wsp

WSP USA

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

March 16, 2022

District I New Mexico Oil Conservation Division 1625 N. French Drive Hobbs, New Mexico 88240

RE: Deferral Request
Red Raider BKS State 001
Incident Number NAPP2129845041
Lea County, New Mexico

To Whom It May Concern:

WSP USA Inc. (WSP) on behalf of COG Operating, LLC (COG), presents the following Deferral Request detailing site assessment and soil sampling activities at the Red Raider BKS State 001 (Site) in Unit J, Section 25, Township 24 South, Range 33 East, in Lea County, New Mexico (Figure 1). The purpose of the site assessment and soil sampling activities was to assess for the presence or absence of impacts to soil following a release of produced water within lined containment at the Site. Based on field observations, field screening activities, and soil sample laboratory analytical results, COG is submitting this Deferral Request, describing site assessment and delineation activities that have occurred and requesting deferral of final remediation for Incident Number NAPP2129845041 until the Site is reconstructed, and/or the well pad is abandoned.

RELEASE BACKGROUND

On October 8, 2021, corrosion on a water dump line resulted in the release of approximately 20 barrels (bbls) of produced water into the lined tank battery containment. A vacuum truck was immediately dispatched to the Site to recover free-standing fluids; all 20 bbls of released produced were recovered from within the lined containment. A 48-hour advance notice of liner inspection was provided via email to New Mexico Oil Conservation Division (NMOCD) District I office on October 27, 2021. A liner integrity inspection was conducted by WSP personnel following the fluid recovery and upon inspection, the liner was determined to be insufficient. COG reported the release to the NMOCD on a Release Notification Form C-141 (Form C-141) on October 25, 2021. The release was assigned Incident Number NAPP2129845041.

SITE CHARACTERIZATION

WSP characterized the Site according to Table 1, *Closure Criteria for Soils Impacted by a Release*, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is estimated to be less than 50 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater

District I Page 2

well with depth to groundwater data is USGS well number 321127103310401. The well is located approximately 0.41 miles northeast of the site. The groundwater well has a reported depth to groundwater of 18 feet bgs and a total depth of 258 feet bgs. Ground surface elevation at the groundwater well location is 3,542 feet amsl, which is approximately 2 feet high in elevation than the Site.

The closest continuously flowing or significant watercourse to the Site is a riverine, located approximately 0.21 miles southwest of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

Benzene: 10 milligrams per kilogram (mg/kg)

Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg

TPH: 100 mg/kg

Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES

On November 23, 2021 and February 21, 2022, WSP personnel visited the Site to evaluate the release extent and conduct site assessment activities. WSP personnel advanced one borehole (BH01) via hand auger near the location of the tear in the liner to assess the vertical extent of impacted soil. Four additional boreholes (BH02 through BH05) were advanced via hand auger around the lined containment to confirm the lateral extent of the release. Two soil samples were collected from each borehole (BH01/BH01A through BH05/BH05A) at depths of 1-foot and 4 feet bgs. Soil from the boreholes was field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photo-ionization detector (PID) and Hach® chloride QuanTab® test strips, respectively. Field screening results and observations from the boreholes were documented on lithologic/soil sampling logs, which are included as Attachment 2. The boreholes were backfilled with the soil removed and COG repaired the tear in the liner. The delineation soil sample locations are depicted on Figure 2. Photographic documentation was conducted during the Site visit. A photographic log is included in Attachment 3.

District I Page 3

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

SOIL ANALYTICAL RESULTS

Laboratory analytical results for delineation soil sample BH01, collected at 1-foot bgs directly below the tear in the liner, indicated that chloride concentrations exceeded the Closure Criteria. Subsequent delineation sample BH01A, collected at 4 feet bgs, indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria. Laboratory analytical results for borehole delineation soil samples BH02/BH02A through BH05/BH05A, collected at depths of 1-foot and 4 feet bgs around the lined containment, indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical report is included as Attachment 4.

DEFERRAL REQUEST

COG is requesting deferral of final remediation due to the presence of active production equipment and surface pipelines within the lined containment. The impacted soil is limited to the area immediately beneath the lined containment and active production equipment, where remediation would require a major facility deconstruction.

The impacted soil remaining in place beneath the liner is delineated vertically by delineation soil sample BH01A and laterally by delineation soil samples BH02/BH02A through BH05/BH05A. A maximum of 467 cubic yards of chloride impacted soil remains in place beneath the liner assuming a maximum 4-foot depth based on the delineation soil samples listed above, that were compliant with the Closure Criteria.

WSP and COG do not believe deferment will result in imminent risk to human health, the environment, or groundwater. The release was contained laterally by the lined containment, and the impacted soil remaining in place is limited to the area immediately beneath the liner. The liner has been repaired by COG and will restrict future vertical migration of residual impacts.

Based on the presence of active production equipment within the release area and the complete lateral and vertical delineation of impacted soil remaining in place, COG requests deferral of final remediation for Incident Number NAPP2129845041 until final reclamation of the well pad or major construction, whichever comes first. The Form C-141 is included as Attachment 5.

District I Page 4

If you have any questions or comments, please do not hesitate to contact Ms. Aimee Cole at (720) 384-7365.

Sincerely,

WSP USA Inc.

Kalei Jennings

Consultant, Environmental Scientist

Aimee Cole

Sr. Consultant, Environmental Scientist

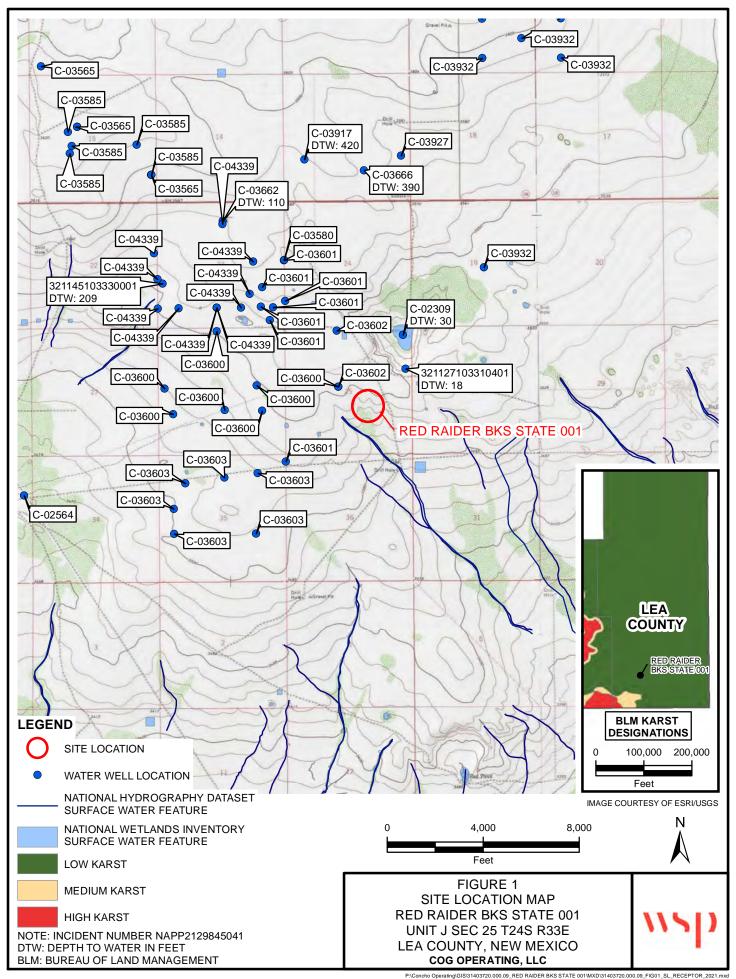
cc: Charles Beauvais, COG Operating, LLC

New Mexico State Land Office

Attachments:

Figure 1 Site Location Map

Figure 2 Delineation Soil Sample Locations


Table 1 Soil Analytical Results
Attachment 1 Referenced Well Records

Attachment 2 Lithologic/Sampling Logs

Attachment 3 Photographic Log

Attachment 4 Laboratory Analytical Reports

Attachment 5 Final C-141

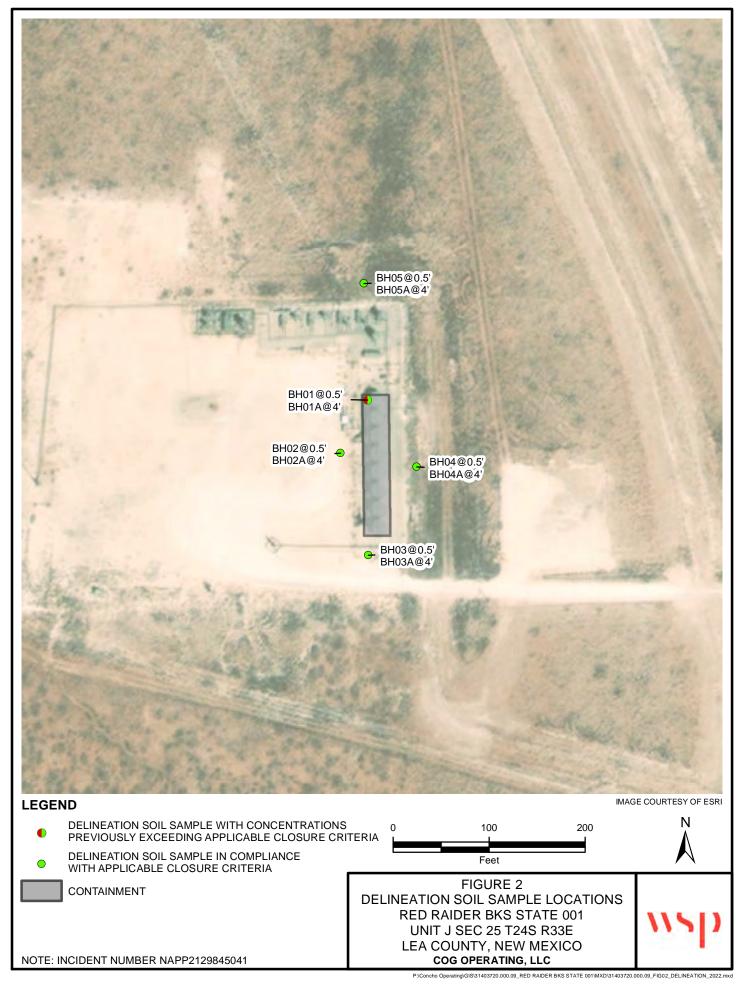


Table 1

Soil Analytical Results Red Raider BKS State 001 Incident Number NAPP2129845041 Lea County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 Clo	osure Criteria (NM	AC 19.15.29)	10	50	NE	NE	NE	NE	100	600
Delineation Soil Sam	ples									
BH01	11/23/2021	0.5	< 0.00201	< 0.00402	<49.8	<49.8	<49.8	<49.8	<49.8	7,080
BH01A	11/23/2021	4	< 0.00200	< 0.00401	<49.9	<49.9	<49.9	<49.9	<49.9	273
BH02	02/21/2022	0.5	< 0.00200	< 0.00400	<50.0	< 50.0	<50.0	< 50.0	< 50.0	162
BH02A	02/21/2022	4	< 0.00200	< 0.00399	56.1	< 50.0	<50.0	56.1	56.1	124
BH03	02/21/2022	0.5	< 0.00201	< 0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	16.5
ВН03А	02/21/2022	4	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	12.1
BH04	02/21/2022	0.5	< 0.00200	< 0.00400	68.7	<50.0	<50.0	68.7	68.7	9.09
BH04A	02/21/2022	4	< 0.00198	< 0.00396	< 50.0	<50.0	<50.0	< 50.0	< 50.0	8.44
BH05	02/21/2022	0.5	< 0.00202	< 0.00403	<49.9	<49.9	<49.9	<49.9	<49.9	9.36
BH05A	02/21/2022	4	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	9.98

Notes:

ft - feet/foot

mg/kg - milligrams per kilograms

BTEX - benzene, toluene, ethylbenzene, and total xylenes

TPH - total petroleum hydrocarbons

DRO - diesel range organics

GRO - gasoline range organics

ORO - oil range organics

NMOCD - New Mexico Oil Conservation Division

NMAC - New Mexico Administrative Code

< - indicates result is less than the stated laboratory method practical quantitation limit

NE - Not Established

BOLD - indicates results exceed the higher of the background sample result or applicable regulatory standard

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Site Information	~	United States	~	GC

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

USGS 321127103310401 24S.33E.24.44444

Available data for this site SUMMARY OF ALL AVAILABLE DATA
GO

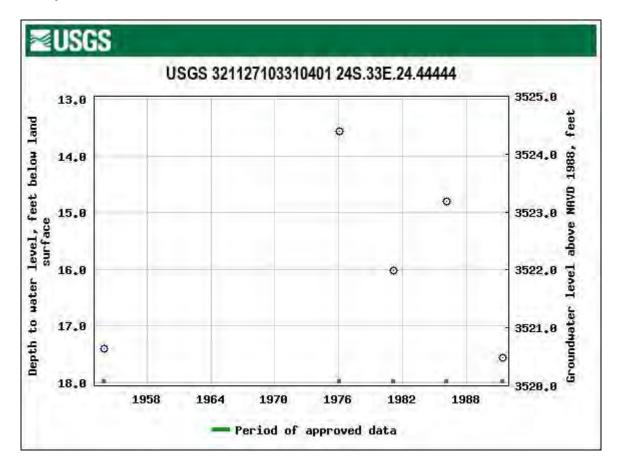
Well Site

DESCRIPTION:

Latitude 32°11'27", Longitude 103°31'04" NAD27

Lea County, New Mexico , Hydrologic Unit 13070007

Well depth: not determined.


Land surface altitude: 3,538 feet above NAVD88.

Well completed in "Other aguifers" (N9999OTHER) national aguifer.

Well completed in "Ogallala Formation" (1210GLL) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1953-11-27	1991-05-29	5
Revisions	Unavailable (site:0) (timese	eries:0)

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources (Cooperator Access)

Data Category:		Geographic Area:		
Groundwater	~	United States	~	GO

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for the Nation

■ Important: Next Generation Monitoring Location Page

Search Results -- 1 sites found

Agency code = usgs

site_no list =

• 321127103310401

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321127103310401 24S.33E.24.44444

Lea County, New Mexico
Latitude 32°11'27", Longitude 103°31'04" NAD27
Land-surface elevation 3,538 feet above NAVD88

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Output formats

Table of data
Tab-separated data
Graph of data
Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
1953-11-27	7	D	62610		3518.95	NGVD29	1	Z		
1953-11-27	7	D	62611		3520.60	NAVD88	1	Z		
1953-11-27	7	D	72019	17.40			1	Z		
1976-01-21	-	D	62610		3522.78	NGVD29	1	Z		
1976-01-21	-	D	62611		3524.43	NAVD88	1	Z		
1976-01-21	-	D	72019	13.57			1	Z		
1981-03-19)	D	62610		3520.32	NGVD29	1	Z		
1981-03-19)	D	62611		3521.97	NAVD88	1	Z		
1981-03-19)	D	72019	16.03			1	Z		
1986-03-06		D	62610		3521.55	NGVD29	1	Z		
1986-03-06		D	62611		3523.20	NAVD88	1	Z		
1986-03-06		D	72019	14.80			1	Z		
1991-05-29		D	62610		3518.79	NGVD29	1	Z		
1991-05-29		D	62611		3520.44	NAVD88	1	Z		
1991-05-29)	D	72019	17.56			1	Z		

Explanation

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

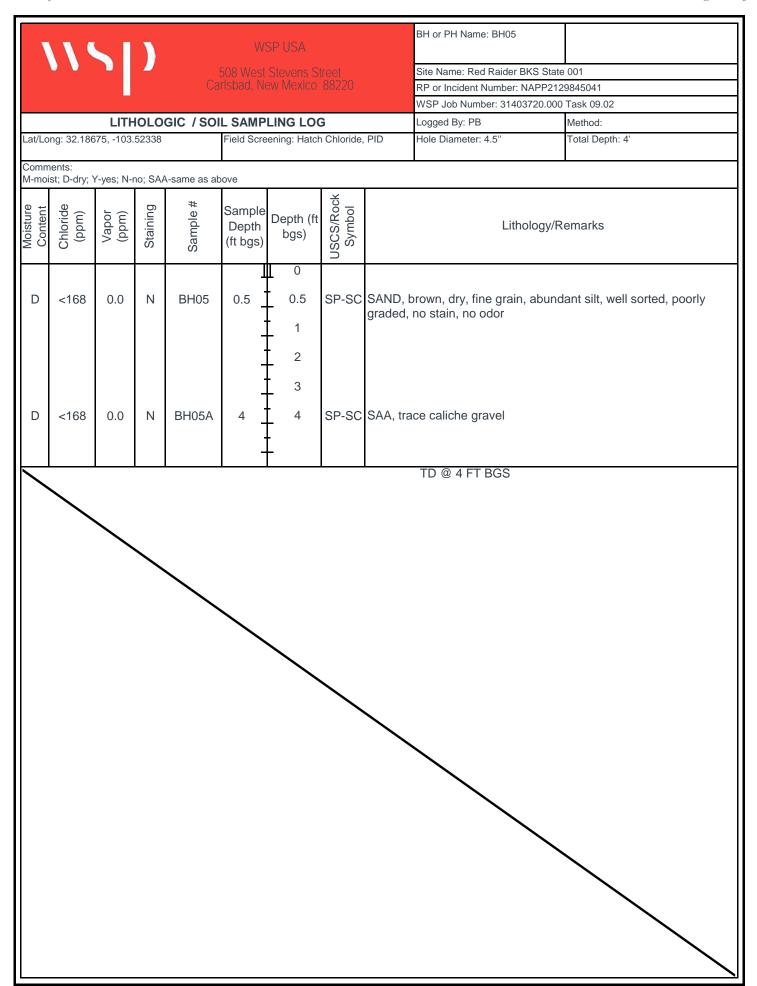
Questions about sites/data? Feedback on this web site Automated retrievals <u>Help</u> Data Tips Explanation of terms Subscribe for system changes <u>News</u>

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey
Title: Groundwater for USA: Water Levels
URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2022-03-16 10:35:27 EDT

0.31 0.28 nadww01



WSP USA 508 West Stevens Street Carlsbad, New Mexico 88220									BH or PH Name: BH01 Site Name: Red Raider BKS St. RP or Incident Number: NAPP2			
									WSP Job Number: 31403720.000 Task 09.02			
LITHOLOGIC / SOIL SAMPLING LOG								Logged By: PB	Method:			
	Lat/Long: 32.18675, -103.52338 Field Screening: Hatch Chloride Strips, PI						Strips, PID	Hole Diameter: 4.5"	Total Depth:			
4'	nents:											
		Y-yes; N-r	no; SAA	\-same as ab	ove							
Moisture Content Chloride Chloride (ppm) Staining Staining Vapor Vapor Vapor Vapor Vapor Staining Stai								/Remarks				
]	0						
D	10,102	0.9	Ν	BH01	0.5	0.5	SP-SM	SAND, c	lark brown, dry, med-fine	grain, abundant silt, moderately		
						Γ.		sorted, r	no stain, no odor			
D	3,449.6	0.7	Ν		1 -	1	SP-SM	SAA				
D	2,206.4	0.2	Ν		2	2	SP-SM	SAA				
D	1,064	0.0	N		3	3	SP-SM	SAA				
D	274.4	0.0	N	BH01A	4	4	SP-SM	SAND. ta	an. drv. med-coarse grain	, trace silt, poorly sorted, no stain,		
					-	-		no odor	. , , , , ,	, , , , , , , ,		
					_	 						
	TD @ 4 FT BGS											
			`									
				`								

\	\\ '	5)	Ca	508 West	SP USA Stevens St ew Mexico	reet 88220	BH or PH Name: BH02 Site Name: Red Raider BKS State 001 RP or Incident Number: NAPP2129845041		
								WSP Job Number: 31403720.000 Task 09.02		
LITHOLOGIC / SOIL SAMPLING LOG							Logged By: PB Method:			
	ong: 32.186	675, -103.	52338		Field Scre	ening: Hatch	Chloride	e Strips, PID Hole Diameter: 4.5" Total Depth:		
4' Comments:										
M-mc	Comments: M-moist; D-dry; Y-yes; N-no; SAA-same as above									
Moisture Content		Vapor (ppm)	Staining				USCS/Rock Symbol	Lithology/Remarks		
D	D 235 2.0 N BH02 0.5 CCHE CALICHE, tan, dry, fine-coarse grain, poorly sorted, well graded no stain, no odor									
D	168.0	3.1	Ζ	BH02A	4 _	3 4	SP-SC	SAND, brown, dry, fine grain, abundant silt, well sorted,poorly no graded, no stain, no odor		

•	'''	5)	Ca	508 West	SP USA Stevens St ew Mexico	reet 88220		BH or PH Name: BH03 Site Name: Red Raider BKS State 001 RP or Incident Number: NAPP2129845041)41
									WSP Job Number: 31403720.000 Task 09.02		
LITHOLOGIC / SOIL SAMPLING LOG								_ogged By: PB	Meth	od:	
	ong: 32.186	675, -103.	52338		Field Scre	ening: Hatch	Chloride	Strips, PID	Hole Diameter: 4.5"	Tota	al Depth:
4' Comments:											
M-mo	nents: oist; D-dry;	Y-yes; N-r	no; SAA	\-same as ab	ove						
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	(ft bgs)		USCS/Rock Symbol		Litholog	y/Remai	rks
D	<168	0.7	N	BH03	0.5	0.5 1 2	CCHE	CALICHE no stain,	ξ, tan, dry, fine-coarse ς no odor	rain, pod	orly sorted, well graded
D	<168	2.0	N	ВН03А	4 _	3 4	CCHE	SAA			

7			•		WS	SP USA			BH or PH Name: BH04			
\	11	>										
	•	- T		Ca.	508 West	Stevens Stew Mexico	reet		Site Name: Red Raider BKS State			
					risbau, ive	W WICKICO	00220		RP or Incident Number: NAPP2129845041 WSP Job Number: 31403720.000 Task 09.02			
1 /1	00.100							DID	Logged By: PB	Method:		
Lat/Long: 32.18675, -103.52338 Field Screening: Hatch Chloride,PID								Hole Diameter: 4.5"	Total Depth: 4'			
Comn	nents:											
M-mo	ist; D-dry; `	Y-yes; N-r	no; SAA	A-same as ab	ove							
Content Content Content Chloride (ppm) Vapor (ppm) Staining Staining Sample # USCS/Rock Symbol							Lithology/R	emarks				
D	<168	1.1	N	BH04	0.5 _ - - -	0.5	CCHE		E, tan, dry, fine-coarse grai no odor	n, poorly sorted, well graded		
D	<168	1.1	N	BH04A	4 - -	3 4 -	CCHE	SAA				
	TD @ 4 FT BGS											
\												

PHOTOGRAPHIC LOG										
COG Operating, LLC	Red Raider BKS State 001	NAPP2129845041								
	Lea County, New Mexico									

hoto No.	Date	
1	November 3, 2021	了。 第一个人
View of breache	d liner during liner	长江江的一个人
integrity inspection.		之数。 2.20 8.25 40 40 40 40 40 40 40 40 40 40 40 40 40
		STATE OF THE STATE OF
		ASSECTION SOUNDS
		がある。

Photo No.	Date
2	November 23, 2021
View of bore hol	e delineation BH01
location inside	lines containment.

PHOTOGRAPHIC LOG						
COG Operating, LLC	Red Raider BKS State 001	NAPP2129845041				
	Lea County, New Mexico					

Photo No. Date
3 February 21, 2022

View of bore hole delineation outside containment to confirm lateral extent.

Photo No. Date
4 February 21, 2022

View of bore hole delineation outside containment to confirm lateral extent.

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1633-1

Laboratory Sample Delivery Group: 31403720.000 Task 09.02

Client Project/Site: Red Raider BKS State 001

For:

WSP USA Inc. 2777 N. Stemmons Freeway **Suite 1600** Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 12/9/2021 10:22:51 AM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

.....LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 4/27/2022 10:44:11 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: WSP USA Inc. Laboratory Job ID: 890-1633-1 Project/Site: Red Raider BKS State 001

SDG: 31403720.000 Task 09.02

Table of C	ontents
------------	---------

Cover Page	ı
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	21

Definitions/Glossary

Client: WSP USA Inc. Job ID: 890-1633-1 Project/Site: Red Raider BKS State 001

SDG: 31403720.000 Task 09.02

Qualifiers

GC VOA

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. S1+ Surrogate recovery exceeds control limits, high biased.

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Indicates the analyte was analyzed for but not detected.

Qualifier Description

HPLC/IC

Qualifier

Qualifier **Qualifier Description**

MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL

EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Case Narrative

Client: WSP USA Inc.

Project/Site: Red Raider BKS State 001

Job ID: 890-1633-1

SDG: 31403720.000 Task 09.02

Job ID: 890-1633-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-1633-1

Receipt

The samples were received on 11/24/2021 10:43 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-13647 and analytical batch 880-14304 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Lab Sample ID: 890-1633-1

Client: WSP USA Inc.

Job ID: 890-1633-1

Project/Site: Red Raider BKS State 001 SDG: 31403720.000 Task 09.02

Client Sample ID: BH01
Date Collected: 11/23/21 12:00

Date Received: 11/24/21 10:43

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		11/30/21 08:45	12/01/21 02:34	1
Toluene	<0.00201	U	0.00201	mg/Kg		11/30/21 08:45	12/01/21 02:34	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		11/30/21 08:45	12/01/21 02:34	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		11/30/21 08:45	12/01/21 02:34	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		11/30/21 08:45	12/01/21 02:34	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		11/30/21 08:45	12/01/21 02:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130			11/30/21 08:45	12/01/21 02:34	1
1,4-Difluorobenzene (Surr)	108		70 - 130			11/30/21 08:45	12/01/21 02:34	1
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			12/03/21 10:31	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			12/06/21 15:44	
-								1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						1
	• •	RO) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	• •	Qualifier	RL 49.8	<mark>Unit</mark> mg/Kg	<u>D</u>	Prepared 12/02/21 11:27		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U			<u>D</u>	<u>.</u>	Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.8	Qualifier U	49.8	mg/Kg	<u> </u>	12/02/21 11:27	Analyzed 12/03/21 12:40	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.8 <49.8	Qualifier U U U	49.8	mg/Kg	<u>D</u>	12/02/21 11:27 12/02/21 11:27	Analyzed 12/03/21 12:40 12/03/21 12:40	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.8 <49.8 <49.8	Qualifier U U U	49.8 49.8 49.8	mg/Kg	<u>D</u>	12/02/21 11:27 12/02/21 11:27 12/02/21 11:27	Analyzed 12/03/21 12:40 12/03/21 12:40 12/03/21 12:40	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U U U	49.8 49.8 49.8 <i>Limits</i>	mg/Kg	<u>D</u>	12/02/21 11:27 12/02/21 11:27 12/02/21 11:27 Prepared	Analyzed 12/03/21 12:40 12/03/21 12:40 12/03/21 12:40 Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U U Qualifier	49.8 49.8 49.8 Limits 70 - 130	mg/Kg	<u>D</u>	12/02/21 11:27 12/02/21 11:27 12/02/21 11:27 Prepared 12/02/21 11:27	Analyzed 12/03/21 12:40 12/03/21 12:40 12/03/21 12:40 Analyzed 12/03/21 12:40	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U Qualifier	49.8 49.8 49.8 Limits 70 - 130	mg/Kg	<u>D</u>	12/02/21 11:27 12/02/21 11:27 12/02/21 11:27 Prepared 12/02/21 11:27	Analyzed 12/03/21 12:40 12/03/21 12:40 12/03/21 12:40 Analyzed 12/03/21 12:40	Dil Fac

Client Sample ID: BH01A` Lab Sample ID: 890-1633-2

Date Collected: 11/23/21 12:14 Date Received: 11/24/21 10:43

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/30/21 08:45	12/01/21 02:54	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/30/21 08:45	12/01/21 02:54	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/30/21 08:45	12/01/21 02:54	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		11/30/21 08:45	12/01/21 02:54	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/30/21 08:45	12/01/21 02:54	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		11/30/21 08:45	12/01/21 02:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	133	S1+	70 - 130			11/30/21 08:45	12/01/21 02:54	1

Eurofins Xenco, Carlsbad

2

3

5

10

12

13

. .

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-1633-2

12/09/21 03:06

Client Sample Results

Client: WSP USA Inc. Job ID: 890-1633-1

Project/Site: Red Raider BKS State 001 SDG: 31403720.000 Task 09.02

Client Sample ID: BH01A`

Date Collected: 11/23/21 12:14 Date Received: 11/24/21 10:43

Sample Depth: 4

Chloride

70 - 13 Illifier	RL	Unit mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed Analyzed Analyzed	Dil Fac
0.00	RL	mg/Kg			12/03/21 10:31 Analyzed	1
0.00	RL	mg/Kg			12/03/21 10:31 Analyzed	1
GC)	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
lifier			D	Prepared		Dil Fac
			_ <u>D</u>	Prepared		Dil Fac
	9.9	mg/Kg			10/00/04 45 ::	
					12/06/21 15:44	1
(GC) difier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	9.9	mg/Kg		12/02/21 11:27	12/03/21 13:01	1
2	9.9	mg/Kg		12/02/21 11:27	12/03/21 13:01	1
4	9.9	mg/Kg		12/02/21 11:27	12/03/21 13:01	,
nlifier Limits				Prepared	Analyzed	Dil Fac
70 - 13	0			12/02/21 11:27	12/03/21 13:01	
70 - 13	0			12/02/21 11:27	12/03/21 13:01	1
ווו	### ##################################	### RL 49.9	### RL Unit Head	RL	Iffier RL Unit D Prepared 49.9 mg/Kg 12/02/21 11:27 49.9 mg/Kg 12/02/21 11:27 49.9 mg/Kg 12/02/21 11:27 Iffier Limits Prepared 70 - 130 12/02/21 11:27 70 - 130 12/02/21 11:27 ble 12/02/21 11:27	Iffier RL Unit D Prepared Analyzed 49.9 mg/Kg 12/02/21 11:27 12/03/21 13:01 49.9 mg/Kg 12/02/21 11:27 12/03/21 13:01 49.9 mg/Kg 12/02/21 11:27 12/03/21 13:01 Iffier Limits Prepared Analyzed 70 - 130 12/02/21 11:27 12/03/21 13:01 70 - 130 12/02/21 11:27 12/03/21 13:01 ble

4.98

mg/Kg

273

Surrogate Summary

Client: WSP USA Inc. Job ID: 890-1633-1 Project/Site: Red Raider BKS State 001 SDG: 31403720.000 Task 09.02

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-8671-A-1-E MS	Matrix Spike	110	101	
880-8671-A-1-F MSD	Matrix Spike Duplicate	104	96	
890-1633-1	BH01	121	108	
890-1633-2	BH01A`	133 S1+	102	
LCS 880-13343/1-A	Lab Control Sample	108	99	
LCSD 880-13343/2-A	Lab Control Sample Dup	115	100	
MB 880-13339/5-A	Method Blank	122	107	
MB 880-13343/5-A	Method Blank	120	98	

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-1633-1	BH01	80	87	
890-1633-2	BH01A`	89	103	
890-1635-A-1-O MS	Matrix Spike	96	98	
890-1635-A-1-P MSD	Matrix Spike Duplicate	96	96	
_CS 880-13730/2-A	Lab Control Sample	76	77	
LCSD 880-13730/3-A	Lab Control Sample Dup	94	97	
MB 880-13730/1-A	Method Blank	90	105	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: WSP USA Inc. Job ID: 890-1633-1 Project/Site: Red Raider BKS State 001 SDG: 31403720.000 Task 09.02

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-13339/5-A

Analysis Batch: 13426

Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Prep Batch: 13339

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/30/21 09:00	11/30/21 12:28	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/30/21 09:00	11/30/21 12:28	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/30/21 09:00	11/30/21 12:28	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/30/21 09:00	11/30/21 12:28	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/30/21 09:00	11/30/21 12:28	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/30/21 09:00	11/30/21 12:28	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130	11/30/21 09:00	11/30/21 12:28	1
1,4-Difluorobenzene (Surr)	107		70 - 130	11/30/21 09:00	11/30/21 12:28	1

Lab Sample ID: MB 880-13343/5-A Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 13426 Prep Batch: 13343

	INID	I NID									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	<0.00200	U	0.00200	mg/Kg		11/30/21 08:45	12/01/21 00:02	1			
Toluene	<0.00200	U	0.00200	mg/Kg		11/30/21 08:45	12/01/21 00:02	1			
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/30/21 08:45	12/01/21 00:02	1			
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/30/21 08:45	12/01/21 00:02	1			
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/30/21 08:45	12/01/21 00:02	1			
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/30/21 08:45	12/01/21 00:02	1			

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130	11/30/21 08:45	12/01/21 00:02	1
1,4-Difluorobenzene (Surr)	98		70 - 130	11/30/21 08:45	12/01/21 00:02	1

Lab Sample ID: LCS 880-13343/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 13426

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09692		mg/Kg		97	70 - 130	
Toluene	0.100	0.09859		mg/Kg		99	70 - 130	
Ethylbenzene	0.100	0.09649		mg/Kg		96	70 - 130	
m-Xylene & p-Xylene	0.200	0.1910		mg/Kg		96	70 - 130	
o-Xvlene	0.100	0.09260		ma/Ka		93	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	· Limits
4-Bromofluorobenzene (Surr)	108	70 - 130
1.4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: LCSD 880-13343/2-A

Matrix: Solid							Prep 1	ype: To	tal/NA		
Analysis Batch: 13426							Prep	Prep Batch: 13343			
	Spike	LCSD	LCSD				%Rec.		RPD		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Benzene	0.100	0.09954		mg/Kg		100	70 - 130	3	35		

Eurofins Xenco, Carlsbad

Client Sample ID: Lab Control Sample Dup

Prep Batch: 13343

12/9/2021

Lab Sample ID: LCSD 880-13343/2-A

Matrix: Solid

QC Sample Results

Client: WSP USA Inc. Job ID: 890-1633-1 Project/Site: Red Raider BKS State 001 SDG: 31403720.000 Task 09.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 13343

Analysis Batch: 13426						Prep	Batch:	13343	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.09899		mg/Kg		99	70 - 130	0	35
Ethylbenzene	0.100	0.09348		mg/Kg		93	70 - 130	3	35

0.200 0.1853 70 130 m-Xylene & p-Xylene mg/Kg 93 3 35 o-Xylene 0.100 0.09161 mg/Kg 92 70 - 130 35

LCSD LCSD Qualifier Limits Surrogate %Recovery 70 - 130 4-Bromofluorobenzene (Surr) 115 1,4-Difluorobenzene (Surr) 100 70 - 130

Lab Sample ID: 880-8671-A-1-E MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid Analysis Batch: 13426

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 0.00699 0.09584 Benzene 0.100 mg/Kg 88 70 - 130 0.00793 Toluene 0.100 0.09453 86 70 - 130 mg/Kg Ethylbenzene 0.303 0.100 0.09641 F1 mg/Kg -206 70 - 130 F1 0.201 0.1930 F1 70 - 130 m-Xylene & p-Xylene 0.449 mg/Kg -128 o-Xylene 0.264 F1 0.100 0.09283 F1 mg/Kg -170 70 - 130

MS MS Qualifier Limits Surrogate %Recovery 70 - 130 4-Bromofluorobenzene (Surr) 110 1,4-Difluorobenzene (Surr) 101 70 - 130

Lab Sample ID: 880-8671-A-1-F MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 13426** Prep Batch: 13343

Sample Sample MSD MSD RPD Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.00699 0.0990 0.08636 mg/Kg 80 70 - 130 10 35 Toluene 0.00793 0.0990 0.09083 mg/Kg 84 70 - 130 4 35 Ethylbenzene 0.303 F1 0.0990 0.09064 F1 mg/Kg -214 70 - 130 6 35 0.198 0.1786 F1 m-Xylene & p-Xylene 0.449 F1 mg/Kg -137 70 - 130 8 35 o-Xylene 0.264 F1 0.0990 0.08652 F1 mg/Kg -179 70 - 130 35

MSD MSD Qualifier Limits Surrogate %Recovery 4-Bromofluorobenzene (Surr) 104 70 - 130 1,4-Difluorobenzene (Surr) 96 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-13730/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 13825 Prep Batch: 13730 MB MB

Analyte Qualifier RL Unit Prepared Dil Fac Result Analyzed <50.0 Ū 50.0 12/02/21 11:27 12/03/21 09:30 Gasoline Range Organics mg/Kg

(GRO)-C6-C10

Client: WSP USA Inc.

Job ID: 890-1633-1 Project/Site: Red Raider BKS State 001

SDG: 31403720.000 Task 09.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-13730/1-A **Matrix: Solid**

Lab Sample ID: LCS 880-13730/2-A

Analysis Batch: 13825

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 13730

	MD							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		12/02/21 11:27	12/03/21 09:30	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		12/02/21 11:27	12/03/21 09:30	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130	12/02/21 11:27	12/03/21 09:30	1
o-Terphenyl	105		70 - 130	12/02/21 11:27	12/03/21 09:30	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 13730

Spil	ie LCS	LCS			%Rec.
Analyte Adde	d Result	Qualifier l	Unit D	%Rec	Limits
Gasoline Range Organics 100	756.7	r	mg/Kg	76	70 - 130
(GRO)-C6-C10					
Diesel Range Organics (Over 100	0 746.3	r	mg/Kg	75	70 - 130
C10-C28)					

LCS LCS

ICED ICED

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	76		70 - 130
o-Terphenyl	77		70 - 130

Lab Sample ID: LCSD 880-13730/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 13825

Analysis Batch: 13825

Prep Type: Total/NA

Prep Batch: 13730

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	804.9		mg/Kg		80	70 - 130	6	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	848.7		mg/Kg		85	70 - 130	13	20	
C10-C28)										

	LCSD	LUSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	94		70 - 130
o-Terphenyl	97		70 - 130

Lab Sample ID: 890-1635-A-1-O MS

Matrix: Solid

Analysis Batch: 13825

Client	Sample	ID:	Matrix	Sniko
Cilent	Sample	ID.	ıvıatı ix	Spike

Prep Type: Total/NA Prep Batch: 13730

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	997	1081		mg/Kg		108	70 - 130	
Diesel Range Organics (Over	<49.9	U	997	1092		mg/Kg		106	70 - 130	

C10-C28)

	IVIS	IVIS			
Surrogate	%Recovery	Qualifier	Limits		
1-Chlorooctane	96		70 - 130		
o-Terphenyl	98		70 - 130		

Client: WSP USA Inc. Job ID: 890-1633-1 Project/Site: Red Raider BKS State 001 SDG: 31403720.000 Task 09.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-1635-A-1-P MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 13825

Prep Type: Total/NA Prep Batch: 13730

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Matrix Spike

Sample Sample MSD MSD RPD Spike Result Qualifier Analyte Added Result Qualifier %Rec Limits RPD Limit Unit D Gasoline Range Organics <49.9 U 999 1175 mg/Kg 118 70 - 130 8 20 (GRO)-C6-C10 999 1107 Diesel Range Organics (Over <49.9 U mg/Kg 107 70 - 13020

C10-C28)

MSD MSD

%Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 96 o-Terphenyl 96 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-13647/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 14304

MB MB

Result Qualifier RL Unit Analyte D Prepared Analyzed Dil Fac Chloride <5.00 5.00 mg/Kg 12/09/21 01:33

Lab Sample ID: LCS 880-13647/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 14304

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 268.8 108 90 - 110 mg/Kg

Lab Sample ID: LCSD 880-13647/3-A

Matrix: Solid

Analysis Batch: 14304

Spike LCSD LCSD RPD %Rec. Analyte Added Result Qualifier Unit %Rec RPD Limit Chloride 250 269.1 108 90 - 110 mg/Kg 0

Lab Sample ID: 880-8743-A-1-C MS

Matrix: Solid

Analysis Batch: 14304

Sample Sample Spike MS MS %Rec. Qualifier Added Qualifier Analyte Result Result Unit %Rec Limits Chloride F1 2500 9922 F1 131 90 - 110 6670 mg/Kg

Lab Sample ID: 880-8743-A-1-D MSD

Matrix: Solid

Analysis Batch: 14304

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit D Chloride 6670 F1 2500 9857 F1 128 90 - 110 20 mg/Kg

Chloride

QC Sample Results

Client: WSP USA Inc. Job ID: 890-1633-1 Project/Site: Red Raider BKS State 001

SDG: 31403720.000 Task 09.02

Method: 300.0 - Anions, Ion Chromatography (Continued)

<5.04 U F1

Lab Sample ID: 890-1634-A-3-F MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Soluble Analysis Batch: 14304

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits Chloride <5.04 U F1 252 294.0 F1 mg/Kg 116 90 - 110

Lab Sample ID: 890-1634-A-3-G MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Soluble

Analysis Batch: 14304

294.6 F1

mg/Kg

116

90 - 110

0

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec

252

Eurofins Xenco, Carlsbad

20

Job ID: 890-1633-1 Client: WSP USA Inc. Project/Site: Red Raider BKS State 001

SDG: 31403720.000 Task 09.02

GC VOA

Prep Batch: 13339

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-13339/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 13343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1633-1	BH01	Total/NA	Solid	5035	
890-1633-2	BH01A`	Total/NA	Solid	5035	
MB 880-13343/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-13343/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-13343/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-8671-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
880-8671-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 13426

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1633-1	BH01	Total/NA	Solid	8021B	13343
890-1633-2	BH01A`	Total/NA	Solid	8021B	13343
MB 880-13339/5-A	Method Blank	Total/NA	Solid	8021B	13339
MB 880-13343/5-A	Method Blank	Total/NA	Solid	8021B	13343
LCS 880-13343/1-A	Lab Control Sample	Total/NA	Solid	8021B	13343
LCSD 880-13343/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	13343
880-8671-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	13343
880-8671-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	13343

Analysis Batch: 13868

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method P	rep Batch
890-1633-1	BH01	Total/NA	Solid	Total BTEX	
890-1633-2	BH01A`	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 13730

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1633-1	BH01	Total/NA	Solid	8015NM Prep	
890-1633-2	BH01A`	Total/NA	Solid	8015NM Prep	
MB 880-13730/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-13730/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-13730/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1635-A-1-O MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-1635-A-1-P MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 13825

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1633-1	BH01	Total/NA	Solid	8015B NM	13730
890-1633-2	BH01A`	Total/NA	Solid	8015B NM	13730
MB 880-13730/1-A	Method Blank	Total/NA	Solid	8015B NM	13730
LCS 880-13730/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	13730
LCSD 880-13730/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	13730
890-1635-A-1-O MS	Matrix Spike	Total/NA	Solid	8015B NM	13730
890-1635-A-1-P MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	13730

Eurofins Xenco, Carlsbad

Client: WSP USA Inc. Job ID: 890-1633-1 Project/Site: Red Raider BKS State 001 SDG: 31403720.000 Task 09.02

GC Semi VOA

Analysis Batch: 14112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1633-1	BH01	Total/NA	Solid	8015 NM	
890-1633-2	BH01A`	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 13647

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1633-1	BH01	Soluble	Solid	DI Leach	
890-1633-2	BH01A`	Soluble	Solid	DI Leach	
MB 880-13647/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-13647/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-13647/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-8743-A-1-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-8743-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
890-1634-A-3-F MS	Matrix Spike	Soluble	Solid	DI Leach	
890-1634-A-3-G MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 14304

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1633-1	BH01	Soluble	Solid	300.0	13647
890-1633-2	BH01A`	Soluble	Solid	300.0	13647
MB 880-13647/1-A	Method Blank	Soluble	Solid	300.0	13647
LCS 880-13647/2-A	Lab Control Sample	Soluble	Solid	300.0	13647
LCSD 880-13647/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	13647
880-8743-A-1-C MS	Matrix Spike	Soluble	Solid	300.0	13647
880-8743-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	13647
890-1634-A-3-F MS	Matrix Spike	Soluble	Solid	300.0	13647
890-1634-A-3-G MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	13647

Eurofins Xenco, Carlsbad

Project/Site: Red Raider BKS State 001

Job ID: 890-1633-1

SDG: 31403720.000 Task 09.02

Client Sample ID: BH01

Lab Sample ID: 890-1633-1

Matrix: Solid

Date Collected: 11/23/21 12:00 Date Received: 11/24/21 10:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	13343	11/30/21 08:45	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	13426	12/01/21 02:34	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			13868	12/03/21 10:31	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			14112	12/06/21 15:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	13730	12/02/21 11:27	DM	XEN MID
Total/NA	Analysis	8015B NM		1			13825	12/03/21 12:40	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	13647	12/01/21 11:21	CA	XEN MID
Soluble	Analysis	300.0		10			14304	12/09/21 02:59	CH	XEN MID

Client Sample ID: BH01A` Lab Sample ID: 890-1633-2

Date Collected: 11/23/21 12:14 Matrix: Solid Date Received: 11/24/21 10:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	13343	11/30/21 08:45	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	13426	12/01/21 02:54	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			13868	12/03/21 10:31	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			14112	12/06/21 15:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	13730	12/02/21 11:27	DM	XEN MID
Total/NA	Analysis	8015B NM		1			13825	12/03/21 13:01	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	13647	12/01/21 11:21	CA	XEN MID
Soluble	Analysis	300.0		1			14304	12/09/21 03:06	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

 Client: WSP USA Inc.
 Job ID: 890-1633-1

 Project/Site: Red Raider BKS State 001
 SDG: 31403720.000 Task 09.02

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-21-22	06-30-22
	are included in this report, bu	it the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for wh
the agency does not of	fer certification.			
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	
0 ,		Matrix Solid	Analyte Total TPH	

3

4

5

7

10

12

10

14

Method Summary

Client: WSP USA Inc.

Project/Site: Red Raider BKS State 001

Job ID: 890-1633-1

SDG: 31403720.000 Task 09.02

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
3015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

Sample Summary

Client: WSP USA Inc.

Project/Site: Red Raider BKS State 001

Job ID: 890-1633-1

SDG: 31403720.000 Task 09.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-1633-1	BH01	Solid	11/23/21 12:00	11/24/21 10:43	0.5
890-1633-2	BH01A`	Solid	11/23/21 12:14	11/24/21 10:43	4

Project Manager: Company Name:

WSP USA Kalei Jennings

Chain of Custody

	Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2		I
	75-392-7	Midland, 7	ouston,T.
	550) F	TX (43	X (281
	hoenix,AZ (2-704-5440)) 240-4200
	480-35	EL Pa	Dallas,
	5-0900	aso,TX (TX (214
	Atlanta,	915)585-	1) 902-030
	GA (770	3443 Lu	00 San
	-449-8800)	Jbbock,TX (8	Antonio,TX
	Tampa,FL (8	Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334
_	113-620-2		34

Bill to: (if different) Company Name:

		6							
		4	24.21 1043	=) JOE (JJ.)		NY	nogh
Date/Time	Received by: (Signature)	Relinquished by: (Signature)	Date/Time		Received by: (Signature)	Received by	1	y: (Signature)	Relinquished by: (Signature)
	assigns standard terms and conditions due to circumstances beyond the control control produced unless previously negotiated.		mpany to Xenco, its affil or expenses incurred by to Xenco, but not analy	y losses of submitted	otice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are f Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be ent	samples constitute as and shall not ass each project and a	nquishment of cost of sample be applied to s	s document and reli e liable only for the harge of \$75.00 will	otice: Signature of thi service. Xenco will b Xenco. A minimum c
Na Sr Ti Sn U V Zn 1631/245.1/7470/7471: Hg	Mo Ni K Se Ag SiO2 TI ∪	Cd Ca Cr Co Cu Fe d Cr Co Cu Pb Mn M	Ba Be Ba Be	11 AI	ICRA 13PPM Texas 11 Al Sb As TCLP / SPLP 6010: 8RCRA Sb As	8 8	200.8 / 6020: Metal(s) to be ar	ลกด	Total 200.7 / 6010 Circle Method(s) ¿
Discrete			×		12:14 4'	11/23/21	S)1A	BH01A
Discrete			×	1	12:00 0.5'	11/23/21	S	요	BH01
Sample Comments	ω		TPH (EI	Numbe	Time Depth	Date Sampled	Matrix	ntification	Sample Identification
lab, if received by 4:30pm	la		EPA	er of	Total Containers:	Total C	No WA	Yes	Sample Custody Seals:
TAT starts the day recevied by the	TATS		0=80	Cor	Correction Factor: -O · Z	Correct	No NA	Yes	Cooler Custody Seals:
	ustody	890-1633 Chain of Custody		taine	Thermometer ID	170	8 .		Temperature (°C): Received Intact:
				rs	Wet Ice: (kes)No	(Yes)No	Temp Blank:		SAMPLE RECEIPT
					Due Date:		er	Payton Benner	Sampler's Name:
	_				Rush:				O. Number:
	- 70				Routine	ask 09.02	31403720.000 Task 09.02	3140	roject Number:
Work Order Notes		ANALYSIS REQUEST			Turn Around	001	3KS State 0	Red Raider BKS State 001	roject Name:
Other:	Deliverables: EDD ADaPT		p.com, payton.ber	gs@ws	Email: kalei.jennings@wsp.com, payton.benner@wsp.com		ω	817-683-2503	hone:
LIPP LIVELIV	evel		Midland, Texas 79705		City, State ZIP		as 79705	Midland, Texas 79705	City, State ZIP:
]	ı #		3300 North A Street Bldg 1, Unit 222		Address:	g 1, Unit 222	Street Bld	3300 North A Street Bldg 1, Unit 222	Address:
□RC 1 perfund □	Program: UST/PST ☐RP ☐rownfields ☐RC	Pro	WSP USA		Company Name:			WSP USA	Company Name:

Work Order No:

www.xenco.com

<u>Q</u>

☐RP ☐rownfields ☐RC Work Order Comments

⊕perfund

1089 N Canal St.

Eurofins Xenco, Carlsbad

Chain of Custody Record

💸 eurofins

Environment Testing America

State Zip TX 79701 Note: Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC and the samples must be shipped back to the Eurofins Xenco LLC. BH01A (890-1633-2) BH01 (890-1633-1) Red Raider BKS State 001 Carlsbad NM 88220 Phone: 575-988-3199 Fax 575-988-3199 Empty Kit Relinquished by Deliverable Requested | || || || |V Other (specify) Possible Hazard Identification Sample Identification - Client ID (Lab ID) 432-704-5440(Tel) Midland Client Information 1211 W Florida Ave elinquished by: roject Name Custody Seals Intact nconfirmed urofins Xenco ipping/Receiving Yes ₹ (Sub Contract Lab) Custody Seal No Primary Deliverable Rank 89000048 TAT Requested (days) Due Date Requested Phone Date/Time Sample Date 11/23/21 11/23/21 Mountain Mountain 12 14 Time 12 00 G=grab) (C=comp, Sample Preservation Code Type Company Company Matrix Solid Solid jessica kramer@eurofinset com Kramer, Jessica Time. Field Filtered Sample (Yes or No) NELAP - Louisiana, NELAP - Texas Perform MS/MSD (Yes or No) Special Instructions/QC Requirements Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

| Disposal | Park | Pa 8016MOD_NM/8016NM_S_Prep Full TPH × × Cooler Temperature(s) °C and Other Remarks. Return To Client × 300_ORGFM_28D/DI_LEACH Chloride × × × 8021B/5035FP_Calc BTEX × × Total_BTEX_GCV Analysis Requested × 8015MOD_Calc Disposal By Lab State of Origin. New Mexico Carrier Tracking No(s): Date/Time るうろ Archive For Total Number of containers G Amchlor
H Ascorbic Acid
I Ice
J DI Water
K EDTA
L EDA COC No 890-523 1 **∃ш□С⊞≯** Page 1 of 1 Preservation Codes 390-1633-1 Zn Acetate
Nitric Acid
NaHSO4
MeOH Special Instructions/Note: Company Company Ver: 06/08/2021 Company None AsNaO2 Na2O4S Na2SO3 Na2SO3 H2SO4 TSP Dodecahydrate other (specify)

Login Sample Receipt Checklist

 Client: WSP USA Inc.
 Job Number: 890-1633-1

 SDG Number: 31403720.000 Task 09.02

List Source: Eurofins Xenco, Carlsbad

Login Number: 1633 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

4

7

IU

12

13

14

<6mm (1/4").

Login Sample Receipt Checklist

Client: WSP USA Inc. Job Number: 890-1633-1

SDG Number: 31403720.000 Task 09.02

List Source: Eurofins Xenco, Midland

List Creation: 11/29/21 02:35 PM

Creator: Kramer, Jessica

Login Number: 1633

List Number: 2

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1995-1

Laboratory Sample Delivery Group: 31403720.000 task 09.02

Client Project/Site: RED Raider BKS State 001

Revision: 1

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

MRAMER

Authorized for release by: 3/7/2022 12:24:54 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

10101Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 4/27/2022 10:44:11 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

Ė

6

0

10

12

13

Н

Client: WSP USA Inc. Project/Site: RED Raider BKS State 001 Laboratory Job ID: 890-1995-1 SDG: 31403720.000 task 09.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	12
QC Sample Results	14
QC Association Summary	22
Lab Chronicle	26
Certification Summary	29
Method Summary	30
Sample Summary	31
Chain of Custody	32
Receipt Checklists	33

8

74

Definitions/Glossary

Client: WSP USA Inc. Job ID: 890-1995-1

Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

Qualifiers

GC VOA

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

S1+ Surrogate recovery exceeds control limits, high biased.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.
U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.
U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: WSP USA Inc.

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1 SDG: 31403720.000 task 09.02

Job ID: 890-1995-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1995-1

REVISION

The report being provided is a revision of the original report sent on 2/28/2022. The report (revision 1) is being revised due to Per client email requesting chloride re run sample 1.

Report revision history

Receipt

The samples were received on 2/21/2022 3:09 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-20208 and analytical batch 880-20289 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-11518-A-21-G). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (880-11518-A-21-E MS) and (880-11518-A-21-F MSD). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-20185 and analytical batch 880-20187 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-20134 and analytical batch 880-20166 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300 ORGFM 28D: The continuing calibration blank (CCB) for analytical batch 880-20166 contained AffectedAnalytes above the reporting limit (RL). All reported samples associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCB; therefore, re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: WSP USA Inc. Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

Client Sample ID: BH02 Lab Sample ID: 890-1995-1

Date Collected: 02/21/22 10:51 **Matrix: Solid** Date Received: 02/21/22 15:09

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 23:19	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 23:19	1
Ethylbenzene	< 0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 23:19	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/24/22 11:00	02/27/22 23:19	1
o-Xylene	< 0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 23:19	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/24/22 11:00	02/27/22 23:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			02/24/22 11:00	02/27/22 23:19	1
1,4-Difluorobenzene (Surr)	100		70 - 130			02/24/22 11:00	02/27/22 23:19	1
Method: Total BTEX - Total B	TEX Calcula	tion						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/Kg			02/28/22 11:39	1
Method: 8015 NM - Diesel Rai Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			02/24/22 19:59	1
Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U F1	50.0	mg/Kg		02/24/22 08:23	02/24/22 14:21	1
Diesel Range Organics (Over C10-C28)	<50.0	U F1	50.0	mg/Kg		02/24/22 08:23	02/24/22 14:21	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/24/22 08:23	02/24/22 14:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130			02/24/22 08:23	02/24/22 14:21	1
o-Terphenyl	96		70 - 130			02/24/22 08:23	02/24/22 14:21	1
Method: 300.0 - Anions, Ion C	hromatogra	phy - Solu	ıble					
Amalusta	Deculé	Qualifier	RL	1164	D	Dropored	Analyzad	D!! E
Analyte	Result	Qualifier	KL	Unit		Prepared	Analyzed	Dil Fac

Client Sample ID: BH02A Lab Sample ID: 890-1995-2 Date Collected: 02/21/22 11:15 **Matrix: Solid**

4.99

mg/Kg

162

Date Received: 02/21/22 15:09

Sample Depth: 4

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 23:39	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 23:39	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 23:39	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		02/24/22 11:00	02/27/22 23:39	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 23:39	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		02/24/22 11:00	02/27/22 23:39	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			02/24/22 11:00	02/27/22 23:39	

Eurofins Carlsbad

03/02/22 13:30

Matrix: Solid

Client: WSP USA Inc.

Job ID: 890-1995-1 Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

Lab Sample ID: 890-1995-2

Client Sample ID: BH02A Date Collected: 02/21/22 11:15

Date Received: 02/21/22 15:09

Sample Depth: 4

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	88	70 - 130	02/24/22 11:00	02/27/22 23:39	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			02/28/22 11:39	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	56.1		50.0	mg/Kg			02/24/22 19:59	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/24/22 08:23	02/24/22 18:32	1
Diesel Range Organics (Over C10-C28)	56.1		50.0	mg/Kg		02/24/22 08:23	02/24/22 18:32	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/24/22 08:23	02/24/22 18:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	103	70 - 130	02/24/22 08:23	02/24/22 18:32	1
o-Terphenyl	105	70 - 130	02/24/22 08:23	02/24/22 18:32	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	124	4.99	mg/Kg			02/24/22 21:07	1

Lab Sample ID: 890-1995-3 **Client Sample ID: BH03 Matrix: Solid**

Date Collected: 02/21/22 11:35 Date Received: 02/21/22 15:09

Sample Depth: 0.5

Mothod: 9021B	Volatile	Organic	Compounds	(CC)

Method: 8021B - Volatile O	rganic Compo	unas (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		02/24/22 11:00	02/28/22 00:00	1
Toluene	< 0.00201	U	0.00201	mg/Kg		02/24/22 11:00	02/28/22 00:00	1
Ethylbenzene	< 0.00201	U	0.00201	mg/Kg		02/24/22 11:00	02/28/22 00:00	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		02/24/22 11:00	02/28/22 00:00	1
o-Xylene	< 0.00201	U	0.00201	mg/Kg		02/24/22 11:00	02/28/22 00:00	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		02/24/22 11:00	02/28/22 00:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			02/24/22 11:00	02/28/22 00:00	1
1,4-Difluorobenzene (Surr)	99		70 - 130			02/24/22 11:00	02/28/22 00:00	1

Method: Tota	I RTEY	Total RTEY	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			02/28/22 11:39	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg	_		02/24/22 19:59	1

Client: WSP USA Inc. Job ID: 890-1995-1

Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

Client Sample ID: BH03

Lab Sample ID: 890-1995-3

Date Collected: 02/21/22 11:35 **Matrix: Solid** Date Received: 02/21/22 15:09

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/24/22 08:23	02/24/22 19:13	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/24/22 08:23	02/24/22 19:13	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/24/22 08:23	02/24/22 19:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130			02/24/22 08:23	02/24/22 19:13	1
o-Terphenyl	99		70 - 130			02/24/22 08:23	02/24/22 19:13	1

Analyte Result Qualifier RL Unit D **Prepared** Analyzed Dil Fac 4.95 02/24/22 21:14 **Chloride** 16.5 mg/Kg

Client Sample ID: BH03A Lab Sample ID: 890-1995-4 Date Collected: 02/21/22 11:52 **Matrix: Solid**

Date Received: 02/21/22 15:09

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/24/22 11:00	02/28/22 00:20	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/24/22 11:00	02/28/22 00:20	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		02/24/22 11:00	02/28/22 00:20	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/24/22 11:00	02/28/22 00:20	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		02/24/22 11:00	02/28/22 00:20	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/24/22 11:00	02/28/22 00:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			02/24/22 11:00	02/28/22 00:20	1
1,4-Difluorobenzene (Surr)	99		70 - 130			02/24/22 11:00	02/28/22 00:20	1
Method: Total BTEX - Total	BTEX Calcula	tion						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/28/22 11:39	1
Method: 8015 NM - Diesel I	Range Organic	s (DRO) (0	SC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/24/22 19:59	1

49.9

49.9

49.9

Limits

70 - 130

70 - 130

mg/Kg

mg/Kg

mg/Kg

Eurofins Carlsbad

Analyzed

02/24/22 08:23 02/24/22 19:33

02/24/22 08:23 02/24/22 19:33

02/24/22 08:23 02/24/22 19:33

02/24/22 08:23 02/24/22 19:33

02/24/22 08:23 02/24/22 19:33

Prepared

<49.9 U

<49.9 U

<49.9 U

%Recovery Qualifier

110

113

Dil Fac

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

(GRO)-C6-C10

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Client Sample Results

Client: WSP USA Inc. Job ID: 890-1995-1

Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

Client Sample ID: BH03A Lab Sample ID: 890-1995-4

Date Collected: 02/21/22 11:52 **Matrix: Solid** Date Received: 02/21/22 15:09

Sample Depth: 4

Method: 300.0 - Anions, Ion Ch	nromatogra	phy - Solu	ıble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.1		4.96	mg/Kg			02/24/22 21:20	1

Client Sample ID: BH04 Lab Sample ID: 890-1995-5

Date Collected: 02/21/22 12:19 Matrix: Solid

Date Received: 02/21/22 15:09

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/28/22 00:41	
Toluene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/28/22 00:41	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/28/22 00:41	
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/24/22 11:00	02/28/22 00:41	
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/28/22 00:41	
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/24/22 11:00	02/28/22 00:41	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	104		70 - 130			02/24/22 11:00	02/28/22 00:41	
1,4-Difluorobenzene (Surr)	97		70 - 130			02/24/22 11:00	02/28/22 00:41	
Method: Total BTEX - Total B	TEX Calcula	tion						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX Method: 8015 NM - Diesel Rar	_	s (DRO) (0	•	mg/Kg			02/28/22 11:39	
Total BTEX Method: 8015 NM - Diesel Rar	nge Organic	s (DRO) (0	GC)		— — П	Prepared		Dil F
Total BTEX	nge Organic			mg/Kg Unit mg/Kg	D	Prepared	02/28/22 11:39 Analyzed 02/24/22 19:59	Dil F
Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH	nge Organic Result 68.7	s (DRO) (O Qualifier	RL 50.0	Unit	<u>D</u>	Prepared	Analyzed	Dil F
Total BTEX Method: 8015 NM - Diesel Rai Analyte Total TPH Method: 8015B NM - Diesel Rai	nge Organic Result 68.7	s (DRO) (O Qualifier	RL 50.0	Unit mg/Kg			Analyzed 02/24/22 19:59	
Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte	nge Organic Result 68.7 ange Organ Result	s (DRO) (O Qualifier ics (DRO) Qualifier	(GC) RL RL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 02/24/22 19:59 Analyzed	
Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ranalyte Gasoline Range Organics	nge Organic Result 68.7	s (DRO) (O Qualifier ics (DRO) Qualifier	RL 50.0	Unit mg/Kg			Analyzed 02/24/22 19:59	Dil F
Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10	nge Organic Result 68.7 ange Organ Result	s (DRO) (O Qualifier ics (DRO) Qualifier	(GC) RL RL	Unit mg/Kg		Prepared 02/24/22 08:23	Analyzed 02/24/22 19:59 Analyzed	
Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	nge Organic Result 68.7 ange Organ Result <50.0	s (DRO) (O Qualifier ics (DRO) Qualifier	(GC) RL 50.0 RL 50.0	Unit mg/Kg Unit mg/Kg		Prepared 02/24/22 08:23	Analyzed 02/24/22 19:59 Analyzed 02/24/22 19:53	
Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	nge Organic Result 68.7 ange Organ Result <50.0	s (DRO) (O Qualifier ics (DRO) Qualifier	(GC) RL 50.0 RL 50.0	Unit mg/Kg Unit mg/Kg		Prepared 02/24/22 08:23 02/24/22 08:23	Analyzed 02/24/22 19:59 Analyzed 02/24/22 19:53	
Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics	nge Organic Result 68.7 ange Organ Result <50.0 68.7	s (DRO) (O Qualifier ics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 02/24/22 08:23 02/24/22 08:23	Analyzed 02/24/22 19:59 Analyzed 02/24/22 19:53 02/24/22 19:53	
Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	nge Organic Result 68.7 ange Organ Result <50.0 68.7 <50.0	s (DRO) (O Qualifier ics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 02/24/22 08:23 02/24/22 08:23	Analyzed 02/24/22 19:59 Analyzed 02/24/22 19:53 02/24/22 19:53 02/24/22 19:53	Dil F

Eurofins Carlsbad

Analyzed

02/24/22 21:26

RL

5.00

Unit

mg/Kg

D

Prepared

Result Qualifier

9.09

3/7/2022 (Rev. 1)

Dil Fac

Analyte

Chloride

Matrix: Solid

Client: WSP USA Inc.

Job ID: 890-1995-1 Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

Client Sample ID: BH04A Lab Sample ID: 890-1995-6

Date Collected: 02/21/22 12:30 Date Received: 02/21/22 15:09

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		02/24/22 11:00	02/28/22 01:01	1
Toluene	<0.00198	U	0.00198	mg/Kg		02/24/22 11:00	02/28/22 01:01	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/24/22 11:00	02/28/22 01:01	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		02/24/22 11:00	02/28/22 01:01	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		02/24/22 11:00	02/28/22 01:01	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		02/24/22 11:00	02/28/22 01:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			02/24/22 11:00	02/28/22 01:01	1
1,4-Difluorobenzene (Surr)	99		70 - 130			02/24/22 11:00	02/28/22 01:01	1

Method: Total BTEX - Total BT	EX Calcula	tion						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			02/28/22 11:39	1

Method: 8015 NM - Diesel Rang	e Organic	s (DRO) (G	C)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			02/28/22 20:00	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/23/22 11:20	02/24/22 19:38	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/23/22 11:20	02/24/22 19:38	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/23/22 11:20	02/24/22 19:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	78		70 - 130			02/23/22 11:20	02/24/22 19:38	1

Method: 300.0 - Anions, Ion C	hromatography - Solub	le					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8 44	5.02	ma/Ka			02/24/22 21:33	

70 - 130

83

Lab Sample ID: 890-1995-7 **Client Sample ID: BH05** Date Collected: 02/21/22 12:52

Date Received: 02/21/22 15:09

Released to Imaging: 4/27/2022 10:44:11 AM

Sample Depth: 0.5

o-Terphenyl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		02/24/22 11:00	02/28/22 01:22	1
Toluene	<0.00202	U	0.00202	mg/Kg		02/24/22 11:00	02/28/22 01:22	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		02/24/22 11:00	02/28/22 01:22	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		02/24/22 11:00	02/28/22 01:22	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		02/24/22 11:00	02/28/22 01:22	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		02/24/22 11:00	02/28/22 01:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			02/24/22 11:00	02/28/22 01:22	1

Eurofins Carlsbad

Matrix: Solid

02/23/22 11:20 02/24/22 19:38

Date Received: 02/21/22 15:09

Client: WSP USA Inc.

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1

SDG: 31403720.000 task 09.02

Client Sample ID: BH05 Lab Sample ID: 890-1995-7 Date Collected: 02/21/22 12:52

Matrix: Solid

Sample Depth: 0.5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	96	70 - 130	02/24/22 11:00	02/28/22 01:22	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00403	U	0.00403	mg/Kg			02/28/22 11:39	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/28/22 20:00	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/23/22 11:20	02/24/22 19:58	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/23/22 11:20	02/24/22 19:58	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/23/22 11:20	02/24/22 19:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery 0	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	74		70 - 130	02/23/22 11:20	02/24/22 19:58	1
o-Terphenyl	74		70 - 130	02/23/22 11:20	02/24/22 19:58	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Decult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.36		4.95	mg/Kg			02/25/22 21:04	1

Client Sample ID: BH05A Lab Sample ID: 890-1995-8 **Matrix: Solid**

Date Collected: 02/21/22 13:10 Date Received: 02/21/22 15:09

Sample Depth: 4

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/24/22 11:00	02/28/22 01:42	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/24/22 11:00	02/28/22 01:42	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/24/22 11:00	02/28/22 01:42	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/24/22 11:00	02/28/22 01:42	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/24/22 11:00	02/28/22 01:42	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/24/22 11:00	02/28/22 01:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			02/24/22 11:00	02/28/22 01:42	1
1,4-Difluorobenzene (Surr)	96		70 - 130			02/24/22 11:00	02/28/22 01:42	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/28/22 11:39	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			02/28/22 20:00	1

Client Sample Results

Client: WSP USA Inc. Job ID: 890-1995-1

Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

Lab Sample ID: 890-1995-8 **Client Sample ID: BH05A** Date Collected: 02/21/22 13:10 **Matrix: Solid** Date Received: 02/21/22 15:09

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		02/23/22 11:20	02/24/22 20:19	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		02/23/22 11:20	02/24/22 20:19	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/23/22 11:20	02/24/22 20:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130			02/23/22 11:20	02/24/22 20:19	1
o-Terphenyl	92		70 - 130			02/23/22 11:20	02/24/22 20:19	1
Method: 300.0 - Anions, Ion C	hromatogra	phy - Solu	ıble					
•	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	rtosuit							

Surrogate Summary

Client: WSP USA Inc.

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1 SDG: 31403720.000 task 09.02

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

			Percent	Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-11518-A-21-E MS	Matrix Spike	149 S1+	95	
880-11518-A-21-F MSD	Matrix Spike Duplicate	134 S1+	96	
890-1995-1	BH02	106	100	
890-1995-2	BH02A	114	88	
890-1995-3	BH03	103	99	
890-1995-4	BH03A	104	99	
890-1995-5	BH04	104	97	
890-1995-6	BH04A	103	99	
890-1995-7	BH05	106	96	
890-1995-8	BH05A	102	96	
LCS 880-20208/1-A	Lab Control Sample	100	101	
LCSD 880-20208/2-A	Lab Control Sample Dup	101	100	
MB 880-20208/5-A	Method Blank	101	94	
MB 880-20241/5-A	Method Blank	99	94	

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent	Surrogate Recovery (Acceptance Lim
		1CO1	OTPH1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
90-1994-A-21-B MS	Matrix Spike	83	88	
90-1994-A-21-C MSD	Matrix Spike Duplicate	71	73	
90-1995-1	BH02	92	96	
90-1995-1 MS	BH02	107	96	
90-1995-1 MSD	BH02	100	91	
90-1995-2	BH02A	103	105	
0-1995-3	BH03	98	99	
90-1995-4	BH03A	110	113	
0-1995-5	BH04	104	107	
90-1995-6	BH04A	78	83	
0-1995-7	BH05	74	74	
90-1995-8	BH05A	92	92	
CS 880-20185/2-A	Lab Control Sample	92	86	
CSD 880-20185/3-A	Lab Control Sample Dup	120	116	
00D 000 L0100/071	Method Blank	123	123	

OTPH = o-Terphenyl

Surrogate Summary

 Client: WSP USA Inc.
 Job ID: 890-1995-1

 Project/Site: RED Raider BKS State 001
 SDG: 31403720.000 task 09.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percer	nt Surrogate Recovery (Acceptance Limits)
		1CO2	OTPH2	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCS 880-20142/2-A	Lab Control Sample	110	123	
LCSD 880-20142/3-A	Lab Control Sample Dup	102	101	
MB 880-20142/1-A	Method Blank	96	100	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

Eurofins Carlsbad

1

__

5

6

4.0

1 1

13

14

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1

SDG: 31403720.000 task 09.02

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-20208/5-A

Matrix: Solid

Analysis Batch: 20289

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 20208

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 18:29	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 18:29	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 18:29	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/24/22 11:00	02/27/22 18:29	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/24/22 11:00	02/27/22 18:29	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/24/22 11:00	02/27/22 18:29	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130	02/24/22 11:00	02/27/22 18:29	1
1,4-Difluorobenzene (Surr)	94		70 - 130	02/24/22 11:00	02/27/22 18:29	1

Lab Sample ID: LCS 880-20208/1-A

Matrix: Solid

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 20289

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 20208

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits 70 - 130 0.100 0.1079 mg/Kg 108 0.100 0.1058 mg/Kg 70 - 130 106 0.100 0.1046 mg/Kg 105 70 - 130 0.200 109 0.2188 mg/Kg 70 - 130 0.100 0.1060 mg/Kg 106 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: LCSD 880-20208/2-A

Matrix: Solid

Analysis Batch: 20289

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 20208

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1021		mg/Kg		102	70 - 130	6	35
Toluene	0.100	0.1001		mg/Kg		100	70 - 130	5	35
Ethylbenzene	0.100	0.09987		mg/Kg		100	70 - 130	5	35
m-Xylene & p-Xylene	0.200	0.2088		mg/Kg		104	70 - 130	5	35
o-Xylene	0.100	0.1015		mg/Kg		102	70 - 130	4	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-11518-A-21-E MS

Matrix: Solid

Analysis Batch: 20289

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 20208

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.100	0.07535		mg/Kg		74	70 - 130	
Toluene	0.00303		0.100	0.08383		mg/Kg		80	70 - 130	

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1

SDG: 31403720.000 task 09.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-11518-A-21-E MS

Lab Sample ID: 880-11518-A-21-F MSD

Matrix: Solid

Analysis Batch: 20289

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 20208

Sam	ple Sample	Spike	MS	MS				%Rec.	
Analyte Re	sult Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene 0.0	161	0.100	0.1073		mg/Kg		91	70 - 130	
m-Xylene & p-Xylene 0.00	443	0.201	0.2606		mg/Kg		128	70 - 130	
o-Xylene 0.0	713 F1	0.100	0.1218	F1	mg/Kg		50	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	149	S1+	70 - 130		
1,4-Difluorobenzene (Surr)	95		70 - 130		

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 20289

Prep Batch: 20208

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.0996	0.07177		mg/Kg		71	70 - 130	5	35
Toluene	0.00303		0.0996	0.07672		mg/Kg		74	70 - 130	9	35
Ethylbenzene	0.0161		0.0996	0.09418		mg/Kg		78	70 - 130	13	35
m-Xylene & p-Xylene	0.00443		0.199	0.2172		mg/Kg		107	70 - 130	18	35
o-Xylene	0.0713	F1	0.0996	0.1042	F1	mg/Kg		33	70 - 130	16	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	134	S1+	70 - 130		
1,4-Difluorobenzene (Surr)	96		70 - 130		

Lab Sample ID: MB 880-20241/5-A

Matrix: Solid

Analysis Batch: 20289

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 20241

MB MB Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/Kg 02/25/22 16:00 02/27/22 07:06 Toluene <0.00200 U 0.00200 mg/Kg 02/25/22 16:00 02/27/22 07:06 Ethylbenzene <0.00200 U 0.00200 mg/Kg 02/25/22 16:00 02/27/22 07:06 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 02/25/22 16:00 02/27/22 07:06 o-Xylene <0.00200 U 0.00200 02/25/22 16:00 02/27/22 07:06 mg/Kg Xylenes, Total <0.00400 U 0.00400 mg/Kg 02/25/22 16:00 02/27/22 07:06

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130	02/25/22 16:00	02/27/22 07:06	1
1,4-Difluorobenzene (Surr)	94		70 - 130	02/25/22 16:00	02/27/22 07:06	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-20142/1-A

Released to Imaging: 4/27/2022 10:44:11 AM

Matrix: Solid

Analysis Batch: 20195

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 20142

MB MB Result Qualifier RL Unit Analyte Prepared Analyzed Gasoline Range Organics <50.0 U 50.0 mg/Kg 02/23/22 11:20 02/24/22 11:50

(GRO)-C6-C10

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1

SDG: 31403720.000 task 09.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-20142/1-A

Matrix: Solid

Analysis Batch: 20195

Prep Type: Total/NA Prep Batch: 20142

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		02/23/22 11:20	02/24/22 11:50	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/23/22 11:20	02/24/22 11:50	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130	02/23/22 11:20	02/24/22 11:50	1
o-Terphenyl	100		70 - 130	02/23/22 11:20	02/24/22 11:50	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-20142/2-A **Matrix: Solid Prep Type: Total/NA Analysis Batch: 20195** Prep Batch: 20142

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Gasoline Range Organics 1000 974.0 70 - 130 mg/Kg 97 (GRO)-C6-C10 1000 1032 Diesel Range Organics (Over mg/Kg 103 70 - 130

C10-C28)

LCS LCS

Surrogate	%Recovery Qualit	fier Limits
1-Chlorooctane	110	70 - 130
o-Terphenyl	123	70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA Analysis Batch: 20195 Prep Batch: 20142

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	924.9		mg/Kg		92	70 - 130	5	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	912.6		mg/Kg		91	70 - 130	12	20	
C10-C28)										

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	102		70 - 130
o-Terphenyl	101		70 - 130

Lab Sample ID: 890-1994-A-21-B MS

Lab Sample ID: LCSD 880-20142/3-A

Matrix: Solid

Analysis Batch: 20195

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 20142

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	1000	1170		mg/Kg		117	70 - 130	
Diesel Range Organics (Over	<50.0	U	1000	1298		mg/Kg		130	70 - 130	

C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	83		70 - 130
o-Terphenyl	88		70 - 130

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1 SDG: 31403720.000 task 09.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-1994-A-21-C MSD

Matrix: Solid

Analysis Batch: 20195

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 20142

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<50.0	U	998	953.0		mg/Kg		95	70 - 130	20	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.0	U	998	1072		mg/Kg		107	70 - 130	19	20

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	71		70 - 130
o-Terphenyl	73		70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 20185

Lab Sample ID: MB 880-20185/1-A **Matrix: Solid**

Analysis Batch: 20187

	INIB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/24/22 08:23	02/24/22 10:12	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/24/22 08:23	02/24/22 10:12	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/24/22 08:23	02/24/22 10:12	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 123 70 - 130 02/24/22 08:23 02/24/22 10:12 70 - 130 02/24/22 08:23 02/24/22 10:12 o-Terphenyl 123

Lab Sample ID: LCS 880-20185/2-A

Matrix: Solid

Analysis Batch: 20187

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 20185

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	1000	908.8		mg/Kg		91	70 - 130	
Diesel Range Organics (Over C10-C28)	1000	1082		mg/Kg		108	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	92		70 - 130
o-Terphenyl	86		70 - 130

Lab Sample ID: LCSD 880-20185/3-A

Matrix: Solid

Analysis Batch: 20187

Client Sample ID: Lab Control Sampl	e Dup
Prep Type: To	tal/NA
Prep Batch:	20185
%Rec.	RPD

Client Comple ID: Lab Control Comple Dun

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	915.5		mg/Kg		92	70 - 130	1	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	1114		mg/Kg		111	70 - 130	3	20	
C10-C28)										

Client: WSP USA Inc. Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1 SDG: 31403720.000 task 09.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-20185/3-A **Matrix: Solid**

Analysis Batch: 20187

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 20185

LCSD LCSD %Recovery Qualifier Limits Surrogate 1-Chlorooctane 120 70 - 130 o-Terphenyl 116 70 - 130

Lab Sample ID: 890-1995-1 MS **Client Sample ID: BH02**

Matrix: Solid

Analysis Batch: 20187

Prep Type: Total/NA Prep Batch: 20185

%Rec. Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <50.0 U F1 1000 1252 mg/Kg 121 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 UF1 1000 1467 F1 mg/Kg 147 70 - 130 C10-C28)

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 107 70 - 130 70 - 130 o-Terphenyl 96

Lab Sample ID: 890-1995-1 MSD

Matrix: Solid

Analysis Batch: 20187

Client Sample ID: BH02 Prep Type: Total/NA

Prep Batch: 20185

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U F1	998	1401	F1	mg/Kg		136	70 - 130	11	20	
Diesel Range Organics (Over C10-C28)	<50.0	U F1	998	1400	F1	mg/Kg		140	70 - 130	5	20	

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 100 70 - 130 o-Terphenyl 91 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-20134/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 20166

Prep Type: Soluble

MB MB

Result Qualifier

RL Unit Dil Fac Analyte Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 02/24/22 17:56

Lab Sample ID: LCS 880-20134/2-A **Matrix: Solid**

Analysis Batch: 20166

Client Sample ID: Lab Control Sample Prep Type: Soluble

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 250 254.8 102 mg/Kg

Client: WSP USA Inc. Job ID: 890-1995-1 Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-20134/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 20166

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	257.5		mg/Kg		103	90 - 110	1	20	

Lab Sample ID: 890-1994-A-33-F MS **Client Sample ID: Matrix Spike Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 20166

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	11.9	F1	248	267.7		ma/Ka		103	90 - 110	-

Lab Sample ID: 890-1994-A-33-G MSD **Client Sample ID: Matrix Spike Duplicate Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 20166

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	11.9	F1	248	233.6	F1	mg/Kg		89	90 - 110	14	20

Lab Sample ID: MB 880-20129/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Soluble**

Analysis Batch: 20336

MB MB

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 02/25/22 19:10 mg/Kg

Lab Sample ID: LCS 880-20129/2-A

Matrix: Solid

Analysis Batch: 20336

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Chloride		258.8		ma/Ka	104	90 110	

Lab Sample ID: LCSD 880-20129/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 20336

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	265.2		mg/Kg	_	106	90 - 110	2	20

Lab Sample ID: 890-1995-7 MS **Client Sample ID: BH05**

Matrix: Solid

Analysis Batch: 20336

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Limits Unit D %Rec Chloride 9.36 248 281.4 mg/Kg 110 90 - 110

Lab Sample ID: 890-1995-7 MSD **Client Sample ID: BH05 Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 20336

Released to Imaging: 4/27/2022 10:44:11 AM

7 many one Datem 20000											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	9.36		248	281.3		mg/Kg		110	90 - 110	0	20

Eurofins Carlsbad

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Lab Control Sample

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1

SDG: 31403720.000 task 09.02

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-20497/1-A

Matrix: Solid

Client Sample ID: Method Blank **Prep Type: Soluble**

Analysis Batch: 20689

MB MB

Result Qualifier RL Unit Analyzed Dil Fac Analyte Prepared Chloride 5.00 03/02/22 12:08 <5.00 U mg/Kg

Lab Sample ID: LCS 880-20497/2-A

Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 20689

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 272.4 90 - 110 mg/Kg 109

Lab Sample ID: LCSD 880-20497/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 20689

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	266.1		mg/Kg		106	90 - 110	2	20

Lab Sample ID: 880-11760-A-1-E MS

Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 20689

Spike MS MS %Rec. Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Chloride 252 320.0 68.2 mg/Kg 100 90 - 110

Lab Sample ID: 880-11760-A-1-F MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 20689

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	68.2		252	316.5		mg/Kg		99	90 - 110	1	20	

Lab Sample ID: MB 880-20804/1-A

Client Sample ID: Method Blank Prep Type: Soluble

Matrix: Solid

Analysis Batch: 20846

MB MB

Result Qualifier RL Unit Analyte Analyzed Dil Fac Prepared 5.00 03/04/22 08:37 Chloride <5.00 U mg/Kg

Lab Sample ID: LCS 880-20804/2-A

Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 20846

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	250	260.0		ma/Ka	_	104	90 - 110

Lab Sample ID: LCSD 880-20804/3-A

Released to Imaging: 4/27/2022 10:44:11 AM

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 20846

Spike LCSD LCSD %Rec. **RPD** RPD Analyte Added Result Qualifier Limits Unit %Rec Limit Chloride 250 265.7 mg/Kg 106 20

QC Sample Results

Client: WSP USA Inc. Job ID: 890-1995-1 Project/Site: RED Raider BKS State 001

SDG: 31403720.000 task 09.02

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-12020-A-1-D MS **Client Sample ID: Matrix Spike**

Matrix: Solid Prep Type: Soluble Analysis Batch: 20846

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Chloride 1350 1250 2615 mg/Kg 101 90 - 110

Lab Sample ID: 880-12020-A-1-E MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Soluble

Analysis Batch: 20846

Sample Sample Spike MSD MSD %Rec. **RPD Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit

Chloride 1350 1250 2572 90 - 110 2 mg/Kg 97

Client: WSP USA Inc. Job ID: 890-1995-1 Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

GC VOA

Prep Batch: 20208

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-1	BH02	Total/NA	Solid	5035	
890-1995-2	BH02A	Total/NA	Solid	5035	
890-1995-3	BH03	Total/NA	Solid	5035	
890-1995-4	BH03A	Total/NA	Solid	5035	
890-1995-5	BH04	Total/NA	Solid	5035	
890-1995-6	BH04A	Total/NA	Solid	5035	
890-1995-7	BH05	Total/NA	Solid	5035	
890-1995-8	BH05A	Total/NA	Solid	5035	
MB 880-20208/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-20208/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-20208/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-11518-A-21-E MS	Matrix Spike	Total/NA	Solid	5035	
880-11518-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 20241

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-20241/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 20289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-1	BH02	Total/NA	Solid	8021B	20208
890-1995-2	BH02A	Total/NA	Solid	8021B	20208
890-1995-3	BH03	Total/NA	Solid	8021B	20208
890-1995-4	BH03A	Total/NA	Solid	8021B	20208
890-1995-5	BH04	Total/NA	Solid	8021B	20208
890-1995-6	BH04A	Total/NA	Solid	8021B	20208
890-1995-7	BH05	Total/NA	Solid	8021B	20208
890-1995-8	BH05A	Total/NA	Solid	8021B	20208
MB 880-20208/5-A	Method Blank	Total/NA	Solid	8021B	20208
MB 880-20241/5-A	Method Blank	Total/NA	Solid	8021B	20241
LCS 880-20208/1-A	Lab Control Sample	Total/NA	Solid	8021B	20208
LCSD 880-20208/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	20208
880-11518-A-21-E MS	Matrix Spike	Total/NA	Solid	8021B	20208
880-11518-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	20208

Analysis Batch: 20484

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-1	BH02	Total/NA	Solid	Total BTEX	
890-1995-2	BH02A	Total/NA	Solid	Total BTEX	
890-1995-3	BH03	Total/NA	Solid	Total BTEX	
890-1995-4	BH03A	Total/NA	Solid	Total BTEX	
890-1995-5	BH04	Total/NA	Solid	Total BTEX	
890-1995-6	BH04A	Total/NA	Solid	Total BTEX	
890-1995-7	BH05	Total/NA	Solid	Total BTEX	
890-1995-8	BH05A	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 20142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-6	BH04A	Total/NA	Solid	8015NM Prep	

 Client: WSP USA Inc.
 Job ID: 890-1995-1

 Project/Site: RED Raider BKS State 001
 SDG: 31403720.000 task 09.02

GC Semi VOA (Continued)

Prep Batch: 20142 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-7	BH05	Total/NA	Solid	8015NM Prep	
890-1995-8	BH05A	Total/NA	Solid	8015NM Prep	
MB 880-20142/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-20142/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-20142/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1994-A-21-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-1994-A-21-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 20185

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-1	BH02	Total/NA	Solid	8015NM Prep	
890-1995-2	BH02A	Total/NA	Solid	8015NM Prep	
890-1995-3	BH03	Total/NA	Solid	8015NM Prep	
890-1995-4	BH03A	Total/NA	Solid	8015NM Prep	
890-1995-5	BH04	Total/NA	Solid	8015NM Prep	
MB 880-20185/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-20185/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-20185/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1995-1 MS	BH02	Total/NA	Solid	8015NM Prep	
890-1995-1 MSD	BH02	Total/NA	Solid	8015NM Prep	

Analysis Batch: 20187

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-1	BH02	Total/NA	Solid	8015B NM	20185
890-1995-2	BH02A	Total/NA	Solid	8015B NM	20185
890-1995-3	BH03	Total/NA	Solid	8015B NM	20185
890-1995-4	BH03A	Total/NA	Solid	8015B NM	20185
890-1995-5	BH04	Total/NA	Solid	8015B NM	20185
MB 880-20185/1-A	Method Blank	Total/NA	Solid	8015B NM	20185
LCS 880-20185/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	20185
LCSD 880-20185/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	20185
890-1995-1 MS	BH02	Total/NA	Solid	8015B NM	20185
890-1995-1 MSD	BH02	Total/NA	Solid	8015B NM	20185

Analysis Batch: 20195

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-6	BH04A	Total/NA	Solid	8015B NM	20142
890-1995-7	BH05	Total/NA	Solid	8015B NM	20142
890-1995-8	BH05A	Total/NA	Solid	8015B NM	20142
MB 880-20142/1-A	Method Blank	Total/NA	Solid	8015B NM	20142
LCS 880-20142/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	20142
LCSD 880-20142/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	20142
890-1994-A-21-B MS	Matrix Spike	Total/NA	Solid	8015B NM	20142
890-1994-A-21-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	20142

Analysis Batch: 20277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-1	BH02	Total/NA	Solid	8015 NM	
890-1995-2	BH02A	Total/NA	Solid	8015 NM	
890-1995-3	BH03	Total/NA	Solid	8015 NM	
890-1995-4	ВН03А	Total/NA	Solid	8015 NM	

Eurofins Carlsbad

9

3

4

6

8

g

12

13

14

Client: WSP USA Inc. Job ID: 890-1995-1 Project/Site: RED Raider BKS State 001

SDG: 31403720.000 task 09.02

GC Semi VOA (Continued)

Analysis Batch: 20277 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-5	BH04	Total/NA	Solid	8015 NM	

Analysis Batch: 20572

Lab Sample ID 890-1995-6	Client Sample ID BH04A	Prep Type Total/NA	Matrix Solid	Method 8015 NM	Prep Batch
890-1995-7	BH05	Total/NA	Solid	8015 NM	
890-1995-8	BH05A	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 20129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-7	BH05	Soluble	Solid	DI Leach	
890-1995-8	BH05A	Soluble	Solid	DI Leach	
MB 880-20129/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-20129/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-20129/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1995-7 MS	BH05	Soluble	Solid	DI Leach	
890-1995-7 MSD	BH05	Soluble	Solid	DI Leach	

Leach Batch: 20134

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-2	BH02A	Soluble	Solid	DI Leach	
890-1995-3	BH03	Soluble	Solid	DI Leach	
890-1995-4	BH03A	Soluble	Solid	DI Leach	
890-1995-5	BH04	Soluble	Solid	DI Leach	
890-1995-6	BH04A	Soluble	Solid	DI Leach	
MB 880-20134/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-20134/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-20134/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1994-A-33-F MS	Matrix Spike	Soluble	Solid	DI Leach	
890-1994-A-33-G MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 20166

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-2	BH02A	Soluble	Solid	300.0	20134
890-1995-3	BH03	Soluble	Solid	300.0	20134
890-1995-4	BH03A	Soluble	Solid	300.0	20134
890-1995-5	BH04	Soluble	Solid	300.0	20134
890-1995-6	BH04A	Soluble	Solid	300.0	20134
MB 880-20134/1-A	Method Blank	Soluble	Solid	300.0	20134
LCS 880-20134/2-A	Lab Control Sample	Soluble	Solid	300.0	20134
LCSD 880-20134/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	20134
890-1994-A-33-F MS	Matrix Spike	Soluble	Solid	300.0	20134
890-1994-A-33-G MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	20134

Analysis Batch: 20336

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-7	BH05	Soluble	Solid	300.0	20129
890-1995-8	BH05A	Soluble	Solid	300.0	20129
MB 880-20129/1-A	Method Blank	Soluble	Solid	300.0	20129

Client: WSP USA Inc. Job ID: 890-1995-1 Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

HPLC/IC (Continued)

Analysis Batch: 20336 (Continued)

Lab Sample ID LCS 880-20129/2-A	Client Sample ID Lab Control Sample	Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 20129
LCSD 880-20129/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	20129
890-1995-7 MS	BH05	Soluble	Solid	300.0	20129
890-1995-7 MSD	ВН05	Soluble	Solid	300.0	20129

Leach Batch: 20497

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-1	BH02	Soluble	Solid	DI Leach	
MB 880-20497/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-20497/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-20497/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-11760-A-1-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-11760-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 20689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1995-1	BH02	Soluble	Solid	300.0	20497
MB 880-20497/1-A	Method Blank	Soluble	Solid	300.0	20497
LCS 880-20497/2-A	Lab Control Sample	Soluble	Solid	300.0	20497
LCSD 880-20497/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	20497
880-11760-A-1-E MS	Matrix Spike	Soluble	Solid	300.0	20497
880-11760-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	20497

Leach Batch: 20804

Lab Sample ID MB 880-20804/1-A	Client Sample ID Method Blank	Prep Type Soluble	Solid	Method DI Leach	Prep Batch
LCS 880-20804/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-20804/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-12020-A-1-D MS	Matrix Spike	Soluble	Solid	DI Leach	
880-12020-A-1-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 20846

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-20804/1-A	Method Blank	Soluble	Solid	300.0	20804
LCS 880-20804/2-A	Lab Control Sample	Soluble	Solid	300.0	20804
LCSD 880-20804/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	20804
880-12020-A-1-D MS	Matrix Spike	Soluble	Solid	300.0	20804
880-12020-A-1-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	20804

SDG: 31403720.000 task 09.02

Client Sample ID: BH02

Lab Sample ID: 890-1995-1

Date Collected: 02/21/22 10:51 Date Received: 02/21/22 15:09 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	20208	02/24/22 11:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	20289	02/27/22 23:19	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			20484	02/28/22 11:39	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			20277	02/24/22 19:59	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	20185 20187	02/24/22 08:23 02/24/22 14:21		XEN MID XEN MID
Soluble Soluble	Leach Analysis	DI Leach 300.0		1	5.01 g	50 mL	20497 20689	02/28/22 12:47 03/02/22 13:30		XEN MID XEN MID

Client Sample ID: BH02A Lab Sample ID: 890-1995-2

Date Collected: 02/21/22 11:15

Matrix: Solid

Date Received: 02/21/22 15:09

	Batch	Batch		Dil	Initial	Initial Final	Batch	Batch Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	20208	02/24/22 11:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	20289	02/27/22 23:39	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			20484	02/28/22 11:39	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			20277	02/24/22 19:59	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	20185	02/24/22 08:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1			20187	02/24/22 18:32	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	20134	02/23/22 10:06	СН	XEN MID
Soluble	Analysis	300.0		1			20166	02/24/22 21:07	CH	XEN MID

Client Sample ID: BH03 Lab Sample ID: 890-1995-3

Date Collected: 02/21/22 11:35 Date Received: 02/21/22 15:09 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	20208	02/24/22 11:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	20289	02/28/22 00:00	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			20484	02/28/22 11:39	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			20277	02/24/22 19:59	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	20185	02/24/22 08:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1			20187	02/24/22 19:13	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	20134	02/23/22 10:06	CH	XEN MID
Soluble	Analysis	300.0		1			20166	02/24/22 21:14	CH	XEN MID

Client Sample ID: BH03A Lab Sample ID: 890-1995-4 Date Collected: 02/21/22 11:52 Matrix: Solid

Date Received: 02/21/22 15:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	20208	02/24/22 11:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	20289	02/28/22 00:20	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			20484	02/28/22 11:39	AJ	XEN MID

Client: WSP USA Inc.

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1 SDG: 31403720.000 task 09.02

3DG. 31403720.000 task 09.02

Lab Sample ID: 890-1995-4

. Matrix: Solid

Client Sample ID: BH03A

Date Collected: 02/21/22 11:52

Date Received: 02/21/22 15:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			20277	02/24/22 19:59	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	20185	02/24/22 08:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1			20187	02/24/22 19:33	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	20134	02/23/22 10:06	CH	XEN MID
Soluble	Analysis	300.0		1			20166	02/24/22 21:20	CH	XEN MID

Client Sample ID: BH04

Date Collected: 02/21/22 12:19

Lab Sample ID: 890-1995-5

Matrix: Solid

Date Collected: 02/21/22 12:19
Date Received: 02/21/22 15:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	20208	02/24/22 11:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	20289	02/28/22 00:41	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			20484	02/28/22 11:39	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			20277	02/24/22 19:59	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	20185	02/24/22 08:23	DM	XEN MID
Total/NA	Analysis	8015B NM		1			20187	02/24/22 19:53	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	20134	02/23/22 10:06	CH	XEN MID
Soluble	Analysis	300.0		1			20166	02/24/22 21:26	CH	XEN MID

Client Sample ID: BH04A

Date Collected: 02/21/22 12:30

Lab Sample ID: 890-1995-6

Matrix: Solid

Date Received: 02/21/22 15:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	20208	02/24/22 11:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	20289	02/28/22 01:01	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			20484	02/28/22 11:39	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			20572	02/28/22 20:00	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	20142	02/23/22 11:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			20195	02/24/22 19:38	AJ	XEN MID
Soluble	Leach	DI Leach			4.98 g	50 mL	20134	02/23/22 10:06	CH	XEN MID
Soluble	Analysis	300.0		1			20166	02/24/22 21:33	CH	XEN MID

Client Sample ID: BH05

Date Collected: 02/21/22 12:52

Lab Sample ID: 890-1995-7

Matrix: Solid

Date Received: 02/21/22 15:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	20208	02/24/22 11:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	20289	02/28/22 01:22	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			20484	02/28/22 11:39	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			20572	02/28/22 20:00	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g	10 mL	20142 20195	02/23/22 11:20 02/24/22 19:58	DM AJ	XEN MID XEN MID

Eurofins Carlsbad

2

5

5

7

9

1 4

13

Lab Chronicle

Client: WSP USA Inc. Job ID: 890-1995-1 Project/Site: RED Raider BKS State 001 SDG: 31403720.000 task 09.02

Client Sample ID: BH05 Lab Sample ID: 890-1995-7

Date Collected: 02/21/22 12:52 **Matrix: Solid**

Date Received: 02/21/22 15:09

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Soluble	Leach	DI Leach			5.05 g	50 mL	20129	02/23/22 09:37	CH	XEN MID
Į	Soluble	Analysis	300.0		1			20336	02/25/22 21:04	CH	XEN MID

Client Sample ID: BH05A Lab Sample ID: 890-1995-8

Date Collected: 02/21/22 13:10 **Matrix: Solid** Date Received: 02/21/22 15:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	20208	02/24/22 11:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	20289	02/28/22 01:42	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			20484	02/28/22 11:39	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			20572	02/28/22 20:00	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	20142	02/23/22 11:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			20195	02/24/22 20:19	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	20129	02/23/22 09:37	СН	XEN MID
Soluble	Analysis	300.0		1			20336	02/25/22 21:23	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

 Client: WSP USA Inc.
 Job ID: 890-1995-1

 Project/Site: RED Raider BKS State 001
 SDG: 31403720.000 task 09.02

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-21-22	06-30-22
The following analyte the agency does not	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
and agoney adde not	oner certification.			
Analysis Method	Prep Method	Matrix	Analyte	
0 ,		Matrix Solid	Analyte Total TPH	

4

5

7

ð

10

12

13

14

Method Summary

Client: WSP USA Inc.

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1

SDG: 31403720.000 task 09.02

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
0.00	Anions, Ion Chromatography	MCAWW	XEN MID
035	Closed System Purge and Trap	SW846	XEN MID
015NM Prep	Microextraction	SW846	XEN MID
I Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Sample Summary

Client: WSP USA Inc.

Project/Site: RED Raider BKS State 001

Job ID: 890-1995-1

SDG: 31403720.000 task 09.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-1995-1	BH02	Solid	02/21/22 10:51	02/21/22 15:09	0.5
890-1995-2	BH02A	Solid	02/21/22 11:15	02/21/22 15:09	4
890-1995-3	BH03	Solid	02/21/22 11:35	02/21/22 15:09	0.5
890-1995-4	BH03A	Solid	02/21/22 11:52	02/21/22 15:09	4
890-1995-5	BH04	Solid	02/21/22 12:19	02/21/22 15:09	0.5
890-1995-6	BH04A	Solid	02/21/22 12:30	02/21/22 15:09	4
890-1995-7	BH05	Solid	02/21/22 12:52	02/21/22 15:09	0.5
890-1995-8	BH05A	Solid	02/21/22 13:10	02/21/22 15:09	4

3

4

5

6

Q

Q

10

40

13

11

XMZ000

Project Manager:

Company Name: ddress:

> WSP USA Kalei Jennings

Phone:

817-683-2503

Email:

Kalei.jennings@wsp.com

City, State ZIP: Address: Company Name:

Midland, Texas 79705

Deliverables: EDD

Reporting:Level II evel III

□T/UST ADaPT

A Pall dell

Program: UST/PST State of Project:

> □RP □rownfields □RC Work Order Comments

⊕perfund

3300 North A Street Building 1, unit 222

WSP USA

Midland, Texas 79705

3300 North A Street Building 1, unit 222

City, State ZIP:

13

Chain of Custody

Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 Bill to: (if different) Kalei Jennings

Revised Date 051418 Rev. 2018.1									-		
			4 0				1				3
				12 3:09	2/2/1			the	1	MI	1 When
Date/Time	Received by: (Signature)	Relinquished by: (Signature)		Date/Time	, ,	·e)	Received by: (Signature)	Received b	e)	oy: (Signatur	Relinquished by: (Signature)
	orms and conditions is beyond the control sly negotiated.	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ico, its affilia neurred by t t not analyza	any to Xen xpenses ir Xenco, bu	lient comp losses or e bmitted to	hase order from c onsibility for any l or each sample su	tes a valid purc ssume any resp charge of \$5 fo	samples constitu s and shall not a: ach project and a	relinquishment of the cost of sample will be applied to s	s document and be liable only for charge of \$75.00	Notice: Signature of thi of service. Xenco will I of Xenco. A minimum
1631 / 245.1 / 7470 / 7471 : Hg		Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	a Be Cd	Sb As Ba Be	1 11	TCLP / SPLP 6010: 8RCRA	TCLP / SPL	Ì	Circle Method(s) and Metal(s) to be analyzed	od(s) and Me	Circle Metho
Sn U V Zn	K Se Ag SiO2	Cd Ca Cr Co Cu Fe	Ве В	As Ba	Al Sb	8RCRA 13PPM Texas 11	CRA 13PF	8R	200.8 / 6020:	- 1	Total 200.7 / 6010
DISCRETE			×	×		4	13:10	02/21/22	S	вно5А	ВН
DISCRETE			×	×	1	0.5	12:52	02/21/22	S	BH05	18
DISCRETE			×	×		4	12:30	02/21/22	S	BH04A	НВ
DISCRETE			×	×		0.5	12:19	02/21/22	S	BH04	18
DISCRETE			×	×		4	11:52	02/21/22	S	ВН03А	ВН
DISCRETE			×	×		0.5	11:35	02/21/22	S	ВН03	18
DISCRETE			×	×		4	11:15	02/21/22	S	BH02A	НВ
DISCRETE			×	×		0.5	10:51	02/21/22	S	BH02	ВH
Sample Comments	Sai		Chlorid	TPH (É	Numbe	Depth	Time Sampled	Date Sampled	Matrix	Sample Identification	Sample Id
lab, if received by 4:30pm	IAI Star	890-1995 Chain of Custody	e (EPA		-	0.0	Total Containers:	Total	s No (N/A)	eals: Yes	Sample Custody Seals:
			300.			3	-00	-1/~	Z Z	5 L	Received Intact:
			0))	iner		Thermometer ID	T-	8.10	Ó	Temperature (°C):
					S	res No	Wet Ice:	(Yes) No	Temp Blank:	EIPT	SAMPLE RECEIPT
)ate:	Due Date:		nner	Payton Benner	Sampler's Name:
							Rush:				P.O. Number:
						ne []	Routine	ask 09.02	31403720.000 Task 09.02	<u>ω</u>	Project Number:
Work Order Notes	W	ANALYSIS REQUEST				Turn Around	Tu	01	Red Raider BKS State 001	Red Raid	Project Name:

Work Order No:

www.xenco.com

⊃age

으

Login Sample Receipt Checklist

Client: WSP USA Inc. Job Number: 890-1995-1 SDG Number: 31403720.000 task 09.02

List Source: Eurofins Carlsbad

Login Number: 1995 List Number: 1

Creator: Olivas, Nathaniel

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Login Sample Receipt Checklist

Client: WSP USA Inc. Job Number: 890-1995-1 SDG Number: 31403720.000 task 09.02

List Source: Eurofins Midland

List Number: 2 Creator: Teel, Brianna

Login Number: 1995

List Creation: 02/23/22 11:30 AM

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NAPP2129845041
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	COG Operating, LLC	OGRID	229137		
Contact Name	Kelsy Waggaman	Contact Telephone	(432) 688 - 9057		
Contact email	Kelsy.Waggaman@ConocoPhillips.com	Incident # (assigned by OCD)	NAPP2129845041		
Contact mailing address	600 West Illinois Avenue, Midland, Texas 79701				

Location of Release Source

Latitude	32.18675	Longitude -103.52338
_		(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Red Raider BKS State 001	Site Type	Tank Battery
Date Release Discovered	October 8, 2021	API# (if applicable)	30-025-29141

Unit Letter	Section	Township	Range	County
J	25	24S	33E	Lea

Surface Owner:		
	Surface Owner: State Federal Tribal Private (Name:)

Nature and Volume of Release

Material	(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 20	Volume Recovered (bbls) 20
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	■ Yes □ No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

The release was caused by water dump line leak due to corrosion.

The release occurred within the lined facility. A vacuum truck was dispatched to remove all freestanding fluids. Concho will have the spill area evaluated for any possible impact from the release.

Received by OCD: 3/18/2022 1:09:39 PM Form C-141 State of New Mexico Page 2 Oil Conservation Division

Page 83 of 88

Incident ID	NAPP2129845041
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the response	nsible party consider this a major release?
☐ Yes ■ No		
If YES, was immediate no	otice given to the OCD? By whom? To w	hom? When and by what means (phone, email, etc)?
	Initial R	esponse
The responsible	party must undertake the following actions immediate	ly unless they could create a safety hazard that would result in injury
■ The source of the rele	ease has been stopped.	
■ The impacted area ha	s been secured to protect human health and	the environment.
Released materials ha	ave been contained via the use of berms or	dikes, absorbent pads, or other containment devices.
■ All free liquids and re	ecoverable materials have been removed an	d managed appropriately.
If all the actions described	d above have <u>not</u> been undertaken, explain	why:
D 10.15.20.0 D (4) 3.114	71	
has begun, please attach	a narrative of actions to date. If remedial	remediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred please attach all information needed for closure evaluation.
regulations all operators are public health or the environr failed to adequately investig	required to report and/or file certain release not ment. The acceptance of a C-141 report by the ate and remediate contamination that pose a thr	best of my knowledge and understand that pursuant to OCD rules and iffications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name Brittar	ny N. Esparza	Title: Environmental Technician
Signature:	ny N. Esparza	Date: 10/25/2021
	za@ConocoPhillips.com	Date: 10/25/2021 Telephone: (432) 221-0398
OCD Only		
Received by:		Date:

L48 Spill Volume Estimate Form Received by OCD: 3/18/2022 1:09:39 PM Name & Number: Red Raider BKS RB Page 84 of 88 Asset Area: Northern Delaware Basin - Delaware Basin East Route Release Discovery Date & Time: 7/17/2021 Release Type: Oil mixture Provide any known details about the event: Internal corrosion of KO bypass line for #5 KO Spill Calculation - On Pad Surface Pool Spill Total Estimated Volume of Spilled Liquid other than Oil (bbl.) 0.089 Rectangle B 0.000 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Rectangle C 0.000 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

Total Volume Release:

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

0.178

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

0.089

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

0.089

Convert Irregular shape into a series of rectangles	Length (ft.)	WWIGHT	Deepest point in each of the areas (in.)	No. of boundaries of "shore" in each area			Estimated volume of each pool area (bbl.)		Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Volume of Spilled	V
Rectangle A	8.0	6.0	0.50	2	48.000	0.021	0.178	0.001	0.178	50.00%	0.089	

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Rectangle D

Rectangle E

Rectangle F

Rectangle G

Rectangle H

Rectangle I

Released to Imaging: 4/27/2022 10:44:11 AM

	Page 85 of 88
Incident ID	NAPP2129845041
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 50 days after the release discovery date.	
What is the shallowest depth to groundwater beneath the area affected by the release?	<50 (ft bgs)
Did this release impact groundwater or surface water?	Yes X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes 🏻 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☒ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	Yes 🖾 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☒ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☒ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☒ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☒ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☒ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes 🗓 No
Did the release impact areas not on an exploration, development, production, or storage site?	Yes X No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination	ls.
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

N Photographs including date and GIS information

X Laboratory data including chain of custody

X Topographic/Aerial maps

Received by OCD: 3/18/2022 1:09:39 PM Form C-141 State of New Mexico
Page 4 Oil Conservation Division

	Page 86 of 88
Incident ID	NAPP2129845041
District RP	
Facility ID	

Application ID

State of New Mexico

	Page 87 of 8	8
Incident ID	NAPP2129845041	
District RP		
Facility ID		
Application ID		

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.					
 □ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation points □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC □ Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 					
Deferral Requests Only: Each of the following items must be com	firmed as part of any request for deferral of remediation.				
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.					
Contamination does not cause an imminent risk to human health, the environment, or groundwater.					
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file of which may endanger public health or the environment. The acceptant liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local later than the printed Name: Charles Beauvais	retrain release notifications and perform corrective actions for releases not of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of				
Signature: Charles R. Beauvais 99	Date:				
Email: Charles.R.Beauvais@conocophillips.com	Telephone:575-988-2043				
OCD Only					
Received by:	Date:				
Approved	Approval Denied Deferral Approved				
Signature: Jennifer Nobili	Date: 04/27/2022				

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 91335

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	91335
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Create By	Condition	Condition Date
jnobu	Deferral Request Approved. Going forward, please include a copy of the 2 business day notification of liner inspection in report.	4/27/2022