District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 1 lof 66

Incident ID	NAPP2129840452
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380	
Contact Name Shelby Pennington	Contact Telephone 281-723-9353	
Contact email shelby.g.pennington@exxonmobil.com	Incident # (assigned by OCD)	
Contact mailing address 6401 Holiday Hill Rd Bldg 5, Midland, Texas, 79707		

Location of Release Source

Latitude _____

Longitude -103.93630 (NAD 83 in decimal degrees to 5 decimal places)

Site Name Ross Draw 25 North	Site Type Tank Battery
Date Release Discovered $10/12/2021$	API# (if applicable)

l	Unit Letter	Section	Township	Range	County
	В	25	268	29E	Eddy

Surface Owner: State 💌 Federal 🗌 Tribal 🗌 Private (Name: _____

Nature and Volume of Release

Volume Released (bbls) 30.48	Volume Recovered (bbls) 30.00		
•••••	volume Recovered (bbls) 30.00		
Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No		
Volume Released (bbls)	Volume Recovered (bbls)		
Volume Released (Mcf)	Volume Recovered (Mcf)		
Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)		
Cause of Release A nipple broke off the air eliminator for a water transfer pump, releasing fluids both inside containment and onto ground. A vac truck recovered all contained fluid. A third-party contractor has been retained for remediation activities.			
1	in the produced water >10,000 mg/l? Volume Released (bbls) Volume Released (Mcf) Volume/Weight Released (provide units) e broke off the air eliminator for a water transfer pump A vac truck recovered all contained fluid. A third-par		

Page	2
1 ugo	-

NA

Oil Conservation Division

Incident ID	NAPP2129840452
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC? X Yes No	If YES, for what reason(s) does the responsible party consider this a major release? A release greater than or equal to 25 barrels.
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? emily.hernandez@state.nm.us'; 'Mike Bratcher'; 'Victoria Venegas'; 'Rob Hamlet' on Tuesday, October 12,

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

★ The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

▲ All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have <u>not</u> been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: altrian Dates	Date:
email:	Telephone:
OCD Only	

NAPP2129840452

Location:	Ross Draw 25 N Battery		
Spill Date:	10/12/2021		
	Area 1		
Approximate A	rea =	168.44	cu.ft.
	VOLUME OF LEAK	•	-
Total Crude Oil	=	0.00	bbls
Total Produced	Water =	30.00	bbls
	Area 2	-	-
Approximate A	rea =	143.00	sq. ft.
Average Satura	tion (or depth) of spill =	1.50	inches
Average Porosi	ty Factor =	0.15	
-		·	•

VOLUME OF LEAK		
Total Crude Oil =	0.00	bbls
Total Produced Water =	0.48	bbls

TOTAL VOLUME OF LEAK			
Total Crude Oil =	0.00	bbls	
Total Produced Water =	30.48	bbls	
TOTAL VOLUME RECOVERED			
Total Crude Oil =	0.00	bbls	
Total Produced Water =	30.00	bbls	

Received by OCD: 1/10/2022 1:39:53 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 4 of 6
Incident ID	NAPP2129840452
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🛛 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖂 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 1/10/2022	1:39:53 PM State of New Mexico			Page 5 of 66
			Incident ID	NAPP2129840452
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations all operators are re- public health or the environme failed to adequately investigate addition, OCD acceptance of a and/or regulations. Printed Name <u>Adrian Ba</u> Signature: <u>Adrian Ba</u>	aation given above is true and complete to the quired to report and/or file certain release no nt. The acceptance of a C-141 report by the e and remediate contamination that pose a the c-141 report does not relieve the operator o ker aft	tifications and perform cc OCD does not relieve the reat to groundwater, surfa of responsibility for compl 	prrective actions for rele e operator of liability sho ce water, human health iance with any other feo al Coordinator	ases which may endanger ould their operations have or the environment. In leral, state, or local laws
OCD Only Received by:		Date:		

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office

must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate OCD District office must be notified 2 days prior to final sampling)

 \boxtimes Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health of the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

 Printed Name:
 Adrian Baker
 Title: Environmental Coordinator

 Signature:
 Outor Bate
 Date:
 01/10/2022

 Email:
 adrian.baker@exxonmobil.com
 Telephone:
 432-236-3808

 ODC Only
 Received by:
 Date:
 Date:

 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

 Closure Approved by:
 Jennifer Nobui
 Date:
 03/14/2022

 Printed Name:
 Jennifer Nobui
 Title:
 Environmental Specialist A

WSP USA

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

January 10, 2022

District II New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request Ross Draw 25 North Tank Battery Incident Number NAPP2129840452 Eddy County, New Mexico

To Whom It May Concern:

WSP USA Inc. (WSP), on behalf of XTO Energy, Inc. (XTO), presents the following Closure Request detailing site assessment, soil sampling, and excavation activities at the Ross Draw 25 North Tank Battery (Site) in Unit B, Section 25, Township 26 South, Range 29 East, in Eddy County, New Mexico (Figure 1). The purpose of the site assessment, soil sampling, and excavation activities was to address impacts to soil following a release of produced water at the Site. Based on the excavation activities and laboratory analytical results from the soil sampling events, XTO is submitting this Closure Request, describing remediation that has occurred and requesting no further action (NFA) for Incident Number NAPP2129840452.

RELEASE BACKGROUND

On October 12, 2021, a nipple broke off the air eliminator for a water transfer pump, resulting in the release of 30.48 barrels (bbls) of produced water within the lined containment and onto the surface of the well pad. A vacuum truck was immediately dispatched to the Site to recover freestanding fluids; approximately 30 bbls of produced water were recovered from within the lined containment. XTO immediately reported the release to the New Mexico Oil Conservation Division (NMOCD) via email on October 12, 2021. A Release Notification Form C-141 (Form C-141) was submitted on October 25, 2021, and the release was assigned Incident Number NAPP2129840452.

SITE CHARACTERIZATION

WSP characterized the Site according to Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted well is New Mexico Office of the State Engineer (NMOSE) well C-4561, located approximately 0.3 miles northwest of the Site. According to the well record filed in July 2021, C-4561 has a total depth of

vsp

District II Page 2

105 feet bgs and no groundwater was encountered, indicating depth to groundwater is greater than 105 feet bgs. Nearby NMOSE and United States Geological Survey (USGS) wells are depicted on Figure 1 and the referenced well records are included in Attachment 1.

The closest continuously flowing water or significant watercourse to the Site is dry wash, located approximately 422.4 feet northeast of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is underlain by unstable geology (high potential karst designation area). Site receptors are identified on Figure 1.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total Petroleum Hydrocarbons (TPH): 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES AND ANALYTICAL RESULTS

On November 1, 2021, WSP personnel visited the Site to evaluate the release extent based on information provided on the Form C-141 and visual observations. WSP personnel collected two preliminary assessment soil samples (SS01 and SS02) within the release extent, from a depth of approximately 0.5 feet bgs to assess the lateral extent of impacted soil. Soil from the preliminary soil samples was field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photo-ionization detector (PID) and Hach[®] chloride QuanTab[®] test strips, respectively. The release extent and preliminary soil sample locations were mapped utilizing a handheld Global Positing System (GPS) and are presented on Figure 2.

The preliminary soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, and method of analysis and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Xenco Laboratories (Xenco) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

vsp

District II Page 3

Laboratory analytical results for preliminary soil samples SS01 and SS02 indicated that chloride concentrations exceeded the Closure Criteria; benzene, BTEX, and TPH concentrations were compliant with the Closure Criteria. Based on visible staining in the release area, elevated field screening results, and laboratory analytical results for the preliminary soil samples, excavation activities were warranted.

EXCAVATION SOIL SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

On December 10, 2021, WSP personnel returned to the Site to oversee excavation activities as indicated by visual observations, field screening activities, and laboratory analytical results for the preliminary soil samples. Excavation activities were performed using track-mounted backhoe and transport vehicle. To direct excavation activities, WSP screened soil for volatile aromatic hydrocarbons and chloride utilizing a PID and Hach® chloride QuanTab® test strips, respectively. The excavation was completed to a depth of 1 foot bgs in the area around preliminary soil samples SS01 and SS02. Following removal of impacted soil, WSP collected a 5-point composite soil sample from the floor of the excavation. The 5-point composite sample was collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the sample by thoroughly mixing. Composite soil sample FS01 was collected from the floor of the excavation soil sample was also representative of the excavation sidewalls. The excavation soil sample was collected, handled, and analyzed as described above. The excavation extent and excavation soil sample location are presented on Figure 3. Photographic documentation was conducted during the Site visits. A photographic log is included as Attachment 2.

The final excavation extent measured approximately 171 square feet. A total of approximately 6.3 cubic yards of impacted soil were removed during excavation activities. The impacted soil was transported and properly disposed of at the R360 facility located in Hobbs, New Mexico. After the completion of confirmation sampling, the excavation was secured with fencing.

Laboratory analytical results for excavation floor sample FS01, collected from the final excavation extent, indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria. The laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included in Attachment 3.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the October 12, 2021 release of produced water. Based on the laboratory analytical results for the preliminary soil samples, impacted soil was excavated. Laboratory analytical results for the excavation soil sample collected from the final excavation extent indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Site Closure Criteria. Based on the excavation soil sample analytical results, no further remediation was required.

wsp

District II Page 4

XTO will backfill the excavation with material purchased locally and recontour the Site to match pre-existing site conditions. Initial response efforts and excavation of impacted soil have mitigated impacts at this Site. As such, XTO respectfully requests NFA for Incident Number NAPP2129840452.

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096.

Sincerely,

WSP USA Inc.

Gladeie Green

Hadlie Green Assistant Consultant, Geologist Scientist

Ashley L. ager

Ashley L. Ager, P.G. Managing Director, Geologist

cc: Shelby Pennington, XTO Adrian Baker, XTO Bureau of Land Management

Attachments:

- Figure 1 Site Location Map
- Figure 2 Preliminary Soil Sample Locations
- Figure 3 Excavation Soil Sample Location
- Table 1 Soil Analytical Results
- Attachment 1 Referenced Well Records
- Attachment 2 Photographic Log
- Attachment 3 Laboratory Analytical Reports

Released to Imaging: 3/14/2022 4:24:37 PM

P1XTO Energy\GIS\31403236.020.0129.11_ROSS DRAW 25 NORTH BATTERYIMXD\31403236.020.0129.11_FIG01_SL_RECEPTOR_2021.mxd

Table 1

Soil Analytical Results Ross Draw 25 North Tank Battery NAPP2129840452 Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 Clo	sure Criteria (NMA	AC 19.15.29)	10	50	NE	NE	NE	NE	100	600
Surface Samples										
SS01	11/01/2021	0.5	< 0.002	< 0.004	<49.9	<49.9	<49.9	<49.9	<49.9	9,050
SS02	11/01/2021	0.5	< 0.002	< 0.004	<49.9	<49.9	<49.9	<49.9	<49.9	3,390
Excavation Floor Sar	nples									
FS01	12/10/2021	1	< 0.002	< 0.004	<50.0	<50.0	<50.0	<50.0	<50.0	465

Notes:

ft - feet/foot

mg/kg - milligrams per kilograms

BTEX - benzene, toluene, ethylbenzene, and total xylenes

TPH - total petroleum hydrocarbons

DRO - diesel range organics

GRO - gasoline range organics

ORO - oil range organics

NMOCD - New Mexico Oil Conservation Division

NMAC - New Mexico Administrative Code

< - indicates result is less than the stated laboratory method practical quantitation limit

NE - Not Established

BOLD - indicates results exceed the higher of the background sample result or applicable regulatory standard Greyed data represents samples that were excavated

ATTACHIVIENT 1: REFERENCED WELL RECORDS

WELL RECORD & LOG **OFFICE OF THE STATE ENGINEER**

www.ose.state.nm.us

DSE DITAUG 17 2021 == G:11

ION	OSE POD NO. POD1 (BI	-	, NO.)			WELL TAG ID NO. n/a			OSE FILE NO(S C-4561	S).		
OCATI	WELL OWNE XTO Energ			ittrell)					PHONE (OPTIC	ONAL)		
GENERAL AND WELL LOCATION	well owne 6401 Holid								CITY Midland		state TX 79707	ZIP
Q	WELL			I	DEGREES	MINUTES	SECON					
AL A	LOCATIO		LATI	TUDE	32	1	14.1	7 N		REQUIRED: ONE TENT	TH OF A SECOND	
NER	(FROM GP	S)	LON	GITUDE	103	56	30.8	3 W	DATUM REC	QUIRED: WGS 84		
1. GE	DESCRIPTIC SE SW Sec				IO STREET ADD	RESS AND COMMON	LANDMA	RKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WHI	ERE AVAILABLE	
	LICENSE NO			NAME OF LICENSE				· · · · · ·		NAME OF WELL DRI		
	124	-				Jackie D. Atkins				-	ineering Associates,	
	DRILLING ST 07/28/2			DRILLING ENDED 07/28/2021		MPLETED WELL (FT rary well materia			le depth (FT) 105	DEPTH WATER FIRS	ST ENCOUNTERED (FT n/a)
Z	COMPLETED) WELL	IS:	ARTESIAN	🚺 DRY HO		W (UNCON	NFINED)		STATIC WATER LEV	/EL IN COMPLETED W. n/a	ELL (FT)
VTIO	DRILLING FI	LUID:		AIR	MUD	ADDITIVI	ES – SPEC	IFY:		· · ·		
CASING INFORMATION	DRILLING M	ETHOD	:	ROTARY	HAMME	R CABLE T	DOL	OTHE	R - SPECIFY:	Hollo	w Stem Auger	
INFC	DEPTH	(feet bg	gl)	BORE HOLE	CASING	MATERIAL AND	/OR	C/	ASING	CASING	CASING WALL	SLOT
Ŋ	FROM	T	0	DIAM	(include	GRADE each casing string,	and	CONI	NECTION	INSIDE DIAM.	THICKNESS	SIZE (inches)
CAS	0	10		(inches)	note	sections of screen)		(add coup	ling diameter)	(inches)	(inches)	
3		10	15	±6.5	-	Boring- HSA						
2. DRILLING &												
RIL							<u> </u>					
2. D								<u> </u>				
				.) 384 2								
											· · · ·	
										1	<u>}</u>	
. 1	DEPTH	(feet bg	gl)	BORE HOLE	1	IST ANNULAR SE				AMOUNT	METHO	
RIAI	FROM	Т	0	DIAM. (inches) GRA	VEL PACK SIZE-	RANGE	BY INTE	SRVAL	(cubic feet)	PLACE	
NTE					_							
K M.							•					
LAR												
ANNULAR MATERIAL												
3. Al												
-						_ _						<u></u>
FOR	OSE INTER	NALI	JSE		•		_		WR-2	0 WELL RECORD &	& LOG (Version 06/	30/17)
		-4		61		POD NO	PO	DI	TRN)43	

FILE NO. (-456)	POD NO. PODI TRN NO. 70104
LOCATION 243-29E-24 433	WELL TAG ID NO.

PAGE 1 OF 2

Page 19 of 66

.

	DEDTU/		· · · · · ·		<u>г</u>	ESTD (ATED
	DEPTH (f	TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	5	5	Caliche, poor- moderate consolidation, Off white-tan	Y VN	
	5	10	5	Sand, fine grained, poorly graded, with caliche gravel, Reddish Brown	Y √N	
	10	25	15	Clayey Sand, fine grained, poorly graded, Reddish Brown	Y √N	
	25	30	5	Silty Sand, fine grained, poorly graded, Reddish Brown , Dry	Y √N	
	30	45	15	Gravelly Silty, some gypsum, graded, Reddish Brown , Dry	Y √N	
Ţ	45	60	15	Siltstone, poorly cemented, Reddish Brown, Dry	Y VN	
4. HYDROGEOLOGIC LOG OF WELL	60	105	45	Claystone, Low plasticity, cohesive, some gypsum, Reddish Brown-Dark, moist	Y VN	
OF 1					Y N	
ĐQ,					Y N	
ICL					Y N	
DO C					Y N	
EOI					Y N	
R00					Y N	
R					YN	
4					Y N	
					Y N	
					Y N	
					Y N	
					Y N	
				•	Y N	
					Y N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING STRATA: TOT	AL ESTIMATED	
		P 🗍 A		BAILER OTHER - SPECIFY:	LL YIELD (gpm):	0.00
NO	WELL TEST			ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUD ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER TH		
TEST; RIG SUPERVISION	MISCELLA	NEOUS INF	ORMATION: T	emporary well materials removed and the soil boring backfilled using dri	11	al danéh és ésn
PER			fe	et below ground surface, then hydrated bentonite chips from ten feet belo		
DS 5			L	ogs adapted from WSP on-site geologist.		
; RIC						
EST	PRINT NAM	(E(S) OF DI	RILL RIG SUPER	VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRU	CTION OTHER TH	AN LICENSEE:
5. I			lo Trevino, Can			
TURE	CORRECT H	ECORD O	F THE ABOVE I	FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, T DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECO NO DAYS AFTER COMPLETION OF WELL DRILLING:		
. SIGNATURE	Jack A	tkins		Jackie D. Atkins	08/16/2021	
9		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE NAME	DATE	
FOI	R OSE INTERI	NALUSE			CORD & LOG (Ver	sion 06/30/2017)
	E NO.	-45	61	POD NO. PODL TRN NO. H	1043	
LO	CATION	45-	29E-2	4433 WELL TAG ID NO.		PAGE 2 OF 2

USRESeiver01 565.0776222011.39.55 pAPE.22.23341

Eddy County, New Mexico Latitude 32°01'54", Longitude 103°56'23" NAD27 Land-surface elevation 2,974 feet above NAVD88 The depth of the well is 200 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer.

<u>Table of data</u> <u>Tab-separated data</u> <u>Graph of data</u>

Reselect period

Date \$	Time \$	Ø Water-level date-time accuracy	Ø Parameter ≎ code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical \$ datum
1975-12-09		D	62610		2911.00	NGVD29
1975-12-09		D	62611		2912.55	NAVD88
1975-12-09		D	72019	61.45		
1976-01-16		D	62610		2907.70	NGVD29
1976-01-16		D	62611		2909.25	NAVD88
1976-01-16		D	72019	64.75		
1977-01-14		D	62610		2909.04	NGVD29
1977-01-14		D	62611		2910.59	NAVD88
1977-01-14		D	72019	63.41		
1978-02-23		D	62610		2906.98	NGVD29
1978-02-23		D	62611		2908.53	NAVD88
1978-02-23		D	72019	65.47		
1983-01-26		D	62610		2906.01	NGVD29
1983-01-26		D	62611		2907.56	NAVD88
1983-01-26		D	72019	66.44		
1987-10-14		D	62610		2922.64	NGVD29
1987-10-14		D	62611		2924.19	NAVD88
1987-10-14		D	72019	49.81		
1992-11-04		D	62610		2913.17	NGVD29
1992-11-04		D	62611		2914.72	NAVD88
1992-11-04		D	72019	59.28		
1998-01-22		D	62610		2906.03	NGVD29
1998-01-22 Released to Imaging: 3/1	1/2022 A.24.27 DM	D	62611		2907.58	NAVD88
Released to Imaging: 3/1	7/4044 7.47.J / I M	D	72019	66.42		•

Received by OCD: 1/10/2022 1:39:53 PM

Released to Imaging: 3/14/2022 4:24:37 PM

wsp

	PHOTOGRAPHIC LOG	
XTO Energy, Inc.	Ross Draw 25 North	NAPP2129840452
	Eddy County, NM	

Photo No.	Date
1	November 1, 2021
	th of the release that October 12, 2021.

Photo No.	Date	1	
2	December 12, 2021		
	outh of excavation	a there are the	
ez	xtent.		- That is the set
			A STREET OF
			X
			and the second second
			AND AND AND AND AND
			- 27 - 12 - 12 - 22

•

vsp

XTO Energy	, Inc.	Ross Draw 25 North	NAPP2129840452
			NAFF2129040452
		Eddy County, NM	
Dhata Na	Data		
Photo No.	Date		
3 I	December 12, 2021	the town of the	Con and the second

View facing north of excavation

extent.

Received by OCD: 1/10/2022 1:39:53 PM

Released to Imaging: 3/14/2022 4:24:37 PM

Received by OCD: 1/10/2022 1:39:53 PM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1515-1

Laboratory Sample Delivery Group: 31403236.010.0129 Client Project/Site: Ross Draw 25 North Battery

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 11/11/2021 1:08:01 PM Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access Have a Question? Ask-The Expert

www.eurofinsus.com/Env Released to Imaging: 3/14/2022 4:24:37 PM

Visit us at:

•

Laboratory Job ID: 890-1515-1 SDG: 31403236.010.0129

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
	21

Page 26 of 66

Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery

Job ID: 890-1515-1 SDG: 31403236.010.0129

GC VOA		3
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	5
U	Indicates the analyte was analyzed for but not detected.	· · · · ·
GC Semi VOA		6
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	7
HPLC/IC		
Qualifier	Qualifier Description	8
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	9
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	14
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	4
DER	Duplicate Error Ratio (normalized absolute difference)	1.
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive

Quality Control

PQL

QC

RER

RPD

TEF

TEQ

TNTC

RL

PRES

4

5

Job ID: 890-1515-1

Client: WSP USA Inc.

Laboratory: Eurofins Xenco, Carlsbad

Project/Site: Ross Draw 25 North Battery

Narrative

Job Narrative 890-1515-1

Receipt

The samples were received on 11/1/2021 4:29 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-11824/5-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-11243 and analytical batch 880-11705 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Project/Site: Ross Draw 25 North Battery

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00400 U

RL

0.00200

0.00200

0.00200

0.00400

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

11/10/21 16:00

11/10/21 16:00

11/10/21 16:00

11/10/21 16:00

Job ID: 890-1515-1 SDG: 31403236.010.0129

Client Sample ID: SS01

Date Collected: 11/01/21 13:45 Date Received: 11/01/21 16:29

Sample Depth: 0.5

Analyte

Benzene

Toluene

Ethylbenzene

m-Xylene & p-Xylene

Client: WSP USA Inc.

Lab Sample ID: 890-1515-1 Matrix: Solid

Analyzed

11/10/21 22:05

11/10/21 22:05

11/10/21 22:05

11/10/21 22:05

Dil Fac

1

1

1

1

······		-						
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/10/21 16:00	11/10/21 22:05	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/10/21 16:00	11/10/21 22:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	133	S1+	70 - 130			11/10/21 16:00	11/10/21 22:05	1
1,4-Difluorobenzene (Surr)	96		70 - 130			11/10/21 16:00	11/10/21 22:05	1
Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/Kg			11/10/21 11:29	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<49.9	U	49.9	mg/Kg		11/03/21 13:58	11/04/21 13:20	1
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		11/03/21 13:58	11/04/21 13:20	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		11/03/21 13:58	11/04/21 13:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	77		70 - 130			11/03/21 13:58	11/04/21 13:20	1
o-Terphenyl	73		70 - 130			11/03/21 13:58	11/04/21 13:20	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9050		101	mg/Kg			11/09/21 16:41	20
lient Sample ID: SS02						Lab Sar	nple ID: 890-	1515-2
ate Collected: 11/01/21 13:55							Matri	ix: Solid
ate Received: 11/01/21 16:29								
ample Depth: 0.5								
Method: 8021B - Volatile Organic	c Compounds ((GC)						
Analyta	Deculé			11		Dranarad	Analyzad	

Method: 8021B - Volatile Organ	lic Compounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/10/21 16:00	11/10/21 22:25	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/10/21 16:00	11/10/21 22:25	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/10/21 16:00	11/10/21 22:25	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/10/21 16:00	11/10/21 22:25	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/10/21 16:00	11/10/21 22:25	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/10/21 16:00	11/10/21 22:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130			11/10/21 16:00	11/10/21 22:25	1

Eurofins Xenco, Carlsbad

Client Sample Results

Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery

Client Sample ID: SS02

	Job ID	: 890-	1515-1
SDG: 3	814032	36.01	0.0129

Lab Sample ID: 890-1515-2

Matrix: Solid

5

Date Collected: 11/01/21 13:55 Date Received: 11/01/21 16:29

Sample Depth: 0.5

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	100		70 - 130			11/10/21 16:00	11/10/21 22:25	1
Method: Total BTEX - Total BTEX	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			11/10/21 11:29	1
- Method: 8015 NM - Diesel Range	organics (DR	0) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/08/21 15:54	1
Analyte		Qualifier	RL	Unit mg/Kg	<u>D</u>	Prepared 11/03/21 13:58	Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U U			<u> </u>			1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9	Qualifier U U U	49.9	mg/Kg	<u> </u>	11/03/21 13:58 11/03/21 13:58	11/04/21 13:41 11/04/21 13:41	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9 <49.9 <49.9 <49.9	Qualifier U U U	49.9 49.9 49.9	mg/Kg	<u> </u>	11/03/21 13:58 11/03/21 13:58 11/03/21 13:58	11/04/21 13:41 11/04/21 13:41 11/04/21 13:41	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl		Qualifier U U U	49.9 49.9 49.9 Limits	mg/Kg	<u> </u>	11/03/21 13:58 11/03/21 13:58 11/03/21 13:58 Prepared	11/04/21 13:41 11/04/21 13:41 11/04/21 13:41 11/04/21 13:41 Analyzed	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9 <49.9 <49.9 <49.9 <89.9 <89.9 %Recovery 84 76	Qualifier U U Qualifier	49.9 49.9 49.9 <u>Limits</u> 70 - 130	mg/Kg	<u>D</u>	11/03/21 13:58 11/03/21 13:58 11/03/21 13:58 Prepared 11/03/21 13:58	11/04/21 13:41 11/04/21 13:41 11/04/21 13:41 Analyzed 11/04/21 13:41	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	 Result <49.9 	Qualifier U U Qualifier	49.9 49.9 49.9 <u>Limits</u> 70 - 130	mg/Kg	<u>D</u>	11/03/21 13:58 11/03/21 13:58 11/03/21 13:58 Prepared 11/03/21 13:58	11/04/21 13:41 11/04/21 13:41 11/04/21 13:41 Analyzed 11/04/21 13:41	1

Surrogate Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Lab Sample ID Client Sample ID (70-130) (70-130) 880-8100-A-21-A MS Matrix Spike 113 102 880-8100-A-21-B MSD Matrix Spike Duplicate 117 104 890-1515-1 SS01 133 S1+ 96 SS02 890-1515-2 100 121 890-1540-A-14-F MS Matrix Spike 111 96 890-1540-A-14-G MSD Matrix Spike Duplicate 110 96 LCS 880-11822/1-A Lab Control Sample 111 106 LCS 880-11824/1-A 102 Lab Control Sample 112 LCSD 880-11822/2-A Lab Control Sample Dup 106 95 LCSD 880-11824/2-A Lab Control Sample Dup 108 101 MB 880-11822/5-A Method Blank 109 94 MB 880-11824/5-A Method Blank 62 S1-111 Surrogate Legend BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-1502-A-121-F MS	Matrix Spike	100	92
890-1502-A-121-G MSD	Matrix Spike Duplicate	92	84
890-1515-1	SS01	77	73
890-1515-2	SS02	84	76
LCS 880-11376/2-A	Lab Control Sample	108	88
LCSD 880-11376/3-A	Lab Control Sample Dup	103	95
MB 880-11376/1-A	Method Blank	89	94

1CO = 1-Chlorooctane OTPH = o-Terphenyl Prep Type: Total/NA

Prep Type: Total/NA

Eurofins Xenco, Carlsbad

Lab Sample ID: MB 880-11822/5-A

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 11884							Prep Type: 1 Prep Batch	
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/10/21 08:45	11/10/21 14:34	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/10/21 08:45	11/10/21 14:34	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/10/21 08:45	11/10/21 14:34	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/10/21 08:45	11/10/21 14:34	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/10/21 08:45	11/10/21 14:34	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/10/21 08:45	11/10/21 14:34	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 _ 130			11/10/21 08:45	11/10/21 14:34	1
1,4-Difluorobenzene (Surr)	94		70 - 130			11/10/21 08:45	11/10/21 14:34	1

Lab Sample ID: LCS 880-11822/1-A Matrix: Solid

Analysis Batch: 11884

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08476		mg/Kg		85	70 - 130	
Toluene	0.100	0.07637		mg/Kg		76	70 - 130	
Ethylbenzene	0.100	0.07943		mg/Kg		79	70 - 130	
m-Xylene & p-Xylene	0.200	0.1662		mg/Kg		83	70 - 130	
o-Xylene	0.100	0.08584		mg/Kg		86	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: LCSD 880-11822/2-A

Matrix: Solid

Analysis Batch: 11884							Prep	Batch:	11822
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08967		mg/Kg		90	70 - 130	6	35
Toluene	0.100	0.08292		mg/Kg		83	70 - 130	8	35
Ethylbenzene	0.100	0.08572		mg/Kg		86	70 - 130	8	35
m-Xylene & p-Xylene	0.200	0.1781		mg/Kg		89	70 - 130	7	35
o-Xylene	0.100	0.08929		mg/Kg		89	70 - 130	4	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: 890-1540-A-14-F MS

Matrix: Solid

Analysis Batch: 11884									Prep	Batch: 11822
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0996	0.09022		mg/Kg		90	70 - 130	
Toluene	<0.00199	U	0.0996	0.08173		mg/Kg		82	70 - 130	

Eurofins Xenco, Carlsbad

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Job ID: 890-1515-1 SDG: 31403236.010.0129

Client Sample ID: Method Blank

3

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 11822	

Eurofins Xei

Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery

Job ID: 890-1515-1 SDG: 31403236.010.0129

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-1540-A-	14-F MS								Client	Sample ID		-
Matrix: Solid											ype: To	
Analysis Batch: 11884			_								Batch:	11822
	Sample		•	Spike	MS				- ~-	%Rec.		
Analyte	Result		lifier	Added	Result	Qualifier	Unit		D %Rec	Limits		
Ethylbenzene		U		0.0996	0.08741		mg/Kg		88	70 _ 130		
m-Xylene & p-Xylene	<0.00398			0.199	0.1810		mg/Kg		91	70 - 130		
p-Xylene	<0.00199	U		0.0996	0.09148		mg/Kg		91	70 _ 130		
Surrogate	MS %Recovery	MS Qua	lifior	Limits								
4-Bromofluorobenzene (Surr)		Qua		70 - 130								
1,4-Difluorobenzene (Surr)	96			70 - 130 70 - 130								
ch Sample ID: 900 1540 A								Client	• Comple II). Motrix Cr	aika Du	nliaat
Lab Sample ID: 890-1540-A-	14-G WISD							Client	sample i	D: Matrix Sp		-
Matrix: Solid											ype: To	
Analysis Batch: 11884	Sample	Sam	nlo	Spike	MSD	MSD				%Rec.	Batch:	RPI
Analyta	Result		•	Added	Result		Unit		D %Rec	Limits	RPD	Lim
Analyte Benzene				0.0998	0.09030	Quaimer			<u>90</u>	70 - 130	0	3
	< 0.00199				0.09030		mg/Kg		90 82	70 - 130 70 - 130	0	3
				0.0998			mg/Kg					
thylbenzene	<0.00199			0.0998	0.08428		mg/Kg		84	70 - 130	4	3
n-Xylene & p-Xylene	< 0.00398			0.200	0.1778		mg/Kg		89	70 - 130	2	3
p-Xylene	<0.00199	U		0.0998	0.09011		mg/Kg		90	70 - 130	2	3
S		MSD		1 : :4								
Surrogate I-Bromofluorobenzene (Surr)	% <i>Recovery</i>	Qua		Limits 70 - 130								
1,4-Difluorobenzene (Surr)	96			70 - 130 70 - 130								
	30			70 - 750								
ab Sample ID: MB 880-118	24/5-A								Client	Sample ID:	Method	Blan
Matrix: Solid										Prep 1	Type: To	otal/N/
Analysis Batch: 11888										Prep	Batch:	1182
		МΒ	MB									
Analyte			Qualifier	R		Unit		D	Prepared	Analyz		Dil Fa
Benzene	<0.00			0.0020		mg/K	-		11/10/21 09:3			
Toluene	<0.00			0.0020		mg/K	-		11/10/21 09:3			
Ethylbenzene	<0.00			0.0020		mg/K			11/10/21 09:3			
n-Xylene & p-Xylene	<0.00	400	U	0.0040	0	mg/K	ζg		11/10/21 09:3			
o-Xylene	<0.00			0.0020		mg/K	-		11/10/21 09:3			
	<0.00	400	U	0.0040	0	mg/k	ξg		11/10/21 09:3	0 11/10/21	12:41	
Cylenes, Total												5 -
			MB	1					Duer	A		Dil Fa
Surrogate	%Reco	very	Qualifier	Limits	_				Prepared	Analyz		Diria
Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	%Reco	very 62		70 - 130	_				11/10/21 09:3	0 11/10/21	12:41	
Surrogate -Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr)		very	Qualifier		_			1	11/10/21 09:3 11/10/21 09:3	0 11/10/21 0 11/10/21	12:41 12:41	
Surrogate -Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) .ab Sample ID: LCS 880-118		very 62	Qualifier	70 - 130	_			1	11/10/21 09:3 11/10/21 09:3	0 11/10/21 0 11/10/21 e ID: Lab Co	12:41 12:41 ontrol S	Sampl
Surrogate I-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr)		very 62	Qualifier	70 - 130	_			1	11/10/21 09:3 11/10/21 09:3	0 11/10/21 0 11/10/21 e ID: Lab Co Prep 1	12:41 12:41	Sampl otal/N

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09671		mg/Kg		97	70 - 130	
Toluene	0.100	0.1024		mg/Kg		102	70 - 130	
Ethylbenzene	0.100	0.1078		mg/Kg		108	70 - 130	
m-Xylene & p-Xylene	0.200	0.2145		mg/Kg		107	70 - 130	

Eurofins Xenco, Carlsbad

Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery

Lab Sample ID: LCS 880-11824/1-A

Job ID: 890-1515-1 SDG: 31403236.010.0129

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid									D: Lab C		
									Prep 1	Type: To	tal/NA
Analysis Batch: 11888									Prep	Batch:	11824
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.1036		mg/Kg		104	70 - 130		
	105	LCS									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)		duumer	70 - 130								
1,4-Difluorobenzene (Surr)	102		70 - 130								
,, ·											
Lab Sample ID: LCSD 880-1	1824/2-A					Clier	nt Sam	ple ID:	Lab Contro	ol Sampl	e Duj
Matrix: Solid									Prep 1	Type: To	tal/N/
Analysis Batch: 11888									Prep	Batch:	11824
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			0.100	0.09531		mg/Kg		95	70 - 130	1	35
Toluene			0.100	0.1010		mg/Kg		101	70 - 130	1	3
Ethylbenzene			0.100	0.1067		mg/Kg		107	70 - 130	1	3
m-Xylene & p-Xylene			0.200	0.2085		mg/Kg		104	70 - 130	3	3
o-Xylene			0.100	0.1005		mg/Kg		100	70 ₋ 130	3	3
a <i>i</i>		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	108 101		70 ₋ 130 70 ₋ 130								
Matrix: Solid Analysis Batch: 11888									Fred		
Analysis Daten. 11000										Type: To Batch:	
Analysis Baten. 11000	Sample	Sample	Spike	MS	MS						
	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	Prep		
Analyte	Result <0.00200	Qualifier U	•			- Unit mg/Kg	D	%Rec 89	Prep %Rec. Limits 70 - 130		
Analyte Benzene	Result	Qualifier U	Added	Result			D		Prep %Rec. Limits		
Analyte Benzene Toluene Ethylbenzene	Result <0.00200	Qualifier U U	Added	Result 0.08923		mg/Kg	<u>D</u>	89	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130		
Analyte Benzene Toluene Ethylbenzene	Result <0.00200	Qualifier U U U	Added	Result 0.08923 0.09624		mg/Kg mg/Kg	<u> </u>	89 95	Prep %Rec. Limits 70 - 130 70 - 130		
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00200	Qualifier U U U U U	Added 0.0998 0.0998 0.0998	Result 0.08923 0.09624 0.1020		mg/Kg mg/Kg mg/Kg	<u> </u>	89 95 102	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130		
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00200	Qualifier U U U U U U	Added 0.0998 0.0998 0.0998 0.200	Result 0.08923 0.09624 0.1020 0.1997		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	89 95 102 99	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200	Qualifier U U U U U U MS	Added 0.0998 0.0998 0.0998 0.200 0.0998	Result 0.08923 0.09624 0.1020 0.1997		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	89 95 102 99	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	Result <0.00200	Qualifier U U U U U U MS	Added 0.0998 0.0998 0.0998 0.200	Result 0.08923 0.09624 0.1020 0.1997		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	89 95 102 99	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200 MS %Recovery	Qualifier U U U U U U MS	Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits	Result 0.08923 0.09624 0.1020 0.1997		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	89 95 102 99	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Result <0.00200	Qualifier U U U U U U MS	Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.08923 0.09624 0.1020 0.1997		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		89 95 102 99 98	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	11824
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-8100-A-	Result <0.00200	Qualifier U U U U U U MS	Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.08923 0.09624 0.1020 0.1997		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		89 95 102 99 98	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	pike Dup	11824
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-8100-A- Matrix: Solid	Result <0.00200	Qualifier U U U U U U MS	Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.08923 0.09624 0.1020 0.1997		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		89 95 102 99 98	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	pike Dup Type: To	olicate
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-8100-A- Matrix: Solid	Result <0.00200	Qualifier U U U U U MS Qualifier	Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 <td>Result 0.08923 0.09624 0.1020 0.1997 0.09858</td> <td>Qualifier</td> <td>mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg</td> <td></td> <td>89 95 102 99 98</td> <td>Prep %Rec. Limits 70 - 130 70 - 190 Prep Prep</td> <td>pike Dup</td> <td>olicate tal/N/ 11824</td>	Result 0.08923 0.09624 0.1020 0.1997 0.09858	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		89 95 102 99 98	Prep %Rec. Limits 70 - 130 70 - 190 Prep Prep	pike Dup	olicate tal/N/ 11824
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-8100-A- Matrix: Solid Analysis Batch: 11888	Result <0.00200	Qualifier UUUUUUUUUUUUUUUUUSAAAAAAAAAAAAAAAAAAAA	Added 0.0998 0.0998 0.200 0.0998 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 0.08923 0.09624 0.1020 0.1997 0.09858 MSD	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cli	ent Sa	89 95 102 99 98	Prep %Rec. Limits 70 - 130 70 - 190 70 - 130 70 - 100 70 - 100	pike Dup Type: To b Batch:	olicate tal/N/ 11824 RPI
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-8100-A- Matrix: Solid Analysis Batch: 11888 Analyte	Result <0.00200	Qualifier U U U U U MS Qualifier Sample Qualifier	Added 0.0998 0.0998 0.200 0.0998 Limits 70 - 130 70 - 130 70 - 130	Result 0.08923 0.09624 0.1020 0.1997 0.09858	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cli		89 95 102 99 98 ample IC %Rec	Prep %Rec. Limits 70 - 130 70 - 190 70 - 130 70 - 190 70	pike Dup Type: To b Batch: 	olicate tal/N/ 11824 RPI Limi
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-8100-A- Matrix: Solid Analysis Batch: 11888 Analyte Benzene	Result <0.00200	Qualifier U U U U U MS Qualifier U	Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 D.200 0.0998 Limits 70 - 130 70 - 130 Spike Added 0.100	Result 0.08923 0.09624 0.1020 0.1997 0.09858	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cli	ent Sa	89 95 102 99 98 98 ample IC %Rec 86	Prep %Rec. Limits 70 - 130 70 - 130 Prep %Rec. Limits 70 - 130	pike Dup Type: To b Batch: 	Dicate tal/N/ 11824 RPI Limi 3
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-8100-A- Matrix: Solid Analysis Batch: 11888 Analyte Benzene Toluene	Result <0.00200	Qualifier U U U U U U MS Qualifier U U U	Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.100 0.100	Result 0.08923 0.09624 0.1020 0.1997 0.09858	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ent Sa	89 95 102 99 98 98 ample IC 86 93	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 0: Matrix Sj Prep %Rec. Limits 70 - 130 70 - 130	pike Dup Type: To b Batch: 	Dicate tal/N/ 11824 RPE Limi 38 38
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00200	Qualifier U U U U U U U MS Qualifier U U U U	Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 D.200 0.0998 Limits 70 - 130 70 - 130 Spike Added 0.100	Result 0.08923 0.09624 0.1020 0.1997 0.09858	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cli	ent Sa	89 95 102 99 98 98 ample IC %Rec 86	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 0: Matrix Sp Prep %Rec. Limits 70 - 130	pike Dup Type: To b Batch: 	blicate

Eurofins Xenco, Carlsbad

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-8100-A-21 Matrix: Solid									uler	n 58	ampie iD:	Matrix Sp Prep 1	ріке Du Гуре: То	-
Analysis Batch: 11888													Batch	
	MSD	Men												
Suma nata		Qual		Lingita										
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 117	Quai	mer	Limits 70 - 130										
1,4-Difluorobenzene (Surr)	104			70 - 130 70 - 130										
ethod: 8015B NM - Diese		aan	ics (DR											
Lab Sample ID: MB 880-11376		gun		(00)							Client Sa	mple ID:	Method	l Blan
Matrix: Solid													Гуре: То	
Analysis Batch: 11414													Batch	
		MB	MB											
Analyte			Qualifier	RL			Unit		D	Р	repared	Analyz		Dil Fa
Gasoline Range Organics GRO)-C6-C10	<5	50.0	U	50.0			mg/Kg				3/21 13:58	11/04/21	09:53	
Diesel Range Organics (Over C10-C28)		50.0		50.0			mg/Kg				3/21 13:58	11/04/21		
Oll Range Organics (Over C28-C36)		50.0 MB	U MB	50.0			mg/Kg			11/0	3/21 13:58	11/04/21	09:53	
Summa 20040				Linsita							ware a ward	Amalum		Dil Fa
Surrogate I-Chlorooctane	%Recov	89	Qualifier	Limits 70 - 130							repared 3/21 13:58	Analyz 11/04/21		DIIFa
		09 94		70 - 130 70 - 130							3/21 13:58	11/04/21		
ab Sample ID: LCS 880-1137 Iatrix: Solid	6/2-A								CI	ient	Sample		ontrol S Type: To Batch:	otal/N
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414	6/2-A			Spike		LCS		11-14	CI		-	Prep 1 Prep %Rec.	Type: To	otal/N
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Analyte	6/2-A			Spike Added	Result		ifier	Unit	CI	ient	%Rec	Prep Prep %Rec. Limits	Type: To	otal/N
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Analyte Gasoline Range Organics GRO)-C6-C10	6/2-A			Spike Added 1000	Result 977.8		ifier	mg/Kg	CI		% Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To	otal/N
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	6/2-A 			Spike Added	Result		ifier		CI		%Rec	Prep Prep %Rec. Limits	Type: To	otal/N
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	6/2-A	LCS		Spike Added 1000	Result 977.8		ifier	mg/Kg	CI		% Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To	otal/N
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)			ifier	Spike Added 1000	Result 977.8		ifier	mg/Kg	CI		% Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To	otal/N
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate			ifier	Spike Added 1000 1000	Result 977.8		ifier	mg/Kg	CI		% Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To	otal/N
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	LCS %Recovery		ifier	Spike Added 1000 1000 Limits	Result 977.8		ifier	mg/Kg	CI		% Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To	otal/N
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-113	LCS %Recovery 108 88		ifier	Spike Added 1000 1000 Limits 70 - 130	Result 977.8		ifier	mg/Kg mg/Kg		<u>D</u>	%Rec 98 84	Prep 7 Prep % Rec. Limits 70 - 130 70 - 130	Гуре: To Batch: 	otal/N : 1137
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-113 Matrix: Solid	LCS %Recovery 108 88		ifier	Spike Added 1000 1000 Limits 70 - 130	Result 977.8		ifier	mg/Kg mg/Kg		<u>D</u>	%Rec 98 84	Prep 7 Prep % Rec. Limits 70 - 130 70 - 130 70 - 130	Fype: To Batch: Samp Fype: To	ble Du ble Du
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-113 Matrix: Solid	LCS %Recovery 108 88		ifier	Spike Added 1000 1000 1000 1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 1000	Result 977.8 838.1	Qual		mg/Kg mg/Kg		<u>D</u>	%Rec 98 84	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130	Гуре: To Batch: 	ele Du btal/N : 1137
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-113 Matrix: Solid Analysis Batch: 11414	LCS %Recovery 108 88		ifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 5pike	Result 977.8 838.1	Qual	D	mg/Kg mg/Kg CI		D	%Rec 98 84 aple ID: La	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 %Rec.	Di Samp Satch: Di Samp Sype: To Batch:	lle Du tal/N tal/N : 1137 RP
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate A-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-113 Matrix: Solid Analysis Batch: 11414	LCS %Recovery 108 88		ifier	Spike Added 1000 1000 1000 1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 1000	Result 977.8 838.1 LCSD Result	Qual	D	mg/Kg mg/Kg Cl		<u>D</u>	%Rec 98 84	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70	Fype: To Batch: Samp Fype: To	ele Du stal/N : 1137 : 1137 : 1137 : 1137 RP Lim
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate A-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-113 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics	LCS %Recovery 108 88		ifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 5pike Added	Result 977.8 838.1	Qual	D	mg/Kg mg/Kg CI		D	%Rec 98 84 nple ID: La %Rec	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 %Rec.	DI Samp Type: To DI Samp Type: To DI Satch: RPD	ele Du stal/N : 1137 : 1137 : 1137 : 1137 RP Lim
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate A-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-113 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCS %Recovery 108 88		ifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 5pike Added	Result 977.8 838.1 LCSD Result	Qual	D	mg/Kg mg/Kg Cl		D	%Rec 98 84 nple ID: La %Rec	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70	DI Samp Type: To DI Samp Type: To DI Satch: RPD	ble Du tal/N : 1137 : 1137 : 1137 : 1137 RP Lim : 2
Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate A-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-113 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCS %Recovery 108 88	Qual		Spike Added 1000 1000 1000 1000 1000 5pike Added 1000	Result 977.8 838.1 LCSD Result 965.5	Qual	D	mg/Kg mg/Kg Cl <u>Unit</u> mg/Kg		D	%Rec	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	DI Samp Type: To DI Samp Type: To DI Batch: RPD 1	ele Du 5 tal/N : 1137
Lab Sample ID: LCS 880-1137 Watrix: Solid Analysis Batch: 11414 Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-113 Watrix: Solid Analysis Batch: 11414 Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCS %Recovery 108 88 876/3-A	Qual		Spike Added 1000 1000 1000 1000 1000 5pike Added 1000	Result 977.8 838.1 LCSD Result 965.5	Qual	D	mg/Kg mg/Kg Cl <u>Unit</u> mg/Kg		D	%Rec	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	DI Samp Type: To DI Samp Type: To DI Batch: RPD 1	ele Du 5 tal/N : 1137
2-Terphenyl Lab Sample ID: LCS 880-1137 Matrix: Solid Analysis Batch: 11414 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane 2-Terphenyl Lab Sample ID: LCSD 880-113 Matrix: Solid Analysis Batch: 11414 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (GRO)-C6-C10 Diesel Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	LCS %Recovery 108 88	Qual		Spike Added 1000 1000 1000 1000 Limits 70 - 130 70 - 130 70 - 130 1000 1000 1000 1000 1000	Result 977.8 838.1 LCSD Result 965.5	Qual	D	mg/Kg mg/Kg Cl <u>Unit</u> mg/Kg		D	%Rec	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	DI Samp Type: To DI Samp Type: To DI Batch: RPD 1	ile Du

Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

ab Sample ID: 890-1502-A-1	121-F MS							Client	t Sample ID: Ma	
Matrix: Solid										e: Total/NA
Analysis Batch: 11414										atch: 11376
	-	Sample	Spike	MS	MS				%Rec.	
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	997	1036	_	mg/Kg	_	101	70 - 130	
(GRO)-C6-C10	10.0									
Diesel Range Organics (Over C10-C28)	<49.9	U	997	863.0		mg/Kg		84	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1-Chlorooctane	100		70 - 130							
o-Terphenyl	92		70 - 130							
Lab Sample ID: 890-1502-A-1	121-G MSD					С	lient S	ample IC	D: Matrix Spike	Duplicate
Matrix: Solid								-		e: Total/NA
Analysis Batch: 11414										atch: 11376
-	Sample	Sample	Spike	MSD	MSD				%Rec.	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits F	RPD Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	1000	954.6		mg/Kg		93	70 - 130	8 20
Diesel Range Organics (Over C10-C28)	<49.9	U	1000	789.2		mg/Kg		77	70 - 130	9 20
	MSD	MSD								
Surrogate	%Recovery	Qualifier	Limits	_						
1-Chlorooctane	92		70 - 130							
o-Terphenyl	84		70 - 130							
lethod: 300.0 - Anions, l	Ion Chromat	ography								
Lab Sample ID: MB 880-1124	43/1-A							Client §	Sample ID: Met	thod Blank
Matrix: Solid										be: Soluble
Analysis Batch: 11705									• • •	
-		MB MB								
Analyte	R	Result Qualifier		RL	Unit		D P	Prepared	Analyzed	Dil Fac
Chloride	<	<5.00 U		5.00	mg/K	(g			11/09/21 12:29	.9 1
							Ollow	• 0 1		
Lab Sample ID: LCS 880-112	.43/2-A						Client	Sample	e ID: Lab Contr	
Matrix: Solid									Prep Typ	be: Soluble
Analysis Batch: 11705			• "							
			Spike		LCS		_	· · · <u>-</u>	%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Chloride			250	251.9		mg/Kg		101	90 - 110	
Lab Sample ID: LCSD 880-11	12/2/2-0					Clic	ont San	anle ID:	Lab Control Sa	ampla Dun
	1243/3-2					010	in oan	ipie ib. i		

Matrix: Solid							Prep	Type: So	oluble
Analysis Batch: 11705									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	253.1		mg/Kg		101	90 _ 110	0	20

Eurofins Xenco, Carlsbad

Job ID: 890-1515-1

SDG: 31403236.010.0129

11/11/2021
Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery Job ID: 890-1515-1 SDG: 31403236.010.0129

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-1502-A-12 Matrix: Solid	24-G MS							Client	Sample ID Prep	: Matrix Type: S	
Analysis Batch: 11705										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	831	F1	252	1043	F1	mg/Kg		84	90 - 110		
-											
Lab Sample ID: 890-1502-A-12 Matrix: Solid Analysis Batch: 11705	24-H MSD					Cli	ient Sa	ample ID): Matrix Sp Prep	oike Dup Type: S	
Matrix: Solid	24-H MSD Sample	Sample	Spike	MSD	MSD	Cli	ient Sa	ample ID			
Matrix: Solid	Sample	Sample Qualifier	Spike Added		MSD Qualifier	Cli	ient Sa D	ample ID %Rec	Prep		oluble

Eurofins Xenco, Carlsbad

QC Association Summary

Prep Type

Matrix

Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery

Client Sample ID

GC VOA

Prep Batch: 11822 Lab Sample ID

Prep Batch

Job ID: 890-1515-1 SDG: 31403236.010.0129

Method

5

8

Lab Sample ID		Fieh lyhe	Watin	Wethou	Fiep Batch
890-1515-1	SS01	Total/NA	Solid	5035	
890-1515-2	SS02	Total/NA	Solid	5035	
MB 880-11822/5-A	Method Blank	Total/NA	Solid	5035	
_CS 880-11822/1-A	Lab Control Sample	Total/NA	Solid	5035	
_CSD 880-11822/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1540-A-14-F MS	Matrix Spike	Total/NA	Solid	5035	
390-1540-A-14-G MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
rep Batch: 11824					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
/IB 880-11824/5-A	Method Blank	Total/NA	Solid	5035	
.CS 880-11824/1-A	Lab Control Sample	Total/NA	Solid	5035	
CSD 880-11824/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
80-8100-A-21-A MS	Matrix Spike	Total/NA	Solid	5035	
380-8100-A-21-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
nalysis Batch: 11884					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-1515-1	SS01	Total/NA	Solid	8021B	11822
90-1515-2	SS02	Total/NA	Solid	8021B	11822
/IB 880-11822/5-A	Method Blank	Total/NA	Solid	8021B	11822
.CS 880-11822/1-A	Lab Control Sample	Total/NA	Solid	8021B	11822
_CSD 880-11822/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11822
390-1540-A-14-F MS	Matrix Spike	Total/NA	Solid	8021B	11822
390-1540-A-14-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	11822
nalysis Batch: 11888					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
ND 000 44004/F A		T / 1014	0 11 1	000 (D	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-11824/5-A	Method Blank	Total/NA	Solid	8021B	11824
LCS 880-11824/1-A	Lab Control Sample	Total/NA	Solid	8021B	11824
LCSD 880-11824/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11824
880-8100-A-21-A MS	Matrix Spike	Total/NA	Solid	8021B	11824
880-8100-A-21-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	11824

Analysis Batch: 11890

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1515-1	SS01	Total/NA	Solid	Total BTEX	
890-1515-2	SS02	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 11376

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1515-1	SS01	Total/NA	Solid	8015NM Prep	
890-1515-2	SS02	Total/NA	Solid	8015NM Prep	
MB 880-11376/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-11376/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-11376/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1502-A-121-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-1502-A-121-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Xenco, Carlsbad

Released to Imaging: 3/14/2022 4:24:37 PM

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery Job ID: 890-1515-1

SDG: 31403236.010.0129

GC Semi VOA

Analysis Batch: 11414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1515-1	SS01	Total/NA	Solid	8015B NM	11376
890-1515-2	SS02	Total/NA	Solid	8015B NM	11376
MB 880-11376/1-A	Method Blank	Total/NA	Solid	8015B NM	11376
LCS 880-11376/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	11376
LCSD 880-11376/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	11376
890-1502-A-121-F MS	Matrix Spike	Total/NA	Solid	8015B NM	11376
890-1502-A-121-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	11376
nalysis Batch: 11598					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1515-1	SS01	Total/NA	Solid	8015 NM	
890-1515-2	SS02	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 11243

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-1515-1	SS01	Soluble	Solid	DI Leach		
890-1515-2	SS02	Soluble	Solid	DI Leach		
MB 880-11243/1-A	Method Blank	Soluble	Solid	DI Leach		
LCS 880-11243/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-11243/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		
890-1502-A-124-G MS	Matrix Spike	Soluble	Solid	DI Leach		
890-1502-A-124-H MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach		

Analysis Batch: 11705

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1515-1	SS01	Soluble	Solid	300.0	11243
890-1515-2	SS02	Soluble	Solid	300.0	11243
MB 880-11243/1-A	Method Blank	Soluble	Solid	300.0	11243
LCS 880-11243/2-A	Lab Control Sample	Soluble	Solid	300.0	11243
LCSD 880-11243/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	11243
890-1502-A-124-G MS	Matrix Spike	Soluble	Solid	300.0	11243
890-1502-A-124-H MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	11243

4 5 6

Client Sample ID: SS01 Date Collected: 11/01/21 13:45

Date Received: 11/01/21 16:29

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			11822	11/10/21 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	11884	11/10/21 22:05	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	11890	11/10/21 11:29	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			11376	11/03/21 13:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1	11414	11/04/21 13:20	AJ	XEN MID
Soluble	Leach	DI Leach			11243	11/02/21 12:46	СН	XEN MID
Soluble	Analysis	300.0		20	11705	11/09/21 16:41	СН	XEN MID

Client Sample ID: SS02

Date Collected: 11/01/21 13:55 Date Received: 11/01/21 16:29

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			11822	11/10/21 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	11884	11/10/21 22:25	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	11890	11/10/21 11:29	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			11376	11/03/21 13:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1	11414	11/04/21 13:41	AJ	XEN MID
Soluble	Leach	DI Leach			11243	11/02/21 12:46	СН	XEN MID
Soluble	Analysis	300.0		5	11705	11/09/21 16:48	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-1515-1 SDG: 31403236.010.0129

Lab Sample ID: 890-1515-1 Matrix: Solid

Lab Sample ID: 890-1515-2

Matrix: Solid

Eurofins Xenco, Carlsbad

	А	ccreditation/C	ertification Summary		
Client: WSP USA Inc. Project/Site: Ross Drav	w 25 North Battery			Job ID: 890-1515- SDG: 31403236.010.012	
	ins Xenco, Midland		reditation/certification below.		_
Authority	Pro	ogram	Identification Number	Expiration Date	_
Texas	NE	LAP	T104704400-21-22	06-30-22	
		t the laboratory is not certif	fied by the governing authority. This list ma	ay include analytes for which	
the agency does not of		•• • •			
Analysis Method 8015 NM	Prep Method	Matrix Solid	Analyte Total TPH		
Total BTEX		Solid	Total BTEX		

Eurofins Xenco, Carlsbad

.

Method Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery

Job ID: 890-1515-1 SDG: 31403236.010.0129

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 North Battery Job ID: 890-1515-1 SDG: 31403236.010.0129

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-1515-1	SS01	Solid	11/01/21 13:45	11/01/21 16:29	0.5
890-1515-2	SS02	Solid	11/01/21 13:55	11/01/21 16:29	0.5

Received by OC	<u>(D: 1</u>) ת	/10/202 of sen	2 1:3][<u>53 P</u> A				- [T	Т		Sam	Cool	Rect	Tem	SA	Sam	P.O.	Proj	Proje	Phone:	City,	Add	Corr	Proj	Page 4	4 of 66
100	Relinquished by: (Signature)	Notice: Signature of this document and relinquishment of samples constitutes a valid <u>purchase order from cliant company to Xenco. its affiliates and subcontrectors</u> . It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Circle Method(s) and Metal(s) to be analyzed									Samp	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	Temperature (°C):	SAMPLE RECEIPT	Sampler's Name:	P.O. Number:	Project Number:	Project Name:	ne:	City, State ZIP	Address:	Company Name:	Project Manager:	X	
	hed þy: (e of this do o will be lia mum charg	ethod(s)						U	, ,	0	Sample Identification	ody Seals	dy Seals:	et	(°C):	RECEIF	me:		ēr.		6					X	
P	Signatu	cument an ble only fo je of \$75.0	and Me						2000			fication	: Yes	Yes	-	2	ч				Ro	(432) 236	Midland, TX 79705	3300 North A Stree	WSP USA	Kalei Jennings		
	re)	d relinquis r the cost o d will be ap	Metal(s) to be						- 0	2 0	0	_	No	14	ð	1	Temp	Ale	10	31403;	ss Draw	236-3849	TX 7970	th A Str	A	nings	O	
	X	hment of supplied to ea	zu: be anal			-						Matrix	NA	¥.	No	2.0	Temp Blank:	Alexis Castro	10/12/2021	31403236.010.0129	25 Nor		5	eet			υU	
A	Received by:	amples cor and shall i ch project	yzed a							11/1/2021	0001 1/ 1/	Date	To	Cor	Tren		Xes No	5		0129	Ross Draw 25 North Battery						Hob	
	d by: (Si	not assume and a charg	TCLP						1000	1 1040	· T	Time Sampled	Total Containers:	Correction Factor:	1-00	Thermo					<						Houston.TX (281) 240-4200 Dallas.TX (214) 902-0300 San Antonio.TX (210) 509-3334 Midland.TX (432-704-5440) EL Pasc.TX (915)585-3443 Lubbock.TX (806)794-1296 Hobbs.NM (575-392-7550) Phoenix.AZ (480-355-0900) Atlanta.GA (770-449-8800) Tampa.FL (813-620-2000)	
	(Signature)	any respo ge of \$5 for	/ SPLP				_		0.0		_	he	iners:	actor:	נן	Thermometer ID	Wet Ice:	Due Date:	Rush:	Routine	Turn	Email: Ale	Q	A	C	B	uston.TX (lidland,TX 5-392-755	
		ase order f nsibility for r each sam	TCLP / SPLP 6010: 8RCRA	- 11 1						μļο	ײַ ע	Depth		5			No No	Ĩ.		R	Turn Around	Alexis.Castro@wsp.com Kalei.Jennings@wsp.com	City, State ZIP:	Address:	Company Name:	Bill to: (if different)	Houston.TX (281) 240-4200 Dallas.TX (214) 902-0300 San Antonio.TX (210) 509-3334 Midland.TX (432-704-5440) EL Paso.TX (915)585-3443 Lubbock.TX (806)794-1296 (575-392-7550) Phoenix.AZ (480-355-0900) Atlanta.GA (770-449-8800) Tampa.FL (81)	
		r <u>om client</u> r any losse ple submitt	RCRA	2						<u>ــــــــــــــــــــــــــــــــــــ</u>	-	Numb	er o	n of Co	onta	aine	rs					ro@wsp.					4200 Dall 5440) EL x,AZ (480	유 1
	Date/Time	company to s or expensed to Xenc	Sb As Ba			-	_	-	>		_	TPH (E BTEX (com Kale	Carlsbad	3104 E Green St	XTO Energy	Adrian Baker	as,TX (214 Paso,TX (355-0900)	Chain
1.51	ne	Xenco, its es incurrec b, but not a	Ba Be (3		_		+	>	< >	-	Chloric										i.Jenning	Carlsbad, NM 88220	reen St.	rgy	iker) 902-030 915)585-3 Atlanta,C	of C
0 4 0	, Relir	affiliatee and subcontractors. It assigns standard Terms and conditions by the client if such losses are due to circumstances beyond the contro nalyzed. These terms will be enforced unless previously negotiated.	Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	2																		s@wsp.c	20				0 San Ant 443 Lubb 3A (770-44	Custodv
	Relinquished by: (Signature)	nd subcont ent if such lese terms		?			+	+		╉	+										ANALY	om					onio,TX (2 ock,TX (8(9-8800) 1	4
	l by: (Sig	will be enfo	Pb Mn I									I			-	890-1515 Chain of Custod			1781211 131		ALYSIS REQUEST						10) 509-3 06)794-129 ampa,FL	
	jnature)	assigns st due to circi prced unles	Mo Ni	5		_	_			+	_				-	Chain of					QUEST		Re		Pro	1 T	334 96 (813-620-:	
		andard ter umstances is previous	Ni Se Ag Ti	Mp M				+		+	-											Deliverables: EDD	Reporting:Level II	State of Project:	Program: UST/PST		2000)	
	Receiv	ms and cor beyond the ly negotiat		N.						_									1					-	ST/PST		ιs	< <
	ed by: (S	ditions control ed.	ú l		$\left \right $	+				+									-		-		Level III			Work C	www.xenco.com	ork Ord
	Received by: (Signature)		163			+-								_							1	ADaPT	_		Brownf	Order Co	:0. com	Work Order No:
	e)		245	N Cr T								San	lab, I	TAT start						INC: NAPP2129840452	Wo	Þ			PRP Brownfields RRC	Work Order Comments	Page	••
Revised Da	Ď		17470							i		nple Co	t received	s the day						PP2129	rk Orde	Other:				S		
Revised Date 051418 Rev 2018	Date/Time		/7471	V Zn								Sample Comments	lab, if received by 4:30pm	TAT starts the day recevied by the						840452	Work Order Notes		level IV		Duperfund		of	
v 2018			ВH										3	yy the]				

Released to Imaging: 3/14/2022 4:24:37 PM

11/11/2021

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1515 List Number: 1 Creator: Olivas, Nathaniel

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-1515-1 SDG Number: 31403236.010.0129

List Source: Eurofins Xenco, Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1515 List Number: 2 Creator: Kramer, Jessica Job Number: 890-1515-1 SDG Number: 31403236.010.0129

List Source: Eurofins Xenco, Midland List Creation: 11/03/21 11:16 AM

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.6/4.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Received by OCD: 1/10/2022 1:39:53 PM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1724-1

Laboratory Sample Delivery Group: 31403236.020.0129 Client Project/Site: Ross Draw 25 N

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Tacoma Morrissey

RAMER

Authorized for release by: 12/23/2021 11:48:12 AM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env Released to Imaging: 3/14/2022 4:24:37 PM

.

Laboratory Job ID: 890-1724-1 SDG: 31403236.020.0129

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

2

Client: WSP USA Inc. Project/Site: Ross Draw 25 N

Page 49 of 66

Job ID: 890-1724-1
SDG: 31403236.020.0129

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	4
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		5
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
U	applicable. Indicates the analyte was analyzed for but not detected.	9
		_
Glossary		10
Abbreviation	These commonly used abbreviations may or may not be present in this report.	- 44
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	10
CNF	Contains No Free Liquid	13
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac DL	Dilution Factor	
DL, RA, RE, IN	Detection Limit (DoD/DOE) Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER RL	Relative Error Ratio (Radiochemistry) Reporting Limit or Requested Limit (Radiochemistry)	
RL		

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

5

Job ID: 890-1724-1 SDG: 31403236.020.0129

Job ID: 890-1724-1

Project/Site: Ross Draw 25 N

Client: WSP USA Inc.

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-1724-1

Receipt

The sample was received on 12/15/2021 3:49 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.4°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

RL

0.00199

0.00199

Unit

mg/Kg

mg/Kg

D

Prepared

12/17/21 15:00

12/17/21 15:00

12/17/21 14:20

12/17/21 14:20

12/20/21 14:36

12/20/21 14:36

Dil Fac

1

1

1

1

Job ID: 890-1724-1 SDG: 31403236.020.0129

Client Sample ID: FS01

Project/Site: Ross Draw 25 N

Date Collected: 12/10/21 12:50 Date Received: 12/15/21 15:49

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00199 U

<0.00199 U

117

119

Sample Depth: 1

Analyte

Benzene

Toluene

1-Chlorooctane

o-Terphenyl

Client: WSP USA Inc.

Lab Sample ID: 890-1724-1

Analyzed

12/18/21 04:16

12/18/21 04:16

Matrix: Solid

5

-	
:	3
-	

Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (DI	Qualifier U RO) (GC) Qualifier U U	RL 50.0 RL 50.0 50.0 50.0 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared Prepared 12/17/21 14:20 12/17/21 14:20 12/17/21 14:20	Analyzed 12/23/21 12:30 Analyzed 12/20/21 14:36 12/20/21 14:36 12/20/21 14:36	Dil Fac 1 Dil Fac 1 1
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D) Result State S	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0 50.0	Unit mg/Kg		Prepared 12/17/21 14:20 12/17/21 14:20	Analyzed 12/20/21 12:30	1 Dil Fac 1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D) Result State S	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0	Unit mg/Kg		Prepared 12/17/21 14:20	Analyzed 12/20/21 12:30	1 Dil Fac 1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (DI Result	Qualifier U RO) (GC) Qualifier	50.0 RL	mg/Kg Unit		Prepared	12/23/21 12:30	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	ge Organics (DI Result	Qualifier U RO) (GC) Qualifier	50.0 RL	mg/Kg Unit		Prepared	12/23/21 12:30	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang	ge Organics (DI	Qualifier U RO) (GC)	50.0	mg/Kg		<u>.</u>	12/23/21 12:30	1
Analyte	Result	Qualifier			<u>D</u>	Prepared		Dil Fac
Analyte	Result	Qualifier			D	Prepared		Dil Fac
			PI	Unit	п	Propared	Analyzed	Dil Eac
Total BTEX			0.00398	mg/Kg			12/22/21 12:38	1
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
_ Method: Total BTEX - Total BTEX	X Coloulation							
1,4-Difluorobenzene (Surr)	93		70 - 130			12/17/21 15:00	12/18/21 04:16	1
4-Bromofluorobenzene (Surr)	120		70 - 130			12/17/21 15:00	12/18/21 04:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		12/17/21 15:00	12/18/21 04:16	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		12/17/21 15:00	12/18/21 04:16	1
	<0.00396	U	0.00398	mg/Kg		12/17/21 15:00	12/18/21 04:16	1
m-Xylene & p-Xylene	< 0.00398							
Ethylbenzene m-Xylene & p-Xylene	<0.00199		0.00199	mg/Kg		12/17/21 15:00	12/18/21 04:16	1

ľ									
Method: 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	465		4.97	mg/Kg			12/20/21 12:42	1

70 - 130

70 - 130

Eurofins Xenco, Carlsbad

Surrogate Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 N

Job ID: 890-1724-1 SDG: 31403236.020.0129

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		1
880-9404-A-21-E MS	Matrix Spike	110	97		
880-9404-A-21-F MSD	Matrix Spike Duplicate	106	96		6
890-1724-1	FS01	120	93		
LCS 880-15018/1-A	Lab Control Sample	108	92		
LCSD 880-15018/2-A	Lab Control Sample Dup	109	94		
MB 880-14947/5-A	Method Blank	127	103		8
MB 880-15018/5-A	Method Blank	126	105		
Surrogate Legend					
BFB = 4-Bromofluorober	nzene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)		
		1CO1	OTPH1			
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		1	
890-1724-1	FS01	117	119			
890-1727-A-21-I MS	Matrix Spike	113	98			
890-1727-A-21-J MSD	Matrix Spike Duplicate	111	97			

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO2 OTPH2 Lab Sample ID **Client Sample ID** (70-130) (70-130) LCS 880-15090/2-A Lab Control Sample 100 97 LCSD 880-15090/3-A Lab Control Sample Dup 110 116 MB 880-15090/1-A Method Blank 142 S1+ 233 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 52 of 66

Client: WSP USA Inc.

Project/Site: Ross Draw 25 N

QC Sample Results

Job ID: 890-1724-1 SDG: 31403236.020.0129

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-1494									Unone Ou	mple ID: Metho	
Matrix: Solid										Prep Type:	
Analysis Batch: 15044										Prep Batc	h: 1494
		MB									
Analyte		Qualifier	RL		Unit		<u>D</u>		repared	Analyzed	Dil F
Benzene	<0.00200		0.00200		mg/K	-			7/21 07:30	12/17/21 12:15	
Toluene	<0.00200	U	0.00200		mg/K	g		12/1	7/21 07:30	12/17/21 12:15	
Ethylbenzene	<0.00200	U	0.00200		mg/K	g		12/1	7/21 07:30	12/17/21 12:15	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/K	g		12/1	7/21 07:30	12/17/21 12:15	
o-Xylene	<0.00200	U	0.00200		mg/K	g		12/1	7/21 07:30	12/17/21 12:15	
Kylenes, Total	<0.00400	U	0.00400		mg/K	g		12/1	7/21 07:30	12/17/21 12:15	
	МВ	МВ									
Surrogate	%Recovery	Qualifier	Limits					P	repared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	127		70 - 130					12/1	7/21 07:30	12/17/21 12:15	
1,4-Difluorobenzene (Surr)	103		70 - 130					12/1	7/21 07:30	12/17/21 12:15	
Lab Sample ID: MB 880-1501									Client Se	mple ID: Metho	d Bla
Matrix: Solid	10/ J-A								Cheffit Sa	Prep Type:	
Analysis Batch: 15044										Prep Batc	
Analysis Datch. 19044	МВ	мв								Thep Date	1. 150
Analyte		Qualifier	RL		Unit		D	Р	repared	Analyzed	Dil F
Benzene	<0.00200		0.00200		mg/K	a	-		7/21 15:00	12/18/21 01:24	
Toluene	<0.00200		0.00200		mg/K	-			7/21 15:00	12/18/21 01:24	
Ethylbenzene	< 0.00200		0.00200		mg/K	-			7/21 15:00	12/18/21 01:24	
n-Xylene & p-Xylene	< 0.00400		0.00400		mg/K				7/21 15:00	12/18/21 01:24	
p-Xylene	<0.00200		0.00200		mg/K	-			7/21 15:00	12/18/21 01:24	
Kylenes, Total	<0.00200		0.00200		mg/K	-			7/21 15:00	12/18/21 01:24	
vienes, rotai	<0.00 1 00	0	0.00400		iiig/ix	9		12/1	1121 10.00	12/10/21 01.24	
	МВ										
Surrogate	%Recovery	Qualifier	Limits						repared	Analyzed	Dil I
4-Bromofluorobenzene (Surr)	126		70 - 130						7/21 15:00	12/18/21 01:24	
1,4-Difluorobenzene (Surr)	105		70 - 130					12/1	7/21 15:00	12/18/21 01:24	
Lab Sample ID: LCS 880-150	18/1-A						С	lient	Sample I	D: Lab Control	Sami
Matrix: Solid										Prep Type:	
Analysis Batch: 15044										Prep Batc	
Analysis Baton. 10044			Spike	LCS	LCS					%Rec.	
Analyte			Added		Qualifier	Unit		D	%Rec	Limits	
Benzene			0.100	0.07815	quamor	mg/Kg			78	70 - 130	
Toluene			0.100	0.07801		mg/Kg			78	70 - 130	
Ethylbenzene			0.100	0.08074		mg/Kg			81	70 - 130	
n-Xylene & p-Xylene			0.200	0.1599					80	70 - 130	
						mg/Kg					
p-Xylene			0.100	0.08036		mg/Kg			80	70 - 130	
. .	LCS LCS										
Surrogate	%Recovery Qua	inter	Limits								
4-Bromofluorobenzene (Surr)	108		70 - 130								
1,4-Difluorobenzene (Surr)	92		70 - 130								
Lab Sample ID: LCSD 880-1	5018/2-A					Cli	ient	Sam	nple ID: La	ab Control Sam	ple D
Matrix: Solid										Prep Type:	Total/I
Analysis Batch: 15044										Prep Batc	h: 150
			Spike	LCSD	LCSD					• %Rec.	R
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits RP	D Liı

Eurofins Xenco, Carlsbad

Page 54 of 66

Job ID: 890-1724-1 SDG: 31403236.020.0129

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-1	5018/2-A					Clier	nt Sam	ple ID: I	ab Contro	I Sample	e Dup
Matrix: Solid									Prep T	ype: Tot	tal/NA
Analysis Batch: 15044									Prep	Batch:	15018
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.08103		mg/Kg		81	70 - 130	4	3
Ethylbenzene			0.100	0.08149		mg/Kg		81	70 - 130	1	3
m-Xylene & p-Xylene			0.200	0.1570		mg/Kg		79	70 _ 130	2	3
o-Xylene			0.100	0.08323		mg/Kg		83	70 - 130	4	3
	ICSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)		quamer	70 - 130								
1,4-Difluorobenzene (Surr)	.00		70 - 130								
Lab Sample ID: 880-9404-A-	21-E MS							Client	Sample ID:	Matrix	Spike
Matrix: Solid									Prep T	ype: Tot	tal/N/
Analysis Batch: 15044										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00201	U	0.101	0.07600		mg/Kg		76	70 _ 130		
Toluene	<0.00201	U	0.101	0.07954		mg/Kg		79	70 - 130		
Ethylbenzene	<0.00201	U	0.101	0.08324		mg/Kg		83	70 - 130		
m-Xylene & p-Xylene	<0.00402	U	0.201	0.1594		mg/Kg		79	70 _ 130		
o-Xylene	<0.00201	U	0.101	0.07839		mg/Kg		78	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)		Quanner	70 - 130								
1,4-Difluorobenzene (Surr)	97		70 - 130								
	07		10-100								
Lab Sample ID: 880-9404-A-	21-F MSD					CI	ient Sa	mple ID	: Matrix Sp	ike Dup	olicate
Matrix: Solid								- C	Prep T	ype: Tot	tal/NA
Analysis Batch: 15044										Batch:	
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene	<0.00201	U	0.0990	0.07352		mg/Kg		74	70 - 130	3	35
Toluene	<0.00201	U	0.0990	0.07366		mg/Kg		74	70 - 130	8	3
Ethylbenzene	<0.00201	U	0.0990	0.08113		mg/Kg		82	70 - 130	3	3
m-Xylene & p-Xylene	<0.00402	U	0.198	0.1543		mg/Kg		78	70 - 130	3	3
o-Xylene	<0.00201	U	0.0990	0.08041		mg/Kg		81	70 - 130	3	3
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

96

Lab Sample ID: MB 880-15090/1-A Matrix: Solid Analysis Batch: 15096	мв	мв				Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Fotal/NA
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		12/17/21 14:20	12/20/21 12:12	1
(GRO)-C6-C10								

70 - 130

Eurofins Xenco, Carlsbad

1,4-Difluorobenzene (Surr)

Client: WSP USA Inc. Project/Site: Ross Draw 25 N Job ID: 890-1724-1 SDG: 31403236.020.0129

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-15090/ Matrix: Solid	174									onent o	ample ID:	Type: T	
Analysis Batch: 15096												Batch	
·····,···		ΜВ	МВ										
Analyte	Re	sult	Qualifier	RL		U	nit	D	P	repared	Analy	zed	Dil Fac
Diesel Range Organics (Over C10-C28)		50.0	U	50.0		m	g/Kg	_	12/1	7/21 14:20	12/20/21	12:12	1
Oll Range Organics (Over C28-C36)	<	50.0	U	50.0		m	g/Kg		12/1	7/21 14:20	12/20/21	12:12	1
			МВ						_				
Surrogate	%Recov	-	Qualifier	Limits						repared	Analy		Dil Fac
1-Chlorooctane			S1+	70 - 130						7/21 14:20			1
o-Terphenyl		233	57+	70 - 130					12/1	7/21 14:20	12/20/21	12:12	1
Lab Sample ID: LCS 880-15090)/2-A							С	lient	Sample	ID: Lab C		-
Matrix: Solid												Type: T	
Analysis Batch: 15096												Batch	: 15090
				Spike	LCS	LCS					%Rec.		
Analyte				Added	Result	Qualifie	er Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10				1000	883.9		mg/Kg			88	70 - 130		
Diesel Range Organics (Over C10-C28)				1000	935.7		mg/Kg			94	70 - 130		
	LCS												
Surrogate		Qual	ifier	Limits									
	100			70 - 130									
o-Terphenyl	97			70 - 130			C	ient	Sam	iple ID: L	ab Contro	ol Samr	ole Dur
o-Terphenyl Lab Sample ID: LCSD 880-150 Matrix: Solid	97			70 - 130			C	ient	Sam	iple ID: L		-	otal/NA
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-1509 Matrix: Solid	97			70 - 130 Spike	LCSD	LCSD	C	ient	Sam	iple ID: L	Prep	Type: T	otal/NA : 15090
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096	97					LCSD Qualifie		ient	Sam	ple ID: L %Rec	Prep Prep	Type: T	otal/NA : 15090 RPD
o-Terphenyl Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics	97			Spike				ient		-	Prep Prep %Rec.	Type: To Batch	otal/NA : 15090 RPD Limit
o-Terphenyl Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	97			Spike Added	Result		er Unit	lient		%Rec	Prep Prep %Rec. Limits	Type: To Batch	otal/NA : 15090 RPD Limit 20
o-Terphenyl Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	97	LCSI		Spike Added 1000	Result 924.4		er <u>Unit</u> mg/Kg	ient		%Rec 92	Prep Prep %Rec. Limits 70 - 130	Type: To D Batch RPD 4	otal/NA : 15090 RPD Limit
o-Terphenyl Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	97 90/3-A			Spike Added 1000	Result 924.4		er <u>Unit</u> mg/Kg	ient		%Rec 92	Prep Prep %Rec. Limits 70 - 130	Type: To D Batch RPD 4	otal/NA : 15090 RPD Limit 20
o-Terphenyl Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	97 90/3-A			Spike Added 1000 1000	Result 924.4		er <u>Unit</u> mg/Kg	lient		%Rec 92	Prep Prep %Rec. Limits 70 - 130	Type: To D Batch RPD 4	otal/NA : 15090 RPD Limit 20
Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	97 90/3-A 			Spike Added 1000 1000 Limits	Result 924.4		er <u>Unit</u> mg/Kg	ient		%Rec 92	Prep Prep %Rec. Limits 70 - 130	Type: To D Batch RPD 4	otal/NA : 15090 RPD Limit 20
o-Terphenyl Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1727-A-21	97 90/3-A <u>LCSD</u> %Recovery 110 116			Spike Added 1000 1000 Limits 70 - 130	Result 924.4		er <u>Unit</u> mg/Kg	ient		%Rec 92 95	Prep %Rec. Limits 70 - 130 70 - 130 Sample IE	Type: To Batch RPD 4 2 2 0: Matri:	otal/NA : 15090 RPD Limit 20 20
o-Terpheny/ Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: 890-1727-A-219 Matrix: Solid	97 90/3-A <u>LCSD</u> %Recovery 110 116			Spike Added 1000 1000 Limits 70 - 130	Result 924.4		er <u>Unit</u> mg/Kg	ient		%Rec 92 95	Prep Prep %Rec. Limits 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 4 2 2 2: Matri: Type: To	otal/NA : 15090 RPD Limit 20 20 x Spike otal/NA
o-Terpheny/ Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: 890-1727-A-219 Matrix: Solid	97 90/3-A <u><i>LCSD</i></u> %Recovery 110 116 -I MS	Qual	ifier	Spike Added 1000 1000 1000 2000 1000	Result 924.4		er <u>Unit</u> mg/Kg	ient		%Rec 92 95	Prep Prep %Rec. Limits 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 4 2 2 0: Matri:	otal/NA : 15090 RPD Limit 20 20 x Spike otal/NA
o-Terphenyl Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1727-A-219 Matrix: Solid	97 90/3-A <i>LCSD</i> %Recovery 110 116 -I MS Sample	Qual Sam	ifier	Spike Added 1000 1000 Limits 70 - 130	Result 924.4 953.9		er <u>Unit</u> mg/Kg	ient		%Rec 92 95	Prep Prep %Rec. Limits 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 4 2 2 2: Matri: Type: To	otal/NA : 15090 RPD Limit 20 20 x Spike otal/NA
o-Terpheny/ Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: 890-1727-A-21: Matrix: Solid Analysis Batch: 15096 Analyte	97 90/3-A <i>LCSD</i> %Recovery 110 116 -I MS Sample Result	Qual Sam Qual	ifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 5pike Added	Result 924.4 953.9 MS Result	Qualifi	er Unit mg/Kg mg/Kg	ient		%Rec 92 95 Client %Rec	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Type: To Batch RPD 4 2 2 2: Matri: Type: To	otal/NA : 15090 RPD Limit 20 20 x Spike otal/NA
o-Terphenyl Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1727-A-219 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics	97 90/3-A <i>LCSD</i> %Recovery 110 116 -I MS Sample	Qual Sam Qual	ifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 5pike	Result 924.4 953.9 MS	Qualifie	er Unit mg/Kg mg/Kg	ient	D	%Rec 92 95 Client	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep %Rec.	Type: To Batch RPD 4 2 2 2: Matri: Type: To	otal/NA : 15090 RPD Limit 20 20 x Spike otal/NA
o-Terpheny/ Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: 890-1727-A-21 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	97 90/3-A <i>LCSD</i> %Recovery 110 116 -I MS Sample Result	Qual Sam Qual U F1	ifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 5pike Added	Result 924.4 953.9 MS Result	Qualifie MS Qualifie	er Unit mg/Kg mg/Kg	ient	D	%Rec 92 95 Client %Rec	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Type: To Batch RPD 4 2 2 2: Matri: Type: To	otal/NA : 15090 RPD Limit 20 20 x Spike otal/NA
o-Terpheny/ Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: 890-1727-A-21: Matrix: Solid Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	97 90/3-A <i>LCSD</i> %Recovery 110 116 -I MS Sample Result <49.9 <49.9 <49.9 MS	Qual Qual Qual U F1 U F1 MS	ifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 Limits 70 - 130 70 - 130 Spike Added 996 996	Result 924.4 953.9 953.9 MS Result 1328	Qualifie MS Qualifie	er Unit mg/Kg mg/Kg	ient	D	%Rec 92 95 Client %Rec 129	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. User Prep %Rec. Limits 70 - 130	Type: To Batch RPD 4 2 2 2: Matri: Type: To	otal/NA : 15090 RPD Limit 20 20 x Spike otal/NA
o-Terphenyl Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1727-A-219 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate Surrogate	97 90/3-A <i>LCSD</i> %Recovery 110 116 -I MS Sample Result <49.9 <49.9 <49.9 %Recovery	Qual Samı Qual U F1 U F1	ifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 5pike Added 996 996 Limits	Result 924.4 953.9 953.9 MS Result 1328	Qualifie MS Qualifie	er Unit mg/Kg mg/Kg	ient	D	%Rec 92 95 Client %Rec 129	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. User Prep %Rec. Limits 70 - 130	Type: To Batch RPD 4 2 2 2: Matri: Type: To	otal/NA : 15090 RPD Limit 20 20 x Spike otal/NA
o-Terphenyl Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1727-A-21: Matrix: Solid Analysis Batch: 15096 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	97 90/3-A <i>LCSD</i> %Recovery 110 116 -I MS Sample Result <49.9 <49.9 <49.9 MS	Qual Qual Qual U F1 U F1 MS	ifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 Limits 70 - 130 70 - 130 Spike Added 996 996	Result 924.4 953.9 953.9 MS Result 1328	Qualifie MS Qualifie	er Unit mg/Kg mg/Kg	ient	D	%Rec 92 95 Client %Rec 129	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. User Prep %Rec. Limits 70 - 130	Type: To Batch RPD 4 2 2 2: Matri: Type: To	otal/NA : 15090 RPD Limit 20 20 x Spike otal/NA

Eurofins Xenco, Carlsbad

Client: WSP USA Inc. Project/Site: Ross Draw 25 N Job ID: 890-1724-1 SDG: 31403236.020.0129

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-1727-A-21 Matrix: Solid						Ŭ	ion o): Matrix Sp Prep 1	ріке Бир Гуре: То	tal/NA
Analysis Batch: 15096											
Analysis Batch. 15050	Sampla	Sample	Spike	MSD	MSD				%Rec.	Batch:	RPD
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9		995	1392		mg/Kg		136	70 - 130	5	2
(GRO)-C6-C10	~49.9	011	990	1592		mg/rtg		150	70 - 150	5	20
Diesel Range Organics (Over	<49.9	U F1	995	1328	F1	mg/Kg		133	70 - 130	1	20
C10-C28)						5 5					
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	111		70 - 130								
o-Terphenyl	97		70 - 130								
lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-15089/ Matrix: Solid Analysis Batch: 15128								Client S	Sample ID: Prep	Method Type: S	
	_	MB MB									
Analyte		esult Qualifier			Unit		D F	Prepared	Analyz		Dil Fa
Chloride	<	5.00 U		5.00	mg/K	g			12/20/21	10:02	
Lab Sample ID: LCS 880-15089	9/2-A						Clien	t Sample	D: Lab C		
Matrix: Solid	9/2-A		Spiko	1.05	1.05		Clien	t Sample	Prep	ontrol S Type: S	
Matrix: Solid Analysis Batch: 15128	9/2-A		Spike		LCS	Unit		-	Prep %Rec.		
Matrix: Solid Analysis Batch: 15128 ^{Analyte}	9/2-A 		Spike Added 250		LCS Qualifier	 	Clien	<u>%Rec</u>	Prep		
Matrix: Solid Analysis Batch: 15128 Analyte Chloride			Added	Result		mg/Kg	<u>D</u>	%Rec 106	Prep %Rec. Limits 90 - 110	Type: S	olubl
Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: LCSD 880-150			Added	Result		mg/Kg	<u>D</u>	%Rec 106	Prep %Rec. Limits 90 - 110	Type: S	olubl
Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid			Added	Result		mg/Kg	<u>D</u>	%Rec 106	Prep %Rec. Limits 90 - 110	Type: S	olubl
Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid			Added 250	Result 265.7	Qualifier	mg/Kg	<u>D</u>	%Rec 106	Prep %Rec. Limits 90 - 110 Lab Contro Prep	Type: S	olubi le Du olubi
Lab Sample ID: LCS 880-15089 Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: LCSD 880-1509 Matrix: Solid Analysis Batch: 15128			Added	Result 265.7 LCSD	Qualifier	mg/Kg	<u>D</u>	%Rec 106	Prep %Rec. Limits 90 - 110	Type: S	olubi
Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid Analysis Batch: 15128 Analyte			Added 250 Spike Added	Result 265.7 LCSD Result	Qualifier	mg/Kg Clie	<u>D</u>	%Rec 106 nple ID: %Rec	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits	Type: S DI Sampl Type: S 	olubi e Du olubi RP Lim
Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid Analysis Batch: 15128 Analyte			Added 250 Spike	Result 265.7 LCSD	Qualifier	mg/Kg Clie	D	%Rec 106 nple ID:	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec.	Type: S	olubi le Duj olubi RPi Lim
Matrix: Solid Analysis Batch: 15128 Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: 890-1723-A-4-E	 89/3-A		Added 250 Spike Added	Result 265.7 LCSD Result	Qualifier	mg/Kg Clie	D_ nt San	%Rec 106 nple ID: %Rec 109	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	Type: S ol Sampl Type: S <u></u> 2 : Matrix	olubi e Du olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 15128 Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: 890-1723-A-4-E	 89/3-A		Added 250 Spike Added	Result 265.7 LCSD Result	Qualifier	mg/Kg Clie	D_ nt San	%Rec 106 nple ID: %Rec 109	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	Type: S ol Sampl Type: S 2	olubi e Du olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid	 89/3-A		Added 250 Spike Added	Result 265.7 LCSD Result	Qualifier	mg/Kg Clie	D_ nt San	%Rec 106 mple ID: %Rec 109	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	Type: S ol Sampl Type: S <u></u> 2 : Matrix	olubi e Du olubi RPI Lim 2 Spik
Matrix: Solid Analysis Batch: 15128 Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: 890-1723-A-4-F Matrix: Solid	89/3-A		Added 250 Spike Added	Result 265.7 LCSD Result 271.6	Qualifier	mg/Kg Clie	D_ nt San	%Rec 106 mple ID: %Rec 109	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	Type: S ol Sampl Type: S <u></u> 2 : Matrix	e Duj olubi olubi Lim 2 Spike
Matrix: Solid Analysis Batch: 15128 Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: 890-1723-A-4-F Matrix: Solid	89/3-A E MS Sample	Sample Qualifier	Added 250 Spike Added 250	Result 265.7 LCSD Result 271.6	Qualifier LCSD Qualifier	mg/Kg Clie	D_ nt San	%Rec 106 mple ID: %Rec 109	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep	Type: S ol Sampl Type: S <u></u> 2 : Matrix	e Duj olubi olubi Lim 2 Spike
Matrix: Solid Analysis Batch: 15128 Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: 890-1723-A-4-E Matrix: Solid Analysis Batch: 15128 Analyte	89/3-A E MS Sample	-	Added 250 Spike Added 250 Spike	Result 265.7 LCSD Result 271.6	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg	D	%Rec 106 nple ID: %Rec 109 Client	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec.	Type: S ol Sampl Type: S <u></u> 2 : Matrix	olubi e Du olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: 890-1723-A-4-E Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: 890-1723-A-4-E	89/3-A E MS Sample <u>Result</u> 1130	-	Added 250 Spike Added 250 Spike Added	Result 265.7 LCSD Result 271.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg	D	%Rec 106 mple ID: %Rec 109 Client %Rec 100	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	Type: S DI Sampl Type: S RPD 2 C: Matrix Type: S	olubl le Du olubl RPP 2 Spik olubl
Matrix: Solid Analysis Batch: 15128 Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid Analysis Batch: 15128 Chloride Lab Sample ID: 890-1723-A-4-E Matrix: Solid Analysis Batch: 15128 Analyte Chloride Lab Sample ID: 890-1723-A-4-E	89/3-A E MS <u>Sample</u> <u>Result</u> 1130 F MSD	Qualifier	Added 250 Spike Added 250 Spike Added 250	Result 265.7 LCSD Result 271.6 MS Result 1377	Qualifier LCSD Qualifier MS Qualifier 4	Unit mg/Kg	D	%Rec 106 mple ID: %Rec 109 Client %Rec 100	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 0: Matrix Sp Prep	Type: S OI Sampl Type: S RPD 2	olubl e Du olubl RP Lim 2 Spik olubl olubl olubl
Matrix: Solid Analysis Batch: 15128 Chloride Lab Sample ID: LCSD 880-150 Matrix: Solid Analysis Batch: 15128 Chloride Lab Sample ID: 890-1723-A-4-B Matrix: Solid Analysis Batch: 15128	89/3-A E MS Sample Result 1130 F MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 265.7 LCSD Result 271.6 MS Result 1377	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg	D	%Rec 106 mple ID: %Rec 109 Client %Rec 100	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	Type: S OI Sampl Type: S RPD 2	olubl e Duj olubl Lim 2 Spike olubl

Page 56 of 66

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 N

Job ID: 890-1724-1 SDG: 31403236.020.0129

GC VOA

Prep Batch: 14947

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
/IB 880-14947/5-A	Method Blank	Total/NA	Solid	5035	
ep Batch: 15018					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1724-1	FS01	Total/NA	Solid	5035	
MB 880-15018/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-15018/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-15018/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-9404-A-21-E MS	Matrix Spike	Total/NA	Solid	5035	
880-9404-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
Lab Sample ID 890-1724-1	Client Sample ID FS01	Prep Type Total/NA	Matrix	Method 8021B	Prep Batch 15018
Lab Sample ID	•				
890-1724-1		Iotal/ina	Solid		
		- · · · · · · · · · ·			
	Method Blank	Total/NA	Solid	8021B	14947
MB 880-15018/5-A	Method Blank	Total/NA	Solid	8021B	15018
MB 880-15018/5-A LCS 880-15018/1-A	Method Blank Lab Control Sample	Total/NA Total/NA	Solid Solid	8021B 8021B	15018 15018
MB 880-15018/5-A LCS 880-15018/1-A	Method Blank	Total/NA Total/NA Total/NA	Solid Solid Solid	8021B	15018 15018 15018
MB 880-15018/5-A LCS 880-15018/1-A LCSD 880-15018/2-A	Method Blank Lab Control Sample	Total/NA Total/NA	Solid Solid	8021B 8021B	15018 15018
MB 880-14947/5-A MB 880-15018/5-A LCS 880-15018/1-A LCSD 880-15018/2-A 880-9404-A-21-E MS 880-9404-A-21-F MSD	Method Blank Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA Total/NA	Solid Solid Solid	8021B 8021B 8021B	15018 15018 15018
MB 880-15018/5-A LCS 880-15018/1-A LCSD 880-15018/2-A 880-9404-A-21-E MS	Method Blank Lab Control Sample Lab Control Sample Dup Matrix Spike	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	8021B 8021B 8021B 8021B	15018 15018 15018 15018
MB 880-15018/5-A LCS 880-15018/1-A LCSD 880-15018/2-A 880-9404-A-21-E MS 880-9404-A-21-F MSD	Method Blank Lab Control Sample Lab Control Sample Dup Matrix Spike	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	8021B 8021B 8021B 8021B	15018 15018 15018 15018

GC Semi VOA

Prep Batch: 15090

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1724-1	FS01	Total/NA	Solid	8015NM Prep	
MB 880-15090/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-15090/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-15090/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1727-A-21-I MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-1727-A-21-J MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 15096

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1724-1	FS01	Total/NA	Solid	8015B NM	15090
MB 880-15090/1-A	Method Blank	Total/NA	Solid	8015B NM	15090
LCS 880-15090/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	15090
LCSD 880-15090/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	15090
890-1727-A-21-I MS	Matrix Spike	Total/NA	Solid	8015B NM	15090
890-1727-A-21-J MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	15090
Analysis Batch: 15468					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1724-1	FS01	Total/NA	Solid	8015 NM	

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 N Job ID: 890-1724-1 SDG: 31403236.020.0129

HPLC/IC

Leach Batch: 15089

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1724-1	FS01	Soluble	Solid	DI Leach	
MB 880-15089/1-A	Method Blank	Soluble	Solid	DI Leach	5
LCS 880-15089/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-15089/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1723-A-4-E MS	Matrix Spike	Soluble	Solid	DI Leach	
890-1723-A-4-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Analysis Batch: 15128					8
l ab Sample ID	Client Sample ID	Pren Tyne	Matrix	Method	Pren Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1724-1	FS01	Soluble	Solid	300.0	15089
MB 880-15089/1-A	Method Blank	Soluble	Solid	300.0	15089
LCS 880-15089/2-A	Lab Control Sample	Soluble	Solid	300.0	15089
LCSD 880-15089/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	15089
890-1723-A-4-E MS	Matrix Spike	Soluble	Solid	300.0	15089
890-1723-A-4-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	15089

Job ID: 890-1724-1 SDG: 31403236.020.0129

Lab Sample ID: 890-1724-1 Matrix: Solid

Client Sample ID: FS01 Date Collected: 12/10/21 12:50 Date Received: 12/15/21 15:49

Project/Site: Ross Draw 25 N

Client: WSP USA Inc.

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			15018	12/17/21 15:00	KL	XEN MID
Total/NA	Analysis	8021B		1	15044	12/18/21 04:16	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	15380	12/22/21 12:38	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	15468	12/23/21 12:30	AJ	XEN MID
Total/NA	Prep	8015NM Prep			15090	12/17/21 14:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1	15096	12/20/21 14:36	AJ	XEN MID
Soluble	Leach	DI Leach			15089	12/17/21 14:11	CA	XEN MID
Soluble	Analysis	300.0		1	15128	12/20/21 12:42	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

Released to Imaging: 3/14/2022 4:24:37 PM

Inh ID: 890-1724-1

Page 60 of 66

Client: WSP USA Inc.				JOD ID: 890-1724-1	
Project/Site: Ross Draw	25 N			SDG: 31403236.020.0129	
Laboratory: Eurofin	ns Xenco, Midland				
Unless otherwise noted, all an	alytes for this laboratory we	re covered under each acc	reditation/certification below.		
Authority	Pro	ogram	Identification Number	Expiration Date	
Texas	NE	LAP	T104704400-21-22	06-30-22	
The following analytes a	re included in this report. bu	t the laboratory is not certif	ied by the governing authority. This list ma	av include analytes for which	5
the agency does not offe		2			
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		_
					8
					9
					10
					11
					13

Eurofins Xenco, Carlsbad

.

Client: WSP USA Inc. Project/Site: Ross Draw 25 N Job ID: 890-1724-1 SDG: 31403236.020.0129

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	XEN MID
otal BTEX	Total BTEX Calculation	TAL SOP	XEN MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
00.0	Anions, Ion Chromatography	MCAWW	XEN MID
035	Closed System Purge and Trap	SW846	XEN MID
015NM Prep	Microextraction	SW846	XEN MID
I Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 N Job ID: 890-1724-1 SDG: 31403236.020.0129

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1724-1	FS01	Solid	12/10/21 12:50	12/15/21 15:49	1	4
						5
						8
						9
						12
						13

Relinquished by: (Signature)	ECEIPT Seals: Seals: Identificatic Identificatic	Project Name: Project Number:	Name.		City State ZIP: Midland	/ Name:	Project Manager: Tacoma	XEN
	r Shore Temp Blank: Les No 2 Ves No WA Yes No WA Yes No WA Trut Yes No WA Tota Sampled S 12/10/2021 S 12	Ross Draw 25 N 31403236.020.0129	Rose Draw 25 N	3.3849	Midland TX 79705	SA Inc.	Tacoma Morrissey	
Received by: (Signature)	Rush: Due Date: Due Date: Thermometer ID Correction Factor: Total Containers: Total Containers: Depth Number of Containers Popth Number of Containers Depth Number of Containers Total Containers: Total Containers: Total Containers: Popth Number of Containers BRCRA 13PPM Texas 11 A TCLP / SPLP 6010: BRCRA BRCRA <t< td=""><td>Routine</td><td>Turn Around</td><td>Email: conner.shor</td><td>City State ZIP:</td><td>Company Name:</td><td>Bill to: (if different)</td><td>Houston,TX (281) 240-4: Midland,TX (432-704-5 bbs,NM (575-392-7550) Phoenix</td></t<>	Routine	Turn Around	Email: conner.shor	City State ZIP:	Company Name:	Bill to: (if different)	Houston,TX (281) 240-4: Midland,TX (432-704-5 bbs,NM (575-392-7550) Phoenix
Date/Time	Image: Second secon			1sw@	P: Carlsbad, NM 88220		ant) Kyle Littrell	Chain of Custody 200 Dallas,TX (214) 902-0300 San Antonio,7 1440) EL Paso,TX (915)585-3443 Lubbock.T ,AZ (480-355-0900) Atlanta,GA (770-449-880
Relinquished by: (Signature)	B Cd Ca Cr Co Cu Fe Pt Cd Cr Co Cu Pb Mn Mo I affiliates and subcontractors. It assign	ANALYSIS REQUEST	ANAI YSIS REQU	rrissey@wsp.com		*		Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-6 <u>2</u> 0-2000)
ture) Received by: (Signature)			IEST	Deliverables: EDD	Reporting:Level IIevel III	Program: UST/PST PRP [State of Project:	Work (-620-2000) www.xenco.com
ignature) Date/Time	API: 30-015-45585 (ROSS DRAW 25 36 FEDERAL COM #102H) TAT starts the day received by the lab, if received by 4:30pm Sample Comments Si02 Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Hg	Incident #: NAPP2129840452	Work Order Notes	Other:		₿rownfields	Work Order Comments	der No:

Received by OCD: 1/10/2022 1:39:53 PM

Page 63 of 66

12/23/2021

Released to Imaging: 3/14/2022 4:24:37 PM

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1724 List Number: 1

Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 890-1724-1

SDG Number: 31403236.020.0129

List Source: Eurofins Xenco, Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1724 List Number: 2 Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-1724-1 SDG Number: 31403236.020.0129

List Creation: 12/17/21 01:55 PM

List Source: Eurofins Xenco, Midland

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	71332
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved. Please apply 19.15.29.13 NMAC when completing P&A at site.	3/14/2022

Page 66 of 66

Action 71332