District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

)

Page 1 of 105

cident ID NAPP2111853419 strict RP

Incident ID	NAPP2111853419
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380	
Contact Name Kyle Littrell	Contact Telephone 432-221-7331	
Contact email kyle.littrell@exxonmobil.com	Incident # (assigned by OCD)	
Contact mailing address 522 W. Mermod, Carlsbad, NM 88220		

Location of Release Source

(NAD 83 in decimal degrees to 5 decimal places)

Longitude

-103.94214

Latitude _____32.01937

Site Name Ross Draw 25	Site Type Battery	
Date Release Discovered 4-17-2021	API# (if applicable)	

Unit Letter	Section	Township	Range	County
D	25	268	29E	Eddy

Surface Owner: State 🗷 Federal 🗌 Tribal 🗌 Private (Name: _

Nature and Volume of Release

Materia	l(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
▼ Produced Water	Volume Released (bbls) 8.48	Volume Recovered (bbls) 6.00
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release LO discontract	covered a pump seal failure which caused fluid to be rel tor has been retained for remediation activities.	leased into containment and onto soil. A third-party

Received by OCD: 10/14/2021 Form C-141	10:11:52 AM State of New Mexico	Ī
Page 2	Oil Conservation Division	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	N/A
19.15.29.7(A) NMAC?	
🗌 Yes 🛛 No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
N/A	

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

★ The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Title: SSHE Coordinator
Date:
Telephone:
Date:

NA

Location:	Ross Draw 25 Battery		
Spill Date:	4/17/2021		
	Area 1		
Approximate A	rea =	5.61	cu.ft.
	VOLUME OF LEAK		-
Total Produced	Water =	1.00	bbls
	Area 2		
Approximate A	rea =	1393.90	sq. ft.
Average Satura	tion (or depth) of spill =	4.00	inches
Average Porosi	ty Factor =	0.03	
	VOLUME OF LEAK		
Total Produced	Water =	7.48	bbls
	TOTAL VOLUME OF LEAK		
Total Produced	Water =	8.48	bbls
	TOTAL VOLUME RECOVERED		
Total Produced	Water =	6.00	bbls

Received by OCD: 10/14/2021 10:11:52 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 4 of 10 .
Incident ID	NAPP2111853419
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>> 100 (f</u> t bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/14	/2021 10:11:52 AM State of New Mexi			Page 5 of 105
			Incident ID	NAPP2111853419
Page 4	ege 4 Oil Conservation Division	1810n	District RP	
			Facility ID	
			Application ID	
regulations all operators a public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: Signature: d <i>Wiw</i> email: adrian.b	formation given above is true and complet re required to report and/or file certain rele onment. The acceptance of a C-141 report tigate and remediate contamination that pose of a C-141 report does not relieve the ope Adrian Baker	ase notifications and perform co by the OCD does not relieve the se a threat to groundwater, surfa rator of responsibility for comp Title:Environm Date:	orrective actions for rele e operator of liability sh ace water, human health liance with any other fe ental Coordinator	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by:		Date:		

Page 6

Oil Conservation Division

	Page 6 of 105
Incident ID	NAPP2111853419
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following	items must be included in the closure report.
\square A scaled site and sampling diagram as described in 19.15.29.	11 NMAC
Photographs of the remediated site prior to backfill or photo must be notified 2 days prior to liner inspection)	s of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certa may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and re- human health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in
Printed Name:Adrian Baker	Title: Environmental Coordinator
Signature: aluin Bajus	_ Date: _10/14/2021
email: adrian.baker@exxonmobil.com	Telephone:432-236-3808
OCD Only	
Received by: Chad Hensley	Date:11/17/2021
remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and	y of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.
Closure Approved by:	Date:11/17/2021
Printed Name: Chad Hensley	Title: Environmental Specialist Advanced

WSP USA

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

October 14, 2021

District II New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request Ross Draw 25 Incident Number NAPP2111853419 Eddy County, New Mexico

To Whom It May Concern:

WSP USA Inc. (WSP), on behalf of XTO Energy, Inc. (XTO), presents the following Closure Request detailing site assessment, soil sampling, and excavation activities at the Ross Draw 25 Battery (Site) in Unit D, Section 25, Township 26 South, Range 29 East, in Eddy County, New Mexico (Figure 1). The purpose of the site assessment, soil sampling, and excavation activities was to address impacts to soil following a release of produced water at the Site. Based on the excavation activities and soil sample laboratory analytical results, XTO is submitting this Closure Request, describing remediation that has occurred and requesting no further action (NFA) for Incident Number NAPP2111853419.

RELEASE BACKGROUND

On April 17, 2021, a pump seal on a saltwater pump failed, resulting in the release of 8.48 barrels (bbls) of produced water onto the surface of the pad, south of the saltwater pumps. A vacuum truck was immediately dispatched to the Site to recover free-standing fluids; approximately 6 bbls of produced water were recovered. XTO reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 on April 28, 2021. The release was assigned Incident Number NAPP2111853419.

SITE CHARACTERIZATION

WSP characterized the Site according to Table 1, *Closure Criteria for Soils Impacted by a Release*, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is greater than 100 feet below ground surface (bgs) based on a recent soil boring drilled for determination of regional groundwater depth. During July 2021, a borehole (BH01) was advanced to a depth of 105 feet bgs via a hollow stem auger drill rig. The borehole was located approximately 471 feet north of the Site. The location of borehole BH01 is provided on Figure 1. A WSP geologist logged and described soils continuously. The borehole lithologic/soil sampling log is included in Attachment 1. The borehole was left open

District II Page 2

for over 72 hours to allow for potential slow infill of groundwater. After the 72-hour waiting period without observing groundwater, it was confirmed that groundwater beneath the Site is greater than 105 feet bgs. The borehole was properly abandoned using hydrated bentonite chips.

The closest continuously flowing or significant watercourse to the Site is an intermittent riverine, located approximately 1,092 feet northwest of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (medium potential karst designation area). Site receptors are identified on Figure 1.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

SITE ASSESSMENT ACTIVITIES AND ANALYTICAL RESULTS

On May 15, 2021, WSP personnel visited the Site to evaluate the release extent based on information provided on the Form C-141 and visual observations. WSP personnel collected three preliminary assessment soil samples (SS01 through SS03) within the release extent from a depth of approximately 0.5 feet bgs to assess the lateral extent of the impacted soil. The preliminary soil samples were field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photoionization detector (PID) and Hach[®] chloride QuanTab[®] test strips, respectively. The release extent and preliminary soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation is included in Attachment 2.

The preliminary soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-

District II Page 3

DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for preliminary soil samples SS01 and SS02 indicated that chloride concentrations exceeded the Closure Criteria. Based on visible staining in the release area, elevated field screening results, and laboratory analytical results for the preliminary soil samples, delineation and excavation activities were warranted.

DELINEATION AND EXCAVATION SOIL SAMPLING ACTIVITIES

On June 3, 2021 and June 4, 2021, WSP personnel returned to the Site to oversee delineation and excavation activities. Potholes were advanced via backhoe at two locations within the release extent to assess the vertical extent of impacted soil. Potholes PH01 and PH02 were advanced to a depth of 4 feet bgs at the SS01 and SS02 preliminary soil sample locations. Delineation soil samples were collected from each pothole from depths ranging from 1 foot to 4 feet bgs. Soil from the potholes was field screened for volatile aromatic hydrocarbons and chloride utilizing PID and Hach[®] chloride QuanTab[®] test strips, respectively. Field screening results and observations for the potholes were logged on lithologic/soil sampling logs, which are included in Attachment 3. The delineation samples were collected, handled, and analyzed following the same procedures as described above at Eurofins in Carlsbad, New Mexico. The delineation soil sample locations are depicted on Figure 2.

Impacted soil was excavated from the release area as indicated by visible staining, laboratory analytical results for the preliminary soil samples, and field screening results for the delineation soil samples. Excavation activities were performed using a backhoe and transport vehicle. The excavation occurred on pad near the production equipment and salt-water pumps. To direct excavation activities, WSP personnel screened soil for volatile aromatic hydrocarbons and chloride utilizing a PID and Hach[®] chloride QuanTab[®] test strips, respectively. The excavation was completed to depths ranging from 1 foot to 2 feet bgs.

Following removal of impacted soil, WSP collected 5-point composite soil samples at least every 200 square feet from the sidewalls and floor of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples SW01 and SW02 were collected from the sidewalls of the deeper eastern portion of the excavation from depths ranging from the ground surface to 2 feet bgs. Composite soil samples FS01 through FS09 were collected from the floor of the excavation at depths ranging from 1 foot to 2 feet bgs. In areas where the depth of the excavation did not exceed 1-foot bgs, aliquots from the sidewalls were included in the nearest floor sample. The excavation soil samples were collected and handled following the same procedures as described above and analyzed at Eurofins in Carlsbad, New Mexico. The excavation extent and excavation soil sample locations are presented on Figure 3.

District II Page 4

The excavation area measured approximately 1,972 square feet. A total of approximately 110 cubic yards of impacted soil was removed during the excavation activities. The impacted soil was transported and properly disposed of at the R360 Facility in Hobbs, New Mexico. After completion of confirmation sampling, the excavation was secured with fencing.

SOIL ANALYTICAL RESULTS

Laboratory analytical results for the delineation soil samples collected from potholes PH01 and PH02 indicated that benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria.

Laboratory analytical results for excavation sidewall samples SW01 and SW02 and excavation floor samples FS01 through FS09, indicated that benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. Laboratory analytical reports are included in Attachment 4 and summarized in Table 1.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the April 17, 2021 release of produced water. Laboratory analytical results for the excavation soil samples, collected from the final excavation extent, indicated that benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. Based on the soil sample analytical results, no further remediation was required. The excavation was backfilled with locally procured backfill material and contoured to match pre-existing Site conditions.

Initial response efforts which included removal of freestanding fluids via hydrovac and excavation of impacted soil have mitigated impacts at this Site. Depth to groundwater has been determined to be greater than 100 feet bgs and no other sensitive receptors were identified near the release extent. WSP and XTO believe these remedial actions are protective of human health, the environment, and groundwater. As such, XTO respectfully requests no further action for Incident Number NAPP2111853419.

District II Page 5

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096.

Sincerely,

WSP USA Inc.

Ellis Sey?

Ashley L. Ager

Elliot Lee As Assoc. Consultant, Environmental Scientist M

Ashley L. Ager, P.G. Managing Director, Geologist

cc: Adrian Baker, XTO Shelby Pennington, XTO Bureau of Land Management

Attachments:

- Figure 1 Site Location Map
- Figure 2 Delineation Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations
- Table 1Soil Analytical Results
- Attachment 1 Referenced Well Records
- Attachment 2 Photographic Log
- Attachment 3 Lithologic/Sampling Logs
- Attachment 4 Laboratory Analytical Reports

FIGUR

TABLES

Table 1

Soil Analytical Results Ross Draw 25 Incident Number : NAPP2111853419 Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 Cl	osure Criteria (NM	AC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000
Surface Samples										
SS01	05/15/2021	0.5	< 0.00200	< 0.00401	201	<50.0	<50.0	201	201	52,300
SS02	05/15/2021	0.5	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	26,700
SS03	05/15/2021	0.5	< 0.00198	< 0.00397	69.5	<49.9	<49.9	69.5	69.5	14,800
Delineation Samples	5									
PH01	06/03/2021	1	< 0.00201	< 0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	17,100
PH01C	06/03/2021	4	< 0.00200	< 0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	9,660
PH02B	06/03/2021	3	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	7,700
PH02C	06/03/2021	4	< 0.00200	< 0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	1,830
Excavation Floor Sa	mples									
FS01	06/03/2021	2	< 0.00201	< 0.00402	<49.7	<49.7	<49.7	<49.7	<49.7	1,290
FS02	06/03/2021	2	< 0.00200	< 0.00399	<49.8	<49.8	<49.8	<49.8	<49.8	6.02
FS03	06/03/2021	2	< 0.00199	< 0.00398	<49.7	<49.7	<49.7	<49.7	<49.7	199
FS04	06/03/2021	2	< 0.00200	< 0.00401	<49.8	<49.8	<49.8	<49.8	<49.8	1,540
FS05	06/04/2021	1	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	2,100
FS06	06/04/2021	1	<0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	4,780
FS07	06/04/2021	1	< 0.00200	< 0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	873
FS08	06/04/2021	1	<0.00201	< 0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	529
FS09	06/04/2021	1	<0.00201	< 0.00402	<49.7	<49.7	<49.7	<49.7	<49.7	78.3
Excavation Sidewal	l Samples									
SW01	06/04/2021	0-2	< 0.00201	< 0.00402	<49.8	<49.8	<49.8	<49.8	<49.8	5,170

Table 1

Soil Analytical Results Ross Draw 25 Incident Number : NAPP2111853419 Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 Closure Criteria (NMAC 19.15.29)			10	50	NE	NE	NE	1,000	2,500	20,000
SW02	06/04/2021	0-2	< 0.00200	< 0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	5,900

Notes:

ft - feet/foot

mg/kg - milligrams per kilograms

BTEX - benzene, toluene, ethylbenzene, and total xylenes

TPH - total petroleum hydrocarbons

DRO - diesel range organics

GRO - gasoline range organics

ORO - oil range organics

NMOCD - New Mexico Oil Conservation Division

NMAC - New Mexico Administrative Code

< - indicates result is less than the stated laboratory method practical quantitation limit

NE - Not Established

BOLD - indicates results exceed the higher of the background sample result or applicable regulatory standard Greyed data represents samples that were excavated

7	DU	50	Ŋ		WS	P USA		BH or PH Name: Date: BHO1 07 28 21				
		1	0	5 Carl	08 West S sbad, Ne	Stevens S w Mexico	Street	Site Name: ROSS Draw 25 Battery				
		0				in mexico	00220	RP or Incident Number:				
		LITH	DLOG	IC / SOIL	SAMPI	INGLO	G	LTE Job Number:				
Lat/Lo	ng:				Field O.		9	Logged By FS, AC Method: Hollow Etem au Hole Diameter Total Depth:				
52	020	<u>06,-k</u>	23.0	141000	Ohland							
<u>32.020606,-103.941899 Chloride, PID</u> FS Hole Diameter. Total Depth: Comments: No field screenings, lithology only												
			_			55/		elegy only				
Moisture Content	1	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	Ueptn		Lithology/Remarks				
	X			10117	0.5'	1 1	45	CALICHE dry off white - tan poor -				
				1 3.9.1		Ţ,	SP	CALICHE, dry, off white - tan, poor - moderate consoliclation, no stain, no				
					-	<u> </u>		oclor				
						F						
						+ 4						
					5	<u> </u>	12mi	CAND IN A CITY				
						Ŧ,	FS	SAND, dry, reddish brown, poorly graded, fine grain, abundant				
					-	+ ⁶		Ealich grain, abundant				
						<u>†</u> 7		consolidated, moderately				
						Ŧ,		consoliciated, no stain, nooclor				
					-	8						
						<u>†</u> 9		è.				
					10'	+ 10	-					
					10.	+ 10 -	60	TANDYER				
. 1						<u> </u>	SC	GANDY FS CLAYEV SAND, dry				
						12		reddish brown, poorly graded, fine grain, no plasticity,				
					8.	+ '2		cohesive, no plasticity,				
						<u>†</u> 13		cohegive, no stain, no odor				
						+ 14		/				
						+ 14						
						15	SC	Some avosum an-1-1				
				a:	ł	16	130	trace J/ Fin Cystals (tlakes)				
					2	+ "		some gypsum crystals (flakes), trace caliche gravel, some				
						17		\checkmark				
						+ 10		9				
						+ 18						
					j N	19						
						F						
						20	SC	gypsum flakes no longer visible, some silt				
						21		Visible, some silt J				
l l					,	Ť						
						[⊥] ²²						
				6		23						
						24						
						Ť ĺ	Sm					
						25	60	abundantailt				
							F	6				

(F		_		_			
DUG	20	ົງ		WS	SP USA		BH or PH Name: Date: BHOI 07 28 21
00	۷II	υ	5 Car	08 West I Isbad, Ne	Stevens Stevens	Street	Site Name Ross Draw 25 Battery
	U		UC.	13000, 110	W MEXIC	00220	RP or Incident Number:
Lat/Long:	LITHO	DLOG	IC / SOIL			G	Logged By FS, AC Method Hollow stem auger
32.02000	05,-	10.3.9	741899	Field Scre	ening:		Hole Diameter: Total Depth:
Comments: N	o fi	eld	SCL	2001	nas	lith	nology only
					<u> </u>		
Moisture Content Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	Depth (ft bgs)		Lithology/Remarks
				1	26	SM	GILTY GAND, dry reddieb brown,
				-	27		poorly graded, fine-very fine
					28		GILTY GAND, dry, reddish brown, poorly graded, fine-very fine grain, abundant silt, nostain, no odor
				-	29		trace gravel sandy composition abundant gypsum x1's 20.5mm
				-	Γ		abundant avraum vis composition
					30		► ⁻
				-	31	mL	GRAVELLY SILT, dry, reddist
				-	32		abunctant plasticity, cohesire
				1	33		composition sancty silty
				_			brown, no plasticity, cohesire abunctant gravel sancty silty xls (1 mm)
				_	_ 34		
				-	35	ML	
				-	36		
				-	37		
				-			
				-	38		
				_	39		
				-	40	ML	gypsum x (viens trace
					41		gypourie at mens trace
				-	-		
				-	42		
				-	43		
				_	44		~
					45	m. C	GUTETONE Las rodulate
				-		1112-5	brown as all is for
				-	46		cohesive plasticity
				1	47		BILTSTONE, dry, reddish brown, no platisit FS conesive, no stain, no odor, poorly cemented
					48		
				-	49		
				-	-	m-a	
					50	ML-9	,

U		SP USA Stevens S ew Mexico		BHOI 07/28/21 Site Name: ROSS Draw 25 Battery RP or Incident Number:
 			_	LTE Job Number.
	Field Sci	eenina		Logged By FS, AC Method. Hollowstern aug Hole Diameter. Total Depth:
				105 feet bgs
Staining	# Sample	Depth	J	Lithology/Remarks
		51 52 53		SILTSTONE, dry, reddish brown, no plasticity, cohesive, well cemented, no stain, no odor
		54 55 56 57	ml-s	poor cementation
		58 59 60 61 62 63	ml-s	gradual transition to claystone (low plasticity)
		68	CL-S	CLAYSTONE, moist, reddish brown - brown, low plasticity cohesive, no stain, no odor some gypsum xls (<0.5mm)
			el-s	trace gypsum xl's
No f	No fiele	No field scree	No field screening $1 \frac{1}{10 \text{ (fm}} \frac{1}{10 \text{ (fm}}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 22 of 105

Received by OCD: 10/14/2021 10:11:52 AM

Q

	00	- -	0		11/2			BH or PH Name: Date:
	////(5))	~		SP USA		BHOI 07 28 21
	0.0				i08 West Isbad, Ne			Site Name ROFE Draw 25 Batterv
		U		Cal	isbau, Ne	W WEALC	00220	RP or Incident Number:
	lan i	LITH	OLOC	SIC / SOII	SAMPI	ING LO	G	LTE Job Number: Logged By FOSAC Method: Hollows Stomar or
Lat/L	long:				Field Scre	eening:		Hole Diameter: Total Depth:
32 Com				141899				4 inches 105 feet bas
	N	10 fi	alc	ecre	enin	9p, 1		plogy remarks only
e +	e		б	#	Sample	5	- ck	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth	Depth	S/R(Lithology/Remarks
ΣÖ	ੀ ਨੂੰ ^ਦ	> ਦ	Sta	Sar	(ft bgs)	(ft bgs)	USCS/Rock Symbol	
		-				76	<u> </u>	
						[
					-	- 77		
					_	78		light
1					79'-	79	SH-S	(AVICTURE Mariet 1 19 minus
						-	("דעמ	CLAVISTONE, moist, dark brown, Conesive, high plusticity, some Crystalline gypsum, no stain or odor
					-	- 80		Cohesive, high plusticity, some
						81		crystalline gypsum, no stain or o dor
					-	82		
					-	_		
				<i>k</i>	-	83		
					.84'	84		trace (vastalline aupsum
						85		trace crystalline gypsum
				а	· -	- 00		
					_	86		
					-	87		
						-		
					_	- 88		
						89		
					Gunt	90		diabt adapt much fals
					90' -			slight odor musty (stagnant water)
					-	91		variel j
					-	92		
					-	93		
						94		
					05	95		FS
					95' -	-		color change dark brown, very moist-almost saturated
					-	- 96	F	annost saturated
						97		
1					-	98		
					-			
					-	- 99		
					100'-	100		

.

С., 197 —	DD	2[))	E Car	WS 508 West Isbad, Ne	SP USA Stevens S w Mexico	Street 88220	BH or PH Name: BHOI Site Name: Rocco Draw 25 Battery RP or Incident Number: LTE Job Number:
		LITH	OLOC	GIC / SOI	SAMPL	ING LC	G	Logged By FS, AC Method: Hollow Steman
		06-	1020	141899	Field Scre		5	Hole Diameter. 4 inches 105 feet bas
Cor								
Moisture	Chloring Chloride Chl						Lithology/Remarks	
					1	101	CH-S	CLAYSTONE, moist, dork brown,
						102	C	Cohesive, high presticity.
					-	103		Cohesive, high plasticity, No stain or odor.
						_		
						104		
					105/_	105		
					1	106		
					-	107		dry hole
					7	108		
					4	-		
					+	109		
						110		
					1	111		
					ł	112		
					Ŧ	113		
					1	114		
					1	-		
					+	. 115		
					4	116		
					t	117		
					ł	118		
					1	119		
					+	·		
					+	120		
					Ŧ	121		
					4	122		
					1	123		
					+	124		
				-	+	125		

New Mexico Office of the State Engineer Point of Diversion Summary

Well Tag		Numbe	er	(qı Q6	uarters a 64 Q16	are small Q4 Se	2=NE 3= est to larg	iest) Rng	(NAD83 I	UTM in meters) X Y		
x	C 01	360		4	. 3	3 05	5 26S	30E	60299	7 3548152	2	
Driller Lic		95		Drill	er Cor	mpany	: FOL	_K DR	ILLING C	0.		
Driller Na	me:											
Drill Start	Date:	04/26/	1952	Drill	Finisl	h Date:	: 05	5/15/19	952	Plug Date:		
Log File D	Date:	11/17/	1953	PCV	V Rcv	Date:			:	Source: Shallow		
Pump Typ	be:			Pipe	e Discl	harge S	Size:		I	Estimated Yie	eld:	
Casing Si	ze:	12.75		Dep	th We	II:	77	70 feet	I	Depth Water:	173 feet	
x	Water	Bearii	ng Stratific	atior	ns:	Тор	Bottom	Desc	ription			
						210	220	Sanc	lstone/G	ravel/Conglom	erate	
						580				ravel/Conglom		
						665	710	Sanc	stone/G	ravel/Conglom	erate	
						725	770	Sanc	lstone/G	ravel/Conglom	ierate	
X			sing			Тор	Bottom					
		Pe	rforations:			180	289					
						538	770					
X	Meter	Numb	er: 1	6557	7		Meter I	Make:		SIEMENS		
	Meter	Serial	Number: L	.1254	823		Meter I	Multip	lier:	100.0000		
	Numb	per of D)ials: 8	}			Meter	-		Diversion		
	Unit c	of Meas	sure: (Gallor	าร		Return Percen					
	Usage	e Multi						ng Fre	quency:	Quarterly		
Meter	Readin	gs (in /	Acre-Feet)									
Read	d Date	Year	Mtr Read	ling	Flag	Rdr	Comm	ent		Mt	r Amount Online	
07/0	1/2014	2014	234	997	А	RPT					0	
09/3	0/2014	2014	354	169	А	RPT					36.573	
11/2	0/2014	2014	7281	000	А	RPT					0	
	1/2014		11430	100	А	RPT					12.733	
04/0	1/2015	2015	22535	200	А	RPT					34.080	
	1/2015		35821		А	RPT					40.775	
	5/2015		46631		А	RPT					33.173	
	1/2015		55653		A	RPT					27.688	
	1/2016		58047		A	RPT					7.348	
	9/2016		61081		A	RPT					9.309	
	1/2016		62593		A	RPT					4.640	
	0/2016		71642		A	RPT					27.772	
	3/2016		81998		A	RPT					31.781	
	1/2016		90558		A	RPT					26.270	
04/0	4/2019	2019	164290	08/	A	RPT					226.274	

Ressived by OCD in 10/14/2021 1 Am 1/2 / Report Dispatcher?type=PODGHTML&name=PodGroundSummaryHTML.irxml&basin=C&nbr=8486026 (nf. 105

10/02/2019	2019	790380	А	RPT	METER CHANGE (0 TUC
01/02/2020	2020	1733720	А	RPT	07/2019	289.500
04/07/2021		36814117	Α	WEE		10765.779 X
07/27/2021		36836238	Α	WEE	3	6.789 X
**YTD Mete Amounts:	r	Year		Amount		
		2014		49.306		
		2015		135.716		
		2016		107.120		
		2019		226.274		
		2020		289.500		
		2021	1	0772.568		
Meter	Numbe	r: 16558	3		Meter Make:	MASTERMETER
Meter	Serial N	lumber: 32530	0403	}	Meter Multiplier:	100.0000
Numb	er of Di	als: 6			Meter Type:	Diversion
Unit o	of Measu	ire: Gallo	ns		Return Flow Percent:	
•	e Multip				Reading Frequenc	-
eter Reading						
Read Date	Year	Mtr Reading	Fla	ag Rdr	Comment	Mtr Amount Onlin
10/01/2014	2014	354169	А	RPT		0
11/20/2014	2014	415555	А	RPT		18.839
11/21/2014	2014	72810	А	RPT		0
12/31/2014	2014	112178	А	RPT		12.082
02/01/2015	2015	147039	А	RPT		10.698
03/02/2015	2015	188133	А	RPT		12.611
04/01/2015	2015	224102		RPT		11.038
04/30/2015	2015	270723	Α	RPT		14.307
05/31/2015		315628	Α	tw		13.781
07/01/2015		369075	А	tw		16.402
08/01/2015		395528	А	tw		8.118
		455361	А	tw		18.362
08/31/2015	0045	466312	Α	RPT		3.361
	2015					
08/31/2015 10/01/2015 ** YTD Mete		Year		Amount		
08/31/2015 10/01/2015 ×		Year 2014		Amount 30.921		

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/3/21 3:26 PM

POINT OF DIVERSION SUMMARY

.

PHOTOGRAPHIC LOG							
XTO Energy, Inc.	Ross Draw 25	NAPP2111853419					
	Eddy County, New Mexico						

Photo No.	Date	
2	May 13, 2021	
Release exte	ent facing west	
		A day and a day and a day of the large d
		Carl Carl And And And

	PHOTOGRAPHIC LOG	
XTO Energy, Inc.	Ross Draw 25	NAPP2111853419
	Eddy County, New Mexico	

Photo No.	Date	
3	June 3, 2021	
	g view of pothole H01)	

Photo No.	Date	
4	June 3, 2021	
Northwest facin	June 3, 2021 g view of pothole 102)	

•

	PHOTOGRAPHIC LOG	
XTO Energy, Inc.	Ross Draw 25	NAPP2111853419
	Eddy County, New Mexico	

	PHOTOGRAPHIC LOG	
XTO Energy, Inc.	Ross Draw 25	NAPP2111853419
	Eddy County, New Mexico	

				1 10:11:52					BH or PH Name: PH01	Date:	06/03/2021
N					WS	P USA				Date.	55,50/2021
				5	08 West S	Stevens S	Street		Site Name: Ross Draw 25	I	
				Car	Isbad, Ne	w Mexico	88220		RP or Incident Number: NAF	P21118534	19
									WSP Job Number: 3140326.003.0129		
	LITHOLOGIC / SOIL SAMPLING LOG								Logged By: EL	Metho	od: Backhoe
Lat/Lo	ng: 32.01	942, -103	.94191		Field Scre				Hole Diameter: N/A	Total I	Depth: 4 feet bgs
Comm	nents: All c	hloride fie	eld scre	enings includ	Hach chlo de a 40% co						
	st; D-dry; `			5	1			-			
e +	Θ		D	#	Sample		USCS/Rock Symbol				
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth	Depth	S/Ro nbo		Litholo	gy/Remarl	ks
Moi Coi	Chl (p	S [q]	Sta	San	(ft bgs)	(ft bgs)	SC			0,	
		45.0		PH01	4				16 I P. I. I		l'an financia
Μ	16,925	45.3	Y	PHUI	1	1	SM		lty, reddish-brown, wel ravel 0.1-3 cm, slight o		medium-fine grain,
					· ·	L		_	_		
Μ	2,189	64.6	Ν		2	2	SM		Ity, reddish-brown, wel		medium-fine grain,
					-	┢		caliche gl	ravel 0.1-3 cm, slight o	UUI	
Μ	8,271	58.3	Ν		3	3	SM		lty, reddish-brown, wel		medium-fine grain,
					.	ŀ		caliche g	ravel 0.1-3 cm, slight o	dor	
D	8,271	51	Ν	PH01C	4 -	4	SM	SAND. si	lty, reddish-brown, wel	l graded. f	fine grain,
	-,		-			Ĺ			ravel 0.1-3 cm, slight o		5 /
					-	+					
					4		TD	@ 4 ft bgs	6		
		$\overline{\ }$									
					$\overline{}$						
								`			
								$\overline{}$			
									、 、		
									\searrow		
									$\overline{}$		
									\sim		
									\sim		
1											
										\mathbf{i}	
											\mathbf{i}
											\sim
											\sim
											\sim

Wind Part Street Stre					1 10.11.52				E	BH or PH Name: PH01	Date: 06/03/2021	Tuge
WSP Job Number: 3140326.003.0129 LITHOLOGIC / SOIL SAMPLING LOG Logged By: EL Method: Backhoe Lat/Long: 32.01942, -103.94191 Field Screening: Hach chloride strips, PID Hole Diameter: N/A Total Depth: 4 feet bgs Comments: All chloride field screenings include a 40% correction factor M-moist; D-dry; Y-yes; N-no Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Lithology/Remarks M 8,271 17.4 N 1 1 SM SAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cm M 8,271 29.2 N PH02B 3 3 SM SAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cm M 2,189 30.7 N PH02C 4 4 SM SAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm						WS	P USA					
WSP Job Number: 3140326.003.0129 LITHOLOGIC / SOIL SAMPLING LOG Logged By: EL Method: Backhoe Lat/Long: 32.01942, -103.94191 Field Screening: Hach chloride strips, PID Hole Diameter: N/A Total Depth: 4 feet bgs Comments: All chloride field screenings include a 40% correction factor M-moist; D-dry; Y-yes; N-no Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Lithology/Remarks M 8,271 17.4 N 1 1 SM SAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cm M 8,271 29.2 N PH02B 3 3 SM SAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cm M 2,189 30.7 N PH02C 4 4 SM SAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm					5	08 West S	Stevens S	street	S	ite Name: Ross Draw 25		
LITHOLOGIC / SOIL SAMPLING LOG Logged By: EL Method: Backhoe Lat/Long: 32.01942, -103.94191 Field Screening: Hach chloride strips, PID Hole Diameter: N/A Total Depth: 4 feet bgs Comments: All chloride field screenings include a 40% correction factor M-moist; D-dry; Y-yes; N-no Motion and the problem of th					Car	lsbad, Ne	w Mexico	88220	F	RP or Incident Number: NAP	P2111853419	
Lat/Long: 32.01942, -103.94191 Field Screening: Hach chloride strips, PID Hole Diameter: N/A Total Depth: 4 feet bgs Comments: All chloride field screenings include a 40% correction factor M-moist; D-dry; Y-yes; N-no Total Depth: 4 feet bgs any signed b (field screenings include a 40% correction factor M-moist; D-dry; Y-yes; N-no Expendition Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Lithology/Remarks M 8,271 17.4 N 1 1 SM SAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cm M 4,715 29.2 N PH02B 3 3 SM SAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cm M 8,271 29.2 N PH02B 3 3 SM SAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cm M 2,189 30.7 N PH02C 4 4 SM SAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm									V	VSP Job Number: 3140326.	003.0129	
Hach chloride strips, PID Comments: All chloride field screenings include a 40% correction factor Minist; D-dry; Y-yes; N-no Oppin (mod) O								G				
Comments: All chloride field screenings include a 40% correction factor M-moist: D-dry; Y-yes; N-no anging pic field	Lat/Lo	ng: 32.01	942, -103	.94191				סוס	F	lole Diameter: N/A	Total Depth: 4 feet bgs	
anticipationanticipationbit in the second sec					enings includ							
M8,27117.4N11SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM4,71529.2N22SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM8,27129.2NPH02B33SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM8,27129.2NPH02B33SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM2,18930.7NPH02C44SMSAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm	M-moi	st; D-dry; `	Y-yes; N-r	no								
M8,27117.4N11SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM4,71529.2N22SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM8,27129.2NPH02B33SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM8,27129.2NPH02B33SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM2,18930.7NPH02C44SMSAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm	e t	Ð		D	#	Sample		ock				
M8,27117.4N11SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM4,71529.2N22SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM8,27129.2NPH02B33SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM8,27129.2NPH02B33SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM2,18930.7NPH02C44SMSAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm	istul nter	oric	pm	inin	nple		Depth	S/R mba		Litholog	gy/Remarks	
M8,27117.4N11SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM4,71529.2N22SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM8,27129.2NPH02B33SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM8,27129.2NPH02B33SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM2,18930.7NPH02C44SMSAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm	Ω Μ	(p Chl	Vâ (p	Sta	San		(n bgs)	SC				
M4,71529.2N222SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM8,27129.2NPH02B33SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM2,18930.7NPH02C44SMSAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm	N.4		17.4	NI		1	1			hy raddiah brawn wall	gradad madium fina gr	oin
M4,71529.2N222SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM8,27129.2NPH02B33SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM2,18930.7NPH02C44SMSAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm	IVI	8,271	17.4	IN		1	<u>н</u> '	SIVI			graded, medium-line gra	an,
M8,27129.2NPH02B333SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM2,18930.7NPH02C44SMSAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm						-	L					
M8,27129.2NPH02B333SMSAND, silty, reddish-brown, well graded, medium-fine grain, caliche gravel 0.1-3 cmM2,18930.7NPH02C44SMSAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm	Μ	4,715	29.2	Ν		2	2	SM			graded, medium-fine gra	ain,
M 2,189 30.7 N PH02C 4 4 SM SAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm						-	╞		calicite gr	avel U. 1-3 CIII		
M 2,189 30.7 N PH02C 4 4 SM SAND, silty, reddish-brown, well graded, fine grain, caliche gravel 0.1-3 cm	Μ	8,271	29.2	Ν	PH02B	3	3	SM			graded, medium-fine gra	ain,
caliche gravel 0.1-3 cm						.	ŀ		caliche gr	avel 0.1-3 cm		
caliche gravel 0.1-3 cm	М	2,189	30.7	N	PH02C	4	4	SM	SAND, silty, reddish-brown, well graded, fine grain			
TD @ 4 ft bgs		,				_	Ĺ				J , J,	
TD @ 4 ft bgs							F					
TD @ 4 ft bgs												
	$\overline{}$							TD	@ 4 ft bgs			
				$\overline{\ }$								
							$\overline{}$					
								\sim				
									$\overline{}$			
										\mathbf{i}		
										\sim		
										\sim		
										\sim		
											\mathbf{i}	
											\sim	
											\sim	
												\mathbf{i}

eurofins 🔅

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-674-1

Laboratory Sample Delivery Group: 31403236.003.0129 Client Project/Site: Ross Draw 25

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 5/19/2021 9:17:08 AM Jessica Kramer, Project Manager

(432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access **Have a Question?** Ask-The Expert Visit us at: www.eurofinsus.com/Env

Released to Imaging: 11/17/2021 9:38:54 AM
Page 37 of 105

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

Client: WSP USA Inc. Project/Site: Ross Draw 25 Job ID: 890-674-1

Page 38 of 105

SDG: 31403236.003.0129

1:6: -

ND

NEG

POS

PQL

QC

RER

RPD TEF

TEQ

TNTC

RL

PRES

Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO Qualifier	A Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Not Detected at the reporting limit (or MDL or EDL if shown)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Job ID: 890-674-1

Job ID: 890-674-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-674-1

Receipt

The samples were received on 5/14/2021 9:57 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.8°C

Receipt Exceptions

The following samples analyzed for method BTEX 8021 were received and analyzed from an unpreserved bulk soil jar: SS01 (890-674-1), SS02 (890-674-2) and SS03 (890-674-3).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-3160 and analytical batch 880-3161 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

RL

0.00200

0.00200

0.00200

0.00401

0.00200

0.00401

Client: WSP USA Inc. Project/Site: Ross Draw 25

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

Total BTEX

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client Sample ID: SS01 Date Collected: 05/13/21 14:02 Date Received: 05/14/21 09:57 Sample Depth: 0.5'

Matrix: Solid

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

05/17/21 09:05 05/17/21 14:46

05/17/21 09:05 05/17/21 14:46

05/17/21 09:05 05/17/21 14:46

05/17/21 09:05 05/17/21 14:46

05/17/21 09:05 05/17/21 14:46

05/17/21 09:05 05/17/21 14:46

SDG: 31403236.003.0129

Analyzed

Lab Sample ID: 890-674-1

Page 40 of 105

Dil Fac

1

1

1

1

1

1

1

1

1

Dil Fac

0.00401	mg/Kg	05/17/21 09:05	05/17/21 14:46
Limits		Prepared	Analyzed
70 - 130		05/17/21 09:05	05/17/21 14:46
70 - 130		05/17/21 09:05	05/17/21 14:46

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00200 U

<0.00200 UF1

<0.00200 UF1

<0.00401 UF1

<0.00200 UF1

<0.00401 UF1

<0.00401 UF1

%Recovery Qualifier

120

86

Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
<50.0	U	50.0	mg/Kg		05/14/21 15:47	05/15/21 04:16	1	
201		50.0	mg/Kg		05/14/21 15:47	05/15/21 04:16	1	
<50.0	U	50.0	mg/Kg		05/14/21 15:47	05/15/21 04:16	1	
201		50.0	mg/Kg		05/14/21 15:47	05/15/21 04:16	1	
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
117		70 - 130			05/14/21 15:47	05/15/21 04:16	1	
116		70 - 130			05/14/21 15:47	05/15/21 04:16	1	
	<50.0 201 <50.0 201 %Recovery 117	<50.0 U 201 <i>%Recovery Qualifier</i> <i>117</i>	<50.0	<50.0 U 50.0 mg/Kg 201 50.0 mg/Kg <50.0	<50.0 U 50.0 mg/Kg 201 50.0 mg/Kg <50.0	<50.0 U 50.0 mg/Kg 05/14/21 15:47 201 50.0 mg/Kg 05/14/21 15:47 <50.0	<50.0 U 50.0 mg/Kg 05/14/21 15:47 05/15/21 04:16 201 50.0 mg/Kg 05/14/21 15:47 05/15/21 04:16 <50.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	52300	249	mg/Kg			05/18/21 12:57	50

Client Sample ID: SS02 Date Collected: 05/13/21 14:10 Date Received: 05/14/21 09:57 Sample Depth: 0.5'

Lab Sample ID: 890-674-2 Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/17/21 09:05	05/17/21 17:47	1
Toluene	<0.00199	U	0.00199	mg/Kg		05/17/21 09:05	05/17/21 17:47	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		05/17/21 09:05	05/17/21 17:47	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/17/21 09:05	05/17/21 17:47	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		05/17/21 09:05	05/17/21 17:47	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/17/21 09:05	05/17/21 17:47	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		05/17/21 09:05	05/17/21 17:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130			05/17/21 09:05	05/17/21 17:47	1
1,4-Difluorobenzene (Surr)	99		70 - 130			05/17/21 09:05	05/17/21 17:47	1

Matrix: Solid

Job ID: 890-674-1 SDG: 31403236.003.0129

Lab Sample ID: 890-674-3

05/17/21 09:05 05/17/21 18:13

05/17/21 09:05 05/17/21 18:13

Matrix: Solid

1

1

Client Sample ID: SS02 Date Collected: 05/13/21 14:10

Date Received: 05/14/21 09:57 Sample Depth: 0.5'

Client: WSP USA Inc.

Project/Site: Ross Draw 25

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		05/14/21 15:47	05/15/21 04:36	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/14/21 15:47	05/15/21 04:36	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/14/21 15:47	05/15/21 04:36	1
Total TPH	<50.0	U	50.0	mg/Kg		05/14/21 15:47	05/15/21 04:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			05/14/21 15:47	05/15/21 04:36	1
o-Terphenyl	105		70 - 130			05/14/21 15:47	05/15/21 04:36	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	26700	248	mg/Kg			05/18/21 13:02	50

Client Sample ID: SS03

Date Collected: 05/13/21 14:20 Date Received: 05/14/21 09:57 Sample Depth: 0.5'

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatil	e Organic Compo	unds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		05/17/21 09:05	05/17/21 18:13	1
Toluene	<0.00198	U	0.00198	mg/Kg		05/17/21 09:05	05/17/21 18:13	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		05/17/21 09:05	05/17/21 18:13	1
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		05/17/21 09:05	05/17/21 18:13	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		05/17/21 09:05	05/17/21 18:13	1
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		05/17/21 09:05	05/17/21 18:13	1
Total BTEX	<0.00397	U	0.00397	mg/Kg		05/17/21 09:05	05/17/21 18:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

70 - 130

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

95

102

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		05/14/21 15:47	05/15/21 04:57	1
Diesel Range Organics (Over C10-C28)	69.5		49.9	mg/Kg		05/14/21 15:47	05/15/21 04:57	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/14/21 15:47	05/15/21 04:57	1
Total TPH	69.5		49.9	mg/Kg		05/14/21 15:47	05/15/21 04:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130			05/14/21 15:47	05/15/21 04:57	1
o-Terphenyl	110		70 - 130			05/14/21 15·47	05/15/21 04:57	1

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14800	99.4	mg/Kg			05/18/21 13:07	20

Eurofins Xenco, Carlsbad

Surrogate Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

			Per
		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-674-1	SS01	120	86
890-674-1 MS	SS01	93	92
890-674-1 MSD	SS01	89	109
890-674-2	SS02	93	99
890-674-3	SS03	95	102
LCS 880-3160/1-A	Lab Control Sample	93	104
LCSD 880-3160/2-A	Lab Control Sample Dup	90	87
MB 880-3160/5-A	Method Blank	74	83

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

			Per	cent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-674-1	SS01	117	116	
890-674-2	SS02	102	105	
890-674-3	SS03	109	110	
LCS 880-3136/2-A	Lab Control Sample	104	97	
LCSD 880-3136/3-A	Lab Control Sample Dup	103	98	
MB 880-3136/1-A	Method Blank	128	133 S1+	

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Eurofins Xenco, Carlsbad

Page 42 of 105

Job ID: 890-674-1 SDG: 31403236.003.0129

Prep Type: Total/NA

Prep Type: Total/NA

Client: WSP USA Inc.

Project/Site: Ross Draw 25

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-3160/5-A **Matrix: Solid Analysis Batch: 3161**

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/Kg		05/17/21 09:05	05/17/21 14:20	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/17/21 09:05	05/17/21 14:20	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/17/21 09:05	05/17/21 14:20	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/17/21 09:05	05/17/21 14:20	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/17/21 09:05	05/17/21 14:20	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/17/21 09:05	05/17/21 14:20	1
Total BTEX	<0.00400	U	0.00400	mg/Kg		05/17/21 09:05	05/17/21 14:20	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130			05/17/21 09:05	05/17/21 14:20	1
1,4-Difluorobenzene (Surr)	83		70 - 130			05/17/21 09:05	05/17/21 14:20	1

Lab Sample ID: LCS 880-3160/1-A **Matrix: Solid Analysis Batch: 3161**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1095		mg/Kg		109	70 - 130	
Toluene	0.100	0.09243		mg/Kg		92	70 - 130	
Ethylbenzene	0.100	0.09811		mg/Kg		98	70 - 130	
m-Xylene & p-Xylene	0.200	0.1901		mg/Kg		95	70 - 130	
o-Xylene	0.100	0.09135		mg/Kg		91	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: LCSD 880-3160/2-A Matrix: Solid Analysis Batch: 3161

Analysis Batch: 3161									Prep	Batch:	3160
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.09192		mg/Kg		92	70 - 130	17	35
Toluene			0.100	0.09101		mg/Kg		91	70 - 130	2	35
Ethylbenzene			0.100	0.09557		mg/Kg		96	70 - 130	3	35
m-Xylene & p-Xylene			0.200	0.1853		mg/Kg		93	70 - 130	3	35
o-Xylene			0.100	0.08857		mg/Kg		89	70 - 130	3	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	90		70 - 130								
1,4-Difluorobenzene (Surr)	87		70 - 130								
Lab Sample ID: 890-674-	1 MS							С	lient Sam	ple ID:	SS01
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Ratch: 2161									Bron	Ratch:	2160

Matrix: Solid

Analysis Batch: 3161									Prep Batch: 3160
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00200	U	0.101	0.08210		mg/Kg		81	70 - 130

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Prep Batch: 3160

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 3160

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client: WSP USA Inc. Project/Site: Ross Draw 25 Job ID: 890-674-1 SDG: 31403236.003.0129

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-674-1 Matrix: Solid Analysis Batch: 3161	I MS										ent Samı Prep Tyı Prep	be: To	tal/NA
	Sample	Sam	ple	Spike	MS	MS					«Rec.		
Analyte	Result	Qua	lifier	Added	Result	Quali	fier	Unit	[D %Rec	Limits		
Toluene	<0.00200	U F1		0.101	0.07531			mg/Kg		75	70 - 130		
Ethylbenzene	<0.00200	U F1		0.101	0.06468	F1		mg/Kg		64	70 - 130		
m-Xylene & p-Xylene	<0.00401	UF1		0.202	0.1222	F1		mg/Kg		61	70 - 130		
p-Xylene	<0.00200	U F1		0.101	0.05667	F1		mg/Kg		56	70 - 130		
	MS	мs											
Surrogate	%Recovery	Qua	lifier	Limits									
4-Bromofluorobenzene (Surr)	93			70 - 130									
1,4-Difluorobenzene (Surr)	92			70 - 130									
Lab Sample ID: 890-674-1	I MSD										ent Sam		
Matrix: Solid											Prep Ty		
Analysis Batch: 3161											Prep	Batch	
	Sample	Sam	ple	Spike	MSD	MSD					%Rec.		RPI
Analyte	Result		lifier	Added	Result	Quali	fier	Unit		D_%Rec	Limits	RPD	Limi
Benzene	<0.00200			0.0996	0.08778			mg/Kg		88	70 - 130	7	3
Toluene	<0.00200	UF1		0.0996	0.06074	F1		mg/Kg		61	70 - 130	21	3
Ethylbenzene	<0.00200	UF1		0.0996	0.04778	F1		mg/Kg		48	70 - 130	30	3
m-Xylene & p-Xylene	<0.00401	U F1		0.199	0.08966	F1		mg/Kg		45	70 - 130	31	3
o-Xylene	<0.00200	U F1		0.0996	0.04233	F1		mg/Kg		42	70 - 130	29	3
Surrenate	MSD %Recovery			Limits									
Surrogate 4-Bromofluorobenzene (Surr)		Qua		70 - 130									
1,4-Difluorobenzene (Surr)	109			70 - 130 70 - 130									
lethod: 8015B NM - D	liesel Rang	je C	organic	s (DRO)) (GC)								
Lab Sample ID: MB 880-3	136/1-A								C	lient Samp			
Matrix: Solid Analysis Batch: 3108											Prep Tyj Prep		
Analysis Datch. 5100		ΜВ	MB								riep	Daten	. 5150
Analyte	Re		Qualifier		RL	ı	Jnit	г	C	Prepared	Analyz	ed	Dil Fa
Gasoline Range Organics		50.0			0.0		ng/Kg			5/14/21 15:47			- Dirita
GRO)-C6-C10			-			'		,	00		00/ 10/ ET		
Diesel Range Organics (Over C10-C28)	<	50.0	U	50	0.0	r	ng/Kg)	05	5/14/21 15:47	05/15/21	00:26	
OII Range Organics (Over C28-C	36) </td <td>50.0</td> <td>U</td> <td>50</td> <td>0.0</td> <td>r</td> <td>ng/Kg</td> <td>1</td> <td>05</td> <td>5/14/21 15:47</td> <td>05/15/21</td> <td>00:26</td> <td></td>	50.0	U	50	0.0	r	ng/Kg	1	05	5/14/21 15:47	05/15/21	00:26	
Total TPH		50.0			0.0		ng/Kg			5/14/21 15:47			
							0.0	,					
Surrogate	%Paga	MB	wo Qualifier	Limits						Prepared	Analyz	hor	Dil Fa
1-Chlorooctane	///////////////////////////////////////	128	Quaille						05	5/14/21 15:47			DIIFa
o-Terphenyl		133	S1+	70 - 13						5/14/21 15:47			
		155	011	10-13					00	///////////////////////////////////////	00/10/21	00.20	
Lab Sample ID: LCS 880-	3136/2-A							Clie	nt S	ample ID:			_
Matrix: Solid											Prep Typ		
Analysis Batch: 3108											Prep	Batch	: 313

Eurofins Xenco, Carlsbad

5

Client: WSP USA Inc. Project/Site: Ross Draw 25

Job ID: 890-674-1 SDG: 31403236.003.0129

Page 45 of 105

5	
7	
8	
9	
13	

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-31 Matrix: Solid	136/2-A					Clie	ent Sa	mple ID	: Lab Coi Prep Ty		
Analysis Batch: 3108										Batch	
Analysis Datch. 5100			Spike	1.09	S LCS				%Rec.	Daten	. 515
Analyte			Added		t Qualifier	· Unit	D	%Rec	Limits		
Diesel Range Organics (Over			1000	105		mg/Kg		106	70 - 130		
C10-C28)											
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	104		70 - 130	_							
o-Terphenyl	97		70 - 130								
_ab Sample ID: LCSD 880-	3136/3-4					Client S	amnle	D' Lah	Control	Sampl	e Du
Matrix: Solid						onent o	ampic	. ID. Lui	Prep Ty		
Analysis Batch: 3108										Batch	
			Spike	LCSI	LCSD				%Rec.		RP
Analyte			Added	Resu	t Qualifier	· Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics			1000	889.)	mg/Kg		89	70 - 130	1	2
GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)			1000	106	1	mg/Kg		106	70 - 130	0	2
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	103		70 - 130	-							
o-Terphenyl	98		70 - 130								
lethod: 300.0 - Anions	, Ion Chro	omatogra	phy								
Lab Sample ID: MB 880-31	R1/1_Δ						Cli	ont Sam	ple ID: M	lethod	Blan
Matrix: Solid								ent oan	Prep T		
Analysis Batch: 3182									i i cp i	J pc. 0	
		МВ МВ									
Analyte	Re	sult Qualifie	er	RL	Uni	t	D P	Prepared	Analy	zed	Dil Fa
Chloride	<	5.00 U		5.00	mg/	Kg			05/18/21	12:26	
Lab Sample ID: LCS 880-31	181/2-A					Clie	ent Sa	mple ID	: Lab Coi	ntrol S	ampl
Matrix: Solid									Prep T		
Analysis Batch: 3182											

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	252.8		mg/Kg		101	90 - 110	
Lab Sample ID: LCSD 880-3181/3-A			C	lient Sam	nple	ID: Lab	Control Sa	mple Dup

Client Sample ID: Lab Control Sample Dup Prep Type: Soluble

Analysis Batch: 3182							•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	249.8		mg/Kg		100	90 - 110	1	20

Matrix: Solid

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25

GC VOA

Prep Batch: 3160

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-674-1	SS01	Total/NA	Solid	5035	
890-674-2	SS02	Total/NA	Solid	5035	
890-674-3	SS03	Total/NA	Solid	5035	
MB 880-3160/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-3160/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-3160/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-674-1 MS	SS01	Total/NA	Solid	5035	
890-674-1 MSD	SS01	Total/NA	Solid	5035	

Analysis Batch: 3161

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-674-1	SS01	Total/NA	Solid	8021B	3160	
890-674-2	SS02	Total/NA	Solid	8021B	3160	
890-674-3	SS03	Total/NA	Solid	8021B	3160	
MB 880-3160/5-A	Method Blank	Total/NA	Solid	8021B	3160	
LCS 880-3160/1-A	Lab Control Sample	Total/NA	Solid	8021B	3160	
LCSD 880-3160/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	3160	
890-674-1 MS	SS01	Total/NA	Solid	8021B	3160	
890-674-1 MSD	SS01	Total/NA	Solid	8021B	3160	

GC Semi VOA

Analysis Batch: 3108

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-674-1	SS01	Total/NA	Solid	8015B NM	3136
890-674-2	SS02	Total/NA	Solid	8015B NM	3136
890-674-3	SS03	Total/NA	Solid	8015B NM	3136
MB 880-3136/1-A	Method Blank	Total/NA	Solid	8015B NM	3136
LCS 880-3136/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	3136
LCSD 880-3136/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	3136

Prep Batch: 3136

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-674-1	SS01	Total/NA	Solid	8015NM Prep	
890-674-2	SS02	Total/NA	Solid	8015NM Prep	
890-674-3	SS03	Total/NA	Solid	8015NM Prep	
MB 880-3136/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-3136/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-3136/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

HPLC/IC

Leach Batch: 3181

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-674-1	SS01	Soluble	Solid	DI Leach	
890-674-2	SS02	Soluble	Solid	DI Leach	
890-674-3	SS03	Soluble	Solid	DI Leach	
MB 880-3181/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-3181/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-3181/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Page 46 of 105

4 5

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 Job ID: 890-674-1 SDG: 31403236.003.0129

HPLC/IC

Analysis Batch: 3182

b Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
0-674-1	SS01	Soluble	Solid	300.0	3181
0-674-2	SS02	Soluble	Solid	300.0	3181
0-674-3	SS03	Soluble	Solid	300.0	3181
8 880-3181/1-A	Method Blank	Soluble	Solid	300.0	3181
S 880-3181/2-A	Lab Control Sample	Soluble	Solid	300.0	3181
SD 880-3181/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	3181

Lab Chronicle

Client: WSP USA Inc. Project/Site: Ross Draw 25

Client Sample ID: SS01 Date Collected: 05/13/21 14:02 Date Received: 05/14/21 09:57

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3160	05/17/21 09:05	MR	XEN MID
Total/NA	Analysis	8021B		1	3161	05/17/21 14:46	MR	XEN MID
Total/NA	Prep	8015NM Prep			3136	05/14/21 15:47	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3108	05/15/21 04:16	AJ	XEN MID
Soluble	Leach	DI Leach			3181	05/17/21 15:21	СН	XEN MID
Soluble	Analysis	300.0		50	3182	05/18/21 12:57	СН	XEN MID

Client Sample ID: SS02 Date Collected: 05/13/21 14:10 Date Received: 05/14/21 09:57

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3160	05/17/21 09:05	MR	XEN MID
Total/NA	Analysis	8021B		1	3161	05/17/21 17:47	MR	XEN MID
Total/NA	Prep	8015NM Prep			3136	05/14/21 15:47	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3108	05/15/21 04:36	AJ	XEN MID
Soluble	Leach	DI Leach			3181	05/17/21 15:21	СН	XEN MID
Soluble	Analysis	300.0		50	3182	05/18/21 13:02	СН	XEN MID

Client Sample ID: SS03 Date Collected: 05/13/21 14:20 Date Received: 05/14/21 09:57

Γ	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3160	05/17/21 09:05	MR	XEN MID
Total/NA	Analysis	8021B		1	3161	05/17/21 18:13	MR	XEN MID
Total/NA	Prep	8015NM Prep			3136	05/14/21 15:47	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3108	05/15/21 04:57	AJ	XEN MID
Soluble	Leach	DI Leach			3181	05/17/21 15:21	СН	XEN MID
Soluble	Analysis	300.0		20	3182	05/18/21 13:07	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-674-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

SDG: 31403236.003.0129

Lab Sample ID: 890-674-1

Lab Sample ID: 890-674-3

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 Job ID: 890-674-1 SDG: 31403236.003.0129

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pi	rogram	Identification Number	Expiration Date
exas	N	ELAP	T104704400-20-21	06-30-21
The following applyto	are included in this rep	art but the leberatory is r	at cartified by the gaverning outbority	This list many include an all the families
the agency does not o	•	ort, but the laboratory is r	lot certified by the governing authority.	This list may include analytes for whic
• •	•	Matrix	Analyte	This list may include analytes for which
the agency does not o	offer certification.			This list may include analytes for whic

10

Client: WSP USA Inc. Project/Site: Ross Draw 25 Job ID: 890-674-1 SDG: 31403236.003.0129

Page 50 of 105

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 Job ID: 890-674-1 SDG: 31403236.003.0129

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
90-674-1	SS01	Solid	05/13/21 14:02	05/14/21 09:57		4
90-674-2	SS02	Solid		05/14/21 09:57		
90-674-3	SS03	Solid	05/13/21 14:20	05/14/21 09:57	0.5'	5
						8
						9
						1:
						1:

					C L	ain	9	C L S L	Chain of Custodv				Work Order No:	rder No	••	
X	CER ATORIES		Houston,T Midland,	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296	0 Dalla: 0) EL F	s,TX (21 °aso,TX	4) 902- (915)5	0300 S 35-3443	an Antonio, Lubbock,T	TX (210) 5 X (806)79	09-3334 4-1296				0	
Project Manager:	Dan Moir	10000	B	Bill to: (if different) Kyle Littrell	7	Kyle Littrell	₽			-			Work Order (Order C	Work Order Comments	
	WSP Permian office		0	Company Name:		XTO Energy	rgy					Program: UST/PST		□rownfields	elds []RC	Derfund
	3300 North A Street		A	Address:		3104 e Green Street	reen S	treet				State of Project:]
te ZIP:	Midland, Tx 79705		0	City, State ZIP:	0	Carlsbad, NM, 88220	, NM, 8	8220				Reporting:Level II	evel III			l[⊧vel IV
	(432) 236-3849		Email:	Email: Elliot.Lee@wsp.com,		acoma	.Morris	sey@v	Tacoma.Morrissey@wsp.com			Deliverables: EDD		ADaPT	Other:	er:
Project Name:	Ross Draw 25	aw 25	Turr	Turn Around					A١	ANALYSIS REQUEST	REQUE	EST			Work (Work Order Notes
Project Number:	31403236.003.0129	03.0129	Routine		_										Cost Center	Cost Center 1056651001
P.O. Number:			Rush:									_			Incident # N/	Incident # NAPP2111853419
Sampler's Name:	Elliot Lee	Lee	Due Date:	ate:									_	-		
SAMPLE RECEIPT	PT Temp Blank:	k: Yes (No	Wet Icet Yes	Yes No	5											
Temperature (°C):	20/1.8		Thermometer ID		iner			') 								
Received Intact:	1 Yes	, M	NNN	j j				300.			74 Chair	0-674 Chain of Custody				
Sample Custody Seals:	s: Yes No N/A		Total Containers:										_		lab, if recu	lab, if received by 4:30pm
Sample Identification	ification Matrix	x Date Sampled	Time Sampled	Depth	Numbe	TPH (E	BTEX (E	Chlorid							Sample	Sample Comments
SS01	S	5/13/2021	14:02	0.5		\square		×								Discrete
SS02	s	5/13/2021	14:10	0.5	->	×	×	×		_	-					Discrete
SSO3	s	5/13/2021	14:20	0.5	-	×	×	×		-	┢		\vdash			Discrete
					++	+ +	++-	+ +-			╉╋					
											$\left \right $					
					-		$\left - \right $									
Total 200.7 / 6010 Circle Method(s) a	otal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	8	8RCRA 13PPM Te TCLP / SPLP 6010:		RA ≥	As As	Ba Be Ba Be	Cω	Cd Ca Cr Cr Co Cu	명 S	CuFePb MnMoNi	Mg Mn Mo Ni Se Ag TI U	K Se Ag	SiO2	a Sr Ti Sn 11/245.1/7	Na Sr TI Sn U V Zn 1631/245.1/7478 /7471. Hg
Notice: Signature of this d of service. Xenco will be i of Xenco. A minimum cha	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Service. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	t of samples consti nples and shall not to each project and	tutes a valid pure assume any resj d a charge of \$5 f	chase order from ponsibility for any for each sample s	client co losses ubmittec	mpany t or expen I to Xenc	o Xenco ses incu io, but n	its affit irred by ot analy:	iates and su the client if zed. These t	such losses ms will be	s. It assign are due to enforced (ns standard terms and c o circumstances beyond unless previously negoti	onditions the control ated.			
Relinquished by: (Signature)	(Signature)	Received	Received by: (Signature)	e)		Date/Time	me		Relinquished	shed by:	by: (Signature)		Received by: (Signature)	(Signatur	e)	Date/Time
1 Wint 4		loe (by	8		5-14-21 O	1.21	20									
5								6							Revi	Revised Date 051418 Rev. 2018.
																acd Date out the new Action

13

Job Number: 890-674-1

SDG Number: 31403236.003.0129

List Source: Eurofins Xenco, Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 674 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
O - stain - se suidin se - se har den se a have se har den se a sub-shill is	N1/A	

Containers requiring zero headspace have no headspace or bubble is N/A <6mm (1/4").

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 674 List Number: 2 Creator: Copeland, Tatiana

Job Number: 890-674-1
SDG Number: 31403236.003.0129

List Source: Eurofins Xenco, Midland
List Creation: 05/14/21 04:07 PM

		Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC	. True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Received by OCD: 10/14/2021 10:11:52 AM

eurofins 🔅

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-781-1

Laboratory Sample Delivery Group: 31403236.003.0129 Client Project/Site: Ross Draw 25

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 6/9/2021 8:37:27 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access **Have a Question?** Ask-The Expert Visit us at:

www.eurofinsus.com/Env Released to Imaging: 11/17/2021 9:38:54 AM

•

Laboratory Job ID: 890-781-1 SDG: 31403236.003.0129

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

Page 57 of 105

	Definitions/Glossary		
Client: WSP US Project/Site: Rc		Job ID: 890-781-1 SDG: 31403236.003.0129	2
Qualifiers			3
GC VOA Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		5
GC Semi VOA			
Qualifier	Qualifier Description		0
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC Qualifier	Qualifier Description		9
	Indicates the analyte was analyzed for but not detected.		U
			0
Glossary			3
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

RER

RPD

TEF

TEQ

TNTC

RL

Job ID: 890-781-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-781-1

Receipt

The samples were received on 6/4/2021 1:23 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.8°C

Receipt Exceptions

The following samples analyzed for method BTEX 8021 were received and analyzed from an unpreserved bulk soil jar: PH01 (890-781-1), PH01C (890-781-2), PH02B (890-781-3), PH02C (890-781-4), FS01 (890-781-5), FS02 (890-781-6), FS03 (890-781-7) and FS04 (890-781-8).

GC VOA

Method 8021B: Internal standard responses were outside of acceptance limits for the following samples: PH01C (890-781-2), PH02C (890-781-4) and FS04 (890-781-8). The sample(s) shows evidence of matrix interference.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

Lab Sample ID: 890-781-1

Matrix: Solid

5

Date Collected: 06/03/21 09:50 Date Received: 06/04/21 13:23

Client Sample ID: PH01

Project/Site: Ross Draw 25

Sample Depth: - 1

Client: WSP USA Inc.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		06/07/21 08:42	06/07/21 14:36	1
Toluene	<0.00201	U	0.00201	mg/Kg		06/07/21 08:42	06/07/21 14:36	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		06/07/21 08:42	06/07/21 14:36	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		06/07/21 08:42	06/07/21 14:36	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		06/07/21 08:42	06/07/21 14:36	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		06/07/21 08:42	06/07/21 14:36	1
Total BTEX	<0.00402	U	0.00402	mg/Kg		06/07/21 08:42	06/07/21 14:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130			06/07/21 08:42	06/07/21 14:36	1
1,4-Difluorobenzene (Surr)	103		70 - 130			06/07/21 08:42	06/07/21 14:36	1
Method: 8015B NM - Diesel R	ange Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		06/07/21 09:23	06/07/21 16:26	1

1 Oblassastasa			70 400		00/07/04 00.00	00/07/04 40 00		
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
Total TPH	<49.9	U	49.9	mg/Kg	06/07/21 09:23	06/07/21 16:26	1	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg	06/07/21 09:23	06/07/21 16:26	1	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg	06/07/21 09:23	06/07/21 16:26	1	
(GRO)-C6-C10								

Method: 300.0 - Anions, Ion Chromatograph	hy - Soluble				
o-Terphenyl	73	70 - 130	06/07/21 09:23	06/07/21 16:26	1
1-Chlorooctane	88	70 - 130	06/07/21 09:23	06/07/21 16:26	1

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17100	251	mg/Kg			06/08/21 22:05	50

Client Sample ID: PH01C Date Collected: 06/03/21 10:05 Date Received: 06/04/21 13:23

Date Received: 06/04/21 13:2 Sample Depth: - 4

Method: 8021B - Volatile Organ	nic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 14:56	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 14:56	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 14:56	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		06/07/21 08:42	06/07/21 14:56	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 14:56	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		06/07/21 08:42	06/07/21 14:56	1
Total BTEX	<0.00399	U	0.00399	mg/Kg		06/07/21 08:42	06/07/21 14:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130			06/07/21 08:42	06/07/21 14:56	1
1,4-Difluorobenzene (Surr)	98		70 - 130			06/07/21 08:42	06/07/21 14:56	1

Lab Sample ID: 890-781-2

Matrix: Solid

Lab Sample ID: 890-781-2

Lab Sample ID: 890-781-3

Matrix: Solid

Client Sample ID: PH01C

Date Collected: 06/03/21 10:05 Date Received: 06/04/21 13:23

Sample Depth: - 4

Client: WSP USA Inc.

Project/Site: Ross Draw 25

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		06/07/21 09:23	06/07/21 16:47	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		06/07/21 09:23	06/07/21 16:47	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/07/21 09:23	06/07/21 16:47	1
Total TPH	<49.9	U	49.9	mg/Kg		06/07/21 09:23	06/07/21 16:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	87		70 - 130			06/07/21 09:23	06/07/21 16:47	1
o-Terphenyl	71		70 - 130			06/07/21 09:23	06/07/21 16:47	1
– Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9660		50.3	mg/Kg			06/08/21 22:10	10

Client Sample ID: PH02B

Date Collected: 06/03/21 11:00 Date Received: 06/04/21 13:23 Sample Depth: - 3

Method: 8021B - Volatile Orga	nic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		06/07/21 08:42	06/07/21 15:17	1
Toluene	<0.00199	U	0.00199	mg/Kg		06/07/21 08:42	06/07/21 15:17	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/07/21 08:42	06/07/21 15:17	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/07/21 08:42	06/07/21 15:17	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/07/21 08:42	06/07/21 15:17	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/07/21 08:42	06/07/21 15:17	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		06/07/21 08:42	06/07/21 15:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			06/07/21 08:42	06/07/21 15:17	1

1,4-Difluorobenzene (Surr)	101		70 - 130			06/07/21 08:42	06/07/21 15:17	1
– Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		06/07/21 09:23	06/07/21 17:08	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		06/07/21 09:23	06/07/21 17:08	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/07/21 09:23	06/07/21 17:08	1
Total TPH	<49.9	U	49.9	mg/Kg		06/07/21 09:23	06/07/21 17:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	85		70 - 130			06/07/21 09:23	06/07/21 17:08	1
o-Terphenyl	70		70 - 130			06/07/21 09:23	06/07/21 17:08	1
_ Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7700		50.5	mg/Kg			06/08/21 22:16	10

Eurofins Xenco, Carlsbad

Matrix: Solid

Lab Sample ID: 890-781-4

Matrix: Solid

5

Date Collected: 06/03/21 11:05 Date Received: 06/04/21 13:23 Sample Depth: - 4

Client Sample ID: PH02C

Client: WSP USA Inc.

Project/Site: Ross Draw 25

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 15:37	· · ·
Toluene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 15:37	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 15:37	
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		06/07/21 08:42	06/07/21 15:37	
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 15:37	
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		06/07/21 08:42	06/07/21 15:37	
Total BTEX	<0.00401	U	0.00401	mg/Kg		06/07/21 08:42	06/07/21 15:37	•

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130	06/07/21 08:42	06/07/21 15:37	1
1,4-Difluorobenzene (Surr)	97		70 - 130	06/07/21 08:42	06/07/21 15:37	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		06/07/21 09:23	06/07/21 17:50	1	
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		06/07/21 09:23	06/07/21 17:50	1	
C10-C28)									
Oll Range Organics (Over C28-	-C36) <50.0	U	50.0	mg/Kg		06/07/21 09:23	06/07/21 17:50	1	
Total TPH	<50.0	U	50.0	mg/Kg		06/07/21 09:23	06/07/21 17:50	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130	06/07/21 09:23	06/07/21 17:50	1
o-Terphenyl	69	S1-	70 - 130	06/07/21 09:23	06/07/21 17:50	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qu	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1830	24.8	mg/Kg			06/08/21 22:32	5

Client Sample ID: FS01 Date Collected: 06/03/21 12:45

Date Received: 06/04/21 13:23

Sample Depth: - 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00201	U	0.00201	mg/Kg		06/07/21 08:42	06/07/21 15:57	1
Toluene	<0.00201	U	0.00201	mg/Kg		06/07/21 08:42	06/07/21 15:57	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		06/07/21 08:42	06/07/21 15:57	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		06/07/21 08:42	06/07/21 15:57	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		06/07/21 08:42	06/07/21 15:57	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		06/07/21 08:42	06/07/21 15:57	1
Total BTEX	<0.00402	U	0.00402	mg/Kg		06/07/21 08:42	06/07/21 15:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			06/07/21 08:42	06/07/21 15:57	1
1,4-Difluorobenzene (Surr)	101		70 - 130			06/07/21 08:42	06/07/21 15:57	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-781-5

Matrix: Solid

Matrix: Solid

5

Job ID: 890-781-1 SDG: 31403236.003.0129

Lab Sample ID: 890-781-5

Lab Sample ID: 890-781-6

06/07/21 08:42 06/07/21 17:49

Matrix: Solid

1

Client Sample ID: FS01

Project/Site: Ross Draw 25

Date Collected: 06/03/21 12:45 Date Received: 06/04/21 13:23

Sample Depth: - 2

Client: WSP USA Inc.

	e Organics (D							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7	mg/Kg		06/07/21 09:23	06/07/21 18:10	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.7	U	49.7	mg/Kg		06/07/21 09:23	06/07/21 18:10	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		06/07/21 09:23	06/07/21 18:10	1
Total TPH	<49.7	U	49.7	mg/Kg		06/07/21 09:23	06/07/21 18:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130			06/07/21 09:23	06/07/21 18:10	1
o-Terphenyl	70		70 - 130			06/07/21 09:23	06/07/21 18:10	1
- Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1290		24.8	mg/Kg			06/08/21 22:38	5

Client Sample ID: FS02

1,4-Difluorobenzene (Surr)

Date Collected: 06/03/21 13:57 Date Received: 06/04/21 13:23 Sample Depth: - 2

Method: 8021B - Volatile Orga	nic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 17:49	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 17:49	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 17:49	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		06/07/21 08:42	06/07/21 17:49	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 17:49	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		06/07/21 08:42	06/07/21 17:49	1
Total BTEX	<0.00399	U	0.00399	mg/Kg		06/07/21 08:42	06/07/21 17:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130			06/07/21 08:42	06/07/21 17:49	1

70 - 130

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		06/07/21 09:23	06/07/21 18:31	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		06/07/21 09:23	06/07/21 18:31	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/07/21 09:23	06/07/21 18:31	1
Total TPH	<49.8	U	49.8	mg/Kg		06/07/21 09:23	06/07/21 18:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	82		70 - 130			06/07/21 09:23	06/07/21 18:31	1
o-Terphenyl	67	S1-	70 - 130			06/07/21 09:23	06/07/21 18:31	1
 Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.02		5.00	mg/Kg			06/08/21 19:57	1

Lab Sample ID: 890-781-7

Lab Sample ID: 890-781-8

Matrix: Solid

Matrix: Solid

5

Date Collected: 06/03/21 14:46 Date Received: 06/04/21 13:23 Sample Depth: - 2

Client Sample ID: FS03

Client: WSP USA Inc.

Project/Site: Ross Draw 25

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
Benzene	<0.00199	U	0.00199	mg/Kg		06/07/21 08:42	06/07/21 18:09
Toluene	<0.00199	U	0.00199	mg/Kg		06/07/21 08:42	06/07/21 18:09
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/07/21 08:42	06/07/21 18:09
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/07/21 08:42	06/07/21 18:09
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/07/21 08:42	06/07/21 18:09
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/07/21 08:42	06/07/21 18:09
Total BTEX	<0.00398	U	0.00398	mg/Kg		06/07/21 08:42	06/07/21 18:09

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113	70 - 130	06/07/21 08:42	06/07/21 18:09	1
1,4-Difluorobenzene (Surr)	101	70 - 130	06/07/21 08:42	06/07/21 18:09	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<49.7	U	49.7	mg/Kg		06/07/21 09:23	06/07/21 18:52	1	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7	mg/Kg		06/07/21 09:23	06/07/21 18:52	1	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		06/07/21 09:23	06/07/21 18:52	1	
Total TPH	<49.7	U	49.7	mg/Kg		06/07/21 09:23	06/07/21 18:52	1	
Surrogate	%Recoverv	Qualifier	Limits			Prepared	Analyzed	Dil Fac	

	Surrogate	%Recovery	Qualifier	Limits	Preparec	Analyzed	Dil Fac
	1-Chlorooctane	88		70 - 130	06/07/21 09	06/07/21 18:52	1
l	o-Terphenyl	73		70 - 130	06/07/21 09	:23 06/07/21 18:52	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	199	5.00	mg/Kg			06/08/21 20:02	1

Client Sample ID: FS04

Date Collected: 06/03/21 15:16 Date Received: 06/04/21 13:23

Sample Depth: - 2

Method: 8021B - Volatile Organ	ic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 18:29	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 18:29	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 18:29	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		06/07/21 08:42	06/07/21 18:29	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/07/21 08:42	06/07/21 18:29	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		06/07/21 08:42	06/07/21 18:29	1
Total BTEX	<0.00401	U	0.00401	mg/Kg		06/07/21 08:42	06/07/21 18:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	140	S1+	70 - 130			06/07/21 08:42	06/07/21 18:29	1
1,4-Difluorobenzene (Surr)	88		70 - 130			06/07/21 08:42	06/07/21 18:29	1

Client Sample ID: FS04

Project/Site: Ross Draw 25

Date Collected: 06/03/21 15:16 Date Received: 06/04/21 13:23

Sample Depth: - 2

Client: WSP USA Inc.

Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		06/07/21 09:23	06/07/21 19:13	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		06/07/21 09:23	06/07/21 19:13	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/07/21 09:23	06/07/21 19:13	1
Total TPH	<49.8	U	49.8	mg/Kg		06/07/21 09:23	06/07/21 19:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130			06/07/21 09:23	06/07/21 19:13	1
o-Terphenyl	69	S1-	70 - 130			06/07/21 09:23	06/07/21 19:13	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1540		24.8	mg/Kg			06/08/21 20:07	5

Lab Sample ID: 890-781-8 Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Li
		BFB1	DFBZ1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
0-781-1	PH01	117	103	· · · · ·
90-781-2	PH01C	123	98	
0-781-3	PH02B	120	101	
781-4	PH02C	125	97	
00-781-5	FS01	116	101	
0-781-6	FS02	114	99	
-781-7	FS03	113	101	
-781-8	FS04	140 S1+	88	
880-3823/1-A	Lab Control Sample	108	95	
880-3849/1-A	Lab Control Sample	106	97	
D 880-3823/2-A	Lab Control Sample Dup	107	94	
SD 880-3849/2-A	Lab Control Sample Dup	105	97	
B 880-3823/5-A	Method Blank	109	92	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
390-781-1	PH01	88	73	
90-781-2	PH01C	87	71	
890-781-3	PH02B	85	70	
90-781-4	PH02C	84	69 S1-	
90-781-5	FS01	86	70	
90-781-6	FS02	82	67 S1-	
90-781-7	FS03	88	73	
90-781-8	FS04	86	69 S1-	
CS 880-3830/2-A	Lab Control Sample	93	72	
CSD 880-3830/3-A	Lab Control Sample Dup	94	74	
/IB 880-3830/1-A	Method Blank	89	74	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-781-1

Prep Type: Total/NA

SDG: 31403236.003.0129

Page 65 of 105

Job ID: 890-781-1 SDG: 31403236.003.0129

Client: WSP USA Inc. Project/Site: Ross Draw 25

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-3823/5-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 3829 Prep Batch: 3823 MB MB Analyte Result Qualifier RL Unit D Prepared Analvzed Benzene <0.00200 U 0.00200 mg/Kg 06/07/21 08:42 06/07/21 12:25 Toluene <0.00200 U 0.00200 mg/Kg 06/07/21 08:42 06/07/21 12:25 Ethylbenzene 0.00200 06/07/21 12:25 <0.00200 U mg/Kg 06/07/21 08:42 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 06/07/21 08:42 06/07/21 12:25 o-Xylene <0.00200 U 0.00200 06/07/21 08:42 06/07/21 12:25 mg/Kg 06/07/21 12:25 Xylenes, Total <0.00400 U 0.00400 mg/Kg 06/07/21 08:42 Total BTEX <0.00400 U 0.00400 mg/Kg 06/07/21 08:42 06/07/21 12:25 MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 109 70 - 130 06/07/21 08:42 06/07/21 12:25 1,4-Difluorobenzene (Surr) 92 70 - 130 06/07/21 08:42 06/07/21 12:25 Lab Sample ID: LCS 880-3823/1-A Matrix: Solid Analysis Batch: 3829 Spike LCS LCS Added **Result Qualifier** Analyte Unit Benzene 0.100 0.07985 mg/Kg Toluene 0.100 0.09903 mg/Kg 0.1032 Ethylbenzene 0.100 mg/Kg m-Xylene & p-Xylene 0.200 0.2134 mg/Kg o-Xylene 0 100 0.1065 mg/Kg LCS LCS %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 108 70 - 130 1,4-Difluorobenzene (Surr) 95 Lab Sample ID: LCSD 880-3823/2-A **Client Sample ID: Lab Control Sample Dup** Matrix: Solid Prep Type: Total/NA Analysis Batch: 3829 Prep Batch: 3823 Spike LCSD LCSD %Rec. Analyte Added Result Qualifier Unit %Rec Limits D

RPD Benzene 0.100 0.08619 mg/Kg 86 70 - 130 8 35 Toluene 0.100 0.1035 104 70 - 130 35 mg/Kg 4 Ethylbenzene 0.100 0.1091 mg/Kg 109 70 - 130 6 35 m-Xylene & p-Xylene 0.200 0.2254 mg/Kg 113 70 - 130 5 35 0.100 o-Xylene 0.1132 mg/Kg 113 70 - 130 6 35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

Lab Sample ID: LCS 880-3849/1-A Matrix: Solid Analysis Batch: 3829				Client	: Sample	Prep T	ontrol Sample Type: Total/NA p Batch: 3849	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result 0.08550	Qualifier	Unit mg/Kg	<u> </u>	%Rec 86	Limits 70 - 130	

Eurofins Xenco, Carlsbad

Dil Fac

1

1

1

1

1

1

RPD

Limit

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Pren Batch: 3823

		Prep Batch: 3823	
		%Rec.	
D	%Rec	Limits	
	80	70 - 130	
	99	70 - 130	
	103	70 - 130	
	107	70 _ 130	
	107	70 - 130	

Page 67 of 105

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Analysis Batch: 3829 Prep Type: Spike LCS LCS LCS LCS Prep Bat Analysis Burlylenzene 0.100 0.09957 mgKg 0 %Rec: Inuits %Rec: Wate Sylke 0.100 0.09957 mgKg 100 70.130 m:Xylens & p-Xylene 0.200 0.2033 mgKg 102 70.130 Synge LCS LCS Streacevery Quanteer Iunits Prep Type: Type: Type: Type					A	Sample ID: LCS 880-3849/1-A ix: Solid
Spike LCS LCS VRec. Toluane 0.100 0.00957 mgKg 100 70.130 Enlybenzano 0.000 0.00957 mgKg 100 70.130 eXytene 0.000 0.00957 mgKg 100 70.130 eXytene 0.000 0.00957 mgKg 100 70.130 f.CS LCS						
Analyse Added Result Quilifer Unit D % Rec Limits Disure 0.100 0.09967 mg/Kg 100 70.130 m-Kylene S p-Xylene 0.200 0.2043 mg/Kg 105 70.130 Surrogate LCS LCS LCS LCS 105 70.130 Surrogate NRecovery Quilifer Limits 70.130 70.130 Surrogate NRecovery Quilifer Limits 70.130 70.130 Lab Sample ID: LCSD 880-3849/2-A Matrix: Solid Result Quilifer Unit 0 %Rec Prop Type: Analyte Added Result Quilifer Unit 0 %Rec Prop Type: Prop Type			Snike			SIS Datch. 3029
Date Description Description <thdescription< th=""> <thde< th=""><th></th><th></th><th>-</th><th></th><th></th><th>te</th></thde<></thdescription<>			-			te
Ehrybenzene 0.100 0.09897 mgKg 100 70.130 Xymee 0.200 0.2043 mgKg 102 70.130 -Syleme 0.100 0.1050 mgKg 105 70.130 Surrogate K2S LCS Limits 70.130 70.130 1,4-Diffuencebanzene (Surr) 97 70.130 70.130 Prop Type: P		0				
Bit Nylene 0.200 0.203 mgKg 102 70.130 xNylene 0.100 0.1050 mgKg 105 70.130 Swrogate LCS LCS LCS						
Sylpie 0.100 0.1050 mg/kg 105 70.130 Surrogate Surrogate LCS LCS Surrogate Limits LCS LCS LCS LCS Surrogate Limits LCS LCSD Client Sample ID: Leb Control Sam Analysis Batch: 3829 Spike LCSD LCSD Spike Analyce Added Result Qualifier Vilee colspan="4">New Spike LCSD LCSD Spike LCSD LCSD LCSD LCSD Client Sample ID: Method Sample ID: Maged to 70 - 130 Spike LImits Feromotivocobenzere (Sum) 97 70 - 130 Maged colspan="4">Client Sample ID: Method Sample ID: MB & Spike LCSD LCSD Limits Feromotivocobenzere (Sum) 100 70 - 130 Prep Type: Type: Type: Type: Type						
LCS LCS LCS Surrogae Secovery Qualifier Limits H-Bromothomobenzene (Surr) 97 70.130 Lab Sample ID: LCSD 880-3849/2-A Client Sample ID: Lab Control Sam Matrix: Solid Prop Bat Analyse Added Result Qualifier Unit D %Rec Analyse Added Result Qualifier Unit D %Rec Einitis Result Qualifier 0.000 0.09437 mg/Kg 98 70.130 Spike Added Result Qualifier Unit D %Rec Einitis Nytene 8.p.Xytene 0.100 0.09437 mg/Kg 98 70.130 Sytene 0.100 0.1070 mg/Kg 102 70.130 Surrogate XHeecovery Qualifier Limits To.130 102 70.130 Surrogate XHeecovery Qualifier Limits To.130 102 70.130 Lab Sample ID: MB 80-3830/1-A Streecovery Qualiffer Limits Einit Sample ID:						
Surrogate %Recovery 106 Limits 70 · 130 L-Bromohiuorobenzene (Surr) 97 70 · 130 Analysis Batch: 3829 Client Sample ID: LCSD 880-3849/2-A Matrix: Solid Client Sample ID: Lab Control Sam Prog Type: Trop Bate Analysis Batch: 3829 Spike LCSD LCSD Mit 0 %Rec C Analysis Batch: 3829 0.100 0.08437 mg/Kg 84 70 · 130 Servane 0.100 0.08437 mg/Kg 84 70 · 130 Ethylencene 0.100 0.00721 mg/Kg 102 70 · 130 Sylene 0.100 0.1070 mg/Kg 107 70 · 130 Surrogate %Recovery Qualifier Limits For 130 70 · 130 Standaptic %Recovery Qualifier Limits Prop Prop: Prop Prop: 14-Difluorobenzene (Surr) 97 70 · 130 100 1007 70 · 130 Standaptic Result Qualifier Limits Client Sample ID: Methor Prop Prop: Analyse Result Qualifier Limits </td <td>0.1050</td> <td></td> <td>0.100</td> <td></td> <td></td> <td></td>	0.1050		0.100			
LBDmont/luorobenzene (Surr) 106 70 - 130 4.4D/luorobenzene (Surr) 97 70 - 130 Lab Sample ID: LCSD 880-3849/2-A Matrix: Solid Client Sample ID: Lab Control Sam Prep Type: Prep Bat Analysis Batch: 3829 Spike LCSD LCSD Virac: Prep Bat Analysis Batch: 3829 Spike LCSD LCSD Virac: Prep Bat Analysis Batch: 3829 0.000 0.0437 mg/kg 98 70 - 130 Sinvene 0.100 0.0437 mg/kg 102 70 - 130 Sinvene 0.000 0.024 mg/kg 102 70 - 130 xylene & p.xylene 0.200 0.2101 mg/kg 102 70 - 130 synogate LCSD LCSD LCSD LCSD Prep Type: Prep Type: Hormothuorobenzene (Surr) 105 70 - 130 70 - 130 Prep Type: Prep Type: Analyzed Result Qualifier Limits Client Sample ID: Methe Prep Type: Prep Bat Analyzed Result Qualifier MB MB MB MB			\$	LCS	LCS	
Lither Solid Analysis Batch: 3829 Client Sample ID: LGSD 880-3849/2-A Matrix: Solid Analysis Batch: 3829 Client Sample ID: Lab Control Sam Prop Bat Nee: The Distribution of the Sample ID: Lab Control Sam Prop Bat Nee: The Distribution of the Sample ID: Lab Control Sam Prop Bat Nee: The Distribution of the Sample ID: Lab Control Sam Prop Bat Nee: The Sample ID: Match Sample ID: Lab Control Sam Prop Bat Nee: The Sample ID: Match Sample ID: Lab Control Sam Prop Bat Nee: The Sample ID: Match Sample ID: Lab Control Sam Prop Bat Nee: The Sample ID: Match Sample ID: Lab Control Sample ID: LCS 880-3830/2-A Matrix: Solid Analysis Batch: 3835 Match Sample ID: Lab Control Sample ID: LCS 880-3830/2-A Matrix: Solid Analysis Batch: 3835			alifier Limits	Qualif	%Recovery	gate %
Lab Sample ID: LCSD 880-3849/2-A Matrix: Solid Analysis Batch: 3829 Client Sample ID: Lab Control Sample Prep Bat Nalyte Analyte Analysis Batch: 3829 Spike Added LCSD Result LCSD 0.004437 Unit mg/Kg D %Rec 44 To 10.100 Web 70.130 Analyte Barezene Brouene 0.100 0.004437 mg/Kg B 76.130 70.130 Chylene & p.Xylene 0.200 0.2101 mg/Kg 107 70.130 Sylene 0.200 0.2101 mg/Kg 107 70.130 Sylene 0.200 0.2101 mg/Kg 107 70.130 Sylene 105 70.130 70.130 70.130 70.130 Surrogate XRecovery Matrix: Solid Kesult Qualifier Limits 70.130 70.130 70.130 Analyzed MB MB MB Client Sample ID: McB 880-3830/1-A Matrix: Solid Client Sample ID: McB 680-3830/1-A Matrix: Solid Client Sample ID: McB 680-3830/1-A Matrix: Solid Client Sample ID: McB 680-3830/1-A Matrix: Solid MB MB Client Sample ID: McB 600721 10:23 0607/21 12:16 Prep Tatrix S		_	70 - 130		106	mofluorobenzene (Surr)
Matrix: Solid Analysis Batch: 3829 Prep Type: Drep Batch: 3829 Prep Type: WRec: Analysis Batch: 3829 Spike LCSD Unit D %Rec: Virke: Wrec:			70 - 130		97	ifluorobenzene (Surr)
Matrix: Solid Analysis Batch: 3829 Prep Type: Drep Bate Spike CSD LCSD Prep Bate Wate Prep Bate Wate Image Added Result Qualifier Unit D %Rec. Limits Prep Bate Image 0.100 0.08437 mg/Kg 84 70.130 Prep Bate Image 0.100 0.09741 mg/Kg 98 70.130 Prep Bate Image 0.100 0.0107 mg/Kg 105 70.130 Prep Pare Prep Bate Prep Bate Prep Bate Prep Bate Prep Pare Prep Pare Prep Pare Prep Pare Prep Pare Prep Bate Prep Bate Prep Pare Prep Pare </td <td></td> <td></td> <td></td> <td></td> <td>ρ_Δ</td> <td>Sample ID: 1 CSD 880-3849/2-</td>					ρ_Δ	Sample ID: 1 CSD 880-3849/2-
Analysis Batch: 3829 Prop Bat majvie Added Result Qualifier Unit D 9.86c. Limits Prop Bat isuance 0.100 0.08437 mg/kg 9.8 70.130 Prop Bat isuance 0.100 0.09781 mg/kg 9.8 70.130 Prop Pate isuance 0.100 0.002437 mg/kg 9.8 70.130 Prop Pate isuance 0.100 0.0024 mg/kg 105 70.130 Prop Pate isuance 0.100 0.1070 mg/kg 107 70.130 Prop Pate isuance Second Operation To.130 Prop Pate						
knalyte Spike LCSD LCSD Unit D %Rec. RPI Spike 0.100 0.09781 mg/Kg 98 70.130 70.130 Striptenzene 0.100 0.09781 mg/Kg 102 70.130 70.130 Lthytenzene 0.100 0.1070 mg/Kg 107 70.130 -xytene 0.100 0.1070 mg/Kg 107 70.130 Surrogate %Recovery Qualiffer Limits 107 70.130 -4Diffuorobenzene (Surr) 97 70.130 70.130 107 70.130 ethod: 8015B NM - Diesel Range Organics (DRO) (GC) Ethod: Ethod: 8016721 08.23 Ge07721 12.12 Sasoline Range Organics (Over <50.0						
Malyte Added Result Qualifier Unit D %Rec Limits RP lenzzne 0.100 0.08437 mg/Kg 98 70.130 70.130 withybenzene 0.100 0.01024 mg/Kg 98 70.130 70.130 x/ylene & p.Xylene 0.200 0.2101 mg/Kg 102 70.130 x/ylene & p.Xylene 0.100 0.100 0.100 mg/Kg 107 70.130 s/ylene & p.Xylene 0.200 0.2101 mg/Kg 107 70.130 wirrogate XRecovery Qualiffer Limits 70.130 70.130 s/4.Difluorobenzene (Surr) 97 70.130 70.130 70.130 70.130 ethod: 8015B NM - Diesel Range Organics (DRO) (GC) Client Sample ID: MB 880-3830/1-A Client Sample ID: MB 800-3830/1-A 70.130 70.130 70.130 70.130 70.130 70.130 70.130 70.130 70.130 70.130 70.130 70.130 70.130 70.130 70.130 <t< td=""><td></td><td></td><td>Snike</td><td></td><td></td><td>yors Baton. 0020</td></t<>			Snike			yors Baton. 0020
Berzzne oblene 0.100 0.08437 mg/Kg 84 70.130 oblene 0.100 0.09781 mg/Kg 98 70.130 ithylbenzene 0.100 0.09781 mg/Kg 98 70.130 rxylene & D.200 0.2101 mg/Kg 102 70.130 -Xylene 0.000 0.1007 mg/Kg 102 70.130 -Xylene 0.100 0.1007 mg/Kg 107 70.130 -Xylene 0.100 0.1007 mg/Kg 107 70.130 -Sylene 0.100 0.1007 mg/Kg 107 70.130 -Ecromofluorobenzene (Surr) 97 70.130 Prop Type: Prop Bat Prop Type: Prop Bat Analysis Batch: 3835 MB MB MB MB Prop Type: Prop Bat Nalysis Batch: 3835 MB MB MB MB MB MB Nalysis Batch: 3835 Sou U 50.0 50.0 mg/Kg 06/07/21 09.23 06/07/21 12:16 NB /B			-			te
Obluene 0.100 0.09781 mg/kg 98 70.130 httplytenzene 0.100 0.1024 mg/kg 102 70.130 n-Xylene & D.200 0.2101 mg/kg 105 70.130 n-Xylene & D.100 0.1070 mg/kg 105 70.130 LCSD LCSD <thls< td=""><td></td><td></td><td></td><td></td><td></td><td></td></thls<>						
ihylbenzene 0.100 0.1024 mgKg 102 70.130 n-Xylene & p-Xylene 0.200 0.2101 mg/Kg 105 70.130 i-Xylene & p-Xylene 0.100 0.1070 mg/Kg 105 70.130 i-Xylene & p-Xylene %Recovery Qualifier Limits 105 70.130 i-Xylene & Sextyn 97 70.130 70.130 70.130 105 70.130 i-Bromofiluorobenzene (Surr) 97 70.130 70.130 105 70.130 ethod: 8015B NM - Diesel Range Organics (DRO) (GC) Imag/Kg 06/07/21 09.23 06/07/21 09.23 06/07/21 12:16 Analysis Batch: 880- 880- 50.0 U 50.0 mg/Kg 06/07/21 09.23 06/07/21 12:16 GRO-05-C10 50.0 U 50.0 mg/Kg 06/07/21 09.23 06/07/21 12:16 UR angle Organics (Over <50.0						
Mylene & p-Xylene 0.200 0.2101 mg/kg 105 70.130 -Xylene 0.100 0.1070 mg/kg 107 70.130 LCSD LCSD LCSD LCSD Lmits -Bromofluorobenzene (Surr) 105 70.130 70.130 4-Difuorobenzene (Surr) 97 70.130 Client Sample ID: MB 880-3830/1-A Adatrix: Solid Analyzed Prep Bate Prep Bate Analysis Batch: 3835 MB MB MB Sacoline Range Organics (Over <50.0						
Skylene 0.100 0.1070 mg/Kg 107 70 - 130 LCSD LCSD urrogate ARecovery Qualifier Limits 70 - 130 -Bromoliuorobenzene (Surr) 105 70 - 130 Client Sample ID: MB 880-3830/1-A fatrix: Solid Analysis Batch: 3835 Client Sample ID: MB 880-3830/1-A fatrix: Solid Analysis Batch: 3835 MB MB NB MB Result Qualifier RL Unit D Prepared Analyzed 06/07/21 09:23 06/07/21 09:23 06/07/21 12:16 06/07/21 19:23 06/07/21 12:16 MB MB urrogate \$50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 10-C28) 10 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 10-C28) WB MB MB urrogate %Recovery Qualifier Limits -Terphenyl 74 70 - 130 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16						
LCSD LCSD Less Limits -Bromofluorobenzene (Surr) 105 70.130 -Bromofluorobenzene (Surr) 97 70.130 ethod: 8015B NM - Diesel Range Organics (DRO) (GC) Client Sample ID: MB 880-3830/1-A Adatrix: Solid Prep Type: Inalyte Result Qualifier Limits seatoline Range Organics < 50.0 Unit D Prep Type: seatoline Range Organics (Over < 50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 iseseline Range Organics (Over C28-C36) < 50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 Inol-C28) MB MB MB MB MB MB MB MB urrogate %Recovery Qualifier Limits 06/07/21 09:23 06/07/21 12:16 otal TPH <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 otal TPH <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12						
urrogate %Recovery Qualifier Limits Bromofluorobenzene (Surr) 105 70 - 130 4-Difluorobenzene (Surr) 97 70 - 130 ethod: 8015B NM - Diesel Range Organics (DRO) (GC) ab Sample ID: MB 880-3830/1-A Matrix: Solid vnalysis Batch: 3835 Client Sample ID: Mb 880-3830/1-A fatrix: Solid vnalysis Batch: 3835 mayte Result Qualifier RL Unit D Prepared 06/07/21 09:23 Analyzed 06/07/21 12:16 nalyte Result Qualifier RL Unit D Prepared 06/07/21 09:23 06/07/21 12:16 iscoline Range Organics (Over <50.0	0.1070		0.100			ene
urrogate %Recovery Qualifier Limits Bromofluorobenzene (Surr) 105 70 - 130 4-Difluorobenzene (Surr) 97 70 - 130 ethod: 8015B NM - Diesel Range Organics (DRO) (GC) ab Sample ID: MB 880-3830/1-A Matrix: Solid vnalysis Batch: 3835 Client Sample ID: Mb 880-3830/1-A fatrix: Solid vnalysis Batch: 3835 mayte Result Qualifier RL Unit D Prepared 06/07/21 09:23 Analyzed 06/07/21 12:16 nalyte Result Qualifier RL Unit D Prepared 06/07/21 09:23 06/07/21 12:16 iscoline Range Organics (Over <50.0			SD	LCSD	LCSD	
Bromofluorobenzene (Surr) 105 70.130 4-Difluorobenzene (Surr) 97 70.130 ethod: 8015B NM - Diesel Range Organics (DRO) (GC)			alifier Limits	Qualif	%Recovery	gate %
4-Diffuorobenzene (Surr) 97 70 - 130 ethod: 8015B NM - Diesel Range Organics (DRO) (GC) Client Sample ID: MB 880-3830/1-A Matrix: Solid Analysis Batch: 3835 malyte Result Qualifier RL Unit D Prep Type: Prep Bate malyte Result Qualifier RL Unit D Prepared Analyzed GRO)-C6-C10 50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 IB Range Organics (Over <50.0		_			-	•
Bethod: 8015B NM - Diesel Range Organics (DRO) (GC) Client Sample ID: MB 880-3830/1-A Matrix: Solid Client Sample ID: Method Analysis Batch: 3835 Result Qualifier RL Unit D Prepared Analyzed Solide Range Organics Solid U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 SOLO-C-01 MB MB MB MB Object Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 MB Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 MB MB MB MB MB MB MB MB MB MB Turrogate %Recovery Qualifier Limits 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 Abs Sample ID: LCS 880-3830/2-A MB MB MB Client Sample ID: Lab Co			70 - 130		97	
Ab Sample ID: MB 880-3830/1-A Matrix: Solid vnalysis Batch: 3835 Client Sample ID: Method Prep Type: Prep Bate malyte Result Qualifier RL Unit D Prepared Analyzed Analyzed asoline Range Organics <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 asoline Range Organics (Over <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 10-C-28) <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 10-C-28) <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 10-C-28) <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 10-C-28) <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 0tal TPH <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 0tal TPH <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 .chlorooctane 89 70 - 130 06/07/21 109:23 06/07/21 12:16 06/07/21 12:1		•				
Matrix: Solid Analysis Batch: 3835 Prep Type: Prep Bate malyte Result Qualifier RL Unit D Prepared Analyzed assoline Range Organics <50.0)	nics (DRO) (GC)	gani	kange Or	OU: OUTOB NIVI - Diesel Ra
Malysis Batch: 3835 MB MB MB unalyte Result Qualifier RL Unit D Prepared Analyzed GRO-C6-C10 50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 GRO-C6-C10 50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 J10-C28) 50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 J10-C28) 50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 J10-C28) 50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 J10-C28)						Sample ID: MB 880-3830/1-A
Malysis Batch: 3835 MB MB MB Malyte Result Qualifier RL Unit D Prepared Analyzed GRO)-C6-C10 <50.0						ix: Solid
MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Gasoline Range Organics <50.0						ysis Batch: 3835
Baseline Range Organics <50.0			MB	мв м		•
assoline Range Organics <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 Diesel Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 Dil Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 Dil Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 Otal TPH <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 MB MB Mg/Kg 06/07/21 09:23 06/07/21 12:16 Chlorooctane 89 70 - 130 06/07/21 09:23 06/07/21 12:16 06/07/21 12:16 Lab Sample ID: LCS 880-3830/2-A Xatrix: Solid Client Sample ID: Lab Control Prep Type: T	RL Unit	RL	Qualifier	sult (Re	te
hiesel Range Organics (Over <50.0						ine Range Organics
MI Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 otal TPH <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 MB MB MB MB Prepared Analyzed 06/07/21 09:23 06/07/21 12:16 -Chlorooctane 89 70 - 130 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 .ab Sample ID: LCS 880-3830/2-A 74 70 - 130 Client Sample ID: Lab Control Atrix: Solid Prep Type: Prep Type: Prep Bat Spike LCS LCS %Rec. %Rec.	50.0 mg/Kg	50.0	U	50.0 l	<	
Detal TPH <50.0 U 50.0 mg/Kg 06/07/21 09:23 06/07/21 12:16 MB MB MB MB MB Analyzed Analyzed 06/07/21 09:23 06/07/21 12:16 Analyzed 06/07/21 09:23 06/07/21 12:16 Analyzed 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 12:16 06/07/21 12:16 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 12:16 06/07/21 12:16 06/07/21 12:16 06/07/21 09:23 06/07/21 12:16 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23 06/07/21 09:23						,
MB MB urrogate %Recovery Qualifier Limits -Chlorooctane 89 70 - 130 06/07/21 09:23 06/07/21 12:16 -Terphenyl 74 70 - 130 06/07/21 09:23 06/07/21 12:16 .ab Sample ID: LCS 880-3830/2-A Client Sample ID: Lab Control Matrix: Solid Prep Type: malysis Batch: 3835 Spike LCS LCS	· · · · · · · · · · · · · · · · · · ·					
Wurrogate%RecoveryQualifierLimitsPreparedAnalyzed-Chlorooctane8970 - 13006/07/21 09:2306/07/21 12:16-Terphenyl7470 - 13006/07/21 09:2306/07/21 12:16.ab Sample ID: LCS 880-3830/2-AClient Sample ID: Lab ControlPrep Type:Matrix: SolidPrep BatePrep BateMalysis Batch: 3835SpikeLCS LCS%Rec.	50.0 mg/Kg	50.0	U	50.0 L	<	ГРН
Chlorooctane 89 70 - 130 06/07/21 09:23 06/07/21 12:16 -Terphenyl 74 70 - 130 06/07/21 09:23 06/07/21 12:16 .ab Sample ID: LCS 880-3830/2-A Client Sample ID: Lab Control Prep Type: 1 Atrix: Solid Prep Type: 1 Prep Bate Spike LCS LCS %Rec.			MB	MB N		
-Terphenyl 74 70 - 130 06/07/21 09:23 06/07/21 12:16 ab Sample ID: LCS 880-3830/2-A Matrix: Solid Analysis Batch: 3835 Spike LCS LCS MORE.	ts	nits	Qualifier Limit	very (%Reco	gate
ab Sample ID: LCS 880-3830/2-A Client Sample ID: Lab Control Matrix: Solid Prep Type: Analysis Batch: 3835 Prep Bate Spike LCS LCS %Rec.	130	- 130	70 - 1	89		prooctane
Matrix: Solid Prep Type: Analysis Batch: 3835 Prep Bate Spike LCS LCS %Rec.	130	- 130	70 - 1	74		bhenyl
Matrix: Solid Prep Type: Analysis Batch: 3835 Prep Bate Spike LCS LCS %Rec.					4	Sample ID: LCS 880-3830/2-A
Analysis Batch: 3835 Prep Bate Spike LCS LCS %Rec.						
Spike LCS LCS %Rec.						
	LCS LCS		Spike			,
			-			te
Basoline Range Organics 1000 793.2 mg/Kg 79 70 - 130						

Client: WSP USA Inc.

Project/Site: Ross Draw 25

Job ID: 890-781-1 SDG: 31403236.003.0129

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-383 Matrix: Solid	0/2-A						Clien	t Sample	ID: Lab C	ontrol S Type: To	
Analysis Batch: 3835			0	1.00	1.00					p Batch	: 383(
Analyto			Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits		
Analyte			1000	840.4	Quaimer		<u> </u>	84			
Diesel Range Organics (Over C10-C28)			1000	040.4		mg/Kg		04	70 - 130		
•	LCS										
Surrogate	%Recovery	Qualifier	<i>Limits</i>	_							
1-Chlorooctane	93										
o-Terphenyl	72		70 - 130								
Lab Sample ID: LCSD 880-38	330/3-A					Cli	ent Sar	nple ID:	Lab Contro	ol Sampl	e Dur
Matrix: Solid										Туре: То	
Analysis Batch: 3835										p Batch	
,,			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10			1000	792.7		mg/Kg		79	70 _ 130	0	20
Diesel Range Organics (Over C10-C28)			1000	859.9		mg/Kg		86	70 ₋ 130	2	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	94		70 - 130	_							
o-Terphenyl	74		70 - 130								
ethod: 300.0 - Anions, I Lab Sample ID: MB 880-3839 Matrix: Solid								Client S	Sample ID: Prep	Method Type: S	
Analysis Batch: 3888										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		MB MB									
Analyte	R	esult Qualif	fier	RL	Unit		D	Prepared	Analyz	zed	Dil Fac
Chloride	<	5.00 U		5.00	mg/k	ίg			06/08/21	17:41	1
Lab Sample ID: LCS 880-383 Matrix: Solid	9/2-A						Clien	t Sample	e ID: Lab C	ontrol S Type: S	
Analysis Batch: 3888										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
,			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result		Unit	D	%Rec	Limits		
Chloride			250	254.9		mg/Kg		102	90 - 110		
Lab Sample ID: LCSD 990 39	20/2 4					0	ont Sc-	mple ID:	Lab Contra	Some!	o Dur
Lab Sample ID: LCSD 880-38 Matrix: Solid	03/3-A					CII	ent Sal	inpie ID:	Lab Contro		
									Frep	Type: S	oruble
Analysis Batch: 3888			Spike	1.000	LCSD				%Rec.		RPD
Analyto			-			l Init	P	% Baa		חחם	
Analyte Chloride			Added 250	254.9	Qualifier	_ Unit mg/Kg	D	%Rec 102	Limits 90 - 110	RPD 0	
			200	204.9		mg/rty		102	30 - 110	0	20
Lab Sample ID: MB 880-3838	8/1- A							Client S	Sample ID:	Method	Blank
Matrix: Solid										Type: S	

Matrix: Solid Analysis Batch: 3904							Prep Type:	Soluble
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			06/08/21 20:43	1

Client: WSP USA Inc.

Project/Site: Ross Draw 25

Job ID: 890-781-1 SDG: 31403236.003.0129

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCS 880-3838/2-	A						Client	Samp	le ID: Lab C		
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 3904											
			Spike		LCS				%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Chloride			250	251.2		mg/Kg		100	90 - 110		
- Lab Sample ID: LCSD 880-3838/3	3-A					Clier	nt Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid								· · · ·		Type: S	
Analysis Batch: 3904											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	254.5		mg/Kg		102	90 - 110	1	20
 Lab Sample ID: 890-781-3 MS									Client Sam	ple ID: F	PH02B
Matrix: Solid										Type: S	
Analysis Batch: 3904											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	7700		2530	10130		mg/Kg		96	90 _ 110		
 Lab Sample ID: 890-781-3 MSD									Client Sam	ple ID: F	PH02B
Matrix: Solid										Type: S	
Analysis Batch: 3904											
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	7700		2530	10310		mg/Kg		103	90 - 110	2	20

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25

Job ID: 890-781-1 SDG: 31403236.003.0129

GC VOA Prep Batch: 3823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-781-1	PH01	Total/NA	Solid	5035	
890-781-2	PH01C	Total/NA	Solid	5035	
890-781-3	PH02B	Total/NA	Solid	5035	
890-781-4	PH02C	Total/NA	Solid	5035	
890-781-5	FS01	Total/NA	Solid	5035	
890-781-6	FS02	Total/NA	Solid	5035	
890-781-7	FS03	Total/NA	Solid	5035	
890-781-8	FS04	Total/NA	Solid	5035	
MB 880-3823/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-3823/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-3823/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 3829

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-781-1	PH01	Total/NA	Solid	8021B	3823
890-781-2	PH01C	Total/NA	Solid	8021B	3823
890-781-3	PH02B	Total/NA	Solid	8021B	3823
890-781-4	PH02C	Total/NA	Solid	8021B	3823
890-781-5	FS01	Total/NA	Solid	8021B	3823
890-781-6	FS02	Total/NA	Solid	8021B	3823
890-781-7	FS03	Total/NA	Solid	8021B	3823
890-781-8	FS04	Total/NA	Solid	8021B	3823
MB 880-3823/5-A	Method Blank	Total/NA	Solid	8021B	3823
LCS 880-3823/1-A	Lab Control Sample	Total/NA	Solid	8021B	3823
LCS 880-3849/1-A	Lab Control Sample	Total/NA	Solid	8021B	3849
LCSD 880-3823/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	3823
LCSD 880-3849/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	3849

Prep Batch: 3849

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 880-3849/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-3849/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 3830

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-781-1	PH01	Total/NA	Solid	8015NM Prep	
890-781-2	PH01C	Total/NA	Solid	8015NM Prep	
890-781-3	PH02B	Total/NA	Solid	8015NM Prep	
890-781-4	PH02C	Total/NA	Solid	8015NM Prep	
890-781-5	FS01	Total/NA	Solid	8015NM Prep	
890-781-6	FS02	Total/NA	Solid	8015NM Prep	
890-781-7	FS03	Total/NA	Solid	8015NM Prep	
890-781-8	FS04	Total/NA	Solid	8015NM Prep	
MB 880-3830/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-3830/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-3830/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 Job ID: 890-781-1

SDG: 31403236.003.0129

GC Semi VOA

Analysis Batch: 3835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-781-1	PH01	Total/NA	Solid	8015B NM	3830
890-781-2	PH01C	Total/NA	Solid	8015B NM	3830
890-781-3	PH02B	Total/NA	Solid	8015B NM	3830
890-781-4	PH02C	Total/NA	Solid	8015B NM	3830
890-781-5	FS01	Total/NA	Solid	8015B NM	3830
890-781-6	FS02	Total/NA	Solid	8015B NM	3830
890-781-7	FS03	Total/NA	Solid	8015B NM	3830
890-781-8	FS04	Total/NA	Solid	8015B NM	3830
MB 880-3830/1-A	Method Blank	Total/NA	Solid	8015B NM	3830
LCS 880-3830/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	3830
LCSD 880-3830/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	3830
PLC/IC					
each Batch: 3838 Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-781-1	PH01	Soluble	Solid	DI Leach	
890-781-2	PH01C	Soluble	Solid	DI Leach	
890-781-3	PH02B	Soluble	Solid	DI Leach	
890-781-4	PH02C	Soluble	Solid	DI Leach	
890-781-5	FS01	Soluble	Solid	DI Leach	

HPLC/IC

Leach Batch: 3838

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-781-1	PH01	Soluble	Solid	DI Leach	
890-781-2	PH01C	Soluble	Solid	DI Leach	
890-781-3	PH02B	Soluble	Solid	DI Leach	
890-781-4	PH02C	Soluble	Solid	DI Leach	
890-781-5	FS01	Soluble	Solid	DI Leach	
MB 880-3838/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-3838/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-3838/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-781-3 MS	PH02B	Soluble	Solid	DI Leach	
890-781-3 MSD	PH02B	Soluble	Solid	DI Leach	

Leach Batch: 3839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-781-6	FS02	Soluble	Solid	DI Leach	_
890-781-7	FS03	Soluble	Solid	DI Leach	
890-781-8	FS04	Soluble	Solid	DI Leach	
MB 880-3839/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-3839/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-3839/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 3888

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-781-6	FS02	Soluble	Solid	300.0	3839
890-781-7	FS03	Soluble	Solid	300.0	3839
890-781-8	FS04	Soluble	Solid	300.0	3839
MB 880-3839/1-A	Method Blank	Soluble	Solid	300.0	3839
LCS 880-3839/2-A	Lab Control Sample	Soluble	Solid	300.0	3839
LCSD 880-3839/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	3839

Analysis Batch: 3904

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-781-1	PH01	Soluble	Solid	300.0	3838
890-781-2	PH01C	Soluble	Solid	300.0	3838
890-781-3	PH02B	Soluble	Solid	300.0	3838
890-781-4	PH02C	Soluble	Solid	300.0	3838

Eurofins Xenco, Carlsbad

Client: WSP USA Inc. Project/Site: Ross Draw 25

Job ID: 890-781-1 SDG: 31403236.003.0129

HPLC/IC (Continued)

Analysis Batch: 3904 (Continued)

b Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
0-781-5	FS01	Soluble	Solid	300.0	3838
3 880-3838/1-A	Method Blank	Soluble	Solid	300.0	3838
S 880-3838/2-A	Lab Control Sample	Soluble	Solid	300.0	3838
SD 880-3838/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	3838
)-781-3 MS	PH02B	Soluble	Solid	300.0	3838
0-781-3 MSD	PH02B	Soluble	Solid	300.0	3838

Page 72 of 105
5

9

Lab Chronicle

Client: WSP USA Inc. Project/Site: Ross Draw 25

Client Sample ID: PH01

Date Collected: 06/03/21 09:50 Date Received: 06/04/21 13:23

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3823	06/07/21 08:42	MR	XEN MID
Total/NA	Analysis	8021B		1	3829	06/07/21 14:36	MR	XEN MID
Total/NA	Prep	8015NM Prep			3830	06/07/21 09:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3835	06/07/21 16:26	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		50	3904	06/08/21 22:05	СН	XEN MID

Client Sample ID: PH01C Date Collected: 06/03/21 10:05

Date Received: 06/04/21 13:23

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3823	06/07/21 08:42	MR	XEN MID
Total/NA	Analysis	8021B		1	3829	06/07/21 14:56	MR	XEN MID
Total/NA	Prep	8015NM Prep			3830	06/07/21 09:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3835	06/07/21 16:47	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		10	3904	06/08/21 22:10	CH	XEN MID

Client Sample ID: PH02B

Date Collected: 06/03/21 11:00 Date Received: 06/04/21 13:23

Lab Sample ID: 890-781-3 Matrix: Solid

Lab Sample ID: 890-781-4

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3823	06/07/21 08:42	MR	XEN MID
Total/NA	Analysis	8021B		1	3829	06/07/21 15:17	MR	XEN MID
Total/NA	Prep	8015NM Prep			3830	06/07/21 09:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3835	06/07/21 17:08	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		10	3904	06/08/21 22:16	СН	XEN MID

Client Sample ID: PH02C Date Collected: 06/03/21 11:05 Date Received: 06/04/21 13:23

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3823	06/07/21 08:42	MR	XEN MID
Total/NA	Analysis	8021B		1	3829	06/07/21 15:37	MR	XEN MID
Total/NA	Prep	8015NM Prep			3830	06/07/21 09:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3835	06/07/21 17:50	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		5	3904	06/08/21 22:32	СН	XEN MID

Eurofins Xenco, Carlsbad

Job ID: 890-781-1 SDG: 31403236.003.0129

Lab Sample ID: 890-781-1 Matrix: Solid

Lab Sample ID: 890-781-2

Matrix: Solid

Released to Imaging: 11/17/2021 9:38:54 AM

Lab Chronicle

Client: WSP USA Inc. Project/Site: Ross Draw 25

Client Sample ID: FS01

Date Collected: 06/03/21 12:45 Date Received: 06/04/21 13:23

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3823	06/07/21 08:42	MR	XEN MID
Total/NA	Analysis	8021B		1	3829	06/07/21 15:57	MR	XEN MID
Total/NA	Prep	8015NM Prep			3830	06/07/21 09:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3835	06/07/21 18:10	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		5	3904	06/08/21 22:38	СН	XEN MID

Client Sample ID: FS02 Date Collected: 06/03/21 13:57

Date Received: 06/04/21 13:23

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3823	06/07/21 08:42	MR	XEN MID
Total/NA	Analysis	8021B		1	3829	06/07/21 17:49	MR	XEN MID
Total/NA	Prep	8015NM Prep			3830	06/07/21 09:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3835	06/07/21 18:31	AJ	XEN MID
Soluble	Leach	DI Leach			3839	06/07/21 10:20	СН	XEN MID
Soluble	Analysis	300.0		1	3888	06/08/21 19:57	СН	XEN MID

Client Sample ID: FS03

Date Collected: 06/03/21 14:46

Date Received: 06/04/21 13:23 Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 5035 06/07/21 08:42 XEN MID Total/NA Prep 3823 MR XEN MID Total/NA Analysis 8021B 3829 06/07/21 18:09 MR 1 Total/NA 8015NM Prep 06/07/21 09:23 XEN MID Prep 3830 DM 06/07/21 18:52 Total/NA 8015B NM 3835 XEN MID Analysis 1 AJ 06/07/21 10:20 XEN MID Soluble Leach DI Leach 3839 СН XEN MID Soluble Analysis 300.0 3888 06/08/21 20:02 CH 1

Client Sample ID: FS04 Date Collected: 06/03/21 15:16 Date Received: 06/04/21 13:23

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3823	06/07/21 08:42	MR	XEN MID
Total/NA	Analysis	8021B		1	3829	06/07/21 18:29	MR	XEN MID
Total/NA	Prep	8015NM Prep			3830	06/07/21 09:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3835	06/07/21 19:13	AJ	XEN MID
Soluble	Leach	DI Leach			3839	06/07/21 10:20	СН	XEN MID
Soluble	Analysis	300.0		5	3888	06/08/21 20:07	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

Job ID: 890-781-1 SDG: 31403236.003.0129

Lab Sample ID: 890-781-5 Matrix: Solid

Lab Sample ID: 890-781-6

Matrix: Solid

9

Lab Sample ID: 890-781-7 Matrix: Solid

Lab Sample ID: 890-781-8

Matrix: Solid

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 Job ID: 890-781-1

SDG: 31403236.003.0129

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority	P	rogram	Identification Number	Expiration Date
as	N	IELAP	T104704400-20-21	06-30-21
The following analytes the agency does not o	• •	out the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for w
0,		Matrix	Analyte	
Analysis Method 8015B NM	Prep Method 8015NM Prep	Matrix Solid	Analyte Total TPH	

Eurofins Xenco, Carlsbad

Job ID: 890-781-1 SDG: 31403236.003.0129

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

Client: WSP USA Inc.

Project/Site: Ross Draw 25

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25

Received by OCD: 10/14/2021 10:11:52 AM

Job ID: 890-781-1 SDG: 31403236.003.0129

.ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
390-781-1	PH01	Solid	06/03/21 09:50	06/04/21 13:23	- 1	
390-781-2	PH01C	Solid	06/03/21 10:05	06/04/21 13:23	- 4	
390-781-3	PH02B	Solid	06/03/21 11:00	06/04/21 13:23	- 3	2
390-781-4	PH02C	Solid	06/03/21 11:05	06/04/21 13:23	- 4	
390-781-5	FS01	Solid	06/03/21 12:45	06/04/21 13:23	- 2	
390-781-6	FS02	Solid	06/03/21 13:57	06/04/21 13:23	- 2	
90-781-7	FS03	Solid	06/03/21 14:46	06/04/21 13:23	- 2	
390-781-8	FS04	Solid	06/03/21 15:16	06/04/21 13:23	- 2	
						1
						1

Revised Date 051418 Rev 2018		0						-	-	G
5. CI / R/h/0	N. COM	2 Wind	1212/2	6/4/2		d	1 may	1 A		3 WWW
)ate/Ti	Received by: (Signature)	Relinquis	2	Date	fre)	Received by: (Signature)	Received	yrey /	by: (Signature	Relinquished by:
	stances beyond the control reviously negotiated.	. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	penses incurred enco, but not ana	y losses or ex submitted to X	sponsibility for an 5 for each sample :	ot assume any n nd a charge of \$	ples and shall no b each project a	for the cost of samp .00 will be applied to	be liable only t charge of \$75	of service. Xenco will of Xenco. A minimum
	terms and conditions	subcontra	ny to Xenco, its a	client compar	Irchase order from	titutes a valid p	of samples cons	Signature of this document and relinquishment of sample:	nis document a	Notice: Signature of the
Na Sr II Sn U V Zn 1631/245.1/7470/7471.Hg	Mn Mo Ni K Se Ag SiUZ Na Sr II An TI U 1631/245.	Cd Ca Cr Co Cu Fe Pb Mg Cr Co Cu Pb Mn Mo Ni Se	As Ba Be B As Ba Be Co	A A Sh	13PPM Texas 11 /	8RCRA 13PPM Te		200.8 / 6020:	/ 6010 2	Total 200.7 / 6010
Composite			××	1 ×	2'	15:16	6/3/2021	S	FS04	
Composite			××	1 X	2'	14:46	6/3/2021	s	FS03	17
Composite			××	-1 ×	2'	13:57	6/3/2021	S	FS02	П
Composite			××	1 ×	2'	12:45	6/3/2021	s	FS01	F
Discrete			××	1 ×	4	11:05	6/3/2021	s	PH02C	PF
Discrete			××	1 ×	3'	11:00	6/3/2021	S	PH02B	PF
Discrete			××	1 ×	4'	10:05	6/3/2021	s	PH01C	PT
Discrete			××	1 ×	11	9:50	6/3/2021	S	PH01	٦
Sample Comments			BTEX (Chloric	Numb TPH (E	Depth	Time Sampled	Date Sampled	n Matrix	Sample Identification	Sample Io
lab, if received by 4:30pm						Total Containers:	/ Tota	Yes NO NIA		Sample Custody Seals:
TAT starts the day recevied by the					-0.7	Correction Factor:	Corre	Yes NO MIA		Cooler Custody Seals:
	stody	890-781 Chain of Custody				UM-co7	イーレ	(Yes) No		Received Intact:
				iner	ō	Thermometer ID		50/4.0		Temperature (°C):
				s	No No	Wet Ice:	Res No	Temp Blank:	CEIPT	SAMPLE RECEIPT
					Date:	Due Date:	ee	Elliot Lee		Sampler's Name:
Incident # NAPP2111853419	Incide			_	Rush: 44 H	Rush				P.O. Number:
Cost Center 1056651001	Cost				ne	Routine	03.0129	31403236.003.0129		Project Number:
Work Order Notes		ANALYSIS REQUEST			Turn Around	Τu	w 25	Ross Draw 25		Project Name:
Other:	Deliverables: EDD ADaPT		Tacoma.Morrissey@wsp.com		Email: Elliot.Lee@wsp.com,	Email:		36-3849	(432) 236-3849	Phone:
	evel III		Carlsbad, NM, 88220	Carlsb	City, State ZIP:			Midland, Tx 79705	Midland	City, State ZIP:
			e Green Street	3104 e	Address:	1		3300 North A Street	3300 No	Address:
CC Dperfund	Program: UST/PST _RP _Prownfields	Prog	Energy	2: XTO Energy	Company Name:			WSP Permian office	WSP P	Company Name:
ents	Work Order Comments		ittrell	Kyle Littrell	Bill to: (if different)			=	Dan Moir	Project Manager:
ge1 of1	00) <u>www.xenco.com</u> ³ age	Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	(2,17) 302-0000 ,TX (915)585-34)900) Atlanta,G.	2 (480-355-0	, I ^ (201) 240-42 d, TX (432-704-54 -7550) Phoenix, A	Midlan Nidlan s,NM (575-392	Hobb	TORIES	ABORATOR	
	Work Order No:	USTODY		Chal	TV /2011 010 12					
		-	,))						

Page 78 of 105

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 781 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-781-1

SDG Number: 31403236.003.0129

List Source: Eurofins Xenco, Carlsbad

14

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 781

Creator: Copeland, Tatiana

List Number: 2

Job Number: 890-781-1

SDG Number: 31403236.003.0129

List Source: Eurofins Xenco, Midland List Creation: 06/07/21 08:50 AM

•		
Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Received by OCD: 10/14/2021 10:11:52 AM

eurofins 🔅

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-782-1

Laboratory Sample Delivery Group: 31403236.003.0129 Client Project/Site: Ross Draw 25

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 6/9/2021 8:38:36 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access **Have a Question?** Ask-The Expert Visit us at:

Released to Imaging: 11/17/2021 9:38:54 AM

www.eurofinsus.com/Env

Laboratory Job ID: 890-782-1 SDG: 31403236.003.0129

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	23

Page 82 of 105

Definitions/Glossary

Client: WSP USA Inc.
Project/Site: Ross Draw 25

Job ID: 890-782-1 SDG: 31403236.003.0129

Qualifiers		- 3
GC VOA		
Qualifier	Qualifier Description	_ 4
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		5
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	6
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	8
Glossary		٥
Abbreviation	These commonly used abbreviations may or may not be present in this report.	3
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	10
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	12
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

POS

PQL

PRES QC

RER

RL RPD

TEF

TEQ

TNTC

Case Narrative

Client: WSP USA Inc. Project/Site: Ross Draw 25 Job ID: 890-782-1 SDG: 31403236.003.0129

Job ID: 890-782-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-782-1

Receipt

The samples were received on 6/4/2021 4:25 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 6.6°C

Receipt Exceptions

The following samples analyzed for method BTEX 8021 were received and analyzed from an unpreserved bulk soil jar: SW01 (890-782-1), SW02 (890-782-2), FS05 (890-782-3), FS06 (890-782-4), FS07 (890-782-5), FS08 (890-782-6) and FS09 (890-782-7).

GC VOA

Method 8021B: Internal standard responses were outside of acceptance limits for the following samples: FS06 (890-782-4), FS07 (890-782-5) and FS08 (890-782-6). The sample(s) shows evidence of matrix interference.

Method 8021B: Surrogate recovery for the following sample was outside control limits: FS09 (890-782-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-782-1 SDG: 31403236.003.0129

Lab Sample ID: 890-782-1

Matrix: Solid

5

Date Collected: 06/04/21 10:17 Date Received: 06/04/21 16:25 Sample Depth: 0 - 2

Client Sample ID: SW01

Client: WSP USA Inc.

Project/Site: Ross Draw 25

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		06/08/21 09:13	06/08/21 13:53	1
Toluene	<0.00201	U	0.00201	mg/Kg		06/08/21 09:13	06/08/21 13:53	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		06/08/21 09:13	06/08/21 13:53	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		06/08/21 09:13	06/08/21 13:53	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		06/08/21 09:13	06/08/21 13:53	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		06/08/21 09:13	06/08/21 13:53	1
Total BTEX	<0.00402	U	0.00402	mg/Kg		06/08/21 09:13	06/08/21 13:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130			06/08/21 09:13	06/08/21 13:53	1
1,4-Difluorobenzene (Surr)	102		70 - 130			06/08/21 09:13	06/08/21 13:53	1
Method: 8015B NM - Diesel Ra	ange Organics (Di	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		06/08/21 15:00	06/08/21 21:00	1

1 Chloropotono	02		70 120		06/09/21 15:00	06/09/21 21:00	1	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
Total TPH	<49.8	U	49.8	mg/Kg	06/08/21 15:00	06/08/21 21:00	1	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg	06/08/21 15:00	06/08/21 21:00	1	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg	06/08/21 15:00	06/08/21 21:00	1	
(GRO)-C6-C10				0 0				

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Method: 300.0 - Anions, Ion Chromatogra	aphy - Soluble							
o-Terphenyl	84	70 - 130			06/08/21 15:00	06/08/21 21:00	1	
1-Chlorooctane	93	70 - 130			06/08/21 15:00	06/08/21 21:00	1	

49.5

mg/Kg

5170

Client Sample ID: SW02 Date Collected: 06/04/21 09:42 Date Received: 06/04/21 16:25

Sample Depth: 0 - 2

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/08/21 09:13	06/08/21 14:13	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/08/21 09:13	06/08/21 14:13	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/08/21 09:13	06/08/21 14:13	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		06/08/21 09:13	06/08/21 14:13	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/08/21 09:13	06/08/21 14:13	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		06/08/21 09:13	06/08/21 14:13	1
Total BTEX	<0.00399	U	0.00399	mg/Kg		06/08/21 09:13	06/08/21 14:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			06/08/21 09:13	06/08/21 14:13	1
1,4-Difluorobenzene (Surr)	101		70 - 130			06/08/21 09:13	06/08/21 14:13	1

06/08/21 22:54

Lab Sample ID: 890-782-2

10

Matrix: Solid

Matrix: Solid

Job ID: 890-782-1 SDG: 31403236.003.0129

Lab Sample ID: 890-782-2

Lab Sample ID: 890-782-3

Matrix: Solid

Client Sample ID: SW02

Date Collected: 06/04/21 09:42 Date Received: 06/04/21 16:25

Project/Site: Ross Draw 25

Sample Depth: 0 - 2

Client: WSP USA Inc.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 21:21	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 21:21	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 21:21	1
Total TPH	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 21:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130			06/08/21 15:00	06/08/21 21:21	1
o-Terphenyl	85		70 - 130			06/08/21 15:00	06/08/21 21:21	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			49.8	mg/Kg			06/08/21 22:59	10

Client Sample ID: FS05

Date Collected: 06/04/21 11:55 Date Received: 06/04/21 16:25 Sample Depth: -1

Method: 8021B - Volatile Orga	nic Compounds	(GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		06/08/21 09:13	06/08/21 14:34	1
Toluene	<0.00199	U	0.00199	mg/Kg		06/08/21 09:13	06/08/21 14:34	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/08/21 09:13	06/08/21 14:34	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/08/21 09:13	06/08/21 14:34	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/08/21 09:13	06/08/21 14:34	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/08/21 09:13	06/08/21 14:34	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		06/08/21 09:13	06/08/21 14:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130			06/08/21 09:13	06/08/21 14:34	1

1,4-Difluorobenzene (Surr)	102		70 - 130			06/08/21 09:13	06/08/21 14:34	1
– Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		06/08/21 15:00	06/08/21 21:42	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		06/08/21 15:00	06/08/21 21:42	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/08/21 15:00	06/08/21 21:42	1
Total TPH	<49.9	U	49.9	mg/Kg		06/08/21 15:00	06/08/21 21:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130			06/08/21 15:00	06/08/21 21:42	1
o-Terphenyl	91		70 - 130			06/08/21 15:00	06/08/21 21:42	1
_ Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2100		24.9	mg/Kg			06/08/21 23:05	5

Eurofins Xenco, Carlsbad

Job ID: 890-782-1 SDG: 31403236.003.0129

Lab Sample ID: 890-782-4

06/08/21 22:03

06/08/21 22:03

Lab Sample ID: 890-782-5

Matrix: Solid

06/08/21 15:00

06/08/21 15:00

Matrix: Solid

5

Date Collected: 06/04/21 12:00 Date Received: 06/04/21 16:25

Client Sample ID: FS06

Sample Depth: - 1

Client: WSP USA Inc.

Project/Site: Ross Draw 25

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		06/08/21 09:13	06/08/21 14:54	1
Toluene	<0.00199	U	0.00199	mg/Kg		06/08/21 09:13	06/08/21 14:54	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/08/21 09:13	06/08/21 14:54	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/08/21 09:13	06/08/21 14:54	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/08/21 09:13	06/08/21 14:54	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/08/21 09:13	06/08/21 14:54	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		06/08/21 09:13	06/08/21 14:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			06/08/21 09:13	06/08/21 14:54	1
1,4-Difluorobenzene (Surr)	100		70 - 130			06/08/21 09:13	06/08/21 14:54	1
Method: 8015B NM - Diesel Ra	ange Organics (DI	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		06/08/21 15:00	06/08/21 22:03	1
(GRO)-C6-C10								

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1-Chlorooctane	101		70 - 130	06/08/21 15:00	06/08/21 22:03	1
l	o-Terphenyl	91		70 - 130	06/08/21 15:00	06/08/21 22:03	1

49.9

49.9

mg/Kg

mg/Kg

Method: 300.0 - Anions,	Ion Chromatography - Soluble
	D K O K

<49.9 U

<49.9 U

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4780		25.0	mg/Kg			06/08/21 23:10	5

Client Sample ID: FS07 Date Collected: 06/04/21 13:15 Date Received: 06/04/21 16:25

Oll Range Organics (Over C28-C36)

Sample Depth: -1

C10-C28)

Total TPH

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/08/21 09:13	06/08/21 15:14	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/08/21 09:13	06/08/21 15:14	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/08/21 09:13	06/08/21 15:14	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		06/08/21 09:13	06/08/21 15:14	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/08/21 09:13	06/08/21 15:14	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		06/08/21 09:13	06/08/21 15:14	1
Total BTEX	<0.00401	U	0.00401	mg/Kg		06/08/21 09:13	06/08/21 15:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130			06/08/21 09:13	06/08/21 15:14	1
1,4-Difluorobenzene (Surr)	100		70 - 130			06/08/21 09:13	06/08/21 15:14	1

Job ID: 890-782-1 SDG: 31403236.003.0129

Lab Sample ID: 890-782-6

Matrix: Solid

Client Sample ID: FS07

Project/Site: Ross Draw 25

Date Collected: 06/04/21 13:15 Date Received: 06/04/21 16:25

Sample Depth: -1

Client: WSP USA Inc.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 22:24	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 22:24	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 22:24	1
Total TPH	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 22:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			06/08/21 15:00	06/08/21 22:24	1
o-Terphenyl	91		70 - 130			06/08/21 15:00	06/08/21 22:24	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: FS08

Date Collected: 06/04/21 13:30 Date Received: 06/04/21 16:25 Sample Depth: -1

Method: 8021B - Volatile Orga	inic Compounds	(GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		06/08/21 09:13	06/08/21 15:35	1
Toluene	<0.00201	U	0.00201	mg/Kg		06/08/21 09:13	06/08/21 15:35	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		06/08/21 09:13	06/08/21 15:35	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		06/08/21 09:13	06/08/21 15:35	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		06/08/21 09:13	06/08/21 15:35	1
Xylenes, Total	< 0.00402	U	0.00402	mg/Kg		06/08/21 09:13	06/08/21 15:35	1
Total BTEX	<0.00402	U	0.00402	mg/Kg		06/08/21 09:13	06/08/21 15:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130			06/08/21 09:13	06/08/21 15:35	1

1,4-Difluorobenzene (Surr)	97		70 - 130			06/08/21 09:13	06/08/21 15:35	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 22:45	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 22:45	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 22:45	1
Total TPH	<50.0	U	50.0	mg/Kg		06/08/21 15:00	06/08/21 22:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130			06/08/21 15:00	06/08/21 22:45	1
o-Terphenyl	99		70 - 130			06/08/21 15:00	06/08/21 22:45	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result Qual	lifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	529	5.00	mg/Kg			06/08/21 23:21	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-782-5

Matrix: Solid 5 Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00201 U

<0.00201 U

<0.00201 U

<0.00402 U

<0.00201 U

Client Sample Results

RL

0.00201

0.00201

0.00201

0.00402

0.00201

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

06/08/21 09:13

06/08/21 09:13

06/08/21 09:13

06/08/21 09:13

06/08/21 09:13

Client: WSP USA Inc. Project/Site: Ross Draw 25

Client Sample ID: FS09

Date Collected: 06/04/21 13:42 Date Received: 06/04/21 16:25

Sample Depth: - 1

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Job ID: 890-782-1
SDG: 31403236.003.0129

Lab Sample ID: 890-782-7

Analyzed

06/08/21 15:55

06/08/21 15:55

06/08/21 15:55

06/08/21 15:55

06/08/21 15:55

Matrix: Solid

Xylenes, Total	<0.00402	U	0.00402	mg/Kg		06/08/21 09:13	06/08/21 15:55	1
Total BTEX	<0.00402	U	0.00402	mg/Kg		06/08/21 09:13	06/08/21 15:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130			06/08/21 09:13	06/08/21 15:55	1
1,4-Difluorobenzene (Surr)	98		70 - 130			06/08/21 09:13	06/08/21 15:55	1
- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7	mg/Kg		06/08/21 15:00	06/08/21 23:06	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.7	U	49.7	mg/Kg		06/08/21 15:00	06/08/21 23:06	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		06/08/21 15:00	06/08/21 23:06	1
Total TPH	<49.7	U	49.7	mg/Kg		06/08/21 15:00	06/08/21 23:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130			06/08/21 15:00	06/08/21 23:06	1
o-Terphenyl	88		70 - 130			06/08/21 15:00	06/08/21 23:06	1

o-Terphenyl	88		70 - 130			06/08/21 15:00	06/08/21 23:06	1
Method: 300.0 - Anions, Ion Chroma	tography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	78.3		4.99	mg/Kg			06/08/21 23:27	1

Client: WSP USA Inc. Project/Site: Ross Draw 25

Matrix: Solid

Job ID: 890-782-1 SDG: 31403236.003.0129

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

BFB1 DFB21 Lab Sample ID (70-130) (70-130) 890-782-1 SW01 117 102 890-782-2 SW02 118 101 890-782-3 FS05 118 102 890-782-4 FS06 120 100 890-782-5 FS07 123 100 890-782-6 FS08 130 97 890-782-7 FS09 126 98 LCS 880-3869/1-A Lab Control Sample Dup 107 94 LCSD 880-3869/2-A Lab Control Sample Dup 107 95 MB 880-3869/5-A Method Blank 112 95	-				Percent Surrogate Recovery (Acceptance Limits)	
890-782-1 SW01 117 102 890-782-2 SW02 118 101 890-782-3 FS05 118 102 890-782-4 FS06 120 100 890-782-5 FS07 123 100 890-782-6 FS08 130 97 890-782-7 FS09 126 98 LCS 880-3869/1-A Lab Control Sample Dup 107 94 LCSD 880-3869/2-A Lab Control Sample Dup 107 95			BFB1	DFBZ1		
890-782-2SW02118101890-782-3FS05118102890-782-4FS06120100890-782-5FS07123100890-782-6FS0813097890-782-7FS0912698LCS 880-3869/1-ALab Control Sample Dup10794LCSD 880-3869/2-ALab Control Sample Dup10795	Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-782-3FS05118102890-782-4FS06120100890-782-5FS07123100890-782-6FS0813097890-782-7FS0912698LCS 880-3869/1-ALab Control Sample Dup10794LCS 880-3869/2-ALab Control Sample Dup10795	890-782-1	SW01	117	102		
890-782-4FS06120100890-782-5FS07123100890-782-6FS0813097890-782-7FS0912698LCS 880-3869/1-ALab Control Sample Dup10794LCSD 880-3869/2-ALab Control Sample Dup10795	890-782-2	SW02	118	101		
890-782-5FS07123100890-782-6FS0813097890-782-7FS0912698LCS 880-3869/1-ALab Control Sample10794LCSD 880-3869/2-ALab Control Sample Dup10795	890-782-3	FS05	118	102		
890-782-6FS0813097890-782-7FS0912698LCS 880-3869/1-ALab Control Sample10794LCSD 880-3869/2-ALab Control Sample Dup10795	890-782-4	FS06	120	100		
890-782-7 FS09 126 98 LCS 880-3869/1-A Lab Control Sample 107 94 LCSD 880-3869/2-A Lab Control Sample Dup 107 95	890-782-5	FS07	123	100		
LCS 880-3869/1-A Lab Control Sample 107 94 LCSD 880-3869/2-A Lab Control Sample Dup 107 95	890-782-6	FS08	130	97		
LCSD 880-3869/2-A Lab Control Sample Dup 107 95	890-782-7	FS09	126	98		
	LCS 880-3869/1-A	Lab Control Sample	107	94		
MB 880-3869/5-A Method Blank 112 95	LCSD 880-3869/2-A	Lab Control Sample Dup	107	95		
	MB 880-3869/5-A	Method Blank	112	95		

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-782-1	SW01	93	84
890-782-2	SW02	94	85
890-782-3	FS05	101	91
890-782-4	FS06	101	91
890-782-5	FS07	102	91
890-782-6	FS08	111	99
890-782-7	FS09	101	88
LCS 880-3887/2-A	Lab Control Sample	86	68 S1-
LCSD 880-3887/3-A	Lab Control Sample Dup	83	67 S1-
MB 880-3887/1-A	Method Blank	90	81

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Job ID: 890-782-1 SDG: 31403236.003.0129

Project/Site: Ross Draw 25

Client: WSP USA Inc.

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-3869/5- Matrix: Solid	2										Sherit Oc	ample ID:		
													Type: To	
Analysis Batch: 3870		мв	MD									Pre	p Batcl	1: 300
Analyte	D,		MB Qualifier		RL		Unit		D	р,	repared	Analy	rod	Dil Fa
Benzene			U	0.002			mg/Kg	1			8/21 09:13	06/08/21		Diri
Toluene		0200		0.002			mg/Kg				8/21 09:13	06/08/21		
Ethylbenzene		0200		0.002			mg/Kg				8/21 09:13	06/08/21		
m-Xylene & p-Xylene		0400		0.002			mg/Kg				8/21 09:13	06/08/21		
o-Xylene		0200		0.002			mg/Kg				8/21 09:13	06/08/21		
Xylenes, Total		0400		0.004			mg/Kg				8/21 09:13	06/08/21		
Total BTEX		0400		0.004			mg/Kg				8/21 09:13	06/08/21		
			-					,	-					
		MВ	МВ											
Surrogate	%Reco	-	Qualifier	Limits							repared	Analy		Dil F
4-Bromofluorobenzene (Surr)		112		70 - 13							8/21 09:13	06/08/21		
1,4-Difluorobenzene (Surr)		95		70 - 13	0				0	6/0	8/21 09:13	06/08/21	13:03	
Lab Sample ID: LCS 880-3869/1	- A								Clie	ent	Sample	ID: Lab C	ontrol S	Samp
Matrix: Solid													Type: To	
Analysis Batch: 3870													p Batcl	
				Spike	LCS	s	LCS					%Rec.		
Analyte				Added	Resul	t	Qualifier	Unit		D	%Rec	Limits		
Benzene				0.100	0.08975	5		mg/Kg		_	90	70 - 130		
Toluene				0.100	0.1047	7		mg/Kg			105	70 - 130		
Ethylbenzene				0.100	0.1104	4		mg/Kg			110	70 - 130		
m-Xylene & p-Xylene				0.200	0.2269	9		mg/Kg			113	70 - 130		
o-Xylene				0.100	0.1153	3		mg/Kg			115	70 - 130		
	LCS	LCS												
Surrogate	%Recovery		lifier	Limits										
4-Bromofluorobenzene (Surr)	107			70 - 130										
1,4-Difluorobenzene (Surr)	94			70 - 130										
Lab Sample ID: LCSD 880-3869	/ 2-A							Cli	ient Sa	am	ple ID: L	ab Contro	ol Samp	le Du
Matrix: Solid												Prep	Type: To	otal/N
Analysis Batch: 3870												Pre	p Batcl	h: 380
				Spike	LCSE	C	LCSD					%Rec.		RI
Analyte				Added	Resul	t	Qualifier	Unit		D	%Rec	Limits	RPD	Lir
Benzene				0.100	0.08806	6		mg/Kg			88	70 - 130	2	
Toluene				0.100	0.1037			mg/Kg			104	70 - 130	1	
Ethylbenzene				0.100	0.1099			mg/Kg			110	70 - 130	0	
m-Xylene & p-Xylene				0.200	0.2258	8		mg/Kg			113	70 - 130	0	
o-Xylene				0.100	0.1137	7		mg/Kg			114	70 - 130	1	
	LCSD	LCS	D											
Surrogate	%Recovery			Limits										
	-													
4-Bromofluorobenzene (Surr)	107			70 - 130										

QC Sample Results

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-3887/1	-A									Clie	ent Sa	mple ID: Me		
Matrix: Solid												Prep Typ		
Analysis Batch: 3877												Prep E	atch	: 388
		MB												
Analyte			Qualifier		RL _		Unit		D	Prepa		Analyzed		Dil Fa
Gasoline Range Organics	<5	50.0	U	5	0.0		mg/l	<g< td=""><td></td><td>06/08/21</td><td>12:06</td><td>06/08/21 14:2</td><td>2</td><td></td></g<>		06/08/21	12:06	06/08/21 14:2	2	
GRO)-C6-C10	_			_				,					~	
Diesel Range Organics (Over	<{	50.0	U	5	0.0		mg/l	٨g		06/08/21	12:06	06/08/21 14:2	2	
C10-C28) DII Range Organics (Over C28-C36)	<"	50.0		5	0.0		mg/l	(a		06/08/21	12.06	06/08/21 14:2	2	
Fotal TPH		50.0			0.0		mg/l			06/08/21		06/08/21 14:2		
		50.0	0	5	0.0		ing/i	\y		00/00/21	12.00	00/00/21 14.2	2	
		MB	МВ											
Surrogate	%Recov	/ery	Qualifier	Limits						Prepa	red	Analyzed		Dil Fa
-Chlorooctane		90		70 - 13	80					06/08/21	12:06	06/08/21 14:2	2	
-Terphenyl		81		70 - 13	0					06/08/21	12:06	06/08/21 14:2	22	
ab Sample ID: LCS 880-3887/2	2- A								С	lient Sa	nple l	D: Lab Cont	rol Sa	amp
latrix: Solid												Ргер Тур	e: To	tal/N
Analysis Batch: 3877												Prep E	atch	: 388
				Spike		LCS	LCS					%Rec.		
nalyte				Added	F	Result	Qualifier	Unit		D %F	Rec	Limits		
Basoline Range Organics				1000		748.9		mg/Kg			75	70 - 130		
GRO)-C6-C10														
iesel Range Organics (Over				1000		825.8		mg/Kg			83	70 - 130		
:10-C28)														
	LCS	LCS												
urrogate	%Recovery	Quali	fier	Limits										
-Chlorooctane	86			70 - 130										
-Terphenyl	68	S1-		70 - 130										
ab Sample ID: LCSD 880-3887	7/3-A							CI	ient	Sample	ID: La	ab Control S	ampl	e Du
latrix: Solid												Prep Typ	e: To	tal/N
nalysis Batch: 3877												Prep E	atch	: 388
-				Spike		LCSD	LCSD					%Rec.		RF
nalyte				Added	F	Result	Qualifier	Unit		D %F	Rec	Limits	RPD	Lin
asoline Range Organics				1000		775.5		mg/Kg			78	70 - 130	3	
GRO)-C6-C10														
Diesel Range Organics (Over				1000		800.9		mg/Kg			80	70 - 130	3	2
C10-C28)														
	LCSD	LCSD)											
Surrogate	%Recovery			Limits										
-Chlorooctane	83			70 - 130										
p-Terphenyl	67	S1-		70 - 130										
		_												
	Chromato	ogra	phy											
ethod: 300.0 - Anions, Ior														Blan
										Cliz	ant Sa	mnlo ID· Mo	mod	
ab Sample ID: MB 880-3838/1										Clie	ent Sa	mple ID: Me		
.ab Sample ID: MB 880-3838/1 /atrix: Solid										Clie	ent Sa	mple ID: Me Prep Ty		
ab Sample ID: MB 880-3838/1 Matrix: Solid	- A	MB	MD							Clie	ent Sa			
ethod: 300.0 - Anions, loi Lab Sample ID: MB 880-3838/1 Matrix: Solid Analysis Batch: 3904 Analyte	-A	MB	MB Qualifier		RL		Unit		D	Clie			be: S	

Eurofins Xenco, Carlsbad

06/08/21 20:43

Chloride

5.00

mg/Kg

<5.00 U

QC Sample Results

Client: WSP USA Inc. Project/Site: Ross Draw 25 Job ID: 890-782-1 SDG: 31403236.003.0129

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-3838/2-A Matrix: Solid					Client	t Sample	ID: Lab Co Prep	ontrol Sa Type: S	
Analysis Batch: 3904									
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	250	251.2		mg/Kg		100	90 - 110		
- Lab Sample ID: LCSD 880-3838/3-A				Clier	nt San	nple ID: I	Lab Contro	ol Sampl	e Dup
Matrix: Solid							Prep	Type: S	oluble
Analysis Batch: 3904									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	254.5		mg/Kg		102	90 - 110		20

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25

5

Job ID: 890-782-1 SDG: 31403236.003.0129

GC VOA

Prep Batch: 3869

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-782-1	SW01	Total/NA	Solid	5035	
890-782-2	SW02	Total/NA	Solid	5035	
890-782-3	FS05	Total/NA	Solid	5035	
890-782-4	FS06	Total/NA	Solid	5035	
890-782-5	FS07	Total/NA	Solid	5035	
890-782-6	FS08	Total/NA	Solid	5035	
890-782-7	FS09	Total/NA	Solid	5035	
MB 880-3869/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-3869/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-3869/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 3870

090-702-7	F309	TOtal/INA	Soliu	5055		
MB 880-3869/5-A	Method Blank	Total/NA	Solid	5035		8
LCS 880-3869/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-3869/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		9
Analysis Batch: 3870						10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-782-1	SW01	Total/NA	Solid	8021B	3869	
890-782-2	SW02	Total/NA	Solid	8021B	3869	
890-782-3	FS05	Total/NA	Solid	8021B	3869	
890-782-4	FS06	Total/NA	Solid	8021B	3869	
890-782-5	FS07	Total/NA	Solid	8021B	3869	4.0
890-782-6	FS08	Total/NA	Solid	8021B	3869	13
890-782-7	FS09	Total/NA	Solid	8021B	3869	
MB 880-3869/5-A	Method Blank	Total/NA	Solid	8021B	3869	
LCS 880-3869/1-A	Lab Control Sample	Total/NA	Solid	8021B	3869	
LCSD 880-3869/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	3869	

GC Semi VOA

Analysis Batch: 3877

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-782-1	SW01	Total/NA	Solid	8015B NM	3887
890-782-2	SW02	Total/NA	Solid	8015B NM	3887
890-782-3	FS05	Total/NA	Solid	8015B NM	3887
890-782-4	FS06	Total/NA	Solid	8015B NM	3887
890-782-5	FS07	Total/NA	Solid	8015B NM	3887
890-782-6	FS08	Total/NA	Solid	8015B NM	3887
890-782-7	FS09	Total/NA	Solid	8015B NM	3887
MB 880-3887/1-A	Method Blank	Total/NA	Solid	8015B NM	3887
LCS 880-3887/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	3887
LCSD 880-3887/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	3887

Prep Batch: 3887

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-782-1	SW01	Total/NA	Solid	8015NM Prep	
890-782-2	SW02	Total/NA	Solid	8015NM Prep	
890-782-3	FS05	Total/NA	Solid	8015NM Prep	
890-782-4	FS06	Total/NA	Solid	8015NM Prep	
890-782-5	FS07	Total/NA	Solid	8015NM Prep	
890-782-6	FS08	Total/NA	Solid	8015NM Prep	
890-782-7	FS09	Total/NA	Solid	8015NM Prep	
MB 880-3887/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-3887/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-3887/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25

Job ID: 890-782-1 SDG: 31403236.003.0129

Leach Batch: 3838

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-782-1	SW01	Soluble	Solid	DI Leach	
890-782-2	SW02	Soluble	Solid	DI Leach	
890-782-3	FS05	Soluble	Solid	DI Leach	
890-782-4	FS06	Soluble	Solid	DI Leach	
890-782-5	FS07	Soluble	Solid	DI Leach	
890-782-6	FS08	Soluble	Solid	DI Leach	
890-782-7	FS09	Soluble	Solid	DI Leach	
MB 880-3838/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-3838/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-3838/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 3904

IPLC/IC					
each Batch: 3838					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-782-1	SW01	Soluble	Solid	DI Leach	
890-782-2	SW02	Soluble	Solid	DI Leach	
890-782-3	FS05	Soluble	Solid	DI Leach	
890-782-4	FS06	Soluble	Solid	DI Leach	
390-782-5	FS07	Soluble	Solid	DI Leach	
390-782-6	FS08	Soluble	Solid	DI Leach	
390-782-7	FS09	Soluble	Solid	DI Leach	
MB 880-3838/1-A	Method Blank	Soluble	Solid	DI Leach	
.CS 880-3838/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
CSD 880-3838/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
nalysis Batch: 3904					
_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
90-782-1	SW01	Soluble	Solid	300.0	3838
90-782-2	SW02	Soluble	Solid	300.0	3838
90-782-3	FS05	Soluble	Solid	300.0	3838
90-782-4	FS06	Soluble	Solid	300.0	3838
90-782-5	FS07	Soluble	Solid	300.0	3838
90-782-6	FS08	Soluble	Solid	300.0	3838
90-782-7	FS09	Soluble	Solid	300.0	3838
/IB 880-3838/1-A	Method Blank	Soluble	Solid	300.0	3838
.CS 880-3838/2-A	Lab Control Sample	Soluble	Solid	300.0	3838
_CSD 880-3838/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	3838

6/9/2021

Lab Chronicle

Client: WSP USA Inc. Project/Site: Ross Draw 25

Client Sample ID: SW01 Date Collected: 06/04/21 10:17

Date Received: 06/04/21 16:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3869	06/08/21 09:13	MR	XEN MID
Total/NA	Analysis	8021B		1	3870	06/08/21 13:53	MR	XEN MID
Total/NA	Prep	8015NM Prep			3887	06/08/21 15:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3877	06/08/21 21:00	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		10	3904	06/08/21 22:54	СН	XEN MID
lient Samp	le ID: SW02							Lab Sample ID: 890-782-2

Client Sample ID: SW02 Date Collected: 06/04/21 09:42 Date Received: 06/04/21 16:25

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3869	06/08/21 09:13	MR	XEN MID
Total/NA	Analysis	8021B		1	3870	06/08/21 14:13	MR	XEN MID
Total/NA	Prep	8015NM Prep			3887	06/08/21 15:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3877	06/08/21 21:21	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		10	3904	06/08/21 22:59	CH	XEN MID

Client Sample ID: FS05

Date Collected: 06/04/21 11:55 Date Received: 06/04/21 16:25

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3869	06/08/21 09:13	MR	XEN MID
Total/NA	Analysis	8021B		1	3870	06/08/21 14:34	MR	XEN MID
Total/NA	Prep	8015NM Prep			3887	06/08/21 15:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3877	06/08/21 21:42	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		5	3904	06/08/21 23:05	CH	XEN MID

Client Sample ID: FS06 Date Collected: 06/04/21 12:00 Date Received: 06/04/21 16:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3869	06/08/21 09:13	MR	XEN MID
Total/NA	Analysis	8021B		1	3870	06/08/21 14:54	MR	XEN MID
Total/NA	Prep	8015NM Prep			3887	06/08/21 15:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3877	06/08/21 22:03	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		5	3904	06/08/21 23:10	СН	XEN MID

Lab Sample ID: 890-782-3 Matrix: Solid

Lab Sample ID: 890-782-4

Matrix: Solid

SDG: 31403236.003.0129

Job ID: 890-782-1

Lab Sample ID: 890-782-1 Matrix: Solid

Matrix: Solid

Job ID: 890-782-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

5

9

SDG: 31403236.003.0129

Lab Sample ID: 890-782-5

Lab Sample ID: 890-782-6

Lab Sample ID: 890-782-7

Lab Chronicle

Client: WSP USA Inc. Project/Site: Ross Draw 25

Client Sample ID: FS07 Date Collected: 06/04/21 13:15

Date Received: 06/04/21 16:25

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3869	06/08/21 09:13	MR	XEN MID
Total/NA	Analysis	8021B		1	3870	06/08/21 15:14	MR	XEN MID
Total/NA	Prep	8015NM Prep			3887	06/08/21 15:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3877	06/08/21 22:24	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		1	3904	06/08/21 23:16	СН	XEN MID

Client Sample ID: FS08 Date Collected: 06/04/21 13:30

Date Received: 06/04/21 16:25

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3869	06/08/21 09:13	MR	XEN MID
Total/NA	Analysis	8021B		1	3870	06/08/21 15:35	MR	XEN MID
Total/NA	Prep	8015NM Prep			3887	06/08/21 15:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3877	06/08/21 22:45	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		1	3904	06/08/21 23:21	СН	XEN MID

Client Sample ID: FS09 Date Collected: 06/04/21 13:42

Date Received: 06/04/21 16:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3869	06/08/21 09:13	MR	XEN MID
Total/NA	Analysis	8021B		1	3870	06/08/21 15:55	MR	XEN MID
Total/NA	Prep	8015NM Prep			3887	06/08/21 15:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1	3877	06/08/21 23:06	AJ	XEN MID
Soluble	Leach	DI Leach			3838	06/07/21 10:18	СН	XEN MID
Soluble	Analysis	300.0		1	3904	06/08/21 23:27	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

10

Job ID: 890-782-1 SDG: 31403236.003.0129

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
xas		NELAP	T104704400-20-21	06-30-21
the agency does not o	ffer certification.	,	ied by the governing authority. This list ma	ay include analytes for t
Analysis Method	Prep Method	Matrix	Analvte	
Analysis Method 8015B NM	Prep Method 8015NM Prep	Solid	Analyte Total TPH	

Job ID: 890-782-1 SDG: 31403236.003.0129

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

Client: WSP USA Inc.

Project/Site: Ross Draw 25

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-782-1 SDG: 31403236.003.0129

Client: WSP USA Inc. Project/Site: Ross Draw 25

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
90-782-1	SW01	Solid	06/04/21 10:17	06/04/21 16:25	0 - 2	
90-782-2	SW02	Solid	06/04/21 09:42	06/04/21 16:25	0 - 2	
90-782-3	FS05	Solid	06/04/21 11:55	06/04/21 16:25	- 1	
90-782-4	FS06	Solid	06/04/21 12:00	06/04/21 16:25	- 1	
90-782-5	FS07	Solid	06/04/21 13:15	06/04/21 16:25	- 1	
90-782-6	FS08	Solid	06/04/21 13:30	06/04/21 16:25	- 1	
90-782-7	FS09	Solid	06/04/21 13:42	06/04/21 16:25	- 1	
						1

Sample Summary

					Chi	ain	of C	Chain of Custody			5	Work Order No:	der No:		
			Houston,T) Midland,T	X (281) 240-420 'X (432-704-544 SEO) Bhogsiv A	0 Dallas 0) EL P	, TX (21- aso, TX	t) 902-03((915)585-	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296	X (210) 509-3334 ((806)794-1296) Tampa El /81	3-820-2000)	-	www.xenco.com		Jage	1 of 1
Project Manager: Da	Dan Moir		Bi	Bill to: (if different)	Ky	Kyle Littrell	=					Work C	Work Order Comments	nments	
	WSP Permian office		C	Company Name:		XTO Energy	gy			Program	Program: UST/PST		☐ rownfields	ds [Rc	Dperfund
	3300 North A Street		A	Address:		04 e Gi	3104 e Green Street	et		State	State of Project:				
City, State ZIP: Mid	Midland, Tx 79705		<u>0</u>	City, State ZIP:	Ca	rlsbad,	Carlsbad, NM, 88220	20		Reporting:Level II		evel III			
Phone: (43	(432) 236-3849		Email: El	Email: Elliot.Lee@wsp.com,		acoma.	Morrisse	Tacoma.Morrissey@wsp.com		Deliverables: EDD	les: EDD		ADaPT		Other:
Project Name:	Ross Draw 25	v 25	Turn	Turn Around				ANA	ANALYSIS REQUEST	JEST				Work	Work Order Notes
Project Number:	31403236.003.0129	3.0129	Routine										0	ost Cente	Cost Center 1056651001
P.O. Number:			Rush:	HPE									ā	cident #	Incident # NAPP2111853419
Sampler's Name:	Elliot Lee	Ō	Due Date	te:					_	-					
SAMPLE RECEIPT	Temp Blank:	Yeg No	Wet Ice:	Kes No											
Temperature (°C):	6.0/6.6	The	Thermometer ID		ners)								
Received Intact:	es 1	1-NM-00							890-782	890-782 Chain of Custody	stody		T		
Sample Custody Seals:	Yes No N/A	Total C	Total Containers:						-					IAT starts t lab, if n	IAI starts the day received by the lab, if received by 4:30pm
Sample Identification	ation Matrix	Date Sampled	Time Sampled	Depth	Numbe	BTEX (E	Chlorid							Samp	Sample Comments
SW01	S	6/4/2021	10:17	0-2'		-	-						_		Composite
SW02	S	6/4/2021	9:42	0-2'	1 X	×	×								Composite
FS05	S	6/4/2021	11:55	1.	1	× ×	×								Composite
FS06	S	6/4/2021	12:00	- <u>-</u>	1	× ×	×								Composite
FS07	s	6/4/2021	13:15			××	×								Composite
FS08	S	6/4/2021	13:30		1 ×	^ ×	×								Composite
FS09	S	6/4/2021	13:42		 ×	×	×			-					Composite
					+	$\left - \right -$									
Total 200 7/6010	200 8 / 6020-	20008	13DDM	M Toyac 11	P	┍╻┝╴	B			Ph Ma Mp		Se An	SiO2 Na	Na Sr Ti Sn	n U V Zn
Circle Method(s) a	Circle Method(s) and Metal(s) to be analyzed		LP/SPLP	P		As	Be	Cr Co Cu	Р	<u>Mn Mo Ni Se Ag</u>			1634	1245.11	1631/245.1/7470/7471:Hg
momore signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontract of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such loss of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will	This document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions III be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the contro Im charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	samples constitu es and shall not as each project and a	tes a valid purch sume any respo charge of \$5 fo	nase order from o onsibility for any r each sample su	lient com losses of bmitted t	npany to r expens to Xenco	Xenco, its es incurre , but not a	affiliates and subc I by the client if su nalyzed. These terr	ontractors. It ass ch losses are due ns will be enforce	tors. It assigns standard terms and conditions tes are due to circumstances beyond the control be enforced unless previously negotiated.	erms and con es beyond the usly negotiate	iditions e control ed.			
Relinquished by: (Signature)	ignature)	Received by	by: (Signature))	D	Date/Time	0	Relinquist	Relinquished by: (Signature)	ature)	Recei	Received by: (Signature)	signature)		Date/Time
M AWANN "		m '	J	6	1-11	21/	16:25	2							
0								0							
														R	Revised Date 051418 Rev. 2018.

Received by OCD: 10/14/2021 10:11:52 AM

Environment Testing In I

Ver 11/01/2020

Job Number: 890-782-1

SDG Number: 31403236.003.0129

List Source: Eurofins Xenco, Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 782 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Login Sample Receipt Checklist

Client: WSP USA Inc.

HTs)

MS/MSDs

<6mm (1/4").

Sample containers have legible labels. Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

Samples are received within Holding Time (excluding tests with immediate

There is sufficient vol. for all requested analyses, incl. any requested

Containers requiring zero headspace have no headspace or bubble is

Job Number: 890-782-1 SDG Number: 31403236.003.0129

Login Number: 782			List Source: Eurofins Xenco, Midland	4
List Number: 2 Creator: Copeland, Tatiana			List Creation: 06/08/21 01:15 PM	5
Question	Answer	Comment		6
The cooler's custody seal, if present, is intact.	True			
Sample custody seals, if present, are intact.	True			7
The cooler or samples do not appear to have been compromised or tampered with.	True			8
Samples were received on ice.	True			
Cooler Temperature is acceptable.	True			9
Cooler Temperature is recorded.	True			10
COC is present.	True			
COC is filled out in ink and legible.	True			11
COC is filled out with all pertinent information.	True			
Is the Field Sampler's name present on COC?	True			12
There are no discrepancies between the containers received and the COC.	True			

True

True

True

True

True

True

True

True

True

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	55971
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
chensley	None	11/17/2021

Page 105 of 105 CONDITIONS

Action 55971