll@exxonmobil.com	Telephone: 432-221-7331		
OCD Only			
Received by:	Date:		
Approved Approved with Attached Conditions of	Approval 🗌 Denied 🗌 Deferral Approved		
Signature:	Date:		

.

NRM2020924128

Location:	Ross Draw 25 North CTB		
Spill Date:	7/10/2020		
	Area 1		
Approximate A	rea =	224.58	cu.ft.
	VOLUME OF LEAK		
Total Produced Water = 40.00 bbls			bbls
	TOTAL VOLUME OF LEAK		
Total Produced Water = 40.00 bbis			bbls
	TOTAL VOLUME RECOVERED		
Total Produced	l Water =	40.00	bbls

Received by OCD: 5/19/2021 10:07:25 AM Form C-141 State of New Mexico

Page 5

Oil Conservation Division

Remediation Plan Checklist: Each of the following items must be included in the plan.

	Page	7	of	<u>126</u>	í
M2020924	128				

Incident IDNRM2020924128District RPFacility IDApplication ID

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. \checkmark Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. ______{Title:} Environmental Manager Printed Name: Kyle Littrell Date: 05/18/2021 Signature: email: kyle.littrell@exxonmobil.com Telephone: 432-221-7331 **OCD Only** Robert Hamlet Date: 8/18/2021 Received by: Approved Approved with Attached Conditions of Approval Denied X Deferral Approved Robert Hamlet Date: 8/18/2021 Signature:

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NRM2020924128
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380
Contact Name Kyle Littrell	Contact Telephone 432-221-7331
Contact email Kyle_Littrell@xtoenergy.com	Incident # (assigned by OCD)
Contact mailing address 522 W. Mermod, Carlsbad, NM 88220	

Location of Release Source

Latitude _____

Longitude103.93655
(NAD 83 in decimal degrees to 5 decimal places)

Site Name Ross Draw 25 North	Site Type Tank Battery
Date Release Discovered 7-10-2020	API# (if applicable)

Unit Letter	Section	Township	Range	County
В	25	26S	29E	Eddy

Surface Owner: State 💌 Federal 🗌 Tribal 🗌 Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
★ Produced Water	Volume Released (bbls) 40	Volume Recovered (bbls) 40
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

A 10" Victaulic tee leaked produced water inside the lined containment of the battery. An inspection of the liner determined that it was not in working condition. A third-party contractor has been retained for remediation activities.

Received by OCD: 5/19/202	21 10:07:25 4M State of New Mexico		Page 9cof	
		Incident ID	NRM2020924128	
Page 2	Oil Conservation Division	District RP		
		Facility ID		
		Application ID		
Was this a major	If YES, for what reason(s) does the responsible part	y consider this a major release?	?	
release as defined by 19.15.29.7(A) NMAC?	A release equal to or greater than 25 barrels.			
Yes No				
If YES, was immediate n	hotice given to the OCD? By whom? To whom? Whe	en and by what means (phone.)	email. etc)?	
Yes, by Kyle Littrell to 'I	Bratcher, Mike, EMNRD'; 'Venegas, Victoria, EMNRI nm_cfo_spill@blm.gov via email on Saturday, July 11,	D'; 'Hamlet, Robert, EMNRD';		
	Initial Response	e		
The responsible	party must undertake the following actions immediately unless they	could create a safety hazard that wou	ld result in injury	
\checkmark The source of the relation	ease has been stopped.			
► The impacted area ha	as been secured to protect human health and the enviro	onment.		
✓ Released materials have been seen as a second	ave been contained via the use of berms or dikes, abso	orbent pads, or other containme	nt devices.	
▲ All free liquids and r	recoverable materials have been removed and managed	d appropriately.		
If all the actions describe	ed above have not been undertaken, explain why:			
NA				

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature:	Date: Telephone:
OCD Only Received by: Ramona Marcus	Date: 7/27/2020

26

NRM2020924128

Location:	Ross Draw 25 North CTB		
Spill Date:	7/10/2020		
	Area 1		
Approximate A	rea =	224.58	cu.ft.
		-	
	VOLUME OF LEAK		
Total Produced	Water =	40.00	bbls
	TOTAL VOLUME OF LEAK		
Total Produced	Total Produced Water = 40.00 bbls		
	TOTAL VOLUME RECOVERED		
Total Produced Water = 40.00 bbls			bbls

Received by OCD: 5/19/2021 10:07:25 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 11 0J 12
Incident ID	NRM2020924128
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>51-100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🔽 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🛛 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔽 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- \bigvee
- Data table of soil contaminant concentration data \mathbf{N}
- \square Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- ∇ Boring or excavation logs
- Photographs including date and GIS information \square
- Topographic/Aerial maps
- \mathbf{N} Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

			0.1	

eceived by OCD: 5/19/202	21 10:07:25 AM State of New Mexico			Page 12 of Incident ID NRM2020924128			
					NRM2020924128		
age 4	Oil Conservation Division	l		District RP			
				Facility ID			
				Application ID			
public health or the environn failed to adequately investigation	required to report and/or file certain release no nent. The acceptance of a C-141 report by the ate and remediate contamination that pose a th	e OCD does areat to grou	not relieve the indwater, surfa	operator of liability sh ce water, human health	ould their operations have or the environment. In		
and/or regulations. Printed Name: Kyle Littr		Title: Date:		tal Manager			

Received by OCD: 5/19/2021 10:07:25 AM Form C-141 State of New Mexico

Page 5

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	NRM2020924128
District RP	
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. \checkmark Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Title: Environmental Manager Printed Name: Kyle Littrell Date: 05/18/2021 Signature: email: kyle.littrell@exxonmobil.com Telephone: 432-221-7331 **OCD Only** Received by: Date: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Signature: Date:

WSP USA

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

May 17, 2021

District II New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Deferral Request Ross Draw 25 North Incident Number NRM2020924128 Eddy County, New Mexico

To Whom it May Concern:

WSP USA Inc. (WSP), on behalf of XTO Energy, Inc. (XTO), presents the following Deferral Request detailing site assessment and soil sampling activities at the Ross Draw 25 North (Site) in Unit B, Section 25, Township 26 South, Range 29 East, in Eddy County, New Mexico (Figure 1). The purpose of the site assessment and soil sampling activities was to assess the presence or absence of impact to soil resulting from a release of produced water within lined containment at the Site. Based on field observations, field screening, and laboratory analytical results from soil sampling activities that have occurred and requesting deferral of final remediation for Incident Number NRM2020924128 until the Site is reconstructed, and/or the well pad is abandoned.

RELEASE BACKGROUND

On July 10, 2020, a 10-inch Victaulic tee failed and released approximately 40 barrels (bbls) of produced water into the lined containment of the tank battery. The fluids were recovered, and a subsequent visual inspection of liner integrity determined the liner was not in working condition. XTO reported the release to the New Mexico Oil Conservation Division (NMOCD) via email on July 11, 2020 and submitted a Form C-141 on July 23, 2020. The release assigned Incident Number NRM2020924128.

SITE CHARACTERIZATION

WSP characterized the Site according to Table 1, *Closure Criteria for Soils Impacted by a Release*, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is estimated to be between 51 to 100 feet below ground surface (bgs) based on the nearest groundwater well data and regional depth to water determination. The closest permitted groundwater well with depth to groundwater data is United States Geologic Survey (USGS) well 320154103562301, located approximately 0.91 miles north of the Site. The water well has an approved reported depth to groundwater from 1998 of

vsp

District II Page 2

66.42 feet bgs. Within a 1.6-mile radius from the Site, there are three additional water wells that indicate regional depth to groundwater is between 51 to 100 feet bgs. USGS well 320106103555301 was most recently measured in January 2013. USGS well 320106103555301 is located 1.52 miles southwest of the Site and has a reported depth to water of 57.81 feet bgs. All water wells used for depth to groundwater determination are depicted on Figure 1 and are referenced in Attachment 1. The closest continuously flowing or significant watercourse to the Site is an intermittent riverine, located approximately 2,413 feet southeast of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, and church. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is located in a high-potential karst area. Potential receptors identified during Site Characterization are displayed in Figure 1.

CLOSURE CRITERIA

Based on the initial desktop results of the Site Characterization, including a high-potential karst designation, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg);
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg;
- Total petroleum hydrocarbons (TPH): 100 mg/kg; and
- Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES

On July 17, 2020, WSP personnel conducted site assessment activities to evaluate the subject release extent. Additionally, WSP reviewed and verified the Form C-141 incident descriptions (release source and release location) with visual impacts present onsite; it was confirmed that the subject release was contained to the lined containment.

DELINEATION SOIL SAMPLING ACTIVITIES

On July 22, 2020, WSP personnel visited the Site to conduct initial delineation activities. In an effort to identify the vertical extent of impacts, one borehole (BH01) was advanced utilizing a hand auger to a limited depth of 1-foot bgs due to auger refusal. Soil from the borehole was field screened at 0.5-foot intervals for volatile aromatic hydrocarbons and chloride utilizing a calibrated photo-ionization detector (PID) and Hach® chloride QuanTab® test strips. Two delineation soil samples were collected from the borehole based on field screening results. One soil sample was collected from the soil interval with the highest field screening (0.5-foot bgs) and the terminus of the borehole soil sample (1-foot bgs). The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler initials, method of analysis, and immediately placed on ice. The soil samples were shipped at or below 4 degrees Celsius (°C)

vsp

District II Page 3

under strict chain-of-custody (COC) procedures to Xenco Laboratories (Xenco) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH following EPA Method 8015M/D; and chloride following EPA Method 300.0. Field screening results and observations for the borehole were recorded on a lithologic/soil sampling log and is presented in Attachment 2. The delineation soil sample location is presented on Figure 2. Photographic documentation from initial delineation activities is included in Attachment 3.

Laboratory analytical results indicated benzene, BTEX, and TPH concentrations were below detection limits in soil sample BH01 at 0.5-foot bgs and 1-foot bgs. Chloride concentrations exceeded the Closure Criteria for soil sample BH01 at 0.5-foot bgs and 1-foot bgs at 2,480 mg/kg and 2,290 mg/kg, respectively.

CORE DRILLING AND SOIL SAMPLING ACTIVITIES

On September 16, 2020, WSP was permitted to continue assessing the vertical extent of impacted soil that could not be easily accessed during initial delineation activities via hand auger advancement method. WSP utilized a Shaw Tool, Ltd Portable Core Drill to install one delineation soil sample in the area associated with BH01 (BH01B) to determine the vertical extent of impact and four delineation soil samples (CH01 through CH04) outside of the containment to investigate lithology and confirm lateral delineation. A review of the Site and Site conditions identified hazards requiring a Hot Work Permit to implement safety control measures. Due to the location of the release, a Hot Work Permit was necessary to conduct investigative motor or electric powered drilling methods within 35 feet of any hydrocarbon sources. In coordination with XTO, an XTO safety representative was retained to conduct air monitoring as part of the permit process for investigative core drilling activities.

The soil samples were field screened, at minimum, from every 2-foot interval for volatile aromatic hydrocarbons and chloride utilizing a calibrated PID and Hach[®] chloride QuanTab[®] test strips. Up to two soil samples were collected from each delineation soil sample location based on field screening results. One sample was collected from the soil interval with the highest field screening result (0.5-foot bgs) and/or one soil sample was collected from the soil interval with field screening results indicating a clean vertical depth (2 feet bgs). Soil samples were collected, handled, and analyzed as previously described. Field screening results and observations for each delineation soil sample were recorded on lithologic/soil sampling logs and are presented in Attachment 2. The additional delineation soil sample locations are presented on Figure 2. Photographic documentation from continued delineation activities is included in Attachment 3.

Laboratory analytical results indicated full vertical delineation with concentrations of benzene, BTEX, TPH, and chloride below the Closure Criteria in the area associated with soil sample BH01B at 2 feet bgs. Laboratory analytical results associated with lateral delineation soil samples (CH01 through CH04) were below detection limits for benzene, BTEX, and TPH and ranged from 17.3 mg/kg to 300 mg/kg for chloride. vsp

District II Page 4

ANALYTICAL RESULTS

Final laboratory analytical results indicated that identified chloride exceedances within the subject release footprint did not extend below 2 feet bgs. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included in Attachment 4. Elevated chloride exists under the liner to 1-foot bgs. The chloride concentrations are delineated vertically and laterally around the containment.

DEFERRAL REQUEST

Based on the data collected from the final delineation soil samples and further review of the receptors that affect the Closure Criteria at this Site, XTO requests to defer the elevated chloride concentrations in place beneath the containment liner. Approximately 291 cubic yards of chloride impacted soil remains in place beneath the liner assuming a maximum 1-foot depth. The impacted soil is delineated vertically by delineation soil sample BH01B and laterally by delineation soil samples CH01 through CH04. The impacted soil is limited to the area immediately beneath the lined containment and active production equipment, where remediation would require a major facility deconstruction. The deferral area is shown on Figure 3. WSP and XTO believe deferment is equally protective of public health and environment for the following reasons:

- The remaining chloride concentrations in the subject area release range from 2,480 mg/kg in soil sample BH01 at 0.5-foot bgs to 37.9 mg/kg in soil sample BH01B at 2 feet bgs. Depth to groundwater is estimated to be greater than 50 feet deep based on the nearest well data and regional depth to water determination. All chloride concentrations meet Table 1 Closure Criteria applicable for a depth to water of greater than 50 feet bgs.
- Table 1 Closure Criteria defined by a depth to water of greater than 50 feet is appropriate for the chloride impacts identified at the location of soil sample BH01 and BH01A.
- The residual chloride concentrations are restricted to the upper portions of an indurated caliche. The lithologic properties of this rock suggest little pore space, fracturing, or voids. Additional migration in the caliche is unlikely. The high karst designation stipulates the application of the most stringent Table 1 Closure Criteria at this Site. However, the exceeding chloride concentrations exist above 2 feet bgs only. The absence of karst features at this depth suggests the shallow subsurface is not affected by karst. Therefore, Table 1 Closure Criteria defined by a depth to water of greater than 50 feet is appropriate for the chloride impacts identified at soil sample BH01 at 0.5-foot bgs and soil sample BH01A at 1-foot bgs.
- The remaining chloride concentrations will not affect surface receptors because impacted soil is beneath a liner. The liner has been repaired by XTO and will prevent infiltration by precipitation. In addition to XTO's regular inspections associated with its Spill Prevention, Control, and Countermeasure (SPCC) Program, XTO will periodically monitor the repaired

vsp

District II Page 5

liner associated with the subject area to ensure integrity and limit potential vertical or lateral migration of any remaining impacts.

 Removal of impacted soil is not a practical means of remediation due to the location of the release and surrounding production equipment. WSP and XTO argue the potential consequences that could arise from utilizing mechanical, manual, or non-destructive methods. Manual or non-destructive efforts would be limited due to the documented refusal area and would only address the surface and not up to 2 feet bgs. Attempting these efforts would warrant further breaching the liner, which is designed to protect the surface beneath the staged equipment and surface lines. Repairing efforts would naturally degrade the integrity of the liner as a result of reconstructions from its original state. The reconstructed areas could later form a potential conduit to the subsurface that could be greater than leaving the impacts in place.

Due to the presence of active aboveground production equipment and surface pipelines within the release footprint, safety restrictions prevent the ability to remove all impacted soil associated with chloride exceedances. Based on the data indicating chloride impacts are fully delineated, supportive evidence that any remaining chloride concentration are equally protective of public health and environment, limited pathway to any potential surface or subsurface receptors, and decreasing chloride concentrations associated with soil sample BH01 with depth, XTO requests deferral of final remediation for Incident Number NRM2020924128 until final reclamation of the well pad or major construction, whichever comes first.

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096.

Sincerely,

WSP USA Inc.

Fatima Smith Associate Consultant, Geologist

Ashley L. ager

Ashley L. Ager, P.G. Assistant Vice President, Geologist

District II Page 6

cc: Kyle Littrell, XTO Bureau of Land Management

Attachments:

- Figure 1 Site Location Map
- Figure 2 Delineation Soil Sample Locations
- Figure 3 Deferral Area
- Table 1 Soil Analytical Results
- Attachment 1 Referenced Well Records
- Attachment 2 Lithologic Soil Sampling Logs
- Attachment 3 Photographic Log
- Attachment 4 Laboratory Analytical Reports

FIGUR

Released to Imaging: 8/18/2021 3:36:59 PM

Released to Imaging: 8/18/2021 3:36:59 PM

Released to Imaging: 8/18/2021 3:36:59 PM

TABLES

Released to Imaging: 8/18/2021 3:36:59 PM

Table 1

Soil Analytical Results Ross Draw 25 North Incident Number NRM2020924128 XTO Energy, Inc. Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 Clo	osure Criteria (NM	AC 19.15.29)	10	50	NE	NE	NE	NE	100	600
Delineation Samples										
BH01	07/22/2020	0.5	< 0.00200	< 0.00200	<50.0	<50.0	<50.0	<50.0	<50.0	2,480
BH01A	07/22/2020	1	< 0.00202	< 0.00202	<50.0	<50.0	<50.0	<50.0	<50.0	2,290
BH01B	09/16/2020	2	< 0.00200	< 0.00200	<50.1	<50.1	<50.1	<50.1	<50.1	37.9
CH01	09/16/2020	0.5	< 0.00201	< 0.00201	<49.9	<49.9	<49.9	<49.9	<49.9	48.7
CH01A	09/16/2020	2	< 0.00198	< 0.00198	<49.8	<49.8	<49.8	<49.8	<49.8	17.3
CH02	09/16/2020	0.5	< 0.00200	< 0.00200	<49.8	<49.8	<49.8	<49.8	<49.8	216
CH02A	09/16/2020	2	< 0.00201	< 0.00201	<49.8	<49.8	<49.8	<49.8	<49.8	22.6
CH03	09/16/2020	0.5	< 0.00200	< 0.00200	<49.8	<49.8	<49.8	<49.8	<49.8	300
CH03A	09/16/2020	2	< 0.00200	< 0.00200	<50.0	<50.0	<50.0	<50.0	<50.0	145
CH04	09/16/2020	0.5	< 0.00200	< 0.00200	<50.2	<50.2	<50.2	<50.2	<50.2	273
CH04A	09/16/2020	2	< 0.00201	< 0.00201	<50.0	<50.0	<50.0	<50.0	<50.0	78.1

Notes

ft - feet/foot

mg/kg - milligrams per kilograms

BTEX - benzene, toluene, ethylbenzene, and total xylenes

TPH - total petroleum hydrocarbons

DRO - diesel range organics

GRO - gasoline range organics

ORO - motor oil range organics

NMOCD - New Mexico Oil Conservation Division

NMAC - New Mexico Administrative Code

< - indicates result is less than the stated laboratory method practical quantitation limit

NE - Not Established

BOLD - indicates results exceed the higher of the background sample result or applicable regulatory standard Greyed data represents samples that were excavated

National Water Information System: Web Interface

USGS Water Resources

Data Category: Geographic Area: Groundwater United States

GO

USGS Home Contact USGS Search USGS

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
 NOTICE 09-08-2020: The <u>NWIS Mapper</u> is experiencing intermittent issues. Developers are looking into the problem. Thank you for your patience.
- Full News

Groundwater levels for the Nation

Search Results -- 1 sites found

Agency code = usgs

site_no list = • 320154103562301

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320154103562301 26S.29E.22.23341

Eddy County, New Mexico Latitude 32°01'54", Longitude 103°56'23" NAD27 Land-surface elevation 2,974 feet above NAVD88 The depth of the well is 200 feet below land surface. This well is completed in the Rustler Formation (312RSLR) local aquifer.

Output formats Table of data Tab-separated data Graph of data Reselect period

Date	Time	? Water- level date- time accuracy	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Water- level accuracy	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1975-12-09	Ð	D	61.45			2		U		U	А
1976-01-16	5	D	64.75			2		U		U	A
1977-01-14	1	D	63.41			2		U		U	А
1978-02-23	3	D	65.47			2		U		U	A
1983-01-26	5	D	66.44			2		U		U	A
1987-10-14	1	D	49.81			2		U		U	А
1992-11-04	1	D	59.28			2		S		U	А
1998-01-22	2	D	66.42			2		S		U	А

Explanation								
Section	Code	Description						
Water-level date-time accuracy	D	Date is accurate to the Day						
Water-level accuracy	2	Water level accuracy to nearest hundredth of a foot						
Status		The reported water-level measurement represents a static level						
Method of measurement	S	Steel-tape measurement.						
Method of measurement	U	Unknown method.						
Measuring agency		Not determined						
Source of measurement	U	Source is unknown.						
Water-level approval status	А	Approved for publication Processing and review completed.						

Questions about sites/data? Feedback on this web site Automated retrievals <u>Help</u> Data Tips Explanation of terms Subscribe for system changes <u>News</u>

National Water Information System: Web Interface

USGS Water Resources

Data Category: Geographic Area Groundwater United States

GO

USGS Home Contact USGS Search USGS

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
 NOTICE 09-08-2020: The <u>NWIS Mapper</u> is experiencing intermittent issues. Developers are looking into the problem. Thank you for your patience.
- Full News 5

Groundwater levels for the Nation

Search Results -- 1 sites found

Agency code = usqs

site_no list = • 320135103573301

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320135103573301 26S.29E.23.31220

D

80.88

Eddy County, New Mexico Latitude 32°01'35", Longitude 103°57'33" NAD27 Land-surface elevation 2,913 feet above NGVD29 The depth of the well is 170.00 feet below land surface. This well is completed in the Forty-Niner Member of Rustler Formation (310FRNR) local aquifer.

Output formats Table of data Tab-separated data Graph of data Reselect period ? Water Water 2 level, ? level, Water-Referenced feet ? feet Waterlevel datevertical datum Date Time above Waterbelow Method of level Measuring Source of Status specific level land measurement agency measurement approval vertical datum time accuracy surface status accuracy

2

S

		Explanation
Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level accuracy	2	Water level accuracy to nearest hundredth of a foot
Status		The reported water-level measurement represents a static level
Method of measurement	S	Steel-tape measurement.
Measuring agency		Not determined
Source of measurement	U	Source is unknown.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

1987-10-14

Accessibility FOIA Privacy Policies and Notices U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2020-09-23 20:43:52 EDT 0.25 0.23 nadww01

U

А

USGS Groundwater for USA: Water Levels -- 1 sites Received by OCD: 5/19/2021 10:07:25 AM

National Water Information System: Web Interface

USGS Water Resources

Data Category:Geographic AreaGroundwaterUnited States

GO

USGS Home Contact USGS Search USGS

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- NOTICE 09-08-2020: The <u>NWIS Mapper</u> is experiencing intermittent issues. Developers are looking into the problem. Thank you for your patience. _____
- Full News

Groundwater levels for the Nation

Search Results -- 1 sites found

Agency code = usgs

site_no list =

• 320112103574501

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320112103574501 26S.29E.22.333242

Eddy County, New Mexico Latitude 32°01'12", Longitude 103°57'45" NAD27 Land-surface elevation 2,892.0 feet above NGVD29

Output formats

Table of data
Tab-separated data
Graph of data
Reselect period

Date	Time	? Water- level date- time accuracy	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Water- level accuracy	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status	
1993-01-05	14:45 MST	m	57.38			2		S		U	А	

	Explanation								
Section	Code	Description							
Water-level date-time accuracy	m	Date is accurate to the Minute							
Water-level accuracy	2	Water level accuracy to nearest hundredth of a foot							
Status		The reported water-level measurement represents a static level							
Method of measurement	S	Steel-tape measurement.							
Measuring agency		Not determined							
Source of measurement	U	Source is unknown.							
Water-level approval status	А	Approved for publication Processing and review completed.							

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices <u>U.S. Department of the Interior | U.S. Geological Survey</u> Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: USGS Water Data Support Team Page Last Modified: 2020-09-23 20:44:47 EDT 0.3 0.28 nadww02 USA.gov

USGS Groundwater for USA: Water Levels -- 1 sites Received by OCD: 5/19/2021 10:07:25 AM

National Water Information System: Web Interface

USGS Water Resources

Data Category:Geographic AreaGroundwaterUnited States

GO

USGS Home Contact USGS Search USGS

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- NOTICE 09-08-2020: The <u>NWIS Mapper</u> is experiencing intermittent issues. Developers are looking into the problem. Thank you for your patience.
- Full News

Groundwater levels for the Nation

Search Results -- 1 sites found

Agency code = usgs

site_no list =

• 320106103555301

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320106103555301 26S.29E.26.13143

Eddy County, New Mexico Latitude 32°00'51.3", Longitude 103°57'42.0" NAD83 Land-surface elevation 2,883.00 feet above NGVD29 The depth of the well is 140 feet below land surface. This well is completed in the Rustler Formation (312RSLR) local aquifer.

 Output formats

 Table of data

 Tab-separated data

 Graph of data

 Reselect period

Date	Time	? Water- level date- time accuracy	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Water- level accuracy	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1983-01-26		D	54.30			2		U		U	А
1987-10-14		D	35.29			2		U		U	A
1992-11-04		D	44.06			2		S		U	А
1998-01-28		D	53.01			2		S		U	A
2003-01-27		D	55.93			2		S	USGS	A	А
2013-01-09	12:00 MST	m	57.81			2		S	USGS	R	A

Explanation									
Section	Code	Description							
Water-level date-time accuracy	D	Date is accurate to the Day							
Water-level date-time accuracy	m	Date is accurate to the Minute							
Water-level accuracy	2	Water level accuracy to nearest hundredth of a foot							
Status		The reported water-level measurement represents a static level							
Method of measurement	S	Steel-tape measurement.							
Method of measurement	U	Unknown method.							
Measuring agency		Not determined							
Measuring agency	USGS	U.S. Geological Survey							
Source of measurement	А	Reported by another government agency (do not use "A" if reported by owner, use "O").							
Source of measurement	R	Reported by person other than the owner, driller, or another government agency.							
Source of measurement	U	Source is unknown.							
Water-level approval status	А	Approved for publication Processing and review completed.							

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms

			uo	BH or CH Name: BH01	Date: 07/22/2020
				BH01 and BH01A submitted	
					12920108
		L SAMPLING LO	JG	Logged By: Will Mather	Method: Hand Auger
Lat/Long: 32.018728, -103.	936157	Field Screening: HACH chloride strips	, PID	Hole Diameter: 4"	Total Depth (TD): 1'
Comments: SAA - Same As	Above			- I	1
All chloride tests strips inclu	ide a 40% correction	factor, HACH low rang		were used.	
Moisture Content Chloride (ppm) Vapor (ppm)	Staining Sample #	Sample Depth (ft bgs) Depth (ft bgs)	USCS/Rock Symbol	Litl	ology/Remarks
M 2,105 0.5	N BH01			Caliche, tan - off white, moist, poor of fine grain sand/silt, no stain, no c	ly consolidated, large tan/brown gravel, trace dor
M 2,245 0.5	N BH01A	+ ¹			
		• •	· · · · · · · · · · · · · · · · · · ·	TD @ 1 ft bgs	/

				BH or CH Name: BH01	Date: 09/16/2020
				BH01B submitted	
				Site Name: Ross Draw 25 North	1
				RP or Incident Number: NRM2020924128	
				WSP Job Number: TE012920108	1
		L SAMPLING LO)G	Logged By: Ben Belill/Robert McAfee	Method: Core Drill
Lat/Long: 32.018728, -103.	936157	Field Screening: HACH chloride strips	PID	Hole Diameter: 1.75"	Total Depth (TD): 2'
Comments: SAA - Same As	Above	TIACIT enforme surps	, rid	1.75	2
All chloride tests strips incl	ide a 40% correction	factor, HACH low rang	e test strips were	used. Borehole/corehole was backfilled with clear	fill material to surface.
Moisture Content Chloride (ppm) Vapor (ppm)	Staining Sample #	Sample Depth (ft bgs) Depth (ft bgs)	USCS/Rock Symbol	Lithology/R	emarks
М	N	0 0		che , tan - off white, moist, mod consoli	dated, trace of fine grain sand, no
M 2,105 0.5	N BH01	0.5	stair SAA	, no odor	
1/1 2,103 0.3		+ 0.3	SAA		
M 2,245 0.5	N BH01A	1 $\frac{1}{1}$			
		+			
		+			
M <180 0.2	N BH01B	2 2	SAA		
			TD	@ 2 ft bgs	

Current Current Second Second Second Second Second Second Second Test Second Second<							WSP L	JSA		BH or CH Name: CH01	Date: 09/16/2020
Site Name: Ross Draw 25 North Report Incident Number: NRA2020924128 Report Incident Number: NRA2020924128 WSP Job Number: TE012920108 LITHOLOGIC / SOIL SAMPLING LOG Lat/Long: 32.018619, -103.936088 Field Screening: HACH chloride strips, PID Lat/Long: 32.018619, -103.936088 Field Screening: HACH chloride strips, PID All chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. Of the test strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. Of the test strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. Of the test strips include a 40% correction factor, HACH low range test strips of the test strips include a 40% correction factor, HACH low range test strips include a 40% correction factor, HACH low range test strips of the test strips include a 40% correction factor, HACH low range test strips include a 40% correction factor, HACH low range test strips include a 40% correction factor, HACH low range test strips include a 40% correction factor, HACH low range test strips include a 40% correction factor, HACH low range test strips include a 40% correction factor, HACH low range t										CH01 and CH01A submitted	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
LITHOLOGIC / SOIL SAMPLING LOG Logged By: Ben Belill/Robert McAfee Method: Core Drill Lat/Long: 32.018619, -103.936088 Field Screening: HACH chloride strips, PID Total Depth (TD): 1.75" Total Depth (TD): 2' Comments: SAA - Same As Above All chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. vitiging view of the problem of the pro		Canabad, New Mexico 60220									
Lat/Long: 32.018619, -103.936088 Field Screening: HACH chloride strips, PID Hole Diameter: 1.75" Total Depth (TD): 2' Comments: SAA - Same As Above All chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. I chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. I the provide test strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. I the provide test strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. I the provide test strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. I the provide test strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. I the provide test strips include a 40% correction factor, HACH low range test strips were used. Some of the provide test strips include a 40% correction factor, HACH low range test strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. M 179 0.2 N CH01 0.5 I I I I SAA	LITHOLOGIC / SOIL SAMPLING LOG							G			Method: Core Drill
HACH chloride strips, PID1.75"2'Comments: SAA - Same As Above All chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. $\underline{antion under tests strips\underline{antion under tests strips} \underline{antion under tests strips} antion under$											
All chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. ant single image: strips		HACH chloride strips, PID									
Image: Second state of the second s)/		r t 1			- 	611
M 179 0.2 N CH01 0.5 CCHE Caliche , tan - off white, moist, mod consolidated, trace of fine grain sand, no stain, no odor SAA M 179 0.1 N CH01A 2 2 SAA	All chic	oride tests s	strips inclu	de a 40	% correction 1	actor, HAC	H low range	_	were used. I	Sorenoie/corenoie was backfilled with clean I	ini material to surface.
M 179 0.2 N CH01 0.5	Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft bgs)	(ft bgs)				
M 179 0.1 N CH01A 2 2 SAA	М	179	0.2	N	CH01	0.5	1 0 - - - -	CCHE	stain, no		ated, trace of fine grain sand, no
	м	179	0.1	N	CH01A	_	- 2		SAA		
										ft bgs	/

1 1 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>WSP</th> <th>USA</th> <th></th> <th>BH or CH Name: CH02 CH02 and CH02A submitted</th> <th>Date: 09/16/2020</th>							WSP	USA		BH or CH Name: CH02 CH02 and CH02A submitted	Date: 09/16/2020
Constitut, New Marker 33:220 RP or Incident Number: NRM2020924128 WSP Job Number: TE012920108 LITHOLOGIC / SOIL SAMPLING LOG Logged By: Ben Belitl/Robert McAfee Method: Core Drill Lat/Long: 32.018887, -103.936368 Field Screening: HACH chloride strips, PID Hole Diameter: 1.75" Total Depth (TD): 2' Comments: SAA - Same As Above All chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. antigray pic Lift (ft bgs) pic ft ft bgs) <th></th> <td></td>											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
LITHOLOGIC / SOIL SAMPLING LOG Logged By: Ben Belil/Robert McAfee Method: Core Drill Lat/Long: 32.018887, -103.936368 Field Screening: HACH chloride strips, PID Hole Diameter: 1.75" Total Depth (TD): 2' Comments: SAA - Same As Above All chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. vintig vintig<	Cansuau, New Mexico 100220										
Lat/Long: 32.018887, -103.936368 Field Screening: HACH chloride strips, PID Hole Diameter: 1.75" Total Depth (TD): 2' Comments: SAA - Same As Above All chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. a M b M b		LITHOLOGIC / SOIL SAMPLING LOG									Method: Core Drill
Comments: SAA - Same As Above All chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. Image: Second colspan="4">Image: Sec	Lat/Lo	Lat/Long: 32.018887, -103.936368 Field Screening:									
All chloride tests strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. ant strip image of the sets strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. ant strip image of the sets strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. ant strip image of the sets strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. ant strip image of the sets strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. ant strip image of the sets strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. begin block image of the sets strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. begin block image of the sets strips include a 40% correction factor, HACH low range test strips were used. Borehole/corehole was backfilled with clean fill material to surface. M 450 0.2 N CH02 0.5 Image of the set strips were used. Borehole/corehole was backfilled with clean fill material to surface.										1.75"	2'
Image: Second constraints Image:					% correction f	actor HAC	H low range	test strins	were used	Borehole/corehole was backfilled with clean :	fill material to surface
M 450 0.2 N CH02 0.5 CCHE Caliche , tan - off white, moist, mod consolidated, trace of fine grain sand, r stain, no odor SAA M 180 0.2 N CH02A 2 2 SAA				ac a 10				_			
M 450 0.2 N CH02 0.5 M 180 0.2 N CH02A 2	Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft bgs)					
M 180 0.2 N CH02A 2 2 SAA	М	450	0.2	Ν	CH02	0.5	1 0 - - - -	CCHE	stain, no		ated, trace of fine grain sand, no
	М	180	0.2	N	CH02A	_	- 2		SAA		
						•				ft bgs	/

				BH or CH Name: CH03	Date: 09/16/2020		
				CH03 and CH03A submitted			
				Site Name: Ross Draw 25 North	•		
				RP or Incident Number: NRM2020924128			
				WSP Job Number: TE012920108			
		L SAMPLING LO)G	Logged By: Ben Belill/Robert McAfee	Method: Core Drill		
Lat/Long: 32.019036, -103	.936231	Field Screening: HACH chloride strips,	PID	Hole Diameter: 1.75"	Total Depth (TD): 2'		
Comments: SAA - Same As		•					
All chloride tests strips incl	ude a 40% correction	actor, HACH low range	e test strips were used.	Borehole/corehole was backfilled with clean fi	ll material to surface.		
Moisture Content Chloride (ppm) Vapor (ppm)	Staining Sample #	Sample Depth (ft bgs) Depth (ft bgs)	USCS/Rock Symbol	Lithology/Rer			
M 504 0.2	N CH03	$\begin{array}{c} 0 \\ 0.5 \\ 1 \\ 1.5 \end{array}$	CCHE Caliche , stain, no SAA	tan - off white, moist, mod consolida odor	ted, trace of fine grain sand, no		
		I T I					
M 347 0.2	N CH03A	2 2	SAA TD @ 2	ft høs	/		
NS				BH or CH Name: CH04	Date: 09/16/2020		
--	----------------------	---	---------------------	---	-------------------------------------	--	--
				CH04 and CH04A submitted			
				Site Name: Ross Draw 25 North			
				RP or Incident Number: NRM2020924128			
				WSP Job Number: TE012920108			
LITH	OLOGIC / SOI	L SAMPLING LC)G	Logged By: Ben Belill/Robert McAfee	Method: Core Drill		
Lat/Long: 32.018932, -103	935881	Field Screening:		Hole Diameter:	Total Depth (TD):		
	41	HACH chloride strips,	PID	1.75"	2'		
	ude a 40% correction			d. Borehole/corehole was backfilled with clean	fill material to surface.		
Moisture Content Chloride (ppm) Vapor (ppm)	Staining Sample #	Sample Depth (ft bgs) Depth (ft bgs)	USCS/Rock Symbol	Lithology/Ro			
M 347 0.2	N CH04			e , tan - off white, moist, mod consolic 10 odor	lated, trace of fine grain sand, no		
M 180 0.2	N CH04A	$\begin{array}{c c} 1.5 \\ 2 \\ 2 \\ \end{array}$	SAA	2 ft bgs			

wsp

		PHOTOGRAPHIC LOG	
XTO Energ	y, Inc.	Ross Draw 25 North	TE012920108
		Eddy County, New Mexico	
Photo No.	Date		
	July 22-		
1	September 1	, , , , , , , , , , , , , , , , , , ,	
	2020		
View of BH01 le	ocation within		In The
lined containm	ent during initi		
delineati	ion efforts		
		A A A A	A REAL PROPERTY.
		A A A	1 million and
			AT - D - D - T - D
		and the second s	
			A THE

wsp

PHOTOGRAPHIC LOG							
XTO Energy, Inc.	Ross Draw 25 North	TE012920108					
	Eddy County, New Mexico						
	Eddy County, New Mexico						

Photo No.	Date	
	July 22-	
3	September 16,	
	2020	
North view of the	soil sample CH01	
location follow:	ing advancement	12
with the	core drill.	
1		

Photo No.	Date July 22-	
4	September 16, 2020	
H01 following	a associated with advancement with re drill.	

wsp

		PHOTOGRAPHIC LOG	
XTO Energy, Inc.		Ross Draw 25 North	TE012920108
		Eddy County, New Mexico	
Photo No.	Date		
	July 22-		
5	September 1		
	2020		
View of the so	oil sample CH02	The line of the second s	
	ring advancement		
	core drill.		
		and a stand stand stand	
		An Contraction	
			2 STONE OF COMPANY

Released to Imaging: 8/18/2021 3:36:59 PM

Project Id:

Project Location:

Contact:

Г

eurofins Environment Testing Xenco

012920108

Dan Moir

Eddy

Certificate of Analysis Summary 667911

LT Environmental, Inc., Arvada, CO

Project Name: Ross Draw 25 N CTB

 Date Received in Lab:
 Wed 07.22.2020 13:19

 Report Date:
 07.23.2020 13:23

Project Manager: Jessica Kramer

	Lab Id:	667911-0	01	667911-0	02		
Analysis Requested	Field Id:	BH01		BH01A	`		
Analysis Requested	Depth:	0.5- ft		1- ft			
	Matrix:	SOIL		SOIL			
	Sampled:	07.22.2020	11:14	07.22.2020	10:17		
BTEX by EPA 8021B	Extracted:	07.22.2020	14:00	07.22.2020	14:00		
	Analyzed:	07.22.2020	19:35	07.22.2020	19:57		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00200	0.00200	< 0.00202	0.00202		
Toluene		< 0.00200	0.00200	< 0.00202	0.00202		
Ethylbenzene		< 0.00200	0.00200	< 0.00202	0.00202		
m,p-Xylenes		< 0.00399	0.00399	< 0.00403	0.00403		
o-Xylene		< 0.00200	0.00200		0.00202		
Total Xylenes		< 0.00200	0.00200	< 0.00202	0.00202		
Total BTEX		< 0.00200	0.00200	< 0.00202	0.00202		
Chloride by EPA 300	Extracted:	07.22.2020	17:54	07.22.2020	17:54		
	Analyzed:	07.23.2020	04:50	07.23.2020	04:56		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		2480	100	2290	200		
TPH by SW8015 Mod	Extracted:	07.22.2020	16:30	07.22.2020	16:30		
	Analyzed:	07.22.2020	16:43	07.22.2020	17:03		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<50.0	50.0	<50.0	50.0		
Diesel Range Organics (DRO)	iesel Range Organics (DRO) <50.0 50		50.0	<50.0	50.0		
Motor Oil Range Hydrocarbons (MRO)		<50.0	50.0	<50.0	50.0		
Total GRO-DRO		<50.0	50.0	<50.0	50.0		
Total TPH		<50.0	50.0	<50.0	50.0		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Page 1 of 14

eurofins Environment Testing Xenco

Analytical Report 667911

for

LT Environmental, Inc.

Project Manager: Dan Moir

Ross Draw 25 N CTB 012920108

07.23.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-36), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-25), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-17) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-7) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

eurofins Environment Testing Xenco

07.23.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 667911 Ross Draw 25 N CTB Project Address: Eddy

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 667911. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 667911 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession kenner

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 3 of 14

eurofins Environment Testing Xenco

Sample Cross Reference 667911

Ross Draw 25 N CTB

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH01	S	07.22.2020 11:14	0.5 ft	667911-001
BH01A	S	07.22.2020 10:17	1 ft	667911-002

Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: Ross Draw 25 N CTB

 Project ID:
 012920108

 Work Order Number(s):
 667911

Report Date: 07.23.2020 Date Received: 07.22.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Environment Test Xenco

Certificate of Analytical Results 667911

LT Environmental, Inc., Arvada, CO

Ross Draw 25 N CTB

	04511411501			01110	1111113010 24		8	~
Parameter	Cas Number	Result	RL	Units	Analysis Da	ite	Flag	Dil
Seq Number: 3132405								
Analyst: DTH		Date Prep:	07.22.2020 16:30		Basis:	Wet V	Weight	
Tech: DTH					% Moisture:			
Analytical Method: TPH by SW801	15 Mod				Prep Method:	SW8	015P	
Chloride	16887-00-6	2480	100	mg/kg	07.23.2020 04	:50		10
Parameter	Cas Number	Result	RL	Units	Analysis Da	ite	Flag	Dil
Seq Number: 3132399								
Analyst: MAB		Date Prep:	07.22.2020 17:54		Basis:	Wet V	Weight	
Tech: MAB					% Moisture:			
Analytical Method: Chloride by EP	PA 300				Prep Method:	E300	Р	
Lab Sample Id: 667911-001		Date Collected: 07.22.2020 11:14			Sample Depth: 0.5 ft			

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	07.22.2020 16:43	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	07.22.2020 16:43	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	07.22.2020 16:43	U	1
Total GRO-DRO	PHC628	<50.0	50.0		mg/kg	07.22.2020 16:43	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	07.22.2020 16:43	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	103	%	70-135	07.22.2020 16:43		
o-Terphenyl		84-15-1	103	%	70-135	07.22.2020 16:43		

Environment Testing Xenco

Certificate of Analytical Results 667911

LT Environmental, Inc., Arvada, CO

Ross Draw 25 N CTB

Sample Id:BH01Lab Sample Id:667911-001	Matrix:	Soil	Date Received:07.22.2020 13:1	
	Date Collecte	ed: 07.22.2020 11:14	Sample Depth: 0.5 ft	
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3132403	Date Prep:	07.22.2020 14:00	Prep Method % Moisture: Basis:	l: SW5035A Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 19:35	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	07.22.2020 19:35	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 19:35	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	07.22.2020 19:35	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 19:35	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 19:35	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	07.22.2020 19:35	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	100	%	70-130	07.22.2020 19:35		
4-Bromofluorobenzene		460-00-4	106	%	70-130	07.22.2020 19:35		

Environment Testir Xenco

Certificate of Analytical Results 667911

LT Environmental, Inc., Arvada, CO

Ross Draw 25 N CTB

Sample Id: Lab Sample I	BH01A d: 667911-002		Matrix: Date Co	Soil llected: 07.22.2020 10	0:17	Date Received:07.2 Sample Depth: 1 ft		3:19
Analytical M Tech: Analyst: Seq Number:	ethod: Chloride by El MAB MAB 3132399	PA 300	Date Pre	ep: 07.22.2020 17	7:54	Prep Method: E30 % Moisture: Basis: Wet	0P t Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	2290	200	mg/kg	07.23.2020 04:56		20

5 Mod					Prep Method: SV	V8015P	
					% Moisture:		
	Date P	rep: 07.2	22.2020 16:30		Basis: W	et Weight	
Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
PHC610	<50.0	50.0		mg/kg	07.22.2020 17:03	U	1
C10C28DRO	<50.0	50.0		mg/kg	07.22.2020 17:03	U	1
PHCG2835	<50.0	50.0		mg/kg	07.22.2020 17:03	U	1
PHC628	<50.0	50.0		mg/kg	07.22.2020 17:03	U	1
PHC635	<50.0	50.0		mg/kg	07.22.2020 17:03	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Dat	e Flag	
	111-85-3	103	%	70-135	07.22.2020 17:	03	
:	84-15-1	103	%	70-135	07.22.2020 17:	03	
	Cas Number PHC610 C10C28DRO PHC62835 PHC628 PHC635	Cas Number Result PHC610 <50.0	Cas Number Result RL PHC610 <50.0	Cas Number Result RL PHC610 <50.0	Date Prep: 07.22.2020 16:30 Cas Number Result RL Units PHC610 <50.0	Cas Number Result RL Units Analysis Date PHC610 <50.0	Noticity Date Prep: 07.22.2020 16:30 Basis: Wet Weight Cas Number Result RL Units Analysis Date Flag PHC610 <50.0

Xenco

Environment Testing

🔅 eurofins

Certificate of Analytical Results 667911

LT Environmental, Inc., Arvada, CO

Ross Draw 25 N CTB

Sample Id:BH01ALab Sample Id:667911-002	Matrix:	Soil	Date Received	d:07.22.2020 13:19
	Date Collecte	d: 07.22.2020 10:17	Sample Depth	n: 1 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3132403	Date Prep:	07.22.2020 14:00	Prep Method: % Moisture: Basis:	SW5035A Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	07.22.2020 19:57	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	07.22.2020 19:57	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	07.22.2020 19:57	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	07.22.2020 19:57	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	07.22.2020 19:57	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	07.22.2020 19:57	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	07.22.2020 19:57	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	101	%	70-130	07.22.2020 19:57		
4-Bromofluorobenzene		460-00-4	107	%	70-130	07.22.2020 19:57		

Xenco

Environment Testing

🔅 eurofins

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected			
RL Reporting Limit				
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection	
PQL Practical Quantitation Limit	MQL Method Qu	antitation Limit	LOQ Limit of Quantitatio	n
DL Method Detection Limit				
NC Non-Calculable				
SMP Client Sample		BLK	Method Blank	
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD Method Duplicate/Samp	le Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NELAC certification not offered	for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Xenco

Environment Testing

🔅 eurofins

QC Summary 667911

LT Environmental, Inc.

Ross Draw 25 N CTB

Analytical Method: Seq Number: MB Sample Id:	Chloride by 3132399 7707895-1-1		00		Matrix: nple Id:	Solid 7707895-	I-BKS			ep Methe Date Pr D Sample	ep: 07.2	0P 22.2020 7895-1-BSD	
Parameter		MB	Spike	LCS Result		LCSD		Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		Result <10.0	Amount 250	261	%Rec 104	Result 269	%Rec 108	90-110	3	20	mg/kg	07.23.2020 02:58	
			200	201	101	207	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	U				
Analytical Method:	Chloride by 3132399	y EPA 3()0		Matrix:	Seil			Pı	ep Meth		0P 22.2020	
Seq Number: Parent Sample Id:	667904-050					667904-0	50 S		MS	Date Pr D Sample		904-050 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		7470	201	7680	104	7670	101	90-110	0	20	mg/kg	07.23.2020 03:15	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by 3132399 667904-060		00		Matrix: nple Id:	Soil 667904-00	50 S			ep Methe Date Pr D Sample	ep: 07.2	0P 22.2020 904-060 SD	
Parameter		Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	Flag
Chloride		Result 129	Amount 200	Result 338	%Rec 105	Result 338	%Rec 105	90-110	0	Limit 20	mg/kg	Date 07.23.2020 04:33	8
Analytical Method:	-									ep Meth	od: SW	8015P	
Seq Number:	3132405 7707899-1-1	עוס			Matrix:	Solid 7707899-1	-BKS		LCS	Date Pr	-	22.2020 7899-1-BSD	
MB Sample Id:	//0/899-1-	MB	Spike	LCS Sa	LCS	LCSD	LCSD	Limits	%RPD	RPD	Units	Analysis	
Parameter		Result	Amount	Result	%Rec	Result	%Rec	Linits	/0KI D	Limit	Omts	Date	Flag
Gasoline Range Hydrocarb		<50.0	1000	935	94	1010	101	70-135	8	35	mg/kg	07.22.2020 10:11	
Diesel Range Organics	(DRO)	<50.0	1000	1040	104	1120	112	70-135	7	35	mg/kg	07.22.2020 10:11	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			mits	Units	Analysis Date	
1-Chlorooctane		108	1		22	B	126		-	-135	%	07.22.2020 10:11	
o-Terphenyl		109		1	10		118	3	70	-135	%	07.22.2020 10:11	
Analytical Method: Seq Number:	TPH by SW 3132405	V8015 M	od		Matrix: nple Id:	Solid 7707899-	I-BLK		Pı	ep Methe Date Pr		8015P 22.2020	
Parameter				MB Result							Units	Analysis Date	Flag
Motor Oil Range Hydrocar	bons (MRO)			<50.0							mg/kg	Date 07.22.2020 09:50	
											2.3		

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference $\begin{array}{l} [D] = 100*(C-A) \ / \ B \\ RPD = 200* \ | \ (C-E) \ / \ (C+E) \ | \\ [D] = 100*(C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 11 of 14

```
Final 1.000
```

Xenco

🔅 eurofins

QC Summary 667911

Prep Method: SW8015P

LT Environmental, Inc.

Ross Draw 25 N CTB

Environment Testing

Seq Number:	3132405			I	Matrix:	Soil				Date Pr	ep: 07.2	22.2020	
Parent Sample Id:	667902-00	7		MS San	nple Id:	667902-00	07 S		MS	D Sample	e Id: 667	902-007 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocart	oons (GRO)	<50.0	1000	863	86	878	88	70-135	2	35	mg/kg	07.22.2020 14:42	
Diesel Range Organics	(DRO)	<50.0	1000	978	98	959	96	70-135	2	35	mg/kg	07.22.2020 14:42	
Surrogate				M %1	IS Rec	MS Flag	MSI %Re			imits	Units	Analysis Date	
1-Chlorooctane				1	15		117	,	70	-135	%	07.22.2020 14:42	
o-Terphenyl				1	10		105	i	70	-135	%	07.22.2020 14:42	

Analytical Method:	BTEX by EPA 8021	B						P	rep Metho	od: SW	5035A	
Seq Number:	3132403]	Matrix:	Solid				Date Pr	ep: 07.2	22.2020	
MB Sample Id:	7707875-1-BLK		LCS San	nple Id:	7707875-	I-BKS		LCS	D Sample	e Id: 770	7875-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.115	115	0.122	122	70-130	6	35	mg/kg	07.22.2020 15:28	
Toluene	< 0.00200	0.100	0.110	110	0.116	116	70-130	5	35	mg/kg	07.22.2020 15:28	
Ethylbenzene	< 0.00200	0.100	0.102	102	0.108	108	71-129	6	35	mg/kg	07.22.2020 15:28	
m,p-Xylenes	< 0.00400	0.200	0.206	103	0.218	109	70-135	6	35	mg/kg	07.22.2020 15:28	
o-Xylene	< 0.00200	0.100	0.102	102	0.108	108	71-133	6	35	mg/kg	07.22.2020 15:28	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	101		1	00		100		70	-130	%	07.22.2020 15:28	
4-Bromofluorobenzene	103		1	02		102		70	-130	%	07.22.2020 15:28	

Analytical Method:	BTEX by EPA 8021	lB						Pi	rep Metho	od: SW	5035A	
Seq Number:	3132403			Matrix:	Soil				Date Pr	ep: 07.2	22.2020	
Parent Sample Id:	667902-007		MS Sar	nple Id:	667902-00)7 S		MS	D Sample	e Id: 667	902-007 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.125	126	0.113	113	70-130	10	35	mg/kg	07.22.2020 16:32	
Toluene	< 0.00199	0.0996	0.117	117	0.106	106	70-130	10	35	mg/kg	07.22.2020 16:32	
Ethylbenzene	< 0.00199	0.0996	0.110	110	0.0989	99	71-129	11	35	mg/kg	07.22.2020 16:32	
m,p-Xylenes	< 0.00398	0.199	0.224	113	0.200	101	70-135	11	35	mg/kg	07.22.2020 16:32	
o-Xylene	< 0.00199	0.0996	0.110	110	0.0985	99	71-133	11	35	mg/kg	07.22.2020 16:32	
Surrogate				1S Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date	
1,4-Difluorobenzene			ç	99		98		70	-130	%	07.22.2020 16:32	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

4-Bromofluorobenzene

 $\label{eq:c-A} \begin{array}{l} [D] = 100^{*}(C\text{-}A) \ / \ B \\ RPD = 200^{*} \ | \ (C\text{-}E) \ / \ (C\text{+}E) \ | \\ [D] = 100^{*} \ (C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

100

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

07.22.2020 16:32

Page 12 of 14

103

70-130

%

ANALYSIS REQUEST	City, State ZIP: Midland, Tx 79705 City Phone: (432) 236-3849 Email: wm;	Ross Draw 25 N CTB	Ross Draw 25 N CTB		Ross Draw 25 N CTB	Ross Draw 25 N CTB	Ross Draw 25 N CTB	Ross Draw 25 N CTB	Ross Draw 25 N CTB	Ross Draw 25 N CTB	Ross Draw 25 N CTB	Ross Draw 25 N CTB	Ross Draw 25 N CTB	Ross Draw 25 N CTB	Rose Draw 25 N CTR	Rose Draw 25 N CTR						-							DAGA DAGU DE NOTO	Ross Draw 25 N CTB	ROSS DIAW 25 N C I B		/1202010R	Project Number: //12920108 Routine	6		P.O. Number: Rush:	Eddy	(and		William Mather	Due Date:			Tomp Blank Vac No Mot Inc.	Shift LE NECEIFI Temp Blank: Jes No Wet Ice: / Yes	0110 (Thermometer ID	-)	Received intact: Kes No I - /V/V - D +	- Tar An - And	i co	Yes the N/A Correction Eactor	Contection Factor:		Von No NIA	Yes Nol NA	NIA	1	2			Date Time	Date Time	Matrix Uale lime	Matrix Date Hime	ainit .	Matrix Complete Complete	Wallix Sampled Sampled	Sampled Sampled	Sampled Sampled	Sampled Sampled	naidiipo					1000000	7/00/0000 44.44	7/22/2020 11-14	s 7/22/2000 11-14	s 7/22/2020 11-14	s 7/22/2000 11-14	e 7/00/0000 11-14	e 7/00/0000 11-14	e 7/00/0000 11-14	e 7/00/0000 11-14	s 7/20/2000 11-14	s 7/20/2000 11-14	s 7/20/2000 11-14	s 7/22/2020 11-14	co.	IS (122/2020) 11:14	IS 1/2/2/2/02/01/11/14	S 112212020 11.14	S 112212U2U 11.14	9 112212U2U 11.14																		
V: (Signa SiQ2	Address: City, State ZIP: Email: <u>wmather@ltenv.com, dmoir@ltenv.com</u>	ANAL	ANAL	ANAL	ANAL	ANAL	Turn Around ANALYSIS REC	ANAL			1	<i>\</i>	/	1	4		6	4	h	1		/	/		ANAL		*	CT C							5	Ċ.				-	(1)	:1	2.)	3 5) 80	Г С 15 =8	01	of BO	8 8) 0 8 0		PA	P (E	EI (I	11 (E	ni (I	mi I (m + (IM H (un PH	ur PH	lu PH TE	lu Pl	Nu IP	NI TF	Т	Т	E			-	4	4 ~ ~	4 ~ ~	4 ~ ~	4	4	4	4	4	4	4	4 ~ ~	4 ~ ~				I X X	I X X	- > >						 	 - > >	 	- > >	- > >	 	 		 									
Work Order Notes TAT starts the day received by the lab, if received by 4:30pm Sample Comments Discrete Discrete Na Sr TI Sn U V Zn 1631/245.1/7470 / 7471 : Hg	State of Project: Reporting:Level II [evel III Deliverables: EDD ADaPT Other																																																						TAT star				lab,							2	2	Sa	Sa	Sa	oa																																												

Released to Imaging: 8/18/2021 3:36:59 PM

26

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature R	ange: 0 - 6 degC
Date/ Time Received: 07.22.2020 01.19.00 PM	Air and Metal samples Acc	ceptable Range: Ambient
Work Order #: 667911	Temperature Measuring de	evice used : T-NM-007
Sample Rece	ipt Checklist	Comments
#1 *Temperature of cooler(s)?	2.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6*Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	No	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Date: 07.22.2020 Elizabeth McClellan

Checklist reviewed by: Jessica Vramer

Date: 07.22.2020

🔅 eurofins **Environment Testing**

Xenco

Project Id: 012920108 Dan Moir **Contact:**

Project Location:

Certificate of Analysis Summary 672898

LT Environmental, Inc., Arvada, CO

Project Name: Ross Draw 25 North CTB

Date Received in Lab: Thu 09.17.2020 16:15 **Report Date:** 09.21.2020 12:16

Project Manager: Jessica Kramer

	Lab Id:	672898-001			
Analysis Pognostad	Field Id:	BH01 B			
Analysis Requested	Depth:	2- ft			
	Matrix:	SOIL			
	Sampled:	09.16.2020 10:45			
BTEX by EPA 8021B	Extracted:	09.18.2020 11:44			
	Analyzed:	09.18.2020 13:33			
	Units/RL:	mg/kg RL			
Benzene		<0.00200 0.00200			
Toluene		<0.00200 0.00200			
Ethylbenzene		<0.00200 0.00200			
m,p-Xylenes		<0.00400 0.00400			
o-Xylene		<0.00200 0.00200			
Total Xylenes		<0.00200 0.00200			
Total BTEX		<0.00200 0.00200			
Chloride by EPA 300	Extracted:	09.17.2020 17:31			
	Analyzed:	09.17.2020 21:52			
	Units/RL:	mg/kg RL			
Chloride		37.9 10.0			
TPH by SW8015 Mod	Extracted:	09.17.2020 17:20			
	Analyzed:	09.18.2020 05:16			
	Units/RL:	mg/kg RL			
Gasoline Range Hydrocarbons (GRO)		<50.1 50.1			
Diesel Range Organics (DRO)		<50.1 50.1			
Motor Oil Range Hydrocarbons (MRO)		<50.1 50.1			
Total GRO-DRO		<50.1 50.1			
Total TPH		<50.1 50.1			

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 1 of 12

eurofins Environment Testing Xenco

Analytical Report 672898

for

LT Environmental, Inc.

Project Manager: Dan Moir

Ross Draw 25 North CTB 012920108

09.21.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

09.21.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 672898 Ross Draw 25 North CTB Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 672898. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 672898 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession kenner

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing Xenco

Sample Cross Reference 672898

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH01 B	S	09.16.2020 10:45	2 ft	672898-001

Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: Ross Draw 25 North CTB

 Project ID:
 012920108

 Work Order Number(s):
 672898

 Report Date:
 09.21.2020

 Date Received:
 09.17.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Environment Testi Xenco

Certificate of Analytical Results 672898

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id: BH01 Lab Sample Id: 67289		Matrix: Date Colle	Soil ected: 09.16.2020 10:45		Date Received Sample Depth		.2020 16:	15
Analytical Method: G Tech: MAB	Chloride by EPA 300				Prep Method: % Moisture:	E3001	Р	
Analyst: MAB		Date Prep:	09.17.2020 17:31		Basis:	Wet V	Weight	
Seq Number: 31374	99							
Parameter	Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil
Chloride	16887-00-6	37.9	10.0	mg/kg	09.17.2020 21	1:52		1

Analytical Method:TPH by SW801Tech:DTHAnalyst:DTHSeq Number:3137481	5 Mod	Date Prep	: 09.17.2020 17:20	I	Prep Method: S % Moisture: Basis: V	W8015P Vet Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.1	50.1	mg/kg	09.18.2020 05:1	6 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.1	50.1	mg/kg	09.18.2020 05:1	6 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.1	50.1	mg/kg	09.18.2020 05:1	6 U	1
Total GRO-DRO	PHC628	< 50.1	50.1	mg/kg	09.18.2020 05:1	6 U	1
Total TPH	PHC635	< 50.1	50.1	mg/kg	09.18.2020 05:1	6 U	1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	87	%	70-135	09.18.2020 05:16	
o-Terphenyl	84-15-1	88	%	70-135	09.18.2020 05:16	

Environment Testing Xenco

Certificate of Analytical Results 672898

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id: BH01 B Lab Sample Id: 672898-001	Matrix: Date Collecte	Soil ed: 09.16.2020 10:45	Date Received Sample Depth	d:09.17.2020 16:15 n: 2 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB			Prep Method: % Moisture:	SW5035A
Analyst:MABSeq Number:3137632	Date Prep:	09.18.2020 11:44	Basis:	Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.18.2020 13:33	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.18.2020 13:33	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.18.2020 13:33	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	09.18.2020 13:33	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.18.2020 13:33	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.18.2020 13:33	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.18.2020 13:33	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	99	%	70-130	09.18.2020 13:33		
4-Bromofluorobenzene		460-00-4	87	%	70-130	09.18.2020 13:33		

Xenco

Environment Testing

🔅 eurofins

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected.			
RL Reporting Limit				
MDL Method Detection Limit	SDL Sample Det	ection Limit	LOD Limit of Detection	
PQL Practical Quantitation Limit	MQL Method Qua	antitation Limit	LOQ Limit of Quantitatio	n
DL Method Detection Limit				
NC Non-Calculable				
SMP Client Sample		BLK	Method Blank	
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD Method Duplicate/Sampl	e Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NELAC certification not offered f	for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Хепсо

Environment Testing

🔅 eurofins

QC Summary 672898

LT Environmental, Inc.

Ross Draw 25 North CTB

					1055		North	, I D					
Analytical Method: Seq Number:	3137499	-)0		Matrix:		1 DVS			rep Meth Date Pr	ep: 09.1	7.2020	
MB Sample Id:	7711598		<i>a</i> n		-	7711598-				-		1598-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		<10.0	250	256	102	256	102	90-110	0	20	mg/kg	09.17.2020 19:46	
Analytical Method: Seq Number:	Chloride 3137499	•)0		Matrix:	Soil			Pi	rep Meth Date Pr		0P 17.2020	
Parent Sample Id:	672834-0			MS Sar	nple Id:	672834-02	21 S		MS		-	834-021 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		155	199	357	102	357	102	90-110	0	20	mg/kg	09.17.2020 20:03	
Analytical Method: Seq Number:	3137481		od		Matrix:		1 DVC			rep Meth Date Pr	ep: 09.1	8015P 17.2020	
MB Sample Id:	7711555		<i>a</i> n		-	7711555-				-		1555-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo Diesel Range Organics (<50.0 <50.0	1000 1000	834 935	83 94	822 925	82 93	70-135 70-135	1 1	35 35	mg/kg mg/kg	09.17.2020 22:53 09.17.2020 22:53	
Dieser Range Organies ((DKO)	<50.0	1000			925	95			55	iiig/kg	0,11,12020 22:00	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane o-Terphenyl		129 124			22 17		121 113			-135 -135	% %	09.17.2020 22:53 09.17.2020 22:53	
Analytical Method: Seq Number:	TPH by 3137481	SW8015 M	od		Matrix: nple Id:	Solid 7711555-	1-BLK		Pi	rep Meth Date Pr		8015P 17.2020	
Parameter				MB							Units	Analysis	Flag
Motor Oil Range Hydrocarl	hone (MPO)			Result								Date 09.17.2020 22:33	1
Motor On Kange Hydrocan	DOIIS (IVIKO)			<50.0							mg/kg	09.17.2020 22.33	
Analytical Method: Seq Number: Parent Sample Id:	TPH by 3137481 672834-0		od		Matrix: nple Id:	Soil 672834-00	09 S			rep Meth Date Pr D Sample	ep: 09.1	8015P 17.2020 834-009 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo		<49.9	998	824	83	861	86	70-135	4	35	mg/kg	09.17.2020 23:53	
Diesel Range Organics ((DRO)	<49.9	998	906	91	938	94	70-135	3	35	mg/kg	09.17.2020 23:53	
Surrogate					1S Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
1-Chlorooctane				1	05		104		70	-135	%	09.17.2020 23:53	
o-Terphenyl				1	00		97		70	-135	%	09.17.2020 23:53	
MS/MSD Percent Recover Relative Percent Differenc LCS/LCSD Recovery Log Difference		[D] = 100 * ((C-E) / (C+E)		(Original S	Sample)	A C	CS = Labora = Parent Re = MS/LCS = MSD/LC	esult S Result	-	$B = S_1$	Matrix Spike bike Added SD/LCSD % Rec	

Released to Imaging: 8/18/2021 3:36:59 PM

Page 9 of 12

Xenco

Environment Testing

🔅 eurofins

LT Environmental, Inc.

Ross Draw 25 North CTB

Analytical Method:	BTEX by EPA 802	lB						Р	rep Meth	od: SW	5035A	
Seq Number:	3137632]	Matrix:	Solid				Date Pr	ep: 09.	18.2020	
MB Sample Id:	7711605-1-BLK		LCS San	nple Id:	7711605-	1-BKS		LCS	D Sample	e Id: 771	1605-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.105	105	0.0937	94	70-130	11	35	mg/kg	09.18.2020 06:51	
Toluene	< 0.00200	0.100	0.102	102	0.0906	91	70-130	12	35	mg/kg	09.18.2020 06:51	
Ethylbenzene	< 0.00200	0.100	0.0940	94	0.0833	83	71-129	12	35	mg/kg	09.18.2020 06:51	
m,p-Xylenes	< 0.00400	0.200	0.189	95	0.168	84	70-135	12	35	mg/kg	09.18.2020 06:51	
o-Xylene	< 0.00200	0.100	0.0939	94	0.0835	84	71-133	12	35	mg/kg	09.18.2020 06:51	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSE %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	100		9	98		98		70	0-130	%	09.18.2020 06:51	
4-Bromofluorobenzene	88		8	38		88		70)-130	%	09.18.2020 06:51	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 8021 3137632 672834-021	B		Matrix: nple Id:		21 S			rep Metho Date Pro D Sample	ep: 09.1	5035A 18.2020 834-021 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.120	120	0.123	123	70-130	2	35	mg/kg	09.18.2020 07:36	
Toluene	< 0.00199	0.0996	0.114	114	0.118	118	70-130	3	35	mg/kg	09.18.2020 07:36	
Ethylbenzene	< 0.00199	0.0996	0.104	104	0.109	109	71-129	5	35	mg/kg	09.18.2020 07:36	
m,p-Xylenes	< 0.00398	0.199	0.208	105	0.218	108	70-135	5	35	mg/kg	09.18.2020 07:36	
o-Xylene	< 0.00199	0.0996	0.102	102	0.107	107	71-133	5	35	mg/kg	09.18.2020 07:36	
Surrogate				1S Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date	
1,4-Difluorobenzene			ç	98		100		70	-130	%	09.18.2020 07:36	
4-Bromofluorobenzene			8	39		90		70	-130	%	09.18.2020 07:36	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference $\begin{array}{l} [D] = 100*(C-A) \ / \ B \\ RPD = 200* \ | \ (C-E) \ / \ (C+E) \ | \\ [D] = 100*(C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 10 of 12

eined by	Reinquished by: (Signature)	of service: Signature of this dou of service: Xenco will be lial	Total 200.7 / 6010 Circle Method(s) a	~ 07:	45 8	1 <i>M</i>					Sample Identification	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	Temperature (°C):	SAMPLE RECEIPT	Sampler's Name:	P.O. Number:	Project Number:	Project Name:	Phone:	City, State ZIP:	Address:	Company Name:	Project Manager:	Page 67 of
2	Signature)	cument and relinquishment (ble only for the cost of sample of \$75.00 will be applied to	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed						9	SH-115 S	fication Matrix	s: Yes Wo N/A	Yes No	(Wes N	0		Benjamin Belill	NBM2020924128	SCI 02520 108	Ross Draw 25 North CTB	432.236.3849	Midland, TX 79705	3300 North A Street	LT Environmental, Inc.,	Dan Moir	ABORATORIES
Clar Cliffon 9	Sig	of samples constitutes a valid ples and shall not assume any p each project and a charge of	8RCRA 1; nalyzed TCLP / SI							5h01 0/91 4		Total Containers:			Thermometer ID	No No	D			СТВ	Em			c., Permian office		Hou Mi Hobbs,NM (575
9.17.20 16:19 9/-	ture)	purchase order from client responsibility for any loss f \$5 for each sample submit	RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co			1 x X	P DA			2 1	d Depth Numb		-0.9		9r ID	Wet Ice: Was No	Due Date:	Rush: 3 Drug	Routine 🕅	Turn Around	Email: bbelill@ltenv.com	City, State ZIP:	Address:	Company Name:	Bill to: (if different)	ıston, TX (281) 240-4200 idland, TX (432-704-5440) -392-7550) Phoenix, AZ (
2012/02/6:15 2	Date/Time	company to Xenco, its aff es or expenses incurred b ted to Xenco, but not anal	l Sb As Ba Be B Sb As Ba Be Cd				670		××××	× × ×	TPH (E BTEX (Chlorid	EPA	0=80	021)						V	CI	Carlsbad, NM 88220	3104 E Green Street	XTO Energy	Kyle Littrell	Dallas,TX (214) 902-0300 San Antonio,1 EL Paso,TX (915)585-3443 Lubbock,T 480-355-0900) Atlanta,GA (770-449-880
	Relinquished by: (Signature)	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Cd Ca Cr Co Cu Fe Pb Cr Co Cu Pb Mn Mo Ni																	ANALYSIS REQUEST		0	et			Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-6 <u>2</u> 0-2000)
		s standard terms and conditi circumstances beyond the co nless previously negotiated.	Co Cu Fe Pb Mg Mn Mo Ni K Se Pb Mn Mo Ni Se Ag Ti U												`					EST	Deliverables: EDD	Reporting:Level II		Program: UST/PST		
	Received by: (Signature)	ions introl	Ag SiO2									×	TAT							_	ADaPT	Level III ST/UST		PRP Brownfields	Work Order Comments	www.xenco.com Page
	Date/Time		Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Hg								Sample Comments	lab, if received by 4:30pm	TAT starts the day receiied by the							Work Order Notes	Other:			RC uperfund	ents	Page / of /

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient					
Date/ Time Received: 09.17.2020 04.15.00 PM						
Work Order #: 672898	Temperature Measuring d	evice used: T_NM_007				
Sample Rec	eipt Checklist	Comments				
#1 *Temperature of cooler(s)?	2.6					
#2 *Shipping container in good condition?	Yes					
#3 *Samples received on ice?	Yes					
#4 *Custody Seals intact on shipping container/ cooler?	Yes					
#5 Custody Seals intact on sample bottles?	Yes					
#6*Custody Seals Signed and dated?	Yes					
#7 *Chain of Custody present?	Yes					
#8 Any missing/extra samples?	No					
#9 Chain of Custody signed when relinquished/ received?	Yes					
#10 Chain of Custody agrees with sample labels/matrix?	Yes					
#11 Container label(s) legible and intact?	Yes					
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.				
#13 Samples properly preserved?	Yes					
#14 Sample container(s) intact?	Yes					
#15 Sufficient sample amount for indicated test(s)?	Yes					
#16 All samples received within hold time?	Yes					
#17 Subcontract of sample(s)?	No					
#18 Water VOC samples have zero headspace?	N/A					

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 09.17.2020

Checklist reviewed by: Jessica Kramer
Jessica Kramer

Date: 09.21.2020

🛟 eurofins **Environment Testing**

Xenco

Project Id: 012920108 Dan Moir

Contact:

Project Location:

Certificate of Analysis Summary 672899

LT Environmental, Inc., Arvada, CO

Project Name: Ross Draw 25 North CTB

Date Received in Lab: Thu 09.17.2020 16:19 **Report Date:** 09.21.2020 11:45

Project Manager: Jessica Kramer

Analysis Requested	Lab Id:	: 672899-001		672899-0	02		
	Field Id:	CH01		CH01 /	4		
	Depth:	0.5- ft		2- ft			
	Matrix:	SOIL		SOIL			
	Sampled:	09.16.2020	12:50	09.16.2020	13:10		
BTEX by EPA 8021B	Extracted:	09.18.2020	11:44	09.18.2020	11:44		
	Analyzed:	09.18.2020	13:56	09.18.2020	14:18		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00201	0.00201	< 0.00198	0.00198		
Toluene		< 0.00201	0.00201	< 0.00198	0.00198		
Ethylbenzene		< 0.00201	0.00201	< 0.00198	0.00198		
m,p-Xylenes		< 0.00402	0.00402	< 0.00396	0.00396		
o-Xylene		< 0.00201	0.00201	< 0.00198	0.00198		
Total Xylenes			0.00201		0.00198		
Total BTEX		< 0.00201	0.00201	< 0.00198	0.00198		
Chloride by EPA 300	Extracted:	09.17.2020	17:31	09.17.2020	17:31		
	Analyzed:	d: 09.17.2020 21:58		09.17.2020	22:03		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		48.7	10.0	17.3	10.1		
TPH by SW8015 Mod	Extracted:	09.17.2020	17:20	09.17.2020	17:20		
	Analyzed:	09.18.2020	05:36	09.18.2020 05:55			
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<49.9	49.9	<49.8	49.8		
Diesel Range Organics (DRO)		<49.9	49.9	<49.8	49.8		
Motor Oil Range Hydrocarbons (MRO)		<49.9	49.9	<49.8	49.8		
Total GRO-DRO		<49.9	49.9	<49.8	49.8		
Total TPH		<49.9	49.9	<49.8	49.8		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession VRAMER

Page 1 of 14

eurofins Environment Testing Xenco

Analytical Report 672899

for

LT Environmental, Inc.

Project Manager: Dan Moir

Ross Draw 25 North CTB 012920108

09.21.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

09.21.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 672899 Ross Draw 25 North CTB Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 672899. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 672899 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession kenner

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing Xenco

Sample Cross Reference 672899

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CH01	S	09.16.2020 12:50	0.5 ft	672899-001
CH01 A	S	09.16.2020 13:10	2 ft	672899-002
Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: Ross Draw 25 North CTB

 Project ID:
 012920108

 Work Order Number(s):
 672899

 Report Date:
 09.21.2020

 Date Received:
 09.17.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Certificate of Analytical Results 672899

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Di		
Seq Number:	3137499									
Analyst:	MAB		Date Prej	p: 09.17.2020 17:31		Basis: W	Vet Weight			
Tech:	MAB					% Moisture:				
Analytical Me	ethod: Chloride by EP	A 300				Prep Method: E	300P			
Lab Sample I	d: 672899-001		Date Col	lected: 09.16.2020 12:50)	Sample Depth: 0	.5 ft			
Sample Id:	CH01		Matrix:	Soil		Date Received:09.17.2020 16:19				

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P		
Tech: DTH						% Moisture:			
Analyst: DTH		Date Prep: 09.17.2020 17:2				Basis: V	Wet Weight		
Seq Number: 3137481									
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	09.18.2020 05:3	6 U	1	
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	09.18.2020 05:3	6 U	1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	09.18.2020 05:3	6 U	1	
Total GRO-DRO	PHC628	<49.9	49.9		mg/kg	09.18.2020 05:3	6 U	1	
Total TPH	PHC635	<49.9	49.9		mg/kg	09.18.2020 05:3	6 U	1	
Surrogate		Cas Number	% Recover	y Units	Limits	Analysis Da	ite Flag		
1-Chlorooctane		111-85-3	93	%	70-135	09.18.2020 05	5:36		
o-Terphenyl		84-15-1	94	%	70-135	09.18.2020 05	5:36		

Environment Test Xenco

Certificate of Analytical Results 672899

Page 75 of 126

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id:CH01Lab Sample Id:672899-001	Matrix: Soil Date Collected: 09.16.2020 12:5	Date Received:09.17.2020 16:19 Sample Depth: 0.5 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB		Prep Method: SW5035A % Moisture:
Analyst: MAB Seq Number: 3137632	Date Prep: 09.18.2020 11:4	4 Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	09.18.2020 13:56	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	09.18.2020 13:56	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	09.18.2020 13:56	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	09.18.2020 13:56	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	09.18.2020 13:56	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	09.18.2020 13:56	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	09.18.2020 13:56	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	89	%	70-130	09.18.2020 13:56		
1,4-Difluorobenzene		540-36-3	102	%	70-130	09.18.2020 13:56		

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id: CH01 A		Matrix:	Soil		Date Received	1:09.17.20	020 16:	19
Lab Sample Id: 672899-002		Date Collected: 09.16.2020 13:10 Sample Depth: 2 ft						
Analytical Method: Chloride by EPA	A 300				Prep Method:	E300P		
Tech: MAB					% Moisture:			
Analyst: MAB		Date Prep:	09.17.2020 17:31		Basis:	Wet We	ight	
Seq Number: 3137499								
Parameter	Cas Number	Result	RL	Units	Analysis Da	ate F	lag	Dil
Chloride	16887-00-6	17.3	10.1	mg/kg	09.17.2020 22	2:03		1

Analytical Method: TPH by SW801	15 Mod					Prep Method: SV	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09	17.2020 17:20		Basis: W	et Weight	
Seq Number: 3137481								
Parameter	Cas Number	e Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	09.18.2020 05:55	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	09.18.2020 05:55	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	09.18.2020 05:55	U	1
Total GRO-DRO	PHC628	<49.8	49.8		mg/kg	09.18.2020 05:55	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	09.18.2020 05:55	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Dat	e Flag	
1-Chlorooctane		111-85-3	93	93 %		09.18.2020 05:	55	
o-Terphenyl		84-15-1	94	%	70-135	09.18.2020 05:	55	

Environment Testi Xenco

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id:CH01 ALab Sample Id:672899-002	Matrix: Soil Date Collected: 09.16.2020 13:10	Date Received:09.17.2020 16:19 Sample Depth: 2 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB Analyst: MAB	Date Prep: 09.18.2020 11:44	Prep Method: SW5035A % Moisture: 4 Basis: Wet Weight
Seq Number: 3137632	Date http:///09.10.2020 11.4	- Dusis. Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	09.18.2020 14:18	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	09.18.2020 14:18	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	09.18.2020 14:18	U	1
m,p-Xylenes	179601-23-1	< 0.00396	0.00396		mg/kg	09.18.2020 14:18	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	09.18.2020 14:18	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	09.18.2020 14:18	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	09.18.2020 14:18	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	102	%	70-130	09.18.2020 14:18		
4-Bromofluorobenzene		460-00-4	90	%	70-130	09.18.2020 14:18		

Environment Testing

🔅 eurofins

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected								
RL Reporting Limit									
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection						
PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation									
DL Method Detection Limit									
NC Non-Calculable									
SMP Client Sample		BLK	Method Blank						
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate					
MD/SDMethod Duplicate/Sample DuplicateMSMatrix SpikeMSD: Matrix Spike Duplicate									
- NELAC certification not offered for this compound.									

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Хепсо

Environment Testing

🔅 eurofins

QC Summary 672899

LT Environmental, Inc.

Ross Draw 25 North CTB

					10055	Diaw 23							
Analytical Method: Seq Number:	Chloride 3137499	by EPA 3)0		Matrix:					rep Meth Date Pr	ep: 09.1	17.2020	
MB Sample Id:	7711598-	1-BLK		LCS Sar	nple Id:	7711598-	1-BKS		LCS	D Sample	e Id: 771	1598-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		<10.0	250	256	102	256	102	90-110	0	20	mg/kg	09.17.2020 19:46	
Analytical Method: Seq Number:	3137499)0		Matrix:		21.6			rep Meth Date Pr	ep: 09.1	17.2020	
Parent Sample Id:	672834-0		6 9		-	672834-0		T		-		834-021 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		155	199	357	102	357	102	90-110	0	20	mg/kg	09.17.2020 20:03	
Analytical Method: Seq Number: MB Sample Id:	TPH by S 3137481 7711555-		od		Matrix: nple Id:	Solid 7711555-	1-BKS			rep Meth Date Pr D Sample	ep: 09.1	8015P 17.2020 1555-1-BSD	
Parameter		MB	Spike	LCS Barrelt	LCS	LCSD	LCSD	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	Result <50.0	Amount 1000	Result 834	%Rec 83	Result 822	% Rec 82	70-135	1	35	mg/kg	09.17.2020 22:53	
Diesel Range Organics	(DRO)	<50.0	1000	935	94		93	70-135	1	35	mg/kg	09.17.2020 22:53	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane o-Terphenyl		129 124			22 17		121 113			-135 -135	% %	09.17.2020 22:53 09.17.2020 22:53	
Analytical Method: Seq Number: Parameter Motor Oil Range Hydrocar	3137481	5W8015 M	od		Matrix: nple Id:	Solid 7711555-	1-BLK		P	rep Meth Date Pr		8015P 17.2020 Analysis Date 09.17.2020 22:33	Flag
Analytical Method: Seq Number: Parent Sample Id:	TPH by S 3137481 672834-0		od		Matrix: nple Id:	Soil 672834-0	09 S			rep Meth Date Pr D Sample	od: SW ep: 09.1	8015P 17.2020 834-009 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb		<49.9	998	824	83	861	86	70-135	4	35	mg/kg	09.17.2020 23:53	
Diesel Range Organics	(DRO)	<49.9	998	906	91	938	94	70-135	3	35	mg/kg	09.17.2020 23:53	
Surrogate					AS Rec	MS Flag	MSI %Re			imits	Units	Analysis Date	
1-Chlorooctane					05		104	Ļ		-135	%	09.17.2020 23:53	
o-Terphenyl				1	00		97		70	-135	%	09.17.2020 23:53	
MS/MSD Percent Recover Relative Percent Difference LCS/LCSD Recovery		[D] = 100*(C) RPD = 200* [D] = 100* (C) Log Diff = L	(C-E) / (C+E) C) / [B]	 plicate) Log	(Origina - 1	Somple	А	CS = Labora = Parent R = MS/LCS	esult	ol Sample	$B = S_1$	Matrix Spike pike Added SD/LCSD % Rec	

LCS/LCSD Recovery Log Difference

[D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

E = MSD/LCSD Result

.

Released to Imaging: 8/18/2021 3:36:59 PM

Page 11 of 14

```
Final 1.000
```

Xenco

Environment Testing

🔅 eurofins

LT Environmental, Inc.

Ross Draw 25 North CTB

Analytical Method:	BTEX by EPA 802					Р	rep Meth	od: SW	5035A			
Seq Number:	3137632]	Matrix:	Solid			Date Prep: 09.18.2020				
MB Sample Id:	7711605-1-BLK		LCS Sample Id: 7711605-1-BKS			LCSD Sample Id: 7711605-1-BS						
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.105	105	0.0937	94	70-130	11	35	mg/kg	09.18.2020 06:51	
Toluene	< 0.00200	0.100	0.102	102	0.0906	91	70-130	12	35	mg/kg	09.18.2020 06:51	
Ethylbenzene	< 0.00200	0.100	0.0940	94	0.0833	83	71-129	12	35	mg/kg	09.18.2020 06:51	
m,p-Xylenes	< 0.00400	0.200	0.189	95	0.168	84	70-135	12	35	mg/kg	09.18.2020 06:51	
o-Xylene	< 0.00200	0.100	0.0939	94	0.0835	84	71-133	12	35	mg/kg	09.18.2020 06:51	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSE %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	100		9	98		98		70	0-130	%	09.18.2020 06:51	
4-Bromofluorobenzene	88		8	38		88		70)-130	%	09.18.2020 06:51	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 8021 3137632 672834-021	IB	Matrix: Soil MS Sample Id: 672834-021 S			Prep Method: SW5035A Date Prep: 09.18.2020 MSD Sample Id: 672834-021 SD						
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.120	120	0.123	123	70-130	2	35	mg/kg	09.18.2020 07:36	
Toluene	< 0.00199	0.0996	0.114	114	0.118	118	70-130	3	35	mg/kg	09.18.2020 07:36	
Ethylbenzene	< 0.00199	0.0996	0.104	104	0.109	109	71-129	5	35	mg/kg	09.18.2020 07:36	
m,p-Xylenes	< 0.00398	0.199	0.208	105	0.218	108	70-135	5	35	mg/kg	09.18.2020 07:36	
o-Xylene	< 0.00199	0.0996	0.102	102	0.107	107	71-133	5	35	mg/kg	09.18.2020 07:36	
Surrogate				IS Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene			ç	98		100		70)-130	%	09.18.2020 07:36	
4-Bromofluorobenzene			8	39		90		70)-130	%	09.18.2020 07:36	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference $\label{eq:c-A} \begin{array}{l} [D] = 100^{*}(C\text{-}A) \ / \ B \\ RPD = 200^{*} \ | \ (C\text{-}E) \ / \ (C\text{+}E) \ | \\ [D] = 100^{*} \ (C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 12 of 14

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature R	ange: 0 - 6 degC					
Date/ Time Received: 09.17.2020 04.19.00 PM	Air and Metal samples Acc						
Work Order #: 672899	Temperature Measuring device used : T_NM-007						
Sample Recei	pt Checklist	Comments					
#1 *Temperature of cooler(s)?	2.6						
#2 *Shipping container in good condition?	Yes						
#3 *Samples received on ice?	Yes						
#4 *Custody Seals intact on shipping container/ cooler?	Yes						
#5 Custody Seals intact on sample bottles?	Yes						
#6*Custody Seals Signed and dated?	Yes						
#7 *Chain of Custody present?	Yes						
#8 Any missing/extra samples?	No						
#9 Chain of Custody signed when relinquished/ received?	Yes						
#10 Chain of Custody agrees with sample labels/matrix?	Yes						
#11 Container label(s) legible and intact?	Yes						
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.					
#13 Samples properly preserved?	Yes						
#14 Sample container(s) intact?	Yes						
#15 Sufficient sample amount for indicated test(s)?	Yes						
#16 All samples received within hold time?	Yes						
#17 Subcontract of sample(s)?	No						
#18 Water VOC samples have zero headspace?	N/A						

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 09.17.2020

Checklist reviewed by: Jessica Kramer
Jessica Kramer

Date: 09.18.2020

🔅 eurofins **Environment Testing**

Xenco

Project Id: 012920108 Dan Moir

Contact:

Project Location:

Certificate of Analysis Summary 672900

LT Environmental, Inc., Arvada, CO

Project Name: Ross Draw 25 North CTB

Date Received in Lab: Thu 09.17.2020 16:19 **Report Date:** 09.21.2020 11:46

Project Manager: Jessica Kramer

	Lab Id:	672900-0	01	672900-0	02		
Analysis Requested	Field Id:	CH02		CH02 /	A		
Analysis Requested	Depth:	0.5- ft		2- ft			
	Matrix:	SOIL		SOIL			
	Sampled:	09.16.2020	10:10	09.16.2020	10:30		
BTEX by EPA 8021B	Extracted:	09.18.2020	11:44	09.18.2020	11:44		
	Analyzed:	09.18.2020	14:41	09.18.2020	15:03		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene			0.00200	< 0.00201	0.00201		
Toluene			0.00200	< 0.00201	0.00201		
Ethylbenzene		< 0.00200	0.00200	< 0.00201	0.00201		
m,p-Xylenes		< 0.00399	0.00399	< 0.00402	0.00402		
o-Xylene		< 0.00200	0.00200	< 0.00201	0.00201		
Total Xylenes		< 0.00200	0.00200	< 0.00201	0.00201		
Total BTEX		< 0.00200	0.00200	< 0.00201	0.00201		
Chloride by EPA 300	Extracted:	09.17.2020	17:31	09.17.2020	17:31		
	Analyzed:	09.17.2020	22:09	09.17.2020	22:14		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		216	50.4	22.6	9.90		
TPH by SW8015 Mod	Extracted:	09.17.2020	17:20	09.17.2020	17:20		
	Analyzed:	09.18.2020	06:16	09.18.2020	06:36		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<49.8	49.8	<49.8	49.8		
Diesel Range Organics (DRO)		<49.8	49.8	<49.8	49.8		
Motor Oil Range Hydrocarbons (MRO)		<49.8	49.8	<49.8	49.8		
Total GRO-DRO		<49.8	49.8	<49.8	49.8		
Total TPH		<49.8	49.8	<49.8	49.8		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Page 1 of 14

eurofins Environment Testing Xenco

Analytical Report 672900

for

LT Environmental, Inc.

Project Manager: Dan Moir

Ross Draw 25 North CTB 012920108

09.21.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

eurofins Environment Testing

09.21.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 672900 Ross Draw 25 North CTB Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 672900. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 672900 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession kenner

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 3 of 14

eurofins Environment Testing Xenco

Sample Cross Reference 672900

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CH02	S	09.16.2020 10:10	0.5 ft	672900-001
CH02 A	S	09.16.2020 10:30	2 ft	672900-002

Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: Ross Draw 25 North CTB

 Project ID:
 012920108

 Work Order Number(s):
 672900

 Report Date:
 09.21.2020

 Date Received:
 09.17.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Environment Testi Xenco

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id:	Sample Id: CH02			Soil		Date Received:09.17.2020 16:19			
Lab Sample I	d: 672900-001		Date Col	lected: 09.16.2020 1	0:10	Sample Dep	Sample Depth: 0.5 ft		
Analytical Me	ethod: Chloride by EI	PA 300				Prep Methoo	1: E30	0P	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Pre	p: 09.17.2020 1	7:31	Basis:	Wet	Weight	
Seq Number:	3137499								
Parameter		Cas Number	Result	RL	Units	Analysis	Date	Flag	Dil
Chloride		16887-00-6	216	50.4	mg/kg	09.17.2020	22:09		5

Analytical Method: TPH by SW80	15 Mod					Prep Method: S	SW8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09.	17.2020 17:20		Basis: W	Wet Weight	
Seq Number: 3137481								
Parameter	Cas Number	Result	RL		Units	Analysis Date	e Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	09.18.2020 06:1	6 U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	09.18.2020 06:1	6 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	09.18.2020 06:1	6 U	1
Total GRO-DRO	PHC628	<49.8	49.8		mg/kg	09.18.2020 06:1	6 U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	09.18.2020 06:1	6 U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Da	ate Flag	
1-Chlorooctane		111-85-3	92	%	70-135	09.18.2020 06	5:16	
o-Terphenyl		84-15-1	93	%	70-135	09.18.2020 06	5:16	

Environment Testing Xenco

Certificate of Analytical Results 672900

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id:CH02Lab Sample Id:672900-001	Matrix: Soil Date Collected: 09.16.2020 10:10	Date Received:09.17.2020 16:19 Sample Depth: 0.5 ft
Analytical Method:BTEX by EPATech:MABAnalyst:MABSeq Number:3137632	8021B Date Prep: 09.18.2020 11:44	Prep Method: SW5035A % Moisture: Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.18.2020 14:41	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.18.2020 14:41	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.18.2020 14:41	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	09.18.2020 14:41	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.18.2020 14:41	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.18.2020 14:41	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.18.2020 14:41	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	94	%	70-130	09.18.2020 14:41		
1,4-Difluorobenzene		540-36-3	102	%	70-130	09.18.2020 14:41		

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Chloride		16887-00-6	22.6	9.90	mg/kg	09.17.2020 22	2:14	1	
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil	
Seq Number:	3137499								
Analyst:	MAB		Date Pre	p: 09.17.202	20 17:31	Basis:	Wet Weight		
Tech:	MAB					% Moisture:			
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P		
Lab Sample Id	d: 672900-002		Date Col	lected: 09.16.202	20 10:30	Sample Depth	Sample Depth: 2 ft		
Sample Id:	CH02 A		Matrix:	Soil		Date Received	5:19		

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09.	17.2020 17:20		Basis: V	Vet Weight	
Seq Number: 3137481								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	09.18.2020 06:3	6 U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	09.18.2020 06:3	6 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	09.18.2020 06:3	6 U	1
Total GRO-DRO	PHC628	<49.8	49.8		mg/kg	09.18.2020 06:3	6 U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	09.18.2020 06:3	6 U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Da	ite Flag	
1-Chlorooctane		111-85-3	90	%	70-135	09.18.2020 06	5:36	
o-Terphenyl		84-15-1	89	%	70-135	09.18.2020 06	5:36	

Environment Testi Xenco

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id:CH02 ALab Sample Id:672900-002	Matrix:	Soil	Date Recei	ved:09.17.2020 16:19
	Date Collect	ed: 09.16.2020 10:30	Sample De	pth: 2 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3137632	Date Prep:	09.18.2020 11:44	Prep Metho % Moisturo Basis:	od: SW5035A e: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	09.18.2020 15:03	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	09.18.2020 15:03	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	09.18.2020 15:03	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	09.18.2020 15:03	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	09.18.2020 15:03	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	09.18.2020 15:03	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	09.18.2020 15:03	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	94	%	70-130	09.18.2020 15:03		
1,4-Difluorobenzene		540-36-3	103	%	70-130	09.18.2020 15:03		

Environment Testing

🔅 eurofins

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected			
RL Reporting Limit				
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection	
PQL Practical Quantitation Limit	MQL Method Qu	antitation Limit	LOQ Limit of Quantitatio	n
DL Method Detection Limit				
NC Non-Calculable				
SMP Client Sample		BLK	Method Blank	
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD Method Duplicate/Sam	ple Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NELAC certification not offered	l for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Хепсо

Environment Testing

🔅 eurofins

QC Summary 672900

LT Environmental, Inc.

Ross Draw 25 North CTB

					10055	Diaw 25							
Analytical Method: Seq Number:	3137499	-	00		Matrix:					rep Meth Date Pr	ep: 09.1	17.2020	
MB Sample Id:	7711598-1	-BLK			nple Id:	7711598-	I-BKS			-	e Id: 771	1598-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		<10.0	250	256	102		102	90-110	0	20	mg/kg	09.17.2020 19:46	
Analytical Method: Seq Number: Parent Sample Id:	Chloride 1 3137499 672834-02	-	00		Matrix: nple Id:	Soil 672834-02	21 S			rep Meth Date Pr D Sample	ep: 09.1	00P 17.2020 834-021 SD	
-		Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	Flag
Parameter		Result	Amount	Result	%Rec	Result	%Rec			Limit		Date	riag
Chloride		155	199	357	102	357	102	90-110	0	20	mg/kg	09.17.2020 20:03	
Analytical Method: Seq Number: MB Sample Id:	TPH by S 3137481 7711555-1		od		Matrix: nple Id:	Solid 7711555-	1-BKS			rep Meth Date Pr D Sample	ep: 09.1	8015P 17.2020 1555-1-BSD	
Parameter		MB	Spike	LCS Barrelt	LCS	LCSD	LCSD	Limits	%RPD	RPD	Units	Analysis	Flag
Gasoline Range Hydrocarb	ons (GRO)	Result <50.0	Amount 1000	Result 834	%Rec 83	Result 822	%Rec 82	70-135	1	Limit 35	mg/kg	Date 09.17.2020 22:53	
Diesel Range Organics		<50.0	1000	935	94		93	70-135	1	35	mg/kg	09.17.2020 22:53	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane o-Terphenyl		129 124			22 17		121 113			-135 -135	% %	09.17.2020 22:53 09.17.2020 22:53	
Analytical Method: Seq Number: Parameter	3137481	W8015 M	od	MB Sar MB Result	Matrix: nple Id:	Solid 7711555-	1-BLK		Pı	rep Meth Date Pr	ep: 09.1 Units	8015P 17.2020 Analysis Date	Flag
Motor Oil Range Hydrocar	bons (MRO)			<50.0							mg/kg	09.17.2020 22:33	
Analytical Method: Seq Number: Parent Sample Id:	TPH by S 3137481 672834-00		od		Matrix:	Soil 672834-00	09 S			rep Meth Date Pr D Sampl	ep: 09.1	8015P 17.2020 834-009 SD	
Parameter	072034-00	Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	Flag
Gasoline Range Hydrocarb	ons (GRO)	Result <49.9	Amount 998	Result 824	%Rec 83	Result 861	%Rec 86	70-135	4	Limit 35	mg/kg	Date 09.17.2020 23:53	
Diesel Range Organics		<49.9	998	906	91		94	70-135	3	35	mg/kg	09.17.2020 23:53	
Surrogate					/IS Rec	MS Flag	MSE %Re			imits	Units	Analysis Date	
1-Chlorooctane					05		104			-135	%	09.17.2020 23:53	
o-Terphenyl				1	00		97		70	-135	%	09.17.2020 23:53	
MS/MSD Percent Recover Relative Percent Differenc LCS/LCSD Recovery	e I	[D] = 100*(C) $RPD = 200* [D] = 100*((C))$ $[D] = 100*((C))$	(C-E) / (C+E) C) / [B]	 pliasta) Log	Original	Samula	А	CS = Labora = Parent R = MS/LCS	esult	ol Sample	$B = S_1$	Matrix Spike pike Added SD/LCSD % Rec	

LCS/LCSD Recovery Log Difference

[D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

E = MSD/LCSD Result

.

Released to Imaging: 8/18/2021 3:36:59 PM

Page 11 of 14

```
Final 1.000
```

Xenco

Environment Testing

🔅 eurofins

QC Summary 672900

LT Environmental, Inc.

Ross Draw 25 North CTB

Analytical Method:	BTEX by EPA 8021	lB						Р	rep Metho	od: SW	5035A	
Seq Number:	3137632]	Matrix:	Solid				Date Pr	ep: 09.1	18.2020	
MB Sample Id:	7711605-1-BLK		LCS San	nple Id:	7711605-	1-BKS		LCS	D Sample	e Id: 771	1605-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.105	105	0.0937	94	70-130	11	35	mg/kg	09.18.2020 06:51	
Toluene	< 0.00200	0.100	0.102	102	0.0906	91	70-130	12	35	mg/kg	09.18.2020 06:51	
Ethylbenzene	< 0.00200	0.100	0.0940	94	0.0833	83	71-129	12	35	mg/kg	09.18.2020 06:51	
m,p-Xylenes	< 0.00400	0.200	0.189	95	0.168	84	70-135	12	35	mg/kg	09.18.2020 06:51	
o-Xylene	< 0.00200	0.100	0.0939	94	0.0835	84	71-133	12	35	mg/kg	09.18.2020 06:51	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	100		9	98		98		70	-130	%	09.18.2020 06:51	
4-Bromofluorobenzene	88		8	38		88		70	-130	%	09.18.2020 06:51	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 8021 3137632 672834-021	IB		Matrix: nple Id:		21 S			rep Metho Date Pro D Sample	ep: 09.1	5035A 18.2020 834-021 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.120	120	0.123	123	70-130	2	35	mg/kg	09.18.2020 07:36	
Toluene	< 0.00199	0.0996	0.114	114	0.118	118	70-130	3	35	mg/kg	09.18.2020 07:36	
Ethylbenzene	< 0.00199	0.0996	0.104	104	0.109	109	71-129	5	35	mg/kg	09.18.2020 07:36	
m,p-Xylenes	< 0.00398	0.199	0.208	105	0.218	108	70-135	5	35	mg/kg	09.18.2020 07:36	
o-Xylene	< 0.00199	0.0996	0.102	102	0.107	107	71-133	5	35	mg/kg	09.18.2020 07:36	
Surrogate				IS Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene			ç	98		100		70)-130	%	09.18.2020 07:36	
4-Bromofluorobenzene			8	39		90		70)-130	%	09.18.2020 07:36	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 12 of 14

eived by (Relinquished by: (Signature)	Service: Signature of this docum service. Xenco will be liable Xenco. A minimum charge o	Circle Method(s) ar	11	25 A						C	0	Sample Identification	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	Temperature (°C):	SAMPLE RECEIPT	vampiers name: Be		<u>a</u>		Project Name: Ro	Phone: 43	City, State ZIP: M	Address: 33	/ Name:	Project Manager:		ge 95 oj
Cloy (1/4 Hon	Λ.	gnature) F	rent and relinquishment of sa only for the cost of samples f \$75.00 will be applied to eac	Iotal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed								CHOZA S	CHOZ S	Matrix	Yes We NA	P	ds N	9.812.6	Temp Blank	Benjamin Belill	871 h7 6 020 7 w/1 A	12 m 2 m 1 m 1 m	11035 DIAW 20 INDIUL OID	nee Draw 25 North OT	432.236.3849	Midland, TX 79705	3300 North A Street	LT Environmental, Inc.,	Dan Moir		
44m 9.1720 1619		Received by: (Signature)	gipature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcon . Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms	8RCRA 13PPM rzed TCLP / SPLP 6								1 1030	6/16/20 10 10	Date Time Sampled Sampled	Total Containers:	Correction Factor:	1-10M-00	Thermometer ID	Cyck No Wet Ice: Yes	Due Date:	ð Nusil.				Email			Permian office		Hobbs,NM (575-39	Houst
619 9/1		e)	chase order from client ponsibility for any losse for each sample submitt	RCRA 13PPM Texas 11 AI TCLP / SPLP 6010: 8RCRA			000	Re l				2' 1	0.5' 1	Depth	er of	0.0			No	Date:	· S day	ine M	I urn Around		Email: bbelill@ltenv.com	City, State ZIP:	Address:	Company Name:	Bill to: (if different)	2-7550) Phoenix,AZ (on,TX (281) 240-4200 ind,TX (432-704-5440)
7/202/6/5 2	Dator I III IC	Date/Time	company to Xenco, its a rs or expenses incurred ted to Xenco, but not an	Sb As Ba Be B Sb As Ba Be Cd				orano	11	,			× × ×	TPH (E BTEX (I Chlorid	EPA	0=80)								Carlsbad, NM 88220	3104 E Green Street	XTO Energy	Kyle Littrell	480-355-0900) Atlanta	Chidili OI CUStOQY Dallas,TX (214) 902-0300 San Antonio,T EL Paso,TX (915)585-3443 Lubbock,T
0 4 0	iveninduisited by. (orginature)	Relinguished by: (Signatur	ance: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the contro Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo I Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U																			ANALYSIS REQUEST			220	reet			Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296
	e) Received by: (Signature)		tractors. It assigns standard terms and conditions losses are due to circumstances beyond the control will be enforced unless previously negotiated.	0																			EST		Deliverables: EDD	Reporting:Level II Revel III PST/UST		Program: UST/PST PRP			Work (
	Signature)			SiO2 Na Sr TI Sn U V 1631/245.1/7470										Samp	lab, if n	TAT							Wor					PRP Brownfields RC	š	www.xenco.com Page	Work Order No: <u>Utdq00</u>
	Date/Time	7 - -		Na Sr TI Sn U V Zn 1631/245.1/7470 /7471 : Hg										Sample Comments	lab, if received by 4:30pm								Work Order Notes	Curci.						/ of /	0067.4

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature F	Range: 0 - 6 degC					
Date/ Time Received: 09.17.2020 04.19.00 PM	Air and Metal samples Acc	ceptable Range: Ambient					
Work Order #: 672900	Temperature Measuring device used : T_NM_007						
Sample Rece	ipt Checklist	Comments					
#1 *Temperature of cooler(s)?	2.6						
#2 *Shipping container in good condition?	Yes						
#3 *Samples received on ice?	Yes						
#4 *Custody Seals intact on shipping container/ cooler?	Yes						
#5 Custody Seals intact on sample bottles?	Yes						
#6*Custody Seals Signed and dated?	Yes						
#7 *Chain of Custody present?	Yes						
#8 Any missing/extra samples?	No						
#9 Chain of Custody signed when relinquished/ received?	Yes						
#10 Chain of Custody agrees with sample labels/matrix?	Yes						
#11 Container label(s) legible and intact?	Yes						
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.					
#13 Samples properly preserved?	Yes						
#14 Sample container(s) intact?	Yes						
#15 Sufficient sample amount for indicated test(s)?	Yes						
#16 All samples received within hold time?	Yes						
#17 Subcontract of sample(s)?	No						
#18 Water VOC samples have zero headspace?	N/A						

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 09.17.2020

Checklist reviewed by: Jessica Kramer

Date: 09.18.2020

🛟 eurofins **Environment Testing**

Xenco

Project Id: 012920108 Dan Moir

Contact:

Project Location:

Certificate of Analysis Summary 672901

LT Environmental, Inc., Arvada, CO

Project Name: Ross Draw 25 North CTB

Date Received in Lab: Thu 09.17.2020 16:19 **Report Date:** 09.21.2020 12:17

Project Manager: Jessica Kramer

	Lab Id:	672901-00	01	672901-0	02		
Analysis Requested	Field Id:	CH03		CH03 A	4		
Analysis Requested	Depth:	0.5- ft		2- ft			
	Matrix:	SOIL		SOIL			
	Sampled:	09.16.2020	11:07	09.16.2020	11:20		
BTEX by EPA 8021B	Extracted:	09.18.2020	11:44	09.18.2020	11:44		
	Analyzed:	09.18.2020	15:26	09.18.2020	15:48		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene			0.00200		0.00200		
Toluene		< 0.00200	0.00200	< 0.00200	0.00200		
Ethylbenzene		< 0.00200	0.00200	< 0.00200	0.00200		
m,p-Xylenes		< 0.00400	0.00400		0.00399		
o-Xylene		< 0.00200	0.00200	< 0.00200	0.00200		
Total Xylenes		< 0.00200	0.00200	< 0.00200	0.00200		
Total BTEX		< 0.00200	0.00200	< 0.00200	0.00200		
Chloride by EPA 300	Extracted:	09.17.2020	17:31	09.17.2020	17:31		
	Analyzed:	09.17.2020 2	22:20	09.17.2020	22:25		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		300	50.4	145	49.9		
TPH by SW8015 Mod	Extracted:	09.17.2020	17:20	09.18.2020	10:30		
	Analyzed:	09.18.2020 ()6:56	09.18.2020	13:15		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<49.8	49.8	<50.0	50.0		
Diesel Range Organics (DRO)		<49.8	49.8	<50.0	50.0		
Motor Oil Range Hydrocarbons (MRO)		<49.8	49.8	<50.0	50.0		
Total GRO-DRO		<49.8	49.8	<50.0	50.0		
Total TPH		<49.8	49.8	<50.0	50.0		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession VRAMER

Page 1 of 15

eurofins Environment Testing Xenco

Analytical Report 672901

for

LT Environmental, Inc.

Project Manager: Dan Moir

Ross Draw 25 North CTB 012920108

09.21.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

eurofins Environment Testing

09.21.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 672901 Ross Draw 25 North CTB Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 672901. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 672901 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession kenner

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing Xenco

Sample Cross Reference 672901

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CH03	S	09.16.2020 11:07	0.5 ft	672901-001
CH03 A	S	09.16.2020 11:20	2 ft	672901-002

Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: Ross Draw 25 North CTB

 Project ID:
 012920108

 Work Order Number(s):
 672901

 Report Date:
 09.21.2020

 Date Received:
 09.17.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Certificate of Analytical Results 672901

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id: Lab Sample Id	CH03 d: 672901-001		Matrix: Date Co	Soil llected: 09.16.2020 11:0'	7	Date Received:09.1 Sample Depth: 0.5		5:19
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EF MAB MAB 3137499	PA 300	Date Pre	p: 09.17.2020 17:3	1	Prep Method: E30 % Moisture: Basis: Wet	0P : Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	300	50.4	mg/kg	09.17.2020 22:20		5

Analytical Method:TPH by SW801Tech:DTHAnalyst:DTHSeq Number:3137481	5 Mod	Date P	rep: 09.	17.2020 17:20		Prep Method: SV % Moisture: Basis: W	V8015P et Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	09.18.2020 06:56	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	09.18.2020 06:56	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	09.18.2020 06:56	U	1
Total GRO-DRO	PHC628	<49.8	49.8		mg/kg	09.18.2020 06:56	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	09.18.2020 06:56	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Dat	e Flag	
1-Chlorooctane		111-85-3	94	%	70-135	09.18.2020 06::	56	
o-Terphenyl		84-15-1	95	%	70-135	09.18.2020 06::	56	

eurofins Environment Testing Xenco

Certificate of Analytical Results 672901

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id:CH03Lab Sample Id:672901-001	Matrix: Date Collecte	Soil ed: 09.16.2020 11:07	Date Receive Sample Dept	d:09.17.2020 16:19 h: 0.5 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB			Prep Method: % Moisture:	: SW5035A
Analyst: MAB Seq Number: 3137632	Date Prep:	09.18.2020 11:44	Basis:	Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.18.2020 15:26	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.18.2020 15:26	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.18.2020 15:26	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	09.18.2020 15:26	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.18.2020 15:26	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.18.2020 15:26	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.18.2020 15:26	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	95	%	70-130	09.18.2020 15:26		
1,4-Difluorobenzene		540-36-3	103	%	70-130	09.18.2020 15:26		

Environment Testi Xenco

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id: Lab Sample Id	CH03 A d: 672901-002	Matrix: Date Col	Soil lected: 09.16.20	020 11:20	Date Received:09.17.2020 16:19 Sample Depth: 2 ft			
Analytical Me Tech:	thod: Chloride by EPA MAB	. 300				Prep Method: % Moisture:	E300P	
Analyst: Seq Number:	MAB 3137499		Date Pre	p: 09.17.20	020 17:31	Basis:	Wet Weight	
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil
Chloride		16887-00-6	145	49.9	mg/kg	09.17.2020 22	2:25	5

Analytical Method: TPH by SW802	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09.	18.2020 10:30		Basis: W	Vet Weight	
Seq Number: 3137547								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	09.18.2020 13:1:	5 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	09.18.2020 13:1:	5 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	09.18.2020 13:1:	5 U	1
Total GRO-DRO	PHC628	<50.0	50.0		mg/kg	09.18.2020 13:1:	5 U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	09.18.2020 13:1:	5 U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	90	%	70-135	09.18.2020 13	:15	
o-Terphenyl		84-15-1	90	%	70-135	09.18.2020 13	:15	

Environment Testing Xenco

Certificate of Analytical Results 672901

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id:CH03 ALab Sample Id:672901-002	Matrix:	Soil	Date Received:09.17.2020 16:19			
	Date Collecte	ed: 09.16.2020 11:20	Sample Depth: 2 ft			
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3137632	Date Prep:	09.18.2020 11:44	Prep Method % Moisture: Basis:	l: SW5035A Wet Weight		

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.18.2020 15:48	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.18.2020 15:48	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.18.2020 15:48	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	09.18.2020 15:48	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.18.2020 15:48	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.18.2020 15:48	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.18.2020 15:48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	88	%	70-130	09.18.2020 15:48		
1,4-Difluorobenzene		540-36-3	98	%	70-130	09.18.2020 15:48		

Environment Testing

🔅 eurofins

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected							
RL Reporting Limit								
MDL Method Detection Limit	SDL Sample De	tection Limit	ction Limit LOD Limit of Detection					
PQL Practical Quantitation Limit	MQL Method Qu	antitation Limit	LOQ Limit of Quantitatio	n				
DL Method Detection Limit								
NC Non-Calculable								
SMP Client Sample		BLK	Method Blank					
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate				
MD/SD Method Duplicate/Sam	ple Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate				
+ NELAC certification not offered	l for this compound.							

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Xenco

Environment Testing

🔅 eurofins

QC Summary 672901

LT Environmental, Inc.

Ross Draw 25 North CTB

Analytical Method: Seq Number: MB Sample Id:	Chloride by EPA 3 3137499 7711598-1-BLK	00	LCS Sar	Matrix: nple Id:	Solid 7711598-1	I-BKS			ep Metho Date Pro D Sample	ep: 09.1	0P 7.2020 1598-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<10.0	250	256	102	256	102	90-110	0	20	mg/kg	09.17.2020 19:46	
Analytical Method:	Chloride by EPA 3	00						Pı	ep Metho	od: E30	0P	
Seq Number:	3137499			Matrix:	Soil				Date Pre	ep: 09.1	7.2020	
Parent Sample Id:	672834-021		MS Sar	nple Id:	672834-02	21 S		MS	D Sample	Id: 672	834-021 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	155	199	357	102	357	102	90-110	0	20	mg/kg	09.17.2020 20:03	
Analytical Method: Seq Number:	TPH by SW8015 M 3137481	lod		Matrix:	Solid			Pı	ep Metho Date Pre		8015P 7.2020	
MB Sample Id:	7711555-1-BLK		LCS Sar	nple Id:	7711555-	I-BKS		LCS	D Sample		1555-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag

Gasoline Range Hydrocarbons (GRO)	<50.0	1000	834	83	822	82 7	70-135	1	35	mg/kg	09.17.2020 22:53
Diesel Range Organics (DRO)	<50.0	1000	935	94	925	93 7	70-135	1	35	mg/kg	09.17.2020 22:53
Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag		LCSD %Rec	LCSD Flag	L	imits	Units	Analysis Date
1-Chlorooctane	129		122			121		70	-135	%	09.17.2020 22:53
o-Terphenyl	124		117			113		70	-135	%	09.17.2020 22:53

Analytical Method: Seq Number: MB Sample Id:	TPH by S 3137547 7711587-1	od	Matrix: Solid LCS Sample Id: 7711587-1-BKS					Prep Method: SW8015P Date Prep: 09.18.2020 LCSD Sample Id: 7711587-1-BSD					
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	oons (GRO)	<50.0	1000	832	83	800	80	70-135	4	35	mg/kg	09.18.2020 10:13	
Diesel Range Organics	(DRO)	<50.0	1000	909	91	812	81	70-135	11	35	mg/kg	09.18.2020 10:13	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane		135		1	11		92		70	-135	%	09.18.2020 10:13	
o-Terphenyl		135		1	03		78		70	-135	%	09.18.2020 10:13	

Analytical Method: Seq Number:	TPH by SW8015 Mod 3137481	Matrix: MB Sample Id:	Solid 7711555-1-BLK	Prep Method: Date Prep		8015P 17.2020	
Parameter		MB Result			Units	Analysis Date	Flag
Motor Oil Range Hydrocarb	ons (MRO)	<50.0			mg/kg	09.17.2020 22:33	
MS/MSD Percent Recover		E)		LCS = Laboratory Control Sample		Matrix Spike	

Relative Percent Difference LCS/LCSD Recovery Log Difference $\begin{array}{l} \text{[D]} = 100^{\circ}(\text{Cal})/\text{B} \\ \text{[PD]} = 200^{\circ} | (\text{C-E}) / (\text{C+E}) | \\ \text{[D]} = 100^{\circ}(\text{C}) / [\text{B}] \\ \text{Log Diff.} = \text{Log(Sample Duplicate)} - \text{Log(Original Sample)} \end{array}$

A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix SpikeB = Spike Added D = MSD/LCSD % Rec

.

Released to Imaging: 8/18/2021 3:36:59 PM

Page 11 of 15

Xenco

🔅 eurofins

QC Summary 672901

Flag

Prep Method: SW8015P

Units

mg/kg

09.18.2020

Analysis

Date 09.18.2020 09:53

LT Environmental, Inc.

Ross Draw 25 North CTB

Analytical Method: TPH by SW8015 Mod

Environment Testing

Seq Number:	3137547	Matrix:	Solid	Date Prep:
		MB Sample Id:	7711587-1-BLK	
Parameter		MB Result		U
Motor Oil Range Hydrocar	bons (MRO)	<50.0		m

Analytical Method:TPH bySeq Number:313748Parent Sample Id:672834-		Matrix MS Sample Id	: Soil : 672834-009 S		Prep Methoe Date Prej MSD Sample	p: 09.1	8015P 17.2020 834-009 SD	
Parameter	Parent Spike Result Amount				%RPD RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbons (GRO)	<49.9 99	8 824 83	3 861 8	6 70-135	4 35	mg/kg	09.17.2020 23:53	
Diesel Range Organics (DRO)	<49.9 999	3 906 93	1 938 9	4 70-135	3 35	mg/kg	09.17.2020 23:53	
Surrogate		MS %Rec		SD MSD Rec Flag	Limits	Units	Analysis Date	
1-Chlorooctane		105	1	04	70-135	%	09.17.2020 23:53	
o-Terphenyl		100	9	97	70-135	%	09.17.2020 23:53	

Analytical Method:	TPH by S	od						P	rep Meth	od: SW	8015P		
Seq Number:	3137547				Matrix:	Soil				Date Pr	ep: 09.1	18.2020	
Parent Sample Id:	672935-00	1		MS Sar	nple Id:	672935-00	01 S		MS	D Sample	e Id: 672	935-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<50.3	1010	834	83	767	77	70-135	8	35	mg/kg	09.18.2020 11:14	
Diesel Range Organics	(DRO)	< 50.3	1010	907	90	838	84	70-135	8	35	mg/kg	09.18.2020 11:14	
Surrogate					1S Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date	
1-Chlorooctane				1	13		105		70	-135	%	09.18.2020 11:14	
o-Terphenyl				1	04		97		70	-135	%	09.18.2020 11:14	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3137632 7711605-1-BLK	В		Matrix: nple Id:	Solid 7711605-1-BKS			Prep Method: SW5035A Date Prep: 09.18.2020 LCSD Sample Id: 7711605-1-BSD				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.105	105	0.0937	94	70-130	11	35	mg/kg	09.18.2020 06:51	
Toluene	< 0.00200	0.100	0.102	102	0.0906	91	70-130	12	35	mg/kg	09.18.2020 06:51	
Ethylbenzene	< 0.00200	0.100	0.0940	94	0.0833	83	71-129	12	35	mg/kg	09.18.2020 06:51	
m,p-Xylenes	< 0.00400	0.200	0.189	95	0.168	84	70-135	12	35	mg/kg	09.18.2020 06:51	
o-Xylene	< 0.00200	0.100	0.0939	94	0.0835	84	71-133	12	35	mg/kg	09.18.2020 06:51	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			Limits		Analysis Date	
1,4-Difluorobenzene	100		ç	98		98		70	-130	%	09.18.2020 06:51	
4-Bromofluorobenzene	88		٤	38		88		70	-130	%	09.18.2020 06:51	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / B LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

.

Page 12 of 15
Хепсо

🔅 eurofins

QC Summary 672901

Prep Method: SW5035A

LT Environmental, Inc.

Ross Draw 25 North CTB

Environment Testing

Seq Number:	3137632]	Matrix:	Soil				Date Pr	ep: 09.1	18.2020	
Parent Sample Id:	672834-021		MS San	nple Id:	672834-02	21 S		MS	D Sample	e Id: 672	834-021 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.120	120	0.123	123	70-130	2	35	mg/kg	09.18.2020 07:36	
Toluene	< 0.00199	0.0996	0.114	114	0.118	118	70-130	3	35	mg/kg	09.18.2020 07:36	
Ethylbenzene	< 0.00199	0.0996	0.104	104	0.109	109	71-129	5	35	mg/kg	09.18.2020 07:36	
m,p-Xylenes	< 0.00398	0.199	0.208	105	0.218	108	70-135	5	35	mg/kg	09.18.2020 07:36	
o-Xylene	< 0.00199	0.0996	0.102	102	0.107	107	71-133	5	35	mg/kg	09.18.2020 07:36	
Surrogate				IS Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene			9	98		100)	70	-130	%	09.18.2020 07:36	
4-Bromofluorobenzene	•		8	39		90		70	-130	%	09.18.2020 07:36	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference $\label{eq:c-A} \begin{array}{l} [D] = 100^{*}(C\text{-}A) \ / \ B \\ RPD = 200^{*} \ | \ (C\text{-}E) \ / \ (C\text{+}E) \ | \\ [D] = 100^{*} \ (C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

AMALYSIS REC 3104 E Green Street Carisbad, NM 88220 ANALYSIS REC ANALYSIS REC ANA	Instant, A Rev. (Net State 2007) Annu Col, Cric 444-8000 Yamp, F. (13-8-300) Work Other Comments In office Chargeny King THE Congents THE Congents Work Other Comments In office Chargeny King THE Congents THE Congents Program: USTPS Program: US	1619 9/1	Relin	1 2 4 40	Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: 8RCRA Sb		A CALL			(1) ,2 0211 A S #5 aH)	S 1/16/0 1101 0.5' 1	n Matrix Date Time Depth E	N/A Total Containers: Q	Yes No N/A Correction Factor: - 0.2 0	E00-WN-1 ON SA): 2-8/2.6 Thermometer ID	SAMPLE RECEIPT Temp Blank: Yes No Wet Ice: Yes No	Sampler's Name: Benjamin Belill Due Date:	(12) Rush: 3	Ro	Project Name: Ross Draw 25 North CTB Turn Around	432.236.3849 Email: bbelill@ltenv.com	ate ZIP: Midland, TX 79705 City, State ZIP:	3300 North A Street Address:	y Nairrie: LI Environmental, Inc., Permian office Company Name:	Company Name	Project Manager: Dan Moir	Widiand, 1X (432-704-5440) EL Hobbs,NM (575-392-7550) Phoenix AZ (480.
	Work Order C. Work Order C. n: UST/PST PRP Brownfill of Project: Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" of Project: Image: Colspan="2">Colspan="2">Colspan="2" g:Level II Image: Colspan="2">Colspan="2" bles: EDD Image: ADaPT Image: Add Conditions Image: Add Colspan="2">Image: Colspan="2" Incompare: Add Conditions Image: Add Colspan="2">Image: Colspan="2" Incompare: Add Conditions Image: Add Colspan="2" Incompare: Add Conditions Image: Add Colspan="2">Image: Colspan="2" Incompare: Add Conditions Image: Add Colspan="2">Image: Colspan="2" Incompare: Add Conditions Image: Add Colspan="2">Image: Add Colspan="2" Incompare: Add Conditions Image: Add Colspan="2">Image: Add Colspan="2" Incompare: Add Conditions Image: Add Colspan="2">Image: Add Colspan="2" Incompare: Add Conditions Image: Add Colspan="2" Incompa	6 FS N	Date/Time Relinquished by: (Signa	nt company to Xenco, its affiliates and subcontractors. It assi sses or expenses incurred by the client if such losses are due nitted to Xenco, but not analyzed. These terms will be enforce	o Cu Fe b Mn Mc		1			××	×	TPH (E	PA 80)15))=80	21)	hers							Carlsbad, NM 88220	3104 E Green Street	e: XTO Energy			Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 575-392-7550) Phoenix AZ (480-355-0600) Atlanta CA (770 440 8600) Tomor T

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature R	ange: 0 - 6 degC
Date/ Time Received: 09.17.2020 04.19.00 PM	Air and Metal samples Acc	
Work Order #: 672901	Temperature Measuring de	evice used : T_NM_007
Sample Re	ceipt Checklist	Comments
#1 *Temperature of cooler(s)?	2.6	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6*Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	No	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 09.17.2020

Checklist reviewed by: Jessica Kramer
Jessica Kramer

Date: 09.21.2020

🛟 eurofins **Environment Testing**

Xenco

Project Id: 012920108 Dan Moir

Contact:

Project Location:

Certificate of Analysis Summary 672902

LT Environmental, Inc., Arvada, CO

Project Name: Ross Draw 25 North CTB

Date Received in Lab: Thu 09.17.2020 16:19 Report Date: 09.21.2020 11:56

Project Manager: Jessica Kramer

	Lab Id:	672902-0	01	672902-0	02		
Analysis Requested	Field Id:	CH04		CH04 A	A		
Anulysis Requested	Depth:	0.5- ft		2- ft			
	Matrix:	SOIL		SOIL			
	Sampled:	09.16.2020	13:45	09.16.2020	14:30		
BTEX by EPA 8021B	Extracted:	09.18.2020	11:44	09.18.2020	11:44		
	Analyzed:	09.18.2020	16:11	09.18.2020	16:33		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene			0.00200		0.00201		
Toluene		< 0.00200	0.00200		0.00201		
Ethylbenzene		< 0.00200	0.00200	< 0.00201	0.00201		
m,p-Xylenes		< 0.00401	0.00401	< 0.00402	0.00402		
o-Xylene		< 0.00200	0.00200	< 0.00201	0.00201		
Total Xylenes		< 0.00200			0.00201		
Total BTEX		<0.00200 0.00200		< 0.00201	0.00201		
Chloride by EPA 300	Extracted:	09.18.2020	09.18.2020 09:36		09:36		
	Analyzed:	09.18.2020	11:34	09.18.2020	11:40		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		273	47.2	78.1	9.96		
TPH by SW8015 Mod	Extracted:	09.18.2020	10:30	09.18.2020	10:30		
	Analyzed:	09.18.2020	13:35	09.18.2020	13:55		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<50.2	50.2	<50.0	50.0		
Diesel Range Organics (DRO)		<50.2	50.2	<50.0	50.0		
Motor Oil Range Hydrocarbons (MRO)		<50.2	50.2	<50.0	50.0		
Total GRO-DRO		<50.2	50.2	<50.0	50.0		
Total TPH		<50.2	50.2	<50.0	50.0		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession VRAMER

Page 1 of 14

eurofins Environment Testing Xenco

Analytical Report 672902

for

LT Environmental, Inc.

Project Manager: Dan Moir

Ross Draw 25 North CTB 012920108

09.21.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

09.21.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 672902 Ross Draw 25 North CTB Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 672902. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 672902 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession kenner

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing Xenco

Sample Cross Reference 672902

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CH04	S	09.16.2020 13:45	0.5 ft	672902-001
CH04 A	S	09.16.2020 14:30	2 ft	672902-002

Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: Ross Draw 25 North CTB

 Project ID:
 012920108

 Work Order Number(s):
 672902

 Report Date:
 09.21.2020

 Date Received:
 09.17.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Xenco

Certificate of Analytical Results 672902

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id: Lab Sample I	CH04 d: 672902-001		Matrix: Date Coll	Soil ected: 09.16.2020 13:45	i	Date Received Sample Depth			19
Analytical Me Tech:	ethod: Chloride by EPA MAB	. 300				Prep Method: % Moisture:	E300]	Р	
Analyst:	MAB		Date Prep	o: 09.18.2020 09:36	ō	Basis:	Wet V	Weight	
Seq Number:	3137505								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil
Chloride		16887-00-6	273	47.2	mg/kg	09.18.2020 11	1:34		5

Analytical Method: TPH by SW80	15 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09.	18.2020 10:30		Basis: W	/et Weight	
Seq Number: 3137547								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.2	50.2		mg/kg	09.18.2020 13:3	5 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.2	50.2		mg/kg	09.18.2020 13:3	5 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.2	50.2		mg/kg	09.18.2020 13:3	5 U	1
Total GRO-DRO	PHC628	<50.2	50.2		mg/kg	09.18.2020 13:3	5 U	1
Total TPH	PHC635	<50.2	50.2		mg/kg	09.18.2020 13:3	5 U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	89	%	70-135	09.18.2020 13	:35	
o-Terphenyl		84-15-1	89	%	70-135	09.18.2020 13	:35	

Environment Testing Xenco

Certificate of Analytical Results 672902

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id:CH04Lab Sample Id:672902-001	Matrix: Date Collecte	Soil ed: 09.16.2020 13:45	Date Received Sample Depth	d:09.17.2020 16:19 n: 0.5 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB			Prep Method: % Moisture:	SW5035A
Analyst: MAB Seq Number: 3137632	Date Prep:	09.18.2020 11:44	Basis:	Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.18.2020 16:11	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.18.2020 16:11	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.18.2020 16:11	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	09.18.2020 16:11	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.18.2020 16:11	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.18.2020 16:11	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.18.2020 16:11	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	102	%	70-130	09.18.2020 16:11		
4-Bromofluorobenzene		460-00-4	93	%	70-130	09.18.2020 16:11		

Environment Testi Xenco

Certificate of Analytical Results 672902

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id: Lab Sample Id	CH04 A l: 672902-002		Matrix: Date Col	Soil lected: 09.16.20	020 14:30	Date Received Sample Depth) 16:19
Analytical Me Tech: Analyst:	thod: Chloride by EPA MAB MAB	. 300	Date Pre	p: 09.18.20)20 09:36	Prep Method: % Moisture: Basis:	E300P Wet Weigl	nt
Seq Number:	3137505			L.				
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	g Dil
Chloride		16887-00-6	78.1	9.96	mg/kg	09.18.2020 11	1:40	1

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09	9.18.2020 10:30		Basis: V	Vet Weight	
Seq Number: 3137547								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	09.18.2020 13:5	5 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	09.18.2020 13:5	5 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	09.18.2020 13:5	5 U	1
Total GRO-DRO	PHC628	<50.0	50.0		mg/kg	09.18.2020 13:5	5 U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	09.18.2020 13:5	5 U	1
Surrogate		Cas Number	% Recover	y Units	Limits	Analysis Da	ite Flag	
1-Chlorooctane		111-85-3	89	%	70-135	09.18.2020 13	:55	
o-Terphenyl		84-15-1	89	%	70-135	09.18.2020 13	:55	

Xenco

LT Environmental, Inc., Arvada, CO

Ross Draw 25 North CTB

Sample Id:CH04 ALab Sample Id:672902-002	Matrix:	Soil	Date Received:09.17.2020 16:19					
	Date Collecte	ed: 09.16.2020 14:30	Sample Depth: 2 ft					
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3137632	Date Prep:	09.18.2020 11:44	Prep Method % Moisture: Basis:	l: SW5035A Wet Weight				

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	09.18.2020 16:33	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	09.18.2020 16:33	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	09.18.2020 16:33	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	09.18.2020 16:33	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	09.18.2020 16:33	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	09.18.2020 16:33	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	09.18.2020 16:33	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	86	%	70-130	09.18.2020 16:33		
1,4-Difluorobenzene		540-36-3	100	%	70-130	09.18.2020 16:33		

eurofins Environment Testing Xenco

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected			
RL Reporting Limit				
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection	
PQL Practical Quantitation Limit	MQL Method Qu	antitation Limit	LOQ Limit of Quantitatio	n
DL Method Detection Limit				
NC Non-Calculable				
SMP Client Sample		BLK	Method Blank	
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD Method Duplicate/Sam	ple Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NELAC certification not offered	l for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Xenco

Environment Testing

🔅 eurofins

QC Summary 672902

LT Environmental, Inc.

Ross Draw 25 North CTB

Analytical Method: Seq Number: MB Sample Id:	Chloride b 3137505 7711600-1-)0		Matrix: nple Id:	Solid 7711600-	1-BKS			rep Metho Date Pro D Sample	ep: 09.1	0P 18.2020 1600-1-BSD	
Parameter		MB Result	Spike	LCS Result	LCS %Rec	LCSD		Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		<10.0	Amount 250	257	% кес 103	Result 257	%Rec 103	90-110	0	20	mg/kg	09.18.2020 09:56	
												0.D	
Analytical Method: Seq Number:	Chloride by 3137505	y EPA 30)0		Matrix:	Soil			Pi	rep Metho Date Pro		18.2020	
Parent Sample Id:	672904-002					672904-0	02 S		MS		-	904-002 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		76.0	200	279	102	279	102	90-110	0	20	mg/kg	09.18.2020 12:07	
Analytical Method: Seq Number: Parent Sample Id:	Chloride b 3137505 672935-001		00		Matrix: nple Id:	Soil 672935-00	01 S			rep Metho Date Pr D Sample	ep: 09.1	0P 18.2020 935-001 SD	
Parameter		Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	Flag
Chloride		Result 57.3	Amount 200	Result 240	%Rec 91	Result 247	%Rec 94	90-110	3	Limit 20	mg/kg	Date 09.18.2020 10:12	
Analytical Method: Seq Number: MB Sample Id:	TPH by SV 3137547 7711587-1-		od		Matrix: nple Id:	Solid 7711587-	1-BKS			rep Methe Date Pre D Sample	ep: 09.1	8015P 8.2020 1587-1-BSD	
Parameter		MB	Spike		LCS	LCSD	LCSD	Limits	%RPD	RPD	Units	Analysis	Flag
Gasoline Range Hydrocarb	ons (GRO)	Result <50.0	Amount 1000	Result 832	%Rec 83	Result 800	%Rec 80	70-135	4	Limit 35	mg/kg	Date 09.18.2020 10:13	
Diesel Range Organics	(DRO)	<50.0	1000	909	91	812	81	70-135	11	35	mg/kg	09.18.2020 10:13	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane		135			11		92			-135	%	09.18.2020 10:13	
o-Terphenyl		135		1	03		78		70	-135	%	09.18.2020 10:13	
Analytical Method: Seq Number:	TPH by SV 3137547	V8015 M	od		Matrix:	Solid			Pı	rep Metho Date Pro		8015P 8.2020	
Seq muniber.	5157347					7711587-	I-BLK			Date Pr	ер. 09.1	10.2020	
Parameter				MB Result							Units	Analysis Date	Flag
Motor Oil Range Hydrocar	bons (MRO)			<50.0							mg/kg	09.18.2020 09:53	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference $\begin{array}{l} [D] = 100*(C-A) \ / \ B \\ RPD = 200* \ | \ (C-E) \ / \ (C+E) \ | \\ [D] = 100*(C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 11 of 14

```
Final 1.000
```

Xenco

Environment Testing

🔅 eurofins

QC Summary 672902

LT Environmental, Inc.

Ross Draw 25 North CTB

Analytical Method:	TPH by S	W8015 M	od						Pi	rep Meth	od: SW	8015P	
Seq Number:	3137547				Matrix:	Soil				Date Pr	ep: 09.1	8.2020	
Parent Sample Id:	672935-00)1		MS Sar	nple Id:	672935-00	01 S		MS	D Sample	e Id: 672	935-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<50.3	1010	834	83	767	77	70-135	8	35	mg/kg	09.18.2020 11:14	
Diesel Range Organics	(DRO)	<50.3	1010	907	90	838	84	70-135	8	35	mg/kg	09.18.2020 11:14	
Surrogate					IS Rec	MS Flag	MSE %Re			imits	Units	Analysis Date	
1-Chlorooctane				1	13		105		70	-135	%	09.18.2020 11:14	
o-Terphenyl				1	04		97		70	-135	%	09.18.2020 11:14	

Analytical Method:	BTEX by EPA 8021	В						P	rep Meth	od: SW	5035A	
Seq Number:	3137632			Matrix:	Solid				Date Pr	ep: 09.1	18.2020	
MB Sample Id:	7711605-1-BLK		LCS Sar	nple Id:	7711605-1	I-BKS		LCS	D Sample	e Id: 771	1605-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.105	105	0.0937	94	70-130	11	35	mg/kg	09.18.2020 06:51	
Toluene	< 0.00200	0.100	0.102	102	0.0906	91	70-130	12	35	mg/kg	09.18.2020 06:51	
Ethylbenzene	< 0.00200	0.100	0.0940	94	0.0833	83	71-129	12	35	mg/kg	09.18.2020 06:51	
m,p-Xylenes	< 0.00400	0.200	0.189	95	0.168	84	70-135	12	35	mg/kg	09.18.2020 06:51	
o-Xylene	< 0.00200	0.100	0.0939	94	0.0835	84	71-133	12	35	mg/kg	09.18.2020 06:51	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	100		ç	98		98		70	-130	%	09.18.2020 06:51	
4-Bromofluorobenzene	88		8	38		88		70	-130	%	09.18.2020 06:51	

Analytical Method:	BTEX by EPA 8021	lB						P	rep Metho	od: SW	5035A	
Seq Number:	3137632			Matrix:	Soil				Date Pr	ep: 09.1	18.2020	
Parent Sample Id:	672834-021		MS Sar	nple Id:	672834-02	21 S		MS	D Sample	e Id: 672	834-021 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.120	120	0.123	123	70-130	2	35	mg/kg	09.18.2020 07:36	
Toluene	< 0.00199	0.0996	0.114	114	0.118	118	70-130	3	35	mg/kg	09.18.2020 07:36	
Ethylbenzene	< 0.00199	0.0996	0.104	104	0.109	109	71-129	5	35	mg/kg	09.18.2020 07:36	
m,p-Xylenes	< 0.00398	0.199	0.208	105	0.218	108	70-135	5	35	mg/kg	09.18.2020 07:36	
o-Xylene	< 0.00199	0.0996	0.102	102	0.107	107	71-133	5	35	mg/kg	09.18.2020 07:36	
Surrogate				1S Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene			ç	98		100	1	70	-130	%	09.18.2020 07:36	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

4-Bromofluorobenzene

 $\label{eq:c-A} \begin{array}{l} [D] = 100^{*}(C\text{-}A) \ / \ B \\ RPD = 200^{*} \ | \ (C\text{-}E) \ / \ (C\text{+}E) \ | \\ [D] = 100^{*} \ (C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

90

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

09.18.2020 07:36

Page 12 of 14

89

70-130

%

(ecen	ed by Drt blo	Relinquished by: (Signature)	order: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	1 07:	25 A					CHOUL	CHOY	Sample Identification	Sample Custody Seals: Yes	-	Received Intact:	Temperature (°C): 2.8	SAMPLE RECEIPT T	Sampler's Name: Benjamin Belill	P.O. Number: NRM2	Project Number: 01	Project Name: Ross Draw 2	Phone: 432.236.3849	City, State ZIP: Midland, TX 79705	Address: 3300 North A Street	Company Name: LT Environmental, Inc.,	Project Manager: Dan Moir	
	Chu Chitton 9-1	Received by: (Signature	gnature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcon Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms	200.8 / 6020: 8RCRA Metal(s) to be analyzed TCLP							02h1 n S	S 4/16/20 1345	Matrix Date Time Sampled Sampled	N/A Total Containers:		too-MM-1 on s	2.6	Temp Blank: Yes No We		NRM2020924128	8012420108	Ross Draw 25 North CTB		79705	A Street	ental, Inc., Permian office		Hobbs,NM (5
	4-17-20 [le19 9/	gnature)	alid purchase order from clier any responsibility for any loss e of \$5 for each sample subm	RCRA 13PPM Texas 11 A		T	t JU				2 2 0	5 0.5 1	e Depth Numb	e	C.0-			Wet Ice: (Ces No	Due Date: /	Rush: 3 day	Routine	Turn Around	Email: bbelill@ltenv.com	City, State ZIP:	Address:	Company Name:	Bill to: (if different)	Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800)
σ	17/200/615 2	Date/Time	nt company to Xenco, its affi ses or expenses incurred by itted to Xenco, but not analy	Al Sb As Ba Be B A Sb As Ba Be Cd			HAC.	and			× × ×	× × ×	TPH (E BTEX (Chlorid	EPA	0=8	021)							B	Carlsbad, NM 88220	3104 E Green Street	XTO Energy	Kyle Littrell	Cnain or Custody Dallas, TX (214) 902-0300 San Antonio, EL Paso, TX (915)585-3443 Lubbock, T (480-355-0900) Atlanta, GA (770-449-880
		Relinquished by: (Signature)	illates and subcontractors. It assign y the client if such losses are due to yzed. These terms will be enforced u	B Cd Ca Cr Co Cu Fe Pb Mg Mn Cd Cr Co Cu Pb Mn Mo Ni Se Ag																		ANALYSIS REQUEST						Chain of Custody (210) 509-3334 Iouston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 75-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)
			tractors. It assigns standard terms and conditions losses are due to circumstances beyond the contro will be enforced unless previously negotiated.	Mg Mn Mo Ni K Se A i Se Ag TI U																		EST	Deliverables: EDD	Reporting:Level II evel III PST/UST	State of Project:	Program: UST/PST		
		Received by: (Signature)	Σ	ng SiO2									Sam	lab, if	TAT starts							Wo	ADaPT 0			PRP Brownfields RC	Work Order Comments	Work Order No: U 1 X 1 V X www.xenco.com Page 1 of
Revised Date 051418 Rev. 2018.1		Date/Time		Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Hg						1			Sample Comments	lab, if received by 4:30pm	TAT starts the day recevied by the							Work Order Notes	Other:			C uperfund		

Released to Imaging: 8/18/2021 3:36:59 PM

Final 1.000

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature Range: 0 - 6 degC								
Date/ Time Received: 09.17.2020 04.19.00 PM	Air and Metal samples Acc	ceptable Range: Ambient							
Work Order #: 672902	Temperature Measuring de	evice used : T_NM_007							
Sample Rece	ipt Checklist	Comments							
#1 *Temperature of cooler(s)?	2.6								
#2 *Shipping container in good condition?	Yes								
#3 *Samples received on ice?	Yes								
#4 *Custody Seals intact on shipping container/ cooler?	Yes								
#5 Custody Seals intact on sample bottles?	Yes								
#6*Custody Seals Signed and dated?	Yes								
#7 *Chain of Custody present?	Yes								
#8 Any missing/extra samples?	No								
#9 Chain of Custody signed when relinquished/ received?	Yes								
#10 Chain of Custody agrees with sample labels/matrix?	Yes								
#11 Container label(s) legible and intact?	Yes								
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.							
#13 Samples properly preserved?	Yes								
#14 Sample container(s) intact?	Yes								
#15 Sufficient sample amount for indicated test(s)?	Yes								
#16 All samples received within hold time?	Yes								
#17 Subcontract of sample(s)?	No								
#18 Water VOC samples have zero headspace?	N/A								

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 09.17.2020

Checklist reviewed by: Jessica Kramer
Jessica Kramer

Date: 09.18.2020

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	28781
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created	Condition	Condition
By		Date
	XTO's deferral requests to complete final remediation during any future major construction/alteration or final plugging and abandonment, whichever occurs first. WSP and XTO do not believe deferment will result in imminent risk to human health, the environment, or groundwater. The area requested for deferral is identified on the site map as "BH01". The areas have been delineated and documented in the report. At this time, OCD approves this request. The Deferral Request and C-141 will be accepted for record and marked accordingly. The release will remain open in OCD database files and reflect an open environmental issue.	8/18/2021

CONDITIONS

Action 28781