Page 6

Incident ID	NAB1809356513
District RP	2RP-4686
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following i	tems must be included in the closure report.
\square A scaled site and sampling diagram as described in 19.15.29.	11 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and re- human health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially inditions that existed prior to the release or their final land use in
Printed Name:Adrian Baker	Title:SSHE Coordinator
Printed Name:Adrian Baker Signature:Bafus	Date:9-13-2021
email:adrian.baker@exxonmobil.com	Telephone:432-236-3808
OCD Only	
Received by: <u>Robert Hamlet</u>	Date: $4/1/2022$
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.
Closure Approved by: <u>Robert Hamlet</u>	Date: <u>4/1/2022</u>
Printed Name: <u>Robert Hamlet</u>	Title: Environmental Specialist - Advanced

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 2 of 123

Incident ID	NAB1809356513
District RP	2RP-4686
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: XTO Energy, Inc	OGRID: 5380
Contact Name: Kyle Littrell	Contact Telephone: (432)-221-7331
Contact email: Kyle_Littrell@xtoenergy.com	Incident #: 2RP-4686
Contact mailing address: 522 W. Mermod, Suite 704 Carlsbad, NM 88220	

Location of Release Source

Latitude <u>N 32.152350</u>

Longitude <u>W -104.018310</u> (NAD 83 in decimal degrees to 5 decimal places)

Site Name: Cattle Baron #001Y	Site Type: Production Well Facility
Date Release Discovered: 3/15/2018	API# (<i>if applicable</i>): 30-015-44130

Unit Letter	Section	Township	Range	County
Р	6	25S	29E	Eddy

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls):	Volume Recovered (bbls):
Produced Water	Volume Released (bbls): 6.5	Volume Recovered (bbls): 6
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

A 2-inch Kimray dump developed a hole due to abrasive corrosion by sand moving through equipment. The dump was replaced. Freestanding fluids were recovered.

Page 3 of 123

If YES, for what reason(s) does the responsible party consider this a major release?
Release volume was less than 25 bbls.
otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have \underline{not} been undertaken, explain why: N/A

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Kyle Littrell	Title: <u>SH&E Supervisor</u>
Signature:	Date:2-21-2020
email: <u>Kyle Littrell@xtoenergy.com</u> Te	elephone:432-221-7331
OCD Only	
Received by:	Date:

Received by OCD: 12/9/2021 1:09:22 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 4 of 12	3
Incident ID	NAB1809356513	
District RP	2RP-4686	
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u><50 (ft</u> bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔀 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖂 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data

Page 3

- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/9/2021	1:09:22 PM State of New Mexico			Page 5 of 123
Form C-141			Incident ID	NAB1809356513
Page 4	Oil Conservation Division	l	District RP	2RP-4686
			Facility ID	
			Application ID	
regulations all operators are req public health or the environmen failed to adequately investigate addition, OCD acceptance of a and/or regulations. Printed Name: <u>Adrian I</u> Signature: <u>Adrian I</u> email: <u>adrian.baker(a</u>	tion given above is true and complete to th uired to report and/or file certain release no it. The acceptance of a C-141 report by the and remediate contamination that pose a th C-141 report does not relieve the operator of Baker Baker Dats	otifications and perform co OCD does not relieve the reat to groundwater, surfa of responsibility for compl Fitle: <u>SSHE Coor</u> Date: <u>9-13-20</u>	prrective actions for rele operator of liability sho ce water, human health iance with any other fea dinator	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by:		Date:		

Page 6

Oil Conservation Division

Incident ID	NAB1809356513
District RP	2RP-4686
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: _____ Adrian Baker ______ Title: _____ SSHE Coordinator _____ Signature: _____ Odvion Bays _____ Date: ______ Telephone: _____432-236-3808 _____ email: ______ adrian.baker@exxonmobil.com **OCD Only** Received by: _____ Date: _____ Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: _____ Date: _____ Printed Name: Title:

WSP USA

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

September 14, 2021

District II New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request Addendum Cattle Baron State #001Y Remediation Permit Number 2RP-4686/Incident Number NAB1809356513 Eddy County, New Mexico

To Whom It May Concern:

WSP USA Inc. (WSP) on behalf of XTO Energy, Inc. (XTO), presents the following addendum to a Closure Request submitted April 10, 2020. This Addendum provides an update to the depth to groundwater determination and excavation activities completed at the Cattle Baron State #001Y (Site), located in Unit P, Section 6, Township 25 South, Range 29 East, in Eddy County, New Mexico (Figure 1), in response to the denial of the Closure Request by the New Mexico Oil Conservation Division (NMOCD). In the denial, NMOCD expressed concern that the depth to groundwater assessment may not be sufficient. Based on the additional depth to groundwater determination and excavation activities described below, XTO is requesting no further action (NFA) for Remediation Permit (RP) Number 2RP-4686/Incident Number NAB1809356513.

BACKGROUND

On April 10, 2020, WSP submitted a Closure Request to the NMOCD for the March 15, 2018 Kimray dump release of 6.5 barrels (bbls) of produced water onto the surface of the well pad. A vacuum truck was immediately dispatched to the Site to recover freestanding fluids; approximately 6 bbls of freestanding fluids were recovered. XTO reported the release to the NMOCD on a Form C-141 on March 30, 2018. The release was assigned RP Number 2RP-4686/ Incident Number NAB1809356513.

The Closure Request detailed site characterization according to Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Based on the site characterization, the following Closure Criteria were applied:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg

wsp

District II Page 2

- TPH: 2,500 mg/kg
- Chloride: 10,000 mg/kg

Site assessment and soil sampling activities were conducted to assess for potential soil impacts resulting from the March 15, 2018, produced water release at the Site. All except 0.5 bbls of released fluids were recovered during initial response activities. Ten potholes (PH01 through PH10) were advanced within and around the release extent to assess for the presence or absence of impacted soil. Laboratory analytical results for the soil samples collected from potholes PH01 through PH10, from depths ranging from 0.5 feet to 19.5 feet bgs, indicated that benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the applied Closure Criteria. The pothole soil sample locations are depicted on Figure 2. Based on visual observations, field screening activities, and laboratory analytical results, no impacted soil, as defined by the Closure Criteria, was identified as a result of the release and no further remediation activities were completed.

On April 24, 2020, NMOCD denied the Closure Request for RP Number 2RP-4686/Incident Number NAB1809356513 for the following reason:

- When nearby wells are used to determine depth to groundwater, the wells should be no further than ½ mile away from the site, and data should be no more than 25 years old, and well construction information should be provided. If evidence of depth to ground water within a ½ mile radius of the site cannot be provided, impacted soils will need to meet Table 1 Closure Criteria for ground water at a depth of 50 feet or less.
 - If you feel the depth to groundwater is >50', a shallow borehole can be drilled to 51' allowing for verification of the depth. If water is not visible after reaching bottom-hole and waiting 72 hours, the OCD will accept this as evidence. We would just need a copy of the driller's log.

ADDITIONAL DEPTH TO GROUNDWATER ASSESSMENT ACTIVITIES

In an effort to confirm the depth to groundwater determination, WSP oversaw installation a soil boring within 0.5 miles of the Site utilizing a truck-mounted hollow-stem auger rig. Soil boring C-4493 was drilled to a depth of 57 feet bgs. The location of the borehole is approximately 625 feet east of the site and is depicted on Figure 1. A WSP geologist logged and described soils continuously. Groundwater was encountered in the soil boring at approximately 37 feet bgs. The borehole was left open for over 72 hours to allow for equilibration of groundwater levels within the temporary boring casing. After the 72-hour waiting period, it was confirmed that groundwater beneath the Site was approximately 37 feet bgs. The Well Record and Log is included in Attachment 1.

Prior to abandoning the soil boring, a water sample (WS01) was collected for analysis of total dissolved solids (TDS) by Standard Method (SM) 2540C. Laboratory analytical results for water

District II Page 3

sample WS01, indicated a TDS concentration of 13,600 milligrams per liter (mg/L). The laboratory analytical report is attached. The borehole was properly abandoned with drill cuttings and hydrated bentonite chips. Based on depth to water less feet 50 bgs, the following revised Closure Criteria apply at the Site:

- Benzene: 10 milligrams per kilogram (mg/kg)
- BTEX: 50 mg/kg
- TPH: 100 mg/kg
- Chloride: 600 mg/kg

TPH and BTEX concentrations were below laboratory detection limits in all pothole delineation samples collected at the Site. Chloride concentrations in the pothole delineation samples ranged from 15 mg/kg to 2,790 mg/kg, at depths ranging from 0.5 feet to 19.5 feet bgs. Due to the small volume (0.5 bbls) of unrecovered released produced water and known variable naturally occurring chloride concentrations in the surrounding area, advancement of background soil borings was scheduled to establish a naturally occurring chloride concentration to be applied at the Site per Table 1 of 19.15.29.12 NMAC, "Numerical limits or natural background level, whichever is greater."

BACKGROUND SOIL BORINGS AND ANALYTICAL RESULTS

On April 12, 2021, WSP personnel returned to the Site to advance background soil borings in order to establish naturally occurring chloride concentrations in the area. Two background soil borings (BG01 and BG02) were advanced via hand auger in the undisturbed pasture area approximately 180 feet south and 350 feet southwest of the release location. Soil from the borings was field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photoionization detector (PID) and Hach[®] chloride QuanTab[®] test strips, respectively. Soil samples were collected from the background soil borings from depths ranging from 4 feet to 20 feet bgs. Field screening results and observations for the background soil borings were logged on lithologic/soil sampling logs, which are included in Attachment 2. The background soil boring locations are shown on Figure 3.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were shipped at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Midland, Texas, for analysis of BTEX following United States Environmental Protection Agency (USEPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following USEPA Method 8015M/D; and chloride following USEPA Method 300.0.

vsp

District II Page 4

Laboratory analytical results for the soil samples collected from background soil borings BG01 and BG02 indicated that naturally occurring chloride concentrations ranged from 48 mg/kg to 1,750 mg/kg at depths ranging from 4 feet to 20 feet bgs.

Six additional background sample locations (BG01 through BG06) were advanced in the pasture area northeast of the Site during January 2020, to characterize background chloride concentrations during remediation of a separate release. Laboratory analytical results for the soil samples collected from background locations BG01 through BG06, indicated that naturally occurring chloride concentrations ranged from 31 mg/kg to 2,030 mg/kg at depths ranging from 1-foot to 4 feet bgs. The background soil boring locations are shown on Figure 3. The background soil sample analytical results are summarized on Table 1.

Based on the laboratory analytical results for the background soil samples, a naturally occurring chloride concentration of 2,030 mg/kg was established for the Site. Upon review of the laboratory analytical results for the original pothole PH01 through PH10 delineation soil samples, two samples were identified with chloride concentrations exceeding a background chloride concentration of 2,030 mg/kg. Delineation sample PH05, collected at 3 feet bgs, contained a chloride concentration of 2,0790 mg/kg and delineation sample PH06, collected at 8 feet bgs contained a chloride concentration of 2,060 mg/kg. Subsequent vertical delineation samples collected at 17 feet bgs from potholes PH05 and PH06, indicated that chloride concentrations were below background levels.

The elevated chloride concentration detected at 8 feet bgs in PH06 is only 30 mg/kg higher than the established background concentration of 2,030 mg/kg and occurs at a similar depth and lithology as other elevated results, including from the background samples. Chloride field screening results from soil samples collected above 8 feet bgs in PH06 are low, indicating the elevated chloride is not the result of migration from the ground surface directly above. These observations suggest the chloride concentration of 2,060 mg/kg is related to naturally occurring conditions and WSP proposes to leave it in place. The soil sample collected from the bottom of PH06 (17 feet bgs) is 878 mg/kg, within background and exhibiting a decreasing trend above depth of groundwater.

EXCAVATION ACTIVITIES

Although the elevated chloride detected in PH05 at 3 feet bgs is likely unrelated to the release, WSP personnel returned to the Site on June 9, 2021, to oversee excavation activities around pothole PH05. To direct excavation activities, WSP screened soil for volatile aromatic hydrocarbons and chloride. Following removal of impacted soil, WSP collected 5-point composite soil samples every 200 square feet from the sidewalls and floor of the excavation. The 5-point composite samples were collected by depositing five aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples SW01 and SW02 were collected from the sidewalls of the excavation from depths ranging from ground

vsp

District II Page 5

surface to 3.5 feet bgs. Composite soil samples FS01 and FS02 were collected from the floor of the excavation from a depth of 3.5 feet bgs. The excavation extent and excavation soil sample locations are depicted on Figure 4. Photographic documentation was conducted during the Site visits. A photographic log is included in Attachment 3. The soil samples were handled and analyzed as previously described. The soil sample analytical results are summarized on Table 1 and the complete laboratory analytical reports are included in Attachment 4.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the March 15, 2018 release of produced water and NMOCD denial of the original Closure Request. Site assessment activities established depth to groundwater as 37 feet bgs. The shallow depth to groundwater affected Closure Criteria, resulting in application of the most stringent standard, including 600 mg/kg chloride. However, the investigation identified naturally occurring elevated chloride concentrations greater than 2,000 mg/kg in the subsurface. Chloride concentrations likely exceeding background were identified in one limited area. The impacted soil was excavated there, and laboratory analytical results for the excavation soil samples indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Site Closure Criteria. Delineation samples indicate all other soil is within range of documented background concentrations.

In addition to the presence of naturally occurring elevated chloride in soil, a background groundwater sample contained elevated TDS exceeding 10,000 mg/L. Groundwater containing greater than 10,000 mg/L TDS is not protectable as derived from the objective of 19.15.30 of the New Mexico Administrative Code (NMAC), which is to abate pollution of groundwater that has a background concentration of 10,000 mg/L or less TDS. The 10,000 mg/L TDS threshold is further used in 20.6.2 NMAC, which states the purpose of the water quality standards are to protect groundwater with concentrations of less than 10,000 mg/L of TDS. If the groundwater is naturally of such poor quality as to be unprotectable, the application of the most stringent standard is unnecessary, as the site characterization does not identify any other nearby receptors that may trigger the most stringent Closure Criteria. The remaining soil represented by laboratory analytical data contains chloride ranging from 15.6 mg/kg to 2,060 mg/kg and meets the originally proposed Closure Criteria of 10,000 mg/kg.

Based on excavation of soil containing chloride concentrations exceeding naturally occurring background concentrations and all remaining chloride concentrations meeting background concentrations and meeting the Closure Criteria established for deeper groundwater because shallow groundwater is not freshwater, XTO respectfully requests no further action for Incident Number RP Number 2RP-4686/ Incident Number NAB1809356513. XTO backfilled the excavation with material purchased locally and recontoured the Site to match pre-existing site conditions.

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096 or Ashley.Ager@wsp.com.

vsp

Page 12 of 123

District II Page 6

Sincerely,

WSP USA, INC.

Anna Byers

Anna Byers Consultant, Geologist

Ashley L. Ager

Ashley L. Ager, P.G. Managing Director, Geologist

cc: Adrian Baker, XTO Ryan Mann, New Mexico State Land Office

Attachments:

- Figure 1 Site Location Map
- Figure 2 Delineation Soil Sample Locations
- Figure 3 Background Soil Sample Locations
- Figure 4 Excavation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Table 2
 Background Soil Sample Analytical Results
- Attachment 1 Well Record and Log
- Attachment 2 Lithologic/Soil Sampling Logs
- Attachment 3 Photographic Log
- Attachment 4 Laboratory Analytical Reports

FIGUR

Released to Imaging: 4/1/2022 3:53:00 PM

P:XTO Energy\GIS\MXD\012918100_CATTLE_BARON_STATE_1Y\012918100_FIG01_RECEPTOR_SL.mxd

Released to Imaging: 4/1/2022 3:53:00 PM

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS

CATTLE BARRON STATE #001Y REMEDIATION PERMIT NUMBER 2RP-4686 EDDY COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	ORO (mg/kg)	GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Ta	ble 1 Closure 0	Criteria	10	50	NE	NE	NE	NE	100	600
Backgro	und Concentra	tion	NE	NE	NE	NE	NE	NE	NE	2,030
DELINEATION SOIL SA	MPLES									
PH01	0.5	10/14/2019	<0.00199	<0.00199	<49.9	<49.9	<49.9	<49.9	<49.9	15.6
PH01A	4.5	07/09/2019	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	611
PH01B	12	07/09/2019	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	356
PH01C	17	07/09/2019	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	1,270
PH02	0.5	07/10/2019	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	769
PH02A	4.5	07/10/2019	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	190
PH03	4.5	07/10/2019	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	1,290
PH03A	12	07/10/2019	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	1,480
PH03B	19.5	07/10/2019	<0.00199	<0.00199	<14.9	<14.9	<14.9	<14.9	<14.9	1,110
PH04	8	07/10/2019	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	1,270
PH04A	15	07/10/2019	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	958
PH05	3	07/11/2019	< 0.00200	< 0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	2,790
PH05A	17	07/11/2019	<0.00198	<0.00198	<15.0	<15.0	<15.0	<15.0	<15.0	1,200
PH06	8	07/16/2019	<0.00198	<0.00198	<15.0	<15.0	<15.0	<15.0	<15.0	2,060
PH06A	17	07/16/2019	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	878
PH07	13	07/16/2019	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	845
PH07A	16	07/16/2019	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	911
PH08	8	07/16/2019	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	1,540
PH08A	17.5	07/16/2019	<0.00201	<0.00201	<15.0	63.3	18.1	63.3	81.4	198
PH09	0.5	10/14/2019	<0.00201	<0.00201	<49.9	<49.9	<49.9	<49.9	<49.9	137
PH09A	8	07/16/2019	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	790
PH09B	18	07/16/2019	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	816
PH010	10	07/15/2019	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	996
PH010A	19.5	07/15/2019	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	683

TABLE 1 SOIL ANALYTICAL RESULTS

CATTLE BARRON STATE #001Y REMEDIATION PERMIT NUMBER 2RP-4686 EDDY COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	ORO (mg/kg)	GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Ta	ble 1 Closure C	Criteria	10	50	NE	NE	NE	NE	100	600
Backgrou	und Concentra	tion	NE	NE	NE	NE	NE	NE	NE	2,030
BACKGROUND SOIL SA	AMPLES									
BG01 (South)	4	04/12/2021	<0.00200	<0.00200	<50.0	<50.0	<50.0	73.3	<50.0	419
BG01A	6	04/12/2021	0.00201	0.00201	<49.9	<49.9	<49.9	67.6	<49.9	1,050
BG01B	10	04/12/2021	<0.00202	<0.00202	<49.8	<49.8	<49.8	66.1	<49.8	1,630
BG01C	14	04/12/2021	<0.00199	<0.00199	<49.9	<49.9	<49.9	71.2	<49.9	1,750
BG01D	16	04/12/2021	0.00207	0.00207	<49.9	<49.9	<49.9	122	<49.9	1,330
BG01E	20	04/12/2021	<0.00199	<0.00199	<49.8	<49.8	<49.8	<49.8	<49.8	313
BG02 (Southwest)	4	04/12/2021	0.00965	0.00965	<50.0	<50.0	<50.0	<50.0	<50.0	48.3
BG02A	6	04/12/2021	<0.00202	<0.00202	<50.1	<50.1	<50.1	<50.1	<50.1	413
BG02B	10	04/12/2021	<0.00199	<0.00199	<49.8	<49.8	<49.8	<49.8	<49.8	409
BG02C	12	04/12/2021	0.00231	0.00231	<49.8	<49.8	<49.8	<49.8	<49.8	664
BG02D	14	04/12/2021	<0.00198	<0.00198	<50.0	<50.0	<50.0	<50.0	<50.0	880
BG02E	16	04/12/2021	<0.00199	<0.00199	<49.9	<49.9	<49.9	<49.9	<49.9	111
BG01 (Northeast)	1	01/23/2020	<0.00200	<0.00200	<49.8	<49.8	<49.8	<49.8	<49.8	31.2
BG01A	3	01/23/2020	<0.00199	<0.00199	<49.8	<49.8	<49.8	<49.8	<49.8	1,610
BG01B	4	01/23/2020	<0.00201	<0.00201	<49.8	<49.8	<49.8	<49.8	<49.8	1,320
BG02 (Northeast)	1	01/23/2020	<0.00200	<0.00200	<50.1	<50.1	<50.1	<50.1	<50.1	288
BG02A	3	01/23/2020	< 0.00201	<0.00201	<50.3	<50.3	<50.3	<50.3	<50.3	575
BG02B	4	01/23/2020	<0.00198	<0.00198	<50.1	<50.1	<50.1	<50.1	<50.1	568
BG03 (Northeast)	1	01/23/2020	<0.00200	<0.00200	<50.1	<50.1	<50.1	<50.1	<50.1	170
BG03A	3	01/23/2020	<0.00199	<0.00199	<50.1	<50.1	<50.1	<50.1	<50.1	924
BG03B	4	01/23/2020	<0.00198	<0.00198	<50.1	<50.1	<50.1	<50.1	<50.1	1,260
BG04 (Northeast)	1	01/23/2020	<0.00200	<0.00200	<50.2	<50.2	<50.2	<50.2	<50.2	35.8
BG04A	3	01/23/2020	<0.00198	<0.00198	<49.8	<49.8	<49.8	<49.8	<49.8	694
BG04B	4	01/23/2020	<0.00200	<0.00200	<50.0	<50.0	<50.0	<50.0	<50.0	809
BG05 (Northeast)	1	01/23/2020	<0.00198	<0.00198	<50.1	<50.1	<50.1	<50.1	<50.1	768
BG05A	3	01/23/2020	<0.00198	<0.00198	<50.2	<50.2	<50.2	<50.2	<50.2	2,030
BG05B	4	01/23/2020	<0.00200	<0.00200	<49.9	<49.9	<49.9	<49.9	<49.9	1,670
BG06 (Northeast)	1	01/23/2020	<0.00200	<0.00200	<50.1	<50.1	<50.1	<50.1	<50.1	244
BG06A	3	01/23/2020	<0.00198	<0.00198	<50.1	<50.1	<50.1	<50.1	<50.1	1,590
BG06B	4	01/23/2020	<0.00200	<0.00200	<50.3	<50.3	<50.3	<50.3	<50.3	1,920

TABLE 1 SOIL ANALYTICAL RESULTS

CATTLE BARRON STATE #001Y REMEDIATION PERMIT NUMBER 2RP-4686 EDDY COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	ORO (mg/kg)	GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Ta	ble 1 Closure C	Criteria	10	50	NE	NE	NE	NE	100	600
Backgrou	und Concentra	tion	NE	NE	NE	NE	NE	NE	NE	2,030
EXCAVATION SOIL SAM	VIPLES									
FS01	3.5	06/09/2021	<0.00200	<0.00400	<49.8	<49.8	<49.8	<49.8	<49.8	575
FS02	3.5	06/09/2021	<0.00199	<0.00398	<49.8	<49.8	<49.8	<49.8	<49.8	568
SW01	0 - 3.5	06/09/2021	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	427
SW02	0 - 3.5	06/09/2021	<0.00199	<0.00398	<49.8	<49.8	<49.8	<49.8	<49.8	148

Notes:

bgs - below ground surface

BTEX - benzene, toluene, ethylbenzene, and total xylenes

mg/kg - milligrams per kilogram

NE - not established

NMOCD - New Mexico Oil Conservation Division

Table 1 - closure criteria for soils impacted by a release per NMAC 19.15.29

DRO - diesel range organics

GRO - gasoline range organics

ORO - oil range organics

TPH - total petroleum hydrocarbons

Bold - indicates result exceeds the applicable regulatory standard or background

< - indicates result is below laboratory reporting limits

Grey text - indicates sample that was excavated

12/16/2020

DII-NMOSE 1900 W 2nd Street Roswell, NM 88201

Hand Delivered to the DII Office of the State Engineer

Re: Well Record C-4493 Pod1

To whom it may concern:

Attached please find a well record and a plugging record, in duplicate, for a one (1) soil borings, C-4493 Pod1.

If you have any questions, please contact me at 575.499.9244 or lucas@atkinseng.com.

Sincerely,

Grow Middle

Lucas Middleton

Enclosures: as noted above

A A CAN

OSE DIT DEC 17 2020 PM1:54

2904 W 2nd St. Roswell, NM 88201 volce: 575.624.2420 fax: 575.624.2421 www.atkinseng.com

DSE DIT DEC 17 2020 PM1:54

ST

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMA

I. GENERAL / WELL OWNERSHIP:

State 1	Engineer W	ell Number: C-4493-POD1			
Well o	wner: XTO	DENERGY (Kyle Littrell)		Phone No.:	432.682.8873
Mailir	ng address:	6401 Holiday Hill Dr.			
	Midland		State:	Texas	Zip code:79707

II. WELL PLUGGING INFORMATION:

1)	Name of well drilling company that plugged well:
2)	New Mexico Well Driller License No.: 1249 Expiration Date: 04/30/21
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s): Shane Eldridge
4)	Date well plugging began: Date well plugging concluded: 11/23/2020
5)	GPS Well Location:Latitude:32deg,9min,9.09secLongitude:-104deg,0min,58.81sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:ft below ground level (bgl), by the following manner: weighted tape
7)	Static water level measured at initiation of plugging: <u>37.05</u> ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer:11/12/2020
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

Version: September 8, 2009 Page 1 of 2

DSEDIT DEC 17 2020 PM1:54

Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with 10) horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary. APPL

	FOI Cath	mier var pluggen, uese	The within the following	g commis.	
<u>Depth</u> (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	("casing perforated first", "open annular space also plugged", etc.)
	0-40' Portland Type I/II Neat Cement	Approx. 124 gallons	BY AND OBTAIN 7.4805 = gallons	Augers	
		cubic feet x 7 cubic yards x 201	7.4805 = gallons 1.97 = gallons		
TTT OLON	A THE LED TH.				

For each interval plugged, describe within the following columns:

III. SIGNATURE:

I, Jackie D. Atkins I, <u>Jackie D. Atkins</u>, say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Jack Atkins

12/15/2020 Date

Signature of Well Driller

Version: September 8, 2009 Page 2 of 2

2020-12-15_C-4493_POD1_OSE_Well Record and Log_CAttle-forsign

Final Audit Report

2020-12-15

Created:	2020-12-15	67 Y
By:	Lucas Middleton (lucas@atkinseng.com)	
Status:	Signed	OSE DII DEC 17 2020 PM1:54
Transaction ID:	CBJCHBCAABAAnq4xUbZe1ADExmp8BGfUeuw8WVrl_oBj	

"2020-12-15_C-4493_POD1_OSE_Well Record and Log_CAttleforsign" History

- Document created by Lucas Middleton (lucas@atkinseng.com) 2020-12-15 - 8:38:23 PM GMT- IP address: 69.21.248.123
- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2020-12-15 - 8:39:02 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com) 2020-12-15 - 11:11:04 PM GMT- IP address: 74.50.153.115
- Document e-signed by Jack Atkins (jack@atkinseng.com) Signature Date: 2020-12-15 - 11:12:51 PM GMT - Time Source: server- IP address: 74.50.153.115
- Agreement completed. 2020-12-15 - 11:12:51 PM GMT

PAGE 1 OF 2

WELL TAG ID NO.

WELL RECORD & LOG OFFICE OF THE STATE ENGINEER

OSEDIT DEC 17 2020 ML:54

www.ose.state.nm.us

GENERAL AND WELL LOCATION	OSE POD NO. (V POD1 (BH- WELL OWNER XTO Energy WELL OWNER 6401 Holiday WELL LOCATION (FROM GPS)	01) NAME(S) (Kyle I MAILING Hill D	Littrell) ADDRESS r. DE TTUDE NGITUDE	GREES 32° -104°	MINUTES 9' 0'	SECONI 9.09 58.81	"N	* DATUM REG	ONAL) REQUIRED: ONE TEN QUIRED: WGS 84		ZIP
1. GI	SE NE SE So license no. 1249	ec. 6 T2	NAME OF LICENSED	DRILLER Jac	kie D. Atkins	5			NAME OF WELL DRI Atkins Eng	ILLING COMPANY tineering Associates, I	
	DRILLING STAI 11/18/20 COMPLETED W	20	DRILLING ENDED 11/18/2020	DEPTH OF COMP temporar	y well materia	al		LE DEPTH (FT) 57		ST ENCOUNTERED (FT) ±39 /EL IN COMPLETED WI 37.05	
MATION	DRILLING FLUI		AIR		ADDITIV	VES - SPECI	FY:	R - SPECIFY:	Lialia	w Stem Auger	
2. DRILLING & CASING INFORMATION	DEPTH (fe		BORE HOLE DIAM (inches)	(include eac	CABLE 1 ATERIAL ANI GRADE	D/OR , and	CA CONN T	ASING VECTION YPE	CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches)
LING & CA	0	57	±8.5		tions of screen) ring- HSA	,	(add coupl	ling diameter)			-
2. DRILI											
ERIAL	DEPTH (fe	et bgl) TO	BORE HOLE DIAM. (inches)		ANNULAR SI EL PACK SIZE				AMOUNT (cubic feet)	METHO	
3. ANNULAR MATERIAL											
FOR	OSE INTERNA	L USE			POD NO		_	WR-2		& LOG (Version 06/3	0/17)

LOCATION

DSE DIT DEC 17 2020 PM1:54

			-	1						P	FP)
	DEPTH (: FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL R-BEARING CAVITIES plemental sheets to fully	OR FRAC	TURE ZONES	· .	WATER BEARING YES / NO		ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	1	1	Caliche, Poorly o	onsolidated, with gravel, C	off -White	-Light Brown		Y 🖌	N	
	1	2	1	Sand, Very fi	ne- grained,poorly-graded,	with calic	he ,Brown		Y √	N	
	2	14	12	Caliche, Moderately co	nsolidated, with gravel, Ot	T-White -	Light Brown, N	Aoist	Y √	N	
	14	29	15	Siltstone, poorly conso	lidated, low plasticity, coho	esive, with	sand, Brown, I	Moist	ү √:	N	
	29	57	28	Silty Sandstone, Ve	ry fine-grained, well conse	lidated, tr	ace pebbles, we	et 🗸	Y :	N	
ц									Y :	N	
VEL									Y :	N	
4. HYDROGEOLOGIC LOG OF WELL	1								Y :	N	
bo									Y	N	
CL									Y	N	
DO.									Y	N	
EOI									Y	N	
SOG									Y I	N	
IQX									Y I	N	
4. B								-	Y	N	
								-		N	1
								-		N	
										N	
			-							N	
								_		N	
		-		1				-		N	
	METHOD I	SED TO E	STIMATE VIELT	OF WATER-BEARING	S STP ATA.			TOTALE	STIMATE	-	
			AIR LIFT		HER - SPECIFY:				IELD (gpi		0.00
NO	WELL TES	T TEST	RESULTS - ATT RT TIME, END TI	ACH A COPY OF DAT ME, AND A TABLE SH	A COLLECTED DURING	WELL 1 ND DRAY	ESTING, INCI WDOWN OVE	LUDING I R THE TE	DISCHAR	GE N ERIO	ÆTHOD, D.
TEST; RIG SUPERVISION	MISCELLA	NEOUS IN	Sa	emporary well materia ack per 5.2 gallons of y ogs adapted from LTE		boring p	lugged using l	Portland 7	Гуре I/II 1	neat	cement 94 lbs
5. TESI	PRINT NAM Shane Eldrid		DRILL RIG SUPE	RVISOR(S) THAT PRO	VIDED ONSITE SUPERV	ISION O	F WELL CONS	STRUCTIC	ON OTHER	R TH	AN LICENSEE:
SIGNATURE	CORRECT I	ECORD C	OF THE ABOVE I	DESCRIBED HOLE AN	EST OF HIS OR HER KN D THAT HE OR SHE WI PLETION OF WELL DRI	LL FILE	GE AND BELL THIS WELL R	EF, THE F ECORD W	OREGON /ITH THE	NG IS STA	S A TRUE AND TE ENGINEER
6. SIGN	Jack &				kie D. Atkins	_		_	12/15/20		
		SIGNAT	TURE OF DRILLI	ER / PRINT SIGNEE	NAME				DAT	ſΈ	
FOF	R OSE INTER	NALUSE					WR-20 WEL	L RECOR	D & LOG	(Ver	sion 06/30/2017
	E NO.				POD NO.		TRN NO.				
LO	CATION					WELL	TAG ID NO.				PAGE 2 OF 2

					WS	P USA			BH or PH Name: BG01	Date: 4/12/2021
					508 West S	Stevens S	treet		Site Name: Cattle Bar	on State 1Y
				Ca	rlsbad, Nev	w Mexico	88220		RP or Incident Number:	2RP-4686
									WSP Job Number: TE012918	3100
		LITH	OLO	GIC / SOI			G		Logged By SL/TC	Method: Hand Auger/ Core Drill
Lat/L	ong: 1729,-104.	018387			Field Scree				Hole Diameter: 4"	Total Depth: 20'
	nents:	010307			Chloride, Pl	ID			4	20
Field	screening \	alues inc	lude 60	0% correction	factor, TD	@ 20'		1		
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)				Lithology/F	Remarks
D	<186	0.0	Ν		2	1 2		0-8'	Sand, fine grained, well so trace silt	orted, brown, no odor, no stain
D	870	0.0	Ν	BG01	4	3 4 5	SP-SM			
D	1651	0.0	Ν	BG01A	6	- 6 - 7				
D	1235	0.0	Ν		8	- 8				
						- 0		8'-18'		well sorted, brown, no odor, no
					-	9			stain, cohesive, low plastic	city
D	2618	0.0	Ν	BG01B	10	10				
						- 11				
D	1235	0.0	Ν		12	12				
					-	13	SP-SC			
D	2304	0.0	Ν	BG01C	14	- 14		14'-18'	no plasticity	
			-		· ·	_			1 2	
					-	15				
D	1894	0.0	Ν	BG01D	16	16				
						- 17				
					-	1/				
D	1139	0.0	Ν		18	18				
						- 19	CCHE	18'-20'	Caliche w/ sandev clay_no	o odor, no stain, brown-tan,
					-	_	CONE	.0 20	medium-fine grain, moder	ately sorted, cohesive, low
Μ	320	0.0	Ν	BG01E	20	20			plasticity TD @ 20'	
						21				
					-	- 00				
					-	22				
						23				
						- 24				
					-					
						25				

_	_	_	_						BH or PH Name:	Date:
					WS	P USA			BG02	4/12/2021
					508 West S	Stevens S	treet		Site Name: Catt	le Baron State 1Y
				Ca	rlsbad, Nev	w Mexico	88220		RP or Incident Number:	2RP-4686
										12918100
		LITH	OLO	GIC / SOI			3		Logged By SL/TC	Method: Hand Auger/ Core Drill
.at/Lor 32.151	ng: 721,-104.0	019470			Field Scree Chloride, Pl				Hole Diameter: 4"	Total Depth: 16'
Comm	ents:		ludo 6(0% correctior	-				l	
		alues inc					성			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)		USCS/Rock Symbol		Litholo	ogy/Remarks
D	<186	0.0	N		2	1 2		0-14'	Sand, fine grained, w trace silt	ell sorted, brown, no odor, no sta
U	<100	0.0			~	- 3				
D	<186	0.0	Ν	BG02	4	4				
D	870	0.0	N	BG02A	6	5 6				
U	070	0.0	IN	DGUZA	6	0 7				
D	<186	0.0	Ν		8	8	SP-SM			
	4400	0.0	N	DOOD		9 10				
D	1139	0.0	Ν	BG02B	10	10 11				
D	1542	0.1	Ν	BG02C	12	12		-12'-14'	Caliche gravel, tan, s	ome
D	1139	0.1	N	BG02D	14	13 14				
D	1139	0.1	IN	DG02D	14	15	CCHE	14'-16'	Caliche w/ sand, no c moderately sorted, ta	odor, no stain, medium-fine graine n-brown
М	268	0.1	N	BG02E	16	- 16				
						17			TD @16'	
					-	_				
					.	18				
						- 19				
						_				
					-	20				
					.	21				
						22				
					-	_				
					.	23				
						24				
						25				

LT Environmental, Inc. 508 West Stevens Street Carlsbad, New Mexico 88220									Identifier: BG01 Project Name:	Date: 1 · 2 · 3 · 2 • RP Number:		
Lat/Long		LITHO	LOGI	C / SOI	L SAMPI Field Scree		Golden child CTB Logged By: 52 Hole Diameter:	2RP-4777 Method: Trackbe Total Depth:				
Comments: TD C 4.5'									4.51			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)		Soil/Rock Type		Litholo	egy/Remarks		
D	C186 794	0-0 0-0	2 2	рноз	0	1	SM	0 - 4. Sili 10	ty sand, Fine	grained, poorly graded, ain, trace caliche		
D D	2157 1894	0.0	2 2	PHOB A PHOBB	3	- 3		-4-	Încrease in c	aliche		
<u>D</u>	1894	0.0	N		5 6 7 8 9 10				TO C 4.5'			

Anacop	P nnental, Inc.		Ca	LT Env i 508 Wes arlsbad, l	ronment st Stevens New Mexic		Identifier: BG02 Project Name: Galdenchild CTB	Date: 1-23-20 RP Number: 2RP-4777		
		LITHO	LOGI	C / SOI	L SAMPI		Logged By: SL	Method: Trackhoe		
Lat/Long: Field Screening: Chlorde							Chloride		Hole Diameter:	Total Depth: 9.51
Commen	ts:	TO	C 4	1.5'						
Moisture Content							Lithology/Remarks			
D D	1139	\$_0 0.0	2 2	рноя	_			Si	-4.5 Itysand, fine gr odor, no stain,	rained, poorly graded, ,trace caliche
D	320	0.0	N	PH09A	3	3	SM			
D	6 40	0.0	N N	P409B	4	4				
					5 6 7 8 9 10 11				Dey.s	

LT Environmental, Inc. 508 West Stevens Street Carlsbad, New Mexico 88220								Identifier: BG03 Project Name:	Date: 1.23.20 RP Number:	
				G / 601				-	Goldon Child CTB	222-4777
.at/Long:		LITHO	LOGI	c / son	Field Screen	ning:		Logged By: SL Hole Diameter:	Total Depth: 4.5'	
PD- ettorid									-	9.3
comment	1		10	04	5'					
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Litholo	gy/Remarks
D	187	0.0	ч	phio					-4.5' Ity Sand, Browner, poorly gra	un, no odonno stain ded i trace caliche
D	224	0.0	N		2		SM			
D	1235	0,0	N	pile +	3	3		-3 -	increase Caliche	- sravel
\$	1235	0.0	N	PHIOA		4				
A	870	0.0	N	TINUS						
-				-	5				To a lo	
									TD @ 4.5	
				-	6					
			-	1.1						
		10			7					
					8					
					0					
					10					
					10					
					11					
				1	12					

LT Environ	LT Environmental, Inc. 508 West Stevens Street Carlsbad, New Mexico 88220							Identifier: BG04	Date: 1-23-20		
Carlsbad, New Mexico 88220							Project Name: Golden child CTB	RP Number: 2 RP-4777			
		LITHO	LOGI	C / SOI	L SAMPI	Logged By: SL	Method: Trackhoe				
.at/Long:					Field Scree	Hole Diameter:	Total Depth: 4.5'				
Comment	ts:		TD (2, 4	.5"		Chloride				
Moisture Content								Lithology/Remarks			
D	<186	0.0	6	PH 11	0			0-4.5' Silty Sand, Brown fine, poorly g	n, no odor, no stain tradeds trace Caliche		
L	C186	0.0	N		2	-	SM				
D	960	0.0	N	PHIIA	3	3	7.1				
D	1139	0. D	N	PHIIB	4	4					
D	1043	0.7	N	-	5			10 1	-1		
						-		TD CY	.5		
	222										
		_			6						
					-						
			-		7						
	-				8						
					-						
					9						
					10	-					
					11						
					12						

LT Environ	P mental, Inc.			LT Envi 508 Wes	i ronment st Stevens Vew Mexi	al, Inc. Street			Identifier: BG05	Date: 1-23-20				
2	51		C	arlsbad, l	Vew Mexi	co 88220)		Project Name:	RP Number:				
	2						Goldenchild CTB	2RP-4777						
		LITHO	LOGI	C / SOI	L SAMPI	Logged By: SL	Method: Track Loe							
Lat/Long: Field Screening. (PID) Phloride									Hole Diameter:	Total Depth; 7.5 '				
Comment	ts:	TO	C4	.5'		111	quinting			1.5				
Moisture Content							Lithology/Remarks							
D	0070 1547	0.0	Ч	pHIZ			Sm	0- Si fir	4.5' Ify Sand, Brow Le grained, poorly	m, no odor, no stain, , sorted, trace caliché				
D	2157	0.0	N	PHI2A	3 _	3		be the	rease caliche c	gravel				
D	1424		N	PHIZB	4	4		-1						
					5				70 C. 4.5'					
LT Environ	P mental, Inc.		Ca	508 Wes	ronment st Stevens New Mexi	Street)		Identifier: BG06 Project Name:	Date: 1.23.20 RP Number: 2.2 P. 47772				
---	----------------------	----------------	----------	----------------	--	-----------------------	-------------------	----	--	--	--	--	--	--
Lat/Long	~	LITHO	LOGIC	C / SOII	L SAMPI)G	-	Goldench; 18 CTB Logged By: SL Hole Diameter:	22P-4777 Method: Trackbe Total Depth: 4.51				
Commen		-	T	Des	1	(m) (Chlorde	-		10111 20011 4.51				
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	ple #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Litholog	Lithology/Remarks				
D 320 00 N P D 960 0.0 N D 2022 0.0 N P						1 - - - -	Sm		-4.5' Silly Sand, Bri ain, fine gra trace raliche	own, no odor, no nived, poorly graded				
0 0 0	2022 2022 165)		4 4 6	PHI3A PHI3B	3	3		-4	-4- caliche gradel movease					
				120					TD C 4.51					

wsp

	PHOTOGRAPHIC LOG	
XTO Energy, Inc.	Cattle Baron State #001Y	2RP-4686 / Incident ID
	Eddy County, New Mexico	NAB1809356513

vsp

	PHOTOGRAPHIC LOG	
XTO Energy, Inc.	Cattle Baron State #001Y	2RP-4686 / Incident ID
	Eddy County, New Mexico	NAB1809356513

Released to Imaging: 4/1/2022 3:53:00 PM

Received by (OCD :	12/9/20	021 1:	09:22	РМ
---------------	--------------	---------	--------	--------------	----

Project Id:

Project Location:

Contact:

eurofins Environment Testing Xenco

TE012918100

Dan Moir

Certificate of Analysis Summary 678869

LT Environmental, Inc., Arvada, CO

Project Name: Cattle Baron Stole 1Y

Date Received in Lab:Tue 11.24.2020 08:00Report Date:12.02.2020 15:55Project Manager:Jessica Kramer

	Lab Id:	678869-00	1			
Analysis Requested	Field Id:	BH01				
Anulysis Kequesieu	Depth:					
	Matrix:	WATER				
	Sampled:	11.23.2020 1	5:55			
Chloride by EPA 300	Extracted:	11.25.2020 1	0:40			
	Analyzed:	12.01.2020 1	1:38			
	Units/RL:	mg/L	RL			
Chloride		7420 X	250			
TDS by SM2540C	Extracted:					
SUB: T104704215-20-38	Analyzed:	11.30.2020 1	2:24			
	Units/RL:	mg/L	RL			
Total Dissolved Solids		13600	5.00			

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 1 of 12

eurofins Environment Testing Xenco

Analytical Report 678869

Page 43 of 123

for

LT Environmental, Inc.

Project Manager: Dan Moir

Cattle Baron Stole 1Y TE012918100

12.02.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2020-014), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

12.02.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 678869 Cattle Baron Stole 1Y Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 678869. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 678869 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession kenner

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Sample Cross Reference 678869

LT Environmental, Inc., Arvada, CO

Cattle Baron Stole 1Y

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH01	W	11.23.2020 15:55		678869-001

.

eurofins Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: Cattle Baron Stole 1Y

Project ID: *TE012918100* Work Order Number(s): 678869
 Report Date:
 12.02.2020

 Date Received:
 11.24.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3143570 Chloride by EPA 300

Lab Sample ID 678869-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 678869-001.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Certificate of Analytical Results 678869

LT Environmental, Inc., Arvada, CO

Cattle Baron Stole 1Y

Sample Id: BH01		Matrix:	Water		Date Received:11.24.2020 08:00						
Lab Sample Id: 678869-001		Date Collect	Date Collected: 11.23.2020 15:55								
Analytical Method: Chloride by EI	PA 300				Prep Method: E30	0P					
Tech: MAB											
Analyst: MAB		Date Prep:	11.25.2020 10:40		% Moisture:						
Seq Number: 3143570											
Parameter	Cas Number	Result F	8L	Units	Analysis Date	Flag	Dil				
Chloride	16887-00-6	7420	250	mg/L	12.01.2020 11:38	Х	500				

Analytical Me	ethod: TDS by SM2540	C						
Tech:	LET							
Analyst:	LET					% Moisture: SUB: T104704215-	20.28	
Seq Number:	3143445					SUB. 1104/04215-	-20-38	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Total Dissolved	Solids	1642222	13600	5.00	mg/L	11.30.2020 12:24		1

.

Xenco

Environment Testing

🔅 eurofins

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected										
RL Reporting Limit											
MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection											
PQL Practical Quantitation Limit	MQL Method Qu	antitation Limit	LOQ Limit of Quantitatio	n							
DL Method Detection Limit	DL Method Detection Limit										
NC Non-Calculable											
SMP Client Sample		BLK	Method Blank								
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate							
MD/SD Method Duplicate/Sam	ple Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate							
+ NELAC certification not offered	l for this compound.										

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Xenco

Environment Testing

🔅 eurofins

QC Summary 678869

LT Environmental, Inc.

Cattle Baron Stole 1Y

Analytical Method: Seq Number: MB Sample Id: Parameter Chloride	Chloride by EPA 30 3143570 7715977-1-BLK MB Result <0.500	00 Spike Amount 25.0		Matrix: nple Id: LCS %Rec 96	Water 7715977- LCSD Result 23.7	I-BKS LCSD %Rec 95	Limits 90-110		rep Metho Date Pre D Sample RPD Limit 20	ep: 11.2	0P 25.2020 5977-1-BSD Analysis Date 12.01.2020 11:16	Flag	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 3143570 678869-001)0		Matrix: nple Id:	Water 678869-001 S			Prep Method: E300P Date Prep: 11.25.2020 MSD Sample Id: 678869-001 SD					
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Chloride	7420	10000	16300	89	16200	88	90-110	1	20	mg/L	12.01.2020 11:43	Х	
Analytical Method: Seq Number: MB Sample Id: Parameter Total Dissolved Solids	TDS by SM2540C 3143445 3143445-1-BLK MB Result <5.00	Spike Amount 1000		Matrix: nple Id: LCS %Rec 95	Water 3143445- LCSD Result 1000	-BKS LCSD %Rec 100	Limits 80-120	LCSI %RPD 5	D Sample RPD Limit 10	e Id: 314 Units mg/L	3445-1-BSD Analysis Date 11.30.2020 12:24	Flag	
Analytical Method: Seq Number: Parent Sample Id:	TDS by SM2540C 3143445 678760-001			Matrix: nple Id:	Drinking ' 678760-00								
Parameter Total Dissolved Solids	Parent Result 1130		MD Result 1220					%RPD 8	RPD Limit 10	Units mg/L	Analysis Date 11.30.2020 12:24	Flag	
Analytical Method: Seq Number: Parent Sample Id: Parameter Total Dissolved Solids	TDS by SM2540C 3143445 679029-001 Parent Result 2010			Matrix: nple Id:	Water 679029-00)1 D		%RPD 0	RPD Limit 10	Units mg/L	Analysis Date 11.30.2020 12:24	Flag	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference $\label{eq:c-A} \begin{array}{l} [D] = 100^{*}(C\text{-}A) \ / \ B \\ RPD = 200^{*} \ | \ (C\text{-}E) \ / \ (C\text{+}E) \ | \\ [D] = 100^{*} \ (C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 8 of 12

```
Final 1.000
```

RAT 19	Relinquished by: (Signature)	vtice: Signature of this document an service. Xenco will be liable only fo Xenco. A minimum charge of \$75.00	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed							Sto	Sample Identification	Sample Custody Seals: Y		Received Intact:	Temperature (°C):	SAMPLE RECEIPT	Sampler's Name: Benjamin Belill	ZRP	Project Number:	1.1010.0049	- 111	e ZIP:		Company Name: LT Env	Project Manager: Dan Moir	age
4	re) Received by: (Sig	otice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions is service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the contro f Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	200.8 / 6020: 8RCRA Metal(s) to be analyzed TCLP							W 11/23/20 1555	Matrix Date Time Sampled	Yes (No / N/A Total Containers:	Yes No N/A Correction Factor:	NO		Temp Blank: Yes No W	in Belill	24686	CIL Deron Stok Li	0.3048		Midland TX 79705	3300 North A Street	LT Environmental, Inc., Permian office		Hobbs, NM
11	(Signature)	alid purchase order from clier any responsibility for any los le of \$5 for each sample subm	RCRA 13PPM Texas 11 A							1	pled Depth Numb	2	2-0-2		5	Wet Ice: Yes No	Due Date:	Rush:	15	Email: bbelil@ltenv.com	City, State ZIP:	OF. 01-1	Address:	Company Name:	Bill to: (if different)	Midland, TX (432-704-544 (575-392-7550) Phoenix, AZ
Ly/20 @ 0800 2	Date/Time	nt company to Xenco, its af ises or expenses incurred b itted to Xenco, but not ana	Al Sb As Ba Be B Cd A Sb As Ba Be Cd Cr		1						Chlorid			•						om			N C		Kile 1	10) EL Paso,TX (915)585 Z (480-355-0900) Atlanta
	Relinquished by: (Signature)	filiates and subcontractors. It assign by the client if such losses are due to lyzed. These terms will be enforced u	Cd Ca Cr Co Cu Fe Pb Mg Mn Mo N Cr Co Cu Pb Mn Mo Ni Se Ag Ti U			Mari	121/12	1 1		×	70	2							ANALYSIS REQUEST				and two	a los	ittall	Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa FL (813-620-2000)
	re) Received by: (Signature)	tractors. It assigns standard terms and conditions losses are due to circumstances beyond the control will be enforced unless previously negotiated.	Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Mo Ni Se Ag TI U 1631																JEST	Deliverables: EDD	Reporting:Level II		State of Project:			
			SiO2 Na Sr TI Sn U V Zn 1631/245.1/7470 /7471 : Hg								Sample	TAT starts the lab, if rece							Work	ADaPT Other:	III ST/UST RRP	1	Brownfields RC	Order Comme	Work Order Comment	
	Date/Time		1 V Zn 70 / 7471 : Hg								Sample Comments	TAT starts the day recevied by the lab, if received by 4:30pm							Work Order Notes	er:			uperfund	1	9	1

Inter-Office Shipment

.

IOS Number : **73870**

Date/Time:	11.24.20	020	Created by:	Cloe Clifton		Please send report to: Jessica Kramer							
Lab# From:	Carlsba	ad	Delivery Prior	rity:		Address:	Address: 1089 N Canal Street						
Lab# To:	Housto	n	Air Bill No.: 772177764388		8	E-Mail:	jessica.kramer	jessica.kramer@eurofinset.com					
Sample Id	Matrix Clie	ent Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign			
678869-001	W BHO)1	11.23.2020 15:55 S	SM2540C	TDS by SM2540C	12.02.2020 11.30.2020 15:55 JKR TDS							
Inter Office	Shipment	or Sample C	omments:										
Relinquisl	hed By:	Cloe Clifton	n			Received By:	Sandra To						
Date Reli	inquished:	11.24.2020				Date Received:	11.25.2020)					
						Cooler Tempera	ture: 0.8						

Eurofins Xenco, LLC

Inter Office Report- Sample Receipt Checklist

Sent To: Houston Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient IOS #: 73870 Temperature Measuring device used : HOU-188 Sent By: Date Sent: 11.24.2020 02.43 PM Cloe Clifton Received By: Sandra Torres Date Received: 11.25.2020 09.30 AM Sample Receipt Checklist Comments .8 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received with appropriate temperature? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 *Custody Seals Signed and dated for Containers/coolers N/A #6 *IOS present? Yes #7 Any missing/extra samples? No #8 IOS agrees with sample label(s)/matrix? Yes Yes #9 Sample matrix/ properties agree with IOS? Yes #10 Samples in proper container/ bottle? #11 Samples properly preserved? Yes #12 Sample container(s) intact? Yes #13 Sufficient sample amount for indicated test(s)? Yes #14 All samples received within hold time? Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

		Nonconformance Do	ocumentation	
Contact:		Contacted by :	Date:	
	Checklist reviewed by:	C. 4		

Sandra Torres

Date: 11.25.2020

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature Range: 0 - 6 degC	
Date/ Time Received: 11.24.2020 08.00.00 AM	Air and Metal samples Acceptable Range: Ambient	
Work Order #: 678869	Temperature Measuring device used : T_NM_007	
Sample Re	ceipt Checklist Comments	
#1 *Temperature of cooler(s)?	1.4	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6*Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	Νο	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes Samples received in bulk containers.	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	Yes Samples sent to Stafford.	
#18 Water VOC samples have zero headspace?	No	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 11.24.2020

Checklist reviewed by: Jessica Wramer

Date: 11.25.2020

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-793-1

Laboratory Sample Delivery Group: TE012918100 Client Project/Site: Cattle Baron State 1Y

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Aimee Cole

Authorized for release by: 6/15/2021 12:33:38 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert

www.eurofinsus.com/Env Released to Imaging: 4/1/2022 3:53:00 PM

Visit us at:

Laboratory Job ID: 890-793-1 SDG: TE012918100

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	21

Definitions/Glossary

Client: WSP USA Inc.
Project/Site: Cattle Baron State 1Y

Job ID: 890-793-1 SDG: TE012918100

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		5
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	8
Glossary		Q
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	4.9
DL	Detection Limit (DoD/DOE)	13
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
	Limit of Data streng (DatD/DOC)	

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

 MPN
 Most Probable Number

 MQL
 Method Quantitation Limit

 NC
 Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent

POSPositive / PresentPQLPractical Quantitation Limit

PRES Presumptive

QC Quality Control

 RER
 Relative Error Ratio (Radiochemistry)

 RL
 Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 890-793-1 SDG: TE012918100

Job ID: 890-793-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-793-1

Receipt

The samples were received on 6/9/2021 4:32 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

Receipt Exceptions

The following samples analyzed for method BTEX 8021 were received and analyzed from an unpreserved bulk soil jar: FS01 (890-793-1), FS02 (890-793-2), SW01 (890-793-3) and SW02 (890-793-4).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: FS01 (890-793-1), FS02 (890-793-2), SW01 (890-793-3) and SW02 (890-793-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

RL

0.00200

0.00200

0.00200

0.00400

0.00200

0.00400

0.00400

Limits

70 - 130

70 - 130

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

06/11/21 09:00

06/11/21 09:00

06/11/21 09:00

06/11/21 09:00

06/11/21 09:00

06/11/21 09:00

06/11/21 09:00

Prepared

06/11/21 09:00

06/11/21 09:00

Dil Fac

1

1

1

1

1

1

Dil Fac

Job ID: 890-793-1 SDG: TE012918100

Client Sample ID: FS01

Date Collected: 06/09/21 13:00 Date Received: 06/09/21 16:32

Project/Site: Cattle Baron State 1Y

Sample Depth: - 3.5

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

Total BTEX

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client: WSP USA Inc.

Lab Sample ID: 890-793-1

Analyzed

06/11/21 11:39

06/11/21 11:39

06/11/21 11:39

06/11/21 11:39

06/11/21 11:39

06/11/21 11:39

06/11/21 11:39

Analyzed

06/11/21 11:39

06/11/21 11:39

Lab Sample ID: 890-793-2

Matrix: Solid

Matrix: Solid

Method: 8015B NM - Diesel Range Orgar	ics	(DF	(O	(GC)	
	-		-		

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00400 U

<0.00200 U

<0.00400 U

<0.00400 U

%Recovery Qualifier

105

74

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		06/11/21 15:21	06/14/21 00:25	1	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		06/11/21 15:21	06/14/21 00:25	1	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/11/21 15:21	06/14/21 00:25	1	
Total TPH	<49.8	U	49.8	mg/Kg		06/11/21 15:21	06/14/21 00:25	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130	06/11/21 15:21	06/14/21 00:25	1
o-Terphenyl	82		70 - 130	06/11/21 15:21	06/14/21 00:25	1

Method: 300.0 - Anions, I	lon Chromatography - Soluble
A seals de	Desult Ouslifier

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	575	F1	5.02	mg/Kg			06/14/21 14:28	1

Client Sample ID: FS02 Date Collected: 06/09/21 13:03

Date Received: 06/09/21 16:32

Sample Depth: - 3.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:00	1
Toluene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:00	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:00	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/11/21 09:00	06/11/21 12:00	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:00	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/11/21 09:00	06/11/21 12:00	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		06/11/21 09:00	06/11/21 12:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			06/11/21 09:00	06/11/21 12:00	1
1,4-Difluorobenzene (Surr)	128		70 - 130			06/11/21 09:00	06/11/21 12:00	1

Eurofins Xenco, Carlsbad

Client Sample Results

Job ID: 890-793-1 SDG: TE012918100

Matrix: Solid

Lab Sample ID: 890-793-2

Lab Sample ID: 890-793-3

Matrix: Solid

1

Client Sample ID: FS02

Project/Site: Cattle Baron State 1Y

Date Collected: 06/09/21 13:03 Date Received: 06/09/21 16:32

Sample Depth: - 3.5

Client: WSP USA Inc.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		06/11/21 15:21	06/14/21 01:28	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		06/11/21 15:21	06/14/21 01:28	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/11/21 15:21	06/14/21 01:28	1
Total TPH	<49.8	U	49.8	mg/Kg		06/11/21 15:21	06/14/21 01:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130			06/11/21 15:21	06/14/21 01:28	1
o-Terphenyl	83		70 - 130			06/11/21 15:21	06/14/21 01:28	1

alyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
oride	568	5.00	mg/Kg			06/14/21 14:42	1

Client Sample ID: SW01

Date Collected: 06/09/21 13:45 Date Received: 06/09/21 16:32 Sample Depth: 0 - 3.5

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile Orga	nic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:21	1
Toluene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:21	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:21	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/11/21 09:00	06/11/21 12:21	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:21	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/11/21 09:00	06/11/21 12:21	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		06/11/21 09:00	06/11/21 12:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130			06/11/21 09:00	06/11/21 12:21	1

70 - 130

116

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		06/11/21 15:21	06/14/21 01:48	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		06/11/21 15:21	06/14/21 01:48	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/11/21 15:21	06/14/21 01:48	1
Total TPH	<50.0	U	50.0	mg/Kg		06/11/21 15:21	06/14/21 01:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130			06/11/21 15:21	06/14/21 01:48	1
o-Terphenyl	93		70 - 130			06/11/21 15:21	06/14/21 01:48	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	427		4.99	mg/Kg			06/14/21 14:47	1

Eurofins Xenco, Carlsbad

5

06/11/21 09:00 06/11/21 12:21

Project/Site: Cattle Baron State 1Y

Client Sample Results

Job ID: 890-793-1 SDG: TE012918100

Lab Sample ID: 890-793-4

Matrix: Solid

5

Date Collected: 06/09/21 13:47 Date Received: 06/09/21 16:32 Sample Depth: 0 - 3.5

Client Sample ID: SW02

Client: WSP USA Inc.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:42	1
Toluene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:42	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:42	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/11/21 09:00	06/11/21 12:42	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/11/21 09:00	06/11/21 12:42	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/11/21 09:00	06/11/21 12:42	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		06/11/21 09:00	06/11/21 12:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	105		70 - 130			06/11/21 09:00	06/11/21 12:42	
1,4-Difluorobenzene (Surr)	123		70 - 130			06/11/21 09:00	06/11/21 12:42	1
Method: 8015B NM - Diesel Rang								
Mathedrood SD NM Discol Down								
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics		Qualifier	RL 49.8	Unit mg/Kg	<u>D</u>	Prepared 06/11/21 15:21	Analyzed 06/14/21 02:09	Dil Fac
Analyte	Result	Qualifier U			<u>D</u>			Dil Fae
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.8	Qualifier U	49.8	mg/Kg	<u>D</u>	06/11/21 15:21	06/14/21 02:09	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.8	Qualifier U U	49.8	mg/Kg	<u> </u>	06/11/21 15:21	06/14/21 02:09	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.8 <49.8	Qualifier U U U	49.8	mg/Kg	<u>D</u>	06/11/21 15:21 06/11/21 15:21	06/14/21 02:09 06/14/21 02:09	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.8 <49.8 <49.8	Qualifier U U U U	49.8 49.8 49.8	mg/Kg mg/Kg mg/Kg	<u>D</u>	06/11/21 15:21 06/11/21 15:21 06/11/21 15:21	06/14/21 02:09 06/14/21 02:09 06/14/21 02:09	· · · · · · · · · · · · · · · · · · ·
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH	Result <49.8 <49.8 <49.8 <49.8	Qualifier U U U U	49.8 49.8 49.8 49.8 49.8	mg/Kg mg/Kg mg/Kg	<u> </u>	06/11/21 15:21 06/11/21 15:21 06/11/21 15:21 06/11/21 15:21	06/14/21 02:09 06/14/21 02:09 06/14/21 02:09 06/14/21 02:09	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH Surrogate	Result <49.8	Qualifier U U U U	49.8 49.8 49.8 49.8 49.8 Limits	mg/Kg mg/Kg mg/Kg	<u> </u>	06/11/21 15:21 06/11/21 15:21 06/11/21 15:21 06/11/21 15:21 Prepared	06/14/21 02:09 06/14/21 02:09 06/14/21 02:09 06/14/21 02:09 Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane	Result <49.8	Qualifier U U U Qualifier	49.8 49.8 49.8 49.8 <u>49.8</u> <u>Limits</u> 70 - 130	mg/Kg mg/Kg mg/Kg	<u> </u>	06/11/21 15:21 06/11/21 15:21 06/11/21 15:21 06/11/21 15:21 Prepared 06/11/21 15:21	06/14/21 02:09 06/14/21 02:09 06/14/21 02:09 06/14/21 02:09 <u>Analyzed</u> 06/14/21 02:09	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl	Result <49.8	Qualifier U U U Qualifier	49.8 49.8 49.8 49.8 <u>49.8</u> <u>Limits</u> 70 - 130	mg/Kg mg/Kg mg/Kg	<u>D</u>	06/11/21 15:21 06/11/21 15:21 06/11/21 15:21 06/11/21 15:21 Prepared 06/11/21 15:21	06/14/21 02:09 06/14/21 02:09 06/14/21 02:09 06/14/21 02:09 <u>Analyzed</u> 06/14/21 02:09	Dil Fac

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

-			
		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-793-1	FS01	105	74
890-793-2	FS02	99	128
890-793-3	SW01	85	116
890-793-4	SW02	105	123
LCS 880-3990/1-A	Lab Control Sample	102	125
LCSD 880-3990/2-A	Lab Control Sample Dup	90	110
MB 880-3955/5-A	Method Blank	103	93
MB 880-3990/5-A	Method Blank	109	106
Surragata Lagand			
Surrogate Legend			

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-793-1	FS01	84	82
890-793-1 MS	FS01	92	84
890-793-1 MSD	FS01	98	86
890-793-2	FS02	84	83
890-793-3	SW01	90	93
890-793-4	SW02	86	88
LCS 880-4045/2-A	Lab Control Sample	93	86
LCSD 880-4045/3-A	Lab Control Sample Dup	90	86
MB 880-4045/1-A	Method Blank	96	101

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

Page 61 of 123

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-3955/5-A									Client Sa	mple ID: Metho	
Matrix: Solid										Prep Type:	Total/NA
Analysis Batch: 3957										Prep Bate	ch: 3955
	MB	MB									
Analyte	Result	Qualifier	RL		Unit		D	P	repared	Analyzed	Dil Fac
Benzene	0.002142		0.00200		mg/K	g	_	06/1	0/21 09:06	06/10/21 12:42	1
Toluene	<0.00200	U	0.00200		mg/K	g		06/1	0/21 09:06	06/10/21 12:42	1
Ethylbenzene	<0.00200	U	0.00200		mg/K	g		06/1	0/21 09:06	06/10/21 12:42	1
n-Xylene & p-Xylene	<0.00400	U	0.00400		mg/K	g		06/1	0/21 09:06	06/10/21 12:42	
o-Xylene	<0.00200	U	0.00200		mg/K	g		06/1	0/21 09:06	06/10/21 12:42	
Xylenes, Total	<0.00400	U	0.00400		mg/K	g		06/1	0/21 09:06	06/10/21 12:42	
Total BTEX	<0.00400	U	0.00400		mg/K	g		06/1	0/21 09:06	06/10/21 12:42	1
	MB	МВ									
Surrogate	%Recovery	Qualifier	Limits					P	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130						0/21 09:06	06/10/21 12:42	1
1,4-Difluorobenzene (Surr)	93		70 - 130					06/1	0/21 09:06	06/10/21 12:42	1
_ab Sample ID: MB 880-3990/5-A									Client Sa	mple ID: Metho	od Blank
Matrix: Solid										Prep Type:	
Analysis Batch: 3957										Prep Bate	
Analysis Daten. 0007	МВ	мв								Trop Bat	
Analyte		Qualifier	RL		Unit		D	P	repared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/K	g	_	06/1	0/21 14:34	06/10/21 23:41	1
Foluene	<0.00200	U	0.00200		mg/K	g		06/1	0/21 14:34	06/10/21 23:41	1
Ethylbenzene	<0.00200	U	0.00200		mg/K	g		06/1	0/21 14:34	06/10/21 23:41	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/K			06/1	0/21 14:34	06/10/21 23:41	1
p-Xylene	<0.00200	U	0.00200		mg/K	-		06/1	0/21 14:34	06/10/21 23:41	
Xylenes, Total	<0.00400		0.00400		mg/K				0/21 14:34	06/10/21 23:41	
Total BTEX	<0.00400		0.00400		mg/K				0/21 14:34	06/10/21 23:41	1
	МВ	МВ									
Surrogate	%Recovery	Qualifier	Limits					P	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130					06/1	0/21 14:34	06/10/21 23:41	1
1,4-Difluorobenzene (Surr)	106		70 - 130					06/1	0/21 14:34	06/10/21 23:41	1
Lab Sample ID: LCS 880-3990/1-A							C	lient	Sample	D: Lab Control	Sample
Matrix: Solid										Prep Type:	
Analysis Batch: 3957										Prep Bate	
			Spike	LCS	LCS					%Rec.	
Analyte			Added		Qualifier	Unit		D	%Rec	Limits	
Benzene			0.100	0.1030		mg/Kg			103	70 - 130	
Foluene			0.100	0.1063		mg/Kg			106	70 - 130	
Ethylbenzene			0.100	0.1003		mg/Kg			100	70 - 130	
n-Xylene & p-Xylene			0.100	0.2014		mg/Kg			100	70 - 130	
			0.200	0.2014		mynty			101	10 - 100	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	125		70 - 130

o-Xylene

0.100

0.1001

mg/Kg

100

70 - 130

QC Sample Results

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y Job ID: 890-793-1 SDG: TE012918100

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-399 Matrix: Solid											-	ab Control : Prep Ty		
Analysis Batch: 3957														: 399(
Analysis Baten. 0001				Spike		LCSD	LCSD					%Rec.	Daten	RPI
Analyte				Added			Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Benzene				0.100	(0.08838		mg/Kg		_	88	70 - 130	15	3
Toluene				0.100		0.09654		mg/Kg			97	70 - 130	10	3
Ethylbenzene				0.100		0.08602		mg/Kg			86	70 - 130	15	3
m-Xylene & p-Xylene				0.200		0.1727		mg/Kg			86	70 - 130	15	3
o-Xylene				0.100	(0.08626		mg/Kg			86	70 - 130	15	3
			_											
• · · ·	LCSD													
Surrogate	%Recovery	Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)	90			70 - 130 70 - 120										
1,4-Difluorobenzene (Surr)	110			70 - 130										
ethod: 8015B NM - Diese	el Range Or	gar	nics (DR	20) (GC)										
Lab Sample ID: MB 880-4045/	1-A										Client Sa	mple ID: M	ethod	Blan
Matrix: Solid												Prep Ty	pe: To	tal/N
Analysis Batch: 4069												Prep	Batch	: 40 4
		MB	MB											
Analyte	R	esult	Qualifier		RL		Unit		D	P	repared	Analyzed	L	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<	50.0	U	5	50.0		mg/ł	Kg		06/1	1/21 15:21	06/13/21 23	:23	
Diesel Range Organics (Over C10-C28)	<	50.0	U	5	50.0		mg/ł	Kg		06/1	1/21 15:21	06/13/21 23	:23	
Oll Range Organics (Over C28-C36)	<	50.0	U	5	50.0		mg/ŀ	٢g		06/1	1/21 15:21	06/13/21 23	:23	
Fotal TPH	<	50.0	U	5	50.0		mg/ł	۲g		06/1	1/21 15:21	06/13/21 23	:23	
		ΜВ	МВ											
Surrogate	%Reco	very	Qualifier	Limits	;					P	repared	Analyzed	<u> </u>	Dil Fa
1-Chlorooctane		96		70 - 13	30					06/1	1/21 15:21	06/13/21 23	:23	
p-Terphenyl		101		70 - 13	30					06/1	1/21 15:21	06/13/21 23	:23	
Lab Sample ID: LCS 880-4045	/ 2-A								С	lient	Sample	ID: Lab Cor	trol S	ampl
Matrix: Solid												Prep Ty	pe: To	tal/N
Analysis Batch: 4069												Prep	Batch	: 40 4
				Spike		LCS	LCS					%Rec.		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000		864.4		mg/Kg		_	86	70 - 130		
(GRO)-C6-C10														
Diesel Range Organics (Over C10-C28)				1000		1006		mg/Kg			101	70 - 130		
	LCS	LCS	;											
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane	93			70 - 130										
o-Terphenyl	86			70 - 130										
Lab Sample ID: LCSD 880-404	5/3-A							Clie	nt	Sam	ple ID: L	ab Control	Samp	le Du
Matrix: Solid												Prep Ty	pe: To	tal/N
Analysis Batch: 4069												Prep		
-				Spike		LCSD	LCSD					%Rec.		RP
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim
Gasoline Range Organics				1000		800.7		mg/Kg		_	80	70 - 130	8	2
(GRO)-C6-C10						-		0.0					-	

Gasoline Range Organic (GRO)-C6-C10

Eurofins Xenco, Carlsbad

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Job ID: 890-793-1 SDG: TE012918100

Page 64 of 123

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-404 Matrix: Solid	5/3-A					CI	ient Sa	mple ID:	Lab Contro Prep 1	l Sampl Type: To	
Analysis Batch: 4069										p Batch	
,			Spike	LCSD	LCSD				%Rec.		RPI
Analyte			Added		Qualifie	r Unit	D	%Rec	Limits	RPD	Limi
Diesel Range Organics (Over C10-C28)			1000	982.3		mg/Kg		98	70 - 130	2	20
010-020)											
		LCSD									
Surrogate	%Recovery	Qualifier	Limits	_							
1-Chlorooctane	90		70 - 130								
o-Terphenyl	86		70 - 130								
Lab Sample ID: 890-793-1 MS									Client Sa	mple ID:	: FS0 ⁻
Matrix: Solid										ype: To	
Analysis Batch: 4069										p Batch	
	Sample	Sample	Spike	MS	MS				%Rec.	p Daton	
Analyte	-	Qualifier	Added		Qualifie	r Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.8		999	877.0		mg/Kg		86	70 - 130		
(GRO)-C6-C10			200	00							
Diesel Range Organics (Over C10-C28)	<49.8	U	999	1095		mg/Kg		110	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	92		70 - 130	_							
o-Terphenyl	84		70 - 130								
Lab Sample ID: 890-793-1 MSD Matrix: Solid Analysis Batch: 4069		Sample	Spike	MSD	MSD					Type: To p Batch	tal/N
Analyte		Qualifier	Added		Qualifie	r Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics	<49.8		998	966.2	Quaime	mg/Kg		95	70 - 130	10	2
(GRO)-C6-C10		0	000	500.2		ilig/itg		50	70 - 100	10	-
Diesel Range Organics (Over C10-C28)	<49.8	U	998	1174		mg/Kg		118	70 _ 130	7	2
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits	_							
1-Chlorooctane	98		70 - 130	-							
o-Terphenyl	86		70 - 130								
lethod: 300.0 - Anions, Ior	n Chromat	ography									
Lab Sample ID: MB 880-4021/1	-A							Client	Sample ID:		
Matrix: Solid									Prep	Type: S	oiupi
Analysis Batch: 4092											
	_	MB MB					_				
Analyte		esult Qualifier		RL	Un		<u>D</u>	Prepared	Analyz		Dil Fa
Chloride	<	<5.00 U		5.00	mg	g/Kg			06/14/21	14:13	
Lab Sample ID: LCS 880-4021/	2-A						Clier	nt Sample	e ID: Lab Co	ontrol S	ampl
Matrix: Solid										Type: S	
Analysis Batch: 4092										1	
			Spike	LCS	LCS				%Rec.		
Analyte			Added		Qualifie	r Unit	D	%Rec	Limits		

Project/Site: Cattle Baron State 1Y

Client: WSP USA Inc.

QC Sample Results

Job ID: 890-793-1 SDG: TE012918100

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCSD 880-4021/3 Matrix: Solid	-A					Clie	nt Sam	ple ID:	Lab Contro Prep	ol Sampl Type: S	
Analysis Batch: 4092											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	248.8		mg/Kg		100	90 - 110	0	20
Lab Sample ID: 890-793-1 MS									Client Sa	mple ID:	FS01
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 4092									-		
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	575	F1	250	795.9	F1	mg/Kg		88	90 - 110		
Lab Sample ID: 890-793-1 MSD									Client Sa	mple ID:	FS01
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 4092											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	575	F1	250	796.0	F1	mg/Kg		88	90 _ 110	0	20

Eurofins Xenco, Carlsbad

Released to Imaging: 4/1/2022 3:53:00 PM

QC Association Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y ah ID: 000 700 4

Job ID: 890-793-1 SDG: TE012918100

GC VOA

Prep Batch: 3955

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-3955/5-A	Method Blank	Total/NA	Solid	5035	
nalysis Batch: 3957					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-793-1	FS01	Total/NA	Solid	8021B	3990
890-793-2	FS02	Total/NA	Solid	8021B	3990
890-793-3	SW01	Total/NA	Solid	8021B	3990
390-793-4	SW02	Total/NA	Solid	8021B	399
MB 880-3955/5-A	Method Blank	Total/NA	Solid	8021B	395
MB 880-3990/5-A	Method Blank	Total/NA	Solid	8021B	399
-CS 880-3990/1-A	Lab Control Sample	Total/NA	Solid	8021B	399
-CSD 880-3990/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	399
rep Batch: 3990					
_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
390-793-1	FS01	Total/NA	Solid	5035	
390-793-2	FS02	Total/NA	Solid	5035	
890-793-3	SW01	Total/NA	Solid	5035	

Total/NA

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

Solid

5035

5035

5035

5035

GC Semi VOA

MB 880-3990/5-A

LCS 880-3990/1-A

LCSD 880-3990/2-A

SW02

Method Blank

Lab Control Sample

Lab Control Sample Dup

890-793-4

Prep Batch: 4045

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-793-1	FS01	Total/NA	Solid	8015NM Prep	
890-793-2	FS02	Total/NA	Solid	8015NM Prep	
890-793-3	SW01	Total/NA	Solid	8015NM Prep	
890-793-4	SW02	Total/NA	Solid	8015NM Prep	
MB 880-4045/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-4045/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-4045/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-793-1 MS	FS01	Total/NA	Solid	8015NM Prep	
890-793-1 MSD	FS01	Total/NA	Solid	8015NM Prep	

Analysis Batch: 4069

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-793-1	FS01	Total/NA	Solid	8015B NM	4045
890-793-2	FS02	Total/NA	Solid	8015B NM	4045
890-793-3	SW01	Total/NA	Solid	8015B NM	4045
890-793-4	SW02	Total/NA	Solid	8015B NM	4045
MB 880-4045/1-A	Method Blank	Total/NA	Solid	8015B NM	4045
LCS 880-4045/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	4045
LCSD 880-4045/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	4045
890-793-1 MS	FS01	Total/NA	Solid	8015B NM	4045
890-793-1 MSD	FS01	Total/NA	Solid	8015B NM	4045

5 6 7

Eurofins Xenco, Carlsbad

QC Association Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

4021

4021

4021

4021

4021

Job ID: 890-793-1 SDG: TE012918100

HPLC/IC

Leach Batch: 4021

MB 880-4021/1-A

LCS 880-4021/2-A

LCSD 880-4021/3-A

890-793-1 MS

890-793-1 MSD

Method Blank

FS01

FS01

Lab Control Sample

Lab Control Sample Dup

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-793-1	FS01	Soluble	Solid	DI Leach	
890-793-2	FS02	Soluble	Solid	DI Leach	
890-793-3	SW01	Soluble	Solid	DI Leach	
890-793-4	SW02	Soluble	Solid	DI Leach	
MB 880-4021/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-4021/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-4021/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-793-1 MS	FS01	Soluble	Solid	DI Leach	
890-793-1 MSD	FS01	Soluble	Solid	DI Leach	
nalysis Batch: 4092					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-793-1	FS01	Soluble	Solid	300.0	4021
890-793-2	FS02	Soluble	Solid	300.0	4021
890-793-3	SW01	Soluble	Solid	300.0	4021
	SW02	Soluble	Solid	300.0	4021

Soluble

Soluble

Soluble

Soluble

Soluble

Solid

Solid

Solid

Solid

Solid

300.0

300.0

300.0

300.0

300.0

Lab Chronicle

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Client Sample ID: FS01

Date Collected: 06/09/21 13:00 Date Received: 06/09/21 16:32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3990	06/11/21 09:00	KL	XEN MID
Total/NA	Analysis	8021B		1	3957	06/11/21 11:39	KL	XEN MID
Total/NA	Prep	8015NM Prep			4045	06/11/21 15:21	DM	XEN MID
Total/NA	Analysis	8015B NM		1	4069	06/14/21 00:25	AM	XEN MID
Soluble	Leach	DI Leach			4021	06/11/21 11:46	СН	XEN MID
Soluble	Analysis	300.0		1	4092	06/14/21 14:28	СН	XEN MID

Client Sample ID: FS02 Date Collected: 06/09/21 13:03

Date Received: 06/09/21 16:32

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3990	06/11/21 09:00	KL	XEN MID
Total/NA	Analysis	8021B		1	3957	06/11/21 12:00	KL	XEN MID
Total/NA	Prep	8015NM Prep			4045	06/11/21 15:21	DM	XEN MID
Total/NA	Analysis	8015B NM		1	4069	06/14/21 01:28	AM	XEN MID
Soluble	Leach	DI Leach			4021	06/11/21 11:46	СН	XEN MID
Soluble	Analysis	300.0		1	4092	06/14/21 14:42	CH	XEN MID

Client Sample ID: SW01

Date Collected: 06/09/21 13:45 Date Received: 06/09/21 16:32

Lab Sample ID: 890-793-3 Matrix: Solid

Lab Sample ID: 890-793-4

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3990	06/11/21 09:00	KL	XEN MID
Total/NA	Analysis	8021B		1	3957	06/11/21 12:21	KL	XEN MID
Total/NA	Prep	8015NM Prep			4045	06/11/21 15:21	DM	XEN MID
Total/NA	Analysis	8015B NM		1	4069	06/14/21 01:48	AM	XEN MID
Soluble	Leach	DI Leach			4021	06/11/21 11:46	СН	XEN MID
Soluble	Analysis	300.0		1	4092	06/14/21 14:47	СН	XEN MID

Client Sample ID: SW02 Date Collected: 06/09/21 13:47 Date Received: 06/09/21 16:32

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3990	06/11/21 09:00	KL	XEN MID
Total/NA	Analysis	8021B		1	3957	06/11/21 12:42	KL	XEN MID
Total/NA	Prep	8015NM Prep			4045	06/11/21 15:21	DM	XEN MID
Total/NA	Analysis	8015B NM		1	4069	06/14/21 02:09	AM	XEN MID
Soluble	Leach	DI Leach			4021	06/11/21 11:46	СН	XEN MID
Soluble	Analysis	300.0		1	4092	06/14/21 14:52	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

Job ID: 890-793-1 SDG: TE012918100

Lab Sample ID: 890-793-1 Matrix: Solid

Lab Sample ID: 890-793-2

Matrix: Solid

5 9

10

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y Job ID: 890-793-1 SDG: TE012918100

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	Pr	ogram	Identification Number	Expiration Date
as	NE	ELAP	T104704400-20-21	06-30-21
The following analytes	are included in this report, bu	it the laboratory is not certil	fied by the governing authority. This list ma	ay include analytes for w
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

Eurofins Xenco, Carlsbad

Method Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y Job ID: 890-793-1 SDG: TE012918100

Method	Method Description	Protocol	Laboratory	
3021B	Volatile Organic Compounds (GC)	SW846	XEN MID	_
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID	
300.0	Anions, Ion Chromatography	MCAWW	XEN MID	
5035	Closed System Purge and Trap	SW846	XEN MID	
3015NM Prep	Microextraction	SW846	XEN MID	
OI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID	

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

	5
	8
	9
1	1
	3

Sample Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y Job ID: 890-793-1 SDG: TE012918100

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
390-793-1	FS01	Solid	06/09/21 13:00	06/09/21 16:32	- 3.5	
390-793-2	FS02	Solid	06/09/21 13:03	06/09/21 16:32	- 3.5	
390-793-3	SW01	Solid	06/09/21 13:45	06/09/21 16:32	0 - 3.5	
390-793-4	SW02	Solid	06/09/21 13:47	06/09/21 16:32	0 - 3.5	
						1

Eurofins Xenco, Carlsbad

Released to Imaging: 4/1/2022 3:53:00 PM

	hain of llas,TX (214) 90) 585-3443 Lub 9-8800 Tampa.	01 WC
Company Name: WED USA	Company Name: XTD Energy	Work Urder Comments Program: UST/PST PRP Brownfields RRC Superfund
3300 N	3104 E GA	State of Project:
Midland, TX 797	Carlshad, NM	
(720) 384- 7365	Annee cole Quesp. com, fatima. smin	Deliverables: EDD ADaPT Other:
Cattle Baron State 1Y		UEST Preservative Codes
TE012918100 Rou	Code	MeOH: Me
)	None: NO
Fathia Smilth		HNO3: HN
PO# Quote #	80	HZSU4: HZ
SAMPLE RECEIPT Temp Blank: Yes No Wet Ice:		HCL: HC
Temperature (°C): 3.2 / 3. 8 Thermometer ID		890-793 Chain of Custody NaOH: Na Zn Acetate+ NaOH: Zn
Yes NO MA	10.7 EP	TAT starts the day received by the lab. if
Sample Custody Seals: Yes No WAY Total Containers:	Der of the test of the test of the test of tes	
Lab Sample Identification Matrix Sampled Sampled	TP+ BTI	Sample Comments
FB01 5 16/9/21 1300	3.01	
$ z/p/q \leq z/p/q $		
12/ 1/ 2	0	
TECH INTER C		
Total 200.7 / 6010 200.8 / 6020: 8RCRA Circle Method(s) and Metal(s) to be analyzed TCLP / SP	8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag	Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn Ag TI U 1631/245.1/7470/7471:Hg
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. In of service. Xenco will be liable only for the cost of samplee and shell-not assume any responsibility for any losses or expenses incurred by the client if such losses are	and subcontractors. It lient if such losses are	assigns standard terms and conditions due to circumstances beyond the control
Relinguis Ked by: (Signature) Received by: (Signature)	ture) Date/Time Relinquished by: (Signature)	re) Received by: (Signature) Date/Time
N.A	2 101:91 / 12/ p/ 0)	
5	0	
ident = NAB1809356513	(2RP-4686)	Revised Usite to Zeb 19 Rev. 2019 1
20-015-44130		

6/15/2021

Page 72 of 123
Received by OCD: 12/9/2021 1:09:22 PM

ecord Carrier Tracking No(s)' ner Jessica Carrier Tracking No(s)' a kramer@eurofinset com State of Origin Accreditations Required (See note) New Mexico M_S_Prep Full TPH LEACH Chloride BTEX Analysis Requested BTEX Hard Second
ested ested aminin Tracking No(s): coc No: B90-256 1 B90-256 1 B90-256 1 B90-256 1 B90-256 1 B90-793-1 Preservation Codes Preservation Codes A HCL B NaOH C Anchel C C Anchel C C Anchel C C Anchel C C Anchel C C Anchel C C C C C C C C C C C C C C C C C C C

14

Job Number: 890-793-1 SDG Number: TE012918100

List Source: Eurofins Xenco, Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 793 List Number: 1 Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-793-1 SDG Number: TE012918100

List Source: Eurofins Xenco, Midland

List Creation: 06/11/21 11:40 AM

Login Number: 793 List Number: 2 Creator: Copeland, Tatiana

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 12/9/2021 1:09:22 PM

eurofins 🔅

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-519-1

Laboratory Sample Delivery Group: TE012918100 Client Project/Site: Cattle Baron State 1Y Revision: 1

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 4/20/2021 12:41:18 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert

Visit us at: <u>www.eurofinsus.com/Env</u> Released to Imaging: 4/1/2022 3:53:00 PM e /0 0J 123

Laboratory Job ID: 890-519-1 SDG: TE012918100

Page 77 of 123

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

.

Client: WSP USA Project/Site: Cattle Page 78 of 123

Definitions/Glossary		1
USA Inc. Cattle Baron State 1Y	Job ID: 890-519-1 SDG: TE012918100	2
		3
Qualifier Description Indicates the analyte was analyzed for but not detected.		4
A Qualifier Description		5

GC Semi VOA

Qualifiers

GC VOA Qualifier

U

Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	6
*1	LCS/LCSD RPD exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		_
Qualifier	Qualifier Description	8
U	Indicates the analyte was analyzed for but not detected.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1
α	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DI RA RE IN	Indicates a Dilution Re-analysis Re-extraction or additional Initial metals/anion analysis of the sample	

Glossarv

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count
INIC	Ioo Numerous Io Count

Job ID: 890-519-1 SDG: TE012918100

Job ID: 890-519-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-519-1

Receipt

The samples were received on 4/13/2021 4:17 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.4°C

Receipt Exceptions

The following samples analyzed for method BTEX 8021 were received and analyzed from an unpreserved bulk soil jar: BG01 (890-519-1), BG01A (890-519-2), BG01B (890-519-3), BG01C (890-519-4), BG01D (890-519-5) and BG01E (890-519-6).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: BG01B (890-519-3) and BG01D (890-519-5). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-1802 and analytical batch 880-1775 recovered outside control limits for the following analytes: < Gasoline Range Organics (GRO)-C6-C10>.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

RL

0.00200

0.00200

0.00200

0.00399

0.00200

0.00399

0.00200

Limits

70 - 130

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

Prepared

04/14/21 14:45 04/15/21 00:32

04/14/21 14:45 04/15/21 00:32

04/14/21 14:45 04/15/21 00:32

04/14/21 14:45 04/15/21 00:32

04/14/21 14:45 04/15/21 00:32

04/14/21 14:45 04/15/21 00:32

04/14/21 14:45 04/15/21 00:32

04/14/21 14:45 04/15/21 00:32

04/14/21 14:45 04/15/21 00:32

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

Total BTEX

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

Job ID: 890-519-1
SDG: TE012918100

Lab Sample ID: 890-519-1

Analyzed

Analyzed

Matrix: Solid

Page 80 of 123

Dil Fac

1

1

1

1

1

1

1

1

1

Dil Fac

1,4-Difluorobenzene (Surr) 111 70 - 130 Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00399 U

<0.00200 U

<0.00399 U

<0.00200 U

%Recovery Qualifier

101

ange Organ								
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
<50.0	U *+ *1	50.0	mg/Kg		04/14/21 14:55	04/15/21 03:23	1	
<50.0	U	50.0	mg/Kg		04/14/21 14:55	04/15/21 03:23	1	
<50.0	U	50.0	mg/Kg		04/14/21 14:55	04/15/21 03:23	1	
<50.0	U	50.0	mg/Kg		04/14/21 14:55	04/15/21 03:23	1	
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
95		70 - 130			04/14/21 14:55	04/15/21 03:23	1	
94		70 - 130			04/14/21 14:55	04/15/21 03:23	1	
	Result <50.0 <50.0 <50.0 <50.0 <50.0 %Recovery 95	Result Qualifier <50.0 U *+ *1 <50.0 U %Recovery Qualifier 95	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Result Qualifier RL Unit <50.0 U*+*1 50.0 mg/Kg <50.0 U 50.0 mg/Kg %Recovery Qualifier Limits 70 - 130 70 - 130 X	Result Qualifier RL Unit D <50.0 U*+*1 50.0 mg/Kg D <50.0 U 50.0 mg/Kg D %Recovery Qualifier Limits 70 - 130 D	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qu	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	419	4.97	mg/Kg			04/18/21 15:39	1

Client Sample ID: BG01A Date Collected: 04/12/21 09:40 Date Received: 04/13/21 16:17 Sample Depth: - 6

Lab Sample ID: 890-519-2 Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00201		0.00198	mg/Kg		04/14/21 14:45	04/15/21 00:52	1
Toluene	<0.00198	U	0.00198	mg/Kg		04/14/21 14:45	04/15/21 00:52	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		04/14/21 14:45	04/15/21 00:52	1
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		04/14/21 14:45	04/15/21 00:52	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		04/14/21 14:45	04/15/21 00:52	1
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		04/14/21 14:45	04/15/21 00:52	1
Total BTEX	0.00201		0.00198	mg/Kg		04/14/21 14:45	04/15/21 00:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			04/14/21 14:45	04/15/21 00:52	1
1,4-Difluorobenzene (Surr)	116		70 - 130			04/14/21 14:45	04/15/21 00:52	1

5

Job ID: 890-519-1 SDG: TE012918100

Lab Sample ID: 890-519-2

Lab Sample ID: 890-519-3

04/14/21 14:45 04/15/21 01:13

04/14/21 14:45 04/15/21 01:13

Matrix: Solid

1

1

Client Sample ID: BG01A Date Collected: 04/12/21 09:40

Project/Site: Cattle Baron State 1Y

Date Received: 04/13/21 16:17 Sample Depth: - 6

Client: WSP USA Inc.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *+ *1	49.9	mg/Kg		04/14/21 14:55	04/15/21 03:44	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		04/14/21 14:55	04/15/21 03:44	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		04/14/21 14:55	04/15/21 03:44	1
Total TPH	<49.9	U	49.9	mg/Kg		04/14/21 14:55	04/15/21 03:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130			04/14/21 14:55	04/15/21 03:44	1
o-Terphenyl	118		70 - 130			04/14/21 14:55	04/15/21 03:44	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1050	4.99	mg/Kg			04/18/21 15:44	1

Client Sample ID: BG01B

Date Collected: 04/12/21 10:00 Date Received: 04/13/21 16:17 Sample Depth: - 10

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatil	e Organic Compo	unds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		04/14/21 14:45	04/15/21 01:13	1
Toluene	<0.00202	U	0.00202	mg/Kg		04/14/21 14:45	04/15/21 01:13	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		04/14/21 14:45	04/15/21 01:13	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		04/14/21 14:45	04/15/21 01:13	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		04/14/21 14:45	04/15/21 01:13	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		04/14/21 14:45	04/15/21 01:13	1
Total BTEX	<0.00202	U	0.00202	mg/Kg		04/14/21 14:45	04/15/21 01:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

70 - 130

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

112

105

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U *+ *1	49.8	mg/Kg		04/14/21 14:55	04/15/21 04:05	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		04/14/21 14:55	04/15/21 04:05	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		04/14/21 14:55	04/15/21 04:05	1
Total TPH	<49.8	U	49.8	mg/Kg		04/14/21 14:55	04/15/21 04:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130			04/14/21 14:55	04/15/21 04:05	1
o-Terphenyl	121		70 - 130			04/14/21 14.55	04/15/21 04:05	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1630		24.8	mg/Kg	_		04/18/21 15:49	5

Eurofins Xenco, Carlsbad

Matrix: Solid

Client Sample Results

Client Sample ID: BG01C Date Collected: 04/12/21 10:25 Date Received: 04/13/21 16:17

Sample Depth: - 14

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 01:34	1
Toluene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 01:34	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 01:34	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		04/14/21 14:45	04/15/21 01:34	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 01:34	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/14/21 14:45	04/15/21 01:34	1
Total BTEX	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 01:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			04/14/21 14:45	04/15/21 01:34	1
1.4-Difluorobenzene (Surr)	122		70 - 130			04/14/21 14:45	04/15/21 01:34	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<49.9	U *+ *1	49.9	mg/Kg		04/14/21 14:55	04/15/21 04:27	1	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		04/14/21 14:55	04/15/21 04:27	1	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		04/14/21 14:55	04/15/21 04:27	1	
Total TPH	<49.9	U	49.9	mg/Kg		04/14/21 14:55	04/15/21 04:27	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1-Chlorooctane	109		70 - 130			04/14/21 14:55	04/15/21 04:27	1	

Method: 300.0 - Anions, Ion Chromatography - Soluble

112

Analyte	Result Quali	ifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1750	25.0	mg/Kg			04/18/21 15:54	5

70 - 130

Client Sample ID: BG01D Date Collected: 04/12/21 10:45 Date Received: 04/13/21 16:17 Sample Depth: - 16

o-Terphenyl

Lab Sample ID: 890-519-5 Matrix: Solid

04/14/21 14:55 04/15/21 04:27

Method: 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac 0.00198 04/14/21 14:45 04/15/21 01:54 Benzene 0.00207 mg/Kg 1 Toluene <0.00198 U 0.00198 mg/Kg 04/14/21 14:45 04/15/21 01:54 1 Ethylbenzene mg/Kg 04/14/21 14:45 04/15/21 01:54 <0.00198 U 0.00198 1 04/14/21 14:45 04/15/21 01:54 m-Xylene & p-Xylene <0.00397 U 0.00397 mg/Kg 1 o-Xylene <0.00198 U 0.00198 mg/Kg 04/14/21 14:45 04/15/21 01:54 1 Xylenes, Total 0.00397 mg/Kg <0.00397 U 04/14/21 14:45 04/15/21 01:54 1 **Total BTEX** 0.00207 0.00198 mg/Kg 04/14/21 14:45 04/15/21 01:54 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 115 70 - 130 04/14/21 14:45 04/15/21 01:54 1 1,4-Difluorobenzene (Surr) 96 70 - 130 04/14/21 14:45 04/15/21 01:54 1

SDG: TE012918100 Lab Sample ID: 890-519-4

Matrix: Solid

Job ID: 890-519-1

4/20/2021 (Rev. 1)

Job ID: 890-519-1 SDG: TE012918100

Matrix: Solid

Lab Sample ID: 890-519-5

Lab Sample ID: 890-519-6

04/14/21 14:45 04/15/21 02:15

Matrix: Solid

1

Client Sample ID: BG01D Date Collected: 04/12/21 10:45 Date Received: 04/13/21 16:17

Project/Site: Cattle Baron State 1Y

Date Received:	04/13/21	16:1
Sample Depth:	- 16	

Client: WSP USA Inc.

Analyte	ange Organ Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *+ *1	49.9	mg/Kg		04/14/21 14:55	04/15/21 04:48	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		04/14/21 14:55	04/15/21 04:48	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		04/14/21 14:55	04/15/21 04:48	1
Total TPH	<49.9	U	49.9	mg/Kg		04/14/21 14:55	04/15/21 04:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130			04/14/21 14:55	04/15/21 04:48	1
o-Terphenyl	116		70 - 130			04/14/21 14:55	04/15/21 04:48	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1330	24.8	mg/Kg			04/18/21 18:07	5

Client Sample ID: BG01E

Date Collected: 04/12/21 12:00 Date Received: 04/13/21 16:17 Sample Depth: - 20

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile O	rganic Compo	unds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 02:15	1
Toluene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 02:15	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 02:15	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		04/14/21 14:45	04/15/21 02:15	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 02:15	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/14/21 14:45	04/15/21 02:15	1
Total BTEX	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 02:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130			04/14/21 14:45	04/15/21 02:15	1

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

101

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U *+ *1	49.8	mg/Kg		04/14/21 14:55	04/15/21 05:09	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		04/14/21 14:55	04/15/21 05:09	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		04/14/21 14:55	04/15/21 05:09	1
Total TPH	<49.8	U	49.8	mg/Kg		04/14/21 14:55	04/15/21 05:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	129		70 - 130			04/14/21 14:55	04/15/21 05:09	1
o-Terphenyl	126		70 - 130			04/14/21 14:55	04/15/21 05:09	1
_ Method: 300.0 - Anions, Ion C	hromatogra	phy - Solu	ıble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	313		5.05	mg/Kg			04/18/21 18:22	1

Eurofins Xenco, Carlsbad

Surrogate Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_			Pe
		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-519-1	BG01	101	111
890-519-1 MS	BG01	90	114
890-519-1 MSD	BG01	93	110
890-519-2	BG01A	102	116
890-519-3	BG01B	112	105
890-519-4	BG01C	109	122
890-519-5	BG01D	115	96
890-519-6	BG01E	96	101
LCS 880-1779/1-A	Lab Control Sample	87	103
LCSD 880-1779/2-A	Lab Control Sample Dup	93	109
MB 880-1766/5-A	Method Blank	123	110
MB 880-1779/5-A	Method Blank	116	98
Surrogate Legend			
BFB = 4-Bromofluorob	enzene (Surr)		
DFBZ = 1,4-Difluorobe	nzene (Surr)		

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

			Percent S	urrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-519-1	BG01	95	94	
890-519-2	BG01A	120	118	
890-519-3	BG01B	121	121	
890-519-4	BG01C	109	112	
890-519-5	BG01D	109	116	
890-519-6	BG01E	129	126	
LCS 880-1802/2-A	Lab Control Sample	119	108	
LCSD 880-1802/3-A	Lab Control Sample Dup	113	99	
MB 880-1802/1-A	Method Blank	115	116	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

Page 84 of 123

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Lab Sample ID: MB 880-1766/5-A

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid							Prep Type: To	
Analysis Batch: 1767							Prep Batcl	1: 1766
Analyta		MB Qualifier	RL	Unit	D	Bronarad	Apolyzod	Dil Fac
Analyte						Prepared 04/14/21 08:56	Analyzed 04/14/21 13:09	
Benzene	< 0.00200		0.00200	mg/Kg				1
Toluene	< 0.00200		0.00200	mg/Kg		04/14/21 08:56	04/14/21 13:09	1
Ethylbenzene	<0.00200		0.00200	mg/Kg			04/14/21 13:09	1
m-Xylene & p-Xylene	<0.00400		0.00400	mg/Kg		04/14/21 08:56	04/14/21 13:09	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		04/14/21 08:56	04/14/21 13:09	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		04/14/21 08:56	04/14/21 13:09	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		04/14/21 08:56	04/14/21 13:09	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130			04/14/21 08:56	04/14/21 13:09	1
1,4-Difluorobenzene (Surr)	110		70 - 130			04/14/21 08:56	04/14/21 13:09	1
Lab Sample ID: MB 880-17	79/5-A					Client Samp	le ID: Method	l Blank
Matrix: Solid							Prep Type: To	
Analysis Batch: 1767							Prep Batcl	
	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/Kg		04/14/21 14:45	04/15/21 00:10	1
Toluene	<0.00200	U	0.00200	mg/Kg		04/14/21 14:45	04/15/21 00:10	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		04/14/21 14:45	04/15/21 00:10	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		04/14/21 14:45	04/15/21 00:10	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		04/14/21 14:45	04/15/21 00:10	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		04/14/21 14:45	04/15/21 00:10	1
Total BTEX	<0.00200	U	0.00200	mg/Kg			04/15/21 00:10	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Lab Sample ID: LCS 880-1779/1-A Matrix: Solid Analysis Batch: 1767

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Benzene 0.100 0.07945 70 - 130 mg/Kg 79 Toluene 0.100 0.08727 87 70 - 130 mg/Kg Ethylbenzene 0.100 0.07968 mg/Kg 80 70 - 130 m-Xylene & p-Xylene 0.200 0.1691 mg/Kg 85 70 - 130 o-Xylene 0.100 0.08270 mg/Kg 83 70 - 130

70 - 130

70 - 130

		.63	
Surrogate	%Recovery G	Qualifier	Limits
4-Bromofluorobenzene (Surr)	87		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

116

98

Eurofins Xenco, Carlsbad

Client Sample ID: Method Blank

5

 Prepared
 Analyzed
 Dil Fac

 04/14/21
 14:45
 04/15/21
 00:10
 1

 04/14/21
 14:45
 04/15/21
 00:10
 1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 1779

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Job ID: 890-519-1 SDG: TE012918100

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

· · · · · · · · · · · · · · · · · · ·					Prep Ty		al/NA		
Analysis Baton. IT of	Spike	LCSD	LCSD				%Rec.	Duton.	RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08414		mg/Kg		84	70 - 130	6	35
Toluene	0.100	0.09461		mg/Kg		95	70 - 130	8	35
Ethylbenzene	0.100	0.09048		mg/Kg		90	70 - 130	13	35
m-Xylene & p-Xylene	0.200	0.1824		mg/Kg		91	70 - 130	8	35
o-Xylene	0.100	0.09024		mg/Kg		90	70 - 130	9	35
1000 1000									

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: 890-519-1 MS Matrix: Solid Analysis Batch: 1767

Analysis Batch: 1767									Prep Bat	ch: 1779
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0996	0.07296		mg/Kg		72	70 - 130	
Toluene	<0.00200	U	0.0996	0.07932		mg/Kg		80	70 - 130	
Ethylbenzene	<0.00200	U	0.0996	0.07495		mg/Kg		75	70 - 130	
m-Xylene & p-Xylene	<0.00399	U	0.199	0.1527		mg/Kg		77	70 - 130	
o-Xylene	<0.00200	U	0.0996	0.07436		mg/Kg		75	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	90		70 - 130
1,4-Difluorobenzene (Surr)	114		70 - 130

Lab Sample ID: 890-519-1 MSD Matrix: Solid Analysis Batch: 1767

Analysis Datch. 1707									гіер	Datch.	1113
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.101	0.08195		mg/Kg		80	70 - 130	12	35
Toluene	<0.00200	U	0.101	0.08402		mg/Kg		83	70 - 130	6	35
Ethylbenzene	<0.00200	U	0.101	0.08201		mg/Kg		81	70 - 130	9	35
m-Xylene & p-Xylene	<0.00399	U	0.202	0.1653		mg/Kg		82	70 - 130	8	35
o-Xylene	<0.00200	U	0.101	0.08134		mg/Kg		81	70 - 130	9	35
	Men	MOD									

	IVISD	WSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	110		70 - 130

Clie at C

Client Sample ID: BG01

Prep Type: Total/NA

5

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-180	2/1-A								Clie	nt Samp	ole ID: M		
Matrix: Solid											Prep Ty		
Analysis Batch: 1775											Prep	Batch	n: 1802
	М	в мв											
Analyte	Resu	lt Qua	alifier	RL		Unit		D	Pi	repared	Analyz	ed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.	0 U		50.0		mg/K	g	_	04/1	4/21 14:55	04/14/21	21:04	1
Diesel Range Organics (Over C10-C28)	<50.	0 U		50.0		mg/K	g		04/1	4/21 14:55	04/14/21	21:04	1
Oll Range Organics (Over C28-C36)	<50.	0 U		50.0		mg/K	g		04/1	4/21 14:55	04/14/21	21:04	1
Total TPH	<50.	0 U		50.0		mg/K	g		04/1	4/21 14:55	04/14/21	21:04	1
		в МВ							_			_	
Surrogate	%Recover		alifier	Limits						repared	Analyz		Dil Fac
1-Chlorooctane	11			70 - 130							04/14/21		1
o-Terphenyl	11	6		70 - 130					04/1	4/21 14:55	04/14/21	21:04	1
Lab Sample ID: LCS 880-18	02/2-A						Cli	ent	Sar	nple ID:	Lab Con		
Matrix: Solid											Prep Ty		
Analysis Batch: 1775				Spike	LCS	LCS					Prep %Rec.	Batch	n: 1802
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10				1000	1533	*+	mg/Kg			153	70 - 130		
										110	70 120		
Diesel Range Organics (Over C10-C28)				1000	1188		mg/Kg			119	70 - 130		
	LCS L	cs		1000	1188		mg/ĸg			119	70 - 130		
C10-C28)	%Recovery Q		r	Limits	1188		mg/ĸg			119	70-130		
C10-C28)			r		1188		mg/ĸg			119	70 - 130		
C10-C28)	%Recovery Q		r	Limits	1188		mg/Kg			119	70 - 130		
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1	%Recovery Q 119 108		<u>r</u>	Limits 70 - 130	1188	c		am	ple		Control S		
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery Q 119 108		<u>r</u>	Limits 70 - 130	1188	c		am	ple		Control : Prep Tyj	pe: To	otal/NA
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1	%Recovery Q 119 108		<u>r</u>	Limits 70 - 130	1188	c		am	ıple		Control : Prep Tyj	pe: To	otal/NA
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid	%Recovery Q 119 108		<u>r</u>	Limits 70 - 130		C		am	ple		Control : Prep Tyj	pe: To	otal/NA n: 1802
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid	%Recovery Q 119 108		<u>r</u>	Limits 70 - 130 70 - 130	LCSD			am	ıple		Control S Prep Tyj Prep	pe: To	otal/NA 1: 1802 RPD
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 1775	%Recovery Q 119 108		<u>r</u>	Limits 70 - 130 70 - 130 Spike	LCSD	LCSD Qualifier	Client S	am		ID: Lab	Control S Prep Tyj Prep %Rec.	pe: To Batch	n: 1802 RPD
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 1775 Analyte Gasoline Range Organics	%Recovery Q 119 108		r	Limits 70 - 130 70 - 130 Spike Added	LCSD Result	LCSD Qualifier	Client S	am		ID: Lab	Control S Prep Ty Prep %Rec. Limits	pe: To Batch RPD	tal/NA 1: 1802 RPD Limit
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 1775 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery Q 119 108	ualifie	r	Limits 70 - 130 70 - 130 Spike Added 1000	LCSD Result 1220	LCSD Qualifier	Client S	arr		ID: Lab	Control S Prep Ty Prep %Rec. Limits 70 - 130	pe: To Batch RPD 23	tal/NA 1: 1802 RPD Limit
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 1775 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 0 119 108 802/3-A	CSD		Limits 70 - 130 70 - 130 Spike Added 1000	LCSD Result 1220	LCSD Qualifier	Client S	am		ID: Lab	Control S Prep Ty Prep %Rec. Limits 70 - 130	pe: To Batch RPD 23	tal/NA 1: 1802 RPD Limit
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 1775 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 0 119 108 802/3-A	CSD		Limits 70 - 130 70 - 130 Spike Added 1000	LCSD Result 1220	LCSD Qualifier	Client S	am		ID: Lab	Control S Prep Ty Prep %Rec. Limits 70 - 130	pe: To Batch RPD 23	tal/NA 1: 1802 RPD Limit
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 1775 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery Q 119 108 802/3-A LCSD Lc %Recovery Q	CSD		Limits 70 - 130 70 - 130 Spike Added 1000 1000	LCSD Result 1220	LCSD Qualifier	Client S	an		ID: Lab	Control S Prep Ty Prep %Rec. Limits 70 - 130	pe: To Batch RPD 23	tal/NA 1: 1802 RPD Limit
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 1775 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	%Recovery Q 119 108 802/3-A 802/3-A %Recovery Q %Recovery Q 113 99	CSD ualifie		Limits 70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130	LCSD Result 1220	LCSD Qualifier	Client S	am		ID: Lab	Control S Prep Ty Prep %Rec. Limits 70 - 130	pe: To Batch RPD 23	tal/NA 1: 1802 RPD Limit
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 1775 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery Q 119 108 802/3-A 802/3-A %Recovery Q 113 99 Ion Chron 100	CSD ualifie		Limits 70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130	LCSD Result 1220	LCSD Qualifier	Client S	am	_ <u>D</u>	ID: Lab <u>%Rec</u> 122 107	Control S Prep Ty Prep %Rec. Limits 70 - 130	pe: To Batch 23 11	tal/NA 1: 1802 RPD Limit 20 20
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 1775 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions,	%Recovery Q 119 108 802/3-A 802/3-A %Recovery Q 113 99 Ion Chron 100	CSD ualifie		Limits 70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130	LCSD Result 1220	LCSD Qualifier	Client S	am	_ <u>D</u>	ID: Lab <u>%Rec</u> 122 107	Control S Prep Typ Prep %Rec. Limits 70 - 130 70 - 130	ethod	Limit 20 Blank

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			04/18/21 13:21	1

Job ID: 890-519-1 SDG: TE012918100

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-1916/2-A Matrix: Solid							Clie	nt Sa	mple ID	: Lab Coi Prep T	ntrol Sa ype: So	
Analysis Batch: 1954												
			Spike		LCS					%Rec.		
Analyte			Added			Qualifier	Unit	D	%Rec	Limits		
Chloride			250		256.5		mg/Kg		103	90 - 110		
Lab Sample ID: LCSD 880-1916/3-A Matrix: Solid						c	lient Sa	ample	ID: Lab	Control Prep T		
Analysis Batch: 1954												
-			Spike	I	LCSD	LCSD				%Rec.		RPD
Analyte			Added	R	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250		256.0		mg/Kg		102	90 - 110	0	20
Lab Sample ID: MB 880-1918/1-A								Clie	ent Sam	ple ID: M	ethod I	Blank
Matrix: Solid										Prep T	ype: So	oluble
Analysis Batch: 1955												
		MB										
		Qualifier		RL		Unit		D P	repared	Analy		Dil Fac
Chloride	<5.00	U		5.00		mg/K	g			04/18/21	16:20	1
Lab Sample ID: LCS 880-1918/2-A							Clie	nt Sa	mple ID	: Lab Coi	ntrol Sa	mple
Matrix: Solid										Prep T	ype: So	oluble
Analysis Batch: 1955												
			Spike		LCS					%Rec.		
Analyte			Added			Qualifier	Unit	D	%Rec	Limits		
Chloride			250		250.0		mg/Kg		100	90 - 110		
Lab Sample ID: LCSD 880-1918/3-A						c	lient Sa	mple	ID: Lab	Control	Sample	e Dup
Matrix: Solid								1.		Prep T		
Analysis Batch: 1955												
			Spike	I	LCSD	LCSD				%Rec.		RPD
Analyte			Added			Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250		249.2		mg/Kg		100	90 - 110	0	20

QC Association Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Job ID: 890-519-1 SDG: TE012918100

GC VOA

Prep Batch: 1766

Lab Sample ID MB 880-1766/5-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
Analysis Batch: 176	7				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
MB 880-1766/5-A	Method Blank	Total/NA	Solid	5035		
nalysis Batch: 176	7					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-519-1	BG01	Total/NA	Solid	8021B	1779	
890-519-2	BG01A	Total/NA	Solid	8021B	1779	
890-519-3	BG01B	Total/NA	Solid	8021B	1779	
890-519-4	BG01C	Total/NA	Solid	8021B	1779	
890-519-5	BG01D	Total/NA	Solid	8021B	1779	
890-519-6	BG01E	Total/NA	Solid	8021B	1779	
MB 880-1766/5-A	Method Blank	Total/NA	Solid	8021B	1766	
MB 880-1779/5-A	Method Blank	Total/NA	Solid	8021B	1779	
LCS 880-1779/1-A	Lab Control Sample	Total/NA	Solid	8021B	1779	
LCSD 880-1779/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	1779	
890-519-1 MS	BG01	Total/NA	Solid	8021B	1779	
890-519-1 MSD	BG01	Total/NA	Solid	8021B	1779	
Prep Batch: 1779						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-519-1	BG01	Total/NA	Solid	5035		

Prep Batch: 1779

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-519-1	BG01	Total/NA	Solid	5035	
890-519-2	BG01A	Total/NA	Solid	5035	
890-519-3	BG01B	Total/NA	Solid	5035	
890-519-4	BG01C	Total/NA	Solid	5035	
890-519-5	BG01D	Total/NA	Solid	5035	
890-519-6	BG01E	Total/NA	Solid	5035	
MB 880-1779/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-1779/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-1779/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-519-1 MS	BG01	Total/NA	Solid	5035	
890-519-1 MSD	BG01	Total/NA	Solid	5035	

GC Semi VOA

Analysis Batch: 1775

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-519-1	BG01	Total/NA	Solid	8015B NM	1802
890-519-2	BG01A	Total/NA	Solid	8015B NM	1802
890-519-3	BG01B	Total/NA	Solid	8015B NM	1802
890-519-4	BG01C	Total/NA	Solid	8015B NM	1802
890-519-5	BG01D	Total/NA	Solid	8015B NM	1802
890-519-6	BG01E	Total/NA	Solid	8015B NM	1802
MB 880-1802/1-A	Method Blank	Total/NA	Solid	8015B NM	1802
LCS 880-1802/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	1802
LCSD 880-1802/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	1802

Prep Batch: 1802

Lab Sample 890-519-1	ID Client Sample ID BG01	Prep Type Total/NA	Matrix Solid	Method Prep Batch 8015NM Prep	1
890-519-2	BG01A	Total/NA	Solid	8015NM Prep	
890-519-3	BG01B	Total/NA	Solid	8015NM Prep	
890-519-4	BG01C	Total/NA	Solid	8015NM Prep	

Eurofins Xenco, Carlsbad

Page 89 of 123

QC Association Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

GC Semi VOA (Continued)

Prep Batch: 1802 (Continued)

Lab Sample ID 890-519-5 890-519-6	Client Sample ID BG01D BG01E	Prep Type Total/NA Total/NA	Matrix Solid Solid	Method 8015NM Prep 8015NM Prep	Prep Batch
MB 880-1802/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-1802/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-1802/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

HPLC/IC

Leach Batch: 1916

Lab Sample ID 890-519-1	Client Sample ID BG01	Prep Type Soluble	Matrix	Method	Prep Batch
890-519-2	BG01A	Soluble	Solid	DI Leach	
890-519-3	BG01B	Soluble	Solid	DI Leach	
890-519-4	BG01C	Soluble	Solid	DI Leach	
MB 880-1916/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-1916/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-1916/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Leach Batch: 1918

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-519-5	BG01D	Soluble	Solid	DI Leach	
890-519-6	BG01E	Soluble	Solid	DI Leach	
MB 880-1918/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-1918/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-1918/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 1954

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-519-1	BG01	Soluble	Solid	300.0	1916
890-519-2	BG01A	Soluble	Solid	300.0	1916
890-519-3	BG01B	Soluble	Solid	300.0	1916
890-519-4	BG01C	Soluble	Solid	300.0	1916
MB 880-1916/1-A	Method Blank	Soluble	Solid	300.0	1916
LCS 880-1916/2-A	Lab Control Sample	Soluble	Solid	300.0	1916
LCSD 880-1916/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	1916

Analysis Batch: 1955

Lab Sample ID 890-519-5	Client Sample ID BG01D	Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 1918
890-519-6	BG01E	Soluble	Solid	300.0	1918
MB 880-1918/1-A	Method Blank	Soluble	Solid	300.0	1918
LCS 880-1918/2-A	Lab Control Sample	Soluble	Solid	300.0	1918
LCSD 880-1918/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	1918

5

8

Job ID: 890-519-1

SDG: TE012918100

Project/Site: Cattle Baron State 1Y

Job ID: 890-519-1 SDG: TE012918100

Lab Sample ID: 890-519-1 Matrix: Solid

Lab Sample ID: 890-519-3

Lab Sample ID: 890-519-4

Date Collected: 04/12/21 09:30 Date Received: 04/13/21 16:17

Client Sample ID: BG01

Client: WSP USA Inc.

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 00:32	KL	XM
Total/NA	Prep	8015NM Prep			1802	04/14/21 14:55	DM	XM
Total/NA	Analysis	8015B NM		1	1775	04/15/21 03:23	AJ	XM
Soluble	Leach	DI Leach			1916	04/16/21 19:55	SC	XM
Soluble	Analysis	300.0		1	1954	04/18/21 15:39	СН	XM

Client Sample ID: BG01A Date Collected: 04/12/21 09:40 Date Received: 04/13/21 16:17

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 00:52	KL	XM
Total/NA	Prep	8015NM Prep			1802	04/14/21 14:55	DM	XM
Total/NA	Analysis	8015B NM		1	1775	04/15/21 03:44	AJ	XM
Soluble	Leach	DI Leach			1916	04/16/21 19:55	SC	XM
Soluble	Analysis	300.0		1	1954	04/18/21 15:44	СН	XM

Client Sample ID: BG01B Date Collected: 04/12/21 10:00 Date Received: 04/13/21 16:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 01:13	KL	XM
Total/NA	Prep	8015NM Prep			1802	04/14/21 14:55	DM	XM
Total/NA	Analysis	8015B NM		1	1775	04/15/21 04:05	AJ	XM
Soluble	Leach	DI Leach			1916	04/16/21 19:55	SC	XM
Soluble	Analysis	300.0		5	1954	04/18/21 15:49	СН	XM

Client Sample ID: BG01C Date Collected: 04/12/21 10:25 Date Received: 04/13/21 16:17

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 01:34	KL	XM
Total/NA	Prep	8015NM Prep			1802	04/14/21 14:55	DM	XM
Total/NA	Analysis	8015B NM		1	1775	04/15/21 04:27	AJ	XM
Soluble	Leach	DI Leach			1916	04/16/21 19:55	SC	XM
Soluble	Analysis	300.0		5	1954	04/18/21 15:54	СН	XM

Eurofins Xenco, Carlsbad

9

Matrix: Solid

Matrix: Solid

Matrix: Solid

Project/Site: Cattle Baron State 1Y

Job ID: 890-519-1 SDG: TE012918100

Lab Sample ID: 890-519-5 Matrix: Solid

Date Collected: 04/12/21 10:45 Date Received: 04/13/21 16:17

Client Sample ID: BG01D

Client: WSP USA Inc.

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 01:54	KL	XM
Total/NA	Prep	8015NM Prep			1802	04/14/21 14:55	DM	XM
Total/NA	Analysis	8015B NM		1	1775	04/15/21 04:48	AJ	XM
Soluble	Leach	DI Leach			1918	04/16/21 20:07	SC	XM
Soluble	Analysis	300.0		5	1955	04/18/21 18:07	СН	ХМ

Client Sample ID: BG01E Date Collected: 04/12/21 12:00 Date Received: 04/13/21 16:17

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 02:15	KL	XM
Total/NA	Prep	8015NM Prep			1802	04/14/21 14:55	DM	XM
Total/NA	Analysis	8015B NM		1	1775	04/15/21 05:09	AJ	XM
Soluble	Leach	DI Leach			1918	04/16/21 20:07	SC	XM
Soluble	Analysis	300.0		1	1955	04/18/21 18:22	СН	XM

Laboratory References:

XM = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

age 72 0J 123

5

9

Matrix: Solid

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y Job ID: 890-519-1 SDG: TE012918100

Page 93 of 123

Project/Site: Cattle Baron State TY SDG: TE Laboratory: Eurofins Xenco, Midland Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program Identification Number Expiration Date

Authority		Program	Identification Number	Expiration Date
Texas		06-30-21		
	ytes are included in this re ot offer certification.	eport, but the laboratory is i	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
8015B NM	8015NM Prep	Solid	Total TPH	
8021B	5035	Solid	Total BTEX	

Eurofins Xenco, Carlsbad

Method Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Job ID: 890-519-1 SDG: TE012918100

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	XM
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	XM
300.0	Anions, Ion Chromatography	MCAWW	XM
5035	Closed System Purge and Trap	SW846	XM
015NM Prep	Microextraction	SW846	XM
OI Leach	Deionized Water Leaching Procedure	ASTM	XM

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XM = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Received by OCD: 12/9/2021 1:09:22 PM

Job ID: 890-519-1 SDG: TE012918100

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
90-519-1	BG01	Solid	04/12/21 09:30	04/13/21 16:17	- 4	
90-519-2	BG01A	Solid	04/12/21 09:40	04/13/21 16:17	- 6	
90-519-3	BG01B	Solid	04/12/21 10:00	04/13/21 16:17	- 10	5
90-519-4	BG01C	Solid	04/12/21 10:25	04/13/21 16:17	- 14	
90-519-5	BG01D	Solid	04/12/21 10:45	04/13/21 16:17	- 16	
90-519-6	BG01E	Solid	04/12/21 12:00	04/13/21 16:17	- 20	
						8
						1

ed by	ν <u>Ο</u> ω	CD	: 12			11:	:09:	22	P]	M					-		-	_																	Page 96 of
	~	m	Relinquished by:	of Xenco. A minimum cha	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and sub of service. Xenco will be liable only for the east of samples and shall not assume any responsibility for any losses or expenses incurred by the client if su	Circle Method	Total 200.7 / 6010					/	BG01E	BG01D	BG01C	BG01B	BG01A	BG01	Sample Identification	Sample Custody Seals:	Cooler Custody Seals	Necelved IIIIact.	Temperature (°C):	SAMPLE RECEIPT	Sampler's Name:	P.O. Number:	Project Number:	Project Name:	Phone:	City, state ZIP:	0% 044 MD	Address:	Company Name:	Project Manager:	
		- la	: (Signature)	A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each	document and relinqu liable only for the see	Lircie Method(s) and Metal(s) to be analyzed	010 200.8 / 6020:						Ē			l	1A	1	tification	als: Yeş' No	Yes(7	Travis		TE	Cattle	(303) 887-2946	Wildland, IX /9/05		3300 North A Street	WSP	Dan Moir	BORATOR
		Yaw		applied to a	ishment of tof sample	o be an	020:						S	S	S	S	S	S	Matrix	/ N/A	r	45	5	Temp Blank(asey/S		TE012918100	Cattle Baron State		00		treet			
	-	nder	Received by:	each project and	samples constit		8R						4/12/2021	4/12/2021	4/12/2021	4/12/2021	4/12/2021	4/12/2021	Date Sampled	l otal	Correc	1-101		Yes No	Travis Casey/Spencer Lo		100	State 1Y							Hobbs
		raun	by: (Signature)	a charge of \$5	mples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard, terms and senditione and shait not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control	1CLP / SPLP 6010:	CRA 13PPM						1200	1045	1025	1000	940	930	Time Sampled	I otal Containers:	Correction Factor:		Thermometer ID	Wet Icer	Due Date	Rusii.	Routine	Tu	Email:						Chain of Custody Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)
		2	e)	for each sample	chase order fro	P 6010: 8K	M Texas 11		1				20'	16'	14'	10'	σ	4	Depth		4.9			Yes No)ate:		Те Н	Turn Around	Spencer Lo@wsp.com,Aimee.Cole@wsp.com,Dan.Moir@w	City, State ZIP:		Address:	Company Name:	Bill to: (if different)	Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (81)
		413		submitte	m client co ny losses	BRCKA	₽			1 1	0								Numl	oer o	of C	on	taine	ors					vsp.com,/					ent) K	Ch 200 Dalla 440) EL F AZ (480-3
		12116	Date/Time	d to Xenco	or expense	SD AS t	As		_	+	1	-	××	××	××	-	××		TPH (I BTEX			-	21)					$\left \right $	vimee.Col	arisbad,		104 Fas	XTO Energy	Kyle Littrell	ain (s,TX (214) Paso,TX (2 55-0900)
		11.	ē	, but not ar	Xenco, its s incurred	ва ве о	Be				P	2	×	×	×	-	×	+	Chlori	_									e@wsp.cc	Carisbad, NM 88220		3104 Fast Green Street	ΩV	=	Chain of Custody Dallas,TX (214) 902-0300 San Antonio,T EL Paso,TX (915)585-3443 Lubbock,T (480-355-0900) Atlanta.GA (770-449-880
6	4	2	Relinquis	ialyzed. Th	affiliates au by the clie			-		_				-				-											m,Dan M	E		treet			JSto) San Ant 443 Lubb A (770-44
				ese terms	nd subcont nt if such l				_	+						+-	-				-		050-0					ANALY	oir@wsp.com						dy onio,TX (2 ock,TX (8(<u>9-8800)</u> 1
			hed by: (Signature)	sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	contractors. It assigns standard terms and conditions lich losses are due to circumstances beyond the control	CO CU PO MIT MO NI SE AG IL O	Cu Fe																oeu-ote Chain of Custody					ANALYSIS REQUEST	öm						210) 509-3 06)794-12 Гатра, FL
			gnature)	orced unles	assigns st due to circi	NO NI	Cu Fe Pb Mg Mn Mo				_	-			-	-	-	+				_	of Custoc					QUEST					Pro	l 	.334 96 (813-620-
-		-		s previous	andard ter umstances	PA ac	MnM		-		-	-	-	-		+	-	+				-	1					1		pormy.c	Renorting I evel II	State of	ogram: L		2000)
			Receiv	sly negotia	beyond th	= C				1												_	1								evel II	State of Project:	Program: UST/PST		< ₹
			Received by: (Signature)	ed.	e control		Se Ag		_	+	-	-		-	╞	╞		-				-	I							<u>ן</u>	evel III		PRP	Work	Work Order No:
			Signatu			Ī	SiC			+																					T ST/UST	[Brown	Order C	der No
			re)			047110	Na Sr T			Γ									Sa	Iab	TAT sta	T			Incident	API: 30-	Cost Ce	5					RP Brownfields RC	Work Order Comments	o: Page
							TI Sn U												Imple C	, II TECEIVE	arts the da				Incident ID: 2KP-4686	API: 30-015-44130	inter: 157	fork Urt		÷.	RRP			nts	0
			Date/Time			10311243.11141011411.119	J V Zn												Sample Comments	iab, if received by 4.30pm	TAT starts the day recevied by the				-4686	SU	Cost Center: 1579661001	Work Order Notes		[]	[level IV	l	nperfund		으 <u>.</u>
			เค			- IG	L												Its		d by the						_	Sa]	[a N		

Released to Imaging: 4/1/2022 3:53:00 PM

4/20/2021 (Rev. 1)

f 123 00

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 519 List Number: 1 Creator: Ordonez, Gabby

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 890-519-1 SDG Number: TE012918100

List Source: Eurofins Midland

List Creation: 04/14/21 02:37 PM

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 519 List Number: 2 Creator: Copeland, Tatiana

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 12/9/2021 1:09:22 PM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-520-1

Laboratory Sample Delivery Group: TE012918100 Client Project/Site: Cattle Baron State 1Y

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 4/19/2021 1:24:47 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert Visit us at:

www.eurofinsus.com/Env Released to Imaging: 4/1/2022 3:53:00 PM

Laboratory Job ID: 890-520-1 SDG: TE012918100

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

2

Client: WSP USA Inc.
Project/Site: Cattle Baron State 1Y

ceived by OC	CD: 12/9/2021 1:09:22 PM	Page 101 of 1	123
	Definitions/Glossary		1
Client: WSP	USA Inc.	Job ID: 890-520-1	
Project/Site:	Cattle Baron State 1Y	SDG: TE012918100	
Qualifiers			3
GC VOA	Our life a Description		
Qualifier S1-	Qualifier Description		
S1- S1+	Surrogate recovery exceeds control limits, low biased.		
U	Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.		5
GC Semi VO			
Qualifier	Qualifier Description		
*+	LCS and/or LCSD is outside acceptance limits, high biased.		
*1	LCS/LCSD RPD exceeds control limits.		
S1+	Surrogate recovery exceeds control limits, high biased.		8
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			9
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
α	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
DIF			

Dil Fac **Dilution Factor** DL Detection Limit (DoD/DOE) DL,

DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin)

ML MPN Most Probable Number

MQL Method Quantitation Limit

NC Not Calculated ND

Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent

POS Positive / Present Practical Quantitation Limit PQL

PRES Presumptive

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Xenco, Carlsbad

Job ID: 890-520-1 SDG: TE012918100

Page 102 of 123

Job ID: 890-520-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-520-1

Receipt

The samples were received on 4/13/2021 4:17 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.4°C

Receipt Exceptions

The following samples analyzed for method BTEX 8021 were received and analyzed from an unpreserved bulk soil jar: BG02 (890-520-1), BG02A (890-520-2), BG02B (890-520-3), BG02C (890-520-4), BG02D (890-520-5) and BG02E (890-520-6).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: BG02 (890-520-1), BG02A (890-520-2) and BG02C (890-520-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

04/14/21 14:45

04/14/21 14:45

04/14/21 14:45

04/14/21 14:45

04/14/21 14:45

04/14/21 14:45

04/14/21 14:45

Prepared

04/14/21 14:45

04/14/21 14:45

Job ID: 890-520-1 SDG: TE012918100

Client Sample ID: BG02

Project/Site: Cattle Baron State 1Y

Date Collected: 04/12/21 12:20 Date Received: 04/13/21 16:17

Sample Depth: - 4

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

Total BTEX

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client: WSP USA Inc.

Lab Sample ID: 890-520-1

Analyzed

04/15/21 02:35

04/15/21 02:35

04/15/21 02:35

04/15/21 02:35

04/15/21 02:35

04/15/21 02:35

04/15/21 02:35

Analyzed

04/15/21 02:35

04/15/21 02:35

Matrix: Solid

Dil Fac

1

1

1

1

1

Dil Fac

Method: 8015B NM - Diesel Range Organics (DRO) (GC)	

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

0.00965

<0.00198 U

<0.00198 U

<0.00396 U

<0.00198 U

<0.00396 U

%Recovery Qualifier

164 S1-

66

S1+

0.00965

L	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
l	Gasoline Range Organics	<50.0	U	50.0	mg/Kg		04/14/21 08:54	04/14/21 19:59	1	
l	(GRO)-C6-C10									
l	Diesel Range Organics (Over	<50.0	U *+ *1	50.0	mg/Kg		04/14/21 08:54	04/14/21 19:59	1	
l	C10-C28)									
l	Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		04/14/21 08:54	04/14/21 19:59	1	
l	Total TPH	<50.0	U	50.0	mg/Kg		04/14/21 08:54	04/14/21 19:59	1	
l										

RL

0.00198

0.00198

0.00198

0.00396

0.00198

0.00396

0.00198

Limits

70 - 130

70 - 130

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130	04/14/21 08:54	04/14/21 19:59	1
o-Terphenyl	105		70 - 130	04/14/21 08:54	04/14/21 19:59	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	48.3		5.02	mg/Kg			04/18/21 18:27	1

Client Sample ID: BG02A Date Collected: 04/12/21 12:25

Date Received: 04/13/21 16:17 Sample Depth: - 6

Lab Sample ID: 890-520-2 Matrix: Solid

```
Method: 8021B - Volatile Organic Compounds (GC)
Analyte
                                                 Result Qualifier
                                                                                RL
                                                                                                  Unit
                                                                                                                  D
                                                                                                                         Prepared
                                                                                                                                          Analyzed
                                                                                                                                                          Dil Fac
Benzene
                                              < 0.00202
                                                        U
                                                                           0.00202
                                                                                                  mg/Kg
                                                                                                                      04/14/21 14:45
                                                                                                                                       04/15/21 02:56
                                                                                                                                                                1
Toluene
                                              <0.00202 U
                                                                           0.00202
                                                                                                  mg/Kg
                                                                                                                      04/14/21 14:45
                                                                                                                                       04/15/21 02:56
                                                                                                                                                                1
Ethylbenzene
                                              <0.00202 U
                                                                           0.00202
                                                                                                  mg/Kg
                                                                                                                      04/14/21 14:45
                                                                                                                                       04/15/21 02:56
                                                                                                                                                                1
m-Xylene & p-Xylene
                                                                           0.00403
                                              <0.00403 U
                                                                                                  mg/Kg
                                                                                                                      04/14/21 14:45
                                                                                                                                       04/15/21 02:56
                                                                                                                                                                1
o-Xylene
                                              <0.00202 U
                                                                           0.00202
                                                                                                  mg/Kg
                                                                                                                      04/14/21 14:45
                                                                                                                                       04/15/21 02:56
                                                                                                                                                                1
                                                                                                                      04/14/21 14:45
Xylenes, Total
                                              <0.00403 U
                                                                           0.00403
                                                                                                  mg/Kg
                                                                                                                                       04/15/21 02:56
                                                                                                                                                                1
Total BTEX
                                              <0.00202 U
                                                                           0.00202
                                                                                                  mg/Kg
                                                                                                                      04/14/21 14:45
                                                                                                                                       04/15/21 02:56
                                                                                                                                                                1
                                                        Qualifier
                                                                          Limits
Surrogate
                                            %Recovery
                                                                                                                         Prepared
                                                                                                                                          Analyzed
                                                                                                                                                          Dil Fac
                                                    112
                                                                         70 - 130
                                                                                                                      04/14/21 14:45
                                                                                                                                       04/15/21 02:56
4-Bromofluorobenzene (Surr)
                                                                                                                                                                1
                                                                                                                      04/14/21 14:45
1,4-Difluorobenzene (Surr)
                                                    111
                                                                         70 - 130
                                                                                                                                       04/15/21 02:56
                                                                                                                                                                1
```

Matrix: Solid

5

1

1

Matrix: Solid

Client Sample Results

Job ID: 890-520-1 SDG: TE012918100

Lab Sample ID: 890-520-2

04/19/21 08:36

Lab Sample ID: 890-520-3

04/15/21 03:17

04/14/21 14:45

Client Sample ID: BG02A

Project/Site: Cattle Baron State 1Y

Date Collected: 04/12/21 12:25 Date Received: 04/13/21 16:17

Sample Depth: - 6

Client: WSP USA Inc.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1	mg/Kg		04/14/21 08:54	04/14/21 20:21	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.1	U *+ *1	50.1	mg/Kg		04/14/21 08:54	04/14/21 20:21	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		04/14/21 08:54	04/14/21 20:21	1
Total TPH	<50.1	U	50.1	mg/Kg		04/14/21 08:54	04/14/21 20:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130			04/14/21 08:54	04/14/21 20:21	1
o-Terphenyl	92		70 - 130			04/14/21 08:54	04/14/21 20:21	1
- Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

5.04

mg/Kg

Client Sample ID: BG02B

Chloride

Date Collected: 04/12/21 12:35 Date Received: 04/13/21 16:17 Sample Depth: -10

Method: 8021B - Volatile Orga	lethod: 8021B - Volatile Organic Compounds (GC)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 03:17	1	
Toluene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 03:17	1	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 03:17	1	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		04/14/21 14:45	04/15/21 03:17	1	
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 03:17	1	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/14/21 14:45	04/15/21 03:17	1	
Total BTEX	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 03:17	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	104		70 - 130			04/14/21 14:45	04/15/21 03:17	1	

1,4-Difluorobenzene (Surr)	109	70 - 130	
Method: 8015B NM - Diesel Range Organi	cs (DRO) (GC)		

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		04/14/21 13:20	04/15/21 04:48	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		04/14/21 13:20	04/15/21 04:48	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		04/14/21 13:20	04/15/21 04:48	1
Total TPH	<49.8	U	49.8	mg/Kg		04/14/21 13:20	04/15/21 04:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130			04/14/21 13:20	04/15/21 04:48	1
o-Terphenyl	108		70 - 130			04/14/21 13:20	04/15/21 04:48	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	409		5.05	mg/Kg			04/18/21 18:33	1

Client Sample Results

RL

0.00200

0.00200

0.00200

0.00399

0.00200

0.00399

0.00200

Limits

70 - 130

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

04/14/21 14:45

04/14/21 14:45

04/14/21 14:45

04/14/21 14:45

04/14/21 14:45

04/14/21 14:45

04/14/21 14:45

Prepared

04/14/21 14:45

Job ID: 890-520-1 SDG: TE012918100

Client Sample ID: BG02C

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

0.00231

<0.00200 U

<0.00200 U

<0.00399 U

<0.00200 U

<0.00399 U

%Recovery Qualifier

119

0.00231

Project/Site: Cattle Baron State 1Y

Date Collected: 04/12/21 12:45 Date Received: 04/13/21 16:17

Sample Depth: - 12

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

Total BTEX

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

Client: WSP USA Inc.

Lab Sample ID: 890-520-4

Analyzed

04/15/21 03:37

04/15/21 03:37

04/15/21 03:37

04/15/21 03:37

04/15/21 03:37

04/15/21 03:37

04/15/21 03:37

Analyzed

04/15/21 03:37

Lab Sample ID: 890-520-5

Matrix: Solid

Matrix: Solid

Dil Fac

1

1

1

1

1

1

1,4-Difluorobenzene (Surr)	115		70 - 130			04/14/21 14:45	04/15/21 03:37	1	
Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		04/14/21 13:20	04/15/21 05:09	1	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		04/14/21 13:20	04/15/21 05:09	1	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		04/14/21 13:20	04/15/21 05:09	1	
Total TPH	<49.8	U	49.8	mg/Kg		04/14/21 13:20	04/15/21 05:09	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1-Chlorooctane	106		70 - 130			04/14/21 13:20	04/15/21 05:09	1	
o-Terphenyl	98		70 - 130			04/14/21 13:20	04/15/21 05:09	1	

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	664	5.05	mg/Kg			04/18/21 18:38	1

Client Sample ID: BG02D Date Collected: 04/12/21 13:15

Date Received: 04/13/21 16:17

Sample Depth: - 14

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		04/14/21 14:45	04/15/21 05:41	1
Toluene	<0.00198	U	0.00198	mg/Kg		04/14/21 14:45	04/15/21 05:41	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		04/14/21 14:45	04/15/21 05:41	1
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		04/14/21 14:45	04/15/21 05:41	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		04/14/21 14:45	04/15/21 05:41	1
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		04/14/21 14:45	04/15/21 05:41	1
Total BTEX	<0.00198	U	0.00198	mg/Kg		04/14/21 14:45	04/15/21 05:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130			04/14/21 14:45	04/15/21 05:41	1
1,4-Difluorobenzene (Surr)	56	S1-	70 - 130			04/14/21 14:45	04/15/21 05:41	1

Client Sample Results

Job ID: 890-520-1 SDG: TE012918100

Lab Sample ID: 890-520-5

04/19/21 08:41

Lab Sample ID: 890-520-6

Client Sample ID: BG02D

Project/Site: Cattle Baron State 1Y

Date Collected: 04/12/21 13:15 Date Received: 04/13/21 16:17

Sample Depth: - 14

Client: WSP USA Inc.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		04/14/21 13:20	04/15/21 05:30	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		04/14/21 13:20	04/15/21 05:30	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		04/14/21 13:20	04/15/21 05:30	1
Total TPH	<50.0	U	50.0	mg/Kg		04/14/21 13:20	04/15/21 05:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130			04/14/21 13:20	04/15/21 05:30	1
o-Terphenyl	99		70 - 130			04/14/21 13:20	04/15/21 05:30	1
_ Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result		RL	Unit	D	Prepared	Analyzed	Dil Fac

4.98

mg/Kg

880

Client Sample ID: BG02E

Chloride

Date Collected: 04/12/21 14:15 Date Received: 04/13/21 16:17 Sample Depth: - 16

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 06:02	1
Toluene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 06:02	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 06:02	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		04/14/21 14:45	04/15/21 06:02	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 06:02	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/14/21 14:45	04/15/21 06:02	1
Total BTEX	<0.00199	U	0.00199	mg/Kg		04/14/21 14:45	04/15/21 06:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			04/14/21 14:45	04/15/21 06:02	1

	100		10 - 130			04/14/21 14.43	04/13/21 00.02	1
1,4-Difluorobenzene (Surr)	103		70 - 130			04/14/21 14:45	04/15/21 06:02	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		04/15/21 08:24	04/15/21 14:42	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		04/15/21 08:24	04/15/21 14:42	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		04/15/21 08:24	04/15/21 14:42	1
Total TPH	<49.9	U	49.9	mg/Kg		04/15/21 08:24	04/15/21 14:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130			04/15/21 08:24	04/15/21 14:42	1
o-Terphenyl	87		70 - 130			04/15/21 08:24	04/15/21 14:42	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	111		4.97	mg/Kg			04/18/21 18:45	1

Eurofins Xenco, Carlsbad

Matrix: Solid

5

1

Matrix: Solid

Released to Imaging: 4/1/2022 3:53:00 PM

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_			
		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-520-1	BG02	164 S1+	66 S1-
890-520-2	BG02A	112	111
890-520-3	BG02B	104	109
890-520-4	BG02C	119	115
890-520-5	BG02D	126	56 S1-
890-520-6	BG02E	108	103
LCS 880-1779/1-A	Lab Control Sample	87	103
LCSD 880-1779/2-A	Lab Control Sample Dup	93	109
MB 880-1766/5-A	Method Blank	123	110
MB 880-1779/5-A	Method Blank	116	98
Surrogate Legend			

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-520-1	BG02	111	105
890-520-2	BG02A	99	92
890-520-3	BG02B	112	108
890-520-4	BG02C	106	98
890-520-5	BG02D	106	99
890-520-6	BG02E	91	87
LCS 880-1765/2-A	Lab Control Sample	110	92
LCS 880-1794/2-A	Lab Control Sample	104	94
LCS 880-1813/2-A	Lab Control Sample	98	87
LCSD 880-1765/3-A	Lab Control Sample Dup	145 S1+	141 S1+
LCSD 880-1794/3-A	Lab Control Sample Dup	101	89
LCSD 880-1813/3-A	Lab Control Sample Dup	96	85
MB 880-1765/1-A	Method Blank	100	99
MB 880-1794/1-A	Method Blank	107	103
MB 880-1813/1-A	Method Blank	97	94

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

4/19/2021

Job ID: 890-520-1 SDG: TE012918100

Prep Type: Total/NA

5 6

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

 Lab Sample ID: MB 880-1766/5-A								Client Sa	mple ID: Metho	d Blank
Matrix: Solid									Prep Type:	Total/NA
Analysis Batch: 1767									Prep Bate	ch: 1766
	МВ	MB								
Analyte	Result	Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/K	g	_	04/14/21 08:56	04/14/21 13:09	1
Toluene	<0.00200	U	0.00200		mg/K	g		04/14/21 08:56	04/14/21 13:09	1
Ethylbenzene	<0.00200	U	0.00200		mg/K	g		04/14/21 08:56	04/14/21 13:09	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/K	g		04/14/21 08:56	04/14/21 13:09	1
o-Xylene	<0.00200	U	0.00200		mg/K	g		04/14/21 08:56	04/14/21 13:09	1
Xylenes, Total	<0.00400	U	0.00400		mg/K	g		04/14/21 08:56	04/14/21 13:09	1
Total BTEX	<0.00200	U	0.00200		mg/K	g		04/14/21 08:56	04/14/21 13:09	1
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130					04/14/21 08:56	04/14/21 13:09	1
1,4-Difluorobenzene (Surr)	110		70 - 130					04/14/21 08:56	04/14/21 13:09	1
Lab Sample ID: MB 880-1779/5-A								Client Sa	mple ID: Metho	d Blank
Matrix: Solid									Prep Type:	
Analysis Batch: 1767									Prep Bate	
Analysis Daten. 1707	МВ	МВ							Thep Date	
Analyte	Result		RL		Unit		D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200		mg/K	a	_	04/14/21 14:45	04/15/21 00:10	1
Toluene	<0.00200		0.00200		mg/K	-		04/14/21 14:45	04/15/21 00:10	1
Ethylbenzene	<0.00200		0.00200		mg/K			04/14/21 14:45	04/15/21 00:10	1
m-Xylene & p-Xylene	< 0.00400		0.00400		mg/K			04/14/21 14:45	04/15/21 00:10	
o-Xylene	<0.00200		0.00200		mg/K			04/14/21 14:45	04/15/21 00:10	1
Xylenes, Total	< 0.00400		0.00400		mg/K			04/14/21 14:45	04/15/21 00:10	1
Total BTEX	< 0.00200		0.00200		mg/K			04/14/21 14:45	04/15/21 00:10	· · · · · · · · · · · · · · · · · · ·
	MB	МВ								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130					04/14/21 14:45	04/15/21 00:10	1
1,4-Difluorobenzene (Surr)	98		70 - 130					04/14/21 14:45	04/15/21 00:10	1
Leh Semple ID: LCS 990 1770/1 A							~	lient Comple		Somela
Lab Sample ID: LCS 880-1779/1-A Matrix: Solid							C	nem Sample	D: Lab Control	
									Prep Type:	
Analysis Batch: 1767			Calles	1.00	LCS				Prep Bate %Rec.	cn: 1779
Analyte			Spike Added		Qualifier	Unit		D %Rec	Limits	
Benzene			0.100	0.07945		mg/Kg		79	70 - 130	
Toluene			0.100	0.08727		mg/Kg		87	70 - 130	
Ethylbenzene			0.100	0.07968		mg/Kg		80	70 - 130	
m-Xylene & p-Xylene			0.200	0.1691		mg/Kg		85	70 _ 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	87		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Job ID: 890-520-1 SDG: TE012918100

Page 108 of 123

Eurofins Xenco, Carlsbad

Released to Imaging: 4/1/2022 3:53:00 PM
QC Sample Results

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y Job ID: 890-520-1 SDG: TE012918100

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-177 Matrix: Solid												ab Control Prep Ty		
Analysis Batch: 1767				Spike		LCSD						%Rec.	Batch	RP
Analyte				Added			Qualifier	Unit		D	%Rec	Limits	RPD	Lim
Benzene				0.100		08414	Quaimer	mg/Kg		- <u>-</u>	84	70 - 130	6	
Toluene				0.100		09461		mg/Kg			95	70 - 130 70 - 130	8	3
Ethylbenzene				0.100		09048		mg/Kg			90	70 - 130 70 - 130	13	3
m-Xylene & p-Xylene				0.200		0.1824		mg/Kg			91	70 - 130 70 - 130	8	
p-Xylene				0.200		09024		mg/Kg			91	70 - 130 70 - 130	8 9	
Б-Хуюне				0.100	0.	03024		mg/itg			30	70 - 150	5	•
	LCSD	LCS	D											
Surrogate	%Recovery	Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)	93			70 - 130										
1,4-Difluorobenzene (Surr)	109			70 - 130										
ethod: 8015B NM - Diese		rgar	nics (DR	(GC) (GC)										
_ab Sample ID: MB 880-1765/1 Matrix: Solid	I-A										Client Sa	ample ID: M Prep Ty		
Analysis Batch: 1773													Batch	
		мв	мв									i ich	Jaton	
Analyte	R		Qualifier		RL		Unit		D	P	repared	Analyze	d	Dil F
Basoline Range Organics		<50.0		{	50.0		mg/k		_		4/21 08:54	04/14/21 1		
GRO)-C6-C10 Nesel Range Organics (Over		<50.0	U	Ę	50.0		mg/ł	٢g		04/1	4/21 08:54	04/14/21 11	:26	
10-C28)		-50.0			50.0					04/1	4/24 09:54	04/14/01 14		
Il Range Organics (Over C28-C36)		<50.0			50.0		mg/k				4/21 08:54	04/14/21 1		
otal TPH		<50.0	U	:	50.0		mg/ł	٨g		04/14	4/21 08:54	04/14/21 11	:20	
S	0/ D	MB		1	_					-		A		D # C
Surrogate	%Reco	100	Qualifier	Limits 70 _ 13							repared 4/21 08:54	Analyze		Dil F
1-Chlorooctane p-Terphenyl		99		70 - 13							4/21 08:54	04/14/21 1		
- reipnenyi		99		70 - 13	50					04/1	4/21 00.54	04/14/21 1	1.20	
Lab Sample ID: LCS 880-1765/	/2-A								С	lient	Sample	ID: Lab Co	ntrol S	amp
Matrix: Solid												Prep Ty		
Analysis Batch: 1773													Batch	
				Spike		LCS	LCS					• %Rec.		
Analyte				Added	F	Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000		1249		mg/Kg			125	70 - 130		
GRO)-C6-C10														
Diesel Range Organics (Over C10-C28)				1000		1042		mg/Kg			104	70 - 130		
		LCS		,										
Surrogate	%Recovery	Qua		Limits										
1-Chlorooctane	110			70 - 130 70 - 120										
-Terphenyl	92			70 - 130										
∟ab Sample ID: LCSD 880-176 Matrix: Solid	5/3-A							Cli	ent	Sam	ple ID: L	ab Control Prep Ty		
													-	
Analysis Batch: 1773				Spike		LCSD	1000					Rec.	Batch	
Analyte				Spike Added				Unit		п	%Pac	%Rec. Limits	pon	RF Lin
Analyte							Qualifier	Unit		<u>D</u>	%Rec		RPD	
Gasoline Range Organics				1000		1300		mg/Kg			130	70 - 130	4	

Eurofins Xenco, Carlsbad

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-1765 Matrix: Solid	5/3-A						Cli	ent S	Sam	ple ID: L	ab Contro	-	-
												ype: To	
Analysis Batch: 1773				0	1.000	1.000						p Batch	
A				Spike		LCSD	11		_	0/ D	%Rec.		RPI
Analyte				Added		Qualifier	Unit		<u>D</u>	%Rec	Limits	RPD	Lim
Diesel Range Organics (Over C10-C28)				1000	1565	*+ *1	mg/Kg			156	70 - 130	40	2
	LCSD	LCS	D										
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	145	S1+		70 - 130									
o-Terphenyl	141	S1+		70 - 130									
Lab Sample ID: MB 880-1794/1	- A									Client Sa	ample ID: I	Method	Blan
Matrix: Solid											Prep T	ype: To	otal/N/
Analysis Batch: 1773											Pre	p Batch	n: 179
-		ΜВ	МВ									-	
Analyte	Re	esult	Qualifier	R	L	Unit		D	Pr	epared	Analyz	ed	Dil Fa
Gasoline Range Organics	<	50.0	U	50.	2	mg/K	g		04/14	1/21 13:20	04/14/21	21:04	
(GRO)-C6-C10						-							
Diesel Range Organics (Over C10-C28)	<	50.0	U	50.)	mg/K	íg		04/14	4/21 13:20	04/14/21	21:04	
Oll Range Organics (Over C28-C36)	<	50.0	U	50.	C	mg/K	g		04/14	1/21 13:20	04/14/21	21:04	
Total TPH	<	50.0	U	50.)	mg/K	ģ		04/14	4/21 13:20	04/14/21	21:04	
		ΜВ	МВ										
Surrogate	%Reco	verv	Qualifier	Limits					Pr	epared	Analyz	ed	Dil Fa
1-Chlorooctane		107		70 - 130	_			-		4/21 13:20	04/14/21		
o-Terphenyl		103		70 - 130						4/21 13:20	04/14/21		
Matrix: Solid Analysis Batch: 1773				Spike	LCS	LCS						ype: To p Batch	
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	1153		mg/Kg			115	70 - 130		
(GRO)-C6-C10													
Diesel Range Organics (Over C10-C28)				1000	1031		mg/Kg			103	70 - 130		
	LCS	LCS											
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	104			70 - 130									
o-Terphenyl	94			70 - 130									
Lab Sample ID: LCSD 880-1794	4/3-A						Cli	ent S	Sam	ple ID: L	ab Contro		
												ype: To	
												p Batch	
						LCSD					%Rec.		RP
				Spike									
Analysis Batch: 1773 Analyte				Added	Result	Qualifier	Unit		<u>D</u> .	%Rec	Limits	RPD	
Analysis Batch: 1773 Analyte Gasoline Range Organics				-			Unit mg/Kg		<u>D</u>	%Rec 128	Limits 70 - 130	RPD 11	
Analysis Batch: 1773 Analyte Gasoline Range Organics (GRO)-C6-C10				Added	Result 1282		mg/Kg		<u>D</u>	128	70 - 130	11	2
Analysis Batch: 1773 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over				Added	Result				<u>D</u> .				2
Matrix: Solid Analysis Batch: 1773 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCSD	LCS		Added	Result 1282		mg/Kg		<u>D</u> .	128	70 - 130	11	2(
Analysis Batch: 1773 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCSD %Recovery			Added	Result 1282		mg/Kg		<u>D</u> .	128	70 - 130	11	2

Project/Site: Cattle Baron State 1Y

Client: WSP USA Inc.

Job ID: 890-520-1 SDG: TE012918100

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	4/3-A						CI	ient	Sam	ple ID: L	ab Control		
Matrix: Solid											Prep Ty		
Analysis Batch: 1773											Prep	Batch	h: 1794
	LCSD	LCS	D										
Surrogate	%Recovery	Qua	lifier	Limits									
o-Terphenyl	89			70 - 130									
Lab Sample ID: MB 880-1813/1	- A									Client Sa	ample ID: M	ethod	d Blani
Matrix: Solid											Prep Ty	pe: To	otal/N/
Analysis Batch: 1820											Prep	Batch	h: 181
		МΒ	MB										
Analyte	Re	sult	Qualifier	RL	-	Unit		D	P	repared	Analyzed	d	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<	50.0	U	50.0)	mg/l	≺g		04/1	5/21 08:24	04/15/21 11	:52	
Diesel Range Organics (Over C10-C28)	<	50.0	U	50.0)	mg/l	≺g		04/1	5/21 08:24	04/15/21 11	:52	
Oll Range Organics (Over C28-C36)	<	50.0	U	50.0)	mg/l	≺g		04/1	5/21 08:24	04/15/21 11	:52	
Total TPH	<	50.0	U	50.0)	mg/l			04/1	5/21 08:24	04/15/21 11	:52	
						-							
	~-	MВ							-		. .		
Surrogate	%Reco		Qualifier	Limits	-					repared	Analyze		Dil Fa
1-Chlorooctane o-Terphenyl		97 94		70 ₋ 130 70 - 130						5/21 08:24 5/21 08:24	04/15/21 11 04/15/21 11		
Lab Sample ID: LCS 880-1813/	2-A							- C	lient	Sample	ID: Lab Cor	ntrol S	Sampl
Lab Sample ID: LCS 880-1813/	′2 ₋∆							C	liont	Sample	ID: Lah Cor	ntrol S	Samnl
											Prep Ty	pe: To	otal/N/
Matrix: Solid											Prep	pe: To	
Matrix: Solid Analysis Batch: 1820				Spike		LCS				-	Prep %Rec.	pe: To	otal/N/
Matrix: Solid Analysis Batch: 1820 ^{Analyte}				Added	Result	LCS Qualifier	Unit		<u>D</u>	%Rec	Prep %Rec. Limits	pe: To	otal/N/
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics				-			 			-	Prep %Rec.	pe: To	otal/N/
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10				Added	Result 1201		mg/Kg			%Rec	Prep %Rec. Limits 70 - 130	pe: To	otal/N/
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over				Added	Result					%Rec	Prep %Rec. Limits	pe: To	otal/N/
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over				Added	Result 1201		mg/Kg			%Rec	Prep %Rec. Limits 70 - 130	pe: To	otal/N/
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCS			Added	Result 1201		mg/Kg			%Rec	Prep %Rec. Limits 70 - 130	pe: To	otal/N/
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	LCS %Recovery			Added 1000 1000 <i>Limits</i>	Result 1201		mg/Kg			%Rec	Prep %Rec. Limits 70 - 130	pe: To	otal/N/
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	LCS %Recovery 98			Added 1000 1000 Limits 70 - 130	Result 1201		mg/Kg			%Rec	Prep %Rec. Limits 70 - 130	pe: To	otal/N/
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	LCS %Recovery			Added 1000 1000 <i>Limits</i>	Result 1201		mg/Kg			%Rec	Prep %Rec. Limits 70 - 130	pe: To	otal/N/
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	LCS %Recovery 98 87			Added 1000 1000 Limits 70 - 130	Result 1201		mg/Kg mg/Kg		<u>D</u>	%Rec 120 97	Prep %Rec. Limits 70 - 130 70 - 130	pe: To Batch	otal/N/ h: 1813
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-181	LCS %Recovery 98 87			Added 1000 1000 Limits 70 - 130	Result 1201		mg/Kg mg/Kg		<u>D</u>	%Rec 120 97	Prep %Rec. Limits 70 - 130 70 - 130 ab Control	pe: To Batch	otal/N/ h: 1813
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1813 Matrix: Solid	LCS %Recovery 98 87			Added 1000 1000 Limits 70 - 130	Result 1201		mg/Kg mg/Kg		<u>D</u>	%Rec 120 97	Prep %Rec. Limits 70 - 130 70 - 130 90 - 130 Prep Ty	pe: To Batch	otal/N/ h: 1813
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-1813 Matrix: Solid	LCS %Recovery 98 87			Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130	Result 1201 968.0	Qualifier	mg/Kg mg/Kg		<u>D</u>	%Rec 120 97	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 ab Control Prep Ty Prep	pe: To Batch	otal/N/ h: 1813
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 1820	LCS %Recovery 98 87			Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 1201 968.0	Qualifier	mg/Kg mg/Kg CI		_ D Sam	%Rec 120 97	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 ab Control Prep Ty Prep %Rec.	Samp Batch	otal/NA h: 1813 otal/NA h: 1813 RPI
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 1820 Analyte	LCS %Recovery 98 87			Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130 Spike Added	Result 1201 968.0 LCSD Result	Qualifier	mg/Kg mg/Kg Cl		<u>D</u>	%Rec 120 97 ple ID: L %Rec	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 0 - 130 9 70 - 190 9 70 - 190 9 70 - 190 9 70 - 190 70	Samp pe: To Batch Batch RPD	otal/N/ h: 1813 otal/N/ h: 1813 RPI Limi
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics	LCS %Recovery 98 87			Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 1201 968.0	Qualifier	mg/Kg mg/Kg CI		_ D Sam	%Rec 120 97	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 ab Control Prep Ty Prep %Rec.	Samp Batch	otal/N/ h: 1813 otal/N/ h: 1813 RPI Limi
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10	LCS %Recovery 98 87			Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added 1000	Result 1201 968.0 LCSD Result 1074	Qualifier	mg/Kg mg/Kg Cl		_ D Sam	%Rec 120 97 97 ople ID: L <u>%Rec</u> 107	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 where the second se	Samp pe: To Batch Pe: To Batch RPD 11	ble Dup otal/N/ h: 1813 ble Dup otal/N/ h: 1813 RPI Limi 20
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCS %Recovery 98 87			Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130 Spike Added	Result 1201 968.0 LCSD Result	Qualifier	mg/Kg mg/Kg Cl		_ D Sam	%Rec 120 97 ple ID: L %Rec	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 0 - 130 9 70 - 190 9 70 - 190 9 70 - 190 9 70 - 190 70	Samp pe: To Batch Batch RPD	otal/N/ h: 1813 otal/N/ h: 1813 RPI Limi 2
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCS <u>%Recovery</u> 98 87 3/3-A	Qua	lifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added 1000	Result 1201 968.0 LCSD Result 1074	Qualifier	mg/Kg mg/Kg Cl		_ D Sam	%Rec 120 97 97 ople ID: L <u>%Rec</u> 107	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 where the second se	Samp pe: To Batch Pe: To Batch RPD 11	ble Dup otal/N/ h: 1813 ble Dup otal/N/ h: 1813 RPI Limi 20
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCS %Recovery 98 87 3/3-A	Qua	lifier	Added 1000 1000 1000 1000 1000 70 - 130 70 - 130 70 - 130 1000 1000 1000	Result 1201 968.0 LCSD Result 1074	Qualifier	mg/Kg mg/Kg Cl		_ D Sam	%Rec 120 97 97 ople ID: L <u>%Rec</u> 107	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 where the second se	Samp pe: To Batch Pe: To Batch RPD 11	ble Dup otal/N/ h: 1813 ble Dup otal/N/ h: 1813 RPI Limi 20
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	LCS %Recovery 98 87 3/3-A LCSD %Recovery	Qua	lifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 1000 1000 <i>Limits</i>	Result 1201 968.0 LCSD Result 1074	Qualifier	mg/Kg mg/Kg Cl		_ D Sam	%Rec 120 97 97 ople ID: L <u>%Rec</u> 107	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 where the second se	Samp pe: To Batch Pe: To Batch RPD 11	ble Dup otal/N/ h: 1813 ble Dup otal/N/ h: 1813 RPI Limi 20
Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 1820 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCS %Recovery 98 87 3/3-A	Qua	lifier	Added 1000 1000 1000 1000 1000 70 - 130 70 - 130 70 - 130 1000 1000 1000	Result 1201 968.0 LCSD Result 1074	Qualifier	mg/Kg mg/Kg Cl		_ D Sam	%Rec 120 97 97 ople ID: L <u>%Rec</u> 107	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 where the second se	Samp pe: To Batch Pe: To Batch RPD 11	ble Dup otal/N/ h: 1813 ble Dup otal/N/ h: 1813 RPI Limi 20

QC Sample Results

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y Job ID: 890-520-1 SDG: TE012918100

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-1918/1-A Matrix: Solid										Client	Sample II Pre): Metho p Type:	
Analysis Batch: 1955	МВ	мв											
Analyte		Qualifier		RL		Ui	nit		D	Prepared	Ana	lyzed	Dil Fa
Chloride	<5.00	U		5.00		m	g/Kg				04/18/2	21 16:20	
Lab Sample ID: LCS 880-1918/2-A									Clie	nt Sampl	e ID: Lab	Control	Sampl
Matrix: Solid											Pre	p Type:	Solubl
Analysis Batch: 1955													
-			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qualifie	ər U	nit	D	%Rec	Limits		
Chloride			250		250.0		m	g/Kg		100	90 - 110		
Lab Sample ID: LCSD 880-1918/3-A								Cli	ent Sa	mple ID:	Lab Cont	rol Sam	ple Du
Matrix: Solid												p Type:	
Analysis Batch: 1955													
			Spike		LCSD	LCSD					%Rec.		RP
Analyte			Added		Result	Qualifie	ər U	nit	D	%Rec	Limits	RPD) Lim
Chloride			250		249.2		m	g/Kg		100	90 - 110	C	2 2

BG02C

BG02D

BG02E

Method Blank

Method Blank

Lab Control Sample

Lab Control Sample Dup

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y Page 113 of 123

Job ID: 890-520-1 SDG: TE012918100

GC VOA

890-520-4

890-520-5

890-520-6

MB 880-1766/5-A

MB 880-1779/5-A

Prep Batch: 1766

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-1766/5-A	Method Blank	Total/NA	Solid	5035	
Analysis Batch: 1767					
Maivsis Dalcii. 1707					
		Pron Type	Matrix	Method	Pron Batch
Lab Sample ID	Client Sample ID BG02	Prep Type Total/NA	Matrix Solid	<u>Method</u> 8021B	Prep Batch
	Client Sample ID				

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

Solid

Solid

Solid

Solid

8021B

8021B

8021B

8021B

8021B

8021B

8021B

LCS 880-1779/1-A
LCSD 880-1779/2-A

Prep Batch: 1779

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-520-1	BG02	Total/NA	Solid	5035	
890-520-2	BG02A	Total/NA	Solid	5035	
890-520-3	BG02B	Total/NA	Solid	5035	
890-520-4	BG02C	Total/NA	Solid	5035	
890-520-5	BG02D	Total/NA	Solid	5035	
890-520-6	BG02E	Total/NA	Solid	5035	
MB 880-1779/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-1779/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-1779/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 1765

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-520-1	BG02	Total/NA	Solid	8015NM Prep	
890-520-2	BG02A	Total/NA	Solid	8015NM Prep	
MB 880-1765/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-1765/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-1765/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 1773

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-520-1	BG02	Total/NA	Solid	8015B NM	1765
890-520-2	BG02A	Total/NA	Solid	8015B NM	1765
890-520-3	BG02B	Total/NA	Solid	8015B NM	1794
890-520-4	BG02C	Total/NA	Solid	8015B NM	1794
890-520-5	BG02D	Total/NA	Solid	8015B NM	1794
MB 880-1765/1-A	Method Blank	Total/NA	Solid	8015B NM	1765
MB 880-1794/1-A	Method Blank	Total/NA	Solid	8015B NM	1794
LCS 880-1765/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	1765
LCS 880-1794/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	1794
LCSD 880-1765/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	1765
LCSD 880-1794/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	1794

5

8

1779

1779

1779

1766

1779

1779

QC Association Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Prep Batch: 1794

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-520-3	BG02B	Total/NA	Solid	8015NM Prep	
890-520-4	BG02C	Total/NA	Solid	8015NM Prep	
890-520-5	BG02D	Total/NA	Solid	8015NM Prep	
MB 880-1794/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-1794/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-1794/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
Prep Batch: 1813					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-520-6	BG02E	Total/NA	Solid	8015NM Prep	
MB 880-1813/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-1813/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-1813/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
Analysis Batch: 1820					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-520-6	BG02E	Total/NA	Solid	8015B NM	1813
MB 880-1813/1-A	Method Blank	Total/NA	Solid	8015B NM	1813
LCS 880-1813/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	1813

Total/NA

Solid

8015B NM

HPLC/IC

Leach Batch: 1918

LCSD 880-1813/3-A

Lab Control Sample Dup

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-520-1	BG02	Soluble	Solid	DI Leach	
890-520-2	BG02A	Soluble	Solid	DI Leach	
890-520-3	BG02B	Soluble	Solid	DI Leach	
890-520-4	BG02C	Soluble	Solid	DI Leach	
890-520-5	BG02D	Soluble	Solid	DI Leach	
890-520-6	BG02E	Soluble	Solid	DI Leach	
MB 880-1918/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-1918/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-1918/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 1955

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-520-1	BG02	Soluble	Solid	300.0	1918
890-520-2	BG02A	Soluble	Solid	300.0	1918
890-520-3	BG02B	Soluble	Solid	300.0	1918
890-520-4	BG02C	Soluble	Solid	300.0	1918
890-520-5	BG02D	Soluble	Solid	300.0	1918
890-520-6	BG02E	Soluble	Solid	300.0	1918
MB 880-1918/1-A	Method Blank	Soluble	Solid	300.0	1918
LCS 880-1918/2-A	Lab Control Sample	Soluble	Solid	300.0	1918
LCSD 880-1918/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	1918

Page 114 of 123

Job ID: 890-520-1 SDG: TE012918100

Project/Site: Cattle Baron State 1Y

5

9

Lab Chronicle

Job ID: 890-520-1 SDG: TE012918100

Lab Sample ID: 890-520-1 Matrix: Solid

Lab Sample ID: 890-520-2

Matrix: Solid

Date Collected: 04/12/21 12:20 Date Received: 04/13/21 16:17

Client Sample ID: BG02

Client: WSP USA Inc.

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 02:35	KL	XM
Total/NA	Prep	8015NM Prep			1765	04/14/21 08:54	DM	ХМ
Total/NA	Analysis	8015B NM		1	1773	04/14/21 19:59	AJ	XM
Soluble	Leach	DI Leach			1918	04/16/21 20:07	SC	ХМ
Soluble	Analysis	300.0		1	1955	04/18/21 18:27	СН	XM

Client Sample ID: BG02A Date Collected: 04/12/21 12:25

Date Received: 04/13/21 16:17

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 02:56	KL	XM
Total/NA	Prep	8015NM Prep			1765	04/14/21 08:54	DM	XM
Total/NA	Analysis	8015B NM		1	1773	04/14/21 20:21	AJ	XM
Soluble	Leach	DI Leach			1918	04/16/21 20:07	SC	XM
Soluble	Analysis	300.0		1	1955	04/19/21 08:36	CH	XM

Client Sample ID: BG02B

Date Collected: 04/12/21 12:35

Date Received: 04/13/21 16:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 03:17	KL	XM
Total/NA	Prep	8015NM Prep			1794	04/14/21 13:20	DM	XM
Total/NA	Analysis	8015B NM		1	1773	04/15/21 04:48	AJ	XM
Soluble	Leach	DI Leach			1918	04/16/21 20:07	SC	XM
Soluble	Analysis	300.0		1	1955	04/18/21 18:33	СН	XM

Client Sample ID: BG02C Date Collected: 04/12/21 12:45 Date Received: 04/13/21 16:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 03:37	KL	XM
Total/NA	Prep	8015NM Prep			1794	04/14/21 13:20	DM	XM
Total/NA	Analysis	8015B NM		1	1773	04/15/21 05:09	AJ	XM
Soluble	Leach	DI Leach			1918	04/16/21 20:07	SC	XM
Soluble	Analysis	300.0		1	1955	04/18/21 18:38	СН	XM

Lab Sample ID: 890-520-3 Matrix: Solid

Lab Sample ID: 890-520-4

Matrix: Solid

Project/Site: Cattle Baron State 1Y

Job ID: 890-520-1 SDG: TE012918100

Lab Sample ID: 890-520-5 Matrix: Solid

Lab Sample ID: 890-520-6

Matrix: Solid

Date Collected: 04/12/21 13:15 Date Received: 04/13/21 16:17

Client Sample ID: BG02D

Client: WSP USA Inc.

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 05:41	KL	XM
Total/NA	Prep	8015NM Prep			1794	04/14/21 13:20	DM	XM
Total/NA	Analysis	8015B NM		1	1773	04/15/21 05:30	AJ	XM
Soluble	Leach	DI Leach			1918	04/16/21 20:07	SC	XM
Soluble	Analysis	300.0		1	1955	04/19/21 08:41	СН	XM

Client Sample ID: BG02E Date Collected: 04/12/21 14:15 Date Received: 04/13/21 16:17

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1779	04/14/21 14:45	KL	XM
Total/NA	Analysis	8021B		1	1767	04/15/21 06:02	KL	XM
Total/NA	Prep	8015NM Prep			1813	04/15/21 08:24	DM	XM
Total/NA	Analysis	8015B NM		1	1820	04/15/21 14:42	AJ	XM
Soluble	Leach	DI Leach			1918	04/16/21 20:07	SC	XM
Soluble	Analysis	300.0		1	1955	04/18/21 18:45	СН	XM

Laboratory References:

XM = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

5

10

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y Job ID: 890-520-1 SDG: TE012918100

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		Program	Identification Number	Expiration Date
as		NELAP	T104704400-20-21	06-30-21
The following analytes the agency does not o		but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for
0,	Prep Method	Matrix	Analyte	
Analysis Method 8015B NM	Prep Method 8015NM Prep	Matrix Solid	Analyte Total TPH	

Method Summary

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y Job ID: 890-520-1 SDG: TE012918100

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	XM
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	XM
300.0	Anions, Ion Chromatography	MCAWW	XM
5035	Closed System Purge and Trap	SW846	XM
3015NM Prep	Microextraction	SW846	XM
OI Leach	Deionized Water Leaching Procedure	ASTM	XM

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XM = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

	5
	8
	9
1	1
1	3

Client: WSP USA Inc. Project/Site: Cattle Baron State 1Y

Job ID: 890-520-1 SDG: TE012918100

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-520-1	BG02	Solid	04/12/21 12:20	04/13/21 16:17	- 4	
890-520-2	BG02A	Solid	04/12/21 12:25	04/13/21 16:17	- 6	
890-520-3	BG02B	Solid	04/12/21 12:35	04/13/21 16:17	- 10	2
890-520-4	BG02C	Solid	04/12/21 12:45	04/13/21 16:17	- 12	
890-520-5	BG02D	Solid	04/12/21 13:15	04/13/21 16:17	- 14	
890-520-6	BG02E	Solid	04/12/21 14:15	04/13/21 16:17	- 16	
						8
						Ģ
						1
						1
						1

Fridget, Mainager, Dan Multi- Company Name: WSP Address: 3300 Nor City, State ZIP: Midland, Phone: (303) 887 Project Name: T Sampler's Name: T Sample Custody Seals: Ye Sample Custody Seals: Ye BG02 BG02A BG02D BG02D BG02E BG02E	TX 79705 TX 79705 Cattle Baron S TE012918 Temp Blank: (Contest No (Yes) No	Thema W Thema Them	Company Name Address: City, State ZIP: Email: Spencer.Lo@wsp. Turn Around Rush: Due Date: Due Date: Due Date: Due Date: 20 4' 20 4' 20 4' 20 4' 215 15	Company Name: XTO Energy Address: 3104 East Green Street City. State ZIP: Carlsbad, NM 88220 Email: Spencer.Lo@wsp.com.Aimee Cole@wsp.com.Dan Moir@wsp Routine P Rush: No -actor: -, -, - Due Date: - Due Date: - -actor: -, - -atte: - -atte: - Due Date: - -atte: - -atte: - -atte: -	treet State Noir@wsp.com ANALYSIS REQUEST ANALYSIS REQUEST BS0-520 Chain of Custody BS0-520 Chain of Custody	i: UST/PST	PRP Brownfields [RRC -evel IIIST/USTRRP ADaPT Oth ADaPT Oth Cost Center: API: 30-015- Incident ID: 3 Sampl	fields [RC]uperfund [UST RRP]evel IV Work Order Notes Cost Center: 1579661001 API: 30-015-44130 Incident ID: 2RP-4686 TAT starts the day received by 4:30pm Sample Comments
				:P.	-	-		
Sample Identificat	Matrix			TPH (E				Sample Comments
BG02				××				
BG02A				××				
BG02B		1	+	××				
BG02C			+-	××				
BG02D			-	××				
BG02E				×				
				Carl -				
Total 200.7 / 6010 Circle Method(s) and	otal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	쭸	CRA 13PPM Texas 11 AI TCLP / SPLP 6010: 8RCRA	Sb As Ba Be Sb As Ba Be	cd ca cr c cd cr co cu	o Cu Fe Pb Mg Mn Mo Ni K 3 Pb Mn Mo Ni Se Ag TI U	Se Ag SiO2 Na Sr 1631 / 245	12 Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Hg
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase or of service. Xenco will be liable only for the cost of <u>samples and shall not assume any separatelith</u> of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each	ent and relinquishment of sa only for the cost of samples <i>i</i> \$75.00 will be applied to eac	mples constitutes a va Ind shall not assume h project and a charg	lid purchase order from my recencibility for an of \$5 for each sample s	 client company to Xenco, its y tosses or expenses incurree submitted to Xenco, but not a 	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any separability for any tosses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Xenco will be liable only for the cost of samples and shall not assume any separability for any tosses or expenses incurred by the client if such losses are due to circumstances beyond the control of xenco. A minimum charge of \$7.5.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	signs standard terms and conce e to circumstances beyond the ad unless previously negotiate	litions control 1.	
Relinquished by: (Signature)	nature) F	Received by: (Signature)	nature)	Date/Time	Relinquished by: (Signature)	ature) Receive	Received by: (Signature)	Date/Time
v st	Garph	dauby Ordunez		4118/21 10:17	N 4			

Released to Imaging: 4/1/2022 3:53:00 PM

Received by OCD: 12/9/2021 1:09:22 PM

Page 120 of 123

Job Number: 890-520-1 SDG Number: TE012918100 List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 520 List Number: 1 Creator: Ordonez, Gabby

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-520-1 SDG Number: TE012918100

List Source: Eurofins Midland

List Creation: 04/14/21 02:37 PM

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 520 List Number: 2 Creator: Copeland, Tatiana

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:	
XTO ENERGY, INC	5380	
6401 Holiday Hill Road	Action Number:	
Midland, TX 79707	66007	
	Action Type:	
	[C-141] Release Corrective Action (C-141)	
	-	

CONDITIONS

Created By Condition Condition Date The closure report is approved. For future reference, BG01 (Northeast) through BG06 (Northeast) are much too close to activity. Background soil samples 4/1/2022 rhamlet taken in or adjacent to soil that is absent vegetation are generally not good locations to focus on background samples.

Page 123 of 123

Action 66007