SITE INFORMATION

Page 1 of 122

Report Type: Work Plan 1RP-4470

General Site Info	rmation:											
Site:		EVGSAU 2622-	-034 Flowline Release									
Company:		ConocoPhillips	S									
Section, Townsh	ip and Range	Unit Letter F	Sec. 26	T 17S	R 35E							
Lease Number:		N/A										
County:		Lea			-							
GPS:			32.806784°			-103.430709°						
Surface Owner:		Federal (BLM)										
Mineral Owner:		N/A										
Directions:		miles. Turn left	•	ad north for	r 0.47 miles.	on Buckeye Rd for 4.12 Turn right onto dirt road.						
Release Data:												
Date Released:		10/10/2016										
Type Release:		Oil										
Source of Contam	nination:	Flowline leak										
Fluid Released:		10.5 bbls oil										
Fluids Recovered.		10 bbls oil										
Official Commun	ication:											
Name:	Marvin Soriwei				Christian M.	Llull						
Company:	Conoco Phillips - RI	MR										
Address:	935 N. Eldridge Pkv	vy.		Capital of Texas Highway								
	832-486-2730			Suite 2310								
City:	Houston, Texas 770)79		IS								
Phone number:	(832) 486-2730		361									
Fax:												
Email:	Marvin.Soriwei@cor	nocophillips.com			christian.llu	Ill@tetratech.com						
Site Characteriza	ation											
Shallowest Depth to	Groundwater:		50' below surface									
Impact to groundwat	for or surface water.		No									

Sile Characterization	
Shallowest Depth to Groundwater:	50' below surface
Impact to groundwater or surface water:	No
Extents within 300 feet of a watercourse:	No
Extents within 200 feet of lakebed, sinkhole, or playa lake:	No
Extents within 300 feet of an occupied structure:	No
Extents within 500 horizontal feet of a private water well:	No
Extents within 1000 feet of any water well or spring:	No
Extents within incorporated municipal well field:	No
Extents within 300 feet of a wetland:	No
Extents overlying a subsurface mine:	No
Karst Potential:	Low
Extents within a 100-year floodplain:	No
Impact to areas not on a production site:	No

Benzene Total BTEX TPH (GRO+DRO) TPH (GRO+DRO+MRO) Chloride 10 mg/kg 50 mg/kg - 100 mg/kg 600 mg/kg	Recommended Remedial Action Levels (RRALs)											
10 mg/kg 50 mg/kg - 100 mg/kg 600 mg/k	Benzene Total BTEX TPH (GRO+DRO) TPH (GRO+DRO+MRO) Chloride											
	10 mg/kg	50 mg/kg	-	100 mg/kg	600 mg/kg							

May 15, 2020

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Work Plan ConocoPhillips EVGSAU 2622-034 Flowline Release Unit Letter F, Section 26, Township 17 South, Range 35 East Lea County, New Mexico 1RP-4470 Incident ID nKL1629442582

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred along a flowline from the East Vacuum Grayburg San Andres Unit (EVGSAU) 2622-034 well to the EVGSAU Satellite #5 facility. The release footprint is located in the Public Land Survey System (PLSS) Unit Letter F, Section 26, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The Site is located at coordinates 32.806784°, -103.430709° immediately east of the Satellite #5 facility, as shown on Figures 1 and 2.

1. BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), on October 10, 2016 a Multi-Skilled Operator (MSO) discovered a leak on a flowline from the EVGSAU 2622-034 well (API No. 30-025-02881) to the Satellite #5 facility. The leak resulted in a release of 10.5 barrels (bbls) of oil, of which 10 bbls were recovered. Immediate action taken by COP was to isolate the leak and submit a work order to repair the line. The New Mexico Oil Conservation District (NMOCD) was notified on October 13, 2016, and the site was subsequently assigned the Remediation Permit (RP) number 1RP-4470 and the Incident Identification Number nKL1629442582.

2. SITE CHARACTERIZATION

A site characterization was performed and no watercourses, lakebeds, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. The site is in an area with low karst potential, however there are playa lakes within 1000 feet of the release area footprint.

There are two water wells listed in Section 26, Township 17 South, Range 35 East on the New Mexico Office of the State Engineer (NMOSE) database. The average depth to groundwater is 50 ft below ground surface (bgs). Site characterization data are included in Appendix B.

3. REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action

ConocoPhillips

Release Characterization and Remediation Work Plan May 15, 2020

levels (RRALs) for benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil. Based on the Site's proximity to a playa lake, the RRALs for the Site are as follows:

CONSTITUENT	RRAL
Chloride	600 mg/kg
ТРН	100 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

4. SITE ASSESSMENT

Tetra Tech, Inc. (Tetra Tech) personnel visited the Site on January 7, 2020 to visually identify the footprint, assess the release, and conduct field screenings of the surface soil to establish the release extent (Figure 3). During the site visit, Tetra Tech personnel walked the entire length of the surface flowline between the EVGSAU 2622-034 well and Satellite #5 and discovered a repaired five-foot segment of flowline approximately twenty feet northeast of the Satellite #5 location. This observed area exhibited signs of impacted soils and distressed vegetation surrounding the repaired flowline section.

Several locations within and around the observed release area were chosen for surface soil screening for salinity parts per million (ppm) using an ExStik II EC 400 meter in order to horizontally delineate impact and to establish the release extent. The results of the surface screenings revealed two impacted locations (S-1 and S-3) that had screening values over 600 ppm, inferred as greater than the recommended remedial action levels (RRAL) for chlorides of 600 mg/kg in accordance with the NMOCD Guidelines for Remediation of Leaks, Spills and Releases. The remaining surface screening values were below 600 ppm, hypothetically equivalent to the NMOCD's RRAL for chlorides. Surface soil screening results are summarized in Table 1.

Based on provided information and surface screening data collected during the site visit, the estimated release extent was identified around the repaired flowline in an estimated eighty (80)-feet by eighty (80)-feet impacted area of pasture. Observed release extents, surface screening locations, and all additional structures observed in the field are indicated in Figure 3.

Tetra Tech personnel returned to the Site to delineate and sample the release area on March 26, 2020 on behalf of COP. A total of eight (8) borings (BH-1 through BH-8) were installed using an air rotary drilling rig to various depths. Four borings, BH-1 through BH-4, were installed within the observed release footprint at depths ranging from 7 ft bgs (BH-1) to 25 ft bgs (BH-2) to achieve vertical delineation of impact. The remining four borings, BH-5 through BH-8, were installed to 5 ft bgs along the perimeter of the observed release footprint to achieve horizontal delineation. Boring logs, included as Appendix C, present soil descriptions, sample depths and field screening data from the March 2020 site assessment activities.

A total of thirty-one (31) samples were collected from the eight borings and submitted to Pace Analytical National Center for Testing & Innovation (Pace) in Nashville, Tennessee to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix D. Boring locations are shown in Figure 3. Photographic documentation from the additional site assessment is included in Appendix E.

5. SUMMARY OF SAMPLING RESULTS

Results from the March 2020 soil sampling event are summarized in Table 2. Analytical results associated with all soil samples were non-detect for BTEX. The analytical results associated with the surface (0-1) sample from boring location BH-2 exceeded the Site RRAL for TPH (100 mg/kg). All other sample results were below RRAL for TPH. The analytical results associated with location BH-3 had RRAL exceedances for chloride (600 mg/kg) from the surface down to 4 ft bgs. Analytical results from one isolated depth interval at BH-4 (3-4 ft bgs) also exceed the RRAL for chloride. The analytical results associated with perimeter

Release Characterization and Remediation Work Plan May 15, 2020

borings BH-5 through BH-8) were non-detect for both benzene and total BTEX concentrations, and were below the respective RRALs for both TPH and chloride.

6. REMEDIATION WORK PLAN

Based on the analytical results, COP proposes to remove the impacted material as shown in Table 2 and as depicted in Figure 4. Impacted soils around the BH-3 and BH-4 locations will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a minimum depth of 4 ft bgs until a representative sample from the walls and bottom of the excavation is below the RRALs. Impacted soil in the vicinity of BH-2 will be excavated to a depth of 2 ft bgs within the release area footprint. The area of the release extent that runs along the surface flowlines within the release location footprint will be hand-dug to a depth to 4 ft or the maximum extent practicable.

Excavated soils will be transported offsite and disposed of an NMOCD approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chlorides. Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is 900 cubic yards.

7. VARIANCE REQUEST

In accordance with 19.15.29.14(A) NMAC, COP requests a variance for the remediation of the historical release area should excavation floor concentrations below 4 ft bgs exceed 600 mg/kg for chlorides. A 20-mil reinforced polyethylene liner will be installed and properly seated at a depth of 4 ft within the excavated areas associated with the release. The liner will provide an engineered barrier that will inhibit the downward migration of residual constituents to groundwater.

8. ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, COP proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 4. Twelve (12) confirmation floor samples and thirteen (13) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses an area of approximately 5,000 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to Pace Laboratories for analysis of TPH (Method 8015 modified), BTEX (Method 8260B), and chlorides (USEPA Method 300.0). Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade.

9. SITE RECLAMATION AND RESTORATION PLAN

The backfilled areas will be seeded in Spring/Summer 2020 (first favorable growing season) to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Loamy (L) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a handheld broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix F.

10. CONCLUSION

The release extent was delineated vertically and horizontally through assessment activities, as discussed in Section 5 and as shown on Figures 3 and 4. The deepest impacted interval encountered was 4 ft bgs at sample locations BH-3 and BH-4 and 2 ft bgs at BH-2. Based on these results, COP proposes to excavate the impacted areas to 4 ft bgs and 2 ft bgs, respectfully, as shown on Figure 4. Confirmation floor and sidewall samples will be collected and analyzed for Site constituents, and excavation areas will be expanded if results exceed RRALs. If floor confirmation samples collected at 4 ft bgs exceed RRALs, then COP requests a variance for remediation, as discussed in Section 7.

COP proposes to complete remediation activities at the Site within 90 days of NMOCD approval of this submittal. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861 or Greg Pope at (432) 682-4559.

Sincerely, Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager

cc:

Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips

Greg W. Pope, P.G. Program Manager

ConocoPhillips

4

Release Characterization and Remediation Work Plan May 15, 2020

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Release Assessment Map

Figure 4 – Proposed Excavation and Confirmation Sampling Plan

Tables:

Table 1 – Summary of Field Screening ResultsTable 2 – Summary of Analytical Results – Soil Assessment

Appendices:

Appendix A – C-141 Form Appendix B – Site Characterization Data Appendix C – Boring Logs Appendix D – Laboratory Analytical Data Appendix E – Photographic Documentation

Appendix F – NMSLO Seed Mixture Details

ConocoPhillips

FIGURES

Received by OCD: 5/15/2020 1:59:43 PM

Received by OCD: 5/15/2020 1:59:43 PM

TABLES

TABLE 1

SUMMARY OF FIELD SCREENING RESULTS SOIL ASSESSMENT CONOCOPHILLIPS 1RP-4470 (INCIDENT ID NKL1629442582) EVGSAU 2622-034 FLOWLINE RELEASE LEA COUNTY, NM

Sample ID*	Sample Date	Chloride ¹
		ppm
S-1	1/3/2020	>10,000
S-2	1/3/2020	143
S-3	1/3/2020	710
S-4	1/3/2020	98
S-5	1/3/2020	216
S-6	1/3/2020	112

NOTES:

- * Surface soil grab samples
- ppm Parts per million
- 1 ExStik Field Screening Salinity Measurement

Bold and italicized values indicate results inferred to exceed the RRAL for chloride (600 mg/kg).

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT CONOCOPHILLIPS 1RP-4470 (INCIDENT ID NKL1629442582) EVGSAU 2622-034 FLOWLINE RELEASE LEA COUNTY, NM

<table-container> Sample Di Metrical (no) Calcolice (n</table-container>				BTEX ²									TP	H ³					
Processe Product	Commissio	Comula Data	Sample Depth	Field Screening Results		Chloride ¹		Bonzono	Taluana		Tabulh engage	Total Vulance		GRO ⁴		DRO	ORO		Total TPH
Bit 1 0.1 2.27 4.9 1.9 0 0.00051 0 0.00071 0 0.00	Sample ID	Sample Date	interval	Chloride	PID			Benzene	Benzene Toluene		Ethyldenzene Total Xylenes		TOTAL BLEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈	C ₂₈ - C ₄₀		(GRO+DRO+ORO)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ft. bgs	рр	m	mg/kg	Q	mg/kg Q	mg/kg	Q	mg/kg Q	mg/kg Q	mg/kg	mg/kg	Q	mg/kg Q	mg/kg	Q	mg/kg
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0-1	227	4.9	129		< 0.00108	< 0.00541		< 0.00271	< 0.00704	ND	0.0240	ΒJ	3.46 J	10.3		13.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2-3	327	1.3	266		< 0.00107	< 0.00533		< 0.00267	< 0.00693	ND	< 0.107		< 4.27	1.24	ВJ	1.24
Image: bord bit is an image: bord bit is and bit is an image: bord bit is an image: bo	BH-1	3/26/2020	3-4	361	1.2	249		< 0.00105	< 0.00525		< 0.00263	< 0.00683	ND	< 0.105		< 4.20	0.929	ВJ	0.929
BH-2 0.1 27 4.6 190 <0.0007 <0.0026 <0.00266 ND <0.08 59.3 227 I 2.3 6.9 3.1 270 <0.00107			4-5	688	3.2	-		-	-		-	-	-	-		-	-		-
B4-2 C-3 C-3 <thc-3< th=""> <thc-3< th=""></thc-3<></thc-3<>			6-7	251	1.4	20.6		< 0.00105	< 0.00523		< 0.00262	< 0.00680	ND	< 0.105		< 4.19	0.396	ΒJ	0.396
H 2 H 2 H 2 H 2 H 2 H 2 H 2 H 2 H 2 H			0-1	277	4.6	190		< 0.00107	< 0.00535		< 0.00268	< 0.00696	ND	< 0.108		59.3	227		286
BH-2 3/26/2020 4.5 961 2.9 1.0			2-3	629	3.1	270		< 0.00104	< 0.00519		< 0.00259	< 0.00674	ND	< 0.104		2.80 J	7.86		10.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3-4	846	3.2	287		< 0.00105	< 0.00525		< 0.00263	< 0.00683	ND	< 0.105		< 4.20	0.514	ВJ	0.514
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3/26/2020	4-5	961	2.9	-		-	-		-	-	-	-		-	-		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BH-2		6-7	1560	1.5	-		-	-		-	-	-	-		-	-		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			9-10	1510	1.4	-		-	-		-	-	-	-		-	-		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			14-15	1710	1.1	-		-	-		-	-	-	-		-	-		-
BH-3 O-1 8420 8.1 7630 < < < < <td></td> <td>19-20</td> <td>1030</td> <td>1.1</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td>			19-20	1030	1.1	-		-	-		-	-	-	-		-	-		-
H = H + H + H + H + H + H + H + H + H +			24-25	391	0.9	59.4		< 0.00118	< 0.00588		< 0.00294	< 0.00765	ND	0.0295	ΒJ	2.13 J	0.605	ΒJ	2.76
$ H = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$			0-1	8420	8.1	7630		< 0.00110	< 0.00551		< 0.00275	< 0.00716	ND	0.0317	ВJ	6.21	13.4		19.6
BH-3 3/26/202 4-5 946 1.8 0			2-3	4780	7.1	4830		< 0.00106	< 0.00532		< 0.00266	< 0.00691	ND	< 0.106			4.66		6.55
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- / /	3-4	3690	3.2	4660		< 0.00107	< 0.00537		< 0.00269	< 0.00698	ND	< 0.107		2.37 J	4.39		6.76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BH-3	3/26/2020	4-5	946	1.8	-		-	-		-	-	-	-		-	-		-
NAME NAME <th< td=""><td></td><td></td><td>6-7</td><td>152</td><td>2.6</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td></th<>			6-7	152	2.6	-		-	-		-	-	-	-		-	-		-
BH-4 3-4 3-61 1.2 660 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <			9-10	107	1.1	23.4		< 0.00105	< 0.00526		< 0.00263	< 0.00684	ND	< 0.105		< 4.21	< 4.21		-
BH-4 3-4 3-61 1.2 660 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <			2-3	287	13	128		< 0.00108	< 0.00542		< 0.00271	< 0.00705	ND	< 0 108		1 76	6 90		8.66
BH-4 A-5 645 1.8 - <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>-</td></th<>															_				-
BH-4 3/26/2020 6-7 637 1.9																			-
	BH-4	3/26/2020		637		-		-	-		-	_	-	-		-	-		-
			9-10	598	2.1	-		-	-		-	-	-	-		-	-		-
14-15 167 2.0 60.6 < 0.00124 < 0.00619 < 0.00309 < 0.00804 ND 0.0652 BJ < 4.76 < 4.76 < 4.76				167		60.6	1	< 0.00124	< 0.00619		< 0.00309	< 0.00804	ND	0.0652	ВJ	< 4.76	< 4.76		0.0652

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT CONOCOPHILLIPS 1RP-4470 (INCIDENT ID NKL1629442582) EVGSAU 2622-034 FLOWLINE RELEASE LEA COUNTY, NM

								BTEX ²								TPH ³						
Sample ID	Sample Date	Sample Depth Interval	Field Screen	ning Results	Chloride ¹		Benzene		Toluene		Ethylbenzen	•	Total Xylene)s	Total BTEX	GRO⁴		DRO		ORO		Total TPH
Sample ib	Sumple Bute		Chloride	PID			Delizene		Toldelle		Linyidenzen	5	Total Aylene	.5	TOTALDIEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	рр	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
BH-5		0-1	127	6.9	32.1		< 0.00105		< 0.00525		< 0.00263		< 0.00683		ND	< 0.105		4.41		14.6		19.0
	3/26/2020	2-3	115	3.2	47.3		< 0.00108		< 0.00540		< 0.00270		< 0.00702		ND	< 0.108		< 12.6		6.85	J	6.85
5-110	5/20/2020	3-4	129	3.6	36.9		< 0.00107	J3	< 0.00537	J3	< 0.00268	J3	< 0.00698	J3	ND	0.0577	ΒJ	2.79	J	8.67		11.5
		4-5	98	1.8	18.0	В	< 0.00105		< 0.00524		< 0.00262		< 0.00681		ND	0.0656	ΒJ	< 4.19		< 4.19		0.0656
	3/26/2020	0-1	151	1.1	37.6		< 0.00107		< 0.00535		< 0.00268		< 0.00696		ND	0.0726	ВJ	< 4.28		2.50	J	2.57
BH-6 BH-7		2-3	108	0.9	34.7		< 0.00107		< 0.00537		< 0.00268		< 0.00698		ND	0.0656	ВJ	< 4.19		< 4.19	J	0.0656
		3-4	205	0.7	19.6	В	< 0.00105		< 0.00524		< 0.00262		< 0.00681		ND	0.0725	ВJ	2.61	J	< 4.19		2.68
		4-5	203	0.4	22.3	В	< 0.00105		< 0.00526		< 0.00263		< 0.00684		ND	0.636	ВJ	1.90	J	< 4.21		2.54
		0-1	94.9	1.7	11.2	В	< 0.00107		< 0.00536		< 0.00268		< 0.00694		ND	0.109	В	13.8		58.0		71.9
		2-3	296	2.4	173		< 0.00110		< 0.00552		< 0.00276		< 0.00718		ND	0.0710	BJ	1.90	J	5.97		7.94
	3/26/2020	3-4	307	2.1	177		< 0.00110		< 0.00548		< 0.00274		< 0.00713		ND	0.0680	BJ	2.03	J	8.68		10.8
		4-5	315	2.2	250		< 0.00104		< 0.00521		< 0.00260		< 0.00677		ND	0.0593	ВJ	< 4.17		0.373	J	0.432
		0-1	87.5	1.2	12.4	В	< 0.00108		< 0.00542		< 0.00271		< 0.00705		ND	< 0.108		5.21		15.0		20.2
		2-3	134	2.5	38.8		< 0.00107		< 0.00537		< 0.00268		< 0.00698		ND	< 0.107		3.46	J	4.04	J	7.50
BH-8	3/26/2020	3-4	156	2.7	40.4		< 0.00107		< 0.00535		< 0.00267		< 0.00695		ND	< 0.107		< 4.28		3.63	J	3.63
		4-5	75.5	1.6	9.82	ВJ	< 0.00105		< 0.00524		< 0.00262		< 0.00681		ND	< 0.105		< 4.19		1.93	J	193

NOTES:

ft. Feet

bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

- Not analyzed

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

ND Non-detect result

Bold and italicized values indicate exceedance of proposed RRALs

Shaded rows indicate depth intervals proposed for excavation and remediation.

1 EPA Method 300.0

- 2 EPA Method 8260B
- 3 EPA Method 8015
- 4 EPA Method 8015D/GRO

QUALIFIERS:

B The same analyte is found in the associated blank.

J The identification of the analyte is acceptable; the reported value is an estimate.

J3 The associated batch QC was outside the established quality control range for precision.

•

APPENDIX A C-141 Form

ceived by OCD: 5/15/2020 1:59:43 PM			REVIEWED		Page 1
<u>District I</u> 625 N. French Dr., Hobbs, NM 88240	State o	of New Mexico	By Kristen Lyncl	h at 11:47 am,	Oct 20, 2016
<u>District II</u> 11 S. First St., Artesia, NM 88210	Energy Mineral	ls and Natural Reso	ources		Revised August
istrict III	Oil Cons	ervation Division	Su	bmit 1 Copy	to appropriate District Of
000 Rio Brazos Road, Aztec, NM 87410 <u>istrict IV</u>	1220 Sou	th St. Francis Dr.		acc	cordance with 19.15.29 N
220 S. St. Francis Dr., Santa Fe, NM 87505	Santa	Fe, NM 87505			
Re	elease Notification	on and Correc	tive Action	n	
		OPERATOR		🛛 Initia	l Report 🗌 Final
Name of Company: ConocoPhillips		Contact: Jose A Z			
Address: 29 Vacuum Complex Lane Facility Name: EVGSAU 2622-034		Telephone No. 57 : Facility Type: line			
	Minoral Owned			A DI No	20.025.02891
Surface Owner: Federal	Mineral Owner			API No.	. 30-025-02881
Unit Letter Section Township Range		ON OF RELEAS		West Line	County
Unit Letter Section Township Range G 26 17S 35E		th/South Line Feet I	rom the East/	west Line	Lea
I	_atitude	Longitude			
	NATUR	E OF RELEASE	7		
Type of Release: Oil		Volume of Releas			ecovered: 10
Source of Release: line		Date and Hour of 10/10/16 1030	Occurrence	Date and H SAME	Hour of Discovery
Was Immediate Notice Given?		If YES, To Whom	1?	SAME	
	No 🗌 Not Require		-		
By Whom? Jose A Zepeda Was a Watercourse Reached?		Date and Hour: 10			
	🛛 No	If YES, Volume I	mpacting the wa	tercourse.	
If a Watercourse was Impacted, Describe Full	V. *				
N/A	-				
Describe Cause of Problem and Remedial Act On October 10, 2016 at 1030 hrs. at EVGSAU		a laak on a lina resultir	a in a release of	10.5 bbls of (Ail with 10 bbls recovered
Immediate action was to isolate leak and subr					
guidelines.	- 				
Describe Area Affected and Cleanup Action 7 hereby certify that the information given abo		the best of my knowle	edge and understa	and that pursu	uant to NMOCD rules an
regulations all operators are required to report	and/or file certain release	e notifications and perfe	orm corrective ac	tions for rele	ases which may endange
should their operations have failed to adequat or the environment. In addition, NMOCD acc	ely investigate and remedi ceptance of a C-141 report	iate contamination that	pose a threat to g	ground water,	, surface water, human he
should their operations have failed to adequat or the environment. In addition, NMOCD acc	ely investigate and remedi ceptance of a C-141 report	iate contamination that t does not relieve the op	pose a threat to g perator of respon	ground water, sibility for co	, surface water, human he ompliance with any other
should their operations have failed to adequat or the environment. In addition, NMOCD acc federal, state, or local laws and/or regulations	ely investigate and remedi ceptance of a C-141 report	iate contamination that t does not relieve the op	pose a threat to g	ground water, sibility for co	, surface water, human he ompliance with any other
public health or the environment. The accepta should their operations have failed to adequat or the environment. In addition, NMOCD acc federal, state, or local laws and/or regulations Signature: JOSE A GEPEDA	ely investigate and remedi ceptance of a C-141 report	iate contamination that t does not relieve the op OI	pose a threat to g perator of respon- L CONSER	ground water, sibility for co	, surface water, human he ompliance with any other DIVISION
should their operations have failed to adequat or the environment. In addition, NMOCD acc federal, state, or local laws and/or regulations	ely investigate and remedi ceptance of a C-141 report	iate contamination that t does not relieve the op	pose a threat to g perator of respon- L CONSER	ground water, sibility for co	, surface water, human he ompliance with any other
should their operations have failed to adequat or the environment. In addition, NMOCD acc federal, state, or local laws and/or regulations Signature: <i>JOSE A 3EPEDA</i> Printed Name: Jose A Zepeda	ely investigate and remedi ceptance of a C-141 report	iate contamination that t does not relieve the op OI Approved by Enviro	pose a threat to g perator of respon- L CONSER	ground water, sibility for co VATION st:	, surface water, human he ompliance with any other DIVISION
should their operations have failed to adequat or the environment. In addition, NMOCD acc federal, state, or local laws and/or regulations Signature: <i>JOSE A 3EPEDA</i> Printed Name: Jose A Zepeda Title: LEAD HSE	ely investigate and remedi ceptance of a C-141 report	iate contamination that t does not relieve the op OI Approved by Enviro Approval Date: 10/2 NMOCD Accepts of	pose a threat to g perator of respon- L CONSER nmental Speciali 20/2016 liscrete samples of	ground water, sibility for co VATION st:	, surface water, human he ompliance with any other DIVISION
should their operations have failed to adequat or the environment. In addition, NMOCD acc federal, state, or local laws and/or regulations Signature: <i>JOSE A 3EPEDA</i> Printed Name: Jose A Zepeda	ely investigate and remedi ceptance of a C-141 report	Approved by Enviro Approved Date: 10/2 NMOCD Accepts of Conditions of Approx	pose a threat to g perator of respon- <u>L CONSER</u> nmental Speciali 20/2016 liscrete samples o val:	ground water, sibility for co VATION st: Expiration I only	, surface water, human he ompliance with any other DIVISION
Should their operations have failed to adequate or the environment. In addition, NMOCD accordentiates Sederal, state, or local laws and/or regulations Signature: <i>JOSE A 3EPEDA</i> Printed Name: Jose A Zepeda Fitle: LEAD HSE	ely investigate and remedi ceptance of a C-141 report	iate contamination that t does not relieve the op OI Approved by Environ Approval Date: 10/2 NMOCD Accepts of Conditions of Approplease notify NMOC Please submit remed	pose a threat to g perator of respon- L CONSERV nmental Speciali 20/2016 liscrete samples o val: 2D prior to sampl	ground water, sibility for co VATION st: Expiration I only ing	, surface water, human he ompliance with any other DIVISION
 chould their operations have failed to adequate or the environment. In addition, NMOCD accordederal, state, or local laws and/or regulations Gignature: <i>JOSE A 3EPEDA</i> Printed Name: Jose A Zepeda Fitle: LEAD HSE E-mail Address: <i>Jose. A. Zepeda@con</i> 	ely investigate and remedi ceptance of a C-141 report	Approved by Enviro Approved Date: 10/2 NMOCD Accepts of Conditions of Appro	pose a threat to g perator of respon- L CONSERV nmental Speciali 20/2016 liscrete samples o val: 2D prior to sampl	ground water, sibility for co VATION st: Expiration I only ing	, surface water, human he ompliance with any other DIVISION wayweb Date: 12/20/2016
should their operations have failed to adequat or the environment. In addition, NMOCD acc federal, state, or local laws and/or regulations Signature: <i>JOSE A 3EPEDA</i> Printed Name: Jose A Zepeda Fitle: LEAD HSE	ely investigate and remedi ceptance of a C-141 report	iate contamination that t does not relieve the op OI Approved by Environ Approval Date: 10/2 NMOCD Accepts of Conditions of Approplease notify NMOC Please submit remed	pose a threat to g perator of respon- L CONSERV nmental Speciali 20/2016 liscrete samples o val: 2D prior to sampl	ground water, sibility for co VATION st: Expiration I only ing	Attached

Page 3

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/15/2	2020 1:59:43 PM State of New Mexico		r	Page 19 of 122
			Incident ID	
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations all operators a public health or the enviro failed to adequately inves addition, OCD acceptance and/or regulations. Printed Name: Signature:	nformation given above is true and complete to the b are required to report and/or file certain release notif onment. The acceptance of a C-141 report by the O stigate and remediate contamination that pose a threa e of a C-141 report does not relieve the operator of n	ications and perform co CD does not relieve the at to groundwater, surfa- responsibility for compl	prective actions for rele operator of liability sho ce water, human health iance with any other fee	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only				
Received by:		Date:		

Received by OCD: 5/15/2020 1:59:43 PM Form C-141 State of New Mexico

Page 5

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Page 20 of 122

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 										
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.										
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.										
Extents of contamination must be fully delineated.										
Contamination does not cause an imminent risk to human health, the environment, or groundwater.										
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Title: Date: Date: Date: Date: Date:										
OCD Only Bradford Billings										
Received by: Bradford Billings Date: 11/30/2021										
Approved Approved with Attached Conditions of Approval Denied Deferral Approved										
Signature: Bradford Billings Date: 11/30/2021										

APPENDIX B Site Characterization Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(quar					IE 3=SW largest)	,	3 UTM in meters)		(In feet))
POD Number	POD Sub- Code basin (County	Q (64 1		•	Tws	Rng	х	Y	-	Depth Water (Water Column
L 04881	L	LE	1	3	26	17S	35E	646556	3630644* 🌍	137	50	87
L 04951	L	LE	2 2	2 2	26	17S	35E	647851	3631560* 🌍	137	50	87
									Average Depth to	Water:	50 fe	eet
									Minimum	Depth:	50 fe	et
									Maximum	Depth:	50 fe	eet
Record Count: 2												

```
PLSS Search:
```

Section(s): 26

Township: 17S

Range: 35E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 24 of 122

Water Bodies

•

APPENDIX C Boring Logs

Re

	Page 26 of 122
LOG OF BORING BH-1	Page

ived by OCD: 5/15/2020 1:59:43 PM												Page 26 o				
212C-M	D-0	2127	T	ŀ	ETR	TEC	H				LOG OF E	BORING BH-1			Page 1 of 1	
Project N	lam	e: EVO	GSAU 2	622	-034	Flov	vline	Rele	ease	-					1	
Borehole	Loc	cation:	GPS: 32	2.806	849°.	103	3.430	626°			urface Elevation: 3913 ft					
Borehole			BH-1						E	loreh		ted: 3/26/2020	Date Fi	nishe	d: 3/26/2020	
				(%)	(%)						WATER LE	VEL OBSERVATIC	NS		DRY_ft	
		bm D	(mq	RY (%	ENT (6		DEX			Remarks:					
DEPTH (ft) OPERATION TYPE	SAMPLE	HICHLORIDE FIELD SCREENING (ppm)	U VOC FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DES			DEPTH (ft)	REMARKS	
-	X	227	4.9								-SM- SILTY SAND; Brow gravel, with no odor, with	vn, dense, dry, with no staining.		_	BH-1 (0'-1')	
-	\mathbb{H}	327	1.3								-SM- SILTY SAND; Brow	vn, dense, dry, with n	0	2	BH-1 (2'-3')	
-	[361	1.2								odor, with no staining. -SM- SILTY SAND; Tan,	dense, drv. with ara	vel.	3	BH-1 (2-3) BH-1 (3'-4')	
	[688	3.2								with no odor, with no stail	ning.	,	<u> </u>	BH-1 (4'-5')	
5 (Ĥ		0.2											_		
-	\square	251	1.4											7	BH-1 (6'-7')	
(665	Bottom of bore	ehole at 7.0 feet.			,	
ampler ypes:		Split Spoon Shelby Bulk Sample M Grab Sample	↓ ∭ v ↓ C			r T		: Muc Rota	ary itinuou: ht Auge sh	s Per	Hand Auger Air Rotary Direct Push Core Barrel	ples are shown in th tion is an estimated v	e "Rema ⁄alue.	ırks"	column.	
odder.		in Domingue					Drillin		uipme	nt: 🗤	otary Driller: Scarboroug	ah Drilling				
335.	201		-					5 - 44				,				

.

			2127	5/2020			ATE					LOG OF BORING BH-2		Page 27 Page 1 of 1			
roio	ct N	lam	. E//	GSAU 2		-034	Flor	vline	Rel	2260				1 of 1			
-				GPS: 32						5430		Surface Elevation: 3912 ft					
			nber:			-004	, -100	5.400	720	E							
			ilbei.								Diame	ble Date Started: 3/26/2020 Date WATER LEVEL OBSERVATIONS		5d. 0/20/2020			
					(9	(%						While Drilling $\underline{\nabla}$ DRY ft Upon Completion of Drilling	Į Į	DRY_ft			
			D (m	(mq	RY (%	ENT	6		DEX			Remarks:					
	OPERATION TYPE		CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	MIT	PLASTICITY INDEX	MINUS NO. 200 (%)	ŋ						
(#)	TION	ш	ORID		ĒRĒ	URE (ENSIT	LIQUID LIMIT	STICI	NO.	GRAPHIC LOG	MATERIAL DESCRIPTION	(Ħ)				
DEPTH (ft)	PERA	SAMPLE	CHL	V OO SCF	AMPL	OISTI	RYDI	LIQI	PLA	SUN	APH		DEPTH (ft)	REMARKS			
ä 	ð	Ś	ExStik	PID	ŝ	Σ		LL	PI	Σ	Ū						
_	$\langle \langle$	Д	277	4.6								-SM- SILTY SAND; Brown, dense, dry, with gravel, with no odor, with no staining.		BH-2 (0'-1')			
_	$\langle \langle$																
_	$\langle \langle$	X.	629	3.1									3	BH-2 (2'-3')			
_	$\langle \rangle$	X.	846	3.2								-SM- SILTY SAND; Tan, dense, dry, with gravel, with no odor, with no staining.		BH-2 (3'-4')			
5	$\langle \rangle$	X	961	2.9										BH-2 (4'-5')			
_	$\left< \right>$												6				
_	$\rangle\rangle$	X	1.56	1.5								-SM- SILTY SAND; Tan, dense, dry, with no odor, with no staining.		BH-2 (6'-7')			
	$\rangle\rangle$																
	$\rangle\rangle$																
)	$\rangle\rangle$	\square	1.51	1.4										BH-2 (9'-10')			
	$\rangle\rangle$																
	$\rangle\rangle$																
	$\rangle\rangle$																
	$\rangle\rangle$																
5	\rangle	\square	1.71	1.1										BH-2 (14'-15')			
-	$\left<\right>$																
	$\left<\right>$																
_	$\left\{ \right\}$																
	$\left\{ \right\}$												19				
0_	$\langle \langle$	X	1.03	1.1								-ML- SANDY SILT; Tan, medium stiff, dry, with coarse grained sand, with no odor, with no staining.		BH-2 (19'-20')			
-	$\langle \langle$												-				
_	$\langle \langle$												-				
-	$\langle \langle$												-				
_	$\langle \rangle$	H	6 6 1										-				
5))	М	391	0.9								Bottom of borehole at 25.0 feet.	25	BH-2 (24'-25')			
amr	ler	Γ	Solit				(Opera	ation								
amp /pes	S:	\geq	Split Spoon	P ¹		e Line	r Ì	Opera Гурез		ł		Hand Auger Notes:	narke"	column			
		1	Shelby		/ane S				Rot	ary	_ [∠ s ∎	Surface elevation is an estimated value.		column.			
		2	Bulk Sample Ng Grab		Califor				Flig	itinuou ht Aug sh	er 📕	Direct Push					
		En Cu	Sample	e HT	est P	it			Rot		\square						

Logger: Devin Dominguez	Drilling Equipment: Air Rotary	Driller: Scarborough Drilling
EVOQUEL COOL COLLECTION OF COLLECTION OF COLLECTION	OUL NOWELLON COME TE TEMPLATE DECEMP	

. Released to Imaging: 11/30/2021 2:08:13-PM

Rece

	Page	28	of 122	
	0			

eived by O	CD: 5/1	5/2020	1:5	9:43	РМ									Page 28
212C-MD-0	2127	T	e) T	ETRA	TEC	н				L	OG OF BORING BH-3			Page 1 of 1
Project Nam	e: EVC	GSAU 2	622	-034	Flov	vline	Rele	ease						
Borehole Loo	cation:	GPS: 32	2.806	808°,	-103	8.430	875°			Surface Elevation:	3913 ft			
Borehole Nu	mber:	BH-3						B	oreho	ole eter (in.): 8	Date Started: 3/26/2020	Date Fi	nishe	d: 3/26/2020
DEPTH (ft) DEPTH (ft) COPERATION TYPE SAMPLE	mber: (function of the second	BH-3 (udd) DNIN COTELENER PID 3.1 7.1 3.2 1.8	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		PLASTICITY INDEX	MINUS NO. 200 (%)		tter (in.): 0 While Drilling Remarks: MATE SM- SILTY S gravel, with lig gravel, with no -SM- SILTY S	Date Started: 3/26/2020 VATER LEVEL OBSERVATIO DRY ft Upon Completion of I ERIAL DESCRIPTION SAND; Brown, dense, dry, with ht odor, with no staining. SAND; Brown, dense, dry, with o odor, with no staining. SAND; Tan, dense, dry, with gra with no staining.	Drilling		d: 3/26/2020 DRY ft REMARKS BH-3 (0'-1') BH-3 (2'-3') BH-3 (3'-4') BH-3 (4'-5')
	152	2.6									manne etaming.		 10	BH-3 (6'-7') BH-3 (9'-10')
	Split Spoon Shelby Bulk Sample M Grab Sample		cetate ′ane S califori	nia	T		: Mud Rota Con Fligh Was Rota	ary tinuous nt Auge sh ary		Direct Push	alytical samples are shown in th face elevation is an estimated v	e "Rema /alue.	rks" (column.
loader. Dev		7				\rillin/	n Eau	inmo	nt· 🗤	Botony Drill	or: Scarborough Drilling			

 Logger:
 Devin Dominguez
 Drilling Equipment: Air Rotary
 Driller:
 Scarborough Drilling

 EVGSAU 2622-034 GPJ `5-12-20`, TT AUSTIN GEOTECH NOWELL3 `2015 TT TEMPLATE DECEMBER WELL.GDT''
 Released to Imaging: 11/30/2021 2:08:13 PM

212	C-M	1D-0	2127	Т	ĿТ	ETR	ATE	H				L	og of Boring	BH-4			Page 1 of 1
roje	ct N	lam	e: EVC	SAU 2	2622	-034	Flo	vline	Rele	ease							
orel	hole	e Loo	cation:	GPS: 32	2.806	766°	, -103	3.430	748°			Surface Elevation:	3913 ft				
orel	hole	e Nu	mber: I	3H-4						E	oreh iame	ole 8 ter (in.):	Date Started: 3/26/2	2020	Date F	inishe	d: 3/26/2020
	ш		ppm)	(mdd	ERY (%)	IENT (%)	cf)		NDEX			V V	ATER LEVEL OBS			<u>v</u>	DRY_ft
DEPTH (ff)	OPERATION TYPE	SAMPLE	The second secon	UNCE FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATE	RIAL DESCRIPTIC	N		DEPTH (ft)	REMARKS
	$\langle \rangle$	X	515	4.9								-SM- SILTY S gravel, with no	AND; Brown, dense, odor, with no stainin	dry, with g.		_	BH-4 (0'-1')
_	$\left\{ \right\}$		287	1.3												_	BH-4 (2'-3')
	$\left \right\rangle$		361	1.2													BH-4 (3'-4')
5_	$\left<\right>$	М	645	1.8								-					BH-4 (4'-5')
_	$\langle \rangle$															6	
_	$\langle \langle$	Д	637	1.9								with no odor, v	AND; Tan, dense, dr <i>r</i> ith no staining.	y, with grav	/el,	_	BH-4 (6'-7')
_	$\langle \langle$															_	
_	$\langle \langle$	\square														_	
<u>)</u>	$\langle \langle$	А	598	2.1												L	BH-4 (9'-10')
_	$\langle \langle$															–	
_	$\langle \langle$											-				-	
_	$\langle \langle$															-	
_	$\langle \langle$	\mathbb{H}	167	2								-SM- SILTY S	AND; Brown, dense,	dry, with n	0	14	
5	//	\square	167	2								ot odor, with no s	taining. om of borehole at 15	-		15	BH-4 (14'-15')
amp ype	oler s:		Split Spoon Shelby Bulk Sample	μ		e Line Shear	r 1	<u>)</u> pera ypes	Muc Rota	l ary tinuou:		Hand Auger Note Air Rotary Direct Push	s: lytical samples are s ace elevation is an e	hown in the stimated v	e "Rema alue.	arks"	column.

212C-MD-02127												LOG OF BORING BH-5	5		Page 1 of 1
roje	ect N	lam	e: EV	GSAU 2	2622	-034	Flov	wline	Rele	ease	1				1
ore	hole	Lo	cation:	GPS: 32	2.806	900°	, -103	3.430	626°			Surface Elevation: 3912 ft			
ore	hole	Nu	mber:	BH-5						E	Boreho Diame	le Date Started: 3/26/2020	Date F	inishe	d: 3/26/2020
2 DEPTH (ft)	OPERATION TYPE	SAMPLE E	mber: (fund) GTHE GTH	BH-5 (udd) 0000 PID 6.9 3.2 3.6 1.8	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		PLASTICITY INDEX	MINUS NO. 200 (%)	Creation of the second	le Bate Started: 3/26/2020 WATER LEVEL OBSERVAT While Drilling ✓ DRY ft Upon Completion Remarks: MATERIAL DESCRIPTION •SM- SILTY SAND; Brown, dense, dry, with gravel, with no odor, with no staining. •SM- SILTY SAND; Tan, dense, dry, with gravel, with no odor, with no staining. Bottom of borehole at 5.0 feet.	h		d: 3/26/2020 DRY_ft REMARKS BH-5 (0'-1') BH-5 (2'-3') BH-5 (3'-4') BH-5 (4'-5')

Sampler Types:	Split Spoon Shelby Bulk Sample	Acetate Liner Image: Acetate Liner<	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Hand Auger Air Rotary Direct Push Core Barrel	Notes: Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.
Logger:	Devin Dominguez		Drilling Equipment	: Air Rotary	Driller: Scarborough Drilling

.

Received by OCD: 5/15/2020 1:59:43 PM

108

205

203

5

0.9

0.7

0.4

212C-MD-02127										LOG OF BORING BH-6 Page 1 of 1		
Project Na	Project Name: EVGSAU 2622-034 Flowline Release											
Borehole Location: GPS: 32.806699°, -103.430605° Surface Elevation: 3912 ft												
Borehole N	Number:	BH-6						B D	Borehole Date Started: 3/26/2020 Date Finished: 3/26/2020			
	ppm)	(mqc	ERY (%)	ENT (%)	sf)		È	(%)		WATER LEVEL OBSERVATIONSWhile Drilling $\underline{\nabla}$ DRY ftUpon Completion of Drilling $\underline{\Psi}$ DRY ftRemarks:		
DEPTH (ft) OPERATION TYPE	SAMPLE CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	AMPLE RECOVERY	MOISTURE CONTENT	DRY DENSITY (pcf)	LIQUID LIMIT		MINUS NO. 200 (%	GRAPHIC LOG			
	ExStik	k PID が 茎			LL	PI	Σ	G				
	151	1.1								-SM- SILTY SAND; Brown, dense, dry, with gravel, with no odor, with no staining.		

-SM- SILTY SAND; Tan, dense, dry, with gravel, with no odor, with no staining.

Bottom of borehole at 5.0 feet.

	Sampler Types:	Split Spoon	Acetate Liner	Operation Types:	Hand Auger	Notes:		
		Shelby	Vane Shear	Mud Rotary	Air Rotary		ical samples are shown in the "Remarks" colum ce elevation is an estimated value.	ın.
		Bulk Sample	California	Continuous Flight Auger	Direct Push			
		Grab Sample	Test Pit	Wash	Core Barrel			
	00	Devin Dominguez		Drilling Equipment	,		Scarborough Drilling	
. Re	EVGSAU 262	22-034.GPJ ` 5-12-1 Imaging: 1	21/30/2021 2:08:	13-PM	TEMPLATE DECEMBE	ER WELL.G	DT''`	Revised 5-16-12 (RHM

Page 31 of 122

BH-6 (2'-3')

BH-6 (3'-4')

BH-6 (4'-5')

_4

5

Receive OCD · 5/15/2020 1.59.42 PM 1 1

eived by OCD: 5/1.	5/2020 1:59:43 PM	1	Page 32 of 122
212C-MD-02127	TE TETRA TECH	LOG OF BORING BH-7	Page 1 of 1
Project Name: EVG	SAU 2622-034 Flowline Release		
Parahala Lagation: (CDS: 22 806604° 102 420025°	Surface Flovetion: 2014 ft	

Borehole Location: GPS: 32.806694°, -103.430935°							, -103	3.430	935°			Surface Elevation:	3914 ft			
Borehole Number: BH-7 Boreh												ole Started: 3/26/2020 Date Finished: 3/26/2020			d: 3/26/2020	
	ш		ELD (mqq	(mdd	ERY (%)	IENT (%)	DENSITY (pcf)		NDEX	(%		_	VATER LEVEL OBSERVATIO		<u>¥</u> C	D <mark>RY_</mark> ft
ЭЕРТН (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm) SAMPLE RECOVERY		SAMPLE RECOVERY (MOISTURE CONTENT		LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	SRAPHIC LOG	MATE	RIAL DESCRIPTION		DEPTH (ft)	REMARKS
ä_	ō	Ś	ExStik	PID NOIS NOIS NOIS NOIS NOIS NOIS NOIS NOIS		Ū										
_	$\langle \langle$	Д	94.9	1.7									-SM- SILTY SAND; Brown, medium dense, dry, with no odor, with no staining.			
_	$\langle \langle$											- - -			2	
		Д	296 2.4					-SM- SILTY SAND; Brown, dense, dry, with gravel, with no odor, with no staining.			_	BH-7 (2'-3')				
_	\mathbb{Z}	М	307	2.1	2.1										4	BH-7 (3'-4')
5 315 2.2						AND; Tan, dense, dry, with grav vith no staining.	/el,	5	BH-7 (4'-5')							

Bottom of borehole at 5.0 feet.

Sampler Types:	Split Spoon	Acetate Liner	Operation Types:	Hand Auger	Notes:		
	Shelby	Vane Shear	Mud Rotary	Air Rotary		tical samples are shown in the "Remarks" column. ce elevation is an estimated value.	
	Bulk Sample	California	Continuous Flight Auger	Direct Push	Curra		
	Grab Sample	Test Pit	Wash	Core Barrel			
Logger:	Devin Dominguez		Drilling Equipment	: Air Rotary	Driller:	Scarborough Drilling	
EVGSAU 26	22-034 GP.L ` 5-12-2	O'LTT AUSTIN GEOTE	CH NOWELLS ' 2015 TT	TEMPLATE DECEMBE	RWFILG		Povisod 5 16 12 /E

Received by OCD: 5/15/2020 1:59:43 PM

ExStik

87.5

134

156

75.5

5

1.2

2.5

2.7

1.6

LL ΡI

212C-MD-02127												LOG OF BORING BH-8					Page 1 of 1
Proje	roject Name: EVGSAU 2622-034 Flowline Release																
Borehole Location: GPS: 32.806856°, -103.430914° Surface Elevation: 3913 ft																	
Bore	ehole	Num	nber:	BH-8							oreh iame	le cin.): 8 Date Started: 3/26/2020 Date Finished:			1: 3/26/2020		
			opm)	(mdd)	ERY (%)	ENT (%)	tf)		INDEX	()		_	VATER LE <u>Z_DRY_</u> ft	VEL OBSERVATIO Upon Completion of E		<u>⊥</u> D	<u>RY_</u> ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (r	AMPLE RECOVERY	MOISTURE CONTENT	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY IN	MINUS NO. 200 (%)	GRAPHIC LOG	MATE	ERIAL DES	SCRIPTION		DEPTH (ft)	REMARKS
	b	S^ S	ExStik	PID	2 S	Ιž	<u>۲</u>	LL	PI	Σ	Б						

-SM- SILTY SAND; Brown, dense, dry, with

-SM- SILTY SAND; Tan, dense, dry, with gravel, with no odor, with no staining.

Bottom of borehole at 5.0 feet.

gravel, with no odor, with no staining.

	Sampler Types:	Split Spoon Shelby Bulk Sample Will Grab Sample	Acetate Liner Acetate Liner Vane Shear California Test Pit	Operation Types: Mud Rotary Flight Auger Wash Rotary	Hand Auger Hand Auger Air Rotary Direct Push Core Barrel	Analyt	ical samples are shown in the "Remarks" colum e elevation is an estimated value.	n.	
Ī	Logger:	Devin Dominguez		Drilling Equipment	: Air Rotary	Driller:	Scarborough Drilling		
Rel	EVGSAU 2622.034.GPJ ' 5-12.20 ' TJ AUSTIN CEOTECH NOWFILL3 ' 2015 TT TEMPLATE DECEMBER WELL.GDT' ' Revised 5-16								

Page 33 of 122

BH-8 (0'-1')

BH-8 (2'-3') BH-8 (3'-4')

BH-8 (4'-5')

4

5

APPENDIX D Laboratory Analytical Data

Received by OCD: 5/15/2020 1:59:43 PM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1204240 03/28/2020 212CMD02127 EVGSAU 2622-034

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Тс Ss Cn Sr ʹQc Gl AI Sc

Ср

Page 35 of 122

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 041730/2021 2:08:13 PM ConocoPhillips - Tetra Tech **PROJECT:** 212CMD02127

SDG: L1204240 DATE/TIME: 04/07/20 09:59

: 59 PAGE: 1 of 66

TABLE OF CONTENTS

Ср

Ss

Cn

Sr

Qc

GI

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	4
Cn: Case Narrative	11
Sr: Sample Results	12
BH-1 0-1' L1204240-01	12
BH-1 2'-3' L1204240-02	13
BH-1 3'-4' L1204240-03	14
BH-1 6'-7' L1204240-04	15
BH-2 0-1' L1204240-05	16
BH-2 2'-3' L1204240-06	17
BH-2 3'-4' L1204240-07	18
BH-2 24'-25' L1204240-08	19
BH-3 0-1' L1204240-09	20
BH-3 2'-3' L1204240-10	21
BH-3 3'-4' L1204240-11	22
BH-3 9'-10' L1204240-12	23
BH-4 2'-3' L1204240-13	24
BH-4 3'-4' L1204240-14	25
BH-4 14'-15' L1204240-15	26
BH-5 0-1' L1204240-16	27
BH-5 2'-3' L1204240-17	28
BH-5 3'-4' L1204240-18	29
BH-5 4'-5' L1204240-19	30
BH-6 0-1' L1204240-20	31
BH-6 2'-3' L1204240-21	32
BH-6 3'-4' L1204240-22	33
BH-6 4'-5' L1204240-23	34
BH-7 0-1' L1204240-24	35
BH-7 2'-3' L1204240-25	36
BH-7 3'-4' L1204240-26	37
BH-7 4'-5' L1204240-27	38
BH-8 0-1' L1204240-28	39
BH-8 2'-3' L1204240-29	40
BH-8 3'-4' L1204240-30	41
BH-8 4'-5' L1204240-31	42
Qc: Quality Control Summary	43
Total Solids by Method 2540 G-2011	43
Wet Chemistry by Method 300.0	47
Volatile Organic Compounds (GC) by Method 8015D/GRO	50

PROJECT: 212CMD02127

L1204240

SDG:

PAGE: 2 of 66
Volatile Organic Compounds (GC/MS) by Method 8260B	54
Semi-Volatile Organic Compounds (GC) by Method 8015	56
GI: Glossary of Terms	59
Al: Accreditations & Locations	60
Sc: Sample Chain of Custody	61

Released to Imaging: 01/30/2021 2:08:13 PM ConocoPhillips - Tetra Tech

PROJECT: 212CMD02127

SDG: L1204240 DATE/TIME:

04/07/20 09:59

PAGE: 3 of 66

122

	SAMI LE C	SUMN	IARY		ONEI	LAB. NAT Pag
BH-1 0-1' L1204240-01 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453688	1	04/01/20 16:11	04/01/20 16:19	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453404	1	04/01/20 15:25	04/01/20 19:27	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 13:57	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 13:46	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453538	1	03/31/20 22:12	04/01/20 14:32	FM	Mt. Juliet, TN
BH-1 2'-3' L1204240-02 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	5			
metrioa	Balch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453688	1	04/01/20 16:11	04/01/20 16:19	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453404	1	04/01/20 15:25	04/01/20 19:37	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 14:18	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 14:05	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453538	1	03/31/20 22:12	04/01/20 12:05	FM	Mt. Juliet, TN
			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
BH-1 3'-4' L1204240-03 Solid	2.11	D.1	5			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1453688	1	04/01/20 16:11	04/01/20 16:19	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1453404	1	04/01/20 15:25	04/01/20 19:47	ST	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 14:39	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 14:23	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453538	1	03/31/20 22:12	04/01/20 12:18	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ate/time
BH-1 6'-7' L1204240-04 Solid			Devin Dominguez	03/26/20 00:00	03/28/20 08	3:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453688	1	04/01/20 16:11	04/01/20 16:19	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1453404	1	04/01/20 15:25	04/01/20 19:56	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 14:59	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 14:42	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453538	1	03/31/20 22:12	04/01/20 12:32	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ate/time
BH-2 0-1' L1204240-05 Solid			Devin Dominguez	03/26/20 00:00	03/28/20 08	3:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453688	1	04/01/20 16:11	04/01/20 16:19	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453404	1	04/01/20 15:25	04/01/20 20:06	ST	Mt. Juliet, TN
	WG1453781	1.01	03/31/20 22:29	04/01/20 15:20	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453765	1	03/31/20 22:29	04/01/20 15:01	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B		5	03/31/20 22:12	04/01/20 16:43	FM	Mt. Juliet, TN

Released to Imaging: 041730/2021 2:08:13 PM ConocoPhillips - Tetra Tech

PROJECT: 212CMD02127

SDG: L1204240

DATE/TIME: 04/07/20 09:59

PAGE: 4 of 66

SAMPLE SUMMARY

ONE LAB. NA Page 39 of 122

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-2 2'-3' L1204240-06 Solid			Devin Dominguez	03/26/20 00:00	03/28/20 08	::00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453690	1	04/01/20 15:30	04/01/20 15:38	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453404	1	04/01/20 15:25	04/01/20 20:15	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 15:40	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 15:20	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453538	1	03/31/20 22:12	04/01/20 15:11	FM	Mt. Juliet, TN
BH-2 3'-4' L1204240-07 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453690	1	04/01/20 15:30	04/01/20 15:38	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453404	1	04/01/20 15:25	04/01/20 20:25	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 16:01	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 15:39	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453538	1	03/31/20 22:12	04/01/20 12:45	FM	Mt. Juliet, TN
BH-2 24'-25' L1204240-08 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453690	1	04/01/20 15:30	04/01/20 15:38	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453404	1	04/01/20 15:25	04/01/20 20:53	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1.01	03/31/20 22:29	04/01/20 16:32	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 15:58	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453538	1	03/31/20 22:12	04/01/20 12:59	FM	Mt. Juliet, TN
BH-3 0-1' L1204240-09 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453690	1	04/01/20 15:30	04/01/20 15:38	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453404	20	04/01/20 15:25	04/01/20 21:03	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 16:57	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 16:17	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453538	1	03/31/20 22:12	04/01/20 14:45	FM	Mt. Juliet, TN
BH-3 2'-3' L1204240-10 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453690	1	04/01/20 15:30	04/01/20 15:38	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453404	10	04/01/20 15:25	04/01/20 21:22	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 17:17	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 16:36	ACG	Mt. Juliet, TN
	WG1453538	1	03/31/20 22:12	04/01/20 13:12	FM	Mt. Juliet, TN

PROJECT: 212CMD02127

SDG: L1204240 DATE/TIME: 04/07/20 09:59

59

PAGE: 5 of 66

SAMPLE SUMMARY

ONE LAB. NA Page 40 of 122

Ср

Τс

้รร

Cn

Sr

Qc

Gl

ΆI

Sc

BH-3 3'-4' L1204240-11 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453690	1	04/01/20 15:30	04/01/20 15:38	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453404	10	04/01/20 15:25	04/01/20 21:31	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 18:28	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 16:55	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/01/20 20:27	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-3 9'-10' L1204240-12 Solid			Devin Dominguez	03/26/20 00:00	03/28/20 08	3:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453690	1	04/01/20 15:30	04/01/20 15:38	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453404	1	04/01/20 15:25	04/01/20 21:41	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 18:48	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 17:14	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/01/20 18:55	KME	Mt. Juliet, TN
BH-4 2'-3' L1204240-13 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453690	1	04/01/20 15:30	04/01/20 15:38	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453915	1	04/01/20 23:00	04/02/20 08:56	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 19:09	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 17:33	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/02/20 10:06	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 3'-4' L1204240-14 Solid			Devin Dominguez	03/26/20 00:00	03/28/20 08	8:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453690	1	04/01/20 15:30	04/01/20 15:38	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1453915	1	04/01/20 23:00	04/02/20 09:14	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 19:29	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 17:52	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/01/20 19:47	KME	Mt. Juliet, TN
BH-4 14'-15' L1204240-15 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453690	1	04/01/20 15:30	04/01/20 15:38	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453915	1	04/01/20 23:00	04/02/20 09:32	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1454654	1	03/31/20 22:29	04/03/20 00:51	JHH	Mt. Juliet, TN
volatile organic compounds (oc) by method borbbroko	WG1453765	1.04	03/31/20 22:29	04/01/20 18:10	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B			04/01/20 08:25	04/01/20 19:34	KME	Mt. Juliet, TN

PROJECT: 212CMD02127

SDG: L1204240 DATE/TIME: 04/07/20 09:59

IME: 09:59 PAGE: 6 of 66

122

	SAMPLES	SUMN	IARY		ONE L	AB. NA TPag
BH-5 0-1' L1204240-16 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453691	1	04/01/20 15:15	04/01/20 15:29	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1453915	1	04/01/20 23:00	04/02/20 09:50	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 20:10	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 18:29	ACG	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/02/20 10:32	KME	Mt. Juliet, TN
BH-5 2'-3' L1204240-17 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	1000	1.4. 1. 10 · · · ····
Total Solids by Method 2540 G-2011	WG1453691	1	04/01/20 15:15	04/01/20 15:29	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1453915	1	04/01/20 23:00	04/02/20 10:44	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453781	1	03/31/20 22:29	04/01/20 20:31	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 18:48	ACG	Mt. Juliet, TN
semi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	2.93	04/01/20 08:25	04/01/20 20:14	KME	Mt. Juliet, TN
BH-5 3'-4' L1204240-18 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1453691	1	04/01/20 15:15	04/01/20 15:29	KBC	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 17:58	ST	Mt. Juliet, TN
platile Organic Compounds (GC) by Method 8015D/GRO	WG1453837	1	03/31/20 22:29	04/01/20 12:35	JHH	Mt. Juliet, TN
platile Organic Compounds (GC/MS) by Method 8260B	WG1453765	1	03/31/20 22:29	04/01/20 19:07	ACG	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/02/20 10:19	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 4'-5' L1204240-19 Solid			Devin Dominguez	03/26/20 00:00	03/28/20 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453691	1	04/01/20 15:15	04/01/20 15:29	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 18:07	ST	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453837	1	03/31/20 22:29	04/01/20 12:57	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	03/31/20 22:29	04/01/20 15:08	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/01/20 19:08	KME	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-6 0-1' L1204240-20 Solid	D · · ·	D:':	Devin Dominguez	03/26/20 00:00	03/28/20 08	
100000	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
vietnoa	WC14F2C01	1	04/01/20 15:15	04/01/20 15:29	KBC	Mt. Juliet, TN
	WG1453691	4	04/02/20 10:05	04/02/20 18:17	ST	Mt. Juliet, TN
otal Solids by Method 2540 G-2011	WG1453891 WG1453916	1				
otal Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0		1.01	03/31/20 22:29	04/01/20 13:20	JHH	Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453916				JHH JHH	Mt. Juliet, TN Mt. Juliet, TN

Released to Imaging: 041730/2021 2:08:13 PM ConocoPhillips - Tetra Tech

PROJECT: 212CMD02127

SDG: L1204240

DATE/TIME: 04/07/20 09:59

PAGE: 7 of 66

122

Received by OCD: 5/15/2020 1:59:43 PM	SAMPLES	SUMN	IARY		ONE L	AB. NAT Page
BH-6 2'-3' L1204240-21 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453691	1	04/01/20 15:15	04/01/20 15:29	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 18:26	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453837	1	04/01/20 01:22	04/01/20 13:42	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:22	04/01/20 15:46	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/01/20 21:20	KME	Mt. Juliet, TN
3H-6 3'-4' L1204240-22 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453691	1	04/01/20 15:15	04/01/20 15:29	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 18:36	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453837	1	04/01/20 01:22	04/01/20 14:05	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:22	04/01/20 16:05	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/01/20 19:21	KME	Mt. Juliet, TN
BH-6 4'-5' L1204240-23 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1453691	1	04/01/20 15:15	04/01/20 15:29	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 18:45	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453837	1	04/01/20 01:22 04/01/20 01:22	04/01/20 14:27	JHH JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453768 WG1453627	1 1	04/01/20 08:25	04/01/20 16:24 04/01/20 18:15	KME	Mt. Juliet, TN Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-7 0-1' L1204240-24 Solid			Devin Dominguez	03/26/20 00:00	03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453691	1	04/01/20 15:15	04/01/20 15:29	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 19:04	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453837	1	04/01/20 01:22	04/01/20 14:59	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:22	04/01/20 16:44	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/02/20 10:59	KME	Mt. Juliet, TN
BH-7 2'-3' L1204240-25 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453691	1	04/01/20 15:15	04/01/20 15:29	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 19:33	ST	Mt. Juliet, TN
	WG1453837	1	04/01/20 01:22	04/01/20 15:22	JHH	Mt. Juliet, TN
		1	04/01/20 01:22	04/01/20 17:03	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768					

Released to Imaging: 041730/2021 2:08:13 PM ConocoPhillips - Tetra Tech

PROJECT: 212CMD02127

SDG: L1204240

DATE/TIME: 04/07/20 09:59

PAGE: 8 of 66

SAMPLE SUMMARY

ONE LAB. NA Page 43 of 122

Ср

Тс

้รร

Cn

Sr

Qc

Gl

Â

Sc

BH-7 3'-4' L1204240-26 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453693	1	04/01/20 22:17	04/01/20 22:24	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 19:42	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453837	1	04/01/20 01:22	04/01/20 15:44	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:22	04/01/20 17:22	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453627	1	04/01/20 08:25	04/01/20 21:07	KME	Mt. Juliet, TN
BH-7 4'-5' L1204240-27 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1453693	1	04/01/20 22:17	04/01/20 22:24	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 19:52	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453837	1	04/01/20 01:22	04/01/20 16:06	JHH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:22	04/01/20 17:41	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 01:57	KME	Mt. Juliet, TN
BH-8 0-1' L1204240-28 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453693	1	04/01/20 22:17	04/01/20 22:24	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 20:01	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:22	04/01/20 14:50	ACG	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:22	04/01/20 18:01	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 02:10	KME	Mt. Juliet, TN
BH-8 2'-3' L1204240-29 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received date/time 03/28/20 08:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	WC14F2C02	1	date/time	date/time	KDC	MAL JURGE TH
otal Solids by Method 2540 G-2011	WG1453693	1	04/01/20 22:17	04/01/20 22:24	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1453916 WG1453878	1	04/02/20 10:05	04/02/20 20:11	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:22	04/01/20 15:13	ACG	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453768 WG1453628	1 1	04/01/20 01:22 04/01/20 00:21	04/01/20 18:20 04/02/20 02:23	JHH KME	Mt. Juliet, TN Mt. Juliet, TN
3H-8 3'-4' L1204240-30 Solid			Collected by Devin Dominguez	Collected date/time 03/26/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453693	1	04/01/20 22:17	04/01/20 22:24	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 20:21	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:22	04/01/20 15:37	ACG	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:22	04/01/20 18:39	JHH	Mt. Juliet, TN
volatile organic compounds (oc/m5) by method b200b	WG1453628	1	04/01/20 00:21	04/02/20 02:35	KME	Mt. Juliet, TN

PROJECT: 212CMD02127

SDG: L1204240 DATE/TIME: 04/07/20 09:59

:: 59 PAGE: 9 of 66

SAMPLE SUMMARY

ONE LAB. NA Page 44 of 122

			Collected by	Collected date/time	Received da	te/time
BH-8 4'-5' L1204240-31 Solid	L1204240-31 Solid		Devin Dominguez 03/26/20 00:00		03/28/20 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1453693	1	04/01/20 22:17	04/01/20 22:24	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	1	04/02/20 10:05	04/02/20 20:30	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:22	04/01/20 16:01	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:22	04/01/20 18:59	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 03:11	KME	Mt. Juliet, TN

Ср

Released to Imaging: 01/30/2021 2:08:13 PM ConocoPhillips - Tetra Tech **PROJECT**: 212CMD02127

SDG: L1204240

DA⁻ 04/07

DATE/TIME: 04/07/20 09:59 PAGE: 10 of 66

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 11/30/2021 2:08:13 PM ConocoPhillips - Tetra Tech **PROJECT:** 212CMD02127

SDG: L1204240 04

DATE/TIME: 04/07/20 09:59 PAGE: 11 of 66

SAMPLE RESULTS - 01 L1204240

AI

Sc

Collected date/time: 03/26/20 00:00

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	92.4		1	04/01/2020 16:19	9	WG1453688		
Wet Chemistry by	Method 300.	.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	129		0.861	10.8	1	04/01/2020 19:27	WG1453404	
Volatile Organic C	Compounds (G	GC) by Met	hod 8015:	D/GRO				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0240	ВJ	0.0235	0.108	1	04/01/2020 13:57	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	94.3			77.0-120		04/01/2020 13:57	<u>WG1453781</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000433	0.00108	1	04/01/2020 13:46	WG1453765
Toluene	U		0.00135	0.00541	1	04/01/2020 13:46	WG1453765
Ethylbenzene	U		0.000574	0.00271	1	04/01/2020 13:46	WG1453765
Total Xylenes	U		0.00517	0.00704	1	04/01/2020 13:46	WG1453765
(S) Toluene-d8	103			75.0-131		04/01/2020 13:46	WG1453765
(S) 4-Bromofluorobenzene	99.7			67.0-138		04/01/2020 13:46	WG1453765
(S) 1,2-Dichloroethane-d4	88.3			70.0-130		04/01/2020 13:46	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.46	J	1.74	4.33	1	04/01/2020 14:32	WG1453538
C28-C40 Oil Range	10.3		0.297	4.33	1	04/01/2020 14:32	WG1453538
(S) o-Terphenyl	52.5			18.0-148		04/01/2020 14:32	WG1453538

SDG: L1204240

DATE/TIME: 04/07/20 09:59

SAMPLE RESULTS - 02 L1204240

ONE LAB. NA Page 47 of 122

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

						'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.8		1	04/01/2020 16:19	WG1453688	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						³Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	266		0.848	10.7	1	04/01/2020 19:37	WG1453404	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Quanner	WDE (ury)	KDE (ury)	Dilution	,	Baten	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0231	0.107	1	04/01/2020 14:18	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	94.5			77.0-120		04/01/2020 14:18	WG1453781	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000427	0.00107	1	04/01/2020 14:05	<u>WG1453765</u>
Toluene	U		0.00133	0.00533	1	04/01/2020 14:05	WG1453765
Ethylbenzene	U		0.000565	0.00267	1	04/01/2020 14:05	WG1453765
Total Xylenes	U		0.00510	0.00693	1	04/01/2020 14:05	WG1453765
(S) Toluene-d8	102			75.0-131		04/01/2020 14:05	WG1453765
(S) 4-Bromofluorobenzene	99.0			67.0-138		04/01/2020 14:05	WG1453765
(S) 1,2-Dichloroethane-d4	94.7			70.0-130		04/01/2020 14:05	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.27	1	04/01/2020 12:05	WG1453538
C28-C40 Oil Range	1.24	<u>B J</u>	0.292	4.27	1	04/01/2020 12:05	WG1453538
(S) o-Terphenyl	46.2			18.0-148		04/01/2020 12:05	WG1453538

SAMPLE RESULTS - 03 L1204240

ONE LAB. NA Page 48 of 122

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

	Result	Qualifier	Dilution	Analysis	Batch	C	Ср
Analyte	%			date / time	—	2	
Total Solids	95.2		1	04/01/2020 16:19	WG1453688	T	Гс

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴Cn
Chloride	249		0.835	10.5	1	04/01/2020 19:47	WG1453404	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analuta		Guanner			Dilution	date / time	Batem	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	04/01/2020 14:39	WG1453781	l
(S) a,a,a-Trifluorotoluene(FID)	94.2			77.0-120		04/01/2020 14:39	WG1453781	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000420	0.00105	1	04/01/2020 14:23	WG1453765
Toluene	U		0.00131	0.00525	1	04/01/2020 14:23	WG1453765
Ethylbenzene	U		0.000557	0.00263	1	04/01/2020 14:23	WG1453765
Total Xylenes	U		0.00502	0.00683	1	04/01/2020 14:23	WG1453765
(S) Toluene-d8	102			75.0-131		04/01/2020 14:23	WG1453765
(S) 4-Bromofluorobenzene	99.7			67.0-138		04/01/2020 14:23	WG1453765
(S) 1,2-Dichloroethane-d4	93.9			70.0-130		04/01/2020 14:23	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	04/01/2020 12:18	WG1453538
C28-C40 Oil Range	0.929	<u>B J</u>	0.288	4.20	1	04/01/2020 12:18	WG1453538
(S) o-Terphenyl	61.8			18.0-148		04/01/2020 12:18	WG1453538

SAMPLE RESULTS - 04

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

						10	Cn
	Result	Qualifier	Dilution	Analysis	Batch	$\left \right\rangle$	~P
Analyte	%			date / time		2	
Total Solids	95.6		1	04/01/2020 16:19	WG1453688	ľΤ	Τс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	20.6		0.832	10.5	1	04/01/2020 19:56	WG1453404	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	04/01/2020 14:59	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	94.2			77.0-120		04/01/2020 14:59	WG1453781	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000419	0.00105	1	04/01/2020 14:42	WG1453765
Toluene	U		0.00131	0.00523	1	04/01/2020 14:42	WG1453765
Ethylbenzene	U		0.000555	0.00262	1	04/01/2020 14:42	WG1453765
Total Xylenes	U		0.00500	0.00680	1	04/01/2020 14:42	WG1453765
(S) Toluene-d8	103			75.0-131		04/01/2020 14:42	WG1453765
(S) 4-Bromofluorobenzene	101			67.0-138		04/01/2020 14:42	WG1453765
(S) 1,2-Dichloroethane-d4	96.4			70.0-130		04/01/2020 14:42	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.19	1	04/01/2020 12:32	WG1453538
C28-C40 Oil Range	0.396	<u>B J</u>	0.287	4.19	1	04/01/2020 12:32	WG1453538
(S) o-Terphenyl	57.1			18.0-148		04/01/2020 12:32	WG1453538

SDG: L1204240 D/ 04/0

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

						l'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	93.5		1	04/01/2020 16:19	WG1453688	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	190		0.851	10.7	1	04/01/2020 20:06	WG1453404

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1.01	04/01/2020 15:20	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	93.4			77.0-120		04/01/2020 15:20	WG1453781	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000428	0.00107	1	04/01/2020 15:01	<u>WG1453765</u>
Toluene	U		0.00134	0.00535	1	04/01/2020 15:01	WG1453765
Ethylbenzene	U		0.000567	0.00268	1	04/01/2020 15:01	WG1453765
Total Xylenes	U		0.00511	0.00696	1	04/01/2020 15:01	WG1453765
(S) Toluene-d8	104			75.0-131		04/01/2020 15:01	WG1453765
(S) 4-Bromofluorobenzene	100			67.0-138		04/01/2020 15:01	WG1453765
(S) 1,2-Dichloroethane-d4	94.3			70.0-130		04/01/2020 15:01	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	59.3		8.61	21.4	5	04/01/2020 16:43	WG1453538
C28-C40 Oil Range	227		1.47	21.4	5	04/01/2020 16:43	WG1453538
(S) o-Terphenyl	54.1			18.0-148		04/01/2020 16:43	WG1453538

SDG: L1204240

Tc Ss Cn

Sr

Â

SAMPLE RESULTS - 06 L1204240

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

-						I C	Cp
	Result	Qualifier	Dilution	Analysis	Batch		- 1-
Analyte	%			date / time		2	
Total Solids	96.4		1	04/01/2020 15:38	WG1453690	ŤΤ	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	270		0.825	10.4	1	04/01/2020 20:15	WG1453404	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	04/01/2020 15:40	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		04/01/2020 15:40	<u>WG1453781</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000415	0.00104	1	04/01/2020 15:20	WG1453765
Toluene	U		0.00130	0.00519	1	04/01/2020 15:20	<u>WG1453765</u>
Ethylbenzene	U		0.000550	0.00259	1	04/01/2020 15:20	WG1453765
Total Xylenes	U		0.00496	0.00674	1	04/01/2020 15:20	<u>WG1453765</u>
(S) Toluene-d8	103			75.0-131		04/01/2020 15:20	WG1453765
(S) 4-Bromofluorobenzene	98.6			67.0-138		04/01/2020 15:20	<u>WG1453765</u>
(S) 1,2-Dichloroethane-d4	95.8			70.0-130		04/01/2020 15:20	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.80	J	1.67	4.15	1	04/01/2020 15:11	WG1453538
C28-C40 Oil Range	7.86		0.284	4.15	1	04/01/2020 15:11	WG1453538
(S) o-Terphenyl	51.4			18.0-148		04/01/2020 15:11	WG1453538

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

	Result	Qualifier	Dilution	Analysis	Batch	C	р
Analyte	%	Guainer	Dilution	date / time		2	
Total Solids	95.2		1	04/01/2020 15:38	WG1453690	ΤC	С

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	287		0.835	10.5	1	04/01/2020 20:25	WG1453404	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	04/01/2020 16:01	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	94.8			77.0-120		04/01/2020 16:01	WG1453781	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000420	0.00105	1	04/01/2020 15:39	WG1453765
Toluene	U		0.00131	0.00525	1	04/01/2020 15:39	<u>WG1453765</u>
Ethylbenzene	U		0.000557	0.00263	1	04/01/2020 15:39	WG1453765
Total Xylenes	U		0.00502	0.00683	1	04/01/2020 15:39	WG1453765
(S) Toluene-d8	103			75.0-131		04/01/2020 15:39	WG1453765
(S) 4-Bromofluorobenzene	101			67.0-138		04/01/2020 15:39	<u>WG1453765</u>
(S) 1,2-Dichloroethane-d4	97.8			70.0-130		04/01/2020 15:39	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	04/01/2020 12:45	WG1453538
C28-C40 Oil Range	0.514	<u>B J</u>	0.288	4.20	1	04/01/2020 12:45	WG1453538
(S) o-Terphenyl	63.5			18.0-148		04/01/2020 12:45	WG1453538

SDG: L1204240 D. 04/0 ²Tc ³Ss ⁴Cn

>) 2

Â

SAMPLE RESULTS - 08

ONE LAB. NA Page 53 of 122

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

						Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	85.0		1	04/01/2020 15:38	WG1453690	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	59.4		0.935	11.8	1	04/01/2020 20:53	WG1453404	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Dilution	date / time	Batch	
TPH (GC/FID) Low Fraction	0.0295	ВJ	0.0258	0.119	1.01	04/01/2020 16:32	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	96.1			77.0-120		04/01/2020 16:32	WG1453781	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000471	0.00118	1	04/01/2020 15:58	WG1453765
Toluene	U		0.00147	0.00588	1	04/01/2020 15:58	WG1453765
Ethylbenzene	U		0.000624	0.00294	1	04/01/2020 15:58	WG1453765
Total Xylenes	U		0.00562	0.00765	1	04/01/2020 15:58	WG1453765
(S) Toluene-d8	103			75.0-131		04/01/2020 15:58	WG1453765
(S) 4-Bromofluorobenzene	100			67.0-138		04/01/2020 15:58	WG1453765
(S) 1,2-Dichloroethane-d4	95.3			70.0-130		04/01/2020 15:58	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.13	J	1.89	4.71	1	04/01/2020 12:59	WG1453538
C28-C40 Oil Range	0.605	<u>B J</u>	0.322	4.71	1	04/01/2020 12:59	WG1453538
(S) o-Terphenyl	55.8			18.0-148		04/01/2020 12:59	WG1453538

SDG: L1204240 ³Ss ⁴Cn

Sr

Â

SAMPLE RESULTS - 09

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	90.8		1	04/01/2020 15:38	<u>WG1453690</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	7630		17.5	220	20	04/01/2020 21:03	WG1453404

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Dilution	date / time	Batch	
TPH (GC/FID) Low Fraction	0.0317	<u>B J</u>	0.0239	0.110	1	04/01/2020 16:57	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	92.0			77.0-120		04/01/2020 16:57	WG1453781	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000441	0.00110	1	04/01/2020 16:17	WG1453765
Toluene	U		0.00138	0.00551	1	04/01/2020 16:17	WG1453765
Ethylbenzene	U		0.000584	0.00275	1	04/01/2020 16:17	WG1453765
Total Xylenes	U		0.00527	0.00716	1	04/01/2020 16:17	WG1453765
(S) Toluene-d8	103			75.0-131		04/01/2020 16:17	WG1453765
(S) 4-Bromofluorobenzene	102			67.0-138		04/01/2020 16:17	WG1453765
(S) 1,2-Dichloroethane-d4	95.2			70.0-130		04/01/2020 16:17	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.21		1.77	4.41	1	04/01/2020 14:45	WG1453538
C28-C40 Oil Range	13.4		0.302	4.41	1	04/01/2020 14:45	WG1453538
(S) o-Terphenyl	51.1			18.0-148		04/01/2020 14:45	WG1453538

SDG: L1204240 D/ 04/0

SAMPLE RESULTS - 10

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

	 Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.0		1	04/01/2020 15:38	WG1453690	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	4830		8.45	106	10	04/01/2020 21:22	WG1453404

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	buttin	
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	04/01/2020 17:17	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	95.1			77.0-120		04/01/2020 17:17	WG1453781	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000425	0.00106	1	04/01/2020 16:36	WG1453765
Toluene	U		0.00133	0.00532	1	04/01/2020 16:36	<u>WG1453765</u>
Ethylbenzene	U		0.000564	0.00266	1	04/01/2020 16:36	WG1453765
Total Xylenes	U		0.00508	0.00691	1	04/01/2020 16:36	<u>WG1453765</u>
(S) Toluene-d8	104			75.0-131		04/01/2020 16:36	WG1453765
(S) 4-Bromofluorobenzene	101			67.0-138		04/01/2020 16:36	<u>WG1453765</u>
(S) 1,2-Dichloroethane-d4	98.4			70.0-130		04/01/2020 16:36	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.89	J	1.71	4.25	1	04/01/2020 13:12	WG1453538
C28-C40 Oil Range	4.66		0.291	4.25	1	04/01/2020 13:12	WG1453538
(S) o-Terphenyl	52.4			18.0-148		04/01/2020 13:12	WG1453538

SAMPLE RESULTS - 11 L1204240

Ss

Cn

Â

Sc

Collected date/time: 03/26/20 00:00 Total Solids by Method 2540 G-2011

		2011				1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.1		1	04/01/2020 15:38	<u>WG1453690</u>	² Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	4660		8.54	107	10	04/01/2020 21:31	WG1453404	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guanner	mg/kg	mg/kg	Dilution	date / time	Batem	
TPH (GC/FID) Low Fraction			0.0233	0.107	1	04/01/2020 18:28	WG1453781	
(S)	01.0		0.0200					
a,a,a-Trifluorotoluene(FID)	94.8			77.0-120		04/01/2020 18:28	WG1453781	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000430	0.00107	1	04/01/2020 16:55	WG1453765
Toluene	U		0.00134	0.00537	1	04/01/2020 16:55	WG1453765
Ethylbenzene	U		0.000569	0.00269	1	04/01/2020 16:55	WG1453765
Total Xylenes	U		0.00514	0.00698	1	04/01/2020 16:55	WG1453765
(S) Toluene-d8	103			75.0-131		04/01/2020 16:55	WG1453765
(S) 4-Bromofluorobenzene	100			67.0-138		04/01/2020 16:55	WG1453765
(S) 1,2-Dichloroethane-d4	91.6			70.0-130		04/01/2020 16:55	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.37	J	1.73	4.30	1	04/01/2020 20:27	WG1453627
C28-C40 Oil Range	4.39		0.294	4.30	1	04/01/2020 20:27	WG1453627
(S) o-Terphenyl	52.9			18.0-148		04/01/2020 20:27	WG1453627

SAMPLE RESULTS - 12

Gl

AI

Sc

Collected date/time: 03/26/20 00:00

(S)

a,a,a-Trifluorotoluene(FID)

	Result	Qualifie	r Dilution	Analysis		Batch	
Analyte	%		-	date / time			
Total Solids	95.0		1	04/01/2020 15:38	}	WG1453690	
Wet Chemistry by	Method 300. Result (dry)	O Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	23.4		0.837	10.5	1	04/01/2020 21:41	WG1453404
Volatile Organic C	ompounds (G	GC) by Met	thod 8015 MDL (dry)	D/GRO	Dilution	Analysis	Batch
Analista		Quaimer			Dilution	date / time	Datch
Analyte	mg/kg		mg/kg	mg/kg		uate / time	
,							

04/01/2020 18:48

WG1453781

Volatile Organic Compounds (GC/MS) by Method 8260B

95.1

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000421	0.00105	1	04/01/2020 17:14	WG1453765
Toluene	U		0.00132	0.00526	1	04/01/2020 17:14	<u>WG1453765</u>
Ethylbenzene	U		0.000558	0.00263	1	04/01/2020 17:14	WG1453765
Total Xylenes	U		0.00503	0.00684	1	04/01/2020 17:14	<u>WG1453765</u>
(S) Toluene-d8	103			75.0-131		04/01/2020 17:14	WG1453765
(S) 4-Bromofluorobenzene	98.9			67.0-138		04/01/2020 17:14	WG1453765
(S) 1,2-Dichloroethane-d4	96.3			70.0-130		04/01/2020 17:14	WG1453765

77.0-120

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.21	1	04/01/2020 18:55	WG1453627
C28-C40 Oil Range	U		0.288	4.21	1	04/01/2020 18:55	WG1453627
(S) o-Terphenyl	51.1			18.0-148		04/01/2020 18:55	WG1453627

SDG: L1204240 DATE/TIME: 04/07/20 09:59

SAMPLE RESULTS - 13

GI

AI

Sc

Collected date/time: 03/26/20 00:00

TPH (GC/FID) Low Fraction

a,a,a-Trifluorotoluene(FID)

(S)

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	92.2		1	04/01/2020 15:3	38	WG1453690		
Wet Chemistr	ry by Method 300.	0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	128		0.862	10.8	1	04/02/2020 08:56	WG1453915	
Volatile Orga	nic Compounds (G	GC) by Met	hod 8015	D/GRO				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	noount (ur))		())			•		

1

04/01/2020 19:09

04/01/2020 19:09

WG1453781

WG1453781

Volatile Organic Compounds (GC/MS) by Method 8260B

U

94.5

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00108	1	04/01/2020 17:33	WG1453765
Toluene	U		0.00136	0.00542	1	04/01/2020 17:33	WG1453765
Ethylbenzene	U		0.000575	0.00271	1	04/01/2020 17:33	WG1453765
Total Xylenes	U		0.00518	0.00705	1	04/01/2020 17:33	WG1453765
(S) Toluene-d8	103			75.0-131		04/01/2020 17:33	WG1453765
(S) 4-Bromofluorobenzene	98.8			67.0-138		04/01/2020 17:33	WG1453765
(S) 1,2-Dichloroethane-d4	95.4			70.0-130		04/01/2020 17:33	WG1453765

0.108

77.0-120

0.0235

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.76	J	1.75	4.34	1	04/02/2020 10:06	WG1453627
C28-C40 Oil Range	6.90		0.297	4.34	1	04/02/2020 10:06	<u>WG1453627</u>
(S) o-Terphenyl	56.5			18.0-148		04/02/2020 10:06	WG1453627

SDG: L1204240

C 04/

SAMPLE RESULTS - 14

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

	 Result	Qualifier	Dilution	Analysis	Batch	- C	р
Analyte	%			date / time		2	_
Total Solids	96.9		1	04/01/2020 15:38	<u>WG1453690</u>	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	660		0.820	10.3	1	04/02/2020 09:14	WG1453915

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guanner	mg/kg	mg/kg	Dilution	date / time	buten	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	04/01/2020 19:29	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	94.7			77.0-120		04/01/2020 19:29	WG1453781	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000413	0.00103	1	04/01/2020 17:52	<u>WG1453765</u>
Toluene	U		0.00129	0.00516	1	04/01/2020 17:52	<u>WG1453765</u>
Ethylbenzene	U		0.000547	0.00258	1	04/01/2020 17:52	WG1453765
Total Xylenes	U		0.00493	0.00671	1	04/01/2020 17:52	<u>WG1453765</u>
(S) Toluene-d8	102			75.0-131		04/01/2020 17:52	WG1453765
(S) 4-Bromofluorobenzene	99.5			67.0-138		04/01/2020 17:52	<u>WG1453765</u>
(S) 1,2-Dichloroethane-d4	96.9			70.0-130		04/01/2020 17:52	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	04/01/2020 19:47	WG1453627
C28-C40 Oil Range	U		0.283	4.13	1	04/01/2020 19:47	<u>WG1453627</u>
(S) o-Terphenyl	59.9			18.0-148		04/01/2020 19:47	WG1453627

SAMPLE RESULTS - 15 L1204240

Collected date/time: 03/26/20 00:00

Total Solids b	y Method 2540 G	6-2011						1
	Result	Qualifie	r Dilution	Analysis		Batch		
Analyte	%			date / time				2
Total Solids	84.0		1	04/01/2020 15	:38	WG1453690		
Wet Chemistr	ry by Method 300	.0						3
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
ranaryce	00							

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0652	ВJ	0.0258	0.119	1	04/03/2020 00:51	WG1454654	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		04/03/2020 00:51	WG1454654	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00124	1.04	04/01/2020 18:10	WG1453765
Toluene	U		0.00155	0.00619	1.04	04/01/2020 18:10	WG1453765
Ethylbenzene	U		0.000656	0.00309	1.04	04/01/2020 18:10	WG1453765
Total Xylenes	U		0.00591	0.00804	1.04	04/01/2020 18:10	WG1453765
(S) Toluene-d8	103			75.0-131		04/01/2020 18:10	WG1453765
(S) 4-Bromofluorobenzene	101			67.0-138		04/01/2020 18:10	WG1453765
(S) 1,2-Dichloroethane-d4	96.0			70.0-130		04/01/2020 18:10	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.92	4.76	1	04/01/2020 19:34	WG1453627
C28-C40 Oil Range	U		0.326	4.76	1	04/01/2020 19:34	WG1453627
(S) o-Terphenyl	59.4			18.0-148		04/01/2020 19:34	WG1453627

SDG: L1204240

DATE/TIME: 04/07/20 09:59 Sr

Â

SAMPLE RESULTS - 16

Â

Sc

Collected date/time: 03/26/20 00:00

	Result	Qualifier	Dilution	Analysis		Batch		
nalyte	%			date / time				
otal Solids	95.2		1	04/01/2020 15:20		NC14E2C01		
	y by Method 300.0	0	1	04/01/2020 15:29	, 	<u>WG1453691</u>		
			MDL (dry)		Dilution	Analysis	Batch	
	y by Method 300.	Qualifier	MDL (dry) mg/kg				Batch	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	04/01/2020 20:10	WG1453781
(S) a,a,a-Trifluorotoluene(FID)	94.7			77.0-120		04/01/2020 20:10	WG1453781

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000420	0.00105	1	04/01/2020 18:29	WG1453765
Toluene	U		0.00131	0.00525	1	04/01/2020 18:29	WG1453765
Ethylbenzene	U		0.000557	0.00263	1	04/01/2020 18:29	WG1453765
Total Xylenes	U		0.00502	0.00683	1	04/01/2020 18:29	WG1453765
(S) Toluene-d8	103			75.0-131		04/01/2020 18:29	WG1453765
(S) 4-Bromofluorobenzene	98.7			67.0-138		04/01/2020 18:29	WG1453765
(S) 1,2-Dichloroethane-d4	93.7			70.0-130		04/01/2020 18:29	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.41		1.69	4.20	1	04/02/2020 10:32	WG1453627
C28-C40 Oil Range	14.6		0.288	4.20	1	04/02/2020 10:32	WG1453627
(S) o-Terphenyl	58.2			18.0-148		04/02/2020 10:32	WG1453627

SDG: L1204240 DATE/TIME: 04/07/20 09:59

SAMPLE RESULTS - 17 L1204240

Â

Sc

Collected date/time: 03/26/20 00:00

	Result	Qualifie	r Dilution	Analysis		Batch	
Analyte	%			date / time			
Total Solids	92.7		1	04/01/2020 15:29	9	WG1453691	
Wet Chemistry	by Method 300.0)C					
Wet Chemistry	by Method 300.0 Result (dry)) Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Wet Chemistry Analyte	-		MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		[°] Qc
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	04/01/2020 20:31	WG1453781	
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		04/01/2020 20:31	WG1453781	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00108	1	04/01/2020 18:48	WG1453765
Toluene	U		0.00135	0.00540	1	04/01/2020 18:48	<u>WG1453765</u>
Ethylbenzene	U		0.000572	0.00270	1	04/01/2020 18:48	WG1453765
Total Xylenes	U		0.00516	0.00702	1	04/01/2020 18:48	<u>WG1453765</u>
(S) Toluene-d8	103			75.0-131		04/01/2020 18:48	WG1453765
(S) 4-Bromofluorobenzene	101			67.0-138		04/01/2020 18:48	<u>WG1453765</u>
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		04/01/2020 18:48	WG1453765

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		5.09	12.6	2.93	04/01/2020 20:14	<u>WG1453627</u>
C28-C40 Oil Range	6.85	J	0.867	12.6	2.93	04/01/2020 20:14	WG1453627
(S) o-Terphenyl	54.9			18.0-148		04/01/2020 20:14	WG1453627

Sample Narrative:

L1204240-17 WG1453627: Dilution due to matrix impact during extract concentration procedure

SAMPLE RESULTS - 18

Gl

AI

Sc

Collected date/time: 03/26/20 00:00

(S)

a,a,a-Trifluorotoluene(FID)

	Result	Qualifie	r Dilution	Analysis		Batch	
Analyte	%			date / time			
Total Solids	93.2		1	04/01/2020 15:29)	WG1453691	
Wet Chemistry by	Method 300	.0					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	36.9		0.853	10.7	1	04/02/2020 17:58	WG1453916
Volatile Organic C	Compounds ((GC) by Met	thod 8015	D/GRO			
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	

04/01/2020 12:35

WG1453837

Volatile Organic Compounds (GC/MS) by Method 8260B

105

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000429	0.00107	1	04/01/2020 19:07	WG1453765
Toluene	U	<u>J3</u>	0.00134	0.00537	1	04/01/2020 19:07	WG1453765
Ethylbenzene	U	<u>J3</u>	0.000569	0.00268	1	04/01/2020 19:07	WG1453765
Total Xylenes	U	<u>J3</u>	0.00513	0.00698	1	04/01/2020 19:07	WG1453765
(S) Toluene-d8	104			75.0-131		04/01/2020 19:07	WG1453765
(S) 4-Bromofluorobenzene	101			67.0-138		04/01/2020 19:07	WG1453765
(S) 1,2-Dichloroethane-d4	91.6			70.0-130		04/01/2020 19:07	WG1453765

77.0-120

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.79	J	1.73	4.29	1	04/02/2020 10:19	WG1453627
C28-C40 Oil Range	8.67		0.294	4.29	1	04/02/2020 10:19	WG1453627
(S) o-Terphenyl	57.5			18.0-148		04/02/2020 10:19	WG1453627

SDG: L1204240 DATE/TIME: 04/07/20 09:59

SAMPLE RESULTS - 19

Â

Sc

Collected date/time: 03/26/20 00:00

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	95.5		1	04/01/2020 15:2	0	WG1453691		
	by Method 300.0)	I	04/01/2020 15.2	19	WG1455091		
	by Method 300.0		MDL (dn/)		-		Batch	
		Qualifier	MDL (dry) mg/kg	RDL (dry)	Dilution	Analysis date / time	Batch	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ٽQد ا
TPH (GC/FID) Low Fraction	0.0656	ВJ	0.0227	0.105	1	04/01/2020 12:57	<u>WG1453837</u>	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		04/01/2020 12:57	WG1453837	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000419	0.00105	1	04/01/2020 15:08	WG1453768
Toluene	U		0.00131	0.00524	1	04/01/2020 15:08	WG1453768
Ethylbenzene	U		0.000555	0.00262	1	04/01/2020 15:08	WG1453768
Total Xylenes	U		0.00501	0.00681	1	04/01/2020 15:08	WG1453768
(S) Toluene-d8	113			75.0-131		04/01/2020 15:08	WG1453768
(S) 4-Bromofluorobenzene	88.9			67.0-138		04/01/2020 15:08	WG1453768
(S) 1,2-Dichloroethane-d4	120			70.0-130		04/01/2020 15:08	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.19	1	04/01/2020 19:08	WG1453627
C28-C40 Oil Range	U		0.287	4.19	1	04/01/2020 19:08	WG1453627
(S) o-Terphenyl	62.4			18.0-148		04/01/2020 19:08	WG1453627

SAMPLE RESULTS - 20

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.4		1	04/01/2020 15:29	WG1453691	Tc

Wet Chemistry by Method 300.0

								1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	37.6		0.851	10.7	1	04/02/2020 18:17	WG1453916	- I `

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.101.011	date / time	
TPH (GC/FID) Low Fraction	0.0726	<u>B J</u>	0.0234	0.108	1.01	04/01/2020 13:20	WG1453837
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		04/01/2020 13:20	<u>WG1453837</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000428	0.00107	1	04/01/2020 15:27	WG1453768
Toluene	U		0.00134	0.00535	1	04/01/2020 15:27	WG1453768
Ethylbenzene	U		0.000567	0.00268	1	04/01/2020 15:27	WG1453768
Total Xylenes	U		0.00512	0.00696	1	04/01/2020 15:27	WG1453768
(S) Toluene-d8	110			75.0-131		04/01/2020 15:27	WG1453768
(S) 4-Bromofluorobenzene	86.2			67.0-138		04/01/2020 15:27	WG1453768
(S) 1,2-Dichloroethane-d4	111			70.0-130		04/01/2020 15:27	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.28	1	04/01/2020 20:01	WG1453627
C28-C40 Oil Range	2.50	J	0.293	4.28	1	04/01/2020 20:01	WG1453627
(S) o-Terphenyl	55.1			18.0-148		04/01/2020 20:01	WG1453627

SDG: L1204240 DA 04/0 ²Tc ³Ss ⁴Cn ⁵Sr

On Do

Â

SAMPLE RESULTS - 21

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

2						l'Cr	5
	Result	Qualifier	Dilution	Analysis	Batch	Cp)
Analyte	%			date / time		2	-
Total Solids	93.2		1	04/01/2020 15:29	WG1453691	Tc	-

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	34.7		0.853	10.7	1	04/02/2020 18:26	WG1453916

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0656	ВJ	0.0233	0.107	1	04/01/2020 13:42	WG1453837	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		04/01/2020 13:42	WG1453837	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000429	0.00107	1	04/01/2020 15:46	WG1453768
Toluene	U		0.00134	0.00537	1	04/01/2020 15:46	WG1453768
Ethylbenzene	U		0.000569	0.00268	1	04/01/2020 15:46	WG1453768
Total Xylenes	U		0.00513	0.00698	1	04/01/2020 15:46	WG1453768
(S) Toluene-d8	111			75.0-131		04/01/2020 15:46	WG1453768
(S) 4-Bromofluorobenzene	87.2			67.0-138		04/01/2020 15:46	WG1453768
(S) 1,2-Dichloroethane-d4	110			70.0-130		04/01/2020 15:46	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.29	1	04/01/2020 21:20	WG1453627
C28-C40 Oil Range	2.93	J	0.294	4.29	1	04/01/2020 21:20	WG1453627
(S) o-Terphenyl	44.9			18.0-148		04/01/2020 21:20	WG1453627

SDG: L1204240 DA 04/0

SAMPLE RESULTS - 22

ONE LAB. NA Page 67 of 122

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

-						1 C	2n
	Result	Qualifier	Dilution	Analysis	Batch		-P
Analyte	%			date / time		2	
Total Solids	95.4		1	04/01/2020 15:29	WG1453691	T	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	19.6	В	0.833	10.5	1	04/02/2020 18:36	WG1453916	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Dilution	date / time	butth	
TPH (GC/FID) Low Fraction	0.0725	<u>B J</u>	0.0227	0.105	1	04/01/2020 14:05	WG1453837	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		04/01/2020 14:05	WG1453837	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000419	0.00105	1	04/01/2020 16:05	WG1453768
Toluene	U		0.00131	0.00524	1	04/01/2020 16:05	WG1453768
Ethylbenzene	U		0.000555	0.00262	1	04/01/2020 16:05	WG1453768
Total Xylenes	U		0.00501	0.00681	1	04/01/2020 16:05	WG1453768
(S) Toluene-d8	112			75.0-131		04/01/2020 16:05	WG1453768
(S) 4-Bromofluorobenzene	88.4			67.0-138		04/01/2020 16:05	WG1453768
(S) 1,2-Dichloroethane-d4	114			70.0-130		04/01/2020 16:05	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.61	J	1.69	4.19	1	04/01/2020 19:21	WG1453627
C28-C40 Oil Range	U		0.287	4.19	1	04/01/2020 19:21	WG1453627
(S) o-Terphenyl	65.5			18.0-148		04/01/2020 19:21	WG1453627

SDG: L1204240 DAT 04/07/ ²Tc ³Ss ⁴Cn

Sr

Â

Collected date/time: 03/26/20 00:00

SAMPLE RESULTS - 23

ONE LAB. NA Page 68 of 122

Total Solids by Method 2540 G-2011

		Result	Qualifier	Dilution	Analysis	Batch	Ср
Anal	yte	% date / time		date / time			
Tota	Solids	95.1		1	04/01/2020 15:29	WG1453691	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	22.3	В	0.836	10.5	1	04/02/2020 18:45	WG1453916	`

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Dilution	date / time	bach	e
TPH (GC/FID) Low Fraction	0.0636	ВJ	0.0228	0.105	1	04/01/2020 14:27	WG1453837	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		04/01/2020 14:27	WG1453837	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000421	0.00105	1	04/01/2020 16:24	WG1453768
Toluene	U		0.00131	0.00526	1	04/01/2020 16:24	WG1453768
Ethylbenzene	U		0.000558	0.00263	1	04/01/2020 16:24	WG1453768
Total Xylenes	U		0.00503	0.00684	1	04/01/2020 16:24	WG1453768
(S) Toluene-d8	112			75.0-131		04/01/2020 16:24	WG1453768
(S) 4-Bromofluorobenzene	89.3			67.0-138		04/01/2020 16:24	WG1453768
(S) 1,2-Dichloroethane-d4	113			70.0-130		04/01/2020 16:24	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.90	J	1.69	4.21	1	04/01/2020 18:15	WG1453627
C28-C40 Oil Range	U		0.288	4.21	1	04/01/2020 18:15	WG1453627
(S) o-Terphenyl	62.8			18.0-148		04/01/2020 18:15	WG1453627

SDG: L1204240 D 04/ ²Tc ³Ss ⁴Cn

Sr

Â

SAMPLE RESULTS - 24 L1204240

Â

Sc

Collected date/time: 03/26/20 00:00 Total Solids by Method 2540 G-2011

Total Solids by I	vietnoù 2040 0-2	.011				1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.3		1	04/01/2020 15:29	WG1453691	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300	0.0						³Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	11.2	В	0.852	10.7	1	04/02/2020 19:04	WG1453916	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	Batem	6
TPH (GC/FID) Low Fraction	0.109	B	0.0233	0.107	1	04/01/2020 14:59	WG1453837	
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		04/01/2020 14:59	WG1453837	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000429	0.00107	1	04/01/2020 16:44	WG1453768
Toluene	U		0.00134	0.00536	1	04/01/2020 16:44	<u>WG1453768</u>
Ethylbenzene	U		0.000568	0.00268	1	04/01/2020 16:44	WG1453768
Total Xylenes	U		0.00512	0.00697	1	04/01/2020 16:44	WG1453768
(S) Toluene-d8	113			75.0-131		04/01/2020 16:44	WG1453768
(S) 4-Bromofluorobenzene	89.3			67.0-138		04/01/2020 16:44	WG1453768
(S) 1,2-Dichloroethane-d4	109			70.0-130		04/01/2020 16:44	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	13.8		1.73	4.29	1	04/02/2020 10:59	WG1453627
C28-C40 Oil Range	58.0		0.294	4.29	1	04/02/2020 10:59	WG1453627
(S) o-Terphenyl	53.0			18.0-148		04/02/2020 10:59	WG1453627

Collected date/time: 03/26/20 00:00

SAMPLE RESULTS - 25

ONE LAB. NA Page 70 of 122

Total Solids by Method 2540 G-2011

						I'C	`n
	Result	Qualifier	Dilution	Analysis	Batch		·٢
Analyte	%			date / time		2	_
Total Solids	90.6		1	04/01/2020 15:29	WG1453691		С

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	173		0.878	11.0	1	04/02/2020 19:33	WG1453916	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.10101	date / time	2000	
TPH (GC/FID) Low Fraction	0.0710	ВJ	0.0240	0.110	1	04/01/2020 15:22	WG1453837	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		04/01/2020 15:22	WG1453837	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000442	0.00110	1	04/01/2020 17:03	WG1453768
Toluene	U		0.00138	0.00552	1	04/01/2020 17:03	WG1453768
Ethylbenzene	U		0.000585	0.00276	1	04/01/2020 17:03	WG1453768
Total Xylenes	U		0.00528	0.00718	1	04/01/2020 17:03	WG1453768
(S) Toluene-d8	111			75.0-131		04/01/2020 17:03	WG1453768
(S) 4-Bromofluorobenzene	86.6			67.0-138		04/01/2020 17:03	WG1453768
(S) 1,2-Dichloroethane-d4	112			70.0-130		04/01/2020 17:03	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.90	J	1.78	4.42	1	04/01/2020 20:54	WG1453627
C28-C40 Oil Range	5.97		0.303	4.42	1	04/01/2020 20:54	WG1453627
(S) o-Terphenyl	53.1			18.0-148		04/01/2020 20:54	WG1453627

SDG: L1204240 D4 04/0 ²Tc ³Ss ⁴Cn

Sr

Â

SAMPLE RESULTS - 26

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

						I Cr	\sim
	Result	Qualifier	Dilution	Analysis	Batch		J
Analyte	%			date / time		2	_
Total Solids	91.2		1	04/01/2020 22:24	WG1453693	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	177		0.872	11.0	1	04/02/2020 19:42	WG1453916	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	qualifier	mg/kg	mg/kg	Dilation	date / time	Batch	6
TPH (GC/FID) Low Fraction	0.0680	ВJ	0.0238	0.110	1	04/01/2020 15:44	WG1453837	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		04/01/2020 15:44	WG1453837	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000439	0.00110	1	04/01/2020 17:22	WG1453768
Toluene	U		0.00137	0.00548	1	04/01/2020 17:22	WG1453768
Ethylbenzene	U		0.000581	0.00274	1	04/01/2020 17:22	WG1453768
Total Xylenes	U		0.00524	0.00713	1	04/01/2020 17:22	WG1453768
(S) Toluene-d8	110			75.0-131		04/01/2020 17:22	WG1453768
(S) 4-Bromofluorobenzene	87.6			67.0-138		04/01/2020 17:22	WG1453768
(S) 1,2-Dichloroethane-d4	112			70.0-130		04/01/2020 17:22	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.03	J	1.77	4.39	1	04/01/2020 21:07	WG1453627
C28-C40 Oil Range	8.68		0.300	4.39	1	04/01/2020 21:07	WG1453627
(S) o-Terphenyl	57.4			18.0-148		04/01/2020 21:07	WG1453627

SDG: L1204240 DA 04/0

SAMPLE RESULTS - 27

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	96.0		1	04/01/2020 22:24	WG1453693	T	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	250		0.828	10.4	1	04/02/2020 19:52	WG1453916

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quainer	mg/kg	mg/kg	Dilution	date / time	Baten	
TPH (GC/FID) Low Fraction	0.0593	ВJ	0.0226	0.104	1	04/01/2020 16:06	WG1453837	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		04/01/2020 16:06	WG1453837	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000417	0.00104	1	04/01/2020 17:41	WG1453768
Toluene	U		0.00130	0.00521	1	04/01/2020 17:41	WG1453768
Ethylbenzene	U		0.000552	0.00260	1	04/01/2020 17:41	WG1453768
Total Xylenes	U		0.00498	0.00677	1	04/01/2020 17:41	WG1453768
(S) Toluene-d8	109			75.0-131		04/01/2020 17:41	WG1453768
(S) 4-Bromofluorobenzene	86.4			67.0-138		04/01/2020 17:41	WG1453768
(S) 1,2-Dichloroethane-d4	110			70.0-130		04/01/2020 17:41	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	04/02/2020 01:57	WG1453628
C28-C40 Oil Range	0.373	J	0.286	4.17	1	04/02/2020 01:57	WG1453628
(S) o-Terphenyl	65.2			18.0-148		04/02/2020 01:57	WG1453628

SDG: L1204240 DATE/TIME: 04/07/20 09:59
SAMPLE RESULTS - 28 L1204240

ONE LAB. NA Page 73 of 122

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

,						I' Cr	2
	Result	Qualifier	Dilution	Analysis	Batch		J
Analyte	%			date / time		2	_
Total Solids	92.2		1	04/01/2020 22:24	WG1453693	Tc	2

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	12.4	В	0.862	10.8	1	04/02/2020 20:01	WG1453916		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analuta		Quanner			Dilution	,	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	04/01/2020 14:50	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	92.8			59.0-128		04/01/2020 14:50	WG1453878	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00108	1	04/01/2020 18:01	WG1453768
Toluene	U		0.00136	0.00542	1	04/01/2020 18:01	WG1453768
Ethylbenzene	U		0.000575	0.00271	1	04/01/2020 18:01	WG1453768
Total Xylenes	U		0.00518	0.00705	1	04/01/2020 18:01	<u>WG1453768</u>
(S) Toluene-d8	109			75.0-131		04/01/2020 18:01	WG1453768
(S) 4-Bromofluorobenzene	85.9			67.0-138		04/01/2020 18:01	<u>WG1453768</u>
(S) 1,2-Dichloroethane-d4	109			70.0-130		04/01/2020 18:01	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.21		1.75	4.34	1	04/02/2020 02:10	WG1453628
C28-C40 Oil Range	15.0		0.297	4.34	1	04/02/2020 02:10	WG1453628
(S) o-Terphenyl	48.8			18.0-148		04/02/2020 02:10	WG1453628

SDG: L1204240

SAMPLE RESULTS - 29

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

	2						l'Cn
		Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte		%			date / time		2
Total So	lids	93.1		1	04/01/2020 22:24	WG1453693	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	38.8		0.854	10.7	1	04/02/2020 20:11	WG1453916

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.100.011	date / time	20101	· · · · · · · · · · · · · · · · · · ·
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	04/01/2020 15:13	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	96.5			59.0-128		04/01/2020 15:13	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000429	0.00107	1	04/01/2020 18:20	WG1453768
Toluene	U		0.00134	0.00537	1	04/01/2020 18:20	WG1453768
Ethylbenzene	U		0.000569	0.00268	1	04/01/2020 18:20	WG1453768
Total Xylenes	U		0.00513	0.00698	1	04/01/2020 18:20	WG1453768
(S) Toluene-d8	112			75.0-131		04/01/2020 18:20	WG1453768
(S) 4-Bromofluorobenzene	86.5			67.0-138		04/01/2020 18:20	WG1453768
(S) 1,2-Dichloroethane-d4	108			70.0-130		04/01/2020 18:20	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.46	J	1.73	4.29	1	04/02/2020 02:23	WG1453628
C28-C40 Oil Range	4.04	J	0.294	4.29	1	04/02/2020 02:23	WG1453628
(S) o-Terphenyl	57.1			18.0-148		04/02/2020 02:23	WG1453628

SDG: L1204240 DA 04/0

SAMPLE RESULTS - 30

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

						l'Cr	5
	Result	Qualifier	Dilution	Analysis	Batch		ĺ
Analyte	%			date / time		2	
Total Solids	93.5		1	04/01/2020 22:24	WG1453693	Tc	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	40.4		0.850	10.7	1	04/02/2020 20:21	WG1453916	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	04/01/2020 15:37	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	97.6			59.0-128		04/01/2020 15:37	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000428	0.00107	1	04/01/2020 18:39	WG1453768
Toluene	U		0.00134	0.00535	1	04/01/2020 18:39	WG1453768
Ethylbenzene	U		0.000567	0.00267	1	04/01/2020 18:39	WG1453768
Total Xylenes	U		0.00511	0.00695	1	04/01/2020 18:39	WG1453768
(S) Toluene-d8	109			75.0-131		04/01/2020 18:39	WG1453768
(S) 4-Bromofluorobenzene	85.2			67.0-138		04/01/2020 18:39	WG1453768
(S) 1,2-Dichloroethane-d4	112			70.0-130		04/01/2020 18:39	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.28	1	04/02/2020 02:35	WG1453628
C28-C40 Oil Range	3.63	J	0.293	4.28	1	04/02/2020 02:35	<u>WG1453628</u>
(S) o-Terphenyl	63.7			18.0-148		04/02/2020 02:35	WG1453628

³Ss ⁴Cn ⁵Sr

Â

SAMPLE RESULTS - 31

Total Solids by Method 2540 G-2011

Collected date/time: 03/26/20 00:00

		-011				1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		 2
Total Solids	95.5		1	04/01/2020 22:24	WG1453693	ЪС

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	9.82	ВJ	0.833	10.5	1	04/02/2020 20:30	WG1453916

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	04/01/2020 16:01	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	97.7			59.0-128		04/01/2020 16:01	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000419	0.00105	1	04/01/2020 18:59	WG1453768
Toluene	U		0.00131	0.00524	1	04/01/2020 18:59	WG1453768
Ethylbenzene	U		0.000555	0.00262	1	04/01/2020 18:59	WG1453768
Total Xylenes	U		0.00501	0.00681	1	04/01/2020 18:59	WG1453768
(S) Toluene-d8	112			75.0-131		04/01/2020 18:59	WG1453768
(S) 4-Bromofluorobenzene	88.6			67.0-138		04/01/2020 18:59	WG1453768
(S) 1,2-Dichloroethane-d4	109			70.0-130		04/01/2020 18:59	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.19	1	04/02/2020 03:11	WG1453628
C28-C40 Oil Range	1.93	J	0.287	4.19	1	04/02/2020 03:11	WG1453628
(S) o-Terphenyl	65.3			18.0-148		04/02/2020 03:11	WG1453628

SDG: L1204240 DA 04/0 Ss Cn

Â

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3514902-1 04/01	1/20 16:19			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
al Solids	0.000			

L1204240-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1204240-02 0	4/01/20 16:19 • (D	UP) R3514902-3	3 04/01/20	16:19		
	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.8	93.4	1	0.405		10

Laboratory Control Sample (LCS)

(LCS) R3514902-2 04	/01/20 16:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 04/07/20 09:59

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1204240-06,07,08,09,10,11,12,13,14,15

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Didirk					1	^{1}Cr
(MB) R3514900-1 0	4/01/20 15:38					
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	%		%	%		Tc
Total Solids	0.000					
					3	³ Ss

L1204240-13 Original Sample (OS) • Duplicate (DUP)

(OS) L1204240-13 04/	01/20 15:38 • (DL	JP) R3514900-3	04/01/20	15:38		
	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.2	92.6	1	0.359		10

Laboratory Control Sample (LCS)

(LCS) R3514900-2 04/0	01/20 15:38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1204240

DATE/TIME: 04/07/20 09:59

PAGE: 44 of 66

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1204240-16,17,18,19,20,21,22,23,24,25

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	(IVIB)				1	1 Cr
(MB) R3514898-1 (04/01/20 15:29					C
	MB Result	MB Qualifier	MB MDL	MB RDL	2	2
Analyte	%		%	%	-	Tc
Total Solids	0.00100					
					3	³ Ss

L1204240-17 Original Sample (OS) • Duplicate (DUP)

(OS) L1204240-17 04	/01/20 15:29 • (D	UP) R3514898-3	04/01/20	15:29		
	Original Res	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.7	93.0	1	0.365		10

Laboratory Control Sample (LCS)

(LCS) R3514898-2 04/0	01/20 15:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1204240

DATE/TIME: 04/07/20 09:59

PAGE: 45 of 66

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

				1 A A A A A A A A A A A A A A A A A A A
/01/20 22:24				
MB Result	MB Qualifier	MB MDL	MB RDL	2
%		%	%	-
0.00100				
				3
ļ	MB Result %	MB Result <u>MB Qualifier</u>	MB Result MB Qualifier MB MDL % %	MB Result MB Qualifier MB MDL MB RDL % % %

L1204240-28 Original Sample (OS) • Duplicate (DUP)

(OS) L1204240-28 C	04/01/20 22:24 • ([DUP) R3514960-	3 04/01/2	0 22:24		
	Original Res	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.2	92.4	1	0.181		10

Laboratory Control Sample (LCS)

(LCS) R3514960-2 04/	/01/20 22:24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1204240 DATE/TIME: 04/07/20 09:59

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1204240-01,02,03,04,05,06,07,08,09,10,11,12

Ср

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3514800-1 04/	/01/20 16:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		0.795	10.0

L1204046-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1204046-01 04/01/2	20 17:24 • (DUP)	R3514800-3	04/01/20	17:33		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	3620	3590	10	0.800		20

L1204240-09 Original Sample (OS) • Duplicate (DUP)

L1204240-09	Original Sample	e (OS) • Du	uplicate	(DUP)		
(OS) L1204240-09	04/01/20 21:03 • (DUF	P) R3514800-6	6 04/01/20	0 21:12		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	7630	8360	20	9.06		20

Laboratory Control Sample (LCS)

(LCS) R3514800-2 04/01/	/20 16:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	186	93.0	90.0-110	

L1204046-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204046-05 04/01/2	20 18:11 • (MS) R	3514800-4 04	/01/20 18:21 •	(MSD) R351480	0-5 04/01/20	18:30						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	405	880	891	95.0	97.1	1	80.0-120			1.17	20

Released to	Imaging???????????????????????????????????
	ConocoPhillips - Tetra Tech

PROJECT: 212CMD02127

SDG: L1204240

DATE/TIME: 04/07/20 09:59

PAGE: 47 of 66

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1204240-13,14,15,16,17

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3515015-1 04	/02/20 03:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	1.43	J	0.795	10.0

L1204232-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1204232-01 04/02/	/20 04:10 • (DUP) R3515015-3	04/02/20	04:28		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	54.5	56.9	1	4.17		20

L1204232-10 Original Sample (OS) • Duplicate (DUP)

L1204232-10	Original Sample	(OS) • Dup	plicate (DUP)			
(OS) L1204232-10	04/02/20 08:21 • (DUF	P) R3515015-6	04/02/20	08:39			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	P RPD its	
Analyte	mg/kg	mg/kg		%			
Chloride	4.73	4.53	1	4.31	Ţ		

Laboratory Control Sample (LCS)

(LCS) R3515015-2 04/02/	/20 03:34				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	206	103	90.0-110	

L1204232-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204232-06 04/02	/20 05:57 • (MS	S) R3515015-4	04/02/20 06:15	5 • (MSD) R3515	5015-5 04/02/	20 07:09						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	519	12.4	545	539	103	101	1	80.0-120			1.01	20

Released to	Imaging? FP/30/2021 2:08:13 PM	1
	ConocoPhillips - Tetra Tech	

PROJECT: 212CMD02127

SDG: L1204240

DATE/TIME: 04/07/20 09:59

PAGE: 48 of 66

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1204240-18,19,20,21,22,23,24,25,26,27,28,29,30,31

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3515160-1 04/02	2/20 17:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	2.55	J	0.795	10.0

L1204240-23 Original Sample (OS) • Duplicate (DUP)

(OS) L1204240-23 04/02/	′20 18:45 • (DUF	P) R3515160-3	04/02/20	18:55		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	22.3	22.6	1	1.31		20

L1204246-03 Original Sample (OS) • Duplicate (DUP)

L1204246-03 (Driginal Sample	e (OS) • Du	plicate	(DUP)		
OS) L1204246-03 ()4/02/20 21:37 • (DUF	P) R3515160-6	04/02/20	0 21:46		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	7120	6590	20	7.70		20

Laboratory Control Sample (LCS)

(LCS) R3515160-2 04/02/	/20 17:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	182	90.8	90.0-110	

L1204240-31 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204240-31 04/02/2	20 20:30 • (MS)) R3515160-4 C	4/02/20 20:40	• (MSD) R3515	5160-5 04/02/2	20 20:49						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	524	9.82	505	506	94.6	94.7	1	80.0-120			0.0649	20

Released	to	Imaging ^{AC} PP/307/2021 2:08:13 PM
		ConocoPhillips - Tetra Tech

PROJECT: 212CMD02127

SDG: L1204240

DATE/TIME: 04/07/20 09:59

PAGE: 49 of 66

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1204240-01,02,03,04,05,06,07,08,09,10,11,12,13,14,16,17

Method Blank (MB)

)				
MB) R3514783-2 04/01/2	0 11:21				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	0.0261	J	0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3514783-1 04/01/2	20 10:40				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.51	100	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			114	77.0-120	

L1204278-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204278-01 04/01/2	20 12:56 • (MS) F	R3514783-3 04	1/01/20 20:52 •	(MSD) R35147	/83-4 04/01/20	21:12						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	174	1.28	146	162	83.2	92.3	26	10.0-151			10.3	28
(S) a,a,a-Trifluorotoluene(FID)					112	113		77.0-120				

DATE/TIME: 04/07/20 09:59

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1204240-18.19,20,21,22,23,24,25,26,27

°Cn

Sr

Qc

Gl

ΑI

Sc

Method Blank (MB)

)			
20 11:27			
MB Result	MB Qualifier	MB MDL	MB RDL
mg/kg		mg/kg	mg/kg
0.0552	J	0.0217	0.100
107			77.0-120
<i>'</i>	O 11:27 MB Result mg/kg 0.0552	0 11:27 MB Result MB Qualifier mg/kg 0.0552 J	0 11:27 MB Result <u>MB Qualifier</u> MB MDL mg/kg mg/kg 0.0552 J 0.0217

Laboratory Control Sample (LCS)

(LCS) R3515890-2 04/01/	20 10:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.40	98.2	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			105	77.0-120	

L1203806-25 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1203806-25 04/01/2	20 16:28 • (MS)	R3515890-6 (04/01/20 20:55	• (MSD) R3515	890-7 04/01/2	0 21:18						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	144	ND	165	164	113	112	25	10.0-151			0.797	28
(S) a,a,a-Trifluorotoluene(FID)					110	111		77.0-120				

PROJECT: 212CMD02127

SDG: L1204240 DATE/TIME: 04/07/20 09:59 PAGE: 51 of 66 Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Method Blank (MB)

	')				Ċ
(MB) R3515024-2 04/01/	20 12:36				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120	3

Laboratory Control Sample (LCS)

(LCS) R3515024-1 04/01/	CS) R3515024-1 04/01/20 11:48									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	6.16	112	72.0-127						
(S) a.a.a.Trifluorotoluene(FID)			106	77.0-120						

-
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
a

Sc

DATE/TIME: 04/07/20 09:59

PAGE: 52 of 66

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1204240-15

ONE LAB. NA Page 87 of 122

Ср

⁴Cn

Sr

Qc

Gl

ΑI

Sc

Method Blank (MB)

(MB) R3515296-4 04/02/	20 19:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0521	Ţ	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3515296-2 04/02	2/20 18:25 • (LCS	SD) R3515296	-3 04/02/20 18	:47							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	5.21	5.53	94.7	101	72.0-127			5.96	20	
(S) a,a,a-Trifluorotoluene(FID)				108	106	77.0-120					

L1204172-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204172-01 04/02/2	20 23:44 • (MS)	R3515296-5 C	4/03/20 04:12	• (MSD) R3515	296-6 04/03/2	20 04:34						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	126	ND	120	125	94.8	98.5	25	10.0-151			3.83	28
(S) a,a,a-Trifluorotoluene(FID)					106	108		77.0-120				

DATE/TIME: 04/07/20 09:59 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1204240-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18

Method Blank (MB)

(MB) R3515045-2 04/01/2	20 11:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	104			75.0-131
(S) 4-Bromofluorobenzene	100			67.0-138
(S) 1,2-Dichloroethane-d4	91.6			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3515045-1 04/01/	20 10:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.106	84.8	70.0-123	
Ethylbenzene	0.125	0.101	80.8	74.0-126	
Toluene	0.125	0.110	88.0	75.0-121	
Xylenes, Total	0.375	0.320	85.3	72.0-127	
(S) Toluene-d8			102	75.0-131	
(S) 4-Bromofluorobenzene			103	67.0-138	
(S) 1,2-Dichloroethane-d4			107	70.0-130	

L1204240-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204240-18 04/01/2	20 19:07 • (MS) F	R3515045-3 04	4/01/20 19:26 •	(MSD) R35150	45-4 04/01/20) 19:58						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.133	U	0.109	0.0455	82.3	34.2	1	10.0-149		<u>13</u>	82.5	37
Ethylbenzene	0.133	U	0.103	0.0429	77.5	32.3	1	10.0-160		<u>J3</u>	82.4	38
Toluene	0.133	U	0.117	0.0487	87.9	36.6	1	10.0-156		<u>J3</u>	82.4	38
Xylenes, Total	0.399	U	0.316	0.150	79.0	37.6	1	10.0-160		<u>J3</u>	71.0	38
(S) Toluene-d8					102	102		75.0-131				
(S) 4-Bromofluorobenzene					99.9	99.2		67.0-138				
(S) 1,2-Dichloroethane-d4					97.9	97.6		70.0-130				

SDG: L1204240 DATE/TIME: 04/07/20 09:59

Τс

Ss

Cn

Sr

ິQc

GI

A

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1204240-19,20,21,22,23,24,25,26,27,28,29,30,31

Qc

Method Blank (MB)

)				
(MB) R3515599-1 04/01/2	0 10:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000400	0.00100	
Ethylbenzene	U		0.000530	0.00250	
Toluene	U		0.00125	0.00500	
Xylenes, Total	U		0.00478	0.00650	
(S) Toluene-d8	112			75.0-131	
(S) 4-Bromofluorobenzene	89.2			67.0-138	
(S) 1,2-Dichloroethane-d4	110			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3515599-2 04/0	1/20 12:10					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	΄GΙ
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.116	92.8	70.0-123		8
Ethylbenzene	0.125	0.101	80.8	74.0-126		AI
Toluene	0.125	0.109	87.2	75.0-121		9
Xylenes, Total	0.375	0.314	83.7	72.0-127		Sc
(S) Toluene-d8			101	75.0-131		
(S) 4-Bromofluorobenzene	a		94.4	67.0-138		
(S) 1,2-Dichloroethane-d4			121	70.0-130		

DATE/TIME: 04/07/20 09:59

PAGE: 55 of 66 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1204240-01,02,03,04,05,06,07,08,09,10

⁺Cn

۶r

[°]Qc

Gl

Â

Sc

Method Blank (MB)

	D)				
(MB) R3514780-1 04/01	/20 11:38				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	0.413	J	0.274	4.00	
(S) o-Terphenyl	66.5			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3514780-2 04/01	1/20 11:51				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	32.1	64.2	50.0-150	
(S) o-Terphenyl			59.8	18.0-148	

L1204232-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204232-01 04/01/2	0 15:51 • (MS) R	3514780-3 04	/01/20 16:04 • (MSD) R351478	0-4 04/01/20 1	16:17						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	56.9	31.8	77.6	77.8	80.4	80.8	1	50.0-150			0.293	20
(S) o-Terphenyl					56.0	58.1		18.0-148				

PROJECT: 212CMD02127

SDG: L1204240 DATE/TIME: 04/07/20 09:59

PAGE: 56 of 66 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY 1204240-11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26

Gl

Â

Sc

Method Blank (MB)

	ID)				¹ C
(MB) R3514781-1 04/01/	/20 17:49				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	T
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	3
(S) o-Terphenyl	65.0			18.0-148	Ľ
					4
					C

Laboratory Control Sample (LCS)

(LCS) R3514781-2 04/0	1/20 18:02				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	31.6	63.2	50.0-150	
(S) o-Terphenyl			56.3	18.0-148	

L1204240-23 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204240-23 04/01	/20 18:15 • (MS)	R3514781-3 04	/01/20 18:28 • (MSD) R351478	31-4 04/01/20	18:41						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	52.6	1.90	37.3	32.4	67.4	58.0	1	50.0-150			14.2	20
(S) o-Terphenyl					57.2	57.1		18.0-148				

PROJECT: 212CMD02127

SDG: L1204240 DATE/TIME: 04/07/20 09:59

PAGE: 57 of 66 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Cn

Â

Sc

Method Blank (MB)

	D)			
MB) R3514866-1 04/02	2/20 01:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	62.5			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3514866-2 04/0	02/20 01:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	29.2	58.4	50.0-150	
(S) o-Terphenyl			51.2	18.0-148	

L1204246-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204246-02 04/02/	'20 20:46 • (MS	6) R3514866-3	04/02/20 20:5	9 • (MSD) R35	14866-4 04/02	2/20 21:11						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	53.8	1.92	37.0	39.7	65.2	70.2	1	50.0-150			7.01	20
(S) o-Terphenyl					53.9	47.0		18.0-148				

DATE/TIME: 04/07/20 09:59

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

PROJECT: 212CMD02127

SDG: L1204240 DATE/TIME: 04/07/20 09:59

Received by OCD: 5/15/2020 1:59:43 PM CCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 21/30/2021 2:08:13 PM ConocoPhillips - Tetra Tech **PROJECT:** 212CMD02127

SDG: L1204240 DATE/TIME: 04/07/20 09:59 PAGE: 60 of 66

¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Analysis Request of Chain of Custody Record

TŁ	Tetra Tech, Inc.				Tel	and, Te (432)	Street, xas 79 682-45 682-39	701 59	00			-					1										
Client Name:	ConocoPhillips	Site Manager:	-	Ch	ristian	Llu	11	1		1											UES						
Project Name:	EVGSAU 2622-034											1	1		irc	le d	or S	Spe	cify	y M	eth	bol	No	.)	11	T	1
Project Location: (county, state)	Lea County, New Mexico	Project #:	-	1	2120	-MD	-021	27																_			
Invoice to:	Accounts Payable 901 West Wall St. Suite 100, Midland TX 79701			1								1	MRO)		6	đ	1	1	F2	26				cheu iist			
Receiving Laborat		Sampler Signa	ature:		Devin	Do	ming	juez				1	ORO - M		Pb Se Hg	² b Se F			T			1		e attac			
Comments: (Contact PM regarding holds COPTETRA acctn						1					X 8260B	C35) DRO - O		Dd Cr	CGC			624 270C/625				TDS	Chemistry (see alance	D.		
1.1		SAMP	LING	M	ATRIX		PRESE	THO		ERS	(N/A)		(GRO -		4	g As	Volatiles	1 40000	8260B / i. Vol. 82			tos)	Sulfate	Water Cher	Daire		
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2020	TIME	WATER	SOIL	HCL	HNO ₃	Non	BIION	# CONTAINERS	FILTERED (Y/N)	BTEX 8021	TPH TX1005 TPH 8015M (PAH 8270C	Total Metals	TCLP Metals A	Semi	RCI	GC/MS Vol.	PCB's 8082 /		PLM (Asbestos) Chloride	Chloride	General Water Chemi Anion/Cation Balance	TPH 8015R		Hold
-01	BH-1 0-1' 🕐	3/26/2020	19- 5		X			X		1	N	X	X									>					
-02	BH-1 2'-3' +	3/26/2020	-	Π	X			x		1	N	X	X									×		T	T		
-03	BH-1 3'-4'	3/26/2020			X			x		1	N	X	X	Π								×			T		
-889100	BH-1 4'-5'	3/26/2020	5 M. 3		X			X		1	N																X
-04	BH-1 6'-7' +	3/26/2020			X			X		1	N	X	X									>	×				
-05	BH-2 0-1' 🖌	3/26/2020	1. A. R. M.		X			X		1	Ν	X	X									>	<				
-106	BH-2 2'-3' •	3/26/2020	-		X			X		1	Ν	X	X						10			>	X				
-07	BH-2 3'-4'	3/26/2020	1		X			X		1	N	X	X			10						>	X				1 miles
	BH-2 4'-5'	3/26/2020	1 is a		X			X		1	Ν				-				-								X
Relinquished by:	D 3187 12:0	3/26/2020 Received by: Received by:	All	1	3-2	Date:	2	Time	12	1		Sam	LAB ON ple Te 2+0.	mpera	ature]RUS	STA	Sam		y 2		48 h	nr 72	2 hr	X
Relinquished by:	Date: Time:	Received by:	TUL	A	た	Date:		Time	1	02	-	U	le) HA]Spe	cial F	Repo		nits o	or TRF	RP Re	eport		10
Released to 1	Imaging: 11/30/2021 2:08:13 PM	ORIGINAL		~	ied	1								3-2	-	12	-	-	1		L		mR/	hr			

Page 95 of 122

5

1 of

L1204240 Page

204240

2 of

5

Page

Analysis Request of Chain of Custody Record

Tt	Tetra Tech, Inc.			ş	Tel (nd, Tex 432) 6	Street, \$ kas 797 582-455 582-394	01 9																-			
Client Name:	ConocoPhillips	Site Manager:	1.341	Chi	ristian	Llu	11	1	-									YSIS									
Project Name:	EVGSAU 2622-034		1000					12	2			1	1		I	e o	r SI	peci	fy	Me	tho		10.	.)	11	1	
Project Location: (county, state)	Lea County, New Mexico	Project #:		-	212C-	MD	-021	27																st)			
Invoice to:	Accounts Payable 901 West Wall St. Suite 100, Midland TX 79701							1				3	(OHM		Hg								11	attached list)			
Receiving Laboratory:	Pace Analytical	Sampler Signa	ature:		Devin	Doi	ming	uez		-			ORO - N		Pb Se Hg	1 1							-	(see atta			
Comments: Conta	ct PM regarding holds COPTETRA acctn											X 8260B	DRO -		Ba Cd Cr Pb			624	8270C/625				TDS	stry		1	
		SAMP	LING	M	ATRIX			RVATIVE	-	ERS	(N/)	BTE.			Ag As	s	olatiles	8260B / 624	Vol.	608	istos)		Sulfate	5 m			
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020	TIME	WATER	SOIL	HCL	HNO ₃	None	No allo	# CONTAINERS	FILTERED (Y/N)	3TEX 8021B	TPH 8015M		TCLP Metals	TCLP Volatile	TCLP Semi V	GC/MS Vol.		PCB's 8082 /	NOHM PLM (Asbesto			General Water Anion/Cation Ba	TPH 8015R		Hold
	BH-2 9'-10'	3/26/2020	-	É	X	-		X		1	N		1		Ť	Ť					T	T	Ť		Ħ	T	X
	BH-2 14'-15' *	3/26/2020			X			x		1	N														T		X
	BH-2 19'-20'	3/26/2020	aller -		X			x		1	Ν										T		T		Π	T	X
-08	BH-2 24'-25' ،	3/26/2020			X			X		1	Ν	X	X								T	X					
-09	BH-3 0-1'	3/26/2020			X			X		1	Ν	X	X									X					
-10	BH-3 2'-3' /	3/26/2020		-	X	-		X		1	Ν	X	X									X					
= 11	BH-3 3'-4'	3/26/2020	100		X			X		1	Ν	X	X									X					
	BH-3 4'-5' ¥	3/26/2020			X			X		1	Ν				20												X
101-100 m	BH-3 6'-7'	3/26/2020			X			X		1	Ν				-												X
-12	BH-3 9'-10'	3/26/2020	10		X			X		1	Ν	X	X			1						X					
Relinquished by:) 3/27 12:00	Reperted by	M	1	3/2	Date	,	Time:	ic	0				US	E		MAR	ST	-	1	RD						
Relipodistied by:	Date: Time: 3-27-60 (5-00	Received by	4	6 1	Va		20	Time:	54	w		10000		mpera				RUSH			/			48 hr	721	ir	
Relinquished by:	Date: Time:	Received by		1	est.	Date		nme:	1.15	in la	1					1		Specia DEX					TRR	P Re	port		

ORIGINAL COPY

.

Analysis Request of Chain of Custody Record

TE	Tetra Tech, Inc.			90	Tel	nd, Tex 432) 6	treet, 5 as 797 82-455 82-394	01 9																		
Client Name:	ConocoPhillips	Site Manager:	-	Chris	stian	Llul								10	in a la					QUE						
Project Name:	EVGSAU 2622-034		100									1	1		ircle	e or	Sp		ITY I	viet	noo		0.)	11	11	1
Project Location: (county, state)	Lea County, New Mexico	Project #:	-	2	12C-	MD-	021	27															()			
Invoice to:	Accounts Payable 901 West Wall St. Suite 100, Midland TX 79701		-		Re					-	3		IRO)		p p								ched lis			
Receiving Laboratory:	Pace Analytical	Sampler Signa	ature:	D	evin	Dor	ning	uez	-		1 20		30 - N		b Se Hg								e attach			
Comments: Conta	act PM regarding holds COPTETRA acctn	Shine !	1	-								X 8260B	GRO - DRO - ORO - MRO)		a Cd Cr Pb			624	8270C/625			TDS	emistry (see	e		
	The second second second	SAMP	LING	MAT	TRIX	F		RVATI	VE	ERS	(N/A)	BTE	(GRO -		Ag As Ba (Ag As Ba	-	olatiles	3260B /	. Vol.	608	0s)	Sulfate	Chat	Balanc		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020 ELEVIC	TIME	WATER	-	HCL	P03	None		CONTAINERS	ILTERED (X	H 8015M (8270C	LP Metals	LP Volatile	ICLP Semi V	Vol.	GC/MS Semi.	NORM	PLM (Asbestos)		General Water			pi
(ONLY) -+3	BH-4 0-1' ¢	3/26/2020	TIM		_	Ŧ		2 Z X		#	N	X BTE	TPH X	PAH	TC	TCLI		GC/	00 00	2 Z		S S	5 g	An	++	PloH
-15 -14-B	BH-4 2'-3' r	3/26/2020		>	-			×		1	N	^ X	X	+ +	-		+			+	+ +	^ X	+		++	
19-13	BH-4 3'-4'	3/26/2020	-	1,	-		-	x		1	N	X	X	+			+	-		+	+	X	+	++		
15 17	BH-4 4'-5' /	3/26/2020		,	-		-	x		1	N	Ĥ	+^	+	-		+			+	H		+		++	X
	BH-4 6'-7'	3/26/2020		,	-		-	x		1	N			+			-			+	H	+	+		++	X
	BH-4 9'-10'	3/26/2020	1-1-	1,	-		-	x		1	N		+		-		-			+	Ħ					
-++0-15	• BH-4 14'-15' •	3/26/2020	-	1,	-		-	x		1	N	x	X	H			+			+	Ħ	X	+		++	
-+7-16	BH-5 0-1'	3/26/2020)	-		-	x		1	N	X	X	Ħ			1				\square	X		T		
-+4-17	BH-5 2'-3' •	3/26/2020	1		<			x		1	N	X	X							T		X		T	T	
- 49-18	BH-5 3'-4' 🗸	3/26/2020)	<		1	x		1	N	X	X							T		X	T		T	
Relinquished by:	Date: Time: 3/27 /2:00		Di	1	3/2	Date:	120	_	15	lie	2			US	E			ST		DAR		24.6	- 1	8 hr 7	70 hr	15
Relinged is bed by	Date: Time: 327-20 15-00	Received by:	4		3/2	Date:		rime:	he	2				mpera							ay			5 m	2.111	
Relinquished by:	Date: Time:	Received by:	Read			Date:		Time:				3					s	pecia	al Rep	bort L	imits	or T	RRP	Repor	t	
Constanting of					-	- i	-	-	-	-		(Circl	e) H/	AND D	ELIVE	RED	FED	DEX	UPS	Tra	cking	#:				

ORIGINAL COPY

.

L1204240 Page 97 of 122

3 of

5

Page

Analysis Request of Chain of Custody Record

TŁ	Tetra Tech, Inc.			Т	idland Tel (43	id,Tex (32) 6	treet, 9 as 797 82-455 82-394	01 9)																		
Client Name:	ConocoPhillips	Site Manager:		Christia	an l	Llul						Ι		1	Cir							EST	d N	~			
Project Name:	EVGSAU 2622-034			the second									11	1				- Sh		IY					11	11	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	C-N	MD-	021	27		E														st)			
Invoice to:	Accounts Payable 901 West Wall St. Suite 100, Midland TX 79701		Sele.											ARO)	fg	Hg								attached list)			
Receiving Laboratory:	Pace Analytical	Sampler Signature: Devin Dominguez						ORO - MRO)	Pb Se Hg	121				10				(see atta									
Comments: Contac	ct PM regarding holds COPTETRA acctn			-								X 8260E	C35)	DRO-0	Cd Cr	Cd Cr			624	S Semi. Vol. 8270C/625			TDS	Chemistry (s			
		SAMP	LING	MATRI	x	F	RESE	RVAT		RS	(N/N)	BTEX	(Ext to	GRO -	Ag As Ba	Ag As Ba	Solatilae	Oldilles	8260B /	Vol. 82	608	(sc	Sulfate	er Chen	Balanc		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020	TIME	WATER SOIL		HCL	-INO3	None		# CONTAINERS	FILTERED ()	3TEX 8021B	TPH TX1005	7PH 8015M	Fotal Metals /	P Metals	TCLP Volatile	ACI	GC/MS Vol. 8	GC/MS Semi.	PCB's 8082 / NORM	PLM (Asbestos)		General Water			Hold
- 20-19	BH-5 4'-5'	3/26/2020	F	X		-		X		1	N	X		X	1							T	X		Ť	T	
	BH-6 0-1'	3/26/2020		X				x		1	N	X		X									X			T	
-2221	BH-6 2'-3' 🖌	3/26/2020		X		1		X		1	N	X		X								Π	X		Π	T	
-23-22	BH-6 3'-4' 🔺	3/26/2020	1150-	X				X		1	N	X		X									X				
-24-23	BH-6 4'-5'	3/26/2020		X				X		1	N	X		X									X				
-2524	BH-7 0-1' •	3/26/2020		X	-			X	-	1	N	X		X									X	-			
-26.25	BH-7 2'-3'	3/26/2020		X				X		1	N	X		X									X				
-27-24	BH-7 3'-4'	3/26/2020		X				X		1	N	X		X									X				
-2621	BH-7 4'-5' 🍺	3/26/2020		X				X		1	N	X		X									X				
-29.20	BH-8 0-1' 🍬	3/26/2020		X				X		1	N	X		X									X				
Relinquished by:	Date: Time: 3 3 7 12-0 Date: Time: 3 27/20 15:00	Received by	A	12-3.	3	Date	2/2	Time Time	(2	22			umple	Temp	.Y eratu	Ure STANDARD RUSH: Same Day 24 hr 48 hr 72 hr											
Relinquished by:	Bate: Time:	Received by	-	1	-	Date	-	Time	1	10						46	_	_							Repor	rt	2
		ORIGINA	L COPY									(C	ircle)	HAN	DDEI	LIVEF						acking),5 r	nR/	/htt		

•

Page 98 of 122

4 of

5

Page

L204241)

.

Analysis Request	t of Chain of Custody Record	23.17		2.1						-												Pa	age	_	_	5	of .	5
T	Tetra Tech, Inc.			9	Tel (nd, Te: (432) (Street, xas 79 682-45 682-39	9701 559	100																			
Client Name:	ConocoPhillips	Site Manager:		Chr	istian	Llu						T			Cir				SIS					No)		-	
Project Name:	EVGSAU 2622-034	100	32		68								1				1	1		1				1	1	11		1
Project Location: (county, state)	Lea County, New Mexico	Project #:		2	212C-	MD	-02	127																	SI)			
Invoice to:	Accounts Payable 901 West Wall St. Suite 100, Midland TX 79701			1			-				-			MRO)	Hg	Hg								il bort	(see attached list)			
Receiving Laboratory:	Pace Analytical	Sampler Signa	ature:	1	Devin	Do	min	gue	z					- ORO - I	b Se I	Pb Se Hg								otto -	ee alla			
Comments: Cont	act PM regarding holds COPTETRA acctn	Maria						1				duade V	013	DRO-C	a Cd Cr F	s Ag As Ba Cd Cr Pb S			/ 624	8270C/625				TDS mietru (cu	Stry			
18-24-3	the first the second second	SAMPLING			TRIX		PRES	ERVA		BS	IN	DTC	(Ext to C	GRO -	Ag As B	Ag As E	les Volatiles	Diames	260B/	Vol. 8	608	s)		Sulfate	Balance			
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020 JUYI	TIME	WATER	OIL	CL CL	HNO ₃	ш	None	CONTAINERS			TX1005	H 8015M (otal Metals A	Metals	TCLP Volatiles	Dem	GC/MS Vol. 82608	GC/MS Semi.	PCB's 8082 / NORM	PLM (Asbestos)		IVI	General water Anion/Cation Ba	TPH 8015R		Hold
(ONLY)	BH-8 2'-3'	3/26/2020	UI F	_	X	Ĭ	Ŧ	X	ž	#	е Ц		X	X	To	1	10	2 Da	00 00	000	DA Z	PL	र्छ X	50	An	E I		<u> </u>
-3021 =32-30	BH-8 3'-4'	3/26/2020			x			X		1			x	X				+		t	+	1	X	+				
-3231	BH-8 4'-5' *	3/26/2020			X			X		1	1	V X	X	×									X					
												-																
	1										-	-								-								-
Relinquished by: Relinquished by: Relinquished by:	Date: Time: 3 7 2:00 Date: Time: 3/2/23 5:00 Date: Time:	Received by Received by Received by	Al F	4	30 34	Date	7/	Tim 22 Tim Tim			20		ample	AB I ONI Temp	_Y peratu	re				Sa	ges A	Day Autho	orized	d			? hr	
		ORIGINAL	COPY		New York		No. of the local diversity of the local diver	12.00	11.1		No.	(Circle)	HAN	D DE	LIVER	RED	FED	DEX L	JPS	Tra	acking) #: _					

Katie Ingram

	-
	0
	m
	=
	#
	2
- 1	-
-	2
	2
	1204
	É
	N
	5
	2
	0
1	and the second
	0
	0
	ē
	ä
	a
	2
-	0
	9
	-
	R
	S
	1
	N
	H
	2
	2
	\leq
	õ
	N
	H
	N
	-
	a
	t
	œ
	0
	ω
	2
	~
	N
	0
	1000
	-
	2
	à
	E
	5
	t
	P
	D
	5
	~
	3
	S
	1
	ai
	2
	Ť
	a
	t.
	0
	=
	2
	P.
	2
	3
	-
	-
	the second second

Sample Integrity Chain of Cu	Chain of Custody Clarification	
Parameter(s) past holding		
1100	X Login Clarification Needed	If Broken Container:
Temperature not in		
range	Chain of custody is incomplete	Insufficient packing material around container
Improper container	Please specify Metals requested.	Insufficient packing material inside
cype		
pH not in range.	Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Cou
Insufficient sample volume.	Received additional samples not listed on coc.	Sample was frozen
Sample is biphasic.	Sample ids on containers do not match ids on	Container lid not intact
Vials received with headspace.	Trip Blank not received.	If no Chain of Custody:
x Broken container	Client did not "X" analysis.	Received by:
Broken container:	Chain of Custody is missing	Date/Time:
Sufficient sample remains		Temp./Cont. Rec./pH:
		Carrier:
		Tracking#

Login Comments: ID: BH-4 0-1' received broken unsalvegable.

Login Instructions:	TSR Initials: CM	Client informed by:
	Client Conta	Call
	t:	Email
		Voice Mail
		Date: 3/31/20
		Time: 15:59

Client notified of broken container.

APPENDIX E Photographic Documentation

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View W of release area and surface flow lines; Satellite #5 facility visible in the background.	1
212C-MD-02127	SITE NAME	EVGSAU 2622-034 Flowline Release	3/26/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View E of the release area and the repaired portion of the flowline (source of release).	2
212C-MD-02127	SITE NAME	EVGSAU 2622-034 Flowline Release	3/26/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View S of drill rig and release extent.	3
212C-MD-02127	SITE NAME	EVGSAU 2622-034 Flowline Release	3/26/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View SW of the release area, drill rig, and Satellite #5 facility.	4
212C-MD-02127	SITE NAME	EVGSAU 2622-034 Flowline Release	3/26/2020

.

APPENDIX F NMSLO Seed Mixture Details

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

EVGSAU 2622-034 Flowline Release

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

•

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	11
Map Unit Descriptions	11
Lea County, New Mexico	
KO—Kimbrough gravelly loam, dry, 0 to 3 percent slopes	13
References	15
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Received by OCD: 5/15/2020 1:59:43 PM

.

Custom Soil Resource Report

MAP LEGEND		MAP INFORMATION
Area of Interest (AOI) △ Area of Interest (AOI) Soils Soil Map Unit Polygons △ Soil Map Unit Polygons △ Soil Map Unit Ines ○ Soil Map Unit Points ○ Borrow Pit ※ Clay Spot ※ Clavel Depression ※ Gravel Pit ※ Clay Spot ※ Clay Spot ※ Marsh or swamp ※ Mine or Quarry ※ Mine or Quarry ※ Mine or Quarry ※ Rock Outcrop ※ Saline Spot	Spoil AreaImage: Spoil AreaImage: Stony SpotImage: Stony SpotImage: Story SpotImage:	 The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data a of the version date(s) listed below. Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 16, Sep 15, 2019
pression pot wamp Jarry ous Water Water Water rop	Transportation Interstate Highways ✓ Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads	 measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 16, Sep 15, 2019
 Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Sep 18, 2016—Nov 20, 2017 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
КО	Kimbrough gravelly loam, dry, 0 to 3 percent slopes	0.3	100.0%
Totals for Area of Interest		0.3	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KO—Kimbrough gravelly loam, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw43 Elevation: 2,500 to 4,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough, dry, and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kimbrough, Dry

Setting

Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear, concave Parent material: Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 4 to 18 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 95 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Very Shallow 12-17" PZ (R077DY049TX) Hydric soil rating: No

Minor Components

Eunice

Percent of map unit: 10 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Convex Ecological site: Very Shallow 12-17" PZ (R077DY049TX) Hydric soil rating: No

Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear Ecological site: Very Shallow 12-17" PZ (R077DY049TX) Hydric soil rating: No

Kenhill

Percent of map unit: 4 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: Clay Loam 12-17" PZ (R077DY038TX) Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NMSLO Seed Mix

Loamy (L)

LOAMY (L) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Black grama	VNS, Southern	1.0	D
Blue grama	Lovington	1.0	D
Sideoats grama	Vaughn, El Reno	4.0	F
Sand dropseed	VNS, Southern	2.0	S
Alkali sacaton	VNS, Southern	1.0	
Little bluestem	Cimarron, Pastura	1.5	F
<u>Forbs:</u> Firewheel (<i>Gaillardia</i>)	VNS, Southern	1.0	D
Shrubs: Fourwing saltbush Common winterfat	Marana, Santa Rita VNS, Southern	1.0 0.5	D F
	Total PLS/acr		Se la

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:		
CONOCOPHILLIPS COMPANY	217817		
600 W. Illinois Avenue	Action Number:		
Midland, TX 79701	8320		
	Action Type:		
	[C-141] Release Corrective Action (C-141)		

CONDITIONS

Created By	Condition	Condition Date
bbillings	Work plan is approved, with sampling protocol, however, variance request regarding bottom of excavation is denied ending data outcome. Can be revisited at that time if needed.	11/30/2021

CONDITIONS

Page 122 of 122

Action 8320

.