

To: NMOCD (District 2) Attn: Chad Hensley (Environmental)

From: Jim Raley – Environmental Specialist WPX Energy Permian LLC 5315 Buena Vista Drive Carlsbad NM, 88220 575-689-7597

To Whom it may Concern, Please find closure request for incident# nAPP2134444397.

Please direct this closure report resubmission to Chad Hensley. After discussions with Dan Moir (WSP) it is my understanding that Mr. Hensley has agreed to review the closure again and reconsider the original denial.

Thank you,

Man Rada

Jim Raley Environmental Specialist – WPX Energy 575-689-7597 (james.raley@wpxenergy.com) District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	nAPP2134444397
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: WPX Energy Permian, LLC	OGRID: 246289
Contact Name: Jim Raley	Contact Telephone: 575-689-7597
Contact email: jim.raley@dvn.com	Incident # (assigned by OCD) nAPP2134444397
Contact mailing address: 5315 Buena Vista Dr., Carlsbad NM 88220	

Location of Release Source

Latitude 32.03579

Longitude -103.89955 (NAD 83 in decimal degrees to 5 decimal places)

Site Name: RDX FEDERAL COM 17 #026H	Site Type: Oil Production Site
Date Release Discovered: December 7 th , 2021	API# (if applicable) 30-015-42752

Unit Letter	Section	Township	Range	County
0	17	26S	30E	Eddy

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 0	Volume Recovered (bbls) 0
Produced Water	Volume Released (bbls) 8	Volume Recovered (bbls) 0
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release: Line from separator to PW tanks developed leak, allowing for release of approx. 8 bbls produced water to pad surface.

Spill sqft. x (1 cubic yard/27 cubic feet) x (porosity) x (6.41187384 bbls fluid/1 cubic yard) = approximately 8 bbls released fluids.

Page	2
1 age	4

Oil Conservation Division

Incident ID	nAPP2134444397
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🖾 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	James Raley	Title: Environmental Specialist
	fin Roby	Date:12/10/2021 Telephone:575-689-7597
OCD Only		
Received by:	Ramona Marcus	Date: 12/13/2021

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: (OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	66312
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By Condition None rmarcus

Page 4 of 110

CONDITIONS

Action 66312

Condition Date 12/13/2021

Incident IDNAPP2134444397District RPFacility IDApplication IDIncident ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

	1
What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🔽 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🔽 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔽 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔽 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔽 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🔽 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🔽 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🔽 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🔽 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🔽 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🔽 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗹 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
 Field data
- $\overline{\mathbf{\nabla}}$ Data table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- \checkmark Boring or excavation logs
- ✓ Photographs including date and GIS information
- Topographic/Aerial maps
- \square Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

	22 11:00:09 AM State of New N	laviaa		Page 6 of 1
			Incident ID	NAPP2134444397
Page 4	Oil Conservation	Division	District RP	
			Facility ID	
			Application ID	
regulations all operators are public health or the environ failed to adequately investig		n release notifications and perform eport by the OCD does not relieve nat pose a threat to groundwater, s le operator of responsibility for co Title: Environ	m corrective actions for rel e the operator of liability sl surface water, human healt	eases which may endanger hould their operations have h or the environment. In ederal, state, or local laws
Signature: email: jim.raley@dvr		Date: <u>3/4/202</u> Telephone: <u>575</u>		

Page 6

Oil Conservation Division

Incident ID	NAPP2134444397
District RP	
Facility ID	
Application ID	

Page 7 of 110

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) \checkmark Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Title: Environmental Professional Printed Name: Jim Raley Signature: Telephone: 575-689-7597 _{email:} jim.raley@dvn.com **OCD Only** Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: ________ *Jennifer Nobui*______ Date: ______ Date: ______ D5/04/2022 Printed Name: Jennifer Nobui Title: Environmental Specialist A

WSP USA

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

March 4, 2022

District II New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request RDX Federal Com 17 #026H Incident Number nAPP2134444397 Eddy County, New Mexico

To Whom It May Concern:

WSP USA Inc. (WSP), on behalf of WPX Energy Permian, LLC. (WPX), presents the following Closure Request detailing site assessment, excavation, and soil sampling activities at the RDX Federal Com 17 #026H (Site) located in Unit O, Section 17, Township 26 South, Range 30 East, in Eddy County, New Mexico (Figure 1). The purpose of the site assessment, delineation soil sampling, and excavation activities was to address impacts to soil following a release of produced water at the Site. Based on the excavation activities and laboratory analytical results from the soil sampling events, WPX is submitting this Closure Request, describing remediation that has occurred and requesting no further action (NFA) for Incident Number nAPP2134444397.

RELEASE BACKGROUND

On December 7, 2021, a line from the separator to the produced water tanks developed a leak, resulting in the release of approximately 8 barrels (bbls) of produced water onto the surface of the well pad. No fluids were able to be successfully recovered. WPX reported the release to the New Mexico Oil Conservation Division (NMOCD) and submitted a Release Notification Form C-141 on December 10, 2021. The release was assigned Incident Number nAPP2134444397.

SITE CHARACTERIZATION

WSP characterized the Site according to Table 1, *Closure Criteria for Soils Impacted by a Release*, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is estimated to be greater than 100 feet bgs based on soil boring, MW-1, associated with RDX 17-3, that was drilled by Talon LPE on December 8, 2020. The soil boring is located approximately 0.28 miles east of the Site. Using a truck mounted drill rig equipped with hollow stem auger, the soil boring was advanced to a total depth of approximately 107 feet bgs. Groundwater was not observed within the soil boring after at least 72 hours. Following the observation period, the boring was plugged and abandoned. The boring log is included as Attachment 1.

District II Page 2

The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (medium potential karst designation area). Site receptors are identified on Figure 1.

WATER COURSE SURVEY

On January 19, 2022, WSP personnel conducted a field investigation to confirm the presence of a potential significant watercourse identified in a desktop survey using the United States Fish and Wildlife Service (USFWS) online database, National Wetland Inventory (Wetland Mapper). Wetland Mapper is often used for initial evaluation of significant watercourses in response to reportable releases as required in the site characterization defined in 19.15.29.11.A(4) NMAC.

Field verification is sometimes necessary to measure the distance of the feature from the release extent and to confirm the feature modeled by the USFWS complies with the definition of a

NMAC. Specifically, the definition in Subsection P of

19.15.17.7 NMAC requires a defined bed and bank and either named or identified bv а dashed blue line on United States Geological Survey (USGS) 7.5-minute quadrangle map or the next lower order tributary with a defined bed and

Mapper. (Green pin) location where conduit splays out.

bank of such watercourse. Prior to the field investigation, WSP determined the surface feature did not present the preliminary requirements cognate to the anterior definition of a significant watercourse such that it was not identified by a dashed blue line on the current USGS 7.5-minute guadrangle map and did not reveal aerial properties of a next lower tributary that connect to a significant watercourse.

vsp

District II Page 3

Survey Photo 1: Erosional rut in Northeasterly area.

During the visual field survey of the watercourse, erosional paths or swales and ruts aligned with the topographic gradient

identified were at the of the Northeasterly start where riverine highest elevations located; were however, these features appear to be from erosional events from heavy rain falls and not from a running or intermittent stream feature. The distinct erosional features decreased drastically in depth and size following the conduit Southeast where it eventually splayed out (Survey

Photo 1 and survey Photo 2). The conduit did not appear to connect to a larger watercourse. The features furthest to the Southeast did not have a bed or bank, there was no evidence of

fluvial deposition inside the erosional features, and they did not connect to other watercourses, instead splaying out onto the desert floor. More detailed results and photographic evidence are provided in Diagram 2 and Survey Photo 2. The closest feature with a defined bed and bank appears to be approximately 1,265 feet west of the Site.

Based on the observations presented, there are no significant watercourses located within 300 feet of the release extent per the definition of a significant watercourse in Subsection P of 19.15.17.7 NMAC. Instead, an erosional channel has formed by drainage of water during storm events. The conduit is intercepted by an access road and ultimately splays out along the desert floor without connecting to any other features. The survey tract associated with the conduit and photos is presented on Figure 2.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg

District II Page 4

Chloride: 20,000 mg/kg

EXCAVATION SOIL SAMPLING ACTIVITIES

Between December 16, 2021, and January 13, 2022, WSP personnel oversaw excavation activities at the Site as indicated by visual observations and descriptions provided in the C-141 form. Excavation activities were completed to address impacted soil within the release extent. To direct excavation activities, WSP screened soil for volatile aromatic hydrocarbons and chloride utilizing a photo-ionization detector (PID) and Hach[®] chloride QuanTab[®] test strips, respectively.

Following removal of impacted soil, WSP collected 5-point composite soil samples every 200 square feet from the excavations. The 5-point composite samples were collected by depositing five aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 through FS08 were collected from the floor of the excavations at depths ranging from 0.5 feet to 0.75 feet bgs. Due to the shallow depth of the excavation, the soil samples represented the floors and sidewalls of the excavations. The excavation soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-ORO following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Final laboratory analytical results for excavation soil samples FS01 through FS08, collected from the final excavation extent, indicated that benzene, BTEX, TPH-GRO, TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. The soil sample analytical results are summarized in Table 1 and laboratory analytical reports are included in Attachment 3.

The excavation and excavation soil sample locations are depicted on Figure 2. Photographic documentation was conducted during the Site visit. A photographic log is included in Attachment 2. The excavation measured approximately 1,294 square feet in area and was completed to a depth ranging from 0.5 to 0.75 feet bgs. Approximately 24 cubic yards of soil was removed and properly disposed of at the R360 Facility located in Hobbs, New Mexico under WPX approved manifests.

DELINEATION SOIL SAMPLING ACTIVITIES

On January 13, 2022, WSP personnel returned to the Site to oversee delineation activities. Four potholes (PH01 through PH04) were advanced via track mounted backhoe around the release extent and surrounding the production equipment to confirm the lateral and vertical extent of impacted soil. Potholes PH01 through PH04 were advanced to a depth of 1-foot bgs. Discrete were collected from each pothole at depths of 0.5-foot bgs and 1-foot bgs. Soil from the potholes was field screened for volatile aromatic hydrocarbons and chloride. Field screening results and observations for the potholes were logged on lithologic/soil sampling logs, which are included in

vsp

District II Page 5

Attachment 3. The delineation soil samples were handled and analyzed as described above. The pothole delineation soil sample locations are depicted on Figure 3.

LABORATORY ANALYTICAL RESULTS

Final laboratory analytical results for excavation soil samples FS01 through FS08, collected from the final excavation extent, indicated benzene, BTEX, TPH-GRO, TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria.

Laboratory analytical results for the delineation soil samples collected from potholes PH01 through PH04, collected outside of the release extent and surrounding production equipment, indicated benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. In addition, the delineation potholes collected at both depths provided lateral delineation of the release to the strictest Table 1 Closure Criteria.

The laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Attachment 4.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the December 7, 2021, release of produced water. Based on visual observations and information from the C-141 form, remediation appeared warranted. Approximately 24 cubic yards of soil were excavated from the Site and laboratory analytical results for the excavation soil samples indicated benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. In addition, delineation pothole samples collected at 0.5 and 1-foot bgs provide lateral delineation of the release to the strictest Table 1 Closure Criteria. Based on the soil sample analytical results, no further remediation was required.

Remediation response through the excavation of impacted soil, have mitigated impacts at this Site. Based on these efforts, soil sample laboratory analytical results compliant with the Closure Criteria and confirmed depth to groundwater greater than 100 feet bgs, WPX respectfully requests NFA and Closure of Incident Number nAPP2134444397.

If you have any questions or comments, please do not hesitate to contact Mr. Daniel R. Moir at (303) 887-2946.

Received by OCD: 3/31/2022 11:00:09 AM

vsp

Sincerely,

WSP USA Inc.

obenner

Payton Benner Assistant Consultant, Geologist

Daniel R. Moir, P.G. Sr. Lead Consultant, Geologist

cc: Jim Raley, Devon Energy Corporation Bureau of Land Management

Attachments:

- Figure 1 Site Location Map
- Figure 2 Water Course Survey Map
- Figure 3 Excavation Soil Sample Locations
- Figure 4 Delineation Soil Sample Locations
- Table 1Soil Analytical Results
- Attachment 1 Referenced Well Record
- Attachment 2 Photographic Log
- Attachment 3 Lithologic/Soil Sampling Logs
- Attachment 4 Laboratory Analytical Reports

District II Page 6

Released to Imaging: 5/4/2022 11:52:07 AM

Released to Imaging: 5/4/2022 11:52:07 AM

ge 19 oj

.

Table 1

Soil Analytical Results RDX Federal Com 17 #026H Incident Number nAPP2134444397 Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 Cl	osure Criteria (NMA	AC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000
Excavation Floor Sa	mples									
FS01	12/16/2021	0.5	< 0.00201	< 0.00402	126	<49.9	<49.9	126	126	14,300
FS02	12/16/2021	0.5	< 0.00202	< 0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	24,800
FS02A	01/13/2022	0.75	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	1,830
FS03	12/16/2021	0.5	< 0.00200	< 0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	14,500
FS04	12/16/2021	0.5	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	6,560
FS05	12/16/2021	0.5	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	12,300
FS06	12/16/2021	0.5	< 0.00200	< 0.00400	<50.0	<50.0	<50.0	<50.0	<50.0	6,200
FS07	12/16/2021	0.5	< 0.00200	< 0.00399	76.6	<50.0	<50.0	76.6	76.6	9,420
FS08	12/16/2021	0.5	< 0.00200	< 0.00400	<50.0	<50.0	<50.0	<50.0	<50.0	5,550
Delineation Soil Sam	ples				• •	• •				
PH01	01/13/2022	0.5	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	95.7
PH01A	01/13/2022	1	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	80
PH02	01/13/2022	0.5	< 0.00198	< 0.00397	<50.0	<50.0	<50.0	<50.0	<50.0	240
PH02A	01/13/2022	1	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	158
PH03	01/13/2022	0.5	< 0.00201	< 0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	119
PH03A	01/13/2022	1	< 0.00200	< 0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	146
PH04	01/13/2022	0.5	< 0.00200	< 0.00400	<50.0	<50.0	<50.0	<50.0	<50.0	166
PH04A	01/13/2022	1	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	317

Notes:

ft - feet/foot mg/kg - milligrams per kilograms BTEX - benzene, toluene, ethylbenzene, and total xylenes TPH - total petroleum hydrocarbons DRO - diesel range organics

GRO - gasoline range organics

ORO - oil range organics

NMOCD - New Mexico Oil Conservation Division

NMAC - New Mexico Administrative Code

< - indicates result is less than the stated laboratory method practical quantitation limit

NE - Not Established

BOLD - indicates results exceed the higher of the background sample result or applicable regulatory standard Greyed data represents samples that were excavated

•

		HR							MONITORING W	ELL COMPLETION	N DIAGRAM		
				IAN	C F		Boring/We		W-1	Location: RDX 17	#3		
Ĩ		S O	נטו		NS		Date:			Client:			
Drilling M	othod		Sampling N				Logged By		3/2020	WPX En	ergy		
-	Air Rotai	y	Sampning r		one		Logged By		nn, PG	Talon L	LPE		
Gravel Pac	k Type:		Gravel Pac	k Depth Inte			Seal Type:		Seal Depth Interval:	Latitude:			
Casing Typ	0/20 Sar	1d Diameter:		3 B Depth Inter	ags			lone al Depth (ft. BC	None	32.0367 Longitude:	65		
PVC		2-inch		0-102 fe	eet bgs			1(07	-103.895			
Screen Typ PVC	be:	Slot:	u a lu	Diameter:		Interval: 107 ft	Well Total	Depth (ft. BGS	·	Depth to Water (ft. BTOC): > 107	DTW Date: 12/16/2020		
		0.010-ii		2-inch					07 I	>107	12/16/2020		
Depth Interval (ft)	Recovery (ft)	Plasticity	Moisture	Odor	Staining	PID (ppm)	USCS	Sample ID	Litholog	Lithology/Remarks			
0													
5													
10	NM	L	D	Ν	Ν	NM	SP	NS	Dala aranga poor				
15		L		IN	IN		Sr	IND	Fale orange poor	ly graded fine sand ·			
20													
25	1												
30	NM	L	D	N	N	NM	SP	NS	Same as above wi	th slight increase in			
35		L		N	IN	NM	Sr	IND	coarse san	d and gravel			
40									D.I.				
45	NM	L	D	Ν	Ν	NM	SP	NS		ly graded fine sand y slight silt			
50									with ver	y slight sht			
55	NM	L	D	N	Ν	NM	SP	NS	Pale orange poor	ly graded fine sand			
60	NM	L	D	N	Ν	NM	SW	NS	Pale orange wel	l graded fine sand			
65													
70]									· · · · · ·			
75	NM	М	SL M	Ν	Ν	NM	SM	NS	-	layey silty fine sand se sand and gravel			
80]												
85	1									-			
90													
95		₇		лт I	Ъ Т			NO	Pale orange poorl	ly sorted fine sand -			
100	NM	L	SL M	N	Ν	NM	SP	NS)7' BGS	†		
105	1												

Received by OCD: 3/31/2022 11:00:09 AM

Released to Imaging: 5/4/2022 11:52:07 AM

wsp

PHOTOGRAPHIC LOG							
WPX ENERGY	RDX FEDERAL COM 17 #026H	NAPP2134444397					
PERMIAN, LLC	Eddy County, New Mexico						

Received by OCD: 3/31/2022 11:00:09 AM

Released to Imaging: 5/4/2022 11:52:07 AM

NS		BH or PH Name: PH01 Site Name: RDX FEDERAL COM	1 17 #026H				
	Carlsbad, New Mex	co 88220	RP or Incident Number: nAPP2134444397				
	DLOGIC / SOIL SAMPLING I	06	WSP Job Number: 31403360.040 Logged By: AB Method:				
Lat/Long: 32.03579, -103.89			Hole Diameter:	Total Depth:			
		N/A	1'				
Comments: M-moist; D-dry; Y-yes; N-no	; SAA-same as above						
Moisture Content Chloride (ppm) Vapor (ppm)	Sample Depth S (ft bgs)	USCS/Rock Symbol	Lithology/F	Remarks			
D 160 0 D 108 0	N PH01 0.5 0.5 N PH01A 1 1	CCHE CALIC	HE, OFF-WHITE, COARSE	GRAIN, NO STAIN NO ODOR			
		TO	TAL DEPTH @ 1 FT BGS				

115		N	ISP USA	В	H or PH Name: PH02					
		508 Wes	t Stevens S	treet	S	ite Name: RDX FEDER/	AL COM 1	7 #026H		
		Carlsbad, N	lew Mexico	88220		P or Incident Number: n				
					W	WSP Job Number: 31403360.040				
l	LITHOLO	GIC / SOIL SAMI	LING LOO	G	Lo	Logged By: AB Method:				
Lat/Long: 32.03579,	Field Scr	eening: CI- ar		lole Diameter:	-	Total Depth:				
0				N	I/A		1'			
Comments: M-moist; D-dry; Y-ye	es; N-no; SAA	-same as above								
2 - 0	(ppm) Staining	້ <u>ຍ</u> Sample du Depth ອິດ (ft bgs)	bgs)	USCS/Rock Symbol		Litho	ology/Re	emarks		
	0 N 0 N	PH02 0.5 PH02A 1	0 0.5 1	SP-SM SP-SM	COHESIV	ROWN, POORLY G ENESS, ABUNDAN	GRADED	D, WELL SORTED, NO , NO STAIN NO ODOR		
			+							
	I I				TOTAL	DEPTH @ 1 FT B	3GS			

1	WSP USA								BH or PH Name: PH03				
					508 West	Stevens St	treet		Site Name: RDX FEDER	RAL COM 1	7 #026H		
				Ca	rlsbad, Ne	ew Mexico	88220		RP or Incident Number: nAPP2134444397				
									WSP Job Number: 31403360.040				
				GIC / SOI					Logged By: AB		Method:		
Lat/Lo	at/Long: 32.03579, -103.89955 Field Screening: CI- and PID								Hole Diameter: N/A		Total Depth:		
Comments:									N/A		1'		
		Y-yes; N-r	no; SAA	A-same as ab	ove								
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	bgs)	USCS/Rock Symbol		Lith	nology/Re	emarks		
D			Ν			0							
D	200	0	Ν	PH03	0.5	0.5	SP-SM	SAND F		GRADEC	, WELL SORTED, NO		
	200	0	I N	1100	0.0	0.0	01-01/1	COHESI	VENESS, ABUNDA	NT SILT	, NO STAIN NO ODOR		
D	220	0	Ν	PH03A	1	1	SP-SM				-		
					-	Ļ							
	l				l		l	TOT	AL DEPTH @ 1 FT I	BGS			
									-				
	\mathbf{i}												
			\backslash										

NS			SP USA	BH or PH Name: PH04						
		508 West 3	Stevens St w Mexico	treet	Site Name: RDX FEDEI					
	Ca	nsbau, Ne		00220		RP or Incident Number: nAPP2134444397 WSP Job Number: 31403360.040				
	IOLOGIC / SOI			2		Logged By: AB Method:				
Lat/Long: 32.03579, -103.			ening: CI- an	Hole Diameter:	Total Depth:					
Laveong. 52.03573, -103.	03333		ennig. OF an	N/A	1'					
Comments:	_	1			l	I				
M-moist; D-dry; Y-yes; N-r	no; SAA-same as at	ove								
Moisture Content Chloride (ppm) Vapor (ppm)	Staining Sample #	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lith	nology/Remarks				
D	Ν		0							
D 252 0	N PH04	0.5	0.5	CCHE	CALICHE, OFF-WHITE, CC	DARSE GRAIN, NO STAIN NO ODOR				
D 252 0	N PH04A	1	1	CCHE	SAA					
						200				
					TOTAL DEPTH @ 1 FT	BGS				

Received by OCD: 3/31/2022 11:00:09 AM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1743-1

Laboratory Sample Delivery Group: 1061112901 Client Project/Site: RDX 17-26

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Joseph Hernandez

RAMER

Authorized for release by: 12/28/2021 8:21:21 PM Jessica Kramer, Project Manager

(432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Have a Question? Ask The Expert Visit us at: www.eurofinsus.com/Env

LINKS

Review your project results through

Total Access

Released to Imaging: 5/4/2022 11:52:07 AM

SDG: 1061112901

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

Page 33 of 110

Client: WSP US	Job ID: 890-1743- Job ID: 890-1743-	1
Project/Site: RI		
Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	-
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	-
-	······································	_
Glossary		-
Abbreviation	These commonly used abbreviations may or may not be present in this report.	_
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points Toxicity Equivalent Factor (Dioxin)	
TEF TEQ	Toxicity Equivalent Quotient (Dioxin)	

Page 34 of 110

4

5

Job ID: 890-1743-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-1743-1

Receipt

The samples were received on 12/20/2021 4:59 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.6°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-15326 and analytical batch 880-15375 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

RL

MDL Unit

D

Prepared

Dil Fac

Job ID: 890-1743-1 SDG: 1061112901

Client Sample ID: FS01

Date Collected: 12/16/21 11:45 Date Received: 12/20/21 16:59

Sample Depth: 0.5

Analyte

Client: WSP USA Inc.

Project/Site: RDX 17-26

Lab Sample ID: 890-1743-1

Analyzed

Matrix: Solid

5

Analyte	Result	Quanner			Unit		riepareu	Analyzeu	Dirrac
Benzene	<0.00201	U	0.00201		mg/Kg		12/22/21 10:02	12/22/21 19:24	1
Toluene	<0.00201	U	0.00201		mg/Kg		12/22/21 10:02	12/22/21 19:24	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/22/21 10:02	12/22/21 19:24	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/22/21 10:02	12/22/21 19:24	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/22/21 10:02	12/22/21 19:24	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/22/21 10:02	12/22/21 19:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				12/22/21 10:02	12/22/21 19:24	1
1,4-Difluorobenzene (Surr)	97		70 - 130				12/22/21 10:02	12/22/21 19:24	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			12/28/21 08:41	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	126		49.9		mg/Kg			12/28/21 17:22	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		12/22/21 09:41	12/22/21 12:17	1
Diesel Range Organics (Over C10-C28)	126		49.9		mg/Kg		12/22/21 09:41	12/22/21 12:17	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/22/21 09:41	12/22/21 12:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				12/22/21 09:41	12/22/21 12:17	1
o-Terphenyl	97		70 - 130				12/22/21 09:41	12/22/21 12:17	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14300		99.0		mg/Kg			12/22/21 12:20	20
Client Sample ID: FS02							Lab Sar	nple ID: 890-	1743-2
ate Collected: 12/16/21 11:48								Matri	x: Solid
ate Received: 12/20/21 16:59									
ample Depth: 0.5									
Method: 8021B - Volatile Organic	c Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	11	0.00202		ma/Ka		12/22/21 10:02	12/22/21 10:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		12/22/21 10:02	12/22/21 19:44	1
Toluene	<0.00202	U	0.00202		mg/Kg		12/22/21 10:02	12/22/21 19:44	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/22/21 10:02	12/22/21 19:44	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		12/22/21 10:02	12/22/21 19:44	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/22/21 10:02	12/22/21 19:44	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		12/22/21 10:02	12/22/21 19:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130				12/22/21 10:02	12/22/21 19:44	1

Eurofins Xenco, Carlsbad

Client Sample Results

Job ID: 890-1743-1 SDG: 1061112901

Lab Sample ID: 890-1743-2

Matrix: Solid

5

Date Collected: 12/16/21 11:48 Date Received: 12/20/21 16:59

Client Sample ID: FS02

Samp	le Depth:	0.5

Client: WSP USA Inc.

Project/Site: RDX 17-26

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	90		70 - 130				12/22/21 10:02	12/22/21 19:44	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00404	U	0.00404		mg/Kg			12/28/21 08:41	
Method: 8015 NM - Diesel Range	Organics (DR	D) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			12/28/21 17:22	
Method: 8015B NM - Diesel Rang	e Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 13:19	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 13:19	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 13:19	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	101		70 - 130				12/22/21 09:41	12/22/21 13:19	
o-Terphenyl	101		70 - 130				12/22/21 09:41	12/22/21 13:19	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	24800		251		mg/Kg			12/22/21 12:30	50
Client Sample ID: FS03							Lab San	nple ID: 890-	1743-3
ate Collected: 12/16/21 11:50								Matri	x: Solic
ate Received: 12/20/21 16:59									
ample Depth: 0.5									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 21:34	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 21:34	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 21:34	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/22/21 10:02	12/22/21 21:34	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 21:34	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/22/21 10:02	12/22/21 21:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				12/22/21 10:02	12/22/21 21:34	1
1,4-Difluorobenzene (Surr)	95		70 - 130				12/22/21 10:02	12/22/21 21:34	1
Method: Total BTEX - Total B	FEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/28/21 08:41	1
- Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte									

Eurofins Xenco, Carlsbad

Released to Imaging: 5/4/2022 11:52:07 AM
Client Sample Results

Job ID: 890-1743-1
SDG: 1061112901

Matrix: Solid

Lab Sample ID: 890-1743-3

Client Sample ID: FS03

Date Collected: 12/16/21 11:50 Date Received: 12/20/21 16:59

Sample Depth: 0.5

Client: WSP USA Inc. Project/Site: RDX 17-26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 13:40	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 13:40	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 13:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				12/22/21 09:41	12/22/21 13:40	1
o-Terphenyl	97		70 _ 130				12/22/21 09:41	12/22/21 13:40	1

Method: 300.0 - Anions, ion Chron	latography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14500	99.6	mg/Kg			12/22/21 12:40	20

Client Sample ID: FS04

Date Collected: 12/16/21 11:54 Date Received: 12/20/21 16:59

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/22/21 10:02	12/22/21 21:54	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/22/21 10:02	12/22/21 21:54	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/22/21 10:02	12/22/21 21:54	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/22/21 10:02	12/22/21 21:54	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/22/21 10:02	12/22/21 21:54	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/22/21 10:02	12/22/21 21:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130				12/22/21 10:02	12/22/21 21:54	1
1,4-Difluorobenzene (Surr)	94		70 - 130				12/22/21 10:02	12/22/21 21:54	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/28/21 08:41	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg		,	12/28/21 17:22	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		12/22/21 09:41	12/22/21 16:45	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		12/22/21 09:41	12/22/21 16:45	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/22/21 09:41	12/22/21 16:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				12/22/21 09:41	12/22/21 16:45	1

Eurofins Xenco, Carlsbad

		Clien	t Sample R	lesults	;				
Client: WSP USA Inc.								Job ID: 890	-1743-1
Project/Site: RDX 17-26								SDG: 106	1112901
Client Sample ID: FS04							Lab San	nple ID: 890-	1743-4
Date Collected: 12/16/21 11:54									x: Solid
Date Received: 12/20/21 16:59									
Sample Depth: 0.5									
Method: 300.0 - Anions, Ion Chr Analyte		Soluble Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride		Quaimer	49.9	MDL	mg/Kg		Frepareu	12/22/21 12:50	10
_									4740 5
Client Sample ID: FS05							Lab San	nple ID: 890-	
Date Collected: 12/16/21 11:57								Matri	x: Solid
Date Received: 12/20/21 16:59									
Sample Depth: 0.5									
Method: 8021B - Volatile Organi	ic Compounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/22/21 10:02	12/22/21 22:15	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/22/21 10:02	12/22/21 22:15	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/22/21 10:02	12/22/21 22:15	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/22/21 10:02	12/22/21 22:15	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/22/21 10:02	12/22/21 22:15	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/22/21 10:02	12/22/21 22:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	<u>%Recovery</u> 80	Quaimer	70 - 130				12/22/21 10:02	12/22/21 22:15	1
1,4-Difluorobenzene (Surr)	83		70 - 130 70 - 130				12/22/21 10:02	12/22/21 22:15	1
	00		10-100				12/22/21 10:02	12/22/21 22:10	,
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/28/21 08:41	1
- Method: 2015 NM Dissel Bang	o Organico (DB								
Method: 8015 NM - Diesel Rang Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9		49.9		mg/Kg			12/28/21 17:22	1
— · · · ·					5 5				
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/22/21 09:41	12/22/21 17:05	1
(GRO)-C6-C10 Discol Banga Organias (Over	-10.0		40.0		malka		12/22/24 00:44	10/00/04 47.05	4
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		12/22/21 09:41	12/22/21 17:05	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/22/21 09:41	12/22/21 17:05	1
Surrogate	%Recovery	Qualifier	Limits				Proparad	Analyzod	Dil Eco
Surrogate 1-Chlorooctane	<u>%Recovery</u> 102	qualitier					Prepared 12/22/21 09:41	Analyzed 12/22/21 17:05	Dil Fac
	99		70 - 130 70 - 130				12/22/21 09:41	12/22/21 17:05	
o-Terphenyl	99		10 - 130				12122121 09.41	1212212111.00	1
Method: 300.0 - Anions, Ion Chi	romatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12300		100		mg/Kg	_		12/22/21 13:19	20

Eurofins Xenco, Carlsbad

.

Job ID: 890-1743-1 SDG: 1061112901

Client Sample ID: FS06

Date Collected: 12/16/21 12:00 Date Received: 12/20/21 16:59

Client: WSP USA Inc.

Project/Site: RDX 17-26

Matrix: Solid

Sample Depth: 0.5									
– Method: 8021B - Volatile Organio	c Compounds ((GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 22:35	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 22:35	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 22:35	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/22/21 10:02	12/22/21 22:35	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 22:35	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/22/21 10:02	12/22/21 22:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				12/22/21 10:02	12/22/21 22:35	1
1,4-Difluorobenzene (Surr)	93		70 - 130				12/22/21 10:02	12/22/21 22:35	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			12/28/21 08:41	1
- Method: 8015 NM - Diesel Range	organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			12/28/21 17:22	1
- Method: 8015B NM - Diesel Rang	ae Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 17:26	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 17:26	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 17:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130				12/22/21 09:41	12/22/21 17:26	1
o-Terphenyl	101		70 - 130				12/22/21 09:41	12/22/21 17:26	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6200		49.8		mg/Kg			12/22/21 13:29	10
Client Sample ID: FS07							Lab San	nple ID: 890-	1743-7
Date Collected: 12/16/21 12:03								Matri	x: Solid
Date Received: 12/20/21 16:59									
Sample Depth: 0.5									
- Method: 8021B - Volatile Organic	c Compounds ((GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 22:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 22:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 22:56	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/22/21 10:02	12/22/21 22:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 22:56	1
-									

Xylenes, Total <0.00399 U 0.00399 12/22/21 10:02 12/22/21 22:56 mg/Kg 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 104 70 - 130 12/22/21 10:02 12/22/21 22:56 1

Eurofins Xenco, Carlsbad

Client Sample Results

Job ID: 890-1743-1 SDG: 1061112901

Lab Sample ID: 890-1743-7

Matrix: Solid

5

Date Collected: 12/16/21 12:03 Date Received: 12/20/21 16:59

Client Sample ID: FS07

Sample Depth: 0.5

Client: WSP USA Inc.

Project/Site: RDX 17-26

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	80		70 - 130				12/22/21 10:02	12/22/21 22:56	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/28/21 08:41	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	76.6		50.0		mg/Kg			12/28/21 17:22	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 18:07	1
Diesel Range Organics (Over C10-C28)	76.6		50.0		mg/Kg		12/22/21 09:41	12/22/21 18:07	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 18:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	104		70 - 130				12/22/21 09:41	12/22/21 18:07	
o-Terphenyl	100		70 - 130				12/22/21 09:41	12/22/21 18:07	ŝ
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9420		49.7		mg/Kg			12/22/21 13:59	10
lient Sample ID: FS08							Lab San	nple ID: 890-	1743-8
ate Collected: 12/16/21 12:06								Matri	x: Solic
ate Received: 12/20/21 16:59									
ample Depth: 0.5									
Method: 8021B - Volatile Organic	Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200		0.00200		mg/Kg		12/22/21 10:02	12/22/21 23:16	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 23:16	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 23:16	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 23:16	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/22/21 10:02	12/22/21 23:16	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/22/21 10:02	12/22/21 23:16	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/22/21 10:02	12/22/21 23:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130				12/22/21 10:02	12/22/21 23:16	1
1,4-Difluorobenzene (Surr)	93		70 - 130				12/22/21 10:02	12/22/21 23:16	1
- Method: Total BTEX - Total B	FEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			12/28/21 08:41	1
– Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			12/28/21 17:22	1
-									

Eurofins Xenco, Carlsbad

Client Sample Results

		Clien	t Sample R	esults	•				
lient: WSP USA Inc. roject/Site: RDX 17-26								Job ID: 890 SDG: 106	
lient Sample ID: FS08 ate Collected: 12/16/21 12:06							Lab Sar	nple ID: 890- Matri	1743-8 x: Solid
ate Received: 12/20/21 16:59 ample Depth: 0.5									
Method: 8015B NM - Diesel Ran				MD	11	_	Descende	Amelianad	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0	Qualifier U	RL		Unit mg/Kg	<u>D</u>	Prepared 12/22/21 09:41	Analyzed 12/22/21 18:28	Dil Fac 1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 18:28	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 18:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				12/22/21 09:41	12/22/21 18:28	1
p-Terphenyl	103		70 - 130				12/22/21 09:41	12/22/21 18:28	1
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
weinou. 300.0 - Amons, ion chi	• • •					-	Durana		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: WSP USA Inc. Project/Site: RDX 17-26

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-9625-A-1-A MS	Matrix Spike	142 S1+	114		
880-9625-A-1-B MSD	Matrix Spike Duplicate	113	88		
890-1743-1	FS01	121	97		- 5
890-1743-2	FS02	132 S1+	90		
390-1743-3	FS03	123	95		
390-1743-4	FS04	129	94		
390-1743-5	FS05	80	83		
390-1743-6	FS06	122	93		
390-1743-7	FS07	104	80		
390-1743-8	FS08	118	93		
_CS 880-15326/1-A	Lab Control Sample	110	96		
_CSD 880-15326/2-A	Lab Control Sample Dup	122	100		
MB 880-15326/5-A	Method Blank	120	96		
Surrogate Legend					
BFB = 4-Bromofluorobe					
DFBZ = 1,4-Difluoroben	zene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix:	Solid
---------	-------

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
390-1743-1	FS01	99	97	
890-1743-1 MS	FS01	92	87	
890-1743-1 MSD	FS01	103	101	
890-1743-2	FS02	101	101	
890-1743-3	FS03	99	97	
890-1743-4	FS04	103	101	
890-1743-5	FS05	102	99	
890-1743-6	FS06	102	101	
890-1743-7	FS07	104	100	
890-1743-8	FS08	105	103	

Surrogate Legend 1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

-				Percent Surrogate Recovery (Acceptance Limits)
		1CO2	OTPH2	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCS 880-15317/2-A	Lab Control Sample	110	115	
LCSD 880-15317/3-A	Lab Control Sample Dup	119	114	
MB 880-15317/1-A	Method Blank	115	120	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid	6/5-A										mple ID: Me Prep Typ		
Analysis Batch: 15375											Prep Ba		
Analysis Baton. Toore	ME	MB											
Analyte	Result	Qualifier	RL		MDL	Unit		D	Pre	pared	Analyzed		Dil Fa
Benzene	<0.00200		0.00200			mg/Kg				/21 10:02	12/22/21 16:	1	
Toluene	<0.00200		0.00200			mg/Kg		1	12/22/	21 10:02	12/22/21 16:"	1	
Ethylbenzene	<0.00200	U	0.00200			mg/Kg		1	12/22/	21 10:02	12/22/21 16:	1	
m-Xylene & p-Xylene	<0.00400	U	0.00400			mg/Kg		1	12/22/	21 10:02	12/22/21 16:	1	
o-Xylene	<0.00200	U	0.00200			mg/Kg		1	12/22/	21 10:02	12/22/21 16:	1	
Xylenes, Total	<0.00400	U	0.00400			mg/Kg		1	12/22/	21 10:02	12/22/21 16:	1	
	ME	MB											
Surrogate	%Recovery	Qualifier	Limits						Pre	epared	Analyzed		Dil Fa
4-Bromofluorobenzene (Surr)	120)	70 - 130					1	12/22/	/21 10:02	12/22/21 16:	11	
1,4-Difluorobenzene (Surr)	96	i	70 - 130					1	12/22/	/21 10:02	12/22/21 16:	11	
Lab Sample ID: LCS 880-1532	26/1-A							Clie	ent S	Sample	ID: Lab Cont	rol Sa	ampl
Matrix: Solid											Prep Typ	e: To	tal/N
Analysis Batch: 15375											Prep Ba	tch:	1532
			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Quali	fier U	Init		D	%Rec	Limits		
Benzene			0.100	0.09590		m	ng/Kg			96	70 ₋ 130		
Toluene			0.100	0.09926		m	ng/Kg			99	70 - 130		
Ethylbenzene			0.100	0.1004		m	ng/Kg			100	70 - 130		
m-Xylene & p-Xylene			0.200	0.1935		m	ng/Kg			97	70 - 130		
o-Xylene			0.100	0.09323		r	ng/Kg			93	70 - 130		
	100.10	e											
	LCS LC												
	%Recovery Qu	alifier	Limits										
4-Bromofluorobenzene (Surr)	%Recovery Qu 110		70 - 130										
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-15	%Recovery Qu 110 96						Cli	ent S	amp	ole ID: La	ab Control S Prep Typ		
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-15 Matrix: Solid	%Recovery Qu 110 96		70 - 130				Cli	ent S	amp	ole ID: La		e: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-15 Matrix: Solid	%Recovery Qu 110 96		70 - 130	LCSD	LCSD)	Cli	ent S	amp	ble ID: La	Ргер Тур	e: To	tal/N. 1532
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-153 Matrix: Solid Analysis Batch: 15375	%Recovery Qu 110 96		70 - 130 70 - 130	LCSD Result			Cli	ent S	Samp D	ble ID: La %Rec	Prep Typ Prep Ba %Rec.	e: To	tal/N 1532 RP
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-153 Matrix: Solid Analysis Batch: 15375 Analyte	%Recovery Qu 110 96		70 - 130 70 - 130 Spike			fier U		ent S	-		Prep Typ Prep Ba %Rec.	e: To itch:	tal/N/ 1532 RP Lim
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-153 Matrix: Solid Analysis Batch: 15375 Analyte Benzene	%Recovery Qu 110 96		70 - 130 70 - 130 Spike Added	Result		fier U	Init	ent S	-	%Rec	Prep Typ Prep Ba %Rec. Limits	e: To itch: RPD	tal/N 1532 RP Lim
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-153 Matrix: Solid Analysis Batch: 15375 Analyte Benzene Toluene	%Recovery Qu 110 96		70 - 130 70 - 130 Spike Added 0.100	Result 0.1034		fier U m	Init ng/Kg	ent S	-	%Rec	Prep Typ Prep Ba %Rec. Limits 70 - 130	e: To atch: RPD 8	tal/N 1532 RP Lim 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-153 Matrix: Solid Analysis Batch: 15375 Analyte Benzene Toluene Ethylbenzene	%Recovery Qu 110 96		70 - 130 70 - 130 Spike Added 0.100 0.100	Result 0.1034 0.1048		fier U m m m	Init ng/Kg ng/Kg	ent S	-	%Rec 103 105	Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130	e: To atch: RPD 8 5	tal/N 1532 RP Lim 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-153 Matrix: Solid Analysis Batch: 15375 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	%Recovery Qu 110 96		70 - 130 70 - 130 Spike Added 0.100 0.100 0.100	Result 0.1034 0.1048 0.1064		fier U m m m m	Init ng/Kg ng/Kg ng/Kg	ent S	-	%Rec 103 105 106	Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	e: Tor atch: RPD 8 5 6	tal/N 1532 RP Lim 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-153 Matrix: Solid Analysis Batch: 15375 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	- <u>%Recovery</u> Qui 110 96 326/2-A	alifier	70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200 0.100	Result 0.1034 0.1048 0.1064 0.2138		fier U m m m m	Init ng/Kg ng/Kg ng/Kg	ent S	-	<pre>%Rec 103 105 106 107</pre>	Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	e: Tor atch: 8 5 6 10	tal/N/ 1532 RP Lim 3 3 3 3
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-15: Matrix: Solid Analysis Batch: 15375 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	<u>%Recovery</u> Qu. 110 96 326/2-A 	alifier	70 - 130 70 - 130 Spike Added 0.100 0.100 0.200 0.100 0.200 0.100	Result 0.1034 0.1048 0.1064 0.2138		fier U m m m m	Init ng/Kg ng/Kg ng/Kg	ent S	-	<pre>%Rec 103 105 106 107</pre>	Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	e: Tor atch: 8 5 6 10	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-153 Matrix: Solid Analysis Batch: 15375 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	- <u>%Recovery</u> Qui 110 96 326/2-A	alifier	70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200 0.100	Result 0.1034 0.1048 0.1064 0.2138		fier U m m m m	Init ng/Kg ng/Kg ng/Kg	ent S	-	<pre>%Rec 103 105 106 107</pre>	Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	e: Tor atch: 8 5 6 10	tal/N/ 1532 RPI Lim 3 3 3 3

Matrix: Solid

Matrix: Solid Analysis Batch: 15375										Type: Total/NA Batch: 15326
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F1 F2	0.0998	0.06972		mg/Kg		70	70 - 130	
Toluene	<0.00200	U F1	0.0998	0.07261		mg/Kg		72	70 - 130	

Job ID: 890-1743-1 SDG: 1061112901 Lab Sample ID: 880-9625-A-1-A MS

QC Sample Results

MS MS

0.06766 F1

0.1374 F1

0.06888 F1

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0998

0.200

0.0998

Limits 70 - 130

70 - 130

70 - 130

Client: WSP USA Inc. Project/Site: RDX 17-26

Analysis Batch: 15375

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

<0.00200 UF1

<0.00401 UF1

<0.00200 UF1

MS MS

142 S1+

%Recovery Qualifier

114

88

Result Qualifier

D

	303. 1001112901	
Client	Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 15326	
	%Rec.	5
%Rec	Limits	
68	70 - 130	
69	70 - 130	
69	70 - 130	7
		8
		9
mple ID	: Matrix Spike Duplicate Prep Type: Total/NA	
	Prep Batch: 15326	

Client Sample ID: Matrix Spike D Prep Type:

Matrix: Solid Analysis Batch: 15375

1,4-Difluorobenzene (Surr)

Lab Sample ID: 880-9625-A-1-B MSD

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 15375									Prep	Batch:	15326
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	< 0.00200	U F1 F2	0.0994	0.02127	F1 F2	mg/Kg		21	70 - 130	106	35
Toluene	<0.00200	U F1	0.0994	0.06729	F1	mg/Kg		67	70 - 130	8	35
Ethylbenzene	<0.00200	U F1	0.0994	0.06544	F1	mg/Kg		66	70 - 130	3	35
m-Xylene & p-Xylene	<0.00401	U F1	0.199	0.1259	F1	mg/Kg		63	70 - 130	9	35
o-Xylene	<0.00200	U F1	0.0994	0.05627	F1	mg/Kg		56	70 - 130	20	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-15317/1- Matrix: Solid Analysis Batch: 15328	Α						Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Total/NA
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 11:15	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 11:15	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/22/21 09:41	12/22/21 11:15	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130				12/22/21 09:41	12/22/21 11:15	1
o-Terphenyl	120		70 - 130				12/22/21 09:41	12/22/21 11:15	1

Lab Sample ID: LCS 880-15317/2-A Matrix: Solid Analysis Batch: 15328

Analysis Batch: 15328							Prep	Batch: 15317
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	791.8		mg/Kg		79	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1008		mg/Kg		101	70 - 130	
C10-C28)								

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

QC Sample Results

Client: WSP USA Inc. Project/Site: RDX 17-26

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-153	17/2-A						Client	t Sample	e ID: Lab Co		
Matrix: Solid									Prep 1	ype: To	tal/NA
Analysis Batch: 15328									Prep	Batch:	15317
	LCS	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane	110		70 - 130								
o-Terphenyl	115		70 - 130								
Lab Sample ID: LCSD 880-15	317/3-A					Clie	nt San	nple ID:	Lab Contro	l Sampl	le Dup
Matrix: Solid										ype: To	
Analysis Batch: 15328										Batch:	
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	869.0		mg/Kg		87	70 - 130	9	20
(GRO)-C6-C10						5 5					
Diesel Range Organics (Over			1000	1036		mg/Kg		104	70 - 130	3	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane		Quanner	70 - 130								
o-Terphenyl	113		70 - 130								
-	114		70 - 700								
Lab Sample ID: 890-1743-1 N	IS								Client Sa	mple ID:	: FS01
Matrix: Solid										ype: To	
Analysis Batch: 15328										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9		996	1031		mg/Kg		101	70 - 130		
(GRO)-C6-C10	1010	•							10 100		
Diesel Range Organics (Over	126		996	1014		mg/Kg		89	70 - 130		
C10-C28)											
	МС	MC									
0	MS		1								
Surrogate	%Recovery	Qualifier									
1-Chlorooctane	92										
o-Terphenyl	87		70 - 130								
- Lab Sample ID: 890-1743-1 N									Client Se		
•	130								Client Sa		
Matrix: Solid										ype: To	
Analysis Batch: 15328	0	0	0	MOD	MOD					Batch:	
Anglista		Sample	Spike		MSD Ovelifier	11			%Rec.	000	RPD
Analyte	- Result <49.9	Qualifier	Added	1002	Qualifier		<u>D</u>	%Rec	Limits	RPD 3	Limit
Gasoline Range Organics (GRO)-C6-C10	~49.9	0	990	1002		mg/Kg		98	70 - 130	3	20
Diesel Range Organics (Over	126		995	1192		mg/Kg		107	70 - 130	16	20
C10-C28)	.20		000	1102						10	20
·											
	MSD										
Surrogate 1-Chlorooctane	MSD <u>%Recovery</u> 103		Limits								

Eurofins Xenco, Carlsbad

o-Terphenyl

101

70 - 130

Client: WSP USA Inc.

Project/Site: RDX 17-26

QC Sample Results

Job ID: 890-1743-1 SDG: 1061112901

Method: 300.0 - Anions, Ion Chromatography

_ Lab Sample ID: MB 880-15278/1-A										(Client S	ample ID:	Method	Blank
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 15401														
		MB MB												
Analyte	R	esult Qualifier		RL		MDL	Unit		D	Pre	epared	Analy	zed	Dil Fac
_Chloride	<	5.00 U		5.00			mg/Kg	9				12/22/21	10:00	1
	A								Clie	nt	Sample	D: Lab C	ontrol S	ample
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 15401														
			Spike		LCS	LCS						%Rec.		
Analyte			Added	R	esult	Qua	ifier	Unit	[D _	%Rec	Limits		
Chloride			250	2	253.5			mg/Kg			101	90 - 110		
	B-A							Cli	ient Sa	amj	ple ID:	Lab Contro	ol Sampl	le Dup
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 15401														
			Spike	L	CSD	LCS	D					%Rec.		RPD
Analyte			Added	R	esult	Qual	ifier	Unit	I	D	%Rec	Limits	RPD	Limit
Chloride			250	2	247.8			mg/Kg			99	90 - 110	2	20
Lab Sample ID: 890-1743-4 MS												Client Sa	mple ID:	: FS04
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 15401														
	Sample	Sample	Spike		MS	MS						%Rec.		
Analyte	Result	Qualifier	Added	R	esult	Qual	ifier	Unit	I	D	%Rec	Limits		
Chloride	6560		2500	9	9222			mg/Kg			107	90 - 110		
Lab Sample ID: 890-1743-4 MSD												Client Sa	mple ID:	: FS04
Matrix: Solid													Type: S	
Analysis Batch: 15401														
-	Sample	Sample	Spike		MSD	MSD	1					%Rec.		RPD
Analyte	Result	Qualifier	Added	R	esult	Qual	ifier	Unit	I	D	%Rec	Limits	RPD	Limit
	6560													

Eurofins Xenco, Carlsbad

QC Association Summary

Client: WSP USA Inc. Project/Site: RDX 17-26

5 6

Job ID: 890-1743-1 SDG: 1061112901

GC VOA

Prep Batch: 15326

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1743-1	FS01	Total/NA	Solid	5035	
890-1743-2	FS02	Total/NA	Solid	5035	
890-1743-3	FS03	Total/NA	Solid	5035	
890-1743-4	FS04	Total/NA	Solid	5035	
890-1743-5	FS05	Total/NA	Solid	5035	
890-1743-6	FS06	Total/NA	Solid	5035	
890-1743-7	FS07	Total/NA	Solid	5035	
890-1743-8	FS08	Total/NA	Solid	5035	
MB 880-15326/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-15326/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-15326/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-9625-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-9625-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 15375

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1743-1	FS01	Total/NA	Solid	8021B	15326
890-1743-2	FS02	Total/NA	Solid	8021B	15326
890-1743-3	FS03	Total/NA	Solid	8021B	15326
890-1743-4	FS04	Total/NA	Solid	8021B	15326
890-1743-5	FS05	Total/NA	Solid	8021B	15326
890-1743-6	FS06	Total/NA	Solid	8021B	15326
890-1743-7	FS07	Total/NA	Solid	8021B	15326
890-1743-8	FS08	Total/NA	Solid	8021B	15326
MB 880-15326/5-A	Method Blank	Total/NA	Solid	8021B	15326
LCS 880-15326/1-A	Lab Control Sample	Total/NA	Solid	8021B	15326
LCSD 880-15326/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	15326
880-9625-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	15326
880-9625-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	15326

Analysis Batch: 15505

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1743-1	FS01	Total/NA	Solid	Total BTEX	
890-1743-2	FS02	Total/NA	Solid	Total BTEX	
890-1743-3	FS03	Total/NA	Solid	Total BTEX	
890-1743-4	FS04	Total/NA	Solid	Total BTEX	
890-1743-5	FS05	Total/NA	Solid	Total BTEX	
890-1743-6	FS06	Total/NA	Solid	Total BTEX	
890-1743-7	FS07	Total/NA	Solid	Total BTEX	
890-1743-8	FS08	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 15317

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1743-1	FS01	Total/NA	Solid	8015NM Prep	
890-1743-2	FS02	Total/NA	Solid	8015NM Prep	
890-1743-3	FS03	Total/NA	Solid	8015NM Prep	
890-1743-4	FS04	Total/NA	Solid	8015NM Prep	
890-1743-5	FS05	Total/NA	Solid	8015NM Prep	
890-1743-6	FS06	Total/NA	Solid	8015NM Prep	

Eurofins Xenco, Carlsbad

QC Association Summary

Client: WSP USA Inc. Project/Site: RDX 17-26

GC Semi VOA (Continued)

Prep Batch: 15317 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1743-7	FS07	Total/NA	Solid	8015NM Prep	
890-1743-8	FS08	Total/NA	Solid	8015NM Prep	
MB 880-15317/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-15317/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-15317/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1743-1 MS	FS01	Total/NA	Solid	8015NM Prep	
890-1743-1 MSD	FS01	Total/NA	Solid	8015NM Prep	

Analysis Batch: 15328

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	9
890-1743-1	FS01	Total/NA	Solid	8015B NM	15317	
890-1743-2	FS02	Total/NA	Solid	8015B NM	15317	
890-1743-3	FS03	Total/NA	Solid	8015B NM	15317	
890-1743-4	FS04	Total/NA	Solid	8015B NM	15317	
890-1743-5	FS05	Total/NA	Solid	8015B NM	15317	
890-1743-6	FS06	Total/NA	Solid	8015B NM	15317	
890-1743-7	FS07	Total/NA	Solid	8015B NM	15317	
890-1743-8	FS08	Total/NA	Solid	8015B NM	15317	
MB 880-15317/1-A	Method Blank	Total/NA	Solid	8015B NM	15317	
LCS 880-15317/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	15317	
LCSD 880-15317/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	15317	
890-1743-1 MS	FS01	Total/NA	Solid	8015B NM	15317	
890-1743-1 MSD	FS01	Total/NA	Solid	8015B NM	15317	

Analysis Batch: 15674

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1743-1	FS01	Total/NA	Solid	8015 NM	
890-1743-2	FS02	Total/NA	Solid	8015 NM	
890-1743-3	FS03	Total/NA	Solid	8015 NM	
890-1743-4	FS04	Total/NA	Solid	8015 NM	
890-1743-5	FS05	Total/NA	Solid	8015 NM	
890-1743-6	FS06	Total/NA	Solid	8015 NM	
890-1743-7	FS07	Total/NA	Solid	8015 NM	
890-1743-8	FS08	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 15278

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1743-1	FS01	Soluble	Solid	DI Leach	
890-1743-2	FS02	Soluble	Solid	DI Leach	
890-1743-3	FS03	Soluble	Solid	DI Leach	
890-1743-4	FS04	Soluble	Solid	DI Leach	
890-1743-5	FS05	Soluble	Solid	DI Leach	
890-1743-6	FS06	Soluble	Solid	DI Leach	
890-1743-7	FS07	Soluble	Solid	DI Leach	
890-1743-8	FS08	Soluble	Solid	DI Leach	
MB 880-15278/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-15278/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-15278/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1743-4 MS	FS04	Soluble	Solid	DI Leach	

Eurofins Xenco, Carlsbad

Page 48 of 110

Job ID: 890-1743-1 SDG: 1061112901 890-1743-4 MS

890-1743-4 MSD

FS04

FS04

Page 49 of 110

15278

15278

Job ID: 890-1743-1 SDG: 1061112901

HPLC/IC (Continued)

Least Details (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-1743-4 MSD	FS04	Soluble	Solid	DI Leach	
nalysis Batch: 15401	l				
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
90-1743-1	FS01	Soluble	Solid	300.0	15278
90-1743-2	FS02	Soluble	Solid	300.0	15278
90-1743-3	FS03	Soluble	Solid	300.0	15278
90-1743-4	FS04	Soluble	Solid	300.0	15278
90-1743-5	FS05	Soluble	Solid	300.0	15278
90-1743-6	FS06	Soluble	Solid	300.0	15278
90-1743-7	FS07	Soluble	Solid	300.0	15278
890-1743-8	FS08	Soluble	Solid	300.0	15278
/IB 880-15278/1-A	Method Blank	Soluble	Solid	300.0	15278
CS 880-15278/2-A	Lab Control Sample	Soluble	Solid	300.0	15278
CSD 880-15278/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	15278

Soluble

Soluble

Eurofins Xenco, Carlsbad

300.0

300.0

Solid

Solid

Released to Imaging: 5/4/2022 11:52:07 AM

Job ID: 890-1743-1 SDG: 1061112901

Lab Sample ID: 890-1743-1 Matrix: Solid

Date Collected: 12/16/21 11:45 Date Received: 12/20/21 16:59

Client Sample ID: FS01

Client: WSP USA Inc.

Project/Site: RDX 17-26

Batch	Batch		Dil	Initial	Final Amount	Batch	Prepared			
Prep Type	Туре	Method	Run Factor	Amount		Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			4.98 g	5 mL	15326	12/22/21 10:02	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15375	12/22/21 19:24	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			15505	12/28/21 08:41	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15674	12/28/21 17:22	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	15317	12/22/21 09:41	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15328	12/22/21 12:17	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	15278	12/21/21 15:12	CA	XEN MID
Soluble	Analysis	300.0		20			15401	12/22/21 12:20	SC	XEN MID

Client Sample ID: FS02

Date Collected: 12/16/21 11:48

Date Received: 12/20/21 16:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	15326	12/22/21 10:02	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15375	12/22/21 19:44	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			15505	12/28/21 08:41	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15674	12/28/21 17:22	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	15317	12/22/21 09:41	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15328	12/22/21 13:19	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	15278	12/21/21 15:12	CA	XEN MID
Soluble	Analysis	300.0		50			15401	12/22/21 12:30	SC	XEN MID

Client Sample ID: FS03

Date Collected: 12/16/21 11:50

Date Received: 12/20/21 16:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	15326	12/22/21 10:02	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15375	12/22/21 21:34	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			15505	12/28/21 08:41	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15674	12/28/21 17:22	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	15317	12/22/21 09:41	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15328	12/22/21 13:40	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	15278	12/21/21 15:12	CA	XEN MID
Soluble	Analysis	300.0		20			15401	12/22/21 12:40	SC	XEN MID

Client Sample ID: FS04 Date Collected: 12/16/21 11:54 Date Received: 12/20/21 16:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	15326	12/22/21 10:02	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15375	12/22/21 21:54	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			15505	12/28/21 08:41	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 50 of 110

9

5 6

Lab Sample ID: 890-1743-2 Matrix: Solid

Lab Sample ID: 890-1743-3

Lab Sample ID: 890-1743-4

1	3

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: WSP USA Inc. Project/Site: RDX 17-26

Client Sample ID: FS04

Date Collected: 12/16/21 11:54 Date Received: 12/20/21 16:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			15674	12/28/21 17:22	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	15317	12/22/21 09:41	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15328	12/22/21 16:45	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	15278	12/21/21 15:12	CA	XEN MID
Soluble	Analysis	300.0		10			15401	12/22/21 12:50	SC	XEN MID

Client Sample ID: FS05 Date Collected: 12/16/21 11:57

Date Received: 12/20/21 16:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	15326	12/22/21 10:02	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15375	12/22/21 22:15	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			15505	12/28/21 08:41	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15674	12/28/21 17:22	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	15317	12/22/21 09:41	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15328	12/22/21 17:05	AJ	XEN MID
Soluble	Leach	DI Leach			4.98 g	50 mL	15278	12/21/21 15:12	CA	XEN MID
Soluble	Analysis	300.0		20			15401	12/22/21 13:19	SC	XEN MID

Client Sample ID: FS06

Date Collected: 12/16/21 12:00 Date Received: 12/20/21 16:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	15326	12/22/21 10:02	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15375	12/22/21 22:35	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			15505	12/28/21 08:41	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15674	12/28/21 17:22	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	15317	12/22/21 09:41	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15328	12/22/21 17:26	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	15278	12/21/21 15:12	CA	XEN MID
Soluble	Analysis	300.0		10			15401	12/22/21 13:29	SC	XEN MID

Client Sample ID: FS07

Date Collected: 12/16/21 12:03 Date Received: 12/20/21 16:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	15326	12/22/21 10:02	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15375	12/22/21 22:56	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			15505	12/28/21 08:41	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15674	12/28/21 17:22	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	15317	12/22/21 09:41	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15328	12/22/21 18:07	AJ	XEN MID

Eurofins Xenco, Carlsbad

Job ID: 890-1743-1 SDG: 1061112901

Lab Sample ID: 890-1743-4 Matrix: Solid

Lab Sample ID: 890-1743-5

5

Lab Sample ID: 890-1743-6

Matrix: Solid

9 Matrix: Solid

Lab Sample ID: 890-1743-7 Matrix: Solid

Lab Chronicle

Client: WSP USA Inc. Project/Site: RDX 17-26

Client Sample ID: FS07

Date Collected: 12/16/21 12:03 Date Received: 12/20/21 16:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	15278	12/21/21 15:12	CA	XEN MID
Soluble	Analysis	300.0		10			15401	12/22/21 13:59	SC	XEN MID

Client Sample ID: FS08 Date Collected: 12/16/21 12:06 Date Received: 12/20/21 16:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	15326	12/22/21 10:02	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15375	12/22/21 23:16	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			15505	12/28/21 08:41	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15674	12/28/21 17:22	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	15317	12/22/21 09:41	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15328	12/22/21 18:28	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	15278	12/21/21 15:12	CA	XEN MID
Soluble	Analysis	300.0		10			15401	12/22/21 14:09	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

SDG: 1061112901 Lab Sample ID: 890-1743-7

Job ID: 890-1743-1

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-1743-8

5
8
9
13

Eurofins Xenco, Carlsbad

Client: WSP USA Inc. Project/Site: RDX 17-26 Job ID: 890-1743-1

SDG: 1061112901

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority kas		rogram	Identification Number	Expiration Date
		ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report by	ut the laboratory is not certif	ied by the governing authority. This list ma	av include analytes for v
the agency does not of	fer certification.			
the agency does not of Analysis Method		Matrix	Analyte	
the agency does not of	fer certification.			

Eurofins Xenco, Carlsbad

10

Method Summary

Client: WSP USA Inc. Project/Site: RDX 17-26 Job ID: 890-1743-1 SDG: 1061112901

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: WSP USA Inc. Project/Site: RDX 17-26

Job ID: 890-1743-1 SDG: 1061112901

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
90-1743-1	FS01	Solid	12/16/21 11:45	12/20/21 16:59	0.5
90-1743-2	FS02	Solid	12/16/21 11:48	12/20/21 16:59	0.5
90-1743-3	FS03	Solid	12/16/21 11:50	12/20/21 16:59	0.5
90-1743-4	FS04	Solid	12/16/21 11:54	12/20/21 16:59	0.5
90-1743-5	FS05	Solid	12/16/21 11:57	12/20/21 16:59	0.5
90-1743-6	FS06	Solid	12/16/21 12:00	12/20/21 16:59	0.5
90-1743-7	FS07	Solid	12/16/21 12:03	12/20/21 16:59	0.5
90-1743-8	FS08	Solid	12/16/21 12:06	12/20/21 16:59	0.5

Page of		16544446 1.
Work Order No:	Work Order Collection Work Order Collection Level III Level III P Level III Level III P Level III ADaP ADaP ADaP II K Se Ag SiO ₂ Na Sr Hg: 1631/245.1/	
stody s, TX (214) 902-0300 anio. TX (210) 509-3334 ck, TX (806) 794-1296 dd, NM (575) 988-3199	ANALYSIS REQUES ANALYSIS REQUES ANALYSIS REQUES B90-1743 Chain o B90-1743 Chain o Cu Fe Pb Mg h b Mn Mo Ni Se tassigns tandard terms a te to circumstances beyon	
Chain of Custody Houston, TX (281) 240-4200, Dallss, TX (214) 902-0300 Midland, TX (432) 204-5440, San Antonio, TX (210) 509-3334 EL Peso, TX (915) 585-3441, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	0. (if different) JIM Raley Denny Name: WPX Denny Name: WPX Denny Name: WPX State ZIP: Galul bod State ZIP: Galul bod Inca · byeld Even Mush Pers. Inca · byeld Even Parameter State ZIP: Inca · byeld Even Rush Even Rush <t< td=""><td></td></t<>	
	LUNAR Bill to: (if different) SJ (RC Company Name: SJ (RC Address: Turn and the second	
Fins Environment Testing Xenco	Project Manager: Tokeph Hernundet Company Name: ULSP USA Criv, State ZIP: Mud land, TX 79730 Project Number: (DSI), 2930 N 4 Project Number: (DSI), 2930 N 6 Project Location: (DSI), 2932 No Sampler Shered Intact: (CS) No No Sampler Shered Intact: (CS) No No Coler Custody Seals: Yes: No No Sample Identification Matrix Date Sample Identification Matrix Date Sample Identification Natrix Date	
🐝 eurofins	Project Manager: Tickenh Company Name: UUF Address: 33.800 Address: 33.800 City, State ZIP: Mud Ru Project Number: (281) Project Number: (281) Project Location: 281) Project Location: 281) Project Location: Project Location: Sampler's Name: NOK1 Project Location: 12.007 Sample Received Intact: Ves Sample Custody Seals: Ves Sample Custody Seals: Ves Sample Custody Seals: Ves Ford Containers: Ves Ford Conto cord Ves Ves F	

12 13 14

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1743 List Number: 1 Creator: Clifton, Cloe

Question Answer Comment The cooler's custody seal, if present, is intact. True Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-1743-1 SDG Number: 1061112901

List Source: Eurofins Xenco, Carlsbad

Job Number: 890-1743-1 SDG Number: 1061112901

List Source: Eurofins Xenco, Midland

List Creation: 12/21/21 02:08 PM

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1743 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Received by OCD: 3/31/2022 11:00:09 AM

1 2 3

ANALYTICAL REPORT

America

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1844-1

Laboratory Sample Delivery Group: Rural Eddy County Client Project/Site: RDX 17-26

Environment Testing

For:

eurofins 🔅

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Joseph Hernandez

RAMER

Authorized for release by: 1/24/2022 6:48:10 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access Have a Question?

www.eurofinsus.com/Env Released to Imaging: 5/4/2022 11:52:07 AM

Ask-

The

Visit us at:

Expert

Laboratory Job ID: 890-1844-1 SDG: Rural Eddy County

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

Page 60 of 110

Page 61 of 110

	Definitions/Glossary	
Client: WSP U Project/Site: R	USA Inc. Job ID: 890-1844-	
Qualifiers		_ 3
GC VOA		
Qualifier	Qualifier Description	_ 4
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	5
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA	Α	
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	- 7
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		8
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	9
Glossary		10
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	14
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	19
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Presumptive

Quality Control

Negative / Absent Positive / Present

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

MCL

MDA

MDC

MDL

MPN

MQL

NC

ND NEG

POS PQL

PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

ML

Job ID: 890-1844-1

SDG: Rural Eddy County

Page 62 of 110

4

5

Job ID: 890-1844-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1844-1

Receipt

The sample was received on 1/18/2022 1:55 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-17278 and analytical batch 880-17438 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (890-1838-A-1-E). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-1844-1 SDG: Rural Eddy County

Client Sample ID: FS02A

Date Collected: 01/13/22 09:02 Date Received: 01/18/22 13:55

Sample Depth: 0.75

Client: WSP USA Inc.

Project/Site: RDX 17-26

Lab Sample ID: 890-1844-1

Matrix: Solid

Method: 8021B - Volatile Organic	: Compounds ((GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg	_	01/19/22 13:45	01/21/22 02:19	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 02:19	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 02:19	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/19/22 13:45	01/21/22 02:19	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 02:19	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/19/22 13:45	01/21/22 02:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				01/19/22 13:45	01/21/22 02:19	1
1,4-Difluorobenzene (Surr)	94		70 - 130				01/19/22 13:45	01/21/22 02:19	1
— Г									
Method: Total BTEX - Total BTEX								-	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/24/22 17:08	1
Mathed 0045 MM Direct Dr	Ormanias (DD								
Method: 8015 NM - Diesel Range			D 1	MO	Unit	_	Draman	A making -1	
	_ Result <50.0	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	250.0				me/1/			01/04/00 40 00	
<u> </u>	~30.0	0	50.0		mg/Kg			01/24/22 16:33	1
Method: 8015B NM - Diesel Rang			50.0		mg/Kg			01/24/22 16:33	1
 Method: 8015B NM - Diesel Rang Analyte	je Organics (D		50.0 RL	MDL		 D	Prepared	01/24/22 16:33 Analyzed	1 Dil Fac
Analyte Gasoline Range Organics	je Organics (D	RO) (GC) Qualifier		MDL		D	Prepared 01/19/22 13:54		1
Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D) Result <50.0	RO) (GC) Qualifier U	RL	MDL	Unit mg/Kg	D	01/19/22 13:54	Analyzed 01/21/22 20:34	1 1
Analyte Gasoline Range Organics	ge Organics (D Result	RO) (GC) Qualifier U	RL	MDL	Unit	D		Analyzed	1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D) Result <50.0	RO) (GC) Qualifier U	RL	MDL	Unit mg/Kg	D	01/19/22 13:54	Analyzed 01/21/22 20:34	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D) <u>Result</u> <50.0 <50.0	RO) (GC) Qualifier U U	RL 50.0	MDL	Unit mg/Kg mg/Kg	D	01/19/22 13:54 01/19/22 13:54	Analyzed 01/21/22 20:34 01/21/22 20:34	1 Dil Fac 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D) <u>Result</u> <50.0 <50.0 <50.0	RO) (GC) Qualifier U U	RL 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg	D	01/19/22 13:54 01/19/22 13:54 01/19/22 13:54	Analyzed 01/21/22 20:34 01/21/22 20:34 01/21/22 20:34	1 Dil Fac 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D) Result <50.0 <50.0 <50.0 %Recovery	RO) (GC) Qualifier U U	RL 50.0 50.0 50.0 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	D	01/19/22 13:54 01/19/22 13:54 01/19/22 13:54 01/19/22 13:54 Prepared	Analyzed 01/21/22 20:34 01/21/22 20:34 01/21/22 20:34 Analyzed	1 Dil Fac 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D) Result <50.0 <50.0 <50.0 <50.0 <i>%Recovery</i> 74 81	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130	<u>MDL</u>	Unit mg/Kg mg/Kg	D	01/19/22 13:54 01/19/22 13:54 01/19/22 13:54 01/19/22 13:54 Prepared 01/19/22 13:54	Analyzed 01/21/22 20:34 01/21/22 20:34 01/21/22 20:34 Analyzed 01/21/22 20:34	1 Dil Fac 1 1 1 Dil Fac 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	ge Organics (D) <u>Result</u> <50.0 <50.0 <50.0 <70.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80	RO) (GC) Qualifier U U Qualifier Soluble	RL 50.0 50.0 50.0 50.0 50.0 50.0 70.130 70.130		Unit mg/Kg mg/Kg mg/Kg		01/19/22 13:54 01/19/22 13:54 01/19/22 13:54 01/19/22 13:54 01/19/22 13:54 01/19/22 13:54	Analyzed 01/21/22 20:34 01/21/22 20:34 01/21/22 20:34 Analyzed 01/21/22 20:34 01/21/22 20:34	1 Dil Fac 1 1 1 <i>Dil Fac</i> 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D) <u>Result</u> <50.0 <50.0 <50.0 <70.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80.0 <80	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	D	01/19/22 13:54 01/19/22 13:54 01/19/22 13:54 01/19/22 13:54 Prepared 01/19/22 13:54	Analyzed 01/21/22 20:34 01/21/22 20:34 01/21/22 20:34 Analyzed 01/21/22 20:34	1 Dil Fac 1 1 1 Dil Fac 1

Job ID: 890-1844-1 SDG: Rural Eddy County

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

Client: WSP USA Inc.

Project/Site: RDX 17-26

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		5
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		. P
880-10289-A-115-F MS	Matrix Spike	110	97		
880-10289-A-115-G MSD	Matrix Spike Duplicate	88	82		6
890-1844-1	FS02A	126	94		
LCS 880-17218/1-A	Lab Control Sample	112	94		
LCSD 880-17218/2-A	Lab Control Sample Dup	110	98		
MB 880-17131/5-A	Method Blank	123	97		8
MB 880-17218/5-A	Method Blank	114	97		
Surrogate Legend					9
BFB = 4-Bromofluorobenz	zene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
o Sample ID	Client Sample ID	(70-130)	(70-130)	
838-A-1-F MS	Matrix Spike	73	71	
838-A-1-G MSD	Matrix Spike Duplicate	77	76	
344-1	FS02A	74	81	
0-17278/2-A	Lab Control Sample	99	104	
880-17278/3-A	Lab Control Sample Dup	99	105	
380-17278/1-A	Method Blank	92	109	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

Client: WSP USA Inc.

QC Sample Results

Job ID: 890-1844-1 SDG: Rural Eddy County

Project/Site: RDX 17-26 Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-17131	/ J-A									Chefit Sa	mple ID: Metho	
Matrix: Solid											Prep Type:	
Analysis Batch: 17325	_										Prep Batc	h: 1713
A maluán		B MB Ilt Qual	i di a r	RL	MDI	11		D	Β.	epared	Analyzed	Dil Fa
Analyte Benzene	<0.0020		0.00			Unit		_		9/22 07:30	Analyzed 01/20/22 11:10	
Toluene	<0.0020					mg/Kg						
	<0.0020		0.00)200)200		mg/Kg				9/22 07:30	01/20/22 11:10	
Ethylbenzene						mg/Kg				9/22 07:30	01/20/22 11:10	
m-Xylene & p-Xylene	< 0.004			400		mg/Kg				9/22 07:30	01/20/22 11:10	
p-Xylene	<0.0020			200		mg/Kg				9/22 07:30	01/20/22 11:10	
Xylenes, Total	<0.0040	0 0	0.00	400		mg/Kg	1		01/19	9/22 07:30	01/20/22 11:10	
	N	B MB										
Surrogate	%Recove	ry Qua	ifier Limit	s					Pi	repared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	1	23	70 - 1	30					01/1	9/22 07:30	01/20/22 11:10	
1,4-Difluorobenzene (Surr)	:	97	70 - 1	30					01/1	9/22 07:30	01/20/22 11:10	
Lab Sample ID: MB 880-17218	/5-4									Client Sa	mple ID: Metho	od Blan
Matrix: Solid											Prep Type:	
Analysis Batch: 17325											Prep Batc	
Analysis Datch. 17525	N	в мв									Fiep Bate	
Analyte		ilt Qual	ifier	RL	мы	Unit		D	Pr	repared	Analyzed	Dil Fa
Benzene	<0.0020		0.00			mg/Kg		<u> </u>		9/22 13:45	01/20/22 22:47	
Toluene	<0.002			200		mg/Kg				9/22 13:45	01/20/22 22:47	
	<0.0020											
				200		mg/Kg				9/22 13:45	01/20/22 22:47	
m-Xylene & p-Xylene	< 0.004			9400		mg/Kg				9/22 13:45	01/20/22 22:47	
o-Xylene	< 0.002		0.00			mg/Kg				9/22 13:45	01/20/22 22:47	
Xylenes, Total	<0.0040	0 U	0.00	1400		mg/Kg			01/18	9/22 13:45	01/20/22 22:47	
	N	B MB										
Surrogate	%Recove	ry Qua	ifier Limit	s					Pi	repared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	1	14	70 - 1	30					01/1	9/22 13:45	01/20/22 22:47	
1,4-Difluorobenzene (Surr)	:	97	70 - 1	30					01/1	9/22 13:45	01/20/22 22:47	
Lab Sample ID: LCS 880-17218	8/1 -A							С	lient	Sample I	D: Lab Contro	Sampl
Matrix: Solid											Prep Type:	
Analysis Batch: 17325											Prep Batc	
			Spike	LC	S LCS						%Rec.	
Analyte			Added		lt Qua		Unit		D	%Rec	Limits	
Benzene			0.100	0.0863			mg/Kg			86	70 - 130	
Toluene			0.100	0.0939			mg/Kg			94	70 - 130	
Ethylbenzene			0.100	0.100			mg/Kg			101	70 - 130	
			0.100	0.100			mg/Kg			97	70 - 130 70 - 130	
m-Xvlene & n-Xvlene			0.200	0.0957			mg/Kg			96	70 - 130 70 - 130	
			0.100	0.0937	0		mg/rxy			90	70 - 100	
o-Xylene	LCS L											
o-Xylene	%Recovery Q		Limits									
o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 112		Limits 70 _ 130									
o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	%Recovery Q		Limits									
D-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-172	<u>%Recovery</u> <u>Q</u> 112 94		Limits 70 _ 130				Clie	ent	Sam	ple ID: La	ab Control San	-
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-172 Matrix: Solid	<u>%Recovery</u> <u>Q</u> 112 94		Limits 70 _ 130				Clie	ent	Sam	ple ID: La	Prep Type:	Total/N
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-172 Matrix: Solid	<u>%Recovery</u> <u>Q</u> 112 94		<u>Limits</u> 70 - 130 70 - 130				Clie	ent	Sam	ple ID: La	Prep Type: Prep Batc	Total/N/ h: 1721
m-Xylene & p-Xylene o-Xylene 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17325 Analyte	<u>%Recovery</u> <u>Q</u> 112 94		Limits 70 _ 130		D LCS It Qua		Clie	ənt	Sam	ple ID: La %Rec	Prep Type:	Total/N/ h: 1721 RPI

QC Sample Results

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 17218

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-17	218/2-A					Clie	nt Sam	ple ID: I	Lab Contro	I Sampl	e Dup
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 17325									Prep	Batch:	17218
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.1007		mg/Kg		101	70 - 130	7	35
Ethylbenzene			0.100	0.1039		mg/Kg		104	70 - 130	3	35
m-Xylene & p-Xylene			0.200	0.2066		mg/Kg		103	70 - 130	6	35
o-Xylene			0.100	0.1011		mg/Kg		101	70 - 130	5	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	110		70 - 130								
1,4-Difluorobenzene (Surr)	98		70 - 130								

Lab Sample ID: 880-10289-A-115-F MS Matrix: Solid

Analysis Batch: 17325

Analysis Batch: 17325									Prep	Batch: 17218
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F2 F1	0.101	0.03789	F1	mg/Kg		38	70 - 130	
Toluene	<0.00200	U F2 F1	0.101	0.04071	F1	mg/Kg		40	70 - 130	
Ethylbenzene	<0.00200	U F2 F1	0.101	0.03994	F1	mg/Kg		40	70 - 130	
m-Xylene & p-Xylene	<0.00400	U F2 F1	0.201	0.07742	F1	mg/Kg		38	70 - 130	
o-Xylene	<0.00200	U F2 F1	0.101	0.04275	F1	mg/Kg		42	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: 880-10289-A-115-G MSD Matrix: Solid

Analysis Batch: 17325

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F2 F1	0.100	0.02260	F2 F1	mg/Kg		23	70 - 130	51	35
Toluene	<0.00200	U F2 F1	0.100	0.01774	F2 F1	mg/Kg		18	70 - 130	79	35
Ethylbenzene	<0.00200	U F2 F1	0.100	0.02099	F2 F1	mg/Kg		21	70 - 130	62	35
m-Xylene & p-Xylene	<0.00400	U F2 F1	0.200	0.04615	F2 F1	mg/Kg		23	70 - 130	51	35
o-Xylene	<0.00200	U F2 F1	0.100	0.02730	F2 F1	mg/Kg		27	70 ₋ 130	44	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

70 - 130

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

88

82

Lab Sample ID: MB 880-17278/1-A Matrix: Solid Analysis Batch: 17438	МВ	мв					Client Sa	mple ID: Metho Prep Type: ٦ Prep Batcl	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/19/22 13:54	01/21/22 11:45	1
(GRO)-C6-C10									

Client: WSP USA Inc.

Project/Site: RDX 17-26

QC Sample Results

Job ID: 890-1844-1 SDG: Rural Eddy County

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-17278	/1-A									Client Sa	ample ID:		
Matrix: Solid Analysis Batch: 17438												Type: To Batch:	
Analysis Batch: 17430	MB	мв									Frep	Datch.	1/2/0
Analyte		Qualifier	RL		MDL	Unit		D	Pre	epared	Analyz	zed	Dil Fac
Diesel Range Organics (Over	<50.0		50.0			mg/Kg				0/22 13:54			1
C10-C28)													
Oll Range Organics (Over C28-C36)	<50.0	U	50.0			mg/Kg		C	01/19	9/22 13:54	01/21/22	11:45	1
	MB	MB											
Surrogate	%Recovery		Limits						Pr	epared	Analyz	zed	Dil Fac
1-Chlorooctane	92		70 - 130					(9/22 13:54			1
o-Terphenyl	109		70 - 130					(01/19	9/22 13:54	01/21/22	11:45	1
Lab Sample ID: LCS 880-1727	8/2-A							Cli	ent	Sample	ID: Lab Co		
Matrix: Solid												Гуре: То	
Analysis Batch: 17438												Batch:	: 17278
			Spike		LCS				_	~ =	%Rec.		
Analyte			Added	Result	Qual	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10			1000	980.3			mg/Kg			98	70 - 130		
Diesel Range Organics (Over			1000	923.6			mg/Kg			92	70 - 130		
C10-C28)													
	LCS LCS	5											
• • •	%Recovery Qua	alifier	Limits										
Surrogate													
Surrogate 1-Chlorooctane	<u>99</u>		70 - 130										
	99 104		70 - 130 70 - 130				Cli	ənt S	Samı	ple ID: L	_ab Contro	ol Samp	le Dup
1-Chlorooctane o-Terphenyl	99 104		70 - 130				Cli	ent S	Samı	ple ID: L	Prep 1 Prep	ol Samp Type: To Batch:	otal/NA : 17278
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438	99 104		70 - 130 Spike	LCSD						-	Prep 1 Prep %Rec.	Type: To Batch:	otal/NA 17278 RPD
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte	99 104		70 - 130 Spike Added	Result			Unit		Samı D	%Rec	Prep 1 Prep %Rec. Limits	RPD	tal/NA 17278 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics	99 104		70 - 130 Spike							-	Prep 1 Prep %Rec.	Type: To Batch:	tal/NA 17278 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte	99 104		70 - 130 Spike Added	Result			Unit			%Rec	Prep 1 Prep %Rec. Limits	RPD	tal/NA 17278 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10	99 104		70 - 130 Spike Added 1000	Result 995.1			Unit mg/Kg			%Rec	Prep 1 Prep %Rec. Limits 70 - 130	Type: To Batch: RPD 1	tal/NA 17278 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	99 104		70 - 130 Spike Added 1000	Result 995.1			Unit mg/Kg			%Rec	Prep 1 Prep %Rec. Limits 70 - 130	Type: To Batch: RPD 1	tal/NA 17278 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	99 104 78/3-A 		70 - 130 Spike Added 1000	Result 995.1			Unit mg/Kg			%Rec	Prep 1 Prep %Rec. Limits 70 - 130	Type: To Batch: RPD 1	tal/NA 17278 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	99 104 78/3-A		70 - 130 Spike Added 1000	Result 995.1			Unit mg/Kg			%Rec	Prep 1 Prep %Rec. Limits 70 - 130	Type: To Batch: RPD 1	tal/NA 17278 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	99 104 78/3-A 		70 - 130 Spike Added 1000 1000 Limits	Result 995.1			Unit mg/Kg			%Rec	Prep 1 Prep %Rec. Limits 70 - 130	Type: To Batch: RPD 1	tal/NA 17278 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	99 104 78/3-A 		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 995.1			Unit mg/Kg			%Rec 100 94	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130	Type: To Batch: 	tal/NA 17278 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1838-A-1-I	99 104 78/3-A 		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 995.1			Unit mg/Kg			%Rec 100 94	Prep 1 %Rec. Limits 70 - 130 70 - 130	Type: To Batch: RPD 1 2	tal/NA 17278 RPD Limit 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1838-A-1-I Matrix: Solid	99 104 78/3-A 		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 995.1			Unit mg/Kg			%Rec 100 94	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130 Sample ID Prep 1	Type: To Batch:	tal/NA 17278 RPD Limit 20 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1838-A-1-I	99 104 78/3-A 	SD alifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130	Result 995.1 938.2			Unit mg/Kg			%Rec 100 94	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep 1	Type: To Batch: RPD 1 2	tal/NA 17278 RPD Limit 20 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1838-A-1-I Matrix: Solid	99 104 78/3-A 	SD alifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 995.1 938.2	Qual	lifier	Unit mg/Kg			%Rec 100 94	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130 Sample ID Prep 1	Type: To Batch:	tal/NA 17278 RPD Limit 20 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1838-A-1-I Matrix: Solid Analysis Batch: 17438	99 104 78/3-A <i>LCSD LCS</i> %Recovery Qua 99 105 F MS Sample San	SD alifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130 Spike	Result 995.1 938.2 MS	Qual MS Qual	lifier	Unit mg/Kg mg/Kg		<u>D</u> -	%Rec 100 94	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 1 Prep 1 Prep 2 %Rec.	Type: To Batch:	tal/NA 17278 RPD Limit 20 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1838-A-1-I Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10	99 104 78/3-A 	SD alifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike Added 997	Result 995.1 938.2 MS Result 1391	Qual MS Qual	lifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg		<u>D</u> -	%Rec 100 94 Client 3 %Rec 136	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. Prep 1 Prep 2 %Rec. Limits 70 - 130	Type: To Batch:	tal/NA 17278 RPD Limit 20 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1838-A-1-I Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	99 104 78/3-A <i>LCSD LCS</i> %Recovery Qua 99 105 F MS Sample San Result Qua	SD alifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike Added Spike Added	Result 995.1 938.2 MS Result	Qual MS Qual	lifier	Unit mg/Kg mg/Kg		<u>D</u> -	%Rec 100 94 Client \$	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 8 8 9 9 9 9 8 9 9 9 9 8 9 9 9 9 9 9	Type: To Batch:	tal/NA 17278 RPD Limit 20 20 20 c Spike otal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1838-A-1-I Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10	99 104 78/3-A 	SD alifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike Added 997	Result 995.1 938.2 MS Result 1391	Qual MS Qual	lifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg		<u>D</u> -	%Rec 100 94 Client 3 %Rec 136	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. Prep 1 Prep 2 %Rec. Limits 70 - 130	Type: To Batch:	tal/NA 17278 RPD Limit 20 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1838-A-1-I Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	99 104 78/3-A <i>LCSD LCS</i> %Recovery Qua 99 105 F MS Sample San <u>Result Qua</u> <49.9 U	SD alifier nple alifier 1	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 5pike Added 997 997 997	Result 995.1 938.2 MS Result 1391	Qual MS Qual	lifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg		<u>D</u> -	%Rec 100 94 Client 3 %Rec 136	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. Prep 1 Prep 2 %Rec. Limits 70 - 130	Type: To Batch:	tal/NA 17278 RPD Limit 20 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-1838-A-1-I Matrix: Solid Analysis Batch: 17438 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	99 104 78/3-A <i>LCSD LCS</i> %Recovery Qua 99 105 F MS Sample San <u>Result Qua</u> <49.9 U	SD alifier nple alifier 1	70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike Added 997	Result 995.1 938.2 MS Result 1391	Qual MS Qual	lifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg		<u>D</u> -	%Rec 100 94 Client 3 %Rec 136	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. Prep 1 Prep 2 %Rec. Limits 70 - 130	Type: To Batch:	tal/NA 17278 RPD Limit 20 20 20

Client: WSP USA Inc.

Project/Site: RDX 17-26

Job ID: 890-1844-1 SDG: Rural Eddy County

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	SD							Cile	111 36	ampie IL	D: Matrix Sp		
Matrix: Solid												Гуре: То	
Analysis Batch: 17438											-	Batch:	
	•	Sample	Spike			MSD					%Rec.		RPD
Analyte		Qualifier	Added			Qualifie	er Unit		D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10	<49.9	U F1	996		1250		mg/K	g		122	70 - 130	11	20
Diesel Range Organics (Over C10-C28)	<49.9	U	996		1250		mg/K	g		123	70 - 130	9	2
	MSD	MSD											
Surrogate %	Recovery	Qualifier	Limits										
1-Chlorooctane	77		70 - 130										
o-Terphenyl	76		70 - 130										
lethod: 300.0 - Anions, Ion C	hromat	ography											
Lab Sample ID: MB 880-17337/1-A Matrix: Solid										Client S	Sample ID:	Method Type: S	
Analysis Batch: 17523		MB MB									Trop	Type: O	orabi
Analysis		MB MB esult Qualifier		RL		MDL U		_	_	repared	Analua		Dil Fa
Analyte Chloride		<5.00 U		5.00			g/Kg	<u>D</u>	P	repared	Analyz 01/22/22		рії га
Matrix: Solid Analysis Batch: 17523			Spike		109	LCS					%Rec.	Type: S	olubi
Analyte			Added			Qualifie	er Unit		D	%Rec	Limits		
Chloride			250		258.4	quanna	mg/K	a		103	90 - 110		
			200		200			9			00-110		
Lab Sample ID: LCSD 880-17337/3	-A							Client	Sam	ple ID:	Lab Contro	ol Sampl	e Du
											Prep	Type: S	
Matrix: Solid			0		1.000	1.000						Type: S	olubl
Matrix: Solid Analysis Batch: 17523			Spike		LCSD		vr Unit		n	% Poc	%Rec.		olubi RP
Matrix: Solid Analysis Batch: 17523 Analyte			Added	I	Result	LCSD Qualifie		9		%Rec	%Rec. Limits	RPD	olubi RP Lim
Matrix: Solid Analysis Batch: 17523 Analyte							er <u>Unit</u> mg/K	g	<u>D</u>	%Rec	%Rec.		olubi RP
Matrix: Solid Analysis Batch: 17523 Analyte Chloride	 S		Added		Result			g	<u>D</u>	109	%Rec. Limits 90 - 110	RPD 5	olubl RP Lim 2
Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-D Mi			Added	I	Result			g	<u>D</u>	109	%Rec. Limits 90 - 110	RPD 5	olubl RPI Lim 2 Spik
Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-D Matrix: Solid	S		Added		Result			g	<u>D</u>	109	%Rec. Limits 90 - 110	RPD 5	olubl RPI Lim 2 Spike
Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-D M Matrix: Solid Analysis Batch: 17523		Sample	Added		Result	Qualifi		g	<u>D</u>	109	%Rec. Limits 90 - 110	RPD 5	olubl RPI Lim 2 Spike
Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-D Ma Matrix: Solid Analysis Batch: 17523	Sample	Sample Qualifier	Added 250		Result 271.4	Qualifi	mg/K	g	D	109	%Rec. Limits 90 - 110 Sample ID Prep	RPD 5	olubl RPI Lim 2 Spik
Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-D M Matrix: Solid Analysis Batch: 17523 Analyte	Sample	-	Added 250 Spike		Result 271.4	Qualifie	mg/K	-		109 Client	%Rec. Limits 90 - 110 Sample ID Prep %Rec.	RPD 5	olubl RPI Lim 2 Spike
Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-D M: Matrix: Solid Analysis Batch: 17523 Analyte Chloride	Sample Result 1650	-	Added 250 Spike Added		Result 271.4 MS Result	Qualifie	mg/K	g		109 Client %Rec 110	%Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	5 : Matrix Type: S	olubi RPI Lim 2 Spike olubi
Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-D M Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-E M Matrix: Solid	Sample Result 1650	-	Added 250 Spike Added		Result 271.4 MS Result	Qualifie	mg/K	g		109 Client %Rec 110	%Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 D: Matrix Sp	5 : Matrix Type: S	olubi RP Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-D M Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-E M	Sample Result 1650	Qualifier	Added 250 Spike Added 1260		Result 271.4 MS Result 3047	Qualifie MS Qualifie	mg/K	g		109 Client %Rec 110	%Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 D: Matrix Sp Prep	RPD 5 : Matrix Type: S	olubl RPI 2 Spike olubl
Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-D M Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: 890-1843-A-9-E M Matrix: Solid	Sample Result 1650 SD Sample	-	Added 250 Spike Added		Result 271.4 MS Result 3047 MSD	Qualifie MS Qualifie	er <u>Unit</u> mg/K	g		109 Client %Rec 110	%Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 D: Matrix Sp	RPD 5 : Matrix Type: S	oluble RPI Limi 20 Spike oluble

QC Association Summary

Client: WSP USA Inc. Project/Site: RDX 17-26 Page 69 of 110

Job ID: 890-1844-1 SDG: Rural Eddy County

GC VOA

Prep Batch: 17131

ep Batch: 17131					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-17131/5-A	Method Blank	Total/NA	Solid	5035	
rep Batch: 17218					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1844-1	FS02A	Total/NA	Solid	5035	
MB 880-17218/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-17218/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-17218/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-10289-A-115-F MS	Matrix Spike	Total/NA	Solid	5035	
880-10289-A-115-G MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Lab Sample ID	Client Sample ID FS02A	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 17218
Lab Sample ID 890-1844-1					
Lab Sample ID 890-1844-1 MB 880-17131/5-A	FS02A	Total/NA	Solid	8021B	17218
-	FS02A Method Blank	Total/NA Total/NA	Solid Solid	8021B 8021B	17218 17131
890-1844-1 MB 880-17131/5-A MB 880-17218/5-A	FS02A Method Blank Method Blank	Total/NA Total/NA Total/NA	Solid Solid Solid	8021B 8021B 8021B	17218 17131 17218
Lab Sample ID 890-1844-1 MB 880-17131/5-A MB 880-17218/5-A LCS 880-17218/1-A	FS02A Method Blank Method Blank Lab Control Sample	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	8021B 8021B 8021B 8021B	17218 17131 17218 17218
Lab Sample ID 890-1844-1 MB 880-17131/5-A MB 880-17218/5-A LCS 880-17218/1-A LCSD 880-17218/2-A	FS02A Method Blank Method Blank Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid	8021B 8021B 8021B 8021B 8021B 8021B	17218 17131 17218 17218 17218 17218
Lab Sample ID 890-1844-1 MB 880-17131/5-A MB 880-17218/5-A LCS 880-17218/1-A LCSD 880-17218/2-A 880-10289-A-115-F MS	FS02A Method Blank Method Blank Lab Control Sample Lab Control Sample Dup Matrix Spike	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid	8021B 8021B 8021B 8021B 8021B 8021B 8021B	17218 17131 17218 17218 17218 17218 17218
Lab Sample ID 890-1844-1 MB 880-17131/5-A MB 880-17218/5-A LCS 880-17218/1-A LCSD 880-17218/2-A 880-10289-A-115-F MS 880-10289-A-115-G MSD	FS02A Method Blank Method Blank Lab Control Sample Lab Control Sample Dup Matrix Spike	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid	8021B 8021B 8021B 8021B 8021B 8021B 8021B	17218 17131 17218 17218 17218 17218 17218

GC Semi VOA

Prep Batch: 17278

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1844-1	FS02A	Total/NA	Solid	8015NM Prep	
MB 880-17278/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-17278/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-17278/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1838-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-1838-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 17438

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1844-1	FS02A	Total/NA	Solid	8015B NM	17278
MB 880-17278/1-A	Method Blank	Total/NA	Solid	8015B NM	17278
LCS 880-17278/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	17278
LCSD 880-17278/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	17278
890-1838-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	17278
890-1838-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	17278
Analysis Batch: 17641					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1844-1	FS02A	Total/NA	Solid	8015 NM	

QC Association Summary

Client: WSP USA Inc. Project/Site: RDX 17-26

Job ID: 890-1844-1 SDG: Rural Eddy County

HPLC/IC

Leach Batch: 17337

each Batch: 17337					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1844-1	FS02A	Soluble	Solid	DI Leach	
MB 880-17337/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-17337/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-17337/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1843-A-9-D MS	Matrix Spike	Soluble	Solid	DI Leach	
890-1843-A-9-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Lah Sample ID	Client Sample ID	Prep Type	Matrix	wernoa	Prep Batch
			Mar Andres	Mar Alla and	
	Client Sample ID FS02A	Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 17337
890-1844-1					
390-1844-1 MB 880-17337/1-A	FS02A	Soluble	Solid	300.0	17337
890-1844-1 MB 880-17337/1-A LCS 880-17337/2-A	FS02A Method Blank	Soluble	Solid Solid	300.0 300.0	17337 17337 17337
Lab Sample ID 890-1844-1 MB 880-17337/1-A LCS 880-17337/2-A LCSD 880-17337/3-A 890-1843-A-9-D MS	FS02A Method Blank Lab Control Sample	Soluble Soluble Soluble	Solid Solid Solid	300.0 300.0 300.0	17337 17337 17337 17337

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1844-1	FS02A	Soluble	Solid	300.0	17337
MB 880-17337/1-A	Method Blank	Soluble	Solid	300.0	17337
LCS 880-17337/2-A	Lab Control Sample	Soluble	Solid	300.0	17337
LCSD 880-17337/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	17337
890-1843-A-9-D MS	Matrix Spike	Soluble	Solid	300.0	17337
890-1843-A-9-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	17337

Eurofins Carlsbad

Released to Imaging: 5/4/2022 11:52:07 AM

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Initial

Amount

5.03 g

5 mL

10.01 g

5.05 g

Final

Amount

5 mL

5 mL

10 mL

50 mL

Batch

17218

17325

17647

17641

17278

17438

17337

17523

Number

Prepared

or Analyzed

01/19/22 13:45

01/21/22 02:19

01/24/22 17:08

01/24/22 16:33

01/19/22 13:54

01/21/22 20:34

01/20/22 09:19

01/22/22 21:40

Dil

1

1

1

1

5

Factor

Run

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Client Sample ID: FS02A Date Collected: 01/13/22 09:02 Date Received: 01/18/22 13:55

Page	71	of	11	0
------	----	----	----	---

Job ID: 890-1844-1 SDG: Rural Eddy County

Lab

XEN MID

1

Lab Sample ID: 890-1844-1 Matrix: Solid

Analyst

KL

KL

AJ

AJ

DM

AJ

СН

СН

Solid

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: RDX 17-26 Job ID: 890-1844-1 SDG: Rural Eddy County

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pr	ogram	Identification Number	Expiration Date
exas	NE	ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report, bu	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for wh
the agency does not c				
the agency does not o	ffer certification. Prep Method	Matrix	Analyte	
0 ,		Matrix Solid	Analyte Total TPH	

Eurofins Carlsbad

Released to Imaging: 5/4/2022 11:52:07 AM

10
Method Summary

Client: WSP USA Inc. Project/Site: RDX 17-26

Job ID: 890-1844-1 SDG: Rural Eddy County

lethod	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
otal BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
800.0	Anions, Ion Chromatography	MCAWW	XEN MID
6035	Closed System Purge and Trap	SW846	XEN MID
015NM Prep	Microextraction	SW846	XEN MID
I Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: WSP USA Inc. Project/Site: RDX 17-26 Job ID: 890-1844-1 SDG: Rural Eddy County

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1844-1	FS02A	Solid	01/13/22 09:02	01/18/22 13:55	0.75	4
						5
						8
						9
						12
						13

ting Chain of Custody Houston, TX (28) 240-4200, Dallas, TX (219) 509-3334 Houston, TX (28) 240-4200, Dallas, TX (210) 509-3334 Reliand, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (32) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (32) 704-5440, San Antonio, TX (210) 509-3334 Ell Lo: (If different) Tim Company Name: Due Date: Moutine Due Due Date: Moutine Due Date: Due Moutine Due Moutine Due </th

4 5 6

Job Number: 890-1844-1 SDG Number: Rural Eddy County List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1844 List Number: 1

Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

14

Job Number: 890-1844-1 SDG Number: Rural Eddy County List Source: Eurofins Midland

List Creation: 01/19/22 01:26 PM

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1844 List Number: 2 Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 3/31/2022 11:00:09 AM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1845-1

Laboratory Sample Delivery Group: Rural Eddy County Client Project/Site: RDX 17-26

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Joseph Hernandez

RAMER

Authorized for release by: 1/26/2022 5:48:35 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env Released to Imaging: 5/4/2022 11:52:07 AM

Laboratory Job ID: 890-1845-1 SDG: Rural Eddy County

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	12
QC Sample Results	14
QC Association Summary	20
Lab Chronicle	24
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	31

Client: WSP USA Inc. Project/Site: RDX 17-26 Job ID: 890-1845-1 SDG: Rural Eddy County

Quantoro		3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	5
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
*1	LCS/LCSD RPD exceeds control limits.	
F1	MS and/or MSD recovery exceeds control limits.	8
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		9
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	4.0
CFL	Contains Free Liquid	13
CFU	Colony Forming Unit	

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 890-1845-1 SDG: Rural Eddy County

Job ID: 890-1845-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1845-1

Receipt

The samples were received on 1/18/2022 1:54 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-17332 and analytical batch 880-17331 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28)

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-17332 and analytical batch 880-17331 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-17555 and analytical batch 880-17726 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

RL

MDL Unit

D

Prepared

Job ID: 890-1845-1 SDG: Rural Eddy County

Client Sample ID: PH01

Client: WSP USA Inc.

Project/Site: RDX 17-26

Date Collected: 01/13/22 08:50 Date Received: 01/18/22 13:54

Lab	Sample	ID:	890-1	845-1

Analyzed

Matrix: Solid

845-1 Solid	
	5
Dil Fac 1	
1	
1 1	8
Dil Fac	9
1 1	
Dil Fac	
1	
Dil Fac	13
1	

Sample Depth: 0.5 Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	U	Prepared	Analyzed	Dii Fac
Benzene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 04:10	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 04:10	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 04:10	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/19/22 13:45	01/21/22 04:10	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 04:10	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/19/22 13:45	01/21/22 04:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				01/19/22 13:45	01/21/22 04:10	1
1,4-Difluorobenzene (Surr)	99		70 - 130				01/19/22 13:45	01/21/22 04:10	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/24/22 17:08	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			01/24/22 16:33	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/20/22 08:47	01/21/22 01:32	1
Diesel Range Organics (Over C10-C28)	<50.0	U *1	50.0		mg/Kg		01/20/22 08:47	01/21/22 01:32	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/20/22 08:47	01/21/22 01:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				01/20/22 08:47	01/21/22 01:32	1
o-Terphenyl	96		70 - 130				01/20/22 08:47	01/21/22 01:32	1
Method: 300.0 - Anions, Ion Chro									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloride	95.7		5.04		mg/Kg			01/22/22 21:47	1
lient Sample ID: PH01							Lab Sar	nple ID: 890-	1845-2
ate Collected: 01/13/22 08:52								Matri	x: Solid
ate Received: 01/18/22 13:54									
ample Depth: 1									
• •	Compounde	(GC)							
Method: 8021B - Volatile Organic		GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8021B - Volatile Organic		Qualifier	RL 0.00199	MDL	Unit mg/Kg	<u>D</u>	Prepared 01/19/22 13:45	Analyzed 01/21/22 04:30	Dil Fac
Method: 8021B - Volatile Organic Analyte Benzene	Result	Qualifier U		MDL		<u>D</u>			
Method: 8021B - Volatile Organic Analyte Benzene Toluene	Result <0.00199	Qualifier U U	0.00199	MDL	mg/Kg	<u>D</u>	01/19/22 13:45	01/21/22 04:30	
Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene	Result <0.00199 <0.00199	Qualifier U U U	0.00199	MDL	mg/Kg mg/Kg	<u> </u>	01/19/22 13:45 01/19/22 13:45	01/21/22 04:30 01/21/22 04:30	1
Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00199	Qualifier U U U U	0.00199 0.00199 0.00199	MDL	mg/Kg mg/Kg mg/Kg	<u> </u>	01/19/22 13:45 01/19/22 13:45 01/19/22 13:45	01/21/22 04:30 01/21/22 04:30 01/21/22 04:30	1 1 1

Eurofins Carlsbad

Surrogate

4-Bromofluorobenzene (Surr)

Limits

70 - 130

%Recovery Qualifier

128

5

Client Sample Results

Job ID: 890-1845-1 SDG: Rural Eddy County

Client Sample ID: PH01

Date Collected: 01/13/22 08:52 Date Received: 01/18/22 13:54

Sample Depth: 1

Client: WSP USA Inc.

Project/Site: RDX 17-26

Lab Sample ID: 890-1845-2
Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	105		70 - 130				01/19/22 13:45	01/21/22 04:30	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/24/22 17:08	
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			01/24/22 16:33	
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		01/20/22 08:47	01/21/22 01:53	
Diesel Range Organics (Over	<49.9	U *1	49.9		mg/Kg		01/20/22 08:47	01/21/22 01:53	
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/20/22 08:47	01/21/22 01:53	
	1010	C C	1010				0	0.12.122.01.00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	91		70 - 130				01/20/22 08:47	01/21/22 01:53	
o-Terphenyl	93		70 - 130				01/20/22 08:47	01/21/22 01:53	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	80.0		24.9		mg/Kg			01/26/22 15:58	:
lient Sample ID: PH02							l ah San	nple ID: 890-	18/5

Date Received: 01/18/22 13:54 Sample Depth: 0.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		01/19/22 13:45	01/21/22 04:50	1
Toluene	<0.00198	U	0.00198		mg/Kg		01/19/22 13:45	01/21/22 04:50	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		01/19/22 13:45	01/21/22 04:50	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		01/19/22 13:45	01/21/22 04:50	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		01/19/22 13:45	01/21/22 04:50	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		01/19/22 13:45	01/21/22 04:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130				01/19/22 13:45	01/21/22 04:50	1
1,4-Difluorobenzene (Surr)	97		70 - 130				01/19/22 13:45	01/21/22 04:50	1
Method: Total BTEX - Total B	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			01/24/22 17:08	1
Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		50.0		mg/Kg			01/24/22 16:33	

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

<50.0 U

<50.0 U

%Recovery Qualifier

91

93

240

Result Qualifier

<50.0 U*1

Client Sample Results

RL

50.0

50.0

50.0

RL

4.99

Limits

70 - 130

70 - 130

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

Prepared

01/20/22 08:47

01/20/22 08:47

01/20/22 08:47

Prepared

01/20/22 08:47

01/20/22 08:47

Prepared

Job ID: 890-1845-1
SDG: Rural Eddy County

Client Sample ID: PH02

Client: WSP USA Inc. Project/Site: RDX 17-26

Sample Depth: 0.5

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Analyte

C10-C28)

Surrogate 1-Chlorooctane

o-Terphenyl

Analyte

Chloride

(GRO)-C6-C10

Date Collected: 01/13/22 09:30 Date Received: 01/18/22 13:54

Lab Sample ID: 890-1845-3 Matrix: Solid

Analyzed

01/21/22 02:13

01/21/22 02:13

01/21/22 02:13

Analyzed

01/21/22 02:13

01/21/22 02:13

Analyzed

01/22/22 18:37

5

Dil Fac

1

1

1

1

1

Dil Fac

Dil Fac 1 Lab Sample ID: 890-1845-4

Matrix: Solid

Date Received:	01/18/22	13:54
Sample Depth:	1	

Client Sample ID: PH02

Date Collected: 01/13/22 09:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 05:11	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 05:11	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 05:11	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/19/22 13:45	01/21/22 05:11	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 05:11	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/19/22 13:45	01/21/22 05:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130				01/19/22 13:45	01/21/22 05:11	1
1,4-Difluorobenzene (Surr)	102		70 - 130				01/19/22 13:45	01/21/22 05:11	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/24/22 17:08	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			01/24/22 16:33	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/20/22 08:47	01/21/22 02:34	1
Diesel Range Organics (Over C10-C28)	<50.0	U *1	50.0		mg/Kg		01/20/22 08:47	01/21/22 02:34	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/20/22 08:47	01/21/22 02:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				01/20/22 08:47	01/21/22 02:34	1
o-Terphenyl	113		70 - 130				01/20/22 08:47	01/21/22 02:34	1

Eurofins Carlsbad

Released to Imaging: 5/4/2022 11:52:07 AM

		Clien	t Sample R	Results	;				
Client: WSP USA Inc.								Job ID: 890)-1845-1
Project/Site: RDX 17-26 SDG: Rural Eddy Coun								/ County	
Client Sample ID: PH02							Lab Sar	nple ID: 890-	1845-4
Date Collected: 01/13/22 09:32								Matri	ix: Solid
Date Received: 01/18/22 13:54									
Sample Depth: 1									
 Method: 300.0 - Anions, Ion Chr	omatography -	Solublo							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	158		4.98		mg/Kg			01/22/22 18:49	1
Client Sample ID: PH03							Lab Sar	nple ID: 890-	1845-5
Date Collected: 01/13/22 11:02									ix: Solid
Date Received: 01/18/22 13:54									
Sample Depth: 0.5									
Method: 8021B - Volatile Organi	c Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		01/19/22 13:45	01/21/22 05:31	1
Toluene	<0.00201	U	0.00201		mg/Kg		01/19/22 13:45	01/21/22 05:31	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		01/19/22 13:45	01/21/22 05:31	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		01/19/22 13:45	01/21/22 05:31	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		01/19/22 13:45	01/21/22 05:31	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		01/19/22 13:45	01/21/22 05:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				01/19/22 13:45	01/21/22 05:31	1
1,4-Difluorobenzene (Surr)	106		70 - 130				01/19/22 13:45	01/21/22 05:31	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			01/24/22 17:08	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			01/24/22 16:33	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/20/22 08:47	01/21/22 02:54	1
Diesel Range Organics (Over	<50.0	U *1	50.0		mg/Kg		01/20/22 08:47	01/21/22 02:54	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.0		50.0		ma/Ka		01/20/22 08:47	01/21/22 02:54	1
On Mange Organics (Over 020-030)	~50.0	5	50.0		mg/Kg		01120122 00.41	01121122 02.04	I
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				01/20/22 08:47	01/21/22 02:54	1
o-Terphenyl	95		70 - 130				01/20/22 08:47	01/21/22 02:54	1
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	119		5.00		mg/Kg			01/22/22 19:00	1

Method: 8021B - Volatile Organic Compounds (GC)

Job ID: 890-1845-1 SDG: Rural Eddy County

Client Sample ID: PH03

Date Collected: 01/13/22 11:05 Date Received: 01/18/22 13:54

Sample Depth: 1

Client: WSP USA Inc.

Project/Site: RDX 17-26

Matrix: Solid

ty	
6 d	
	5
ac 1 1	
1	
1 1 1 1 1	8
ac	9
ac 1 1	
ac	
1	
ac	13
1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/19/22 13:45	01/21/22 05:52	1
Foluene	<0.00200	U	0.00200		mg/Kg		01/19/22 13:45	01/21/22 05:52	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/19/22 13:45	01/21/22 05:52	
n-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		01/19/22 13:45	01/21/22 05:52	
-Xylene	<0.00200	U	0.00200		mg/Kg		01/19/22 13:45	01/21/22 05:52	
(ylenes, Total	<0.00399	U	0.00399		mg/Kg		01/19/22 13:45	01/21/22 05:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I-Bromofluorobenzene (Surr)	130		70 - 130				01/19/22 13:45	01/21/22 05:52	
,4-Difluorobenzene (Surr)	104		70 - 130				01/19/22 13:45	01/21/22 05:52	
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal BTEX	<0.00399	U	0.00399		mg/Kg			01/24/22 17:08	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal TPH	<50.0	U	50.0		mg/Kg			01/24/22 16:33	
Aethod: 8015B NM - Diesel Rang	ae Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Basoline Range Organics GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/20/22 08:47	01/21/22 03:14	
Diesel Range Organics (Over C10-C28)	<50.0	U *1	50.0		mg/Kg		01/20/22 08:47	01/21/22 03:14	
DII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/20/22 08:47	01/21/22 03:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane	91		70 - 130				01/20/22 08:47	01/21/22 03:14	
-Terphenyl	94		70 - 130				01/20/22 08:47	01/21/22 03:14	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	146		4.95		mg/Kg			01/22/22 19:12	
lient Sample ID: PH04							Lab Sar	nple ID: 890-	1845-7
ate Collected: 01/13/22 09:50									x: Solio
ate Received: 01/18/22 13:54									
ample Depth: 0.5									
Method: 8021B - Volatile Organio	c Compounds	GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/Kg		01/19/22 13:45	01/21/22 06:12	1
					5 5				

4-Bromofluorobenzene (Surr)	129		70 - 130		01/19/22 13:45	01/21/22 06:12	1
Surrogate	%Recovery Qu	ualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00400 U		0.00400	mg/Kg	01/19/22 13:45	01/21/22 06:12	1
o-Xylene	<0.00200 U		0.00200	mg/Kg	01/19/22 13:45	01/21/22 06:12	1
m-Xylene & p-Xylene	<0.00400 U		0.00400	mg/Kg	01/19/22 13:45	01/21/22 06:12	1
Ethylbenzene	<0.00200 U		0.00200	mg/Kg	01/19/22 13:45	01/21/22 06:12	1
Toluene	<0.00200 U		0.00200	mg/Kg	01/19/22 13:45	01/21/22 06:12	1
Benzene	<0.00200 U		0.00200	mg/Kg	01/19/22 13:45	01/21/22 06:12	1

-Bromofluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

<50.0 U

<50.0 U

<50.0 U*1

105

<0.00400 U

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

1

1

1

1

Dil Fac

Matrix: Solid

1

Client Sample Results

Limits

70 - 130

RL

RL

RL

50.0

50.0

50.0

0.00400

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Job ID: 890-1845-1 SDG: Rural Eddy County

Client Sample ID: PH04

Project/Site: RDX 17-26

Client: WSP USA Inc.

Date Collected: 01/13/22 09:50 Date Received: 01/18/22 13:54

Sample Depth: 0.5

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Surrogate

Analyte

Analyte

Analyte

(GRO)-C6-C10

C10-C28)

Total TPH

Total BTEX

Sample I	D:	890-1	845-7
		Matrix	: Solid

Analyzed

01/21/22 06:12

Analyzed

01/24/22 17:08

Analyzed

01/24/22 16:33

Analyzed

01/21/22 03:35

01/21/22 03:35

Lab Sample ID: 890-1845-8

Lab

Prepared

01/19/22 13:45

Prepared

Prepared

Prepared

01/20/22 08:47

01/20/22 08:47

D

D

D

5

1	3

Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	01/20/22 08:47	01/21/22 03:35
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed
1-Chlorooctane	95		70 - 130		01/20/22 08:47	01/21/22 03:35
o-Terphenyl	97		70 - 130		01/20/22 08:47	01/21/22 03:35
o-Terphenyl	97		70 - 130		01/20/22 08:47	01/21/22 0

Method: 300.0 - Anions, Ion Chrom	latography - So	Diuble					
Analyte	Result Q	ualifier RL	MDL Unit	D	Prepared A	Analyzed	Dil Fac
Chloride	166	5.04	mg/Kg		01/2	22/22 19:48	1

Client Sample ID: PH04

Date Collected: 01/13/22 09:52 Date Received: 01/18/22 13:54 Sample Depth: 1

Method: 8021B - Volatile Organic Com	oounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 06:33	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 06:33	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 06:33	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/19/22 13:45	01/21/22 06:33	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/19/22 13:45	01/21/22 06:33	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/19/22 13:45	01/21/22 06:33	1
Surrogate %	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	134	S1+	70 - 130				01/19/22 13:45	01/21/22 06:33	1
1,4-Difluorobenzene (Surr)	98		70 - 130				01/19/22 13:45	01/21/22 06:33	1
– Method: Total BTEX - Total BTEX Calcu	Ilation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/24/22 17:08	1
– Method: 8015 NM - Diesel Range Orgai	nics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			01/24/22 16:33	1

Eurofins Carlsbad

Released to Imaging: 5/4/2022 11:52:07 AM

Client Sample Results

		Clien	t Sample R	lesults	\$						
Client: WSP USA Inc. Project/Site: RDX 17-26							S	Job ID: 890 DG: Rural Eddy		Ī	
Client Sample ID: PH04 Lab Sample ID: 890-1845-8											
Date Collected: 01/13/22 09:52					ix: Solid						
Date Received: 01/18/22 13:54											
Sample Depth: 1											
- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	ľ	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/20/22 08:47	01/21/22 03:56	1		
Diesel Range Organics (Over C10-C28)	<50.0	U *1	50.0		mg/Kg		01/20/22 08:47	01/21/22 03:56	1		
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/20/22 08:47	01/21/22 03:56	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	ĥ	
1-Chlorooctane	90		70 - 130				01/20/22 08:47	01/21/22 03:56	1		
o-Terphenyl	92		70 - 130				01/20/22 08:47	01/21/22 03:56	1		
_ Method: 300.0 - Anions, Ion Chro	omatography -	Soluble									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	317		5.01		mg/Kg			01/22/22 20:00	1		
-											

Job ID: 890-1845-1 SDG: Rural Eddy County

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Client Sample ID (70-130) (70-130) Lab Sample ID 880-10289-A-115-F MS Matrix Spike 110 97 6 Matrix Spike Duplicate 880-10289-A-115-G MSD 88 82 890-1845-1 PH01 122 99 PH01 890-1845-2 128 105 890-1845-3 PH02 125 97 PH02 890-1845-4 129 102 890-1845-5 PH03 122 106 PH03 130 104 890-1845-6 890-1845-7 PH04 129 105 890-1845-8 PH04 134 S1+ 98 LCS 880-17218/1-A Lab Control Sample 112 94 LCSD 880-17218/2-A Lab Control Sample Dup 110 98 MB 880-17131/5-A Method Blank 123 97 MB 880-17218/5-A Method Blank 114 97 Surrogate Legend BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptan
		1CO1	OTPH1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-10347-A-1-G MS	Matrix Spike	103	88	
80-10347-A-1-H MSD	Matrix Spike Duplicate	109	90	
90-1845-1	PH01	94	96	
90-1845-2	PH01	91	93	
90-1845-3	PH02	91	93	
0-1845-4	PH02	108	113	
0-1845-5	PH03	93	95	
0-1845-6	PH03	91	94	
0-1845-7	PH04	95	97	
0-1845-8	PH04	90	92	
Surrogate Legend				

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix:	Solid	

				Percent Surrogate Recovery (Acceptance Limits)
		1CO2	OTPH2	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCS 880-17332/2-A	Lab Control Sample	110	102	
LCSD 880-17332/3-A	Lab Control Sample Dup	124	120	
MB 880-17332/1-A	Method Blank	94	97	
Surrogate Legend				
1CO = 1-Chlorooctane				

Prep Type: Total/NA

Surrogate Summary

Client: WSP USA Inc. Project/Site: RDX 17-26 OTPH = o-Terphenyl Job ID: 890-1845-1 SDG: Rural Eddy County

5	
6	
8	
9	
13	

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-17131/5-	Α									Client Sa	mple ID: Me	thod	Blank
Matrix: Solid											Prep Typ	e: Tc	otal/NA
Analysis Batch: 17325											Prep Ba	itch:	17131
	М	В МВ									-		
Analyte	Resu	t Qualifier	RL		MDL	Unit		D	P	repared	Analyzed		Dil Fac
Benzene	<0.0020	D U	0.00200			mg/Kg		_	01/1	9/22 07:30	01/20/22 11:1	0	1
Toluene	<0.0020	D U	0.00200			mg/Kg			01/1	9/22 07:30	01/20/22 11:1	0	1
Ethylbenzene	<0.0020	D U	0.00200			mg/Kg			01/1	9/22 07:30	01/20/22 11:1	0	1
m-Xylene & p-Xylene	<0.0040	D U	0.00400			mg/Kg			01/1	9/22 07:30	01/20/22 11:1	0	1
o-Xylene	<0.0020	D U	0.00200			mg/Kg			01/1	9/22 07:30	01/20/22 11:1	0	1
Xylenes, Total	<0.0040	D U	0.00400			mg/Kg			01/1	9/22 07:30	01/20/22 11:1	0	1
	М	B MB											
Surrogate	%Recover	y Qualifier	Limits						P	repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)	12	3	70 - 130						01/1	9/22 07:30	01/20/22 11:1	0	1
1,4-Difluorobenzene (Surr)	9	7	70 - 130						01/1	9/22 07:30	01/20/22 11:1	0	1
	•									Client Cr	male ID: Me	د ما	Diank
Lab Sample ID: MB 880-17218/5-	A									Client Sa	mple ID: Me		
Matrix: Solid											Prep Typ		
Analysis Batch: 17325	м	з мв									Prep Ba	itch:	17218
Analyte		t Qualifier	RL		MDL	Unit		D	P	repared	Analyzed		Dil Fac
Benzene	< 0.0020	D U	0.00200			mg/Kg		_	-	9/22 13:45	01/20/22 22:4	7	1
Toluene	< 0.0020	D U	0.00200			mg/Kg			01/1	9/22 13:45	01/20/22 22:4	17	1
Ethylbenzene	<0.0020	D U	0.00200			mg/Kg			01/1	9/22 13:45	01/20/22 22:4	17	1
m-Xylene & p-Xylene	<0.0040		0.00400			mg/Kg				9/22 13:45	01/20/22 22:4		1
o-Xylene	< 0.0020		0.00200			mg/Kg				9/22 13:45	01/20/22 22:4		1
Xylenes, Total	< 0.0040		0.00400			mg/Kg				9/22 13:45	01/20/22 22:4		1
	М	3 <i>MB</i>											
Surrogate	%Recover		Limits						P	repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)		·	70 - 130							9/22 13:45	01/20/22 22:4	 17	1
1,4-Difluorobenzene (Surr)	9		70 - 130							9/22 13:45	01/20/22 22:4		1
=													
Lab Sample ID: LCS 880-17218/1	-A							С	lient	Sample	ID: Lab Cont		
Matrix: Solid											Prep Typ		
Analysis Batch: 17325											Prep Ba	itch:	17218
			Spike		LCS						%Rec.		
Analyte			Added	Result	Qua		Unit			%Rec	Limits		
Benzene			0.100	0.08639			mg/Kg			86	70 - 130		
Toluene			0.100	0.09391			mg/Kg			94	70 - 130		
Ethylbenzene			0.100	0.1005			mg/Kg			101	70 - 130		
m-Xylene & p-Xylene			0.200	0.1949			mg/Kg			97	70 - 130		
o-Xylene			0.100	0.09578			mg/Kg			96	70 - 130		
	LCS LC	s											
Surrogate	%Recovery Qu	alifier	Limits										
4-Bromofluorobenzene (Surr)	112		70 - 130										
1,4-Difluorobenzene (Surr)	94		70 - 130										
Lab Sample ID: LCSD 880-17218	/ 2-A						Clie	ent	Sam	nle ID· I	ab Control S	amn	le Dun
Matrix: Solid							U.I.				Prep Typ		
Analysis Batch: 17325											Prep Ba		
Analysis Daton. 17323			Spike	LCSD	105	D					Явес.	non:	RPD
Analyte			Added	Result			Unit		D	%Rec		RPD	Limit
			Audeu	Result	aud		J				70 400		

5

90

70 - 130

Benzene

0.08994

mg/Kg

0.100

35

QC Sample Results

Job ID: 890-1845-1 SDG: Rural Eddy County

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

98

Lab Sample ID: LCSD 880-172 Matrix: Solid Analysis Batch: 17325	218/2- A					Clie	nt Sam	iple ID:		I Sample ype: Tot Batch:	tal/NA
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.1007		mg/Kg		101	70 - 130	7	35
Ethylbenzene			0.100	0.1039		mg/Kg		104	70 - 130	3	35
m-Xylene & p-Xylene			0.200	0.2066		mg/Kg		103	70 _ 130	6	35
o-Xylene			0.100	0.1011		mg/Kg		101	70 - 130	5	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	110		70 - 130								

70 - 130

-	
Lab Sample ID: 880-10289-A-115-F MS	
Matrix: Solid	

Analysis Batch: 17325

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 17325										Batch: 1721	8
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00200	U F2 F1	0.101	0.03789	F1	mg/Kg		38	70 - 130		_
Toluene	<0.00200	U F2 F1	0.101	0.04071	F1	mg/Kg		40	70 - 130		
Ethylbenzene	<0.00200	U F2 F1	0.101	0.03994	F1	mg/Kg		40	70 - 130		
m-Xylene & p-Xylene	<0.00400	U F2 F1	0.201	0.07742	F1	mg/Kg		38	70 - 130		
o-Xylene	<0.00200	U F2 F1	0.101	0.04275	F1	mg/Kg		42	70 - 130		

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: 880-10289-A-115-G MSD Matrix: Solid Analysis Batch: 17325

Analysis Batch: 17325									Prep	Batch:	17218
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F2 F1	0.100	0.02260	F2 F1	mg/Kg		23	70 - 130	51	35
Toluene	<0.00200	U F2 F1	0.100	0.01774	F2 F1	mg/Kg		18	70 - 130	79	35
Ethylbenzene	<0.00200	U F2 F1	0.100	0.02099	F2 F1	mg/Kg		21	70 - 130	62	35
m-Xylene & p-Xylene	<0.00400	U F2 F1	0.200	0.04615	F2 F1	mg/Kg		23	70 - 130	51	35
o-Xylene	<0.00200	U F2 F1	0.100	0.02730	F2 F1	mg/Kg		27	70 - 130	44	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

70 - 130

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

88

82

Lab Sample ID: MB 880-17332/1-A Matrix: Solid Analysis Batch: 17331	МВ	МВ					Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/20/22 08:47	01/20/22 19:44	1
(GRO)-C6-C10									

Eurofins Carlsbad

Released to Imaging: 5/4/2022 11:52:07 AM

Client: WSP USA Inc.

Project/Site: RDX 17-26

QC Sample Results

Job ID: 890-1845-1 SDG: Rural Eddy County

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-17332 Matrix: Solid	/ 1-A									Client Sa	ample ID: M Prep Ty		
Analysis Batch: 17331	-										Prep	Batch:	17332
A maluán		MB MB	DI.			11		_			Analyza		
Analyte		ult Qualifier			MDL			D		repared	Analyze		Dil Fac
Diesel Range Organics (Over C10-C28)	<2	0.0 U	50.0			mg/Kg	3		01/20	0/22 08:47	01/20/22 1	9:44	
OII Range Organics (Over C28-C36)	<5).0 U	50.0			mg/Kg	1		01/2	0/22 08:47	01/20/22 1	9:44	
							,						
	I	MB MB											
Surrogate	%Recov		Limits							repared	Analyze		Dil Fa
1-Chlorooctane		94	70 - 130							0/22 08:47	01/20/22 1		
o-Terphenyl		97	70 - 130						01/2	0/22 08:47	01/20/22 1	9:44	
Lab Sample ID: LCS 880-1733	2/2-1							C	liont	Samplo	ID: Lab Co	ntrol S	Sample
Matrix: Solid									nem	Sample	Prep T		
Analysis Batch: 17331												Batch:	
Anarysis Daton. 17331			Spike	1.05	LCS						%Rec.	Daten	11334
Analyte			Added	Result		ifier	Unit		D	%Rec	Limits		
Gasoline Range Organics			1000	886.3	audi		mg/Kg		_	89	70 - 130		
(GRO)-C6-C10			1000	000.3			mg/ity			09	10 - 130		
Diesel Range Organics (Over			1000	934.1			mg/Kg			93	70 - 130		
C10-C28)							0 0						
	LCS L	cs											
Surrogate	%Recovery		Limits										
1-Chlorooctane	110		70 - 130										
o-Terphenyl	102		70 - 130										
Matrix: Solid Analysis Batch: 17331											Prep T		
			Spike	LCSD	LCS	D						Batch	
Analvte			Spike Added	LCSD Result			Unit		D	%Rec	%Rec.		RPD
-			Spike Added 1000	LCSD Result 1065			Unit mg/Kg		<u>D</u>	%Rec		RPD 18	RPI Limi
Gasoline Range Organics			Added	Result					<u>D</u>		%Rec. Limits	RPD	RPI Limi
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over			Added	Result	Qual				<u>D</u>		%Rec. Limits	RPD	RPI Limi 20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over			Added	Result 1065	Qual		mg/Kg		<u>D</u>	106	%Rec. Limits 70 - 130	RPD 18	RPE Limi 20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCSD 1		Added	Result 1065	Qual		mg/Kg		D	106	%Rec. Limits 70 - 130	RPD 18	RPE Limi 20
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery		Added 1000 1000 <i>Limits</i>	Result 1065	Qual		mg/Kg		<u>D</u>	106	%Rec. Limits 70 - 130	RPD 18	2 17332 RPE Limi 20 20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	<u>%Recovery</u> <u>(</u> 124		Added 1000 1000 <i>Limits</i> 70 - 130	Result 1065	Qual		mg/Kg		<u>D</u>	106	%Rec. Limits 70 - 130	RPD 18	RPE Limi 20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery		Added 1000 1000 <i>Limits</i>	Result 1065	Qual		mg/Kg		<u>D</u>	106	%Rec. Limits 70 - 130	RPD 18	RPE Limi 20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 0 124 120		Added 1000 1000 <i>Limits</i> 70 - 130	Result 1065	Qual		mg/Kg		<u>D</u>	106	%Rec. Limits 70 - 130 70 - 130	RPD 18 22	RPD Limi 20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-10347-A-1	%Recovery 0 124 120		Added 1000 1000 <i>Limits</i> 70 - 130	Result 1065	Qual		mg/Kg		<u>D</u>	106	%Rec. Limits 70 - 130 70 - 130	RPD 18 22 Matrix	RPE Limi 20 20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-10347-A-1 Matrix: Solid	%Recovery 0 124 120		Added 1000 1000 <i>Limits</i> 70 - 130	Result 1065	Qual		mg/Kg		. <u>D</u>	106	%Rec. Limits 70 - 130 70 - 130 Sample ID: Prep T	RPD 18 22 Matrix ype: To	RPE Limi 20 20 20 Spike otal/NA
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-10347-A-1	<u>%Recovery</u> 124 124 120 -G MS	Qualifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130	Result 1065 1170	Qual		mg/Kg		<u>D</u>	106	%Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep Ty Prep	RPD 18 22 Matrix	RPE Limi 20 20 20 Spike otal/NA
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-10347-A-1 Matrix: Solid Analysis Batch: 17331	%Recovery 0 124 120 -G MS Sample S	Qualifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike	Result 1065 1170 MS	Qual *1 MS	ifier	mg/Kg mg/Kg)	106 117 Client \$	%Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190	RPD 18 22 Matrix ype: To	RPE Limi 20 20 20 Spike otal/NA
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-10347-A-1 Matrix: Solid Analysis Batch: 17331 Analyte	%Recovery 0 124 120 -G MS Sample S Result 0	Qualifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added	Result 1065 1170 MS Result	Qual *1 MS Qual	ifier	mg/Kg mg/Kg Unit		D	106 117 Client \$	%Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190	RPD 18 22 Matrix ype: To	RPE Limi 20 20 20 Spike otal/NA
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-10347-A-1 Matrix: Solid Analysis Batch: 17331 Analyte Gasoline Range Organics	%Recovery 0 124 120 -G MS Sample S	Qualifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike	Result 1065 1170 MS	Qual *1 MS Qual	ifier	mg/Kg mg/Kg)	106 117 Client \$	%Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190	RPD 18 22 Matrix ype: To	RPI Limi 20 20 Spike otal/NA
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-10347-A-1 Matrix: Solid Analysis Batch: 17331 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 0 124 120 -G MS Sample S Result 0	Qualifier Gample Qualifier J F1	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added	Result 1065 1170 MS Result	Qual *1 MS Qual F1	ifier	mg/Kg mg/Kg Unit)	106 117 Client \$	%Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190	RPD 18 22 Matrix ype: To	RPE Limi 20 20 20 Spike otal/NA
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-10347-A-1 Matrix: Solid Analysis Batch: 17331 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 0 124 120 -G MS Sample Sample Sample <49.9	Qualifier Gample Qualifier J F1 *1	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 997	Result 1065 1170 MS Result 1520	Qual *1 MS Qual F1	ifier	mg/Kg mg/Kg Unit mg/Kg)	106 117 Client \$ %Rec 150	%Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep Ty Prep %Rec. Limits 70 - 130	RPD 18 22 Matrix ype: To	RPE Limi 20 20 20 Spike otal/NA
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-10347-A-1 Matrix: Solid Analysis Batch: 17331 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 0 124 120 -G MS Sample Kesult 0 <49.9	Qualifier Gample Qualifier J F1 *1	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 997	Result 1065 1170 MS Result 1520	Qual *1 MS Qual F1	ifier	mg/Kg mg/Kg Unit mg/Kg)	106 117 Client \$ %Rec 150	%Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep Ty Prep %Rec. Limits 70 - 130	RPD 18 22 Matrix ype: To	RPE Limi 20 20 20 Spike otal/NA
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-10347-A-1 Matrix: Solid	%Recovery 0 124 120 -G MS Sample Kesult 0 <49.9	Qualifier Sample Qualifier UF1 *1 UF1 *1	Added 1000	Result 1065 1170 MS Result 1520	Qual *1 MS Qual F1	ifier	mg/Kg mg/Kg <u>Unit</u> mg/Kg)	106 117 Client \$ %Rec 150	%Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep Ty Prep %Rec. Limits 70 - 130	RPD 18 22 Matrix ype: To	RPE Limi 20 20 20 Spike otal/NA

890-1845-1

88

o-Terphenyl

70 - 130

QC Sample Results

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid						Ŭ	lient S			Type: To	
Analysia Potoby 17221											
Analysis Batch: 17331	Somala	Sampla	Spike	MED	MSD				%Rec.	Batch:	RP
Analuto		Sample Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Analyte Gasoline Range Organics			996	1598		mg/Kg		158	70 - 130	5	2
(GRO)-C6-C10	~45.5	011	550	1590	11	mg/rtg		150	70 - 150	5	2
Diesel Range Organics (Over	<49.9	U F1 *1	996	1621	F1	mg/Kg		163	70 - 130	6	2
C10-C28)						5 5					
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	109		70 - 130								
o-Terphenyl	90		70 - 130								
lethod: 300.0 - Anions, I Lab Sample ID: MB 880-1733 Matrix: Solid Analysis Batch: 17519		ography						Client S	ample ID: Prep	Method Type: S	
		MB MB									
Analyte		esult Qualifier			MDL Unit		D F	repared	Analyz		Dil Fa
Chloride	<	<5.00 U	5.	00	mg/K	g			01/22/22	17:26	
Lab Sample ID: LCS 880-173 Matrix: Solid Analysis Batch: 17519	338/2-A						Clien	t Sample	ID: Lab Co Prep	ontrol Sa Type: S	
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	253.1		mg/Kg		101	90 - 110		
_ab Sample ID: LCSD 880-17 Matrix: Solid	7338/3-A					Clie	ent San	nple ID:	Lab Contro Prep	ol Sampl Type: S	
Analysia Databy 17510											
Analysis Batch: 17519			Snike	LCSD	LCSD				%Rec		RF
			Spike Added		LCSD Qualifier	Unit	п	%Pec	%Rec.	חפק	
Analyte			Spike Added 250		LCSD Qualifier	Unit mg/Kg	D	%Rec 107	%Rec. Limits 90 - 110	RPD 6	Lin
Analyte Chloride Lab Sample ID: 880-10291-A Matrix: Solid			Added	Result			<u> </u>	107	Limits 90 - 110 Sample ID	6	Lim 2 Spik
Analysis Batch: 17519 Analyte Chloride Lab Sample ID: 880-10291-A Matrix: Solid Analysis Batch: 17519		Sample	Added	Result 268.1			<u>D</u>	107	Limits 90 - 110 Sample ID	6 : Matrix	
Analyte Chloride Lab Sample ID: 880-10291-A Matrix: Solid Analysis Batch: 17519	Sample	Sample Qualifier	Added	Result 268.1 MS	Qualifier		<u>D</u>	107	Limits 90 - 110 Sample ID Prep	6 : Matrix	Lim 2 Spik
Analyte Chloride Lab Sample ID: 880-10291-A Matrix: Solid Analysis Batch: 17519 Analyte	Sample	-	Added	Result 268.1 MS	Qualifier	mg/Kg		107 Client	Limits 90 - 110 Sample ID Prep %Rec.	6 : Matrix	Lim 2 Spik
Analyte Chloride Lab Sample ID: 880-10291-A Matrix: Solid	Sample Result 170	-	Added	Result 268.1 MS Result	Qualifier	mg/Kg	D	107 Client %Rec 100	Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 D: Matrix Sp	6 : Matrix Type: S	Lim Spik olub
Analyte Chloride Lab Sample ID: 880-10291-A Matrix: Solid Analysis Batch: 17519 Analyte Chloride Lab Sample ID: 880-10291-A Matrix: Solid	Sample Result 170	Qualifier	Added	Result 268.1 MS Result 418.5	Qualifier	mg/Kg	D	107 Client %Rec 100	Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 D: Matrix Sp	6 : Matrix Type: So 	Lim 2 Spik olub

Client: WSP USA Inc.

Project/Site: RDX 17-26

Job ID: 890-1845-1 SDG: Rural Eddy County

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 880-17337/1-A	۱									Client S	ample ID: I	Nethod	Blank
Matrix: Solid											Prep	Type: S	Soluble
Analysis Batch: 17523													
		MB MB											
Analyte		esult Qualifier		RL		MDL Unit		D	Pi	repared	Analyz	ed	Dil Fac
Chloride	<	<5.00 U		5.00		mg/K	g				01/22/22	18:36	1
Lab Sample ID: LCS 880-17337/2- Matrix: Solid	A							CI	lient	Sample	ID: Lab Co Prep	ontrol S Type: S	
Analysis Batch: 17523													
-			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits		
Chloride			250		258.4		mg/Kg		_	103	90 - 110		
Lab Sample ID: LCSD 880-17337/3	2. A						CI	ont	Sam	nio ID: I	_ab Contro	l Samn	
Matrix: Solid								ent	Jam	pie ib. i		Type: S	
Analysis Batch: 17523											Tieb	Type. c	olubic
Analysis Datch. 17525			Spike			LCSD					%Rec.		RPD
Analyte			Added			Qualifier	Unit		D	%Rec	Limits	RPD	Limi
			250		271.4	Quaimer	mg/Kg		_	109	90 - 110	5	2(
												-	
Lab Sample ID: 890-1843-A-19-D I	MS									Client	Sample ID:		
Matrix: Solid											Prep	Type: S	Soluble
Analysis Batch: 17523													
	Sample	Sample	Spike		MS	MS					%Rec.		
	Result	Qualifier	Added		Result	Qualifier	Unit		D	%Rec	Limits		
-									_				
Analyte Chloride	238		248		505.9		mg/Kg		_	108	90 - 110		
	238		248		505.9			Clier	nt Sa		: Matrix Sp		-
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid	238		248		505.9			Clier	nt Sa		: Matrix Sp	ike Du Type: S	-
Chloride Lab Sample ID: 890-1843-A-19-E I	238 MSD	Sample	248 Spike			MSD		Clier	 nt Sa		: Matrix Sp		Soluble
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523	238 MSD Sample Result	Sample Qualifier			MSD	MSD Qualifier		Clier	nt Sa		: Matrix Sp Prep		Soluble RPD
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte	238 MSD Sample	•	Spike		MSD			Clier		imple ID	: Matrix Sp Prep %Rec.	Type: S	RPD Limit
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A	238 MSD Sample Result 238	•	Spike Added		MSD Result		Unit	Clier	<u>D</u>	%Rec 92	Watrix Sp Prep %Rec. Limits 90 - 110 Gample ID: I	Type: S	RPD Limit 20
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid	238 MSD Sample Result 238	•	Spike Added		MSD Result		Unit	Clier	<u>D</u>	%Rec 92	Watrix Sp Prep %Rec. Limits 90 - 110 Gample ID: I	Type: S	RPE Limit 20
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid	238 MSD Sample Result 238	•	Spike Added		MSD Result		Unit	Clier	<u>D</u>	%Rec 92	Watrix Sp Prep %Rec. Limits 90 - 110 Gample ID: I	Type: S	RPD Limit 20
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726	238 MSD Sample Result 238	Qualifier	Spike Added	RL	MSD Result 465.2		Unit	Clier	<u>D</u>	%Rec 92	Watrix Sp Prep %Rec. Limits 90 - 110 Gample ID: I	Type: S RPD 8 Method Type: S	RPD Limit 20 Blank Soluble
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Analyte	238 MSD Sample Result 238	Qualifier	Spike Added	RL 5.00	MSD Result 465.2	Qualifier	_ <mark>Unit</mark> mg/Kg		<u>D</u>	%Rec 92 Client S	9: Matrix Sp Prep %Rec. Limits 90 - 110 Gample ID: I Prep	Type: S RPD 8 Method Type: S	RPD Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Analyte Chloride	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added		MSD Result 465.2	Qualifier MDL Unit	_ <mark>Unit</mark> mg/Kg	<u>D</u> .	<u>D</u> Pi	%Rec 92 Client S	2: Matrix Sp Prep 7 %Rec. Limits 90 - 110 Gample ID: I Prep 7 - Analyz 01/26/22 7	Type: S RPD 8 Method Type: S ed 10:14	RPE Limi 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCS 880-17555/2-	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added		MSD Result 465.2	Qualifier MDL Unit	_ <mark>Unit</mark> mg/Kg	<u>D</u> .	<u>D</u> Pi	%Rec 92 Client S	9: Matrix Sp Prep %Rec. Limits 90 - 110 ample ID: I Prep 	RPD 8 Method Type: S ed 10:14 ontrol S	RPD Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCS 880-17555/2-Matrix: Solid	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added		MSD Result 465.2	Qualifier MDL Unit	_ <mark>Unit</mark> mg/Kg	<u>D</u> .	<u>D</u> Pi	%Rec 92 Client S	9: Matrix Sp Prep %Rec. Limits 90 - 110 ample ID: I Prep 	Type: S RPD 8 Method Type: S ed 10:14	RPD Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCS 880-17555/2-Matrix: Solid	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added 248		MSD Result 465.2	Qualifier MDL Unit mg/K	_ <mark>Unit</mark> mg/Kg	<u>D</u> .	<u>D</u> Pi	%Rec 92 Client S	9: Matrix Sp Prep %Rec. Limits 90 - 110 ample ID: I Prep 01/26/22 1D: Lab Co Prep	RPD 8 Method Type: S ed 10:14 ontrol S	RPD Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCS 880-17555/2- Matrix: Solid Analysis Batch: 17726	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added		MSD Result 465.2	Qualifier MDL Unit	_ <mark>Unit</mark> mg/Kg	<u>D</u> .	<u>D</u> Pi	%Rec 92 Client S	9: Matrix Sp Prep %Rec. Limits 90 - 110 ample ID: I Prep 	RPD 8 Method Type: S ed 10:14 ontrol S	RPD Limit 20 Blank Soluble Dil Fac 1 Sample
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Chloride Lab Sample ID: LCS 880-17555/2- Matrix: Solid Analysis Batch: 17726 Analysis Batch: 17726 Analysis Batch: 17726 Analysis Batch: 17726	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added 248		MSD Result 465.2	Qualifier MDL Unit mg/K	g	<u>D</u> .	D Pr	%Rec 92 Client S repared Sample	9: Matrix Sp Prep 7 %Rec. Limits 90 - 110 ample ID: I Prep 7 01/26/22 7 ID: Lab Co Prep 7 %Rec.	RPD 8 Method Type: S ed 10:14 ontrol S	RPD Limit 20 Blank Soluble Dil Fac 1 Sample
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCS 880-17555/2- Matrix: Solid Analysis Batch: 17726 Analyte Chloride Chloride Chloride	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added 248 Spike Added		MSD Result 465.2 LCS Result	Qualifier MDL Unit mg/K	g Unit g Unit mg/Kg	D CI	D Pi lient	%Rec 92 Client S repared Sample %Rec 100	2: Matrix Sp Prep 7 %Rec. Limits 90 - 110 Gample ID: I Prep 7 - Analyz 01/26/22 7 FID: Lab Cc Prep 7 %Rec. Limits 90 - 110	Type: S RPD 8 Method Type: S ed 0:14 S Type: S 	RPD Limit 20 Blank Soluble Dil Fac 1 Sample Soluble
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCS 880-17555/2-Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCS 880-17555/2-	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added 248 Spike Added		MSD Result 465.2 LCS Result	Qualifier MDL Unit mg/K	g Unit g Unit mg/Kg	D CI	D Pi lient	%Rec 92 Client S repared Sample %Rec 100	2: Matrix Sp Prep 7 %Rec. Limits 90 - 110 Gample ID: I Prep 7 Analyz 01/26/22 7 ID: Lab Co Prep 7 %Rec. Limits 90 - 110	Type: S RPD 8 Method Type: S ed 0:14 - ontrol S Type: S - I Samp	RPD Limit 20 Blank Soluble Dil Fac 1 Sample Soluble
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCS 880-17555/2- Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCSD 880-17555/3 Matrix: Solid	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added 248 Spike Added		MSD Result 465.2 LCS Result	Qualifier MDL Unit mg/K	g Unit g Unit mg/Kg	D CI	D Pi lient	%Rec 92 Client S repared Sample %Rec 100	2: Matrix Sp Prep 7 %Rec. Limits 90 - 110 Gample ID: I Prep 7 Analyz 01/26/22 7 ID: Lab Co Prep 7 %Rec. Limits 90 - 110	Type: S RPD 8 Method Type: S ed 0:14 S Type: S 	RPD Limit 20 Blank Soluble Dil Fac 1 Sample Soluble
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid Analysis Batch: 17523 Analyte Chloride Lab Sample ID: MB 880-17555/1-A Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCS 880-17555/2- Matrix: Solid Analysis Batch: 17726 Analyte Chloride Lab Sample ID: LCSD 880-17555/3 Matrix: Solid	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added 248 Spike Added 250		MSD Result 465.2 LCS Result 250.3	Qualifier MDL Unit mg/K	g Unit g Unit mg/Kg	D CI	D Pi lient	%Rec 92 Client S repared Sample %Rec 100	2: Matrix Sp Prep 7 %Rec. Limits 90 - 110 ample ID: I Prep 7 4 ID: Lab Co Prep 7 %Rec. Limits 90 - 110 - ab Contro Prep 7	Type: S RPD 8 Method Type: S ed 0:14 - ontrol S Type: S - I Samp	Coluble RPD Limit 20 Blank Soluble Dil Fac 1 Sample Soluble
Chloride Lab Sample ID: 890-1843-A-19-E I Matrix: Solid	238 MSD Sample Result 238	Qualifier MB MB esult Qualifier	Spike Added 248 Spike Added		MSD Result 465.2 LCS Result 250.3	Qualifier MDL Unit mg/K	g Unit g Unit mg/Kg	D CI	D Pi lient	%Rec 92 Client S repared Sample %Rec 100	2: Matrix Sp Prep 7 %Rec. Limits 90 - 110 Gample ID: I Prep 7 Analyz 01/26/22 7 ID: Lab Co Prep 7 %Rec. Limits 90 - 110	Type: S RPD 8 Method Type: S ed 0:14 - Type: S - I Samp	RPD Limit 20 Blank Soluble Dil Fac 1 Sample Soluble

QC Sample Results

Client: WSP USA Inc.
Project/Site: RDX 17-26

Job ID: 890-1845-1 SDG: Rural Eddy County

Method: 300.0 - Anions, Ion Chromatography

								011-014	0	a second second	0	
ab Sample ID: 880-10439-A	-8-C MS							Client	Sample ID			
atrix: Solid									Prep	Type: So	oluble	
nalysis Batch: 17726	0	•	0						2/ D			
• .	-	Sample	Spike	MS			_	~~ 5	%Rec.			
alyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits			
loride	18100	F1	4950	23170		mg/Kg		102	90 - 110			
b Sample ID: 880-10439-A						Cli	ent Sa	emple IF): Matrix Sp	nike Dun	licato	
atrix: Solid						01	en o			Type: Sc		
nalysis Batch: 17726									1.00	Type. et	0100.0	1
narysis Daton. 17720	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
a h ta	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	Ī
aivie	Result											
			4950		F1	mg/Kg		117	90 - 110	3	20	
	18100			23920	F1	mg/Kg		117	90 - 110	3	20	
					F1	mg/Kg		117	90 - 110	3	20	
•					F1	mg/Kg		117	90 - 110	3	20	
					F1	mg/Kg		117	90 - 110	3	20	
					F1	mg/Kg		117	90 - 110	3	20	
					F1	mg/Kg		117	90 - 110	3	20	
					F1	mg/Kg		117	90 - 110	3	20	
loride					F1	mg/Kg		117	90 - 110	3	20	

PH02

PH02

PH03

PH03

PH04

PH04

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

QC Association Summary

Client: WSP USA Inc. Project/Site: RDX 17-26 Job ID: 890-1845-1 SDG: Rural Eddy County

GC VOA

890-1845-3

890-1845-4

890-1845-5

890-1845-6

890-1845-7

890-1845-8

MB 880-17218/5-A

LCS 880-17218/1-A

LCSD 880-17218/2-A

880-10289-A-115-F MS

Prep Batch: 17131

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
MB 880-17131/5-A	Method Blank	Total/NA	Solid	5035		
Prep Batch: 17218						
Prep Batch: 17218	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
Г.	Client Sample ID PH01	Prep Type Total/NA	Matrix Solid	<u>Method</u> 5035	Prep Batch	

Total/NA

Solid

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

L	880-10289-A-115-G MSD
A	Analysis Batch: 17325

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1845-1	PH01	Total/NA	Solid	8021B	17218
890-1845-2	PH01	Total/NA	Solid	8021B	17218
890-1845-3	PH02	Total/NA	Solid	8021B	17218
890-1845-4	PH02	Total/NA	Solid	8021B	17218
890-1845-5	PH03	Total/NA	Solid	8021B	17218
890-1845-6	PH03	Total/NA	Solid	8021B	17218
890-1845-7	PH04	Total/NA	Solid	8021B	17218
890-1845-8	PH04	Total/NA	Solid	8021B	17218
MB 880-17131/5-A	Method Blank	Total/NA	Solid	8021B	17131
MB 880-17218/5-A	Method Blank	Total/NA	Solid	8021B	17218
LCS 880-17218/1-A	Lab Control Sample	Total/NA	Solid	8021B	17218
LCSD 880-17218/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	17218
880-10289-A-115-F MS	Matrix Spike	Total/NA	Solid	8021B	17218
880-10289-A-115-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	17218

Analysis Batch: 17647

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1845-1	PH01	Total/NA	Solid	Total BTEX	
890-1845-2	PH01	Total/NA	Solid	Total BTEX	
890-1845-3	PH02	Total/NA	Solid	Total BTEX	
890-1845-4	PH02	Total/NA	Solid	Total BTEX	
890-1845-5	PH03	Total/NA	Solid	Total BTEX	
890-1845-6	PH03	Total/NA	Solid	Total BTEX	
890-1845-7	PH04	Total/NA	Solid	Total BTEX	
890-1845-8	PH04	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 17331

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1845-1	PH01	Total/NA	Solid	8015B NM	17332

Eurofins Carlsbad

Page 97 of 110

5

QC Association Summary

Client: WSP USA Inc. Project/Site: RDX 17-26

GC Semi VOA (Continued)

Analysis Batch: 17331 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1845-2	PH01	Total/NA	Solid	8015B NM	17332
890-1845-3	PH02	Total/NA	Solid	8015B NM	17332
890-1845-4	PH02	Total/NA	Solid	8015B NM	17332
890-1845-5	PH03	Total/NA	Solid	8015B NM	17332
890-1845-6	PH03	Total/NA	Solid	8015B NM	17332
890-1845-7	PH04	Total/NA	Solid	8015B NM	17332
890-1845-8	PH04	Total/NA	Solid	8015B NM	17332
MB 880-17332/1-A	Method Blank	Total/NA	Solid	8015B NM	17332
LCS 880-17332/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	17332
LCSD 880-17332/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	17332
880-10347-A-1-G MS	Matrix Spike	Total/NA	Solid	8015B NM	17332
880-10347-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	17332

Prep Batch: 17332

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1845-1	PH01	Total/NA	Solid	8015NM Prep	
890-1845-2	PH01	Total/NA	Solid	8015NM Prep	
890-1845-3	PH02	Total/NA	Solid	8015NM Prep	
890-1845-4	PH02	Total/NA	Solid	8015NM Prep	
890-1845-5	PH03	Total/NA	Solid	8015NM Prep	
890-1845-6	PH03	Total/NA	Solid	8015NM Prep	
890-1845-7	PH04	Total/NA	Solid	8015NM Prep	
890-1845-8	PH04	Total/NA	Solid	8015NM Prep	
MB 880-17332/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-17332/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-17332/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-10347-A-1-G MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-10347-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 17641

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1845-1	PH01	Total/NA	Solid	8015 NM	
890-1845-2	PH01	Total/NA	Solid	8015 NM	
890-1845-3	PH02	Total/NA	Solid	8015 NM	
890-1845-4	PH02	Total/NA	Solid	8015 NM	
890-1845-5	PH03	Total/NA	Solid	8015 NM	
890-1845-6	PH03	Total/NA	Solid	8015 NM	
890-1845-7	PH04	Total/NA	Solid	8015 NM	
890-1845-8	PH04	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 17337

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1845-1	PH01	Soluble	Solid	DI Leach	
MB 880-17337/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-17337/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-17337/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1843-A-19-D MS	Matrix Spike	Soluble	Solid	DI Leach	
890-1843-A-19-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Job ID: 890-1845-1 SDG: Rural Eddy County

Client Sample ID

PH02

PH02

PH03

PH03

PH04

PH04

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

QC Association Summary

Prep Type

Soluble

Client: WSP USA Inc. Project/Site: RDX 17-26

Leach Batch: 17338

Lab Sample ID

890-1845-3

890-1845-4

890-1845-5

890-1845-6

890-1845-7

890-1845-8

MB 880-17338/1-A

LCS 880-17338/2-A

LCSD 880-17338/3-A

880-10291-A-49-G MS

HPLC/IC

Page 99 of 110

Prep Batch

Job ID: 890-1845-1 SDG: Rural Eddy County

Method

DI Leach

Matrix

Solid

11 12 13

8
9

880-10291-A-49-H MSD Analysis Batch: 17519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1845-3	PH02	Soluble	Solid	300.0	17338
890-1845-4	PH02	Soluble	Solid	300.0	17338
890-1845-5	PH03	Soluble	Solid	300.0	17338
890-1845-6	PH03	Soluble	Solid	300.0	17338
890-1845-7	PH04	Soluble	Solid	300.0	17338
890-1845-8	PH04	Soluble	Solid	300.0	17338
MB 880-17338/1-A	Method Blank	Soluble	Solid	300.0	17338
LCS 880-17338/2-A	Lab Control Sample	Soluble	Solid	300.0	17338
LCSD 880-17338/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	17338
880-10291-A-49-G MS	Matrix Spike	Soluble	Solid	300.0	17338
880-10291-A-49-H MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	17338

Analysis Batch: 17523

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1845-1	PH01	Soluble	Solid	300.0	17337
MB 880-17337/1-A	Method Blank	Soluble	Solid	300.0	17337
LCS 880-17337/2-A	Lab Control Sample	Soluble	Solid	300.0	17337
LCSD 880-17337/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	17337
890-1843-A-19-D MS	Matrix Spike	Soluble	Solid	300.0	17337
890-1843-A-19-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	17337

Leach Batch: 17555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1845-2	PH01	Soluble	Solid	DI Leach	
MB 880-17555/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-17555/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-17555/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-10439-A-8-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-10439-A-8-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 17726

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1845-2	PH01	Soluble	Solid	300.0	17555
MB 880-17555/1-A	Method Blank	Soluble	Solid	300.0	17555
LCS 880-17555/2-A	Lab Control Sample	Soluble	Solid	300.0	17555
LCSD 880-17555/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	17555
880-10439-A-8-C MS	Matrix Spike	Soluble	Solid	300.0	17555

QC Association Summary

	•
Client: WSP USA Inc.	Job ID: 890-1845-1
Project/Site: RDX 17-26	SDG: Rural Eddy County

HPLC/IC (Continued)

Analysis Batch: 17726 (Continued)

HPLC/IC (Continue	d)				
Analysis Batch: 17726	(Continued)				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10439-A-8-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	17555

Client: WSP USA Inc. Project/Site: RDX 17-26

Client Sample ID: PH01 Date Collected: 01/13/22 08:50

Date Received: 01/18/22 13:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	17218	01/19/22 13:45	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17325	01/21/22 04:10	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			17647	01/24/22 17:08	AJ	XEN MID
Fotal/NA	Analysis	8015 NM		1			17641	01/24/22 16:33	AJ	XEN MID
lotal/NA	Prep	8015NM Prep			10.01 g	10 mL	17332	01/20/22 08:47	DM	XEN MID
Total/NA	Analysis	8015B NM		1			17331	01/21/22 01:32	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	17337	01/20/22 09:19	СН	XEN MID
Soluble	Analysis	300.0		1			17523	01/22/22 21:47	СН	XEN MID

Client Sample ID: PH01

Date Collected: 01/13/22 08:52

Date Received: 01/18/22 13:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	17218	01/19/22 13:45	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17325	01/21/22 04:30	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			17647	01/24/22 17:08	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			17641	01/24/22 16:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	17332	01/20/22 08:47	DM	XEN MID
Total/NA	Analysis	8015B NM		1			17331	01/21/22 01:53	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	17555	01/24/22 10:16	СН	XEN MID
Soluble	Analysis	300.0		5			17726	01/26/22 15:58	СН	XEN MID

Client Sample ID: PH02

Date Collected: 01/13/22 09:30

Date Received: 01/18/22 13:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	17218	01/19/22 13:45	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17325	01/21/22 04:50	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			17647	01/24/22 17:08	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			17641	01/24/22 16:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	17332	01/20/22 08:47	DM	XEN MID
Total/NA	Analysis	8015B NM		1			17331	01/21/22 02:13	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	17338	01/20/22 09:22	СН	XEN MID
Soluble	Analysis	300.0		1			17519	01/22/22 18:37	CH	XEN MID

Client Sample ID: PH02 Date Collected: 01/13/22 09:32 Date Received: 01/18/22 13:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	17218	01/19/22 13:45	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17325	01/21/22 05:11	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			17647	01/24/22 17:08	AJ	XEN MID

Job ID: 890-1845-1 SDG: Rural Eddy County

Lab Sample ID: 890-1845-1 Matrix: Solid

5 9

Lab Sample ID: 890-1845-2 Matrix: Solid

	3

Lab Sample ID: 890-1845-3

Matrix: Solid

Lab Sample ID: 890-1845-4 Matrix: Solid

Job ID: 890-1845-1

SDG: Rural Eddy County

Lab Chronicle

Client: WSP USA Inc. Project/Site: RDX 17-26

Client Sample ID: PH02

Date Collected: 01/13/22 09:32 Date Received: 01/18/22 13:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			17641	01/24/22 16:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	17332	01/20/22 08:47	DM	XEN MID
Total/NA	Analysis	8015B NM		1			17331	01/21/22 02:34	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	17338	01/20/22 09:22	СН	XEN MID
Soluble	Analysis	300.0		1			17519	01/22/22 18:49	СН	XEN MID

Client Sample ID: PH03

Date Collected: 01/13/22 11:02 Date Received: 01/18/22 13:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	17218	01/19/22 13:45	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17325	01/21/22 05:31	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			17647	01/24/22 17:08	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			17641	01/24/22 16:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	17332	01/20/22 08:47	DM	XEN MID
Total/NA	Analysis	8015B NM		1			17331	01/21/22 02:54	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	17338	01/20/22 09:22	СН	XEN MID
Soluble	Analysis	300.0		1			17519	01/22/22 19:00	СН	XEN MID

Client Sample ID: PH03

Date Collected: 01/13/22 11:05 Date Received: 01/18/22 13:54

Batch Batch Dil Initial Final Batch Prepared Ргер Туре Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.01 g 5 mL 17218 01/19/22 13:45 KL XEN MID Total/NA 8021B 5 mL 5 mL 17325 01/21/22 05:52 KL XEN MID Analysis 1 Total BTEX Total/NA Analysis 1 17647 01/24/22 17:08 AJ XEN MID Total/NA Analysis 8015 NM 17641 01/24/22 16:33 AJ XEN MID 1 Total/NA Prep 8015NM Prep 10.01 g 10 mL 17332 01/20/22 08:47 DM XEN MID Total/NA Analysis 8015B NM 17331 01/21/22 03:14 A.I XEN MID 1 Soluble Leach DI Leach 5.05 g 50 mL 17338 01/20/22 09:22 СН XEN MID Soluble Analysis 300.0 17519 01/22/22 19:12 CH XEN MID 1

Client Sample ID: PH04

Date Collected: 01/13/22 09:50 Date Received: 01/18/22 13:54

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	17218	01/19/22 13:45	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17325	01/21/22 06:12	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			17647	01/24/22 17:08	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			17641	01/24/22 16:33	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.00 g	10 mL	17332 17331	01/20/22 08:47 01/21/22 03:35	DM AJ	XEN MID XEN MID

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-1845-4 Matrix: Solid 5

Lab Sample ID: 890-1845-5 9 Matrix: Solid

Lab Sample ID: 890-1845-6

Lab Sample ID: 890-1845-7

Matrix: Solid

Lab Chronicle

Client: WSP USA Inc. Project/Site: RDX 17-26

Client Sample ID: PH04

Date Collected: 01/13/22 09:50 Date Received: 01/18/22 13:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	17338	01/20/22 09:22	СН	XEN MID
Soluble	Analysis	300.0		1			17519	01/22/22 19:48	СН	XEN MID

Client Sample ID: PH04

Date Collected: 01/13/22 09:52 Date Received: 01/18/22 13:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	17218	01/19/22 13:45	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17325	01/21/22 06:33	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			17647	01/24/22 17:08	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			17641	01/24/22 16:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	17332	01/20/22 08:47	DM	XEN MID
Total/NA	Analysis	8015B NM		1			17331	01/21/22 03:56	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	17338	01/20/22 09:22	СН	XEN MID
Soluble	Analysis	300.0		1			17519	01/22/22 20:00	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

SDG: Rural Eddy County Lab Sample ID: 890-1845-7

Lab Sample ID: 890-1845-8

Job ID: 890-1845-1

Matrix: Solid

Matrix: Solid

10

Job ID: 890-1845-1
SDG: Rural Eddy County

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	Pr	ogram	Identification Number	Expiration Date
xas	NE	ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report, bu	it the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for v
the agency does not o		Matrix	Arrelite	
the agency does not o Analysis Method	fer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

Method Summary

Client: WSP USA Inc. Project/Site: RDX 17-26

Job ID: 890-1845-1 SDG: Rural Eddy County

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Page 105 of 110

Sample Summary

Client: WSP USA Inc. Project/Site: RDX 17-26 Job ID: 890-1845-1 SDG: Rural Eddy County

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1845-1	PH01	Solid	01/13/22 08:50	01/18/22 13:54	0.5	A
890-1845-2	PH01	Solid	01/13/22 08:52	01/18/22 13:54	1	
890-1845-3	PH02	Solid	01/13/22 09:30	01/18/22 13:54	0.5	5
890-1845-4	PH02	Solid	01/13/22 09:32	01/18/22 13:54	1	J
890-1845-5	PH03	Solid	01/13/22 11:02	01/18/22 13:54	0.5	
890-1845-6	PH03	Solid	01/13/22 11:05	01/18/22 13:54	1	
890-1845-7	PH04	Solid	01/13/22 09:50	01/18/22 13:54	0.5	
890-1845-8	PH04	Solid	01/13/22 09:52	01/18/22 13:54	1	
						8
						11
						12
						13

		Environment Testing	sting	Midle	(CEA) XT bu	704-5440. Sa	Midland TX (432) 704-5440. San Antonio. TX (210) 509-3334	riland TX (432) 704-5440 San Antonio. TX (210) 509-3334	Work	Work Order No:	
	Xenco		5	11	aso. TX (915	585-3443. Lu	El Paso. TX (915) 585-3443. Lubbock. TX (806) 794-1296	794-1296			
				Ĥ	bs, NM (575	392-7550, C	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199) 988-3199	~~~~	www.xenco.com Pa	Page of
Project Manager:	Toceoh He	Hernand	dez	Bill to: (if different)	ent)	E H	Rateu		>	mm	ts
Company Name:	4			Company Name:	e:	Xdm	Eneral		Program: UST/PST	UST/PST PRP Brownfields RRC	
Address:	3300 North	A	Street	Address:		5315	Buena	Uista Dr.	State of Project:		
City, State ZIP:	MA	7	705	City, State ZIP:		Carls	Carlsbad, NM	M BBUNK	Reporting: Level II	Level III	🗌 TRRP 🔲 Level IV
Phone:	1	329	Email:	anna	phere	30	sp. com	-	Deliverables: EDD	ADaPT	Other:
Project Name:	80X 17-26		Turn	Turn Around	0			ANALYSIS REQUEST	UEST	۵.	Preservative Codes
ber:	se clerke	12/ +/21:	Adoutine	Rush	Pres. Code					None: NO	NO DI Water: H ₂ O
	Rural Eddy Co	Country	Due Date:			(*	(@			Cool: Cool	ool MeOH: Me
Sampler's Name:	Byey	2 10	TAT starts the the lab, if rect	TAT starts the day received by the lab, if received by 4:30pm		(8) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	d de			HCL:HC H,S0 ₄ :H,	C HNO ₃ :HN
DI F RECEIPT	Temp Blank	NCAX	Wet Ice:	Neo No	ters		-			H3PO 4: HP	
Samples Received Intact:	-	Thermometer ID:	er ID:	Jaw	- S	_	_			NaHSC	NaHSO 4: NABIS
Cooler Custody Seals:	Ye	Correction Factor:	actor:	2.0-			_			Na ₂ S ₂	Na 25 203: NaSO 3
Sample Custody Seals:	Yes No N/A	Temperature Reading:	e Reading:	2	Т		-	890-1845 Chain of Custody	f Custody	Zn Ace	Zn Acetate+NaOH: Zn
Total Containers:	>	Corrected T	Corrected Temperature:	21	Т		_	-		NaOH	NaOH+Ascorbic Acid: SAPC
Sample Identification	cation Matrix	Date Sampled	Time Sampled	Depth Grab/ Comp	/ #of p Cont	BIE				S	Sample Comments
ESCOB PHON	1 3	1/13/22	Ø85Ø	d.S' Grab	- 9		/			(cost	Cost Curter #:
	1		\$852	1 1	-					1000	1002111001
2.94Hd	2	_	\$93\$	6.5'	-				_		
2 AHd	2		\$932	.1	-	\geq		-			
PHP83	3		1192	0.5'	-	\leq		_			
PH03	2		1105	1	-			-		_	
PH441			\$950	\$.5'	-			-			
PAHA	→	~	2.560	>	-						
-							K		_		
						7	0.		_		
Total 200.7 / 6010 rcle Method(s) ar	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed		8RCRA 13PPM TCLP / SPLP	A 13PPM Texas 11 AI 5 TCLP / SPLP 6010 : 8RCRA	AI Sb /	vs Ba Be As Ba Be	B Cd Ca C cd Cr Co	Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni v Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	K Se	Ag SiO ₂ Na Sr Tl Sn Hg: 1631 / 245.1 / 7470	U V Zn /7471
e: Signature of this docur Mce. Eurofins Xenco will rofins Xenco. A minimum	Active: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the coamples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to clicumstances beyond the control of service. A minimum charge of \$85.00 will be applied to each ample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ples constitutes a ples and shall not d to each project a	valid purchase ord assume any respo ind a charge of \$5	er from client comp nsibility for any loss for each sample sut	any to Eurofin es or expense: mitted to Euro	Xenco, its affi Incurred by th fins Xenco, bu	ates and subcontr e client if such loss not analyzed. The	client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions for any losses or expenses incurred by the clientif auch losses are due to clicrumstances beyond the control n sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously nego	rms and conditions beyond the control ess previously negotiated.		
Relinquished by: (Signature)	Signature)	Received	Received by: (Signature)	(2		Date/Time	Rel	Relinquished by: (Signature)	ture) Received I	Received by: (Signature)	Date/Time
(yman 6	Juen 1	A	R		3/11	1947 1	5U 2				
	· · · ·	2			-		4				-
					-		4				

Released to Imaging: 5/4/2022 11:52:07 AM

Job Number: 890-1845-1 SDG Number: Rural Eddy County

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1845 List Number: 1

Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 890-1845-1 SDG Number: Rural Eddy County List Source: Eurofins Midland

List Creation: 01/19/22 01:26 PM

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1845 List Number: 2 Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	94784
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Create By		Condition Date
jnob	i Closure Report Approved. Please implement 19.15.29.13 NMAC when completing P&A.	5/4/2022

CONDITIONS

Action 94784