Received by OCD: 11/12/2021 11:28:50 AM Page 1 of 44 Review of 2020 Annual Report: Content satisfactory APPROV By Nelson Velez at 12:01 pm, Jan 14, 2022 1. Continue as stated within the recommendations of the aforementioned report. Collect confirmation soil samples from the Site at a. November 12, 2021 the locations presented on Figure 5 of the report New Mexico Energy, Minerals and Natural Resources Department Create logs of all bore holes with standardized b. New Mexico Oil Conservation Division data collection information 1000 Rio Brazos Road Collect a minimum of 2 samples per boring and c. Aztec, New Mexico 87410 analyze for TPH and BTEX d. Continue quarterly gauging of wells MW-2 Subject: **2020 Annual Report** through MW-7 **Bloomfield Crude Station Bloomfield**, New Mexico Submit next annual report to OCD no later than March Western Refining Southwest, LLC 31, 2022. NMOCD Environmental Order: 3RP-258

Mr. Cory Smith

On behalf of Western Refining Southwest, LLC (Western), WSP USA Inc. (WSP), formerly LT Environmental, Inc. (LTE), has prepared this *2020 Annual Report* documenting the remediation of impacted soil and groundwater at the Bloomfield Crude Station (Site), located at 530 North 5th Street in Bloomfield, New Mexico (Figure 1). Based on Site conditions and guidance from the New Mexico Oil Conservation Division (NMOCD), Western performed quarterly groundwater monitoring in 2020. Specifically, groundwater monitoring wells MW-2 through MW-7 located at the Site were gauged for depth-to-groundwater elevations and to assess the presence of phase-separated hydrocarbons (PSH). Additionally, monitoring well MW-7 was sampled in February and March of 2020 for laboratory analysis. This report summarizes findings and recommendations for the Site moving forward.

SITE BACKGROUND

The Site is located in the northwest quarter of the northwest quarter of Section 22, Township 29 North, and Range 11 West in San Juan County, New Mexico, as depicted on Figure 1. The fenced and locked Site is in a mixed residential and industrial area within the limits of the City of Bloomfield, New Mexico. Water for potable use near the Site is supplied by the City of Bloomfield. According to the New Mexico Office of the State Engineer, the nearest downgradient water well is over 1,800 feet downgradient of the Site.

RELEASE BACKGROUND

The Site was originally leased for oil exploration and production on September 6, 1929. Since that time, the Site has been owned and leased by several companies who have operated various process units and tanks on or near the Site, including for refining operations. These companies include, but are not limited to, Aerex Refining, Plateau Refining, Shell Oil Company, El Paso Products, Malco, Clayton Investment of Thriftway Marketing, Giant Industries Arizona, Inc. (Giant), and the current owner, Western. In 1994, the Site operated as a crude oil storage facility under ownership of Giant. The Site contained several buildings and tanks, including one 55,000-barrel tank identified as Tank 967-D used to store crude oil (Figure 2). Tank 967-D was constructed in 1956 and used until 1991. In association with the removal of Tank 967-D, soil samples collected on March 15, 1994 indicated the presence of petroleum hydrocarbons in the soil at the Site.

A second release from Tank 967-D occurred on December 12, 1995 when the tank caught fire while it was being cleaned for decommissioning and removal. The fire resulted in a release of tank-bottom material and lead based paint chips from the outside of the tank. The tank-bottom material and paint chips stayed within a limited, contained area and the material and impacted soils were removed by vacuum truck and disposed offsite. This release did not contribute to soil and groundwater impacts resulting from the original release discovered in 1994 and did not require further remediation.

ADJACENT PROPERTIES

Parcel owners adjacent to the Site are shown on Figure 2. Western owns the former crude oil storage property located at 530 North 5th Street. The City of Farmington owns a small parcel immediately to the west of Western's property. The City of Farmington property contains an electrical substation, two active gas wells operated by Manana Gas, Inc. (Jan Redding #1 and Cook #1E), and two

WSP USA 848 EAST 2ND AVENUE DURANGO CO 81301

Tel.: 970-385-1096 wsp.com Released to Imaging: 1/14/2022 12:09:42 PM

wsp

historical plugged and abandoned oil/gas exploration and production wells (Kittell #1 and Bishop #1). Both active wells operated by Manana Gas, Inc. were drilled in 1987. Lampliter Enterprises, LLC (Lampliter) owns the parcel immediately south of Western's and west of the City of Farmington's property that the Lampliter parcel also had two historical oil/gas exploration and production wells (Bishop #3 and Hare #1) located on the property.

It is important to note that the public records for the historical wells in the NMOCD database are sparse and no latitude or longitude coordinates are available. The Bishop #3 well was drilled in 1925 for oil production and plugged and abandoned in approximately 1953. In 1982, the cement plugs were reset in the abandoned well. The Hare #1 well was spudded in 1941 and completed in 1942. In approximately 1980, the well was plugged and abandoned. No additional records were available for the Bishop #1 or the Kittell #1 wells. In addition, the Aerex Refinery, which operated from approximately 1931 to possibly the early 1960's, was formerly located east of the Site, immediately across North 5th Street. This facility has since been demolished and the property remains vacant. Vacant land, residential apartments, and houses are located around the Site, as shown on Figure 2.

SITE INVESTIGATIONS AND REMEDIATION

Following the discovery of the release associated with Tank 967-D, several environmental investigations were conducted between 1994 and 2000. Several borings were advanced at the Site to delineate soil impacts at the Site. Soil borings indicated that elevated concentrations of TPH and BTEX were present in soils resulting from the release and appeared to have migrated vertically and into saturated soils. Wells MW-1 through MW-7 were also installed between 1994 and 2000 to assess the potential for groundwater impacts resulting from the tank release. BTEX concentrations exceeding New Mexico Water Quality Control Commission (NMWQCC) standards were detected in wells MW-2, MW-6, and MW-7, with PSH present in well MW-2 during sampling events conducted between 1995 and 2002.

To address impacted soil and groundwater, remediation activities consisted of excavation of impacted soil and the installation/ operation of bioventing and air sparging (AS) systems at the Site. These investigations and remediation activities have been summarized in a previous LTE report dated August 2014 and submitted to NMOCD. The initial remedial approach consisted of excavating petroleum impacted soil until groundwater was encountered at the Site. Excavation started on August 2, 2000 and removed 12,924 cubic yards of impacted soil to depths up to 18 feet below ground surface (bgs). The aerial extent of the excavation is shown on Figure 3. Soil samples were collected from the bottom and sidewalls of the excavation prior to backfilling, with sample locations shown on Figure 3. Excavation results were originally summarized in the *Report for Remediation Excavation Work Performed During August 2020 for the Bloomfield Crude Station*, prepared by Philip Services Corp. and dated October 2000. Soil analytical results from excavation samples are summarized in Table 1.

Following backfill of the excavation, a bioventing system, consisting of injection points (IP) and monitoring points (MP), was installed on October 4, 2002 (Figure 3). The *2003 Annual Report, Bloomfield Crude Station, Bloomfield, New Mexico* prepared by Lodestar Services, Incorporated (dated March 2004) summarizes the installation of the bioventing system. During installation of the system, soils were field screened for volatile organic compounds (VOCs) using a photoionization detector (PID). Field screening results from soil samples collected during installation of IP and MP locations are presented on Table 2 and on Figure 3. Based on the field screening results, eight locations (MP3, MP7, MP8, MP11, IP7, IP10, IP12, and IP16) with the apparent greatest petroleum hydrocarbon impacts were chosen to conduct ongoing soil performance sampling to assess the efficacy of the bioventing system over time. Soil borings were advanced near these IP/MP locations on a yearly basis between 2002 and 2012, with soil samples collected for analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds. Soil analytical results from these events are summarized in Table 3.

In October 2006, an air sparging well (SW-2) was installed adjacent to MW-2 to expedite remediation of elevated BTEX concentrations in groundwater in this area. The air sparging well operated until January 2007, at which time the BTEX concentrations in groundwater at well MW-2 had declined by 92 percent (%) during the four months of operation. By 2010, eight consecutive quarters of groundwater samples were below NMWQCC standards for BTEX in MW-2.

Annual groundwater monitoring was conducted during the operation of the AS system and continued until 2013. Annual groundwater sampling recommenced in 2017 in order to monitor residual impacts detected in well MW-7. Using data collected in 2017 and 2018, Western submitted a *Request for Closure* (August 10, 2018) report to the NMOCD. The report summarized the analytical data collected in 2017 and 2018 and presented the rationale for closure of the AS system and the Site with a request of No Further Action from NMOCD. NMOCD responded in a letter dated August 10, 2018 with a request for Western to continue monitoring groundwater elevations and the presence of PSH in wells MW-2 through MW-7.

2019 ANNUAL REPORT AND REQUEST FOR SYSTEM CLOSURE

Based on data collected in 2019, LTE prepared and submitted the *2019 Annual Report* (dated May 2020) to the NMOCD. In this report, LTE and Western requested that confirmation soil samples be collected from locations previously identified during the bioventing system installation and operation from 2002 to 2012. Soil samples would be used to assess current soil conditions, as soil samples had not been collected at the Site since 2012. If analytical results were below NMOCD Table 1 Closure Criteria (as presented in 19.15.29.12 of the New Mexico Administrative Code, or NMAC), LTE proposed to decommission the air sparging and bioventing systems, plug and abandon all injection and monitoring points, and plug and abandon monitoring wells MW-2, MW-3, and MW-4, which are located on Western's property. Western also proposed to continue quarterly gauging of wells MW-5, MW-6, and MW-7 (located on neighboring properties not owned by Western) while investigating other potential sources of contaminants detected in well MW-7.

The NMOCD accepted the 2019 Annual Report on January 14, 2021 via email and stated the following conditions:

"As per our discussion yesterday, OCD has accepted the Annual report for the data provided. However at this time has not made a decision on section 5 regarding deconstruction of the air sparge system and the collection of confirmation [soil] samples.

OCD cannot make a determination on the proposed [soil] sampling due to limited information regarding the locations where Western intend to collect the samples. If possible, some historic soil sample results that may indicate high levels of impacts, and or bore logs, and a map showing those areas would be very helpful in helping the OCD determine if the proposed sample locations are protective of fresh water, human health and the environment."

Because of the delay in response, soil sampling and/or system decommissioning work was not performed in 2020.

CURRENT SITE CONDITIONS

The concentrations of petroleum hydrocarbons in soil and groundwater have been significantly reduced since remediation began at the Site. The following section summarizes Site conditions since remediation activities ceased in 2013.

SOIL CONDITIONS

As part of the bioventing plan, soil was monitored regularly to assess concentrations of BTEX and TPH. By comparing the initial TPH and BTEX concentrations obtained from soil samples collected during bioventing system installation to the most recent soil samples collected in April 2012, TPH concentrations in MP3, MP7, MP8, MP11, IP7, IP10, IP12, and IP16 decreased by 91% to 99% at the Site due to the bioventing activities. During the April 2012 sampling event, the TPH concentration at IP-12 was 139.2 mg/kg; no other sample results exceeded the NMOCD standard of 100 mg/kg TPH (Table 3). The initial sampling results indicated low concentrations of total BTEX in the soil, which subsequently declined as a direct result of the bioventing activities. No BTEX concentrations exceeded the laboratory method detection limit in any soil sample from April 2009 through April 2012 (Table 3).

GROUNDWATER CONDITIONS

Groundwater gauging and sampling has been conducted over the last 26 years. Depth-to-water and depth-to-phase separated hydrocarbons (PSH) measurements collected during these events are presented in Table 4. Groundwater flow direction is generally to the south/southwest. Interpreted potentiometric-surface maps for each quarter in 2020 are depicted on Figures 4A through 4D.

Laboratory analytical results from the 2012, 2013, 2017, and 2018 groundwater sampling events indicate BTEX concentrations in all monitoring wells have continually declined and have been below NMWQCC standards since 2011, with the exception of MW-7 (Table 5). Although declining, benzene and total xylenes remained in well MW-7 at concentrations greater than NMWQCC standards between 2001 and 2013. During the November 2017 sampling event, BTEX concentrations in all wells, including MW-7, were below NMWQCC standards. However, during the May 2018 sampling event, PSH was encountered in well MW-7 for the first time since sampling began at this well in 2001. Groundwater conditions in all other wells remained the same as previous sampling events with no presence of PSH and BTEX concentrations were below NMWQCC standards.

Between 1994 and 2013, anions/cations, metals, and groundwater quality parameters were analyzed during annual sampling events (Table 6). Historically, iron, manganese, sulfate, and total dissolved solids (TDS) have been above NMWQCC standards in a majority of the existing monitoring wells at the Site, including the upgradient monitoring well MW-3. Based on these data, it is likely that elevated concentrations of these constituents are naturally occurring in the shallow perched aquifer located below the Site. In addition,

the concentration of chloride in MW-5 exceeded the NMWQCC standards during most sampling events (2013) and there were several sampling events with barium concentrations exceeding the NMWQCC standard in well MW-6 and MW-7. Other analyzed constituents were either below NMWQCC standards or were not detected above laboratory-reporting limits.

In accordance with NMOCD's August 10, 2018 letter, LTE conducted gauging of depth-to-groundwater and the presence of PSH in 2019 and 2020. PSH was encountered in well MW-7 during the first three quarters of 2019. However, PSH was not present in well MW-7 between November 2019 and March 2020. PSH was again present in April, May, and July of 2020 during gauging events. PSH was not encountered during the September, October, November, or December 2020 gauging events. Furthermore, well MW-7 was sampled in February and March 2020 when PSH was not encountered in the well. Analytical results indicated that benzene and toluene concentrations were not detected above laboratory reporting limits during either sampling event. Ethylbenzene and xylenes were detected during both sampling events, but at concentrations well below the NMWQCC standards. Analytical results are summarized in Table 5, with laboratory reports included as Enclosure A.

CONCLUSIONS

Based on the data collected from the numerous investigations over the past 26 years, the remediation activities performed at the Site have successfully reduced contaminant concentrations in both soil and groundwater to below NMOCD and NMWQCC standards. Conclusions regarding soil and groundwater impacts at the Site are presented below.

SOIL

Excavation of 12,924 cubic yards of hydrocarbon-impacted soil from the Site effectively removed the primary source of contamination and a majority of the mass of petroleum hydrocarbons in subsurface soil at the Site. This is evidenced by the absence of free product in well MW-2 within 28 months of completion of the excavation activities. Bioventing was used to deliver oxygen to the subsurface and address residual hydrocarbon impacts to soil. The oxygen delivered by the remediation systems degraded petroleum hydrocarbons in two ways: the physical process of volatilization and the biological process of biodegradation. In general, the rate of biodegradation will exceed the rate of volatilization, especially for heavier hydrocarbon constituents, such as those found at the Site. Biodegradation and the subsequent mass removal of petroleum hydrocarbons from the subsurface will eventually exhibit asymptotic behavior; at which time further mass removal of petroleum hydrocarbons from the soil is minimal relative to the amount of oxygen input into the system. By 2013, the bioventing system and residual petroleum hydrocarbon concentrations in the soil exhibited asymptotic behavior and further oxygen injection into the subsurface was not likely to yield significant additional petroleum hydrocarbon mass reduction in the soil. The system was subsequently shut down in 2013.

Remediation progress was monitored by the routine collection of soil samples for analysis of TPH and BTEX. Based on the April 2012 soil-sample results, concentrations of benzene and total BTEX met the NMOCD Table 1 Closure Criteria (19.15.29 NMAC). Soil sampling in 2012 indicated TPH concentrations in soil at the Site also met the NMOCD Table 1 Closure Criteria, with the exception of one exceedance of the strictest standard (100 mg/kg) at a concentration of 139.2 mg/kg (sample collected from location IP12). Based on these results, the residual TPH concentrations were present at a depth above groundwater and at least 12 feet below ground surface. The remaining TPH is comprised of heavier range diesel-range organics (DRO) and motor oil-range organics (MRO) contaminants, which are unlikely to migrate to groundwater, as evidenced by historical groundwater analytical results indicating that no to very low BTEX concentrations are present in groundwater at the Site resulting from the Tank 967-D release.

Laboratory results indicated that the excavation, combined with bioventing, decreased the total mass of petroleum hydrocarbons in the soil at the Site by up to 99% in 2012. The source of petroleum hydrocarbons in the soil has been removed and will no longer impact groundwater, as observed by the absence of BTEX in groundwater in monitoring wells affected by former Tank 967-D. Potential receptors also are unlikely to be impacted due to the subsurface location of the residual impact (approximately 12 feet bgs) and a composition of heavier range DRO and MRO, which are unlikely to migrate to groundwater.

GROUNDWATER

Western has successfully remediated groundwater impacted by former Tank 967-D. Evaluation of total BTEX concentrations in groundwater with groundwater flow direction between 1994 and 2020 indicates the presence of a groundwater plume with two, separate source areas: Tank 967-D at the Site; and a separate source off-site to the west of the Site near MW-7. In August 2000, petroleum hydrocarbon impacted soil at the Site was excavated, thus removing the majority of the petroleum hydrocarbons in soil, which were acting as a source of hydrocarbon impacts to groundwater at the Site. PSH was manually bailed from well MW-2 between 1995 and 2002, at which time PSH ceased to collect within the well. To further reduce elevated BTEX concentrations in this area, , air

sparging activities were conducted adjacent to MW-2 between October 2006 and January 2007, which resulted in in the decrease of benzene and total xylenes concentrations in MW-2 to less than $10 \,\mu$ g/L during all subsequent sampling events. Remediation of the petroleum hydrocarbon groundwater plume beneath the Site has decreased benzene and total xylene concentrations in groundwater at the Site by approximately 99%.

Elevated concentrations of chloride in MW-5 is likely attributed to dissolution of naturally occurring chloride found in the 11-foot thick clay layer that is intercepted by the 15-foot screened interval. Elevated barium concentrations in MW-7 located off-site is most likely attributable to historical drilling operations unrelated to crude oil storage at the Site.

Additionally, PSH was present in the off-site well MW-7 during three quarters of 2018, three quarters of 2019, and two quarter of 2020. PSH was not present in off-site well MW-7 for 16 years between 2001 and the end of 2017 and the source is unknown at this time. Based on the groundwater analytical results, the fact that well MW-7 is cross gradient of the Site, and several current and former oil and gas production wells surround this well, the PSH occasionally encountered in well MW-7 are likely not sourced from the release of petroleum hydrocarbons from Tank 967-D, but related to a separate source of petroleum hydrocarbons located north/west of the Site from operations by others.

RECOMMENDATIONS

Recommendations for the Site activities are discussed below.

PROPOSED SOIL CONFIRMATION SAMPLING

Based on the data collected in 2012, the bioventing and air sparging systems have successfully reduced BTEX and TPH concentrations in soil and groundwater at the Site. Further oxygen injection into the subsurface is not likely to yield significant additional petroleum hydrocarbon mass reduction. However, soil samples have not been collected since the bioventing system ceased operations. To confirm the successful remediation of soil contaminants and assess the potential for contaminant rebound, Western proposes to collect confirmation soil samples from the Site at the locations presented on Figure 5. The proposed borings are located in areas with the greatest historical soil impacts based on the soil samples collected during the 2000 remedial excavation and the installation of the injection and monitoring points for the bioventing system.

Western will utilize a track-mounted direct-push probe rig and/or hand auger to advance borings at the Site. These drilling methods can both obtain continuous soil samples from the subsurface. Soil lithology will be logged by an WSP geologist and described based on the Unified Soil Classification System (USCS) as specified in American Society for Testing and Materials (ASTM) D2488. Soil also will be inspected for visual staining and the presence or absence of odors. The soil will be characterized by visually inspecting the soil samples and field screening the soil headspace using a PID to monitor for the presence of organic vapors. Drilling and sampling equipment will be decontaminated prior to each use. Completed borings will be backfilled with hydrated bentonite from the total depth to ground surface.

Borings will be terminated at the depth of groundwater, as encountered during drilling by the presence of saturated soils. Field screening will be performed every 2 to 3 feet, where possible. At least two samples will be collected from each boring: one at the depth interval displaying the highest PID readings; and one sample at the terminus of each boring. If PID readings do not indicate elevated organic vapors, a soil sample will be collected from the depth interval most likely to be impacted based on visual/olfactory observations and/or a change in lithology (i.e., sand to silt or clay soil characteristics). Samples will be collected and placed directly into pre-cleaned jars and labeled with location, date, time, sampler, and method of analysis and immediately placed on ice. Strict chain-of-custody procedures will be followed during transport of the samples to Hall Environmental Analysis Laboratory, Inc. (Hall) in Albuquerque, New Mexico. Soil samples will be analyzed for TPH, gasoline range hydrocarbons (GRO), diesel range hydrocarbons (DRO), motor oil range hydrocarbons (MRO), chloride, and BTEX compounds.

If contaminant concentrations in soil are below NMOCD Table 1 Closure Criteria (19.15.29.12 NMAC), Western proposes to decommission the air sparging and bioventing systems, plug and abandon all injection and monitoring points, and plug and abandon monitoring wells MW-2, MW-3, and MW-4 (located on Western's property). Assuming favorable results, Western also plans to request a property-specific no further action determination from the NMOCD for the 530 North 5th Street property. After decommissioning the remediation system and wells MW-2, MW-3, and MW-4.

ONGOING GROUNDWATER MONITORING

Although Western considers the source of impacts to groundwater at MW-7 to be unrelated to their operations, Western will continue quarterly gauging of wells MW-2 through MW-7.

WSP appreciates the opportunity to provide this report to you. If you have any questions or comments regarding this report, do not hesitate to contact Stuart Hyde at (970) 385-1096 or at stuart.hyde@wsp.com, or Kateri Luka or at kaluka@marathonpetroleum.com.

Kind regards,

Stuart Hyde, L.G. Senior Geologist

Enclosed:

Figure 1: Site Location Map Figure 2: Site Map Figure 3: Biovent System Layout and Monitoring Points Figure 4A: Groundwater Elevation Map – March 2020 Figure 4B: Groundwater Elevation Map – May 2020 Figure 4C: Groundwater Elevation Map – July 2020 Figure 4D: Groundwater Elevation Map – November 2020 Figure 5: Proposed Boring Locations

Table 1: Excavation Soil Sample ResultsTable 2: Bioventing System Installation PID ResultsTable 3: Bioventing Performance Soil Sample Analytical ResultsTable 4: Groundwater Elevation DataTable 5: Groundwater Analytical ResultsTable 6: Groundwater Chemistry Analytical Results

Enclosure A: Analytical Laboratory Reports

Ashley L. ager

Ashley Ager, M.S., P.G. Managing Director, Geologist

FIGURES

Released to Imaging: 1/14/2022 12:09:42 PM

Released to Imaging: 1/14/2022 12:09:42 PM

P:\Marathon Petroleum\GIS\MXD\095820003_BLOOMFIELD CRUDE STATION\095820003_BLOOMFIELD_FIG02_SITE_2020.mxd

Released to Imaging: 1/14/2022 12:09:42 PM

Released to Imaging: 1/14/2022 12:09:42 PM

P:\Western Refining\GIS\MXD\095820003_BLOOMFIELD CRUDE 2020\095820003_BLOOMFIELD_FIG04B_GWE_MAY_2020.mxd

P:\Marathon Petroleum\GIS\MXD\095820003_BLOOMFIELD_CRUDE_STATION\095820003_BLOOMFIELD_FIG05_BIOVENT_SYST_PROP_SOIL_SAMPLE_LOC_2021.mxd

TABLES

TABLE 1EXCAVATION SOIL SAMPLE RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Sample ID	Sample Depth (feet)	PID Head Space (ppm)	Total Petroleum Hydrocarbons (mg/kg)**		
NMOCD Table	NMOCD Table 1 Closure Criteria				
SS-1	7	1,789	10,900		
SS-2	6	1,167	1,130		
SS-3	7	1,037	459		
SS-4	11	3.2	<10		
SS-5	11	>2,200	NS		
SS-6	4.5	1,493	NS		
SS-7	6.5	901	NS		
SS-8	9.5	246	NS		
SS-9	9	13.2	200		
SS-10	11	13.1	60		
SS-11	7	1,986	8,610		
SS-12	7	1,374	392		
SS-13	14	NM	290		
SS-14	11	661	4,130		
SS-15	18	2,525	NS		

Notes:

NS- not sampled NM - not measured

TABLE 2BIOVENTING SYSTEM INSTALLATION PID RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Location	Depth (feet)	PID
	6	57.5
IP-1	9	57.5
	12	594.0
	6	13.5
IP-2	9	786.0
	12.5	562.0
IP-3	9	240.0
IF-5	12	738.0
	6	102.0
IP-4	9	415.0
	12	618.0
	6	1.8
IP-5	9	768.0
	13	20.3
	6	187.0
IP-6	9	1,005.0
	13	200.0
	3	2.2
IP-7	6	19.0
IP-/	9	655.0
	12	676.0
	3	29.2
ID 0	6	106.0
IP-8	9	439.0
	13	76.0
	3	102.0
IP-9	6	503.0
IP-9	9	74.0
	12	627.0
	6	756.0
IP-10	9	724.0
	12	212.0
	6	262.0
IP-11	9	543.0
	12.5	59.2
	6	2.9
IP-12	9	5.1
	13	616.0
	6	5.6
IP-13	9	2.0
	12	7.5
	6	0.0
IP-14	9	0.0
	13.5	25.7
IP-15	NM	NM

TABLE 2BIOVENTING SYSTEM INSTALLATION PID RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Location	Depth (feet)	PID
	6	1.6
IP-16	9	728.0
	13	675.0
IP-17	NM	NM
	3	24.2
ID 10	6	106.0
IP-18	9	439.0
	12 13	10.3 76.0
IP-19	NM	NM
11-17	9	1.5
	6	1.5
IP-20	9	1.0
	12	0.7
	3	0.4
ID 21	6	3.5
IP-21	9	0.2
	12	4.8
IP-22	NM	NM
IP-23	6	0.3
-	9.5	1.3
MD 1	6	2.3
MP-1	9 13	602.0 203.0
	6	69.0
MP-2	9	697.0
1011 2	12	793.0
	6	777.0
MP-3	9	146.0
	12	23.8
	6	410.0
MP-4	9	122.0
	12	632.0
	6	37.6
MP-5	9	757.0
	12	865.0
MP-6	3 6	2.3 2.1
0- 11vi	12	2.1 616.0
	3	224.0
	6	872.0
MP-7	9	708.0
	11	70.7
	6	30.3
MP-8	9	772.0
	12	602.0

TABLE 2BIOVENTING SYSTEM INSTALLATION PID RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Location	Depth (feet)	PID
MP-9	NM	NM
	6	49.1
MP-10	9	733.0
	12	738.0
	6	0.0
MP-11	9	0.0
	12	732.0
	6	6.2
MP-12	9	8.9
	12	700.0
	6	6.0
MP-13	9	4.9
	13	650.0
	6	1.5
MP-14	9	6.9
	12	1.8
MP-15	6	0.4
	6	4.2
MP-16	9	NM
	10.5	NM

Notes:

NM - not measured

ft - feet

PID - photoionization detector

TABLE 3 BIOVENTING PERFORMANCE SOIL SAMPLE ANALYTICAL RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Sample ID	Sample Depth (ft)	Date Sampled	Field Headspace Reading (ppm)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	Gasoline Range Organics* (mg/kg)	Diesel Range Organics * (mg/kg)	Motor Oil Range Organics * (mg/kg)	Total Petroleum Hydrocarbons ** (mg/kg)	
NMOCD Tab	ole 1 Closure (Criteria	NE	10	NE	NE	NE	50	NE	NE	NE	100	
		Oct-02	777	2.0	< 0.05	< 0.05	< 0.1	2.0	NA	NA	NA	750	
		Oct-03	314 0.0	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	NA	NA NA	NA	400	
		Oct-04 Oct-05	0.0	< 0.05	< 0.05	< 0.05	<0.1	<0.1	NA	NA	NA	ND 39	
		Oct-06	4.7	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	NA	NA	NA	ND	
		Oct-07	0.4	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	NA	NA	NA	45	
		Oct-08	3.9	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	<10	78	78	
		Apr-09 Jul-09	0.9	<0.05	<0.05	<0.05	<0.1 <0.1	<0.1 <0.1	<5.0	<10 <10	<50 <50	<50	
MP3		Oct-09	0.5	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	<10	<50	<50	
MF3	6	Jan-10	0.4	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	<50	<50	
		Apr-10	1.9 0.4	<0.05	<0.05	<0.05 <0.05	<0.1 <0.1	<0.1	<5.0	<10	<50 <50	<50 <50	
		Jul-10 Oct-10	1.3	< 0.05	< 0.05	< 0.05	<0.1	<0.1 <0.1	<5.0	<10 <10	<50	<50	
		Jan-11	0.9	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	<10	<50	<50	
		Apr-11	0.1	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	16	<50.0	16	
		Jul-11	0 0.2	< 0.048	<0.048 <0.050	< 0.048	<0.095 <0.10	<0.095 <0.10	<4.8	12 <9.9	<51 <50	12	
		Oct-11 Jan-12	4.7	<0.050 <0.049	< 0.050	<0.050 <0.049	<0.10	<0.10	<5.0 <4.9	<9.9	<50	<50 <50	
		Apr-12	0.2	<0.48	<0.48	<0.48	< 0.097	< 0.097	<4.8	<10	<51	<51	
		Oct-02	872	2.0	< 0.05	< 0.05	< 0.1	2.0	NA	NA	NA	2,830	
		Oct-03	3946	3.5	< 0.05	< 0.05	<0.1	3.5	NA	NA	NA	4,700	
		Oct-04 Oct-05	994.0 443	3.5 < 0.13	< 0.05	<0.05 6.0	<0.1 32	3.5 38	NA	NA NA	NA NA	2,330 2,040	
		Oct-05	445	< 0.15	< 0.15	<0.05	<0.1	<0.1	NA	NA	NA	2,040	
		Oct-07	0.5	< 0.05	< 0.05	< 0.05	<0.1	< 0.1	NA	NA	NA	1,250	
		Oct-08	4.1	< 0.05	< 0.05	< 0.05	< 0.1	<0.1	<5.0	730	1,500	2,230	
		Apr-09	9.2 2	<0.05	<0.05	<0.05	<0.1 <0.1	<0.1 <0.1	<5.0 <5.0	<10 460	<50 350	<50	
		Jul-09 Oct-09	1.3	<0.05	< 0.05	<0.05	<0.1 <0.1	<0.1	<5.0	460 960	1,300	810 2,260	
MP7	6	6	Jan-10	0.3	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	91	130	221
		Apr-10	0.6	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	400	340	740	
		Jul-10	0	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	890	1,100	1,990	
		Oct-10 Jan-11	1.4	<0.05	<0.05	<0.05	<0.1 <0.1	<0.1 <0.1	<5.0 <5.0	28 62	<50 99	28 161	
		Apr-11	0.3	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	670	930	1600	
		Jul-11	0	< 0.049	< 0.049	< 0.049	< 0.098	< 0.098	<4.9	580	650	1230	
		Oct-11	0.4	< 0.047	< 0.047	< 0.047	< 0.094	< 0.094	<4.7	180	<240	180	
		Jan-12 Apr-12	0.3	<0.047 <0.049	<0.047 <0.049	<0.047 <0.049	<0.095 <0.099	<0.095 <0.099	<4.7 <4.9	230 36	340 <49	570 36	
		Oct-02	772	< 0.049	< 0.049	<0.049	<0.1	<0.1	NA	NA	NA	ND	
		Oct-02	149	< 0.05	< 0.05	< 0.05	<0.1	<0.1	NA	NA	NA	ND	
		Oct-04	149.0	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	NA	NA	NA	ND	
		Oct-05	56.2 4.6	<0.05	<0.05	<0.05	<0.1 <0.1	<0.1 <0.1	NA	NA NA	NA	ND	
		Oct-06 Oct-07	4.0	<0.05	< 0.05	< 0.05	<0.1 <0.1	<0.1	NA	NA	NA	28 70	
		Oct-08	3.7	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	55	55	
		Apr-09	0.0	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	<50	<50	
		Jul-09	0.4 0.1	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	<10	<50	<50	
MP8	9	Oct-09 Jan-10	0.1	<0.05	<0.05	<0.05	<0.1 <0.1	<0.1 <0.1	<5.0 <5.0	<10	<50 <50	<50 <50	
		Apr-10	0.2	< 0.05	< 0.05	< 0.05	< 0.1	<0.1	<5.0	<10	<50	<50	
		Jul-10	0.2	< 0.05	< 0.05	< 0.05	< 0.1	<0.1	<5.0	<10	<50	<50	
		Oct-10	0.4	<0.05	<0.05	<0.05	<0.1 <0.1	<0.1 <0.1	<5.0	<10 <10	<50 <50	<50	
		Jan-11 Apr-11	0.2	<0.05	<0.05	<0.05	<0.1 <0.1	<0.1	<5.0	<10 20	<50 55	<50	
		Jul-11	0.2	< 0.049	< 0.049	< 0.049	< 0.098	< 0.098	<4.9	<10	<51	<51	
		Oct-11	0.2	< 0.046	< 0.046	< 0.046	< 0.092	< 0.092	<4.6	<10	<50	<50	
		Jan-12 Apr-12	0.5	<0.049 <0.048	<0.049 <0.048	<0.049 <0.048	<0.097 <0.096	<0.097 <0.096	<4.9 <4.8	<10 <4.8	<51 <49	<51 <49	
		Oct-02	732	2.9	< 0.048	5.8	36	<0.090	<4.6 NA	<4.6 NA	NA	1,290	
		Oct-02	191	< 0.05	< 0.05	<0.05	<0.1	<0.1	NA	NA	NA	1,250	
		Oct-04	0.0	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	NA	NA	NA	ND	
		Oct-05	7.49	<0.05	<0.05	<0.05	<0.1 <0.1	<0.1	NA	NA	NA	ND	
		Oct-06 Oct-07	3.2	<0.05	<0.05	<0.05	<0.1	<0.1 <0.1	NA	NA NA	NA	124 ND	
		Oct-08	17.1	<0.05	< 0.05	<0.05	<0.1	<0.1	<5.0	<10	60	60	
		Apr-09	0.0	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	<50	<50	
		Jul-09	0.7	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	<10	110	110	
MP11	12	Oct-09 Jan-10	0.3 0.2	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<5.0 <5.0	<10 <10	<50 <50	<50 <50	
		Apr-10	0.2	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	<10	89	89	
		Jul-10	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	28	67	95	
		Oct-10	0.1	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	110	150	260	
		Jan-11 Apr-11	1.4 0.0	<0.05	<0.05	<0.05	<0.1 <0.1	<0.1	<5.0	21 36	<50 100	21 136	
		Jul-11	0.0	<0.05	< 0.05	<0.05	<0.1	<0.1	< 3.0	30 19	<49	136	
		Oct-11	0.3	< 0.049	< 0.049	< 0.049	< 0.097	< 0.097	<4.9	56	85	141	
		Jan-12	0.9	< 0.050	< 0.050	< 0.050	< 0.10	< 0.10	<5.0	<9.7	<48	<48	
	1	Apr-12	0.0	< 0.050	< 0.050	< 0.050	< 0.099	< 0.099	<5.0	13	<51	13	

TABLE 3 BIOVENTING PERFORMANCE SOIL SAMPLE ANALYTICAL RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Sample ID	Sample Depth (ft)	Date Sampled	Field Headspace Reading (ppm)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	Gasoline Range Organics* (mg/kg)	Diesel Range Organics * (mg/kg)	Motor Oil Range Organics * (mg/kg)	Total Petroleum Hydrocarbons ** (mg/kg)
		Oct-02	676	2.9	< 0.05	< 0.05	< 0.1	2.9	NA	NA	NA	4,720
		Oct-03	287	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	NA	NA	NA	1,299
		Oct-04	123.0	<0.05	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	NA	NA	NA	139
		Oct-05 Oct-06	6.2 7.4	< 0.05	< 0.05	< 0.05	<0.1	<0.1	NA	NA NA	NA	55 770
		Oct-07	0.5	< 0.05	< 0.05	<0.05	<0.1	<0.1	NA	NA	NA	1,460
		Oct-08	3.1	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	64	64
		Apr-09	0.0	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	<50	<50
		Jul-09	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	<50	<50
IP7	12	Oct-09	0.1	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	16	81	97
		Jan-10 Apr-10	0.2 0.1	<0.05	<0.05 <0.05	<0.05	<0.1	<0.1 <0.1	<5.0	<10 32	<50	<50 152
		Jul-10	0.1	< 0.05	< 0.05	<0.05	< 0.1	<0.1	<5.0	110	120	230
		Oct-10	0	< 0.05	< 0.05	<0.05	<0.1	<0.1	<5.0	21	<50	230
		Jan-11	1.4	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	<50	<50
		Apr-11	0.1	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	60	94	154
		Jul-11	0	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<9.9	<49	<49
		Oct-11	0.4	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<9.9	<50	<50
		Jan-12	0.7	<0.049	<0.049 <0.048	<0.049 <0.048	<0.097 <0.096	<0.097 <0.096	<4.9	<9.9 <9.7	<49 <49	<49 <49
		Apr-12 Oct-02	756	<0.048	<0.048	<0.048	<0.096	<0.096	<4.8 NA	<9.7 NA	<49 NA	<49 1,470
	1	Oct-02 Oct-03	311	<0.05	< 0.05	< 0.05	<0.1	<0.1	NA	NA	NA	21
	1	Oct-04	262.0	< 0.05	< 0.05	<0.05	<0.1	<0.1	NA	NA	NA	ND
		Oct-05	30.3	< 0.05	< 0.05	< 0.05	<0.1	<0.1	NA	NA	NA	ND
		Oct-06	13.8	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	NA	NA	NA	ND
	1	Oct-07	0.5	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	NA	NA	NA	ND
	1	Oct-08	25.1	< 0.05	< 0.05	< 0.05	< 0.1	<0.1	<5.0	240	440	680
		Apr-09	6.0	<0.05	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1	<5.0	<10 <10	<50	<50 <50
		Jul-09 Oct-09	2.4 0.9	<0.05	< 0.05	< 0.05	<0.1	<0.1 <0.1	<5.0 <5.0	<10	<50 <50	<50
IP10	6	Jan-10	0.2	<0.05	< 0.05	<0.05	<0.1	<0.1	5.2	<10	<50	5.2
		Apr-10	0.1	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	200	210	410
		Jul-10	0.5	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	<50	<50
		Oct-10	0	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	60	<50	60
		Jan-11	1.9	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	<50	<50
		Apr-11	0.0	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	59	110	169 <52
		Jul-11 Oct-11	0	<0.049 <0.050	<0.049 <0.050	<0.049 <0.050	<0.098 <0.10	<0.098 <0.10	<4.9 <5.0	<10 <9.8	<52 <49	<52
		Jan-12	0.2	< 0.030	< 0.030	< 0.048	<0.096	<0.096	<4.8	340	620	960
		Apr-12	0.2	< 0.48	<0.48	<0.48	< 0.095	< 0.095	<4.8	12	<51	12
		Oct-02	616	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	NA	NA	NA	2,470
		Oct-03	190	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	NA	NA	NA	720
		Oct-04	253.0	< 0.05	< 0.05	< 0.05	<0.1	< 0.1	NA	NA	NA	ND
		Oct-05	120	< 0.05	< 0.05	< 0.05	<0.1	<0.1	NA	NA	NA	770
		Oct-06 Oct-07	3.3 0.3	<0.05	<0.05 <0.05	<0.05	<0.1 <0.1	<0.1 <0.1	NA	NA NA	NA	520 84
		Oct-07 Oct-08	3.3	< 0.05	< 0.05	< 0.05	< 0.1	<0.1	<5.0	49	160	209
		Apr-09	0.0	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	55	80	135
		Jul-09	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	62	62
IP12	12	Oct-09	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	<10	<50	<50
11.12	12	Jan-10	0.2	< 0.05	< 0.05	< 0.05	< 0.1	<0.1	<5.0	45	94	139
		Apr-10	0.1	< 0.05	< 0.05	< 0.05	< 0.1	<0.1	<5.0	52	160	212
		Jul-10 Oct 10	0	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<5.0	35 100	<50	35
		Oct-10 Jan-11	1.8	<0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	81	97	260 178
	1	Apr-11	0.0	< 0.05	< 0.05	<0.05	<0.1	<0.1	<5.0	31	73	104
	1	Jul-11	0.6	< 0.049	< 0.049	< 0.049	< 0.098	< 0.098	<4.9	39	<50	39
	1	Oct-11	0.1	< 0.049	< 0.049	< 0.049	< 0.097	< 0.097	<4.9	29	<50	29
	1	Jan-12	0.8	< 0.048	< 0.048	< 0.048	<0.095	< 0.095	<4.8	23	<51	23
		Apr-12	11.2	<0.092	<0.092	< 0.092	<0.18	<0.18	<9.2	53	77	130
		Oct-02	728	0.85	< 0.05	< 0.05	<0.1	0.85	NA	NA NA	NA	5,690
	1	Oct-03 Oct-04	0.0	<0.05 <0.05	<0.05 <0.05	<0.05	<0.1 <0.1	<0.1 <0.1	NA	NA	NA	2,600 540
	1	Oct-04 Oct-05	0.0	< 0.05	< 0.05	< 0.05	< 0.1	<0.1	NA	NA	NA	52
	1	Oct-06	5	< 0.05	< 0.05	< 0.05	<0.1	<0.1	NA	NA	NA	210
	1	Oct-07	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	NA	NA	NA	1,500
	1	Oct-08	4.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	140	310	450
	1	Apr-09	3.8	0.1	< 0.05	< 0.05	< 0.1	0.1	<5.0	380	660	1,040
	1	Jul-09	1.6	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	220	310	530
IP16	9	Oct-09 Jan-10	0.9 0.5	<0.05	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<5.0	130 100	200 200	330 300
	1	Apr-10	2.7	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	25	110	<u>300</u> 135
	1	Jul-10	0	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	95	120	215
	1	Oct-10	0	< 0.05	< 0.05	< 0.05	<0.1	<0.1	<5.0	360	570	930
	1	Jan-11	0.3	< 0.05	< 0.05	< 0.05	< 0.1	<0.1	<5.0	58	75	133
	1	Apr-11	0.4	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	<5.0	24	70	94
	1	Jul-11	1.1	< 0.049	< 0.049	< 0.049	< 0.098	< 0.098	<4.9	150	140	290
	1	Oct-11	0.6	< 0.047	< 0.047	< 0.047	< 0.094	< 0.094	<4.7	860	810	1,670
	1	Jan-12	0.5	< 0.047	< 0.047	< 0.047	< 0.093	< 0.093	<4.7	30	60	90
	1	Apr-12	0.8	< 0.048	< 0.048	< 0.048	< 0.097	< 0.097	<4.8	30	60	90

 Notes:

 ft - feet

 mg/kg - milligrams per kilogram

 NE - not established

 NA - not analyzed

 ND - not detected

 NMOCD - New Mexico Oil Conservation Commission

 ppm - parts per million

 < - indicates result is less than the stated laboratory method detection limit</td>

 Bold indicates value exceeds NMOCD standard

 TPH - total petroleum hydrocarbons

 * - assoline range organics = Carbon (C) range 6-C10, diesel range organics

* - gasoline range organics = Carbon (C) range 6-C10, diesel range organics = C10-C22, motor oil range organics = C22-C36 ** - total petroleum hydrocarbons, summation of Gasoline Range, Diesel Range, and Motor Oil Range Organics

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Well Number	Wellhead Elevation (feet)	Date	Total Depth (feet)	Depth to Water (feet BTOC)	Depth to PSH (feet BTOC)	PSH Thickness (feet)	Potentiometric Elevation (feet amsl)
		5/2001	18.68	15.26	NP	NP	5470.07
		7/2001	18.68	15.81	NP	NP	5469.52
		5/2002	18.68	15.51	NP	NP	5469.82
		1/2003	18.68	12.53	NP	NP	5472.80
		1/2004	18.68	14.24	NP	NP	5471.09
		1/2005	18.68	14.52	NP	NP	5470.81
		1/2006	18.68	14.67	NP	NP	5470.66
		1/2007	18.68	12.63	NP	NP	5472.70
		1/2008	18.68	11.81	NP	NP	5473.52
		1/2009	18.68	11.75	NP	NP	5473.58
		1/2010	18.68	12.20	NP	NP	5473.13
MW-2	5485.33	1/2011	18.68	12.62	NP	NP	5472.71
		1/2012	18.68	12.41	NP	NP	5472.92
		11/2017	18.68	15.84	NP	NP	5469.49
		1/2018	18.68	17.33	NP	NP	5468.00
		3/19/2020	18.75	16.71	NP	NP	5468.62
		4/9/2020	18.75	17.38	NP	NP	5467.95
		5/20/2020	18.75	17.33	NP	NP	5468.00
		7/14/2020	18.70	17.39	NP	NP	5467.94
		9/2/2020	18.70	18.30	NP	NP	5467.03
		10/28/2020	18.65	17.98	NP	NP	5467.35
		11/10/2020	18.61	17.82	NP	NP	5467.51
		12/22/2020	18.61	17.37	NP	NP	5467.96
		5/2001	18.69	15.60	NP	NP	5473.01
		7/2001	18.69	15.94	NP	NP	5472.67
		5/2002	18.69	15.13	NP	NP	5473.48
		1/2003	18.69	12.89	NP	NP	5475.72
		1/2004	18.69	14.62	NP	NP	5473.99
		1/2005	18.69	15.98	NP	NP	5472.63
		1/2006	18.69	14.07	NP	NP	5474.54
		1/2007	18.69	13.92	NP	NP	5474.69
		1/2008	18.69	12.08	NP	NP	5476.53
		1/2009	18.69	12.17	NP	NP	5476.44
		1/2010	18.69	12.79	NP	NP	5475.82
MW-3	5488.61	1/2011	18.69	13.05	NP	NP	5475.56
		1/2012	18.69	13.25	NP	NP	5475.36
		11/2017	18.69	17.49	NP	NP	5471.12
		1/2018	18.69	18.03	NP	NP	5470.58
		3/19/2020	18.69	17.22	NP	NP	5471.39
		4/9/2020	18.69	16.99	NP	NP	5471.62
		5/20/2020	18.69	17.73	NP	NP	5470.88
		7/14/2020	18.64	18.14	NP	NP	5470.47
		9/2/2020	18.65	17.07	NP	NP	5471.54
		10/28/2020	18.69	16.59	NP	NP	5472.02
		11/10/2020	18.68	16.50	NP	NP	5472.11
		12/22/2020	18.75	16.27	NP	NP	5472.34

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Well Number	Wellhead Elevation (feet)	Date	Total Depth (feet)	Depth to Water (feet BTOC)	Depth to PSH (feet BTOC)	PSH Thickness (feet)	Potentiometric Elevation (feet amsl)
		5/2001	26.15	16.13	NP	NP	5470.05
		7/2001	26.15	16.43	NP	NP	5469.75
		5/2002	26.15	15.54	NP	NP	5470.64
		1/2003	26.15	13.89	NP	NP	5472.29
		1/2004	26.15	15.08	NP	NP	5471.10
		1/2005	26.15	15.62	NP	NP	5470.56
		1/2006	26.15	14.79	NP	NP	5471.39
		1/2007	26.15	14.15	NP	NP	5472.03
		1/2008	26.15	13.29	NP	NP	5472.89
		1/2009	26.15	13.46	NP	NP	5472.72
		1/2010	26.15	14.11	NP	NP	5472.07
MW-4	5486.18	1/2011	26.15	15.10	NP	NP	5471.08
		1/2012	26.15	14.58	NP	NP	5471.60
		11/2017	26.15	17.56	NP	NP	5468.62
		1/2018	26.15	18.23	NP	NP	5467.95
		3/19/2020	26.21	17.75	NP	NP	5468.43
		4/9/2020	26.21	17.83	NP	NP	5468.35
		5/20/2020	26.21	18.11	NP	NP	5468.07
		7/14/2020	26.12	18.30	NP	NP	5467.88
		9/2/2020	26.12	18.17	NP	NP	5468.01
		10/28/2020	26.14	17.80	NP	NP	5468.38
		11/10/2020	26.12	17.70	NP	NP	5468.48
		12/22/2020	25.89	17.40	NP	NP	5468.78
		5/2001	24.50	16.36	NP	NP	5465.25
		7/2001	24.50	16.36	NP	NP	5465.25
		5/2002	24.50	15.74	NP	NP	5465.87
		1/2003	24.50	13.97	NP	NP	5467.64
		1/2004	24.50	15.17	NP	NP	5466.44
		1/2005	24.50	15.91	NP	NP	5465.70
		1/2006	24.50	15.21	NP	NP	5466.40
		1/2007	24.50	14.22	NP	NP	5467.39
		1/2008	24.50	13.31	NP	NP	5468.30
		1/2009	24.50	13.38	NP	NP	5468.23
		1/2010	24.50	13.63	NP	NP	5467.98
MW-5	5481.61	1/2011	24.50	13.40	NP	NP	5468.21
		1/2012	24.50	13.52	NP	NP	5468.09
		11/2017	24.50	16.50	NP	NP	5465.11
		1/2018	24.50	18.02	NP	NP	5463.59
		3/19/2020	24.50	17.80	NP	NP	5463.81
		4/9/2020	24.50	17.95	NP	NP	5463.66
		5/20/2020	24.50	18.16	NP	NP	5463.45
		7/14/2020	24.44	17.89	NP	NP	5463.72
		9/2/2020	24.42	17.70	NP	NP	5463.91
		10/28/2020	24.42	17.13	NP	NP	5464.48
		11/10/2020	21.46	17.10	NP	NP	5464.51
		12/22/2020	24.46	16.95	NP	NP	5464.66

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Well Number	Wellhead Elevation (feet)	Date	Total Depth (feet)	Depth to Water (feet BTOC)	Depth to PSH (feet BTOC)	PSH Thickness (feet)	Potentiometric Elevation (feet amsl)
		5/2001	29.37	18.18	NP	NP	5468.00
		7/2001	29.37	18.30	NP	NP	5467.88
		5/2002	29.37	18.05	NP	NP	5468.13
		1/2003	29.37	15.58	NP	NP	5470.60
		1/2004	29.37	16.98	NP	NP	5469.20
		1/2005	29.37	17.67	NP	NP	5468.51
		1/2006	29.37	16.88	NP	NP	5469.30
		1/2007	29.37	15.92	NP	NP	5470.26
		1/2008	29.37	15.03	NP	NP	5471.15
		1/2008	29.37	14.89	NP	NP	5471.29
		1/2009	29.37	15.21	NP	NP	5470.97
MW-6	5486.18	1/2010	29.37	14.96	NP	NP	5471.22
	5 100.10	1/2012	29.37	14.22	NP	NP	5471.96
		11/2012	29.37	18.85	NP	NP	5467.33
		1/2017	29.37	19.93	NP	NP	5466.25
		3/19/2020	29.33	19.55	NP	NP	5466.63
		4/9/2020	29.33	19.78	NP	NP	5466.40
		5/20/2020	29.33	20.15	NP	NP	5466.03
		7/14/2020	29.35	20.02	NP	NP	5466.16
		9/2/2020	29.34	19.87	NP	NP	5466.31
		10/28/2020	29.34	19.40	NP	NP	5466.78
		11/10/2020	29.35	19.31	NP	NP	5466.87
		12/22/2020	29.41	19.06	NP	NP	5467.12
		5/2001	32.79	23.77	NP	NP	5468.09
		7/2001	32.79	23.55	NP	NP	5468.31
		6/2002	32.79	22.38	NP	NP	5469.48
		1/2003	32.79	20.18	NP	NP	5471.68
		1/2004	32.79	22.46	NP	NP	5469.40
		1/2005	32.79	22.50	NP	NP	5469.36
		1/2006	32.79	21.95	NP	NP	5469.91
		1/2007	32.79	20.44	NP	NP	5471.42
		1/2008	32.79	19.69	NP	NP	5472.17
		1/2009	32.79	19.53	NP	NP	5472.33
		1/2010	32.79	19.66	NP	NP	5472.20
		1/2011	32.79	19.30	NP	NP	5472.56
MW-7	5491.86	1/2012	32.79	19.60	NP	NP	5472.26
		11/2017	32.79	23.69	NP	NP	5468.17
		1/2018	32.79	25.74	NP	NP	5466.12
		9/20/2018	32.79	24.05	24.02	0.03	5467.83
		12/12/2018	32.79	23.34	NP	NP	5468.52
		5/15/2019	32.79	25.43	24.09	1.34	5467.50
		7/31/2019	32.79	24.62	24.09	0.53	5467.66
		11/13/2019	32.79	23.63	NP	NP	5468.23
		12/11/2019	32.79	23.60	NP	NP	5468.26
		12/18/2019	32.79	23.69	NP	NP	5468.17
		12/24/2019	32.79	23.70	NP	NP	5468.16
		1/2/2020	33.28	23.85	NP	NP	5468.01
		1/15/2020	33.28	24.02	NP	NP	5467.84

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Well Number	Wellhead Elevation (feet)	Date	Total Depth (feet)	Depth to Water (feet BTOC)	Depth to PSH (feet BTOC)	PSH Thickness (feet)	Potentiometric Elevation (feet amsl)
		1/22/2020	33.28	24.06	NP	NP	5467.80
		1/29/2020	33.28	24.30	NP	NP	5467.56
		2/5/2020	33.28	24.35	NP	NP	5467.51
		2/12/2020	33.28	24.32	NP	NP	5467.54
		2/19/2020	33.28	24.64	NP	NP	5467.22
		2/26/2020	33.28	24.75	NP	NP	5467.11
		3/4/2020	33.28	24.89	NP	NP	5466.97
		3/11/2020	33.28	24.95	NP	NP	5466.91
MW-7	5491.86	3/18/2020	33.28	25.21	NP	NP	5466.65
	0 19 1100	3/19/2020	33.28	25.2	NP	NP	5466.66
		4/9/2020	33.28	25.61	25.59	0.02	5466.27
		5/20/2020	33.28	25.92	25.68	0.24	5466.13
		7/14/2020	33.28	24.97	24.89	0.08	5466.95
		9/2/2020	33.36	24.37	NP	NP	5467.49
		10/28/2020	33.36	23.94	NP	NP	5467.92
		11/10/2020	33.39	23.85	NP	NP	5468.01
		12/22/2020	33.32	23.95	NP	NP	5467.91

Notes:

amsl - above mean sea level

BTOC - below top of casing

NP - no product

PSH - phase separated hydrocarbons

Groundwater Surface Elevation adusted for product depth using 0.8 g/mL unless noted otherwise

TABLE 5GROUNDWATER ANALYTICAL RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Well Number	Date Sampled	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/l)
NMWQCC	Standard	5	1,000	700	620
	Sep-94	640	600	82	690
	Apr-95	220	280	53	430
	Sep-99	NSP	NSP	NSP	NSP
	Dec-99	NSP	NSP	NSP	NSP
	May-01	NSP	NSP	NSP	NSP
	May-02	NSP	NSP	NSP	NSP
	Jan-03	1,700	ND	650	3,200
	Jan-04	1,100	ND	340	1,800
	Jan-05	430	ND	360	1,000
	Jan-06	250	ND	410	790
	Sep-06	230	50	290	640
	Jan-07	8.7	9.7	16	55
	Apr-07	7.8	6.0	61	110
	Jul-07	4.2	20	30	68
	Oct-07	0.9	18	120	180
MW-2	Jan-08	4.4	45	24	100
	May-08	0.9	12	< 0.5	17
	Aug-08	1.1	7.3	14	28
	Nov-08	1.7	2.0	7.3	15
	Jan-09	1.6	ND	2.1	6.9
	Feb-09	<1.0	<1.0	2.3	7.7
	May-09	1.1	2.1	1.0	6.8
	Aug-09	1.2	<1.0	<1.0	2.0
	Nov-09	<1.0	<1.0	<1.0	<2.0
	Jan-10	<1.0	<1.0	<1.0	<2.0
	Feb-10 Jan-11	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<2.0
	Jan-12	<1.0	<1.0	<1.0	<2.0
	Mar-13	<1.0	<1.0	<2.0	<2.0
	Nov-17	0.074 J	<0.064	<0.093	<0.32
	May-18	<1.0	<1.0	<1.0	<1.5
	Sep-94	ND	ND	ND	ND
	Apr-95	ND	ND	ND	ND
	Sep-99	ND	ND	ND	ND
	Dec-99	ND	ND	ND	ND
	May-01	ND	ND	ND	ND
	May-02	ND	ND	ND	ND
	Jan-03	ND	ND	ND	ND
	Jan-04	ND	ND	ND	ND
	Jan-05	ND	ND	ND	ND
MW-3	Jan-06	ND	ND	ND	ND
	Jan-07	0.8	ND	ND	ND
	Jan-08	ND	ND	ND	ND
	Jan-09	ND	ND	ND	ND
	Jan-10	<1.0	<1.0	<1.0	<2.0
	Jan-11	<1.0	<1.0	<1.0	<2.0
	Jan-12	<1.0	<1.0	<1.0	<2.0
	Mar-13	<1.0	<1.0	<2.0	<2.0
	Nov-17	< 0.062	< 0.064	< 0.093	< 0.32
	May-18	<1.0	<1.0	<1.0	<1.5

TABLE 5GROUNDWATER ANALYTICAL RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

MW-4	Sep-94 Apr-95 Sep-99 Dec-99 May-01 May-02 Jan-03 Jan-04 Jan-05	2.1 ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	1.2 ND ND
MW-4	Sep-99 Dec-99 May-01 May-02 Jan-03 Jan-04 Jan-05	ND ND ND ND ND	ND ND ND	ND ND	ND
MW-4	Dec-99 May-01 May-02 Jan-03 Jan-04 Jan-05	ND ND ND ND	ND ND	ND	
MW-4	May-01 May-02 Jan-03 Jan-04 Jan-05	ND ND ND	ND		NTT N
MW-4	May-02 Jan-03 Jan-04 Jan-05	ND ND			ND
MW-4	Jan-03 Jan-04 Jan-05	ND	ND	ND	ND
MW-4	Jan-04 Jan-05		NID	ND	ND
MW-4	Jan-05		ND	ND	ND
111 11 -4		ND	ND	ND	ND
		ND ND	ND ND	ND ND	ND ND
-	Jan-06 Jan-07	ND	ND	ND	ND
	Jan-07 Jan-08	ND	ND	ND	ND
_	Jan-08 Jan-09	ND	ND	ND	ND
_	Jan-10	<1.0	<1.0	<1.0	<2.0
_	Jan-10 Jan-11	<1.0	<1.0	<1.0	<2.0
-	Jan-12	<1.0	<1.0	<1.0	<2.0
F	Mar-13	<1.0	<1.0	<2.0	<2.0
	Nov-17	<0.062	<0.064	<0.093	<0.32
_	May-18	<1.0	<1.0	<1.0	<1.5
	Apr-95	ND	ND	ND	ND
	Sep-99	ND	ND	ND	ND
	Dec-99	ND	ND	ND	ND
	May-01	ND	ND	ND	ND
	May-02	ND	ND	ND	ND
	Jan-03	ND	ND	ND	ND
	Jan-04	ND	ND	ND	1.1
	Jan-05	ND	ND	ND	ND
MW 5	Jan-06	ND	ND	ND	ND
MW-5	Jan-07	ND	ND	ND	ND
	Jan-08	ND	ND	ND	ND
	Jan-09	ND	ND	ND	ND
	Jan-10	<1.0	<1.0	<1.0	<2.0
	Jan-11	<1.0	<1.0	<1.0	<2.0
	Jan-12	<1.0	<1.0	<1.0	<2.0
	Mar-13	<1.0	<1.0	<1.0	<2.0
-	Nov-17 May-18	<0.062 <1.0	<0.064 <1.0	<0.093 <1.0	<0.32 <1.5
	May-01	12	15.0	13	83
	May-02	ND	ND	0.53	1.4
	Oct-02	ND	ND	ND	3.2
	Jan-03	6	20.0	87	350
	Jul-03	ND	2.7	3.2	16
	Sep-03	0.8	3.7	4	24
	Jan-04	0.9	0.6	2.9	16
Ļ	Jan-05	ND	ND	ND	ND
MW-6	Jan-06	ND	ND	14	32
111 11 -0	Jan-07	ND	ND	3.6	9.1
F	Jan-08	0.9	11.0	130	930
	Jan-09	ND	ND	66	510
	Jan-10	<5.0	<5.0	<5.0	<10
	Jan-11	<10.0	<10.0	140	960
	Jan-12 Mar 12	<10.0	<10.0	61	220
-	Mar-13 Nov 17	<2.0	<2.0	<2.0	<4.0
-	Nov-17 May-18	<0.062 <1.0	<0.064 <1.0	<0.093 <1.0	<0.32 <1.5

TABLE 5GROUNDWATER ANALYTICAL RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Well Number	Date Sampled	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/l)
	May-01	2,400	ND	380	2,800
	Jun-02	2,000	ND	140	1,100
	Oct-02	1,100	ND	79	490
	Jan-03	3,200	ND	400	3,100
	Jan-04	3,300	ND	460	3,300
	Jan-05	1,600	ND	220	1,500
	Jan-06	1,400	ND	280	1,500
	Jan-07	1,200	ND	450	2,500
	Jan-08	750	ND	520	3,100
MW-7	Jan-09	570	ND	450	2,800
	Jan-10	270	<20	460	2,500
	Jan-11	140	<20	470	2,400
	Jan-12	62	<20	640	3,500
	Mar-13	44	<20	210	920
	Nov-17	0.64 J	<5.0	75	330
	May-18	NSP	NSP	NSP	NSP
	May-19	NSP	NSP	NSP	NSP
	Feb-20	<5.0	<5.0	14	24
	Mar-20	<1.0	<1.0	2.5	6.6

Notes:

µg/L - micrograms per liter

D - sample diluted due to matrix

NE - not established

ND - not detected

NMWQCC - New Mexico Water Quality Control Commission

NS - not sampled

< - indicates result is less than the stated laboratory method detection limit

NSP - not sampled due to product in well

Bold indicates value exceeds NMWQCC standard

TABLE 6 GROUNDWATER CHEMISTRY ANALYTICAL RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Well Number	Year	Lab pH (su)	Conductivity (µmhos/cm)	TDS (mg/L)	Alkalinity (mg/L)	Hardness (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Sodium Absorption Ratio	Hydroxide (mg/L)	Sulfate (mg/L)	Sodium (mg/L)	Calcium (mg/L)	Magnesium (mg/L)	Manganese (mg/L)	Barium (mg/L)	Potassium (mg/L)	Iron (mg/L)	Nitrate/ Nitrite (mg/L)
NMWQCO	C Standard	6-9	NE	1,000	NE	NE	NE	NE	250	NE	NE	600	NE	NE	NE	0.2	2.0	NE	1.0	NE
	1994	6.60	4,920	3,049	957	NA	1,170	0	1,050	11.78	0	24	828	325	30	NA	NA	1.4	NA	NA
	1995	6.70	5,010	3,180	910	885	1,110	0	884	12.4	0	591	846	305	30	NA	NA	2.0	NA	NA
	2001	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP NSP	NSP	NSP	NSP NSP	NA	NSP	NSP	NSP
	2002 2003	NSP 7.00	NSP 3,230	NSP 3,220	NSP 1,520	NSP 416	NSP 1,850	NSP <1	<u>NSP</u> 51	NSP NA	NSP <1	NSP 369	660	NSP 133	NSP 20	NA	NA NA	NSP 1	NSP NA	NSP NA
	2003	7.00	3,100	2,000	1,500	420	1,500	<1	85	NA	<1	130	680	133	18	3.1	NA	3	11	<0.10
	2005	7.60	3,000	2,000	1,300	430	1,300	7	110	NA	<1	58	620	140	19	3.1	NA	3.8	11	< 0.10
	2006	7.40	3,400	2,000	1,400	440	1,400	4.3	130	NA	<1	150	610	150	18	1.3	NA	2.4	4	< 0.10
MW-2	2007	7.40	5,490	4,580	726	1,190	724	2.57	43.5	NA	<1	2,460	869	476	59.5	5.0	NA	12.5	16.3	NA
101 00 -2	2008	7.50	5,100	4,350	543	1,220	534	<1	42.3	NA	<1	2,468	739	463	49.5	6.76	NA	2.93	10.7	ND
	2009	7.34	4,300	3,900	760	NA 870	760	ND	42	NA	NA	2,000	720	380	42	0.25	0.038	2.3	ND	ND
	2010 2011	7.39 7.49	3,700 3,700	3,160 2,750	900 1,300	870 880	900 1,300	ND <5.0	60 52	NA NA	NA NA	1,500 920	690 740	290 290	34 34	7.4 6.1	0.18 0.21	1.8 6.9	1.2 32	ND NA
	2011 2012	7.49	3,500	2,750	1,300	NA	1,300	<5.0	40	NA	NA	920 890	740	290	26	3.7	0.21	2.5	7.6	0.13
	2012	7.56	4,100	3,190	1,300	790	1300	<5.0	45	NA	NA	1,000	740	220	30	3.8	0.083	2.9	NA	<0.13
	2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1994	7.10	4,250	3,413	521	NA	635	0	48	8.14	0	1,920	661	439	37	NA	NA	1.4	NA	NA
	1995	7.20	4,420	3,860	523	1,480	638	0	56	7.36	0	2,060	652	523	43	NA	NA	3.1	NA	NA
	2001	7.30	4,500	3,960	459	1,220	559	<1	78	NA	<1	2,250	711	423	40.4	NA	NA	2.5	NA	NA
	2002 2003	7.00	4,440 4,320	3,820 3,660	358 560	1,290 1,230	437 683	<1 <1	46 56	NA	<1	2,520 2,330	705 671	446 428	43 39.4	NA NA	NA NA	0.6	NA NA	NA NA
	2003	7.00	4,520	<u>3,000</u> 4.000	560	1,230	560	1	44	NA NA	<1 <1	2,330	780	320	39.4 44	0.79	NA	1.6 3.6	3.9	<0.10
	2004	7.40	4,700	2,000	560	1,400	560	1	37	NA	<1	2,300	690	450	47	0.79	NA	3.9	3.9	< 0.10
	2006	7.50	5,400	3,600	580	1,300	580	1.5	37	NA	<1	2,200	680	450	47	0.38	NA	3.7	4.4	0.36
MW-3	2007	7.50	4,780	3,750	565	1,120	563	1.92	36.2	NA	<1	1,920	649	449	43	0.41	NA	10.36	1.28	NA
WI W - 3	2008	7.50	4,330	3,600	627	1,090	626	1.32	34.8	NA	<1	1,690	594	419	39.8	0.394	NA	2.36	1.91	ND
	2009	7.33	4,000	3,700	580	NA	580	ND	37	NA	NA	2,000	600	390	37	6.6	0.049	2.2	3.2	3.1
	2010 2011	7.47 7.39	3,500 4,100	3,430 3,400	530 560	1,100 1.300	530 560	ND <2.0	35 39	NA NA	NA NA	1,800 2,000	600 660	370 450	36 39	0.15	0.024	1.5 4.2	ND 7	5.8 NA
	2011	7.75	4,000	3,400 3,470	560	1,300 NA	560	<2.0	39	NA	NA	2,000	620	430	39	0.55	0.073	2.3	2.9	14
	2012	7.66	4,000	3,090	540	960	540	<2.0	38	NA	NA	1,900	660	330	36	0.72	0.11	4.6	NA	8.9
	2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1994	7.00	5,420	4,389	576	NA	703	0	175	10.88	0	2,470	907	439	53	NA	NA	3.5	NA	NA
	1995	7.20	5,360	4,530	577	1,520	701	0	163	10.1	0	2,420	907	523	53	NA	NA	4.3	NA	NA
	2001	7.10	5,090	4,630	490	1,460	597	<1	77	NA	<1	2,680	900	500	52.5	NA	NA	4.2	NA	NA
	2002 2003	6.90 7.00	5,140 4,460	4,420 3,850	358 400	1,310 1,070	437 488	<1	47 40	NA NA	<1	2,930 2,570	873 667	449 361	47 40.8	NA NA	NA NA	2.6 2.8	NA	NA
	2003	7.00	4,460	3,850 3,900	400	1,070	488	<1	27	NA	<1 <1	2,570	810	390	40.8	5.2	NA	6.7	NA 18	NA <0.10
	2004	7.30	4,900	4,000	400	1,200	400	1	30	NA	<1	2,300	740	450	49	NA	NA	10	18	< 0.10
	2006	7.40	5,400	3,700	450	1,200	450	5.9	31	NA	<1	2,500	790	410	47	5.4	NA	7	3.8	< 0.10
MXX7 4	2007	7.20	4,700	3,690	455	1,020	454	1.17	54.5	NA	<1	1,730	678	410	43.3	5.73	NA	12.1	0.56	NA
MW-4	2008	7.60	4,500	3,710	458	1,040	457	<1	<5	NA	<1	1,790	637	394	41.2	5.41	NA	3.55	2.72	ND
	2009	7.19	4,400	4,000	450	NA 1 200	450	ND	36	NA	NA	2,400	670	400	42	4.7	0.037	3.7	ND	ND
	2010 2011	7.49 7.33	4,300 4,600	4,060	490 460	1,200 1,600	490 460	ND <2.0	50 36	NA NA	NA NA	2,400 2,600	740 760	420 540	45 55	4.9 8.2	0.024 0.026	3.2 5.4	ND 1.8	ND NA
	2011 2012	7.62	4,600	4,010 4.050	460	1,600 NA	460 470	<2.0	30	NA	NA	2,600	690	480	55	8.8	0.026	5.4 6.6	1.8	0.18
	2012	7.40	5,000	4,030	510	1,400	510	<2.0	41	NA	NA	2,700	760	480	58	7.0	0.11	12	NA	0.16
	2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 6 GROUNDWATER CHEMISTRY ANALYTICAL RESULTS

BLOOMFIELD CRUDE STATION SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, LLC

Well Number	Year	Lab pH (su)	Conductivity (µmhos/cm)	TDS (mg/L)	Alkalinity (mg/L)	Hardness (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Sodium Absorption Ratio	Hydroxide (mg/L)	Sulfate (mg/L)	Sodium (mg/L)	Calcium (mg/L)	Magnesium (mg/L)	Manganese (mg/L)	Barium (mg/L)	Potassium (mg/L)	Iron (mg/L)	Nitrate/ Nitrite (mg/L)
	1995	6.90	6,000	4,410	775	NA	945	0	996	8.84	0	1,390	861	634	51	NA	NA	6.6	NA	NA
1 -	2001	6.70	7,000	5,230	757	2,010	923	<1	1,320	NA	<1	1,230	924	700	63.2	NA	NA	5.6	NA	NA
4 -	2002	6.50	6,880	4,810	567	1,880	692	<1	1,200	NA	<1	1,230	855	661	55.3	NA	NA	4.9	NA	NA
4 -	2003	6.60	6,910	5,080	830	1,780	1,010	<1	1,090	NA	<1	1,330	829	616	58.1	NA	NA	4.8	NA	NA
1 -	2004	6.80	6,700	4,600	840	2,000	840	1	1,300	NA	<1	1,400	1,000	690	57	11	NA	11	4.3	< 0.10
1 -	2005	7.00	6,800	4,800	870	1,900	870	<1	1,100	NA	<1	1,200	910	670	60	11	NA	10	4.3	<0.10
1 -	2006	7.10	8,000	4,300	990	1,800	990	<1	1,000	NA	<1	1,200	920	630	58	58	NA	12	11	<0.10
-	2007	7.30	6,630	4,750	915	1,320	914	1.11	884	NA	<1	1,800	896 824	621	57.6	10.8 10.7	NA	16.6	0.5	NA
MW-5	2008	7.10	6,750	4,780	933	1,510	932 840	<1 ND	109	NA	<1	1,310	834	585	51.5	10.7	NA 0.07	5.11	1.32	ND
4 -	2009 2010	6.80	6,200 5,600	5,700 4,760	840 770	NA 1,600	770	ND ND	<u>1,000</u> 880	NA	840	1,900 1,900	860 850	570 560	50 52	9.7	0.07	5.6 4.9	NA 0.22	ND ND
i F	2010	7.26 7.18	5,800	4,700	770	1,600	770	<2.0	350	NA NA	NA NA	900	850	570	48	9.7 9.4	0.034	4.9 5.6	1.7	NA
1 -	2011	7.18	4,700	4,370 3,880	680	1,000 NA	680	<2.0	510	NA	NA	900 1900	830	520	40	7.5	0.038	5.9	8.2	0.26
i -	2012	7.10	6,100	4,480	820	1,600	820	<2.0	<u>680</u>	NA	NA	1,900	830	540	50	9.5	0.12	6.8	NA	<2.0
i F	2013	NA NA	0,100 NA	4,480 NA	NA	1,000 NA	NA	×2.0 NA	NA	NA	NA	1,900 NA	NA	NA	NA	NA	NA	NA	NA	NA
i F	2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
⊿ F	2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
 +																				
1 -	2001	6.90	5,470	4,508 3,560	740	1,550	903	<1	80	NA	<1	2,780	1,030	534	53.3	NA	NA	6.3	NA	NA
1 -	2002	6.80	4,460	2,180	669	932	816	<1	55	NA	<1	1,900	830	319	33	NA	NA	2.5	NA	NA
4 -	2003 2004	7.00 7.20	3,070 4,100	2,180	1,140	602 1,100	1,390 1,000	<1	79 96	NA NA	<1	540 1,400	514 870	203 390	23.1 63	NA 4	NA NA	2.1 29	NA 23	NA <0.10
1 -	2004	7.20	4,100	3,000	1,000	670	1,000	<1 2	90	NA	<1 <1	<u>1,400</u> 940	670	220	28	4	NA	6.7	23	< 0.10
1 -	2005	7.20	7,000	4,500	800	1,400	800	3.6	82	NA	<1	2.600	1,200	440	28 68	- 4	NA	24	<u>23</u> 87	< 0.10
/ -	2000	7.10	7,460	6,070	678	1,400	676	2.23	57.5	NA	<1	3,140	1,200	529	65.1	13.8	NA	17.3	17.7	NA
i -	2007	7.50	2,840	1,920	1,140	533	1,140	1.25	<1	NA	1.25	312	442	195	25.6	2.62	NA	2.83	24.5	ND
MW-6	2009	7.14	2,800	1,900	1,100	NA	1,100	ND	180	NA	NA	260	430	180	23.0	1.9	1.2	2.03	9.1	ND
1 -	2010	7.53	2,900	2,130	1,000	630	1,000	ND	170	NA	NA	500	510	210	26	3.1	2.3	1.6	6.8	ND
i F	2011	7.50	3,100	1,890	1,100	980	1,100	<2.0	150	NA	NA	490	570	320	46	5.1	4.9	12	99	NA
	2012	7.62	3,400	2,560	1,100	NA	1,100	<2.0	130	NA	NA	970	580	280	37	4.2	0.5	6.4	100	4
/ 1	2013	7.46	3,600	2,630	1,100	1000	1,100	<2.0	120	NA	NA	920	580	290	72	6.8	1.8	25	NA	< 0.1
i F	2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
┟────┼	2001	6.70	2,160	1,710	600	843	732	<1	52	NA	<1	642	234	296	25.6	NA	NA	1.6	NA	NA
i F	2001	6.80	1,870	1,710	432	758	527	<1	20	NA	<1	700	151	258	27.8	NA	NA	2.2	NA	NA
i F	2002	6.70	1,310	810	696	531	849	<1	35	NA	<1	57	126	152	36.8	NA	NA	1	NA	NA
i F	2003	6.80	1,400	920	720	520	720	<1	13	NA	<1	120	170	170	23	3	NA	7	27	< 0.10
i F	2005	7.00	1,500	930	740	540	740	1	15	NA	<1	190	150	180	20	0.3	NA	3.3	27	< 0.10
i F	2006	7.40	1,800	1,200	750	660	750	3.2	16	NA	<1	310	170	220	23	2.9	NA	3.3	49	< 0.10
i F	2007	7.10	1,460	858	638	402	636	1.8	22.4	NA	<1	127	124	161	20.2	2.34	NA	8.84	32.7	NA
/ F	2008	7.30	1,320	810	748	369	747	<1	18.1	NA	<1	50.9	120	139	15.4	1.6	NA	1.2	14.4	ND
MW-7	2009	7.03	1,200	750	680	NA	680	ND	22	NA	NA	6.8	140	150	17	1.5	1.4	0.9	11	ND
i F	2010	7.63	1,200	762	650	390	650	ND	24	NA	NA	6.5	130	130	15	1.2	2.4	ND	8.4	ND
i F	2011	7.50	1,300	734	670	460	670	<2.0	26	NA	NA	7.8	130	150	19	1.3	2.7	1.3	47	NA
i l	2012	7.75	1,300	800	720	NA	720	<2.0	24	NA	NA	4.4	160	150	17	0.89	2.1	2.6	22	< 0.20
i [2013	7.58	1,600	1,100	670	580	670	<2.0	22	NA	NA	210	160	200	22	1.5	4.9	3.1	NA	< 0.1
i [2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
i [2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
I F	2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

mg/L - milligrams per liter

NE - not established

NA - not analyzed

ND - not detected

< - indicates value is less than laboratory detection limit

NSP - not sampled due to product in the well Bold indicates value exceeds NMWQCC standard

SU - standard units

TDS - Total Dissolved Solids

umhos/cm - microhms per centimeter NMWQCC - New Mexico Water Quality Control Commission

ENCLOSURE A -ANALYTICAL LABORATORY REPORTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 21, 2020

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Bloomfield Crude Station

OrderNo.: 2002506

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 2/13/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 2002506

Date Reported: 2/21/2020

CLIENT: Project:	Western Refining Southwest, In Bloomfield Crude Station	с.			ample I ion Dat		W7 2/2020 11:55:00 AM	
Lab ID:	2002506-001	Matrix: AQUEOUS		Recei	ved Dat	e: 2/1	3/2020 8:04:00 AM	
Analyses	5	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA ME	THOD 8021B: VOLATILES						Analyst	NSB
EPA ME		ND	5.0	D	µg/L	5	Analyst: 2/21/2020 2:17:27 AM	-
	9	ND ND	5.0 5.0	D D	μg/L μg/L	5 5	,	B66690
Benzene	9					-	2/21/2020 2:17:27 AM	B66690 B66690
Benzene Toluene	nzene	ND	5.0	D	µg/L	5	2/21/2020 2:17:27 AM 2/21/2020 2:17:27 AM	B66690 B66690 B66690 B66690 B66690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 2

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	Western Refining S Bloomfield Crude		st, Inc.							
Sample ID: mb1	Samp	Type: ME	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBW	Bate	ch ID: B6	6690	F	RunNo: 6	6690				
Prep Date:	Analysis	Date: 2/	20/2020	S	SeqNo: 2	292372	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorober	zene 18		20.00		91.5	80	120			
Sample ID: 100ng b	tex Ics Samp	Type: LC	S	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	Bate	ch ID: B6	6690	F	RunNo: 6	6690				
Prep Date:	Analysis	Date: 2/	20/2020	S	SeqNo: 2	292373	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.5	80	120			
Toluene	19	1.0	20.00	0	97.2	80	120			
Ethylbenzene	19	1.0	20.00	0	97.3	80	120			
Xylenes, Total	59	2.0	60.00	0	98.6	80	120			
Surr: 4-Bromofluorober	zene 19		20.00		93.5	80	120			
Sample ID: 2002506	-001ams Samp	Type: MS	6	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: MW7	Bate	ch ID: B6	6690	F	RunNo: 6	6690				
Prep Date:	Analysis	Date: 2/	21/2020	S	SeqNo: 2	292377	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	91	5.0	100.0	0	91.0	80	120			
Toluene	93	5.0	100.0	0	93.2	80	120			
Ethylbenzene	110	5.0	100.0	14.18	96.4	80	120			
Xylenes, Total	310	10	300.0	23.61	96.1	68.3	130			
Surr: 4-Bromofluorober	zene 96		100.0		95.7	80	120			
Sample ID: 2002506	-001amsd Samp	Type: MS	SD	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: MW7	Bate	ch ID: B6	6690	F	RunNo: 6	6690				
Prep Date:	Analysis	Date: 2/	21/2020	S	SeqNo: 2	292378	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	93	5.0	100.0	0	92.6	80	120	1.76	20	
Toluene	94	5.0	100.0	0	94.4	80	120	1.30	20	
Ethylbenzene	110	5.0	100.0	14.18	96.8	80	120	0.334	20	
Xylenes, Total	310	10	300.0	23.61	97.1	68.3	130	0.935	20	
Surr: 4-Bromofluorober	izene 100		100.0		102	80	120	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 2

2002506

21-Feb-20

WO#:

HALL ENVIRONMENTAL ANALYSIS LABORATORY	TEL: 505-345-39	tal Analysis Labor 4901 Hawkir Ibuquerque, NM 8 75 FAX: 505-345- hallenvironmenta	⁷⁷¹⁰⁹ San 4107	nple Log-In Check I	_ist
Client Name: Western Refining	Southw Work Order Number	er: 2002506		RcptNo: 1	
Received By: Leah Baca	2/13/2020 8:04:00 A	м	Lab Bre	L	
Completed By: Isaiah Ortiz	2/13/2020 8:55:38 A	м	1-C	Y	
Reviewed By: SR 2/13	20			,	
Chain of Custody					
1. Is Chain of Custody sufficiently of	complete?	Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?		<u>Courier</u>			
Log In			_		
3. Was an attempt made to cool the	e samples?	Yes 🗹	No 🗌	NA 🗌	
4. Were all samples received at a te	emperature of >0° C to 6.0°C	Yes 🗹	No 🗌		
5. Sample(s) in proper container(s)	?	Yes 🗹	No 🗀		
6. Sufficient sample volume for indi	cated test(s)?	Yes 🗹	No 🗌		
7. Are samples (except VOA and O	NG) properly preserved?	Yes 🗹	No 🗌		۰,
8. Was preservative added to bottle	s?	Yes 🗌	No 🗹		
9. Received at least 1 vial with head	space <1/4" for AQ VOA?	Yes 🗹	No 🗌	NA 🗌 👔	
10. Were any sample containers rec	eived broken?	Yes	No 🗹	# of preserved	
11.Does paperwork match bottle lab		Yes 🔽	N- []	bottles checked	
(Note discrepancies on chain of c		Yes 💌	No 🗌	(<2 or >12 unless	note
12. Are matrices correctly identified of		Yes 🗹	No 🗆	Adjusted?	
13. Is it clear what analyses were req	uested?	Yes 🗹	No 🗌		١
14. Were all holding times able to be (If no, notify customer for authoriz		Yes 🗹	No 🗌	Checked by: 1962	113
Special Handling (if applicat	nle)				
15. Was client notified of all discrepa	ncies with this order?	Yes 🗌	No 🗌		
Person Notified:	- Date:				
By Whom:	Via:	n eMail 🗆 F	hone Fax	☐ in Person	
Regarding:	n magen mengen men angen men kan kan kan kan kan kan kan kan kan ka				
Client Instructions:					
16. Additional remarks:		n ar annanden affinder er nærere fragerer fragerer fragerer fra		 11 * 1 * 48 * 2 * 4484888 M × 30000 × 2 * 40004 * 1444 - 14498 ** 	
17 Coolor Information					
17. <u>Cooler Information</u> Cooler No Temp % C	dition Seal Intact Seal No	Seal Date	Signed By	8	

Receiv		-	D: 11	/12/	202.		:28:50													bill to western PO# 4500 8139->	ige 37	0] 44
	ANALYSTS LABORATORY)																		 1300	Mo	report.
Ī			7109	2			····								<u> </u>					 Υςc	<u>, v</u>	nalytical
			- Albuquerque, NM 87109	505-345-4107	št	1.														ŧ	Lter	n the ar
	24	ntal ,	lue, h	5-34	Request	(1u	esdA\tr				D letoT									 Ô	B	tated o
5	5 0	emu	duero					(\			s) 0728 v) 0828									ern	Er h	early no
Ĩ		- - - -	Albuc	Fax	Analysis	₹O	 Б '†Оd	' ⁷ ON		<u> </u>	CI' E' E		 			 				 lest	کے ر	ll be cit
		www.hallenvironmental.com	- Ш	175	An	-					RCRA			 						 7	veh	data wi
	Ż	VANAA	ins N	15-39			SMISC)7 <u>5</u> 8 rc	01	y 83	d eHA9									¥	P	tracted
-		•	4901 Hawkins NE	505-345-3975				(1.40	g p	oqtə	N) 803			 						 pill	9	ub-cont
			901 F	Tel. 5(PR 1808											Any si
			4	F			ଧ୍ୟ / ୦ 										_			 Remarks		sibility.
[() '-			_ ⊒≵ 8.8	ЦЩ ПП	(хэта			 			_	_	_	 <u><u>x</u></u>		this pos
			- Station					Shert		+0.1=0.7	HEAL No.	100-							-	 Date ⊤ 2 2 6	uate time スロイカ パルリ	This serves as notice of t
d Time:	d 🗆 Rush_	le:	Blankield Crude			ager:		avis Tyes		CEF. 0.	Preservative Type	Hcl								 Via:	L roucher 5	accredited laboratories.
Turn-Around	₿ Monomial Standard	Project Name	R) anti	Project #:		Project Manager:		Sampler: T	# of Coolers: 1	Cooler Temp(Including CF);	Container Type and #	3- VOA				 -						optracted to other
Chain-of-Custody Record	er Refinny	>	50 CR 4990	Blamfield NM 87413	632-		Level 4 (Full Validation)	枚 Az Compliance ロ Other			Matrix Sample Name	H20 MW 7								Relinquished by:	Annation 1) As to the	If necessary, amples submitted to Hall Environmental may be supported to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
hain.	Western		Mailing Address:	Blam	#:		QA/QC Package:		(Type)		Time	1155								Time: 1500		lf necessary,
C	Client:		· Mailing		Phone #:	email or Fax#:	QA/QC Pack:	Accreditation:	X EDD (Type)		Date	2/12								2	2/11	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 27, 2020

Gregory J. McCartney Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (419) 421-2338 FAX:

RE: Bloomfield Crude Station

OrderNo.: 2003934

Dear Gregory J. McCartney:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/20/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2003934

Date Reported: 3/27/2020

Project:	Western Refining Southwest, Inc. Bloomfield Crude Station 2003934-001	Matrix: AQUEOUS	(n Date	e: 3/1	W 7 9/2020 12:15:00 PM 20/2020 8:05:00 AM	
Analyses		Result	RL	Qual U	J nits	DF	Date Analyzed	Batch
EPA METI	HOD 8260: VOLATILES SHORT	LIST					Analyst	JMR
Benzene		ND	1.0	μ	ıg/L	1	3/24/2020 2:45:34 PM	R67530
Toluene		ND	1.0	μ	ıg/L	1	3/24/2020 2:45:34 PM	R67530
Ethylbenz	zene	2.5	1.0	μ	ıg/L	1	3/24/2020 2:45:34 PM	R67530
Xylenes,	Total	6.6	1.5	μ	ıg/L	1	3/24/2020 2:45:34 PM	R67530
Surr: 1	,2-Dichloroethane-d4	89.6	70-130	%	6Rec	1	3/24/2020 2:45:34 PM	R67530
Surr: 4-	-Bromofluorobenzene	97.1	70-130	%	6Rec	1	3/24/2020 2:45:34 PM	R67530
Surr: D	ibromofluoromethane	96.0	70-130	%	6Rec	1	3/24/2020 2:45:34 PM	R67530
Surr: T	oluene-d8	95.8	70-130	%	6Rec	1	3/24/2020 2:45:34 PM	R67530

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 3

-

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	Refining S eld Crude S		st, Inc.							
Sample ID: 100ng btex lcs	SampT	ype: LC	S	Tes	tCode: E	PA Method	8260: Volatile	s Short L	ist	
Client ID: LCSW	Batch	n ID: R6	7514	F	RunNo: 6	7514				
Prep Date:	Analysis D	ate: 3/2	23/2020	S	SeqNo: 2	330424	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.1	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		97.1	70	130			
Surr: Dibromofluoromethane	9.8		10.00		98.3	70	130			
Surr: Toluene-d8	10		10.00		99.7	70	130			
Sample ID: mb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	s Short L	ist	
Client ID: PBW	Batch	n ID: R6	7514	F	RunNo: 6	7514				
Prep Date:	Analysis D	ate: 3/2	23/2020	S	SeqNo: 2	330442	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	8.5		10.00		85.2	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		97.3	70	130			
Surr: Dibromofluoromethane	9.6		10.00		95.8	70	130			
Surr: Toluene-d8	9.7		10.00		97.2	70	130			
Sample ID: 100ng btex lcs	SampT	ype: LC	S	Tes	tCode: E	PA Method	8260: Volatile	s Short L	ist	
Client ID: LCSW	Batch	n ID: R6	7520	F	RunNo: 6	7500				
Cheffer ID. LCOW	Dato		1550	1		7530				
Prep Date:	Analysis D				SeqNo: 2		Units: µg/L			
			24/2020				Units: µg/L HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte	Analysis D)ate: 3/ 2	24/2020	S	SeqNo: 2	331948		%RPD	RPDLimit	Qual
Prep Date: Analyte Benzene	Analysis D Result	0ate: 3/ 2 PQL	24/2020 SPK value	SPK Ref Val	SeqNo: 2 %REC	331948 LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene	Analysis D Result 19	0ate: 3/ 2 PQL 1.0	24/2020 SPK value 20.00	SPK Ref Val	SeqNo: 2 %REC 97.0	331948 LowLimit 70	HighLimit 130	%RPD	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene	Analysis D Result 19 20	Date: 3/ 2 PQL 1.0 1.0	24/2020 SPK value 20.00 20.00	SPK Ref Val 0 0	SeqNo: 2 %REC 97.0 102	331948 LowLimit 70 70	HighLimit 130 130	%RPD	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene	Analysis D Result 19 20 21	Date: 3/2 PQL 1.0 1.0 1.0	24/2020 SPK value 20.00 20.00 20.00	SPK Ref Val 0 0 0	SeqNo: 2 <u>%REC</u> 97.0 102 106	331948 LowLimit 70 70 70	HighLimit 130 130 130	%RPD	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	Analysis D Result 19 20 21 63	Date: 3/2 PQL 1.0 1.0 1.0	24/2020 SPK value 20.00 20.00 20.00 60.00	SPK Ref Val 0 0 0	SeqNo: 2 %REC 97.0 102 106 104	331948 LowLimit 70 70 70 70 70	HighLimit 130 130 130 130 130	%RPD	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4	Analysis D Result 19 20 21 63 8.8	Date: 3/2 PQL 1.0 1.0 1.0	24/2020 SPK value 20.00 20.00 20.00 60.00 10.00	SPK Ref Val 0 0 0	SeqNo: 2 %REC 97.0 102 106 104 87.6	331948 LowLimit 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130	%RPD	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Kylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene	Analysis D Result 19 20 21 63 8.8 9.7	Date: 3/2 PQL 1.0 1.0 1.0	24/2020 SPK value 20.00 20.00 60.00 10.00 10.00	SPK Ref Val 0 0 0	SeqNo: 2 %REC 97.0 102 106 104 87.6 97.5	331948 LowLimit 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130	%RPD	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane	Analysis D Result 19 20 21 63 8.8 9.7 9.7 9.9	Date: 3/2 PQL 1.0 1.0 1.0	24/2020 SPK value 20.00 20.00 60.00 10.00 10.00 10.00 10.00	SPK Ref Val 0 0 0 0	SeqNo: 2 %REC 97.0 102 106 104 87.6 97.5 96.7 98.9	331948 LowLimit 70 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130			Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8	Analysis D Result 19 20 21 63 8.8 9.7 9.7 9.9 SampT	Pate: 3/2 PQL 1.0 1.0 1.0 1.5	24/2020 SPK value 20.00 20.00 60.00 10.00 10.00 10.00 3LK	SPK Ref Val 0 0 0 0 0 0 Tes	SeqNo: 2 %REC 97.0 102 106 104 87.6 97.5 96.7 98.9	331948 LowLimit 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130 130			Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8 Sample ID: rb	Analysis D Result 19 20 21 63 8.8 9.7 9.7 9.9 SampT	Pate: 3/2 PQL 1.0 1.0 1.0 1.0 1.5	24/2020 SPK value 20.00 20.00 60.00 10.00 10.00 10.00 3LK 7530	SPK Ref Val 0 0 0 0 0 Tes F	SeqNo: 2 %REC 97.0 102 106 104 87.6 97.5 96.7 98.9 tCode: El	331948 LowLimit 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130 130			Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 2-Dichloroethane-d4 Surr: Dibromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8 Sample ID: rb Client ID: PBW	Analysis D Result 19 20 21 63 8.8 9.7 9.7 9.7 9.9 SampT Batch	Pate: 3/2 PQL 1.0 1.0 1.0 1.0 1.5	24/2020 SPK value 20.00 20.00 60.00 10.00 10.00 10.00 3LK 7530 24/2020	SPK Ref Val 0 0 0 0 0 Tes F	SeqNo: 2 %REC 97.0 102 106 104 87.6 97.5 96.7 98.9 tCode: El RunNo: 6	331948 LowLimit 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130			Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 2-Dichloroethane-d4 Surr: Dibromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8 Sample ID: rb Client ID: PBW Prep Date: Analyte	Analysis D Result 19 20 21 63 8.8 9.7 9.7 9.7 9.9 SampT Batch Analysis D	Pate: 3/2 PQL 1.0 1.0 1.0 1.5	24/2020 SPK value 20.00 20.00 60.00 10.00 10.00 10.00 3LK 7530 24/2020	SPK Ref Val 0 0 0 0 0 Tes F	SeqNo: 2 %REC 97.0 102 106 104 87.6 97.5 96.7 98.9 tCode: El RunNo: 6 SeqNo: 2	331948 LowLimit 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130	s Short L	ist	
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 2-Dichloroethane-d4 Surr: Dibromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8 Sample ID: rb Client ID: PBW Prep Date: Analyte Benzene	Analysis D Result 19 20 21 63 8.8 9.7 9.7 9.7 9.9 SampT Batch Analysis D Result	Pate: 3/2 PQL 1.0 1.0 1.0 1.0 1.5	24/2020 SPK value 20.00 20.00 60.00 10.00 10.00 10.00 3LK 7530 24/2020	SPK Ref Val 0 0 0 0 0 Tes F	SeqNo: 2 %REC 97.0 102 106 104 87.6 97.5 96.7 98.9 tCode: El RunNo: 6 SeqNo: 2	331948 LowLimit 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130	s Short L	ist	
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8 Sample ID: rb Client ID: PBW Prep Date:	Analysis D Result 19 20 21 63 8.8 9.7 9.7 9.7 9.9 SampT Batch Analysis D Result ND	Pate: 3/2 PQL 1.0 1.0 1.0 1.0 1.0 1.5 Type: ME DD: R6 PQL 1.0	24/2020 SPK value 20.00 20.00 60.00 10.00 10.00 10.00 3LK 7530 24/2020	SPK Ref Val 0 0 0 0 0 Tes F	SeqNo: 2 %REC 97.0 102 106 104 87.6 97.5 96.7 98.9 tCode: El RunNo: 6 SeqNo: 2	331948 LowLimit 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130	s Short L	ist	
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 2-Dichloroethane-d4 Surr: Dibromofluoromethane Surr: Toluene-d8 Sample ID: rb Client ID: PBW Prep Date: Analyte Benzene Toluene	Analysis D Result 19 20 21 63 8.8 9.7 9.7 9.7 9.9 SampT Batch Analysis D Result ND ND	Pate: 3/2 PQL 1.0 1.0 1.0 1.0 1.5 Type: ME DD: R6 Date: 3/2 PQL 1.0 1.0 1.0	24/2020 SPK value 20.00 20.00 60.00 10.00 10.00 10.00 3LK 7530 24/2020	SPK Ref Val 0 0 0 0 0 Tes F	SeqNo: 2 %REC 97.0 102 106 104 87.6 97.5 96.7 98.9 tCode: El RunNo: 6 SeqNo: 2	331948 LowLimit 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130	s Short L	ist	
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 2-Dichloroethane-d4 Surr: Dibromofluoromethane Surr: Toluene-d8 Sample ID: rb Client ID: PBW Prep Date: Analyte Benzene Toluene Ethylbenzene	Analysis D Result 19 20 21 63 8.8 9.7 9.7 9.7 9.9 SampT Batch Analysis D Result ND ND ND	Pate: 3/2 PQL 1.0 1.0 1.0 1.0 1.5 Type: ME DD: R6 PQL 1.0 1.0 1.0 1.0 1.0 1.0	24/2020 SPK value 20.00 20.00 60.00 10.00 10.00 10.00 3LK 7530 24/2020	SPK Ref Val 0 0 0 0 0 Tes F	SeqNo: 2 %REC 97.0 102 106 104 87.6 97.5 96.7 98.9 tCode: El RunNo: 6 SeqNo: 2	331948 LowLimit 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130	s Short L	ist	

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 3

.

Page 40 of 44

WO#:	2003934

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	Western Refining South Bloomfield Crude Statio								
Sample ID: rb	SampType:	MBLK	Test	Code: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: PBW	Batch ID:	R67530	R	unNo: 67	7530				
Prep Date:	Analysis Date:	3/24/2020	S	eqNo: 2	331959	Units: µg/L			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Dibromofluoromet	thane 9.9	10.00		98.7	70	130			
Surr: Toluene-d8	9.8	10.00		98.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 3

2003934

27-Mar-20

WO#:

.

ENVIRONMENTAL ANALYSIS LABORATORY	4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com				Sample Log-In Check List		
Client Name: Western Refining Southw	Work Order Number:	200	3934		RcptNo: 1		
Received By: Yazmine Garduno	3/20/2020 8:05:00 AM			rfaqmin Windu Glancin G	য		
Completed By: Juan Rojas	3/20/2020 9:07:18 AM			(Juan en fr			
Reviewed By: YG 3/20/20				,			
Chain of Custody							
1. Is Chain of Custody sufficiently complete?		Yes	\checkmark	No 🗌	Not Present		
2. How was the sample delivered?		<u>Cou</u>	rier				
Log In 3. Was an attempt made to cool the samples?					_		
o. Was an attempt made to cool the samples?		Yes		No 🛄	NA 🗌		
4. Were all samples received at a temperature of	of ≥0° C to 6.0°C	Yes		No 🗌			
5. Sample(s) in proper container(s)?		Yes		No 🗌			
6. Sufficient sample volume for indicated test(s)	?	Yes		No 🗌			
7. Are samples (except VOA and ONG) properly		Yes		No 🗌			
8. Was preservative added to bottles?		Yes		No 🔽	NA 🗌		
9. Received at least 1 vial with headspace <1/4"	for AQ VOA?	Yes		No 🗌	NA 🗌		
10. Were any sample containers received broken	?	Yes		No 🔽			
11. Does paperwork match bottle labels?		Yes		No 🗀	# of preserved bottles checked for pH:		
(Note discrepancies on chain of custody) 12. Are matrices correctly identified on Chain of C	unterdu O			N. 🗖	(<2 or >12 unless noted) Adjusted?		
13. Is it clear what analyses were requested?		Yes Yes		No 🗌			
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes		No 🗌	Checked by: DAD 3/20/20		
<u>Special Handling (if applicable)</u>							
15. Was client notified of all discrepancies with th	is order?	Yes		No 🗌			
Person Notified:	Date:						
By Whom:	Via:] eMa	uil 🗌 F	hone 🗌 Fax	In Person		
Regarding:	· · · · · · · · · · · · · · · · · · ·	- 					
Client Instructions:							
16. Additional remarks:					······································		
17. <u>Cooler Information</u> Cooler No Temp °C Condition Sea 1 1.2 Good	Il Intact Seal No. Se	al Da	te	Signed By			

Hall Environmental Analysis Laboratory

Received by OCD: 11/12/2021 11:28:50 AM

HALL

Received by OCD: 11/12	1 11:28:50 AM	Page 43 of 44
HALL ENVIRONMENTAL HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107	Image: Section of the section of th	Remarks: Please CC' Shyde QL + ENV. Com TShort QL + ENV, Com possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time: V Standard I Rush Project Name: Project #:	Project Manager: Stuart Hyde Sampler: Towi's Shurt Onlice # of Coolers: Cooler Temploanscri: L3 U1 - LL Cooler Temploanscri: L3 U1 - LL	Time: Relinquished by: Received by: Via: Date Time Remarks: Please Constrained 1245 X
Client: WEGEGT REFINING Client: WEGEGT REFINING Greg McCaftner Mailing Address: 50 RJ 4990 Blom Rield NM 87413	email or Fax#: 3.3/).CCA/Thtc/@ww.rdthun aAvac Package: Standard	Date: Time: Relinquished by: 3/1q 1245 Relinquished by: Date: Time: Relinquished by: 3/1f_2 1820 Whataar If a Locessary. semples submitted to Hall Environmental may be subc

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 61605

CONDITIONS						
Operator:	OGRID:					
Western Refining Southwest LLC	267595					
539 South Main Street	Action Number:					
Findlay, OH 45840	61605					
	Action Type:					
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)					

CONDITIONS

Created By	Condition	Condition Date
nvelez	Review of 2020 Annual Report: Content satisfactory 1. Continue as stated within the recommendations of the aforementioned report. a. Collect confirmation soil samples from the Site at the locations presented on Figure 5 of the report b. Create logs of all bore holes with standardized data collection information c. Collect a minimum of 2 samples per boring and analyze for TPH and BTEX d. Continue quarterly gauging of wells MW-2 through MW-7 e. Submit next annual report to OCD no later than March 31, 2022.	1/14/2022