District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	nAPP2036555459
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380
Contact Name Kyle Littrell	Contact Telephone 432-221-7331
Contact email Kyle_Littrell@xtoenergy.com	Incident # (assigned by OCD)
Contact mailing address 522 W. Mermod, Carlsbad, NM 88220	

Location of Release Source

(NAD 83 in decimal degrees to 5 decimal places)

Longitude

-103.78562

Latitude 32.18333

Site Name PLU 199	Site Type Battery
Date Release Discovered 12/20/2020	API# (if applicable)

Unit Letter	Section	Township	Range	County
N	28	24S	31E	Eddy

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

X Crude Oil	Volume Released (bbls) 28	Volume Recovered (bbls) 28
X Produced Water	Volume Released (bbls) 32	Volume Recovered (bbls) 32
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release LO reported a release of fluid into lined containment from the oil tank. A vacuum truck was dispatched and recovered all fluid. a 48-hour liner inspection notice was sent to NMOCD District 2. The liner was visually inspected and determined not to be operating as designed. A third-party contractor has been retained for remediation activities.		

Page 2

NA

Oil Conservation Division

Incident ID	nAPP2036555459
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?	
release as defined by	A release equal to or greater than 25 barrels.	
19.15.29.7(A) NMAC?		
Yes 🗌 No		
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?		
Yes, by Adrian Baker to Bratcher, Mike, EMNRD'; Venegas, Victoria, EMNRD; Hamlet, Robert, EMNRD;		
emily.hernandez@state.nm.us; Morgan, Crisha A; BLM_NM_CFO_Spill@blm.gov on Monday, December 21, 2020 9:07 AM via email.		

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

It impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Kyle Littrell	Title: SH&E Supervisor
Signature:	Date: Telephone:
OCD Only	
Received by:	Date:

Received by OCD: 3/19/2021 9:36:20 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 3 of 1:	52
Incident ID	nAPP2036555459	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔽 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
 Data table of soil contaminant concentration data
- $\mathbf{\nabla}$ Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- ✓ Topographic/Aerial maps
- ☑ Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Received by OCD: 3/19/2021 9:36:20	AM State of New Mexico		Page 4 of
	Dil Conservation Division	Incident ID District RP Facility ID Application ID	nAPP2036555459
regulations all operators are required to republic health or the environment. The activation failed to adequately investigate and reme addition, OCD acceptance of a C-141 repand/or regulations. Printed Name: Kyle Littrell Signature: Market Activation Statement Signature: Market Activation Statement State	that Date:	rform corrective actions for rel- lieve the operator of liability sh er, surface water, human health or compliance with any other fe E Supervisor	eases which may endanger ould their operations have or the environment. In
email: Kyle_Littrell@xtoenergy.con	n Telephone: 4	32-221-7331	
OCD Only			

Oil Conservation Division

Incident ID	nAPP2036555459
District RP	
Facility ID	
Application ID	

Page 5 of 152

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. _____ _{Title:} SH&E Supervisor Printed Name: Kyle Littrell Date: DATE MISSING Telephone: 432-221-7331 **OCD Only** Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Jennifer Nobui Date: 06/08/2022 Closure Approved by: Printed Name: Jennifer Nobui Title: Environmental Specialist A

Page 6

WSP USA

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

March 15, 2021

District II New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request Poker Lake Unit 199 Release Date: December 20, 2020 Incident Number nAPP2036555459 Eddy County, New Mexico

To Whom it May Concern:

WSP USA Inc (WSP), on behalf of XTO Energy, Inc. (XTO), presents the following Closure Request detailing site assessment and soil sampling activities at the Poker Lake Unit 199 (Site) in Unit N, Section 28, Township 24 South, Range 31 East, in Eddy County, New Mexico (Figure 1). The purpose of the site assessment and soil sampling activities was to assess for the presence or absence of impacts to soil resulting from a release of crude oil and produced water within lined containment at the Site. Based on field observations, field screening activities, and soil sample laboratory analytical results, XTO is submitting this Closure Request describing site assessment and delineation activities that have occurred and requesting no further action (NFA) for Incident Number nAPP2036555459.

RELEASE BACKGROUND

On December 20, 2020, the lease operator discovered a release of approximately 28 barrels (bbls) of crude oil and 32 bbls of produced water into lined containment at the Site. A vacuum truck was immediately dispatched to the Site to recover free-standing fluids; all 28 bbls of crude oil and 32 bbls of produced water were recovered. A 48-hour advance notice of liner inspection was provided via email to the New Mexico Oil Conservation Division (NMOCD) District II office. A liner integrity inspection was conducted by XTO personnel following the fluid recovery and upon inspection, the liner was determined to be insufficient. XTO reported the release to the NMOCD on a Release Notification Form C-141 on December 30, 2020. The release was assigned Incident Number nAPP2036555459.

SITE CHARACTERIZATION

WSP characterized the Site according to Table 1, *Closure Criteria for Soils Impacted by a Release*, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is estimated to be greater than 100 feet below ground

District II Page 2

surface (bgs) based on existing water well data and newly acquired data from soil borings drilled by XTO for determination of regional groundwater depth:

- The closest permitted groundwater well with depth to groundwater data is United States Geological Survey (USGS) well 321034103465501, located approximately 0.49 miles south-southeast of the Site. The groundwater well was most recently measured in March 1959 and has a reported depth to groundwater of 474 feet bgs and a total depth of 740 feet bgs. Ground surface elevation at the groundwater well location is 3,461 feet above mean sea level (amsl), the same elevation as the Site.
- The next closest permitted well is New Mexico Office of the State Engineer (NMOSE) well C 04479, drilled by XTO on October 9, 2020. The well is located approximately 1.20 miles south-southwest of the Site. Using a truck mounted drill rig equipped with hollow stem auger, the soil boring was advanced to a total depth of 110 feet bgs. The borehole was left open for over 72 hours to allow for potential slow infill of groundwater. After the 72hour waiting period without observing groundwater, it was confirmed that groundwater was greater than 110 feet bgs. The borehole was properly abandoned with hydrated bentonite chips. Ground surface elevation at the soil boring location is 3,452 feet amsl, which is approximately 9 feet lower in elevation than the Site.
- There are two additional NMOSE wells within a 3-mile radius of the Site that indicate regional depth to groundwater is greater than 100 feet bgs (C 04478 and C 04499). These wells were drilled by XTO during 2020 and 2021 to evaluate regional depth to water in the area. All wells used for depth to groundwater determination are depicted on Figure 1 and the referenced well records are provided in Attachment 1.

The closest continuously flowing water or significant watercourse to the Site is an unnamed watercourse, located approximately 4.27 miles west of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg

District II Page 3

- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

SITE ASSESSMENT AND DELINEATION SOIL SAMPLING ACTIVITIES

On January 26, 2021, WSP personnel were at the Site to evaluate the release extent based on information provided on the Form C141 and visual observations. WSP personnel reviewed and verified the Form C-141 incident description (release source and release location). Delineation activities were warranted based on the visual breach in the containment liner.

On February 3, 2021, WSP personnel returned to the Site to conduct delineation activities. One borehole (BH01) was advanced via hand auger at the location of the breach in the liner to assess for the presence or absence of impacted soil. Four additional boreholes (BH02 through BH05) were advanced around the outside of the lined containment to confirm lateral delineation. Boreholes BH01 through BH05 were advanced to a depth of 4 feet bgs. Soil from the boreholes was field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photo-ionization detector (PID) and Hach[®] chloride QuanTab[®] test strips, respectively. Two delineation soil samples were collected from each borehole at depths of 2 feet bgs and 4 feet bgs. Field screening results and observations for the borehole and delineation soil sample locations are depicted on Figure 2. Photographic documentation of the site assessment and delineation activities are included in Attachment 3. Following delineation activities, the tear in the liner was bonded and repaired by XTO to restore the integrity of the liner.

The delineation soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Xenco Laboratories (Eurofins Xenco) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

SOIL ANALYTICAL RESULTS

Laboratory analytical results for the delineation soil samples collected from boreholes BH01 through BH05 indicated that benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. Laboratory analytical results are summarized in Table 1 and laboratory analytical reports are included as Attachment 4.

District II Page 4

CLOSURE REQUEST

Following the failed liner integrity inspection at the Site, WSP personnel advanced one borehole (BH01) at the location of the tear in the liner to assess for the presence or absence of soil impacts resulting from the December 20, 2020 crude oil and produced water release within lined containment. Four additional boreholes were advanced around the containment to confirm lateral delineation of the release. Delineation soil samples were collected from each borehole at depths of approximately 2 feet and 4 feet bgs. Laboratory analytical results indicated that benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria in all delineation soil samples. The release was contained laterally by the lined containment and all released fluids were recovered during initial response activities. The tear in the liner was subsequently repaired.

Based on initial response efforts, absence of elevated field screening results, and soil sample laboratory analytical results compliant with the Closure Criteria directly below the tear in the liner, XTO respectfully requests NFA for Incident Number nAPP2036555459.

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096.

Sincerely,

WSP USA Inc.

Fatima Smith Assistant Consultant, Geologist

Ashley L. ager

Ashley L. Ager, P.G. Managing Director, Geologist

District II Page 5

cc: Kyle Littrell, XTO Bureau of Land Management

Attachments:

- Figure 1 Site Location Map
- Figure 2 Delineation Soil Sample Locations
- Table 1Soil Analytical Results
- Attachment 1 Well and Plugging Records
- Attachment 2 Lithologic/Soil Sampling Log
- Attachment 3 Photographic Log
- Attachment 4 Laboratory Analytical Reports

Received by OCD: 3/19/2021 9:36:20 AM

FIGUR

Released to Imaging: 6/8/2022 8:54:45 AM

Released to Imaging: 6/8/2022 8:54:45 AM

P:\XTO Energy\GIS\MXD\012921008_PLU 199\012921008_FIG01_SL_RECEPTOR_2021.mxd

Received by OCD: 3/19/2021 9:36:20 AM

TABLES

Released to Imaging: 6/8/2022 8:54:45 AM

Table 1

Soil Analytical Results Poker Lake Unit 199 Incident Number nAPP2036555459 XTO Energy, Inc Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 Clo	osure Criteria (NMA	AC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000
Delineation Samples										
BH01	02/03/2021	2	< 0.00198	< 0.00198	<50.0	<50.0	<50.0	<50.0	<50.0	1,160
BH01	02/03/2021	4	< 0.00199	< 0.00199	<50.0	<50.0	<50.0	<50.0	<50.0	197
BH02	02/03/2021	2	< 0.00199	< 0.00199	<50.3	<50.3	<50.3	<50.3	<50.3	10.9
BH02	02/03/2021	4	< 0.00198	< 0.00198	<50.0	<50.0	<50.0	<50.0	<50.0	11.6
BH03	02/03/2021	2	< 0.00200	< 0.00200	<50.2	<50.2	<50.2	<50.2	<50.2	25.9
BH03	02/03/2021	4	< 0.00200	< 0.00200	<49.8	<49.8	<49.8	<49.8	<49.8	70.7
BH04	02/03/2021	2	< 0.00199	< 0.00199	<49.9	<49.9	<49.9	<49.9	<49.9	10.5
BH04	02/03/2021	4	< 0.00201	< 0.00201	<49.9	<49.9	<49.9	<49.9	<49.9	13.3
BH05	02/03/2021	2	< 0.00199	< 0.00199	<50.0	<50.0	<50.0	<50.0	<50.0	10.2
BH05	02/03/2021	4	< 0.00200	< 0.00200	<49.8	<49.8	<49.8	<49.8	<49.8	<9.96

Notes

ft - feet/foot

mg/kg - milligrams per kilograms

BTEX - benzene, toluene, ethylbenzene, and total xylenes

TPH - total petroleum hydrocarbons

DRO - diesel range organics

GRO - gasoline range organics

ORO - motor oil range organics

NMOCD - New Mexico Oil Conservation Division

NMAC - New Mexico Administrative Code

< - indicates result is less than the stated laboratory method practical quantitation limit

NE - Not Established

BOLD - indicates results exceed the higher of the background sample result or applicable regulatory standard

Received by OCD: 3/19/2021 9:36:20 AM

Released to Imaging: 6/8/2022 8:54:45 AM

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS	Water	Resources	

Data Category: Groundwater Geographic Area: United States

GO

GO

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- <u>Full News</u> 🔊

Groundwater levels for the Nation

Search Results -- 1 sites found

site_no list =

• 321034103465501

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321034103465501 24S.31E.33.231113

Available data for this site Groundwater: Field measurements 🗸

Eddy County, New Mexico Hydrologic Unit Code 13070001 Latitude 32°10'38.2", Longitude 103°46'53.0" NAD83 Land-surface elevation 3,461.00 feet above NGVD29 The depth of the well is 740 feet below land surface. This well is completed in the Rustler Formation (312RSLR) local aquifer.

Output formats

Table of data

Tab-separated data

Graph of data

Reselect period

Breaks in the plot represent a gap of at least one year between field measurements. <u>Download a presentation-quality graph</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2021-01-26 15:49:13 EST 1.29 0.56 nadww01

2904 W 2nd St. Roswell, NM 88201 volce: 575.624.2420 fax: 575.624.2421 www.atkinseng.com

10/28/2020

DII-NMOSE 1900 W 2nd Street Roswell, NM 88201

Hand Delivered to the DII Office of the State Engineer

Re: Well Record C-4479 Pod1

To whom it may concern:

Attached please find a well record and a plugging record, in duplicate, for a one (1) soil borings, C-4479 Pod1.

If you have any questions, please contact me at 575.499.9244 or lucas@atkinseng.com.

Sincerely,

Groon Whodow

Lucas Middleton

Enclosures: as noted above

2.527.00 23222.00 3

PAGE 1 OF 2

WELL TAG ID NO.

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

_											
NO	OSE POD NO. POD1 (BH		.)		WELL TAG ID NO n/a	0.		OSE FILE NO() C-4479	S).		
GENERAL AND WELL LOCATION	WELL OWNER							PHONE (OPTI	ONAL)		
Ę	WELL OWNE	R MAILING	ADDRESS					CITY		STATE	ZIP
WELI	6401 Holida							Midland		TX 79707	
R	WELL		DE	GREES	MINUTES	SECON					
AL /	LOCATION	IA	TITUDE	32°	9'	55.0	^{6"} N		REQUIRED: ONE TEN	TH OF A SECOND	
VER	(FROM GPS	⁵⁾ 10	NGITUDE	-103°	14'	20.4	5" W	* DATUM REC	QUIRED: WGS 84		
GEL	DESCRIPTIO	N RELATI	IG WELL LOCATION TO	STREET ADDR	ESS AND COMMO	N LANDM	RKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAILABLE	
I. (NE L4 Sec.	04 T25S	R31E								
	LICENSE NO.		NAME OF LICENSED			11.75			NAME OF WELL DRI		_
	124	9		J	ackie D. Atkin	S			Atkins Eng	ineering Associates,	Inc.
	DRILLING ST		DRILLING ENDED		MPLETED WELL (LE DEPTH (FT)	DEPTH WATER FIRS	ST ENCOUNTERED (FT))
	10/09/2	2020	10/09/2020	tempor	ary well mater			110		n/a	
N	COMPLETED	WELL IS:	ARTESIAN	🔽 DRY HOL	HOLE SHALLOW (UNCONFINED)			STATIC WATER LEV	EL IN COMPLETED WI n/a	ELL (FT)	
OIL	DRILLING FLUID: AIR MUD ADDITIVES - SPECIFY:										
2. DRILLING & CASING INFORMATION	DRILLING METHOD: 7 ROTARY HAMMER CABLE TOOL OTHER						R – SPECIFY:	Hollo	w Stem Auger		
INFC	DEPTH (feet bgl)	BORE HOLE	CASING	MATERIAL AN	D/OR	CA	SING	CASING	CASING WALL	SLOT
Ŋ	FROM TO		DIAM	(include e	GRADE each casing string	e, and	CONN	VECTION	INSIDE DIAM.	THICKNESS	SIZE
ISE:			(inches)	notes	sections of screen		(add coupl	YPE ing diameter)	(inches)	(inches)	(inches)
& C	0	110	±8.5	1	Boring- HSA						-
BN											
III											
DR.											
~											
									-		
			-								
	DEPTH (feet hal)	DODE VIOLE	T 74	ST ANNULAR S	EAT MAY			AMOUNT) A DETERMINE	
F	FROM	TO	BORE HOLE DIAM. (inches)	1	VEL PACK SIZ				(cubic feet)	METHO PLACE	
ERL	TROM	10						-			
ITA											
RM											
DILA									in an	11 0 4 01 11 02	1.1
3. ANNULAR MATERIAL									and the second s	nt Eliza and Substant Engel State - South	
3. A											
)
FOR	OSE INTERI	NAL USE						WR-2	WELL RECORD	& LOG (Version 06/3	90/17)
	INO				POD N	0		TRN 1	0		

LOCATION

	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL E R-BEARING CAVITIES O plemental sheets to fully do	R FRACTU	JRE ZONES	WAT BEAR (YES)	ING?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	4	4	Sand, M	ledium grained , well-graded	Red-Brow	m	Y	√ N	
	4	20	16		aliche, poorly consolidated.			Y	√ N	
	20	24	4		ledium grained , well-graded		zn.	Y	√ N	
	24	35	9		plasticity, some sand and c			Y	√ N	
	35	40	5		rained , poorly-graded, som			Y	√ N	
	40	54	14		ined , well-graded, some cla			Y	√ N	
4. HYDROGEOLOGIC LOG OF WELL		54 83 29 Sand, Medium-grained, well-graded, some clay, moist Red-Brown						Y	√ N	
JF W	83	110	27		well-graded, clay, caliche fr	•.		Y	√ N	
ğ		110		Solid, Barge granter,				Y	N	
CL									N	
OGI									N	
TO								Y Y	N	
0CI								Y	N	
YDR								Y	N	
4. H						Y	N			
							Y	N		
								Y	N	
								Y	N	
								Y	N	
		<u>.</u>						Y	N	
								Y	N	
	NOTIOD I			OF WATER DEADING	COTDATA.		то	TAL ESTIN		
		-		OF WATER-BEARIN				ELL YIELD		0.00
			IR LIFT	BAILER OT	HER – SPECIFY:					
NO	WELL TES	T TEST	RESULTS - ATT T TIME, END TI	ACH A COPY OF DAT ME, AND A TABLE SH	A COLLECTED DURING IOWING DISCHARGE AN	WELL TES D DRAWI	STING, INCLUE DOWN OVER T	DING DISCI HE TESTIN	HARGE I IG PERIC	METHOD, D.
NOISIN	MISCELLA	NEOUS INF	ORMATION: T.		le somewad and the soil h	orina kaa	rfilled using dr	ill outtings	from to	al denth to ten
TEST; RIG SUPERV			fe	et below ground surfa	als removed and the soil b ce, then hydrated bentoni	te chips fi	om ten feet bel	ow ground	l surface	to surface.
INS :			L	ogs adapted from LTE	on-site geologist.					
RIG										
EST;	DDINT NAA		DILL DIC SUDEL	VISOD(S) TUAT DOO	VIDED ONSITE SUPERVI	SION OF V	TELL CONSTRI	ICTION O	THER TH	
5. TI			NILL NIG SUPER		VIDED ONSITE SOFEK VI	51010 01	ELL CONSTRU	Jenon o		AIT MODITOLL.
	Shane Eldri	uge								
URE	CORRECT J	RECORD O	F THE ABOVE I	DESCRIBED HOLE AN	EST OF HIS OR HER KNO D THAT HE OR SHE WIL PLETION OF WELL DRIL	L FILE TH	AND BELIEF, IS WELL RECO	THE FORE ORD WITH	GOING I THE STA	S A TRUE AND ATE ENGINEER
SIGNAT	CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECO AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING: Jack Atkins Jackie D. Atkins								5/2020	
¢.	8	SIGNAT	URE OF DRILLE	R / PRINT SIGNEE	NAME				DATE	
										1 06/02/2017
	R OSE INTER	NAL USE			POD NO.		VR-20 WELL R RN NO.	ECORD &	LOG (Ve	rsion 06/30/2017)
	E NO.	_			TODINO.					PAGE 2 OF 2

2020-10-26_C-4479POD1_OSE_Well Record and Log-147-forsign

Final Audit Report

2020-10-27

Created:	2020-10-27
By:	Lucas Middleton (lucas@atkinseng.com)
Status:	Signed
Transaction ID:	CBJCHBCAABAA7SkWQIYYffb0w8t6xJlcqiH4I3eFqNWU

"2020-10-26_C-4479POD1_OSE_Well Record and Log-147-fors ign" History

- Document created by Lucas Middleton (lucas@atkinseng.com) 2020-10-27 - 3:14:56 PM GMT- IP address: 69.21.248.123
- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2020-10-27 - 3:15:10 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com) 2020-10-27 - 3:23:09 PM GMT- IP address: 74.50.153.115
- Document e-signed by Jack Atkins (jack@atkinseng.com) Signature Date: 2020-10-27 - 3:23:58 PM GMT - Time Source: server- IP address: 74.50.153.115
- Agreement completed. 2020-10-27 - 3:23:58 PM GMT

THE OF OF 25 DOLD MONTH

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GENERAL / WELL OWNERSHIP:

State	Engineer Well Number:	-4479-POD1							
Well	owner: XTO ENERGY (K	yle Littrell)			_	Phone	No.: 432	.682.8873	
Maili	ing address: 6401 Holiday	Hill Dr.							
City:	Midland		State:		Т	exas		_ Zip code	:
<u>II. V</u>	VELL PLUGGING INFO	DRMATION:							
1)	Name of well drilling of	company that plugge	ed well: _	lackie D. /	Atkins (/	Atkins En	gineering	Associates	Inc.)
2)	New Mexico Well Dri	ller License No.:	249				Expira	tion Date:	04/30/21
3)	Well plugging activitie Shane Eldridge	es were supervised b	y the follo	wing wel	l driller((s)/rig sup	pervisor(s)	:	
4)	Date well plugging beg	gan: 10/15/2020		_ Date	well plu	igging co	ncluded:	10/15/202	0
5)	GPS Well Location:	Latitude: Longitude:	32 -103	_deg,	9 14	min, _ min, _		_ sec _ sec, WGS	84
6)	Depth of well confirme by the following mann		igging as:	84	ft be	low grou	nd level (t	ogl),	
7)	Static water level meas	sured at initiation of	plugging:	n/a	ft bg	;l			
8)	Date well plugging pla	n of operations was	approved	by the St	ate Engi	neer: 0	9/22/2020	-	
9)	Were all plugging activ differences between the	vities consistent with e approved plugging	h an appro g plan and	ved plugg the well a	ing plar is it was	1? plugged	Yes (attach ad	If not, j ditional pag	please describe ses as needed):
								3a - 367 23	5 2 0 2 C PASI _ 5

Version: September 8, 2009 Page 1 of 2 10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
-	0-10' Hydrated Bentonite	Approx. 31 gallons	29 gallons	Augers	
	10'-110' Drill Cuttings	Approx. 294 gallons	294 gallons	Boring	
-					
n			BY AND OBTAIN		
III SICN	ATTIDE.	cubic feet x 7.4 cubic yards x 201.9	1805 = gallons 97 = gallons		21 DOT 23 E 20 M OF

For each interval plugged, describe within the following columns:

III. SIGNATURE:

I, <u>Jackie D. Atkins</u>, say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Jack Atkins 10/26/20

Signature of Well Driller

Date

Version: September 8, 2009 Page 2 of 2

2020-10-26_C4479-POD1_WD-11 Plugging Record-147-forsign

Final Audit Report

2020-10-27

Created:	2020-10-27
By:	Lucas Middleton (lucas@atkinseng.com)
Status:	Signed
Transaction ID:	CBJCHBCAABAADII8PLyW6YcTZmvatQ-KBB5xAD-6_ZF5

"2020-10-26_C4479-POD1_WD-11 Plugging Record-147-forsign " History

- Document created by Lucas Middleton (lucas@atkinseng.com) 2020-10-27 - 3:15:22 PM GMT- IP address: 69.21.248.123
- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2020-10-27 3:15:34 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com) 2020-10-27 - 3:24:15 PM GMT- IP address: 74.50.153.115
- Document e-signed by Jack Atkins (jack@atkinseng.com) Signature Date: 2020-10-27 - 3:25:08 PM GMT - Time Source: server- IP address: 74.50.153.115
- Agreement completed. 2020-10-27 - 3:25:08 PM GMT

1880개 다른 29 242 5m3 18

2904 W 2nd St. Roswell, NM 88201 volce: 575.624.2420 fax: 575.624.2421 www.atkinseng.com

10/28/2020

DII-NMOSE 1900 W 2nd Street Roswell, NM 88201

Hand Delivered to the DII Office of the State Engineer

Re: Well Record C-4478 Pod1

To whom it may concern:

Attached please find a well record and a plugging record, in duplicate, for a one (1) soil borings, C-4478 Pod1.

If you have any questions, please contact me at 575.499.9244 or lucas@atkinseng.com.

Sincerely,

Grow Middle

Lucas Middleton

Enclosures: as noted above

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

N	OSE POD NO POD1 (B)	•	.)		WELL TAG ID NO. n/a			OSE FILE NO(C-4478	S).			
DCATIC	WELL OWNE XTO Energ							PHONE (OPTI	ONAL)			
VELL LO	WELL OWNE 6401 Holid							CITY Midland		state TX	79707	ZIP
GENERAL AND WELL LOCATION	WELL LOCATIO (FROM GP		IITUDE	GREES 32°	MINUTES 11'	SECON 22.5	57" N	* ACCURACY	Y REQUIRED: ONE TENTH OF A SECOND			
NE			NGITUDE	-103°	49'							
1. GF	DESCRIPTIC SW SE NE		ig well location to F24S R30E	STREET ADDI	RESS AND COMMON	LANDM	ARKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WHI	ERE AVAI	LABLE	
	LICENSE NO 124		NAME OF LICENSED		Jackie D. Atkins				NAME OF WELL DRI Atkins Eng		MPANY Associates, I	nc.
				le depth (FT) 110	DEPTH WATER FIRS	T ENCOU n/a	NTERED (FT)					
N	COMPLETED WELL IS: ARTESIAN 7 DRY HOL				LE T SHALLOW	W (UNCO	NFINED)		STATIC WATER LEV	EL IN CO n/a	MPLETED WE	LL (FT)
OIII	DRILLING FI	LUID:	AIR	MUD	ADDITIVE	es – spec	CIFY:					
DRILLING METHOD: 7 ROTARY		ROTARY	HAMME	R CABLE TO	DOL	C OTHE	R – SPECIFY:	Hollo	w Stem	Auger		
INFC	DEPTH	(feet bgl)	BORE HOLE	CASING	MATERIAL AND	/OR	C/	ASING	CASING	CASE	NG WALL	SLOT
2. DRILLING & CASING INFORMATION	FROM	TO	DIAM (inches)		GRADE each casing string, a sections of screen)	and	CONNECTION TYPE (add coupling diameter)		INSIDE DIAM. (inches)		CKNESS nches)	SIZE (inches)
& C	0	110	±8.5		Boring- HSA							
5NI,												
RILI												
2. D												
			_		_							
	DEPTH	(feet bgl)	BORE HOLE		IST ANNULAR SE				AMOUNT		METHO	
ANNULAR MATERIAL	FROM	TO	DIAM, (inches)	GRA	VEL PACK SIZE-	RANGI	E BY INTE	ERVAL	(cubic feet)		PLACEN	IENI
LTEI										_		
X M/												
ILAI			_									
INN										- 240	COAL REF.	ing jan
3. A												
	1											
	OSE INTER	NAL USE							0 WELL RECORD	LOG (Version 06/3	0/17)
	E NO.				POD NO.	•		TRN			D.C.	1.07.0
LOC	ATION							WELL TAG I	D NO.		PAGE	IOF2

•

	DEPTH (f	eet bgl)								ESTIMATED
			THICKNESS		D TYPE OF MATERIA R-BEARING CAVITII				TER RING?	YIELD FOR WATER-
	FROM	то	(feet)		plemental sheets to ful				/ NO)	BEARING
									<i>(</i>))	ZONES (gpm)
	0	3	3		fine-grained, poorly-gra			Y	√ N	
	3	5	2		vel, 20-30 mil, well gra			Y	√ N	
	5	13	8		with some gravel (5-20			Y	√ N	
	13	24	9	Sand, fin	e-grained, well-graded	ome silt, Tan	Red	Y	√ N	
	24	34	10	Sand, Medi	ium-grained, well-grade	l some silt, Ta	n/Red	Y	√N	
В	34	44	10	Sand, Large	e-grained, well-graded s	ome silt, Dark	Brown	Y	√ N	
4. HYDROGEOLOGIC LOG OF WELL	44	110	66	Sand, fine-grained, wel	ll-graded, some clay, mo	ist, caliche fra	gments Red/Bro	wn Y	√N	
OF								Y	N	
00									N	
L DE								Y	N	
ΓΟC								Y	N	
EO									N	
ROC							Y	N		
QXI								Y	N	
4. F								Y	N	
								Y	N	
									N	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
	METHOD I	SED TO ES	TIMATE VIEL P	OF WATER-BEARING	G STRATA-		т	OTAL ESTI	MATED	
			_					VELL YIELI		0.00
	PUMI			BAILER OT	HER – SPECIFY:					
	WELL TES	T TEST	RESULTS - ATT	ACH A COPY OF DAT	A COLLECTED DUR	NG WELL T	ESTING, INCLU	JDING DISC	HARGE	AETHOD,
NOISIA	WEED TES	STAR	I TIME, END TI	ME, AND A TABLE SH	IOWING DISCHARGE	AND DRAW	DOWN OVER	THE TESTI	NG PERIC	D.
	MISCELLA	NEOUS INF	ORMATION: TO	emporary well materia	als removed and the s	oil boring ba	ckfilled using	drill cutting	s from to	al depth to ten
PER			fe	et below ground surfa	ice, then hydrated ber	tonite chips	from ten feet b	elow groun	d surface	to surface.
ns :			L	ogs adapted from LTE	on-site geologist.					
; RIC										
TEST; RIC SUPER	PRINT NAM	(E(S) OF DI	RILL RIG SUPER	RVISOR(S) THAT PRO	VIDED ONSITE SUPE	RVISION OF	WELL CONST	RUCTION C	THER TH	AN LICENSEE:
S, T	Shane Eldrid	.,								
	Shalle Eldin	18c								
	THE UNDE	RSIGNED H	IEREBY CERTI	FIES THAT, TO THE B	EST OF HIS OR HER	KNOWLEDG	E AND BELIE	F, THE FOR	EGOING I	S A TRUE AND
URE	CORRECT I	RECORD O	F THE ABOVE I LDER WITHIN :	DESCRIBED HOLE AN 30 DAYS AFTER COM	ID THAT HE OR SHE PLETION OF WELL D	WILL FILE T RILLING:	HIS WELL RE	CORD WITH	THE STA	TE ENGINEER
ITA	_								t d' Le ser	Er t Pri Li
SIGN	CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL REC AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING: Jack Atkins Jackie D. Atkins								6/2020	
SIGNATURE OF DRILLER / PRINT SIGNEE NAME									DATE	
		SIGNAT	OND OF DRIEDI							
FO	R OSE INTER	NAL USE			ſ			RECORD &	LOG (Ve	rsion 06/30/2017)
FIL	E NO.				POD NO.		TRN NO.			1
LO	CATION					WELL	TAG ID NO			PAGE 2 OF 2

2020-10-26_C-4478POD1_OSE_Well Record and Log-89-forsign

Final Audit Report

2020-10-27

Created:	2020-10-27
By:	Lucas Middleton (lucas@atkinseng.com)
Status:	Signed
Transaction ID:	CBJCHBCAABAAESGKFRG9AU3NcytvOCSRntC1Y-zTs43Y

"2020-10-26_C-4478POD1_OSE_Well Record and Log-89-forsig n" History

- Document created by Lucas Middleton (lucas@atkinseng.com) 2020-10-27 - 3:14:03 PM GMT- IP address: 69.21.248.123
- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2020-10-27 - 3:14:17 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com) 2020-10-27 - 3:21:12 PM GMT- IP address: 74.50.153.115
- Document e-signed by Jack Atkins (jack@atkinseng.com) Signature Date: 2020-10-27 - 3:22:09 PM GMT - Time Source: server- IP address: 74.50.153.115
- Agreement completed. 2020-10-27 - 3:22:09 PM GMT

👃 Adobe Sign

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GENERAL / WELL OWNERSHIP:

State	Engineer Well Number: C-4478-POD1		
Well	owner: XTO ENERGY (Kyle Littrell)	Phone No.:	2.682.8873
Maili	ng address:6401 Holiday Hill Dr.		
City:	Midland State:	Texas	Zip code:
<u>п. v</u>	ELL PLUGGING INFORMATION:		
1)	Name of well drilling company that plugged well:	D. Atkins (Atkins Engineering	Associates Inc.)
2)	New Mexico Well Driller License No.: 1249	Expira	ation Date: 04/30/21
3)	Well plugging activities were supervised by the following Shane Elridge	well driller(s)/rig supervisor(s):
4)	Date well plugging began: D	ate well plugging concluded:	10/15/20
5)	GPS Well Location: Latitude: <u>32</u> deg, Longitude: <u>-103</u> deg,		_ sec _ sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:6 by the following manner: weighted tape	ft below ground level (bgl),
7)	Static water level measured at initiation of plugging:	/a ft bgl	
8)	Date well plugging plan of operations was approved by the	State Engineer:09/02/2020)
9)	Were all plugging activities consistent with an approved pl differences between the approved plugging plan and the we	ugging plan? Yes ell as it was plugged (attach ad	If not, please describe dditional pages as needed):

Version: September 8, 2009 Page 1 of 2 10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

<u>Depth</u> (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
_	0-10' Hydrated Bentonite	Approx. 36 gallons	29 gallons	Augers	
-	10'-110' Drill Cuttings	Approx. 294 gallons	294 gallons	Boring	
-					
-					
-					
		MULTIPLY cubic feet x 7.4 cubic yards x 201.9	BY AND OBTAIN 1805 = gallons 197 = gallons		ļ

For each interval plugged, describe within the following columns:

III. SIGNATURE:

I, <u>Jackie D. Atkins</u>, say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Jack Atkins

10/26/20 Date

Signature of Well Driller

Version: September 8, 2009 Page 2 of 2

2020-10-26_C4478-POD1_WD-11 Plugging Record-89-forsign

Final Audit Report

2020-10-27

Created:	2020-10-27
Ву:	Lucas Middleton (lucas@atkinseng.com)
Status:	Signed
Transaction ID:	CBJCHBCAABAAxP35wvyyp04NflnHwZ2vdtXvQwujXva-

"2020-10-26_C4478-POD1_WD-11 Plugging Record-89-forsign" History

- Document created by Lucas Middleton (lucas@atkinseng.com) 2020-10-27 - 3:14:30 PM GMT- IP address: 69.21.248.123
- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2020-10-27 - 3:14:43 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com) 2020-10-27 - 3:22:22 PM GMT- IP address: 74.50.153.115
- Document e-signed by Jack Atkins (jack@atkinseng.com) Signature Date: 2020-10-27 - 3:22:56 PM GMT - Time Source: server- IP address: 74.50.153.115
- Agreement completed. 2020-10-27 - 3:22:56 PM GMT

and a second second

2904 W 2nd St. Roswell, NM 88201 volce: 575.624.2420 fax: 575.624.2421 www.atkinseng.com

01/20/2021

DII-NMOSE 1900 W 2nd Street Roswell, NM 88201

Hand Delivered to the DII Office of the State Engineer

Re: Well Record C-4499 Pod1

To whom it may concern:

Attached please find a well record and a plugging record, in duplicate, for a one (1) soil borings, C-4499 Pod1.

If you have any questions, please contact me at 575.499.9244 or lucas@atkinseng.com.

Sincerely,

Gran Middlam

Lucas Middleton

Enclosures: as noted above

OSE DIT JAN 27 2021 #3:24

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GENERAL / WELL OWNERSHIP:

State	Engineer Well Number: C-4499-POD1			
Well	owner: XTO ENERGY (Kyle Littrell)		Phone No.:	432.682.8873
Maili	ng address:6401 Holiday Hill Dr.			
City:	Midland	State:	Texas	Zip code:
II. W	VELL PLUGGING INFORMATION:			
1)	Name of well drilling company that plug	ged well: Jackie	e D. Atkins (Atkins Engined	ering Associates Inc.)
2)	New Mexico Well Driller License No.:	1249	E	xpiration Date: 04/30/21
3)	Well plugging activities were supervised Shane Eldridge	by the following	g well driller(s)/rig supervis	sor(s):
4)	Date well plugging began: 1/19/2021		Date well plugging conclue	led: 1/19/2021
5)	GPS Well Location: Latitude: Longitude:		» ******	.89 sec .29 sec, WGS 84
6)	Depth of well confirmed at initiation of p by the following manner: weighted tape	lugging as:	111 ft below ground le	vel (bgl),
7)	Static water level measured at initiation of	of plugging:	n/aft bgl	
8)	Date well plugging plan of operations wa	s approved by th	ne State Engineer:	2020
9)	Were all plugging activities consistent wi differences between the approved plugging	ith an approved p ng plan and the v	plugging plan? Yes well as it was plugged (atta	If not, please describe ch additional pages as needed):

Version: September 8, 2009 Page 1 of 2

Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with 10) horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
	0-10' Hydrated Bentonite	Approx. 26 gallons	26 gallons	Augers	
	10'-110' Drill Cuttings	Approx. 163 gallons	163 gallons	Boring	
-				05E DJI .	IGN 27 2021 pm3+25
	<u>,</u>	MULTIPLY I cubic feet x 7. cubic yards x 201.	BY AND OBTAIN 1805 = gallons 17 = gallons		

For each interval plugged, describe within the following columns:

III. SIGNATURE:

I, Jackie D. Atkins

, say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Jack Atkins

01/21/2021 Date

Signature of Well Driller

Version: September 8, 2009 Page 2 of 2

2020-1-15_C-4499-POD1_Plugging Recordforsign

Final Audit Report

2021-01-20

Created:	2021-01-20
Ву:	Lucas Middleton (lucas@atkinseng.com)
Status:	Signed
Transaction ID:	CBJCHBCAABAAAKYAIMzENwZcWpwbipfZabZszsWa5ksl

"2020-1-15_C-4499-POD1_Plugging Record-forsign" History

- Document created by Lucas Middleton (lucas@atkinseng.com) 2021-01-20 - 4:18:16 PM GMT- IP address: 69.21.248.123
- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2021-01-20 - 4:18:36 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com) 2021-01-20 - 4:24:48 PM GMT- IP address: 74.50.153.115
- Document e-signed by Jack Atkins (jack@atkinseng.com) Signature Date: 2021-01-20 - 4:27:30 PM GMT - Time Source: server- IP address: 74.50.153.115
- Agreement completed. 2021-01-20 - 4:27:30 PM GMT

USE DIT JAN 27 2021 PKS:25

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	OSE POD NO.	OWELL NO)	1 WE	L TAG ID NO.			OSE EU	LE NO(5)			
z	POD1 (M		<i>•</i>)	n/a	LIAGID NO.			C-449		<i></i>			
IOI													
GENERAL AND WELL LOCATION	WELL OWNE XTO Energ							PHONE	e (opti)	JNAL)			
LL	WELL OWNE	R MAILING	ADDRESS					CITY			STATE		ZIP
WEL	6401 Holid	ay Hill D	г.		Midla	nd		ТХ	79707				
g	WELL		DE	GREES N 32°									
NL A	LOCATION		TITUDE	12'	15.8	9" N	* ACC	URACY	REQUIRED: ONE TENT	TH OF A SI	ECOND		
ERA	(FROM GP	S) LOI	NGITUDE .	-103°	47'	36.2	9" W	• DAT	UM REC	QUIRED: WGS 84			
GEN	DESCRIPTIO	ON RELATIN	G WELL LOCATION TO	STREET ADDRESS	ND COMMON	LANDMA	ARKS – PLS	S (SECTI	ON, TO	WNSHJIP, RANGE) WH	ERE AVAJ	LABLE	
.	SE NE Sec.	. 20 T24S	R31E										
	LICENSE NO.		NAME OF LICENSED	DRILLER						NAME OF WELL DRI	LLING CO	MPANY	
	124	9		Jacki	e D. Atkins					Atkins Eng	incering.	Associates, I	nc.
	DRILLING ST		DRILLING ENDED	DEPTH OF COMPLE			BORE HOI		H (FT)	DEPTH WATER FIRS		NTERED (FT)	
	12/30/2	2020	12/30/2020	temporary	well materia	Ш		110			n/a		
7	COMPLETED	WELL IS:	ARTESIAN	V DRY HOLE	SHALLO	W (UNCO	NFINED)			STATIC WATER LEV	el in coi n/a	MPLETED WE	LL (FT)
2. DRILLING & CASING INFORMATION	DRILLING FL	LUID:	AIR	MUD	ADDITIV	ES – SPEC	IFY:						
DRM	DRILLING M	ETHOD:	ROTARY	HAMMER	CABLE T	OOL	OTHE	R – SPEC	IFY:	Hollo	w Stem	Auger	
INFO	DEPTH ((feet bgl)	BORE HOLE	CASING MAT		/OR	CA	SING		CASING	CASI	NG WALL	SLOT
ĐN	FROM	TO	DIAM	(include each	ADE	hπe	CONN	VECTIO	N	INSIDE DIAM.		CKNESS	SIZE
ISA			(inches)		ons of screen)		(add coupl	YPE ling diam	eter)	(inches)	(ii	nches)	(inches)
\$°C	0	110	±8.5	Borir	ng- HSA								
ŊG													
E													
DR													
'n													
			_										
			-										
			_										
	DEPTH ((feet bgl)	BORE HOLE	LIST A	NNULAR SE	AL MA	TERIAL A	AND		AMOUNT		METHO	D OF
T	FROM	то	DIAM. (inches)		PACK SIZE					(cubic feet)		PLACEM	
3. ANNULAR MATERIAL													
TAN													
NR N													
ΩΓ													
NN													
3.1													
									_				
FOR	OSE INTER	NAL USE								WELL RECORD	LOG	Version 06/3	0/17)
FILE	E NO.				POD NO).			TRN N	NO.			

LOCATION

WELL TAG ID NO.

PAGE 1 OF 2

	DEPTH (1	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL E R-BEARING CAVITIES O plemental sheets to fully d	R FRACTURE	ZONES	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)			
	0	6	¥ √N									
	6	8	Y √N									
	8	11	3	Y √N								
	11	46	hite-tan, dry.	Y √N								
	46	74	28	SAND, well-graded, 1	nedium grain,caliche gravel	(1-4mm), light	brown, dry.	Y √N				
5	74	110	36	SAND, well-graded	l, fine/large grain, few clay,	cohesive, red-b	rown, dry	Y VN				
4. HYDROGEOLOGIC LOG OF WELL					Y N							
DF V								Y N				
ő								Y N				
CL				Y N								
190								Y N				
EOL								Y N	1			
Sog								Y N				
ΙQΧ		-						Y N				
4. H												
	Y N											
1								Y N				
								Y N				
								Y N				
								Y N				
5	AL ESTIMATED	l										
	METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA: TOTAL ESTIMATED PUMP AIR LIFT BAILER OTHER - SPECIFY: WELL YIELD (gpm): 0.00											
NO	WELL TEST WELL TEST TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.											
TEST; RIG SUPERVISION	MISCELLANEOUS INFORMATION: Temporary well materials removed and the soil boring backfilled using drill cuttings from total depth to ten feet below ground surface, then hydrated bentonite chips from ten feet below ground surface to surface. Logs adapted from WSP on-site geologist.											
rest	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:											
5.1												
ATURE	CORRECT I	RECORD O	F THE ABOVE I	DESCRIBED HOLE AN	EST OF HIS OR HER KNO D THAT HE OR SHE WIL PLETION OF WELL DRIL	L FILE THIS V	D BELIEF, T WELL RECOR	HE FOREGOING RD WITH THE ST	IS A TRUE AND ATE ENGINEER			
6. SIGNATURE	Jack A	Jack Atkins Jackie D. Atkins										
		SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE	NAME			DATE				
FO	R OSE INTER	NALUSE		P.		WR-	20 WELL RE	CORD & LOG (V	ersion 06/30/2017)			
-	E NO.				POD NO.	TRN						
LO	CATION					WELL TAG	DNO	N 27 2021 PM	PAGE 2 OF 2			

2021-1-15_C-4499_POD1_OSE_Well Record and Log_plu129-forsign

Final Audit Report

2021-01-15

Created:	2021-01-15
By:	Lucas Middleton (lucas@atkinseng.com)
Status:	Signed
Transaction ID:	CBJCHBCAABAAgs296c366oClflrLCiy9WDKJlrUnq-9u

"2021-1-15_C-4499_POD1_OSE_Well Record and Log_plu129-f orsign" History

- Document created by Lucas Middleton (lucas@atkinseng.com) 2021-01-15 - 8:45:00 PM GMT- IP address: 69.21.248.123
- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2021-01-15 - 8:45:35 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com) 2021-01-15 - 9:05:13 PM GMT- IP address: 74.50.153.115
- Document e-signed by Jack Atkins (jack@atkinseng.com) Signature Date: 2021-01-15 - 9:13:18 PM GMT - Time Source: server- IP address: 74.50.153.115
- Agreement completed. 2021-01-15 - 9:13:18 PM GMT

DSE 011 JAN 27 2021 PK3:26

Site Name: Poker Lake Unit 199 Bite Name: Poker Lake Unit 199 RP or Incident Number: nAPP2036555459 WSP Job Number: TE012921008 LITHOLOGIC / SOIL SAMPLING LOG Logged By: FS Method: Hand Auger Hach chloride strips, PID Comments: All chlorides field screening: Hach chloride strips, PID M - moist, D - dry; Y - yes; N - no; SAA - same as above Image: Sample of the screening include a 40% correction factor M - moist, D - dry; Y - yes; N - no; SAA - same as above Image: Sample of the screening include a 40% correction factor M - moist, D - dry; Y - yes; N - no; SAA - same as above Image: Sample of the screening include a 40% correction factor M - moist, D - dry; Y - yes; N - no; SAA - same as above Image: Sample of the screening include a 40% correction factor M - moist, D - dry; Y - yes; N - no; SAA - same as above Image: Sample of the screening include a 40% correction factor M - noist, D - dry; Y - yes; N - no; SAA - same as above Image: Sample of the screening include a 40% correction factor M - noist, D - dry; Y - yes; N - no; SAA - same as above Image: Sample of the screening include a 40% correction factor M - 1,299 0.3 N M - 1,657 0.2 N M - 2,57 2 N M - 2,57 3			
Carlsbad, New Mexico 88220 RP or Incident Number: nAPP2036555459 WSP Job Number: TE012921008 LITHOLOGIC / SOIL SAMPLING LOG Logged By: FS Method: Hand Auger Lat/Long: 32.183372, -103.785605 Field Screening: Hach chloride strips, PID Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth (ft bgs) Depth Depth (ft bgs) To p Y O Y O Y O Y O Y O Y O Y O Y O Y O Y O			
WSP Job Number: TE012921008 LITHOLOGIC / SOIL SAMPLING LOG Logged By: FS Method: Hand Auger Lat/Long: 32.183372, -103.785605 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor Hole Diameter: 2 inches Total Depth: 4 ft bgs M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Lithology/Remarks M 1,299 0.3 N 1 1 SP SAND, moist, reddish brown, poorly consolidated, off-white, trace white crusting, no odor M 1,657 0.2 N BH01 2 2 SP SAND, moist, reddish brown, poorly sorted, fine-very fine gu no stain, no odor M 935 0.0 N 3 3 SP SAA M 274 0.0 N BH01 4 4 SP SAA			
LITHOLOGIC / SOIL SAMPLING LOG Logged By: FS Method: Hand Auger Lat/Long: 32.183372, -103.785605 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth and to be the top of top of the top of			
Lat/Long: 32.183372, -103.785605 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth M Image: Open construction of the text of			
Hach chloride strips, PID Comments: All chlorides field screenings include a 40% correction factor M - moist, D - dry; Y - yes; N - no; SAA - same as above Sample Depth Yo Q Q Q Difference Lithology/Remarks an transform bio			
Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth			
M - moist; D - dry; Y - yes; N - no; SAA - same as above anticipadi v v v v v v v v v v v v v v v v v v v			
M1,2990.3NI11SPCALICHE, moist, poorly consolidated, off-white, trace white crusting, no odorM1,6570.2NBH0122SPSAND, moist, reddish brown, poorly sorted, fine-very fine gu no stain, no odorM9350.0NBH0122SPSAAM2740.0NBH0144SPSAA			
M1,2990.3N11SPcrusting, no odor SAND, moist, reddish brown, poorly sorted, fine-very fine gr no stain, no odorM1,6570.2NBH0122SPSAAM9350.0N33SPSAAM2740.0NBH0144SPSAA			
M1,2990.3NI11SPSAND, moist, reddish brown, poorly sorted, fine-very fine gr no stain, no odorM1,6570.2NBH0122SPSAAM9350.0N33SPSAAM2740.0NBH0144SPSAA	9		
M 1,657 0.2 N BH01 2 2 SP no stain, no odor SAA M 935 0.0 N 3 3 3 SP SAA M 274 0.0 N BH01 4 4 SP SAA	irain		
M 1,657 0.2 N BH01 2 2 SP SAA M 935 0.0 N 3 3 SP SAA M 274 0.0 N BH01 4 4 SP SAA	nan,		
M 935 0.0 N 3 3 SP SAA M 274 0.0 N BH01 4 4 SP SAA			
M 274 0.0 N BH01 4 4 SP SAA			

					WS	SP USA		BH or PH Name: BH02 Date: 02/03/2021
				,	00.14/	0	N	Site Name: Poker Lake Unit 199
Lot/L				Car	uð west Ishad Ne	Stevens S w Mexico		RP or Incident Number: nAPP2036555459
Lot/L				Udi			WSP Job Number: TE012921008	
Lot/L		LITU			SAMD	INCLO	G	Logged By: FS Method: Hand Auger
	ong: 32.183				Field Scre		G	Hole Diameter: 2 inches Total Depth: 4 ft bgs
LavLu	ong. 52.163	5502, -10	5.70001			oride strips,	PID	Hole Diameter. 2 inches Total Depth. 4 it bgs
Comr	nents: All c	hlorides f	ield scr	eenings inclu				
M - m	noist; D - dr	y; Y - yes	; N - no	; SAA - same	as above			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	(ft bgs)	USCS/Rock Symbol	Lithology/Remarks
			Ν		-	0	CCHE	CALICHE, moist, poorly consolidated, off-white, no stain, no odor
Μ	<168	0.0	Ν		1	1		SAND, moist, reddish brown, poorly sorted, fine-very fine grain, no stain, no odor
D	<168	0.0	Ν	BH02	2	2	SP	SAA
					3	3	SP	SAA
D	<168	0.0	Ν	BH02	4	- 4	SP	SAA
$\overline{\ }$							TC	D: 4 ft bgs
								`

			WS	P USA			BH or PH Name: BH03	Date: 02/03/2021
							-	
		50 Carle	08 West S	Stevens S w Mexico	Street		Site Name: Poker Lake Unit 199	00555450
		Calls	sbau, Ne	w wexico	RP or Incident Number: nAPP203			
			CARE		WSP Job Number: TE012921008			
	HOLOGIC					Logged By: FS	Method: Hand Auger	
Lat/Long: 32.18428, -10	03.785599		Field Scre	ride strips,	חוס		Hole Diameter: 2 inches	Total Depth: 4 ft bgs
Comments: All chloride	s field screer							
M - moist; D - dry; Y - y	es; N - no; SA	AA - same	as above					
Moisture Content Chloride (ppm) Vapor	0,	ldu	Sample Depth (ft bgs)	(ft bgs)	USCS/Rock Symbol		Lithology/R	
	Ν		-	0	CCHE	CALICHE	, moist, poorly consolidate	ed, off-white, no stain, no odor
M <168 0.0	N		1	1	SP	SAND, m no stain,	oist, reddish brown, poorly no odor	sorted, fine-very fine grain,
D <168 0.0	N	BH03	2	2	SP		SAA	
D 4100 0.0		B LIO2	3	3	SP	trace alex	SAA	
D <168 0.0	N	BH03	4	4		trace clay): 4 ft bgs	/, no plasticity, cohesive	

WSP USA Bite Name: Poker Lake Unit 196 Reverse Markow Maxico 82220 Bite Name: Poker Lake Unit 196 Reverse Markow Maxico 82220 Bite Name: Poker Lake Unit 196 Reverse Markow Maxico 82220 Bite Name: Poker Lake Unit 196 LatLong: 32.18324.103.786664 Field Screening: Piol LatLong: 32.18324.103.786664 Field Screening: Piol LatLong: 32.18324.000 Field Screening: Piol Comments: All chlorides field screening: Include a 10% Table Dept: All type Comments: All chlorides field screening: Include a 10% Table Dept: All type Big Out Ob Dig Out Ob Dig Out Ob Big Out Ob Dig Out Ob Dig Out Ob Big Out Ob Dig Out Ob Dig Out Ob Big Out Ob Dig Out Ob Dig Out Ob Big Out Ob Dig Out Ob Dig Out Ob Big Out Ob Dig Out Ob Dig Out Ob Big Out Ob Dig Out Ob Dig Out Ob Big Out Ob Dig Out Ob Dig Out Ob Big Out Ob Dig Out Ob Dig Out Ob Dig Out Ob Dig Out Ob Dig Out Ob Di	508 West Stevens Street Carlsbad, New Mexico 88220 Site Name: Poker Lake Unit 199 RP or Incident Number: nAPP2036555459 WSP Job Number: TE012921008 LITHOLOGIC / SOIL SAMPLING LOG Lady Long: 32.183224, -103.785684 Field Screening: Hach chloride strips, PID Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Lithology/Remarks OCHE CALICHE, moist, poorly consolidated, off-white, no stain, no of D All chlorides field screening: Hach chloride strips, PID Lithology/Remarks OCHE CALICHE, moist, poorly consolidated, off-white, no stain, no of D Method: N N OCHE CALICHE, moist, poorly consolidated, off-white, no stain, no of D SAND, moist, reddish brown, poorly sorted, fine-very fine grain no stain, no odor SAA SAA SAA SAA SAA SAA SAA									BH or PH Name: BH04 Date: 02/03/2021	
Carlsbad, New Mexico 88220 RP or Incident Number: nAPP2036555459 WSP Job Number: TE012921008 LITHOLOGIC / SOIL SAMPLING LOG Lat/Long: 32.183224, -103.785684 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor Hole Diameter: 2 inches Lithology/Remarks annoticit D of y; Y - yes; N - no; SAA - same as above Depth (ft bgs) SAND, moist, reddish brown, poorly consolidated, off-white, no stain, no odor D < 168 0.0 N BH04 2 2 SP SAND, moist, reddish brown, poorly sorted, fine-very fine grain, no stain, no odor D < 168 0.0 N BH04 4 4 SP SAA	Carlsbad, New Mexico 88220 RP or Incident Number: nAPP2036555459 WSP Job Number: TE012921008 LiTHOLOGIC / SOIL SAMPLING LOG Logged By: FS Method: Hand Auger Lat/Long: 32.183224, -103.785684 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor Hole Diameter: 2 inches Total Depth: 4 ft bgs Omments: D - dry; Y - yes; N - no; SAA - same as above Sample Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Sample Depth (ft bgs) Depth (ft bgs) Sample Depth (ft bgs) Depth (ft bgs) Sample Depth (ft bgs) Depth (ft bgs) Sample Depth (ft bgs) Depth (ft bgs) Sample Depth (ft bgs) Samp						WS	SP USA			
WSP Job Number: TE012921008 LITHOLOGIC / SOIL SAMPLING LOG Logged By: FS Method: Hand Auger Lat/Long: 32.183224, -103.785684 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Depth (ft bgs) Sample (ft bgs) Depth (ft bgs) Sample (ft bgs) Depth (ft bgs) Depth (ft bgs) Sample (ft bgs) Sample (ft bgs) Depth (ft bgs) M moist, reddish brown, poorly consolidated, off-white, no stain, no odor D <168	WSP Job Number: TE012921008 LITHOLOGIC / SOIL SAMPLING LOG Logged By: FS Method: Hand Auger Lat/Long: 32.183224, -103.785684 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor Hole Diameter: 2 inches Total Depth: 4 ft bgs M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth (ft bgs) Sample (ft bgs) Depth (ft bgs) Sample for the formation of t	1				5	08 West	Stevens S	Street		
LITHOLOGIC / SOIL SAMPLING LOG Logged By: FS Method: Hand Auger Lat/Long: 32.183224, -103.785684 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor Method: Hand Auger Total Depth: 4 ft bgs M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth (ft bgs) Depth (ft bgs) Total Depth: 4 ft bgs U - ody; Y - yes; N - no; SAA - same as above Sample Depth (ft bgs) Depth (ft bgs) Total Depth: 4 ft bgs U - ody; Y - yes; N - no; SAA - same as above Sample Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Lithology/Remarks U - 0 CCHE CALICHE, moist, poorly consolidated, off-white, no stain, no odd D <168	LITHOLOGIC / SOIL SAMPLING LOG Logged By: FS Method: Hand Auger Lat/Long: 32.183224, -103.785684 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth ant tig Uo OO D T Sample Depth (ft bgs) Depth OO Depth OO Lithology/Remarks D <168					Cai	isbad, Ne	w Mexico	88220		
Lat/Long: 32.183224, -103.785684 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth (ft bgs) Depth (ft bgs) Mole Diameter: 2 inches Total Depth: 4 ft bgs Image: Depth of the problem (ft bgs) Image: Depth (ft bgs) D <168	Lat/Long: 32.183224, -103.785684 Field Screening: Hach chloride strips, PID Hole Diameter: 2 inches Total Depth: 4 ft bgs Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Total Depth: 4 ft bgs an roist; D - dry; Y - yes; N - no; SAA - same as above a down correction factor Depth Depth Depth an roist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth Depth Depth Depth an roist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth Depth Depth Depth an roist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth Depth Depth Depth an roist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth Depth Depth Depth an roist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth Sam			1.0000							
Hach chloride strips, PID Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth Depth Depth Depth Depth Depth Depth Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth M - moist, poorly consolidated, off-white, no stain, no odd D <168	Hach chloride strips, PID Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth CALICHE, moist, poorly consolidated, off-white, no stain, no of the basis D <168	1 - 4/1 -	00.400						G		
Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above Sample Depth (ft bgs) Depth (ft bgs) <td>Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above and the properties of the propertie</td> <td>Lat/Lo</td> <td>ong: 32.183</td> <td>3224, -103</td> <td>3.78568</td> <td>4</td> <td></td> <td></td> <td>PID</td> <td>Hole Diameter: 2 inches Total Depth: 4 ft bgs</td> <td></td>	Comments: All chlorides field screenings include a 40% correction factor M - moist; D - dry; Y - yes; N - no; SAA - same as above and the properties of the propertie	Lat/Lo	ong: 32.183	3224, -103	3.78568	4			PID	Hole Diameter: 2 inches Total Depth: 4 ft bgs	
antision b<	antision b b B Sample Depth (ft bgs) Depth (ft bgs						ude a 40%	correction			
N N N CCHE CALICHE, moist, poorly consolidated, off-white, no stain, no odd D <168	N N	M - m	oist; D - dr	y; Y - yes;	N - no	; SAA - same	e as above				
D<168	D <168	Moisture Content	Chloride (ppm)	Vapor (ppm)		Sample #	Depth	(ft bgs)	USCS/Rock Symbol		
D <168	D <168				Ν		-	0	CCHE	CALICHE, moist, poorly consolidated, off-white, no stain, no	odor
D <168	D <168	D	<168	0.0	Ν		1	1	SP	SAND, moist, reddish brown, poorly sorted, fine-very fine gr no stain, no odor	ain,
D <168 0.0 N BH04 4 4 SP SAA	D <168 0.0 N BH04 4 4 SP SAA	D	<168	0.0	Ν	BH04	2	2	SP		
		_									
UU: 4 π bgs		D	<168	0.0	Ν	BH04	4	4			

			WS	SP USA		BH or PH Name: BH05 Date: 02/03/2021
		5	08 West	Stevens S w Mexico	Street	Site Name: Poker Lake Unit 199 RP or Incident Number: nAPP2036555459
		Odi	isbau, Ne	W WEXICO	WSP Job Number: TE012921008	
1.1	THOLOG	IC / SOIL	SAMPI	INGLO	G	Logged By: FS Method: Hand Auger
Lat/Long: 32.183410,			Field Scre		Hole Diameter: 2 inches Total Depth: 4 ft bgs	
-			Hach chlo	ride strips,		
Comments: All chlorid				correction f	factor	
M - moist; D - dry; Y -	yes, iv - no;			, I	¥	
Moisture Content Chloride (ppm) Vapor	(ppm) Staining	Sample #	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithology/Remarks
		0)		0	Э́	
	N		-	0	CCHE	E CALICHE, moist, poorly consolidated, off-white, no stain, no odor
D 515 0.	0 N		1	1	SP	SAND, moist, reddish brown, poorly sorted, fine-very fine grain, no stain, no odor
D 459 0.	0 N	BH05	2	2	SP	SAA
		DUOS	3	3	SP	SAA
D 459 0.	0 N	BH05	4	4	SP TF	SAA SAA

wsp

	PHOTOGRAPHIC LOG	
XTO Energy, Inc	Poker Lake Unit 199	TE012921008
	Eddy County, New Mexico	
I		

Photo No.	Date
2	February 3, 2021
	(BH01) within
ontainment i	facing Southwest.

•

wsp

	PHOTOGRAPHIC LOG	
XTO Energy, Inc	Poker Lake Unit 199	TE012921008
	Eddy County, New Mexico	

to No	Date	
Photo No.		TT-H
3	February 3, 2021	, 2021
	I02) facing North.	

Date
Sebruary 3, 2021
) facing East.

•

wsp

	PHOTOGRAPHIC LOG	
XTO Energy, Inc	Poker Lake Unit 199	TE012921008
	Eddy County, New Mexico	

Photo No.	Date		
5	February 3, 2021	2021	
	4) facing North-		

Photo No.	Date
6	February 3, 2021
	05) facing South-
Sou	thwest.

•

Released to Imaging: 6/8/2022 8:54:45 AM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-128-1

Laboratory Sample Delivery Group: TE012921008 Client Project/Site: PLU 199

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 2/8/2021 4:01:16 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access **Have a Question?** Ask-The Expert Visit us at: www.eurofinsus.com/Env

Released to Imaging: 6/8/2022 8:54:45 AM

Page 52 of 152

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

Page 53 of 152

Project/Site: F		SDG: TE012921008	
Qualifiers			
			3
GC VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			5
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		9
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		40
EDL	Estimated Detection Limit (Dioxin)		13
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit Not Calculated		
NC ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG			
POS	Negative / Absent Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		
TNTC	Too Numerous To Count		

.

Job ID: 890-128-1 SDG: TE012921008

Job ID: 890-128-1

Client: WSP USA Inc.

Project/Site: PLU 199

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-128-1

Receipt

The samples were received on 2/3/2021 2:24 PM; the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Detection Summary	1
Client: WSP USA Inc. Job ID: 890-128-1 Project/Site: PLU 199 SDG: TE012921008	2
Client Sample ID: 89-128-1 Lab Sample ID: 687338-001	
No Detections.	
Client Sample ID: 89-128-2 Lab Sample ID: 687338-002	4
No Detections.	5
Client Sample ID: BH01 Lab Sample ID: 890-128-1	6
Sample Analysis Not Complete.	7
Client Sample ID: BH01 Lab Sample ID: 890-128-2	
Sample Analysis Not Complete.	8
	9
	10
	11
	12
	13
	14
	15

This Detection Summary does not include radiochemical test results.

Eurofins Xenco, Carlsbad

Client Sample Results

Client: WSP USA Inc. Project/Site: PLU 199

Client Sample ID: 89-128-1 Date Collected:

Date Received:

Method: SW8015 - TPH by SW									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		50.0		mg/kg		02/08/21 12:00	02/08/21 12:29	1
Gasoline Range Hydrocarbons (GRO)	ND		50.0		mg/kg		02/08/21 12:00	02/08/21 12:29	1
Motor Oil Range Hydrocarbons (MRO)	ND		50.0		mg/kg		02/08/21 12:00	02/08/21 12:29	1
Total TPH	ND		50.0		mg/kg		02/08/21 12:00	02/08/21 12:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 135				02/08/21 12:00	02/08/21 12:29	1
o-Terphenyl	105		70 - 135				02/08/21 12:00	02/08/21 12:29	1

Client Sample ID: 89-128-2 Date Collected:

Date Received:

Method: SW8015 - TPH by SW Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		50.0		mg/kg		02/08/21 12:00	02/08/21 13:33	1
Gasoline Range Hydrocarbons (GRO)	ND		50.0		mg/kg		02/08/21 12:00	02/08/21 13:33	1
Motor Oil Range Hydrocarbons (MRO)	ND		50.0		mg/kg		02/08/21 12:00	02/08/21 13:33	1
Total TPH	ND		50.0		mg/kg		02/08/21 12:00	02/08/21 13:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 135				02/08/21 12:00	02/08/21 13:33	1
o-Terphenyl	108		70 - 135				02/08/21 12:00	02/08/21 13:33	1

Client Sample ID: BH01 Date Collected: 02/03/21 09:32 Date Received: 02/03/21 14:24

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		02/03/21 15:00	02/04/21 01:33	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/03/21 15:00	02/04/21 01:33	1
Toluene	<0.00198	U	0.00198	mg/Kg		02/03/21 15:00	02/04/21 01:33	1
Total BTEX	<0.00198	U	0.00198	mg/Kg		02/03/21 15:00	02/04/21 01:33	1
Xylenes, Total	<0.00198	U	0.00198	mg/Kg		02/03/21 15:00	02/04/21 01:33	1
m,p-Xylenes	<0.00396	U	0.00396	mg/Kg		02/03/21 15:00	02/04/21 01:33	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		02/03/21 15:00	02/04/21 01:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	105		70 - 130			02/03/21 15:00	02/04/21 01:33	1
4-Bromofluorobenzene (Surr)	102		70 - 130			02/03/21 15:00	02/04/21 01:33	1
Method: 300.0 - Anions, Io	n Chromatogra	iphy - Solu	ble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1160	F1	49.5	mg/Kg			02/03/21 21:06	5

Page 56 of 152

Job ID: 890-128-1 SDG: TE012921008

Lab Sample ID: 687338-001

Lab Sample ID: 687338-002

Lab Sample ID: 890-128-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Client: WSP USA Inc. Project/Site: PLU 199

Client Sample ID: BH01 Date Collected: 02/03/21 09:50 Date Received: 02/03/21 14:24

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
Total BTEX	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
Xylenes, Total	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
m,p-Xylenes	<0.00398	U	0.00398	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1

Job ID: 890-128-1 SDG: TE012921008

Lab Sample ID: 890-128-2

Matrix: Solid

6

Eurofins Xenco, Carlsbad

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
Total BTEX	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
Xylenes, Total	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
m,p-Xylenes	<0.00398	U	0.00398	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/03/21 15:00	02/04/21 01:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	106		70 - 130			02/03/21 15:00	02/04/21 01:55	1
4-Bromofluorobenzene (Surr)	100		70 - 130			02/03/21 15:00	02/04/21 01:55	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	197	9.96	mg/Kg			02/03/21 21:23	1

Surrogate Summary

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

			Pe	cent Surrogate Recovery (Acceptance Limits)	
		DFBZ1	BFB1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-122-A-1-E MS	Matrix Spike	102	99		
890-122-A-1-F MSD	Matrix Spike Duplicate	100	102		
890-128-1	BH01	105	102		
890-128-2	BH01	106	100		
LCS 890-124/2-A	Lab Control Sample	98	94		
LCSD 890-124/3-A	Lab Control Sample Dup	101	94		
MB 890-124/1-A	Method Blank	105	101		
Surrogate Legend					
DFBZ = 1,4-Difluorobe					

BFB = 4-Bromofluorobenzene (Surr)

Method: SW8015 - TPH by SW8015 Mod

Matrix: Solid

			Percent Surrogate Recovery (A	Acceptance Limits)	
		1CO	ОТРН		
Lab Sample ID	Client Sample ID	(70-135)	70-135)		13
687338-001	89-128-1	104	105		
687338-002	89-128-2	109	108		
Surrogate Legend					

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Prep Type: Total/NA Prep Batch: 124

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 890-124/1-A Matrix: Solid Analysis Batch: 129

	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/02/21 21:08	02/03/21 17:41	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/02/21 21:08	02/03/21 17:41	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/02/21 21:08	02/03/21 17:41	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/02/21 21:08	02/03/21 17:41	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/02/21 21:08	02/03/21 17:41	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		02/02/21 21:08	02/03/21 17:41	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/02/21 21:08	02/03/21 17:41	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	105		70 - 130			02/02/21 21:08	02/03/21 17:41	1
4-Bromofluorobenzene (Surr)	101		70 - 130			02/02/21 21:08	02/03/21 17:41	1

Lab Sample ID: LCS 890-124/2-A Matrix: Solid Analysis Batch: 129

Analysis Batch: 129							Prep	Prep Batch: 124			
	Spike	LCS	LCS				%Rec.				
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits				
Benzene	0.100	0.09638		mg/Kg		96	70 - 130				
Ethylbenzene	0.100	0.09436		mg/Kg		94	71 - 129				
Toluene	0.100	0.09632		mg/Kg		96	70 - 130				
m,p-Xylenes	0.200	0.1877		mg/Kg		94	70 - 135				
o-Xylene	0.100	0.09498		mg/Kg		95	71 - 133				

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	98		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130

Lab Sample ID: LCSD 890-124/3-A Matrix: Solid Analysis Batch: 129

Analysis Batch: 129							Prep Bato				
	Spike	LCSD	LCSD				%Rec.		RPD		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Benzene	0.100	0.1000		mg/Kg		100	70 - 130	4	35		
Ethylbenzene	0.100	0.09594		mg/Kg		96	71 - 129	2	35		
Toluene	0.100	0.1001		mg/Kg		100	70 - 130	4	35		
m,p-Xylenes	0.200	0.1885		mg/Kg		94	70 - 135	0	35		
o-Xylene	0.100	0.09635		mg/Kg		96	71 - 133	1	35		

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	101		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130

Lab Sample ID: 890-122-A-1-E MS **Client Sample ID: Matrix Spike Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 129** Prep Batch: 124 Sample Sample Spike MS MS %Rec. **Result Qualifier** Added Analyte Result Qualifier Unit D %Rec Limits <0.00201 U Benzene 0.101 0.09515 mg/Kg 94 70 - 130

Eurofins Xenco, Carlsbad

13

8

Client: WSP USA Inc.

Project/Site: PLU 199

QC Sample Results

Job ID: 890-128-1 SDG: TE012921008

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-122-/	A-1-E MS						CI	ient Sa	mple ID: I		
Matrix: Solid									Prep Ty		
Analysis Batch: 129										Batch	n: 124
A	•	Sample	Spike		MS	1114	_	0/ D	%Rec.		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00201		0.101	0.08905		mg/Kg		89	71 - 129		
Toluene	<0.00201		0.101	0.09208		mg/Kg		92	70 - 130		
m,p-Xylenes	< 0.00402		0.201	0.1760		mg/Kg		87	70 - 135		
o-Xylene	<0.00201	U	0.101	0.09063		mg/Kg		90	71 - 133		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1,4-Difluorobenzene	102		70 - 130								
4-Bromofluorobenzene (Surr)	99		70 - 130								
Lab Sample ID: 890-122-/	A-1-F MSD					Client S	amn	Ie ID: N	latrix Spik	e Dun	licat
Matrix: Solid						onent e	amp		Prep Ty		
Analysis Batch: 129										Batch	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene	<0.00201	<u> </u>	0.0996	0.08835		mg/Kg		88	70 - 130	7	3
Ethylbenzene	<0.00201	U	0.0996	0.08303		mg/Kg		83	71 - 129	7	3
Toluene	<0.00201		0.0996	0.08618		mg/Kg		87	70 - 130	7	3
m,p-Xylenes	< 0.00402		0.199	0.1631		mg/Kg		82	70 - 135	8	3
p-Xylene	<0.00201		0.0996	0.08407		mg/Kg		84	71 - 133	8	3
	MSD	MSD									
Surrogate	%Recovery		Limits								
1,4-Difluorobenzene	100		70 - 130								
4-Bromofluorobenzene (Surr)	102		70 - 130								
lethod: 300.0 - Anion	s, Ion Chr	omatograp	ohy								
Lab Sample ID: MB 890-1	33/1-A						Clie	nt Sam	ple ID: M		
Matrix: Solid									Prep Ty	/pe: So	blubl
Analysis Batch: 137											
	-	MB MB				_	_				
Analyte		sult Qualifier		RL		<u>D</u>		repared	Analyz		Dil Fa
Chloride	<	10.0 U		10.0	mg/K	g			02/03/21	20:49	
						Clion	4 0	nnlo ID	: Lab Con	trol Sa	mpl
Lab Sample ID: LCS 890-	·133/2-A					Cilei	it Sar	inpic iD			
Lab Sample ID: LCS 890-	·133/2-A					Cilei	it Sar		Prep Ty	/pe: So	olubl
Lab Sample ID: LCS 890- Matrix: Solid	·133/2-A					Clier	it Sar			/pe: So	olubl
Lab Sample ID: LCS 890- Matrix: Solid	-133/2-A		Spike	LCS	LCS	Clief	it Sar		Prep Ty %Rec.	/pe: So	olubl
Lab Sample ID: LCS 890- Matrix: Solid Analysis Batch: 137	-133/2-A		Spike Added		LCS Qualifier	Unit		%Rec	Prep Ty	/pe: So	olubl
Lab Sample ID: LCS 890- Matrix: Solid Analysis Batch: 137 ^{Analyte}	- 133/2-A 		•						Prep Ty %Rec.	/pe: So	olubl
Lab Sample ID: LCS 890- Matrix: Solid Analysis Batch: 137 Analyte Chloride			Added	Result	Qualifier	Unit mg/Kg	D	%Rec 99	Prep Ty %Rec. Limits		
Lab Sample ID: LCS 890- Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: LCSD 890			Added	Result	Qualifier	Unit mg/Kg	D	%Rec 99	Prep Ty %Rec. Limits 90 - 110	 Sample	 e Du
Lab Sample ID: LCS 890- Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: LCSD 890 Matrix: Solid			Added	Result	Qualifier	Unit mg/Kg	D	%Rec 99	Prep Ty %Rec. Limits 90 - 110	 Sample	 e Du
Lab Sample ID: LCS 890- Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: LCSD 890 Matrix: Solid			Added	Result 496.2	Qualifier	Unit mg/Kg	D	%Rec 99	Prep Ty %Rec. Limits 90 - 110	 Sample	e Du blubl
Lab Sample ID: LCS 890- Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: LCSD 890 Matrix: Solid Analysis Batch: 137 Analyte			Added 500	Result 496.2 LCSD	Qualifier	Unit mg/Kg	D	%Rec 99	Prep Ty %Rec. Limits 90 - 110 Control S Prep Ty	 Sample	 e Du

Client: WSP USA Inc. Project/Site: PLU 199

QC Sample Results

3 4 5

Job ID: 890-128-1 SDG: TE012921008

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-128-1 M	S											CI	ient Sam	•	
Matrix: Solid													Prep T	ype: So	oluble
Analysis Batch: 137															
	Sample	Sam	ple	Spike		MS	MS						%Rec.		
Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Chloride	1160	F1		498		1711			mg/Kg			110	90 - 110		
Lab Sample ID: 890-128-1 M Matrix: Solid	SD											CI	ient Sam Prep T		
Analysis Batch: 137														, , , , , , , , , , , , , , , , , , , ,	
Analysis Baten. 107	Sample	Sam	nle	Spike		MSD	MSE)					%Rec.		RP
Analyte	Result		-	Added		Result	-		Unit		D	%Rec	Limits	RPD	Lim
Chloride	1160			499		1585			mg/Kg			84	90 - 110	8	2
/lethod: SW8015 - Semi-	Volatile	c													
		3													
Lab Sample ID: 7721032-1-B Matrix: SOIL	LK										Clie	nt Sam	ple ID: M Prep Ty		
												р.	rep Batch	-	
Analysis Batch: 3150314	ы		BLANK									FI	ep Batch	. 51503	14_
Analyta					ы			Unit		n	Б.	anarad	Analy		
Analyte	R		Qualifier		RL		MDL			D		repared	Analyz		Dil Fa
Diesel Range Organics (DRO)	`	U			50			mg/kg				8/21 12:0			
Gasoline Range Hydrocarbons (GRO)		U			50			mg/kg					0 02/08/21		
Motor Oil Range Hydrocarbons (MRO)	U			50			mg/kg)		02/0	8/21 12:0	0 02/08/21	11:26	
Lab Sample ID: 7721032-1-B	KS								Clie	ent	Sar	nple ID	: Lab Cor		
Matrix: SOIL													Prep Ty		
Analysis Batch: 3150314												Pr	rep Batch	: 31503	3 14 _
				Spike			LCS						%Rec.		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Diesel Range Organics (DRO)				1000		1100			mg/kg			110	70 - 135		
Gasoline Range Hydrocarbons (GRO)				1000		1090			mg/kg			109	70 - 135		
Lab Sample ID: 7721032-1-B	SD							C	lient S	am	ple	ID: Lab	o Control	Sample	e Dur
Matrix: SOIL													Prep Ty		
Analysis Batch: 3150314												Pr	rep Batch		
				Spike		LCSD	LCS	D					%Rec.		RP
Analyte				Added		Result			Unit		D	%Rec	Limits	RPD	Lim
·				1000		1200	<u>_</u> ua		mg/kg			120	70 - 135	9	2
Diesel Range Organics (DRO)									mg/kg			120	70 - 135 70 - 135	0	2
				1000		1000			mg/kg			105	10-100		
Gasoline Range Hydrocarbons				1000		1090								Ū	_
Gasoline Range Hydrocarbons (GRO) Lab Sample ID: 687338-001 \$	S			1000		1090					CI	ient Sa	mple ID:	Matrix	Spik
Gasoline Range Hydrocarbons (GRO) Lab Sample ID: 687338-001 \$ Matrix: SOIL	S			1000		1090					CI		Prep Ty	Matrix pe: Tot	Spik al/N
Gasoline Range Hydrocarbons (GRO) Lab Sample ID: 687338-001 \$ Matrix: SOIL	S			1000		1090					CI			Matrix pe: Tot	Spik al/N
Diesel Range Organics (DRO) Gasoline Range Hydrocarbons (GRO) Lab Sample ID: 687338-001 S Matrix: SOIL Analysis Batch: 3150314	S Sample	Sam	ple	1000 Spike			MS				CI		Prep Ty	Matrix pe: Tot	Spik al/N/
Gasoline Range Hydrocarbons (GRO) Lab Sample ID: 687338-001 \$ Matrix: SOIL			-					lifier	Unit		CI D		Prep Ty rep Batch	Matrix pe: Tot	Spiko al/N/
Gasoline Range Hydrocarbons (GRO) Lab Sample ID: 687338-001 S Matrix: SOIL Analysis Batch: 3150314	Sample		-	Spike		MS		lifier				Pr	Prep Ty rep Batch %Rec.	Matrix pe: Tot	Spik al/N

_(GRO)

Eurofins Xenco, Carlsbad

5

Client: WSP USA Inc. Project/Site: PLU 199

Method: SW8015 - Semi-Volatiles (Continued)

Lab Sample ID: 687338-001 Matrix: SOIL Analysis Batch: 3150314			Client \$	Samp		latrix Spil Prep Ty rep Batch	pe: Tot	al/NA				
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	ŝ
Diesel Range Organics (DRO)	<49.9		997	1090		mg/kg		109	70 - 135	7	20	
Gasoline Range Hydrocarbons (GRO)	<49.9		997	1020		mg/kg		102	70 - 135	12	20	

Eurofins Xenco, Carlsbad

QC Association Summary

Client: WSP USA Inc. Project/Site: PLU 199

GC VOA

Prep Batch: 124

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-128-1	BH01	Total/NA	Solid	5030C	
890-128-2	BH01	Total/NA	Solid	5030C	
MB 890-124/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 890-124/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 890-124/3-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
890-122-A-1-E MS	Matrix Spike	Total/NA	Solid	5030C	
890-122-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5030C	

Analysis Batch: 129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-128-1	BH01	Total/NA	Solid	8021B	124
890-128-2	BH01	Total/NA	Solid	8021B	124
MB 890-124/1-A	Method Blank	Total/NA	Solid	8021B	124
LCS 890-124/2-A	Lab Control Sample	Total/NA	Solid	8021B	124
LCSD 890-124/3-A	Lab Control Sample Dup	Total/NA	Solid	8021B	124
890-122-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	124
890-122-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	124

HPLC/IC

Leach Batch: 133

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-128-1	BH01	Soluble	Solid	DI Leach	
890-128-2	BH01	Soluble	Solid	DI Leach	
MB 890-133/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 890-133/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 890-133/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-128-1 MS	BH01	Soluble	Solid	DI Leach	
890-128-1 MSD	BH01	Soluble	Solid	DI Leach	

Analysis Batch: 137

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-128-1	BH01	Soluble	Solid	300.0	133
890-128-2	BH01	Soluble	Solid	300.0	133
MB 890-133/1-A	Method Blank	Soluble	Solid	300.0	133
LCS 890-133/2-A	Lab Control Sample	Soluble	Solid	300.0	133
LCSD 890-133/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	133
890-128-1 MS	BH01	Soluble	Solid	300.0	133
890-128-1 MSD	BH01	Soluble	Solid	300.0	133

Subcontract

Analysis Batch: 3150314

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
687338-001	89-128-1	Total/NA	Solid	SW8015	3150314_P
687338-002	89-128-2	Total/NA	Solid	SW8015	3150314_P
7721032-1-BLK	Method Blank	Total/NA	SOIL	SW8015	3150314_P
7721032-1-BKS	Lab Control Sample	Total/NA	SOIL	SW8015	3150314_P
7721032-1-BSD	Lab Control Sample Dup	Total/NA	SOIL	SW8015	3150314_P
687338-001 S	Matrix Spike	Total/NA	SOIL	SW8015	3150314_P
687338-001 SD	Matrix Spike Duplicate	Total/NA	SOIL	SW8015	3150314_P

Eurofins Xenco, Carlsbad

Page 63 of 152

Job ID: 890-128-1 SDG: TE012921008

QC Association Summary

Client: WSP USA Inc. Project/Site: PLU 199 Page 64 of 152

Job ID: 890-128-1 SDG: TE012921008

Subcontract

Prep Batch: 3150314_P

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
687338-001	89-128-1	Total/NA	Solid	SW8015P	
687338-002	89-128-2	Total/NA	Solid	SW8015P	
7721032-1-BLK	Method Blank	Total/NA	SOIL	***DEFAULT PREP***	
7721032-1-BKS	Lab Control Sample	Total/NA	SOIL	***DEFAULT PREP***	
7721032-1-BSD	Lab Control Sample Dup	Total/NA	SOIL	***DEFAULT PREP***	
687338-001 S	Matrix Spike	Total/NA	SOIL	***DEFAULT PREP***	
687338-001 SD	Matrix Spike Duplicate	Total/NA	SOIL	***DEFAULT PREP***	

Lab Chronicle

Client: WSP USA Inc. Project/Site: PLU 199

Client Sample ID: 89-128-1 Date Collected: Date Received:

Γ		Batch	Batch		Dilution	Batch	Prepared		
Pre	ер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Tota	al/NA	Prep	SW8015P		1	3150314_P	02/08/21 12:00		
Tota	al/NA	Analysis	SW8015		1	3150314	02/08/21 12:29	ARM	

Client Sample ID: 89-128-2 Date Collected: Date Received:

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SW8015P		1	3150314_P	02/08/21 12:00		
Total/NA	Analysis	SW8015		1	3150314	02/08/21 13:33	ARM	

Client Sample ID: BH01 Date Collected: 02/03/21 09:32 Date Received: 02/03/21 14:24

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			124	02/03/21 15:00	MC	XC
Total/NA	Analysis	8021B		1	129	02/04/21 01:33	MC	XC
Soluble	Leach	DI Leach			133	02/03/21 17:27	MC	XC
Soluble	Analysis	300.0		5	137	02/03/21 21:06	MC	XC

Client Sample ID: BH01 Date Collected: 02/03/21 09:50 Date Received: 02/03/21 14:24

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			124	02/03/21 15:00	MC	XC
Total/NA	Analysis	8021B		1	129	02/04/21 01:55	MC	XC
Soluble	Leach	DI Leach			133	02/03/21 17:27	MC	XC
Soluble	Analysis	300.0		1	137	02/03/21 21:23	MC	XC

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Job ID: 890-128-1 SDG: TE012921008

Lab Sample ID: 687338-001

Lab Sample ID: 687338-002

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-128-1 Matrix: Solid

Lab Sample ID: 890-128-2

Matrix: Solid

Eurofins Xenco, Carlsbad

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: PLU 199

_

Page 66 of 152

Job ID: 890-128-1
SDG: TE012921008

Laboratory: Eurofins Xenco, Carlsbad

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pro	ogram	Identification Number	Expiration Date
ouisiana	NE	LAP	05092	06-30-21
The following analytes the agency does not o	•	rt, but the laboratory is n	not certified by the governing authority.	This list may include analytes for which
0,	•	rt, but the laboratory is n Matrix	not certified by the governing authority. Analyte	This list may include analytes for whic

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date			
Texas	NELAP	T104704400-20-21	06-30-21			

Eurofins Xenco, Carlsbad

Method Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-128-1 SDG: TE012921008

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XC
300.0	Anions, Ion Chromatography	MCAWW	XC
5030C	Purge and Trap	SW846	XC
DI Leach	Deionized Water Leaching Procedure	ASTM	XC

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Sample Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-128-1 SDG: TE012921008

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	
687338-001	89-128-1	Solid				4
687338-002	89-128-2	Solid				
890-128-1	BH01	Solid		02/03/21 14:24		5
890-128-2	BH01	Solid	02/03/21 09:50	02/03/21 14:24		
						8
						9
						1
						1
						_

0	5	3 Jave J C	1 J. J. M. A.	Relinguished by: (Signature)	Notice: Signature of this document an of service. Xenco will be liable only fo of Xenco. A minimum charge of \$75.0	Total 200.7 / 6010 2 Circle Method(s) and A				BHOI	RHOI	Lab Sample Identification	Cooler Custody Seals: Sample Custody Seals:		Temperature (°C):	Sampler's Name: 4-0-	Project Location Edg	1	Project Name: PLU	Phone: (26		~	~	Project Manager:	LABORAT	X
	6		Mr. Will 2.3.2 1004	re) Received by: (Signature) Date/Time Relinquished by: (Signature)	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negoliated.	otal 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag				13/21 0950	$\leq 2/3/21 \log 32 = 2^{1} X X X $	Matrix Date Time Depth Number Tet	Yes No N/A Correction Factor: -C · C C E (C	eD No Dontai	1 81 1 C	80	Rush: 24 hrs	TEO(2921009 Routine 0000 And 10000 And 100000 And 10000	ANA	1)702-2329 Email: respects hernander@usp.com	Hand, TX 79705 city, state ZIP: Carlebod, Nr	76 North A Street Address: 3104	Dermion Office, company Name: XTO Fr	ph Harne	DRIES Midland,TX (* Phoenix,AZ (480	Chain of Custody Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Anionio.TX (210) 509-3334
	Revised Date 022619 Rev. 2019 1			nature) Received by: (Signature) Date/Time	ard terms and conditions stances beyond the control rreviously negotiated.	Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn Se Ag Ti U 1631/245.1/7470/7471:Hg						Sample Comments	TAT starts the day received by the lab, if received by 4:00pm	Zn Acetate+ NaOH: Zn	NaOH: Na	H2S04: H2	None: NO	MeOH: Me	LYSIS REQUEST Preservative Codes	Deliverables: EDD ADaPT Other:		State of Project:	Program: UST/PST PRP Brownfields RRC Superfund	Work Order Comments	www.xenco.com Page of	Work Order No:

Page 69 of 152

Job Number: 890-128-1 SDG Number: TE012921008

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 128 List Number: 1 Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-130-1

Laboratory Sample Delivery Group: TE012921008 Client Project/Site: PLU 199 Revision: 1

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 2/11/2021 9:39:11 AM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access **Have a Question?** Ask-The Expert

www.eurofinsus.com/Env Released to Imaging: 6/8/2022 8:54:45 AM

Visit us at:

.

SDG: TE012921008

Page 72 of 152

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	21

.
Defir	nition	s/Gl	lossary
-------	--------	------	---------

Page 73 of 152

Client: WSP L Project/Site: F		Job ID: 890-130-1 SDG: TE012921008
Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

TNTC Too Numerous To Count

Case Narrative

Client: WSP USA Inc. Project/Site: PLU 199

Job ID: 890-130-1 SDG: TE012921008

Job ID: 890-130-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-130-1

REVISION

The report being provided is a revision of the original report sent on 2/10/2021. The report (revision 1) is being revised due to Corrected certificate summary for TPH 8015.

Report revision history

Receipt

The samples were received on 2/3/2021 2:20 PM; the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

Client Sample Results

Client: WSP USA Inc. Project/Site: PLU 199

Client Sample ID: BH02 Date Collected: 02/03/21 10:53 Date Received: 02/03/21 14

Date Collected: 02/03/2 Date Received: 02/03/2							
Method: 8021B - Volat	tile Organic Compo	unds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	
D						00/00/04 40 50	-

5					•		
Benzene	<0.00199	U	0.00199	mg/Kg	02/03/21 19:53	02/05/21 08:01	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg	02/03/21 19:53	02/05/21 08:01	1
Toluene	<0.00199	U	0.00199	mg/Kg	02/03/21 19:53	02/05/21 08:01	1
Total BTEX	<0.00199	U	0.00199	mg/Kg	02/03/21 19:53	02/05/21 08:01	1
Xylenes, Total	<0.00199	U	0.00199	mg/Kg	02/03/21 19:53	02/05/21 08:01	1
m,p-Xylenes	<0.00398	U	0.00398	mg/Kg	02/03/21 19:53	02/05/21 08:01	1
o-Xylene	<0.00199	U	0.00199	mg/Kg	02/03/21 19:53	02/05/21 08:01	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	103		70 - 130		02/03/21 19:53	02/05/21 08:01	1
4-Bromofluorobenzene (Surr)	109		70 - 130		02/03/21 19:53	02/05/21 08:01	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
<50.3	U	50.3	mg/Kg		02/06/21 15:46	02/09/21 20:44	1	
<50.3	U	50.3	mg/Kg		02/06/21 15:46	02/09/21 20:44	1	
<50.3	U	50.3	mg/Kg		02/06/21 15:46	02/09/21 20:44	1	
<50.3	U	50.3	mg/Kg		02/06/21 15:46	02/09/21 20:44	1	ł
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
102		70 - 135			02/06/21 15:46	02/09/21 20:44	1	
100		70 - 135			02/06/21 15:46	02/09/21 20:44	1	
	<50.3 <50.3 <50.3 <50.3 <50.3 %Recovery 102		<50.3	<50.3	<50.3	<50.3 U 50.3 mg/Kg 02/06/21 15:46 <50.3	<50.3 U 50.3 mg/Kg 02/06/21 15:46 02/09/21 20:44 <50.3	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Method: 300.0 - Anions, Ion Ch	romatography - Solub	le					
Analyte Chloride	Result Qualifier	RL 10.0	Unit mg/Kg	D	Prepared	Analyzed 02/03/21 21:28	Dil Fac
Client Sample ID: BH02					Lab San	nple ID: 890-	-130-2

Client Sample ID: BH02 Date Collected: 02/03/21 10:56

Date Received: 02/03/21 14:20

Method: 8021B - Volatile O	rganic Compo	unds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		02/03/21 19:53	02/05/21 09:21	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/03/21 19:53	02/05/21 09:21	1
Toluene	<0.00198	U	0.00198	mg/Kg		02/03/21 19:53	02/05/21 09:21	1
Total BTEX	<0.00198	U	0.00198	mg/Kg		02/03/21 19:53	02/05/21 09:21	1
Xylenes, Total	<0.00198	U	0.00198	mg/Kg		02/03/21 19:53	02/05/21 09:21	1
m,p-Xylenes	<0.00397	U	0.00397	mg/Kg		02/03/21 19:53	02/05/21 09:21	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		02/03/21 19:53	02/05/21 09:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	101		70 - 130			02/03/21 19:53	02/05/21 09:21	1
4-Bromofluorobenzene (Surr)	104		70 - 130			02/03/21 19:53	02/05/21 09:21	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed C6-C10 <50.0 U 50.0 mg/Kg 02/06/21 15:46 02/09/21 22:04 Total TPH <50.0 U 50.0 mg/Kg 02/06/21 15:46 02/09/21 22:04 mg/Kg >C10-C28 <50.0 U 50.0 02/06/21 15:46 02/09/21 22:04

<50.0 U

Eurofins Xenco, Carlsbad

02/06/21 15:46 02/09/21 22:04

Page 75 of 152

Job ID: 890-130-1 SDG: TE012921008

Lab Sample ID: 890-130-1

Analyzed

Matrix: Solid

Dil Fac

Released to Imaging: 6/8/2022 8:54:45 AM

>C28-C35

50.0

mg/Kg

Dil Fac

1

1

1

1

Matrix: Solid

Client Sample Results

Job ID: 890-130-1 SDG: TE012921008

Client Sample ID: BH02 Date Collected: 02/03/21 10:56

Client: WSP USA Inc.

Project/Site: PLU 199

Date Received: 02/03/21 14:20

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 135			02/06/21 15:46	02/09/21 22:04	1
o-Terphenyl	101		70 - 135			02/06/21 15:46	02/09/21 22:04	1
Method: 300.0 - Anior	ns, Ion Chromatogra	phy - Solu	ble					
Method: 300.0 - Anior Analyte	· · · · · · · · · · · · · · · · · · ·	<mark>phy - Solu</mark> Qualifier	ble RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-130-2 Matrix: Solid

Surrogate Summary

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC) **Matrix: Solid**

Percent Surrogate Recovery (Acceptance Limits) DFBZ1 BFB1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 890-130-1 BH02 109 103 890-130-1 MS BH02 98 100 890-130-1 MSD BH02 94 97 890-130-2 BH02 101 104 LCS 890-134/2-A Lab Control Sample 97 95 LCS 890-136/2-A Lab Control Sample 97 97 LCSD 890-134/3-A Lab Control Sample Dup 99 99 LCSD 890-136/3-A Lab Control Sample Dup 94 96 MB 890-134/1-A Method Blank 98 111 MB 890-136/1-A Method Blank 102 103

Surrogate Legend

DFBZ = 1,4-Difluorobenzene

BFB = 4-Bromofluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

			Pe
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-135)	(70-135)
890-130-1	BH02	102	100
890-130-1 MS	BH02	117	106
890-130-1 MSD	BH02	119	108
890-130-2	BH02	104	101
LCS 890-186/2-A	Lab Control Sample	114	105
LCSD 890-186/3-A	Lab Control Sample Dup	110	100
MB 890-186/1-A	Method Blank	96	94

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

6

Page 77 of 152

Prep Type: Total/NA

Job ID: 890-130-1 SDG: TE012921008

Prep Type: Total/NA Prep Batch: 134

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 890-134/1-A **Matrix: Solid Analysis Batch: 146**

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	98		70 - 130			02/03/21 19:53	02/05/21 06:48	1
4-Bromofluorobenzene (Surr)	111		70 - 130			02/03/21 19:53	02/05/21 06:48	1

Lab Sample ID: LCS 890-134/2-A **Matrix: Solid Analysis Batch: 146**

Analysis Batch: 146							Prep	Batch: 134
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09494		mg/Kg		95	70 - 130	
Ethylbenzene	0.100	0.09299		mg/Kg		93	71 - 129	
Toluene	0.100	0.09355		mg/Kg		94	70 - 130	
m,p-Xylenes	0.200	0.1846		mg/Kg		92	70 - 135	
o-Xylene	0.100	0.09335		mg/Kg		93	71 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	97		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130

Lab Sample ID: LCSD 890-134/3-A Matrix: Solid

Analysis Batch: 146									Pre	Batch	ı: 134
-			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.1002		mg/Kg		100	70 - 130	5	35
Ethylbenzene			0.100	0.09780		mg/Kg		98	71 - 129	5	35
Toluene			0.100	0.09930		mg/Kg		99	70 - 130	6	35
m,p-Xylenes			0.200	0.1894		mg/Kg		95	70 - 135	3	35
o-Xylene			0.100	0.09894		mg/Kg		99	71 - 133	6	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,4-Difluorobenzene	99		70 - 130								

4-Bromofluorobenzene (Surr)	99		70 - 130							
Lab Sample ID: 890-130-1 I Matrix: Solid Analysis Batch: 146	WS							CI	· Prep Ty	ble ID: BH02 pe: Total/NA Batch: 134
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte Benzene	Result <0.00199	Qualifier U	Added	Result 0.09884	Qualifier	Unit mg/Kg	<u>D</u>	%Rec 98	Limits 70 - 130	

Eurofins Xenco, Carlsbad

Released to Imaging: 6/8/2022 8:54:45 AM

Lab Sample ID: 890-130-1 MS

QC Sample Results

Client: WSP USA Inc. Project/Site: PLU 199

Analysis Batch: 146

Matrix: Solid

Analyte

Toluene

o-Xylene

Ethylbenzene

m,p-Xylenes

Method: 8021B - Volatile Organic Compounds (

Sample Sample

<0.00199 U

<0.00199 U

<0.00398 U

<0.00199 U

Result Qualifier

						SDG: T	E012921008	
nds (GC	C) (Conti	nued)						
					CI	Prep Ty	ple ID: BH02 pe: Total/NA p Batch: 134	
Spike	MS	MS				%Rec.		5
Added	Result	Qualifier	Unit	D	%Rec	Limits		
0.101	0.09728		mg/Kg		96	71 - 129		
0.101	0.09699		mg/Kg		96	70 - 130		
0.202	0.1928		mg/Kg		96	70 - 135		7
0.101	0.09796		mg/Kg		97	71 - 133		
			00					

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	98		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 890-130-1 MSD Matrix: Solid Analysis Batch: 146

Analysis Batch: 146									Prep Batch: 13			
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	< 0.00199	U	0.0994	0.1059		mg/Kg		107	70 - 130	7	35	
Ethylbenzene	<0.00199	U	0.0994	0.1043		mg/Kg		105	71 - 129	7	35	
Toluene	<0.00199	U	0.0994	0.1027		mg/Kg		103	70 - 130	6	35	
m,p-Xylenes	<0.00398	U	0.199	0.2050		mg/Kg		103	70 - 135	6	35	
o-Xylene	<0.00199	U	0.0994	0.1040		mg/Kg		105	71 - 133	6	35	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	94		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

103

Lab Sample ID: MB 890-136/1-A Matrix: Solid **Analysis Batch: 146**

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 136

02/03/21 20:06 02/05/21 20:06

Client Sample ID: Lab Control Sample

	MB	МВ					
Analyte	Result	Qualifier	RL	Unit I	D Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg	02/03/21 20:06	02/05/21 20:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	02/03/21 20:06	02/05/21 20:06	1
Toluene	<0.00200	U	0.00200	mg/Kg	02/03/21 20:06	02/05/21 20:06	1
Total BTEX	<0.00200	U	0.00200	mg/Kg	02/03/21 20:06	02/05/21 20:06	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg	02/03/21 20:06	02/05/21 20:06	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg	02/03/21 20:06	02/05/21 20:06	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	02/03/21 20:06	02/05/21 20:06	1
	MB	МВ					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	102		70 - 130		02/03/21 20:06	02/05/21 20:06	1

70 - 130

4-Bromofluorobenzene (Surr)

Lab Sample ID: LCS 890-136/2-A Matrix: Solid

Analysis Batch: 146

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09769		mg/Kg		98	70 - 130	
Ethylbenzene	0.100	0.09480		mg/Kg		95	71 - 129	

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Prep Batch: 136

Job ID: 890-130-1

Client Sample ID: BH02

Prep Type: Total/NA

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 890- Matrix: Solid	-136/2-A					Clier	nt Sa	mple ID	: Lab Cor Prep Ty		
Analysis Batch: 146										p Batch	
Analysis Baten. 140			Spike	LCS	LCS				%Rec.	p Datei	
Analyte			Added	Result		Unit	D	%Rec	Limits		
Toluene			0.100	0.09539		mg/Kg		95	70 - 130		
m,p-Xylenes			0.200	0.1870		mg/Kg		94	70 - 135		
o-Xylene			0.100	0.09692		mg/Kg		97	71 - 133		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1,4-Difluorobenzene	97		70 - 130								
4-Bromofluorobenzene (Surr)	97		70 - 130								
Matrix: Solid	0-136/3-A						mpic	ib. Lui	Control Prep Ty		
							mpic	ID. Luk	Prep Ty	pe: Tot	al/NA
			Spike	LCSD	LCSD		mpic	10. 24	Prep Ty		al/NA
Analysis Batch: 146			Spike Added	-		Unit	D		Prep Ty Prej	pe: Tot	al/NA n: 136
Analysis Batch: 146 Analyte			•	-	LCSD				Prep Ty Prej %Rec.	pe: Tot p Batch	al/NA n: 136 RPD
Analysis Batch: 146 Analyte Benzene			Added	Result	LCSD	Unit		%Rec	Prep Ty Pre %Rec. Limits	pe: Tot p Batch 	al/NA n: 136 RPD Limit
Analysis Batch: 146 Analyte Benzene Ethylbenzene			Added	Result 0.09775	LCSD	Unit mg/Kg		%Rec 98	Prep Ty Prej %Rec. Limits 70 - 130	pe: Tot p Batch <u>RPD</u> 0	al/NA n: 136 RPD Limit 35
Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene			Added 0.100 0.100	Result 0.09775 0.09646	LCSD	<mark>Unit</mark> mg/Kg mg/Kg		%Rec 98 96	Prep Ty Prej %Rec. Limits 70 - 130 71 - 129	pe: Tot p Batch RPD 0 2	tal/NA n: 136 RPD Limit 35 35
Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene m,p-Xylenes			Added 0.100 0.100 0.100	Result 0.09775 0.09646 0.09628	LCSD	Unit mg/Kg mg/Kg mg/Kg		%Rec 98 96 96	Prep Ty Prej %Rec. Limits 70 - 130 71 - 129 70 - 130	pe: Tot p Batch <u>RPD</u> 0 2 1	al/NA n: 136 RPD Limit 35 35 35
Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene m,p-Xylenes		LCSD	Added 0.100 0.100 0.100 0.200	Result 0.09775 0.09646 0.09628 0.1919	LCSD	Unit mg/Kg mg/Kg mg/Kg		%Rec 98 96 96 96	Prep Ty Prep %Rec. Limits 70 - 130 71 - 129 70 - 130 70 - 130 70 - 130	RPD 0 2 1 3	al/NA n: 136 RPD Limit 35 35 35 35
Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene m,p-Xylenes o-Xylene			Added 0.100 0.100 0.100 0.200	Result 0.09775 0.09646 0.09628 0.1919	LCSD	Unit mg/Kg mg/Kg mg/Kg		%Rec 98 96 96 96	Prep Ty Prep %Rec. Limits 70 - 130 71 - 129 70 - 130 70 - 130 70 - 130	RPD 0 2 1 3	al/NA 1: 136 RPD Limit 35 35 35 35
Matrix: Solid Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene m,p-Xylenes o-Xylene Surrogate 1,4-Difluorobenzene			Added 0.100 0.100 0.100 0.200 0.100	Result 0.09775 0.09646 0.09628 0.1919	LCSD	Unit mg/Kg mg/Kg mg/Kg		%Rec 98 96 96 96	Prep Ty Prep %Rec. Limits 70 - 130 71 - 129 70 - 130 70 - 130 70 - 130	RPD 0 2 1 3	al/NA 1: 136 RPD Limit 35 35 35 35

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 890-186/1-A Matrix: Solid Analysis Batch: 215

	MB	MB					
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0	mg/Kg	02/06/21 15:46	02/09/21 19:43	1
Total TPH	<50.0	U	50.0	mg/Kg	02/06/21 15:46	02/09/21 19:43	1
>C10-C28	<50.0	U	50.0	mg/Kg	02/06/21 15:46	02/09/21 19:43	1
>C28-C35	<50.0	U	50.0	mg/Kg	02/06/21 15:46	02/09/21 19:43	1
	MD	MD					

	INID	IVID	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	96		70 - 135
o-Terphenyl	94		70 - 135

Lab Sample ID: LCS 890-186/2-A Matrix: Solid

Analysis Batch: 215							Prep	Batch: 186
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C10	1000	1044		mg/Kg		104	70 - 135	
>C10-C28	1000	1004		mg/Kg		100	70 - 135	

Eurofins Xenco, Carlsbad

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA

Prepared

02/06/21 15:46 02/09/21 19:43

02/06/21 15:46 02/09/21 19:43

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 186

Dil Fac

1

1

Job ID: 890-130-1 SDG: TE012921008

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 890 Matrix: Solid)-186/2-A					Clier	nt Sa	mple ID	: Lab Cor Prep Ty	pe: Tot	al/NA
Analysis Batch: 215									Prep	o Batch	n: 186
	105	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane	<u></u>	Quaimer	70 - 135								
o-Terphenyl	105		70 - 135								
Lab Sample ID: LCSD 8	90-186/3-A				C	Client Sa	mple	ID: Lab		Sample	e Dur
Matrix: Solid									Prep Ty		
Analysis Batch: 215										Batch	
			Spike	LCSD	LCSD				%Rec.		RPI
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
C6-C10			1000	1052		mg/Kg		105	70 - 135	1	2
>C10-C28			1000	1002		mg/Kg		100	70 - 100	4	2
			1000	1011		mg/ng		101	101100	•	2.
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	110		70 - 135								
o-Terphenyl	100		70 - 135								
Lab Sample ID: 890-130	-1 MS							CI	ient Sam		
Matrix: Solid									Prep Ty		
Analysis Batch: 215										o Batch	n: 180
	•	Sample	Spike	MS	MS				%Rec.		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
C6-C10	<50.3		997	1090		mg/Kg		109	70 - 135		
Total TPH	<50.3	U	1990	2154		mg/Kg		0			
>C10-C28	<50.3	U	997	1064		mg/Kg		107	70 - 135		
	MS	MS									
Surrogate	%Recovery		Limits								
1-Chlorooctane		quanto	70 - 135								
o-Terphenyl	106		70 - 135								
o-reipileilyi	100		70-755								
Lab Sample ID: 890-130	-1 MSD							CI	ient Sam	ple ID:	BH02
Matrix: Solid									Prep Ty		
Analysis Batch: 215										o Batch	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPI
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
C6-C10	<50.3		1000	1054		mg/Kg		105	70 - 135	3	3
Total TPH	<50.3		2000	2108		mg/Kg		0		NC	5.
>C10-C28	<50.3		1000	1054		mg/Kg		105	70 - 135	1	3
				1004							
		MSD									
Surrogate	%Recovery	Qualifier	Limits								
Junogate											
1-Chlorooctane	119		70 - 135								

Client: WSP USA Inc. Project/Site: PLU 199

QC Sample Results

Job ID: 890-130-1 SDG: TE012921008

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 890-133/ Matrix: Solid	/1-A							C	lie	nt Sam	ple ID: M Prep T		
Analysis Batch: 137													
		МВ М	1B										
Analyte	Re	sult Q	lualifier		RL	Unit		D	Pr	epared	Analy	zed	Dil Fac
Chloride	<	10.0 U	I		10.0	mg/K	g			-	02/03/21	20:49	1
Lab Sample ID: LCS 890-133	3/2-A						Clie	ent S	San	nple ID	: Lab Cor	ntrol Sa	ample
Matrix: Solid											Prep T		
Analysis Batch: 137												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				Spike	LCS	LCS					%Rec.		
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride				500	496.2		mg/Kg		_	99	90 - 110		
Lab Sample ID: LCSD 890-13 Matrix: Solid	33/3-A					C	lient S	amp	le	ID: Lab	Control Pren T		
Lab Sample ID: LCSD 890-13 Matrix: Solid Analysis Batch: 137	33/3 -A					C	lient S	amp	le	ID: Lab	Control Prep T		
Matrix: Solid Analysis Batch: 137	33/3-A			Spike		LCSD		ĺ			Prep Ty %Rec.	ype: So	oluble RPD
Matrix: Solid Analysis Batch: 137 Analyte	33/3-A			Added	Result		Unit	ĺ		%Rec	Prep Ty %Rec. Limits	ype: So RPD	RPD Limit
Matrix: Solid	33/3-A			•		LCSD		ĺ			Prep Ty %Rec.	ype: So	RPD Limit
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1				Added	Result	LCSD	Unit		<u>D</u>	%Rec 99	Prep Ty %Rec. Limits	ype: So RPD	RPD Limit
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1				Added	Result	LCSD	Unit		<u>D</u>	%Rec 99	Prep T %Rec. Limits 90 - 110	ype: So RPD 1 Matrix :	RPD Limit 20 Spike
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid				Added	Result 493.5	LCSD Qualifier	Unit		<u>D</u>	%Rec 99	Prep Ty %Rec. Limits 90 - 110 mple ID: Prep Ty	ype: So RPD 1 Matrix :	RPD Limit 20 Spike
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid		Sampl		Added	Result 493.5	LCSD	Unit		<u>D</u>	%Rec 99	Prep Ty %Rec. Limits 90 - 110 mple ID:	ype: So RPD 1 Matrix :	RPD Limit 20 Spike
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte	-B MS Sample Result	•		Added 500 Spike Added	Result 493.5 MS Result	LCSD Qualifier	Unit		<u>D</u>	%Rec 99 ent Sa %Rec	Prep Ty %Rec. Limits 90 - 110 mple ID: I Prep Ty %Rec. Limits	ype: So RPD 1 Matrix :	RPD Limit 20
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte	-B MS Sample	•		Added 500 Spike	Result 493.5	LCSD Qualifier MS	Unit mg/Kg		D Cli	%Rec 99 ent Sa	Prep Ty %Rec. Limits 90 - 110 mple ID: I Prep Ty %Rec.	ype: So RPD 1 Matrix :	RPD Limit 20 Spike
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte Chloride	-B MS Sample Result 82.2	•		Added 500 Spike Added	Result 493.5 MS Result	LCSD Qualifier MS	Unit mg/Kg Unit mg/Kg		D Cli	%Rec 99 ent Sa %Rec 101	Prep Ty %Rec. Limits 90 - 110 mple ID: Prep Ty %Rec. Limits 90 - 110	ype: So <u>RPD</u> 1 Matrix ype: So	RPD Limit 20 Spike Dluble
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte Chloride	-B MS Sample Result 82.2	•		Added 500 Spike Added	Result 493.5 MS Result	LCSD Qualifier MS	Unit mg/Kg Unit mg/Kg		D Cli	%Rec 99 ent Sa %Rec 101	Prep Ty %Rec. Limits 90 - 110 mple ID: I Prep Ty %Rec. Limits	ype: So <u>RPD</u> 1 Matrix ype: So ke Dup	Spike
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1	-B MS Sample Result 82.2	•		Added 500 Spike Added	Result 493.5 MS Result	LCSD Qualifier MS	Unit mg/Kg Unit mg/Kg		D Cli	%Rec 99 ent Sa %Rec 101	Prep Ty %Rec. Limits 90 - 110 mple ID: Prep Ty %Rec. Limits 90 - 110 latrix Spil	ype: So <u>RPD</u> 1 Matrix ype: So ke Dup	Spike
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid	-B MS Sample Result 82.2	Qualifi	ïer	Added 500 Spike Added	Result 493.5 MS Result	LCSD Qualifier MS Qualifier	Unit mg/Kg Unit mg/Kg		D Cli	%Rec 99 ent Sa %Rec 101	Prep Ty %Rec. Limits 90 - 110 mple ID: Prep Ty %Rec. Limits 90 - 110 latrix Spil	ype: So <u>RPD</u> 1 Matrix ype: So ke Dup	Spike oluble
Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid	-B MS Sample Result 82.2 -C MSD	Qualifi	ier	Added 500 Spike Added 500	Result 493.5 MS Result 588.7 MSD	LCSD Qualifier MS Qualifier	Unit mg/Kg Unit mg/Kg	: San	D Cli	%Rec 99 ent Sa %Rec 101	Prep Ty %Rec. Limits 90 - 110 mple ID: Prep Ty %Rec. Limits 90 - 110 kRec. Limits 90 - 110	ype: So <u>RPD</u> 1 Matrix ype: So ke Dup	Spike

QC Association Summary

Client: WSP USA Inc. Project/Site: PLU 199

GC VOA

Prep Batch: 134

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-130-1	BH02	Total/NA	Solid	5030C	
890-130-2	BH02	Total/NA	Solid	5030C	
MB 890-134/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 890-134/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 890-134/3-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
890-130-1 MS	BH02	Total/NA	Solid	5030C	
890-130-1 MSD	BH02	Total/NA	Solid	5030C	

Prep Batch: 136

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
MB 890-136/1-A	Method Blank	Total/NA	Solid	5030C		
LCS 890-136/2-A	Lab Control Sample	Total/NA	Solid	5030C		
LCSD 890-136/3-A	Lab Control Sample Dup	Total/NA	Solid	5030C		

Analysis Batch: 146

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-130-1	BH02	Total/NA	Solid	8021B	134
890-130-2	BH02	Total/NA	Solid	8021B	134
MB 890-134/1-A	Method Blank	Total/NA	Solid	8021B	134
MB 890-136/1-A	Method Blank	Total/NA	Solid	8021B	136
LCS 890-134/2-A	Lab Control Sample	Total/NA	Solid	8021B	134
LCS 890-136/2-A	Lab Control Sample	Total/NA	Solid	8021B	136
LCSD 890-134/3-A	Lab Control Sample Dup	Total/NA	Solid	8021B	134
LCSD 890-136/3-A	Lab Control Sample Dup	Total/NA	Solid	8021B	136
890-130-1 MS	BH02	Total/NA	Solid	8021B	134
890-130-1 MSD	BH02	Total/NA	Solid	8021B	134

GC Semi VOA

Prep Batch: 186

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-130-1	BH02	Total/NA	Solid	8015NM Prep	
890-130-2	BH02	Total/NA	Solid	8015NM Prep	
MB 890-186/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 890-186/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 890-186/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-130-1 MS	BH02	Total/NA	Solid	8015NM Prep	
890-130-1 MSD	BH02	Total/NA	Solid	8015NM Prep	

Analysis Batch: 215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-130-1	BH02	Total/NA	Solid	8015B NM	186
890-130-2	BH02	Total/NA	Solid	8015B NM	186
MB 890-186/1-A	Method Blank	Total/NA	Solid	8015B NM	186
LCS 890-186/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	186
LCSD 890-186/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	186
890-130-1 MS	BH02	Total/NA	Solid	8015B NM	186
890-130-1 MSD	BH02	Total/NA	Solid	8015B NM	186

Page 83 of 152

Job ID: 890-130-1 SDG: TE012921008

QC Association Summary

Client: WSP USA Inc. Project/Site: PLU 199

HPLC/IC

Leach Batch: 133

ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-130-1	BH02	Soluble	Solid	DI Leach	
390-130-2	BH02	Soluble	Solid	DI Leach	
MB 890-133/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 890-133/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
CSD 890-133/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-134-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
390-134-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
nalysis Batch: 137					
n <mark>alysis Batch: 137</mark> .ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
-ab Sample ID 390-130-1	Client Sample ID BH02	Soluble	Solid	300.0	133
Lab Sample ID 390-130-1 390-130-2	Client Sample ID BH02 BH02	Soluble	Solid Solid	300.0 300.0	133 133
Lab Sample ID 390-130-1 390-130-2 MB 890-133/1-A	Client Sample ID BH02 BH02 Method Blank	Soluble Soluble Soluble	Solid Solid Solid	300.0 300.0 300.0	133 133 133
Lab Sample ID 390-130-1 390-130-2 MB 890-133/1-A LCS 890-133/2-A	Client Sample ID BH02 BH02 Method Blank Lab Control Sample	Soluble Soluble Soluble Soluble	Solid Solid Solid Solid	300.0 300.0 300.0 300.0	133 133 133 133 133
Lab Sample ID 390-130-1 390-130-2 MB 890-133/1-A LCS 890-133/2-A LCSD 890-133/3-A	Client Sample ID BH02 BH02 Method Blank Lab Control Sample Lab Control Sample Dup	Soluble Soluble Soluble Soluble Soluble	Solid Solid Solid Solid Solid Solid	300.0 300.0 300.0 300.0 300.0 300.0	133 133 133 133 133 133 133
Lab Sample ID 390-130-1 390-130-2 MB 890-133/1-A LCS 890-133/2-A	Client Sample ID BH02 BH02 Method Blank Lab Control Sample	Soluble Soluble Soluble Soluble	Solid Solid Solid Solid	300.0 300.0 300.0 300.0	133 133 133 133 133

Analysis Batch: 137

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-130-1	BH02	Soluble	Solid	300.0	133	
890-130-2	BH02	Soluble	Solid	300.0	133	
MB 890-133/1-A	Method Blank	Soluble	Solid	300.0	133	
LCS 890-133/2-A	Lab Control Sample	Soluble	Solid	300.0	133	
LCSD 890-133/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	133	
890-134-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	133	
890-134-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	133	

Page 84 of 152

Job ID: 890-130-1 SDG: TE012921008 Client: WSP USA Inc. Project/Site: PLU 199

Client Sample ID: BH02 Date Collected: 02/03/21 10:53 Date Received: 02/03/21 14:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			134	02/03/21 19:53	МС	XC
Total/NA	Analysis	8021B		1	146	02/05/21 08:01	PXS	XC
Total/NA	Prep	8015NM Prep			186	02/06/21 15:46	MC	XC
Total/NA	Analysis	8015B NM		1	215	02/09/21 20:44	BJH	XC
Soluble	Leach	DI Leach			133	02/03/21 17:27	MC	XC
Soluble	Analysis	300.0		1	137	02/03/21 21:28	MC	XC

Client Sample ID: BH02 Date Collected: 02/03/21 10:56 Date Received: 02/03/21 14:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			134	02/03/21 19:53	MC	XC
Total/NA	Analysis	8021B		1	146	02/05/21 09:21	PXS	XC
Total/NA	Prep	8015NM Prep			186	02/06/21 15:46	MC	XC
Total/NA	Analysis	8015B NM		1	215	02/09/21 22:04	BJH	XC
Soluble	Leach	DI Leach			133	02/03/21 17:27	MC	XC
Soluble	Analysis	300.0		1	137	02/03/21 21:34	MC	XC

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Page 85 of 152

Job ID: 890-130-1 SDG: TE012921008

Lab Sample ID: 890-130-1 Matrix: Solid

Lab Sample ID: 890-130-2

Matrix: Solid

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-130-1

Laboratory: Eurofins Xenco, Carlsbad

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
ouisiana	NE	LAP	05092	06-30-21
The following enclyte				
the agency does not o	•	rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for whic
• •	•	rt, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes for whic
the agency does not o	offer certification.			This list may include analytes for whic

SDG: TE012921008

Method Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-130-1 SDG: TE012921008

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	XC
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XC
00.0	Anions, Ion Chromatography	MCAWW	XC
030C	Purge and Trap	SW846	XC
015NM Prep	Microextraction	SW846	XC
)I Leach	Deionized Water Leaching Procedure	ASTM	XC

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Sample Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-130-1 SDG: TE012921008

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	Asset ID	
90-130-1	BH02	Solid	02/03/21 10:53	02/03/21 14:20		
90-130-2	BH02	Solid	02/03/21 10:56	02/03/21 14:20		
						Į
						8
						9
						1
						1

$\begin{array}{c c} \hline felinquished by: (Signature) \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 5 \\ \hline 5 \\ \hline \end{array} \begin{array}{c} Received by: (Signature) \\ \hline 1 \\ 1 \\$	Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be BC Cd Ca Cr Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Db Indice: Signature of this document and relinquishment of samples constituites a valid purchase order from client company to Xenco, its affiliates and subcontractors. It of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not enalyzed. These terms will be emits w		BH02 5 2/3/21 1053 21 1 XX BH02 5 2/3/21 1056 41 1 XX	TPI		Temp Blank: Yes No Wet Ice: Yes No 1.0 Q. B Thermometer ID ainers	Eathra Smith Guote #: Due Date:	Project Name: PLU 199 Turn Around Pres.	(281)702-2329 Email:	city, state ZIP: (MICHAID), TX 79700 city, state ZIP: (MICHAID), TX 79700 city, state ZIP: (MICHAID)	MGP, Parmian Office company Name:	Project Manager: UCCODH HOMADA Bill to: (It different) KULE	Chain of Custody Chain of Custody Chain of Custody Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432) 704-5440 EL Paso, TX (915) 585-3443 Lubbock, TX (806) 794-1296 Crasibad, NM (432) 704-5440 Phoenix, AZ (480) 355-0900 Atlanta, CA (770) 449-8800 Tampa, FL (813) 620-2000 West Palm Beach, FL (§61) 689-6701
Relinquished by: (Signature) 2 4 6	Co Cu Fe Pb Mn Mo Ni Se assigns standard due to circumstanc orced Unioss previo		XX		oride	(EPA	300.0	ANALYSIS REQUEST	1	2012 NIM 88220	K	Littrell	Chain of Custody Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 315) 585-3443 Lubbock,TX (806) 794-1296 Craslbad, NM (432) 704 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) <u>6</u>
e) Received by: (Signature) Date/Time	5 Ni K Se Ag SiO2 Na Sr TI Sn U V 1631 / 245.1 / 747	890-130 Chain of Custody		Sample Comments	TAT starts the day received by the lab, if received by 4:00pm	HCL: HL NaOH: Na Zo Acetato+ NaOH: Zo	None: NO HNO3: HN H2S04: H2	UEST Preservative Codes	erables: EDD ADaPT C	Reporting:Level III CLevel III PST/UST TRRP Level IV	Program: UST/PST PRP Brownfields RRC Superfund	Work Order Com	Work Order No:

Received by OCD: 3/19/2021 9:36:20 AM

Page 89 of 152

0	Belinguished by: (Signature)	Notice: Signature of this document and relinqui of service. Xenco will be liable only for the cos of Xenco. A minimum charge of \$75.00 will be a	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed			BHO2	Lab Sample Identification	Cooler Custody Seals: (eg. 1 Sample Custody Seals: (res. 1	Temperature (°C): 1.0 4 Received Intact: Kes	5	Fathr	Project Number: TE 012 Project Location Encly	Project Name: PLU [C	Phone: (261)70	City, State ZIP: MICHAN	MC-PM	Project Manager: UCE2 ph		
	Received by: (Signature)	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client compi of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or e of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of <u>\$5 for each sample submitted to</u>	8RCRA 13PPM TCLP / SPLP 6010:		X	5 2/3/21 1053 2	Matrix Date Time Depth	No N/A Correction Factor: No N/A Total Containers:	No Thermometer ID	ik: Yes No Wet Ice: Yes	Cm14h Due Date:	12921000 Routine X	Turn Around	2-2329 Email:	North A Street and TX 19705 cm	zimian office	Hernar		
	Date/Time Relinquished 02.03.1/1470 4 6	ny to Xenco, its affiliales and subcontractors. It spenses incurred by the client if such losses are Xeaco, but not energy and. These terms will be entit	Texas 11 AI Sb As Ba Be B Cd Ca Cr Co BRCRA Sb As Ba Be Cd Cr Co Cu Pb Mr				Numt TP BT	EX (PA	80	-80) 21)	Pres. ANA		city, state ZIP: Carlsbord, NM 8822	XTO Energy	Bill to: (it different) Kyle Littrell	Chain of Custody Houston.TX (281) 240-4200 Dallas.TX (214) 902-0300 San Antonio.TX (210) 509-3334 Midland.TX (432) 704-5440 EL Paso.TX (915) 585-3443 Lubbock.TX (806) 794-1296 Crasibad, NM (432) 704-5440 Phoenix,AZ (480) 355-0900 Atlanta.CA (770) 449-8800 Tampa.FL (813) <u>620-2000</u> West Palm Beach. FL (<u>5</u> 61) <u>689-6701</u>	
	Relinquished by: (Signature) Received by: (Signature)	erms and conditions es beyond the control usiy negotiated.	Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Mn Mo Ni Se Ag Ti U 1	890-130 Chain of Custody										Deliverables: EDD ADaPT	Reporting:Level II Level III	Program: UST/PST PRP Brownfields RRC Superfund		Work Order No: 509-3334 304.5340 Beach, FL (561) 569-5701 www.xenco.com	
	Parte/Time		Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Hg	- stody			Sample Comments	TAT starts the day received by the lab, if received by 4:00pm	Zn Acetate+ NaOH: Zn	HCL: HL	HNO3: HN H2S04: H2	None: NO	Preservative Codes	T Other:					

Received by OCD: 3/19/2021 9:36:20 AM

Released to Imaging: 6/8/2022 8:54:45 AM

(Rev. 1)

Page 90 of 152

Job Number: 890-130-1 SDG Number: TE012921008

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 130 List Number: 1 **Creator: Clifton, Cloe**

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 3/19/2021 9:36:20 AM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-131-1

Laboratory Sample Delivery Group: TE012921008 Client Project/Site: PLU 199 Revision: 1

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 2/11/2021 9:45:15 AM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env

Released to Imaging: 6/8/2022 8:54:45 AM

•

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

.

Definitions/Glossary

Client: WSP USA Inc. Project/Site: PLU 199

Job ID: 890-131-1 SDG: TE012921008

Qualifiore

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	4
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	A	5
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	4
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	

- RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin)
- Toxicity Equivalent Quotient (Dioxin) TEQ
- TNTC Too Numerous To Count

Case Narrative

Client: WSP USA Inc. Project/Site: PLU 199

Job ID: 890-131-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-131-1

REVISION

The report being provided is a revision of the original report sent on 2/10/2021. The report (revision 1) is being revised due to Corrected certificate summary page for TPH 8015.

Report revision history

Receipt

The samples were received on 2/3/2021 2:20 PM; the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-131-1 SDG: TE012921008

Client Sample Results

RL

0.00200

0.00200

0.00200

0.00200

0.00200

0.00400

0.00200

Limits

70 - 130

70 - 130

Client: WSP USA Inc. Project/Site: PLU 199

Analyte

Benzene

Toluene

Total BTEX

Xylenes, Total

m,p-Xylenes

o-Xylene

Surrogate

Analyte

C6-C10

Total TPH

1.4-Difluorobenzene

4-Bromofluorobenzene (Surr)

Ethylbenzene

Client Sample ID: BH03 Date Collected: 02/03/21 10:35 Date Received: 02/03/21 14:20

Method: 8021B - Volatile Organic Compounds (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00200 U

<0.00200 U

<0.00400 U

<0.00200 U

%Recovery Qualifier

93

100

<50.2 U

<50.2 U

Result Qualifier

Lab Sa	ar

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

mg/Kg

D

D

Prepared

02/03/21 19:53

02/03/21 19:53

02/03/21 19:53

02/03/21 19:53

Prepared

02/03/21 19:53

Prepared

02/03/21 19:53 02/05/21 09:44

02/03/21 19:53 02/05/21 09:44

02/03/21 19:53 02/05/21 09:44

02/03/21 19:53 02/05/21 09:44

02/06/21 15:46 02/09/21 22:25

02/06/21 15:46 02/09/21 22:25

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

Fac

1

Matrix: Solid

Dil Fac

Dil Fac

Job ID: 890-131-1 SDG: TE012921008

mple ID: 890-131-1 Matrix: Solid

Analyzed

02/05/21 09:44

02/05/21 09:44

02/05/21 09:44

02/05/21 09:44

Analyzed

02/05/21 09:44

Analyzed

Lab Sample ID: 890-131-2

Method: 300.0 - Anions, Ion	Chromatograp	-	ble Pl	Unit	D Propared	Analyzod	
o-Terphenyl	98		70 - 135		02/06/21 15:46	02/09/21 22:25	
1-Chlorooctane	100		70 - 135		02/06/21 15:46	02/09/21 22:25	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil F
>C28-C35	<50.2 L	J	50.2	mg/Kg	02/06/21 15:46	02/09/21 22:25	
>C10-C28	<50.2 L	J	50.2	mg/Kg	02/06/21 15:46	02/09/21 22:25	

RL

50.2

50.2

Analyte	Result	Qualifier RL	Unit	U	Prepared	Analyzed	DIFac
Chloride	25.9	9.98	mg/Kg			02/03/21 21:40	1

Client Sample ID: BH03 Date Collected: 02/03/21 10:41

Date Received: 02/03/21 14:20

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 10:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 10:06	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 10:06	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 10:06	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 10:06	1
m,p-Xylenes	<0.00401	U	0.00401	mg/Kg		02/03/21 19:53	02/05/21 10:06	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 10:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	100		70 - 130			02/03/21 19:53	02/05/21 10:06	1
4-Bromofluorobenzene (Surr)	104		70 - 130			02/03/21 19:53	02/05/21 10:06	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac C6-C10 <49.8 U 49.8 mg/Kg 02/06/21 15:46 02/09/21 22:45 1 Total TPH <49.8 U 49.8 mg/Kg 02/06/21 15:46 02/09/21 22:45 1 >C10-C28 <49.8 U 49.8 mg/Kg 02/06/21 15:46 02/09/21 22:45 1 >C28-C35 <49.8 U 02/06/21 15:46 02/09/21 22:45 49.8 mg/Kg 1

Eurofins Xenco, Carlsbad

Page 96 of 152

Client Sample Results

Job ID: 890-131-1 SDG: TE012921008

Matrix: Solid

5

Lab Sample ID: 890-131-2

Client Sample ID: BH03 Date Collected: 02/03/21 10:41 Date Received: 02/03/21 14:20

Client: WSP USA Inc.

Project/Site: PLU 199

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 135			02/06/21 15:46	02/09/21 22:45	1
o-Terphenyl	99		70 - 135			02/06/21 15:46	02/09/21 22:45	1
Method: 300.0 - Anior	ns, Ion Chromatograp	ohy - Solu	ble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	70.7		9.96	mg/Kg			02/03/21 21:57	1

Surrogate Summary

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

			Percent	Surrogate Recovery (Acceptance Limits)
		DFBZ1	BFB1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-130-A-1-C MS	Matrix Spike	98	100	
890-130-A-1-D MSD	Matrix Spike Duplicate	94	97	
890-131-1	BH03	93	100	
890-131-2	BH03	100	104	
LCS 890-134/2-A	Lab Control Sample	97	95	
LCS 890-136/2-A	Lab Control Sample	97	97	
LCSD 890-134/3-A	Lab Control Sample Dup	99	99	
LCSD 890-136/3-A	Lab Control Sample Dup	94	96	
MB 890-134/1-A	Method Blank	98	111	
MB 890-136/1-A	Method Blank	102	103	

Surrogate Legend

DFBZ = 1,4-Difluorobenzene

BFB = 4-Bromofluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

_		Per	
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-135)	(70-135)
890-130-A-1-F MS	Matrix Spike	117	106
890-130-A-1-G MSD	Matrix Spike Duplicate	119	108
890-131-1	BH03	100	98
890-131-2	BH03	101	99
LCS 890-186/2-A	Lab Control Sample	114	105
LCSD 890-186/3-A	Lab Control Sample Dup	110	100
MB 890-186/1-A	Method Blank	96	94

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Xenco, Carlsbad

6

Prep Type: Total/NA

1

Prep Type: Total/NA

Job ID: 890-131-1 SDG: TE012921008

Prep Type: Total/NA Prep Batch: 134

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 890-134/1-A
Matrix: Solid
Analysis Batch: 146

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	98		70 - 130			02/03/21 19:53	02/05/21 06:48	1
4-Bromofluorobenzene (Surr)	111		70 - 130			02/03/21 19:53	02/05/21 06:48	1

Lab Sample ID: LCS 890-134/2-A **Matrix: Solid Analysis Batch: 146**

Analysis Batch: 146							Prep	Batch: 134
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09494		mg/Kg		95	70 - 130	
Ethylbenzene	0.100	0.09299		mg/Kg		93	71 - 129	
Toluene	0.100	0.09355		mg/Kg		94	70 - 130	
m,p-Xylenes	0.200	0.1846		mg/Kg		92	70 - 135	
o-Xylene	0.100	0.09335		mg/Kg		93	71 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	97		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130

Lab Sample ID: LCSD 890-134/3-A Matrix: Solid Analysis Batch: 146

Analysis Batch: 146						Prep Batch		h: 134	
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1002		mg/Kg		100	70 - 130	5	35
Ethylbenzene	0.100	0.09780		mg/Kg		98	71 - 129	5	35
Toluene	0.100	0.09930		mg/Kg		99	70 - 130	6	35
m,p-Xylenes	0.200	0.1894		mg/Kg		95	70 - 135	3	35
o-Xylene	0.100	0.09894		mg/Kg		99	71 - 133	6	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	99		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 890-130-A- Matrix: Solid Analysis Batch: 146	1-C MS						C	lient Sa	· Prep Typ	latrix Spike e: Total/NA Batch: 134
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.101	0.09884		mg/Kg		98	70 - 130	

Eurofins Xenco, Carlsbad

Released to Imaging: 6/8/2022 8:54:45 AM

Client: WSP USA Inc.

Project/Site: PLU 199

Job ID: 890-131-1 SDG: TE012921008

Page 100 of 152

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

100

103

Lab Sample ID: 890-130 Matrix: Solid Analysis Batch: 146	-A-1-C MS						CI	ient Sa	mple ID: Matrix Prep Type: To Prep Bato	otal/NA
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	< 0.00199	U	0.101	0.09728		mg/Kg		96	71 - 129	
Toluene	<0.00199	U	0.101	0.09699		mg/Kg		96	70 - 130	
m,p-Xylenes	<0.00398	U	0.202	0.1928		mg/Kg		96	70 - 135	
o-Xylene	<0.00199	U	0.101	0.09796		mg/Kg		97	71 - 133	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1,4-Difluorobenzene	98		70 - 130							

70 - 130

Lab Sample ID: 890-130-A-1-D MSD Matrix: Solid Analysis Batch: 146

4-Bromofluorobenzene (Surr)

Allalysis Dalch. 140									Fieh	Datu	1. 134
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	< 0.00199	U	0.0994	0.1059		mg/Kg		107	70 - 130	7	35
Ethylbenzene	<0.00199	U	0.0994	0.1043		mg/Kg		105	71_129	7	35
Toluene	<0.00199	U	0.0994	0.1027		mg/Kg		103	70 - 130	6	35
m,p-Xylenes	<0.00398	U	0.199	0.2050		mg/Kg		103	70 - 135	6	35
o-Xylene	<0.00199	U	0.0994	0.1040		mg/Kg		105	71 - 133	6	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	94		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Lab Sample ID: MB 890-136/1-A Matrix: Solid Analysis Batch: 146

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Prep Batch: 134

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 136

02/03/21 20:06 02/05/21 20:06

Client Sample ID: Lab Control Sample

-	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	102		70 - 130			02/03/21 20:06	02/05/21 20:06	1

4-Bromofluorobenzene (Surr)

Lab Sample ID: LCS 890-136/2-A Matrix: Solid

Analysis Batch: 146

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09769		mg/Kg		98	70 - 130	
Ethylbenzene	0.100	0.09480		mg/Kg		95	71 - 129	

70 - 130

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Prep Batch: 136

Client: WSP USA Inc.

Project/Site: PLU 199

Page 101 of 152

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 890 Matrix: Solid Analysis Batch: 146	-136/2-A					Clier	nt Sar	mple ID	: Lab Cor Prep Ty Prej		al/NA
Analyta			Spike Added		LCS Qualifier	Unit		%Rec	%Rec. Limits		
Analyte Toluene			0.100	0.09539	Quaimer	mg/Kg	D	95	70 - 130		
m,p-Xylenes			0.100	0.09339		mg/Kg		93 94	70 - 130		
o-Xylene			0.200	0.09692		mg/Kg		94 97	70 - 133		
	105	LCS				0 0					
Surrogate	%Recovery		Limits								
1,4-Difluorobenzene	97		70 - 130								
4-Bromofluorobenzene (Surr)	97		70 - 130								
Analysis Batch: 146										p Batch	n: 136
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.09775		mg/Kg		98	70 - 130	0	35
Ethylbenzene			0.100	0.09646		mg/Kg		96	71 - 129	2	35
Toluene			0.100	0.09628		mg/Kg		96	70 - 130	1	35
m,p-Xylenes											
			0.200	0.1919		mg/Kg		96	70 - 135	3	35
o-Xylene			0.200 0.100	0.1919 0.09522		mg/Kg mg/Kg		96 95	70 ₋ 135 71 ₋ 133	3 2	35 35
	LCSD	LCSD				0 0					
	LCSD %Recovery					0 0					
o-Xylene			0.100			0 0					

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 890-186/1-A Matrix: Solid **Analysis Batch: 215**

	MB	MB					
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0	mg/Kg	02/06/21 15:46	02/09/21 19:43	1
Total TPH	<50.0	U	50.0	mg/Kg	02/06/21 15:46	02/09/21 19:43	1
>C10-C28	<50.0	U	50.0	mg/Kg	02/06/21 15:46	02/09/21 19:43	1
>C28-C35	<50.0	U	50.0	mg/Kg	02/06/21 15:46	02/09/21 19:43	1
	MB	MR					

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	96		70 - 135
o-Terphenyl	94		70 - 135

Lab Sample ID: LCS 890-186/2-A Matrix: Solid

Matrix: Solid Analysis Batch: 215								pe: Total/NA D Batch: 186
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C10	1000	1044		mg/Kg		104	70 - 135	
>C10-C28	1000	1004		mg/Kg		100	70 - 135	

Eurofins Xenco, Carlsbad

Client Sample ID: Method Blank

Analyzed

Prepared

02/06/21 15:46 02/09/21 19:43

02/06/21 15:46 02/09/21 19:43

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 186

Dil Fac

1

1

5

Job ID: 890-131-1 SDG: TE012921008

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 890	-186/2-A					Clien	it Sai	mple ID	: Lab Cor	ntrol Sa	ample
Matrix: Solid									Prep Ty		
Analysis Batch: 215									Pre	p Batch	n: 186
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	114		70 - 135								
o-Terphenyl	105		70 - 135								
Lab Sample ID: LCSD 89	0-186/3-A				c	lient Sar	nple	ID: Lab		Sample	e Dup
Matrix: Solid									Prep Ty		
Analysis Batch: 215										Batch	
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C10			1000	1052		mg/Kg		105	70 - 135	1	25
>C10-C28			1000	1044		mg/Kg		104	70 - 135	4	25
						0 0					
	LCSD										
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	110 100		70 - 135 70 - 135								
o-Terphenyl	100		70 - 135								
Lab Sample ID: 890-130-	A-1-F MS						CI	ient Sa	mple ID: I	Matrix	Spike
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 215									Pre	o Batch	n: 186
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
C6-C10	<50.3	U	997	1090		mg/Kg		109	70 - 135		
Total TPH	<50.3	U	1990	2154		mg/Kg		0			
>C10-C28	<50.3	U	997	1064		mg/Kg		107	70 - 135		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	117		70 - 135								
o-Terphenyl	106		70 - 135								
Lab Sample ID: 890-130-	A-1-G MSD					Client S	amp	le ID: N	latrix Spil	ke Dup	licate
Matrix: Solid									· Prep Ty		
Analysis Batch: 215										p Batch	
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C10	<50.3	U	1000	1054		mg/Kg		105	70 - 135	3	35
Total TPH	<50.3	U	2000	2108		mg/Kg		0		NC	
>C10-C28	<50.3	U	1000	1054		mg/Kg		105	70 - 135	1	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	119		70 - 135								
o-Terphenyl	108		70 - 135								

Client: WSP USA Inc.

QC Sample Results

Job ID: 890-131-1 SDG: TE012921008

Project/Site: PLU 199 Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 890-133/	/1- A						C	lient Sam	ple ID: M		
Matrix: Solid									Prep T	ype: So	bluble
Analysis Batch: 137											
		MB MB					_				
Analyte		sult Qualifie	er	RL	Unit		<u>D</u>	Prepared	Analy		Dil Fac
Chloride	<′	10.0 U		10.0	mg/K	g			02/03/21	20:49	1
Lab Sample ID: LCS 890-133	3/2-A					Cli	ent S	ample ID	: Lab Cor	ntrol Sa	ample
Matrix: Solid									Prep T		
Analysis Batch: 137										,	
······ , ······························			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	[D %Rec	Limits		
Chloride			500	496.2		mg/Kg		99	90 - 110		
Lab Sample ID: LCSD 890-1	33/3-A				c	lient S	ampl	e ID: Lat	Control	Sample	e Dup
Matrix: Solid									Prep T		
Analysis Batch: 137										,	
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	I	D %Rec	Limits	RPD	Limit
Chloride			500	493.5		mg/Kg		99	90 - 110	1	20
_ Lab Sample ID: 890-134-A-1	-B MS							Client Sa	mple ID:	Matrix 3	Spike
Matrix: Solid									Prep T		-
Analysis Batch: 137											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	[D %Rec	Limits		
Chloride	82.2		500	588.7		mg/Kg		101	90 - 110		
- Lab Sample ID: 890-134-A-1	-C MSD					Client	t Sam	ple ID: N	latrix Spi	ke Dup	licate
Matrix: Solid								-	Prep T		
Analysis Batch: 137											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	[D %Rec	Limits	RPD	Limit
Chloride	82.2		499	551.1		mg/Kg		94	90 - 110	7	20

QC Association Summary

Client: WSP USA Inc. Project/Site: PLU 199

GC VOA

Prep Batch: 134

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-131-1	BH03	Total/NA	Solid	5030C	
890-131-2	BH03	Total/NA	Solid	5030C	
MB 890-134/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 890-134/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 890-134/3-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
890-130-A-1-C MS	Matrix Spike	Total/NA	Solid	5030C	
890-130-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5030C	

Prep Batch: 136

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 890-136/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 890-136/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 890-136/3-A	Lab Control Sample Dup	Total/NA	Solid	5030C	

Analysis Batch: 146

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-131-1	BH03	Total/NA	Solid	8021B	134
890-131-2	BH03	Total/NA	Solid	8021B	134
MB 890-134/1-A	Method Blank	Total/NA	Solid	8021B	134
MB 890-136/1-A	Method Blank	Total/NA	Solid	8021B	136
LCS 890-134/2-A	Lab Control Sample	Total/NA	Solid	8021B	134
LCS 890-136/2-A	Lab Control Sample	Total/NA	Solid	8021B	136
LCSD 890-134/3-A	Lab Control Sample Dup	Total/NA	Solid	8021B	134
LCSD 890-136/3-A	Lab Control Sample Dup	Total/NA	Solid	8021B	136
890-130-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	134
890-130-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	134

GC Semi VOA

Prep Batch: 186

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-131-1	BH03	Total/NA	Solid	8015NM Prep	
890-131-2	BH03	Total/NA	Solid	8015NM Prep	
MB 890-186/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 890-186/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 890-186/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-130-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-130-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-131-1	BH03	Total/NA	Solid	8015B NM	186
890-131-2	BH03	Total/NA	Solid	8015B NM	186
MB 890-186/1-A	Method Blank	Total/NA	Solid	8015B NM	186
LCS 890-186/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	186
LCSD 890-186/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	186
890-130-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	186
890-130-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	186

Page 104 of 152

Job ID: 890-131-1 SDG: TE012921008

2/11/2021 (Rev. 1)

QC Association Summary

Client: WSP USA Inc. Project/Site: PLU 199

HPLC/IC

Leach Batch: 133

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-131-1	BH03	Soluble	Solid	DI Leach	
890-131-2	BH03	Soluble	Solid	DI Leach	
MB 890-133/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 890-133/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
_CSD 890-133/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-134-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-134-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 137

Lab Sample ID 890-131-1	Client Sample ID BH03	Prep Type Soluble	Matrix	Method 300.0	Prep Batch
890-131-2	BH03	Soluble	Solid	300.0	133
MB 890-133/1-A	Method Blank	Soluble	Solid	300.0	133
LCS 890-133/2-A	Lab Control Sample	Soluble	Solid	300.0	133 🖌
LCSD 890-133/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	133
890-134-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	133 🚽
890-134-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	133

Page 105 of 152

Job ID: 890-131-1 SDG: TE012921008

Job ID: 890-131-1 SDG: TE012921008

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-131-1

Client Sample ID: BH03 Date Collected: 02/03/21 10:35 Date Received: 02/03/21 14:20

Client: WSP USA Inc.

Project/Site: PLU 199

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			134	02/03/21 19:53	МС	XC
Total/NA	Analysis	8021B		1	146	02/05/21 09:44	PXS	XC
Total/NA	Prep	8015NM Prep			186	02/06/21 15:46	MC	XC
Total/NA	Analysis	8015B NM		1	215	02/09/21 22:25	BJH	XC
Soluble	Leach	DI Leach			133	02/03/21 17:27	MC	XC
Soluble	Analysis	300.0		1	137	02/03/21 21:40	MC	XC

Client Sample ID: BH03 Date Collected: 02/03/21 10:41 Date Received: 02/03/21 14:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			134	02/03/21 19:53	МС	XC
Total/NA	Analysis	8021B		1	146	02/05/21 10:06	PXS	XC
Total/NA	Prep	8015NM Prep			186	02/06/21 15:46	MC	XC
Total/NA	Analysis	8015B NM		1	215	02/09/21 22:45	BJH	XC
Soluble	Leach	DI Leach			133	02/03/21 17:27	MC	XC
Soluble	Analysis	300.0		1	137	02/03/21 21:57	MC	XC

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Eurofins Xenco, Carlsbad

890-131-1

5

9

Released to Imaging: 6/8/2022 8:54:45 AM

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-131-1 SDG: TE012921008

Page 107 of 152

Laboratory: Eurofins Xenco, Carlsbad

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
ouisiana	NE	LAP	05092	06-30-21
the agency does not o	offer certification.		, , , , , ,	This list may include analytes for whic
0,	•	t, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes for whic
the agency does not o	offer certification.		, , , , , ,	This list may include analytes for whic

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XC
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XC
300.0	Anions, Ion Chromatography	MCAWW	XC
5030C	Purge and Trap	SW846	XC
015NM Prep	Microextraction	SW846	XC
OI Leach	Deionized Water Leaching Procedure	ASTM	XC

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199
Sample Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-131-1 SDG: TE012921008

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	
390-131-1	BH03	Solid	02/03/21 10:35	02/03/21 14:20		
390-131-2	BH03	Solid	02/03/21 10:41	02/03/21 14:20		
						5
						8
						9
						1
						1

Chain of Custoy Non of Custo	TI Sn U V Zn 1 / 245.1 / 7470 / 7471 Date/Tir					ł	1/VK		1 10/ 10
Non- Chain of Custody Non- Non	TI Sn U V Zn 1/245.1/7470 / 7471		· Oly ·	F . 20. E		Accelsed p. (p. 19	141		H F
Chain of Custody Non Kr (dr) Muden have 17 (dr) Busing Factor have 18 (dr) Busing F	Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471		Relinguished by: (Signature	Date/Time	ature	Received hv: /Sign	-	ished two (Signature)	2
Chain of Custody Non- Custody Non- Custody <td>Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471</td> <td>beyond the control</td> <td>H 0 -</td> <td>npany to Xenco, its amiliate r expenses incurred by the to Xenco, but not analyzed.</td> <td>hase order from client cor onsibility for any losses or reach sample submitted</td> <td>nples constitutes a valid purc nd shall not assume any resp uproject and a charge of \$5 ft</td> <td>linquishment of sam le cost of samples ar ill.be applied to each</td> <td>rature of this document and re Xenco will be liable only for th minimum charge of \$75.00 wi</td> <td>of service. of Xencb. A</td>	Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471	beyond the control	H 0 -	npany to Xenco, its amiliate r expenses incurred by the to Xenco, but not analyzed.	hase order from client cor onsibility for any losses or reach sample submitted	nples constitutes a valid purc nd shall not assume any resp uproject and a charge of \$5 f t	linquishment of sam le cost of samples ar ill.be applied to each	rature of this document and re Xenco will be liable only for th minimum charge of \$75.00 wi	of service. of Xencb. A
Normality		K Se Ag	Co Cu Fe Pb Mn Mo Ni Se	11 AI Sb As Ba B Sb As Ba Be Cc	A 13PPM Texas PLP 6010: 8RCRA	8RCR/ yzed TCLP / S	.8 / 6020: tal(s) to be anal	1 200.7 / 6010 200 cle Method(s) and Met	Tota Cir
Chain of Custody Noncontry (2013 Section Data X7 (2019 Section Section X7 (2019 Sect									
Chain of Custoy Nonch (2013 00-400 00 the America (2019 00-200 00					Δ				
Chain of Custody Nonconf Custody					/	/			
Chain of Custody North Of Custody Work Order Custody Wore Paint Custody Wore Paint Cu	of Custody	890-131 Chain				any			
Chain of Custody work of custody									
Chain of Custody work order to the construction of the c						X			
Chain of Custody work Order M Norder Castody work Order M Project Manage UCCOP Formuzz (d8) 204-200 Data: X (24) 902-200 Sex Annua, X (24) 902-200 Mark, A (24) Top II (24) I									
Chain of Custody work order N Nonex Cross of the Reference o	-	-		XXX		13/21	() ()	RH03	
Chain of Custody Nonconstruction Nonconstruction <th< td=""><td></td><td></td><td></td><td>XXX</td><td>_</td><td>13/21</td><td>S</td><td>BHO3</td><td></td></th<>				XXX	_	13/21	S	BHO3	
Chain of Custody work Order N Chain of Custody work Order N Norder City Call 240-200 Balas TX (241) 902-3030 San Antonio, TX (270) 508-334 work Order N Maland TX (240) 745-5400 Ell Faso, TX (215) 585-343 Lubbock, TX (806) 784-1296 Calabad, MM (432) 704-5400 Work Order N JOC Oph Hornon OfFice Bill to: (# affreend KLU /0 Lith Col 1/1 Work Order N Opt JOC Oph Hornon OfFice Genpany Name: XTO Env Col Particle 11 Colspan="2">Particle 17 Colspan="2">Program: USTPST PRP Bown Conficience City State Zip: Conficience City Address: AICU F Conform City Program: USTPST PRP Bown Conficience City Address: AICU F Conform City Program: USTPST PRP Bown Conficience City State Zip: Conficience City Program: USTPST PRP Bown Conficience City State Zip: Conficience City Conficience City	Sample Comments			TPI BTE	Depth		Matrix	Sample Identification	ID Lab
Chain of Custody Work Order N Ballin Cit (281) 20-200 Balls, TX (214) 92-2000 San Antonio, TX (210) 590-334 Work Order N Phone IX (217) 74-5440 EL Paso TX (915) 585-3443 Work Order N (210) 590-334 Phone IX (217) 74-5440 EL Paso TX (915) 585-3443 Work Order N (210) 590-334 Mone IX (210) 200 San Antonio, TX (210) 590-334 Mone IX (210) 200 San Antonio, TX (210) 590-300 Mone IX (210) 200 San Antonio, TX (210) 590-304 Mone IX (210) 200 San Antonio, TX (210) 590-304 Mone IX (210) 200 San Antonio, TX (210) 590-304 Mone IV (200 San Antonio, TX (210) 200-334 WORK Order C Mone IV (200 San Antonio, TX (210) 200 San Antonio, TX (210) 500-304 Mone IV (200 San Antonio, TX (210) 200 San Antonio, TX (210) 500-304 Mone IV (200 San Antonio, TX (210) 200 San Antonio, TX (210) 500-304 Mone IV (200 San Antonio, TX (210) 200 West Pam Beach, FL (561) 500-671 Work Order C Condition C TX (200 Char Antonio, TX (210) 200 San A	received by 4:00pm			+ (X(6	Total Containe	à.		Samp
Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-334 Midland,TX (432) 704-5400 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-334 Phoemix,A2 (480) 355-0900 Atlanta,GA (770) 49-8000 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 680 UOC2001 Herronclez Bill to: (it attreem) KLU 0 LI H roll OC2000 West Palm Beach, FL (561) 680 OC200 North A Shreet Address: SICH E Gradere Crit Address: SICH E Gradere Crit Address: SICH E Gradere Crit Address:	TAT starts the day receiied by th			EI E		Correction Fact	No	2	Cool
Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3394 Muland,TX (422) 704-5440 EL Paso,TX (915) 585-3443 Lubbock,TX (806) 794-1296 Crasibad, NM (432) 704-5 Noenix,AZ (480) 355-0900 Atlanta,GA (770) 49-8600 Tampa,FL (813) 820-2000 West Palm Beach, FL (561) 680-2000 West Palm Palm Palm Palm Palm Palm Palm Palm	Zn Acetate+ NaOH: Zn			PA PA			Mas No	Received Intact:	
Chain of Custody Houston,TX (281) 240-200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midiand,TX (432) 704-5440 EL Paso,TX (915) 585-3443 Lubbock,TX (806) 794-1296 Crasibad, NM (422) 704-5 North A Chronolor Z Bill to: (# affreent) Midiand,TX (432) 704-5440 EL Paso,TX (915) 585-3443 Lubbock,TX (806) 794-1296 Crasibad, NM (422) 704-5 North A Chronolor Z Bill to: (# affreent) Midiand,TX (480) 355-0900 Allanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 680-2000 West Palm Beach, FL (561) 680-200 West Palm Beach, FL (561) 6	HCL: HL			80 0=	Yes No	Yes No	Temp Blank:	RECEIPT	SAMPLI
Chain of Custody Houston.TX (281) 240-4200 Dallas.TX (214) 902-0300 San Antonio.TX (210) 509-3334 Muland.TX (432) 704-5440 EL Paso.TX (915) 585-3431 Lubbock.TX (806) 794-1296 Crastbad. NM (432) 704-5 NoreinX.AZ (480) 355-0900 Atlanta.GA (770) 449-8800 Tampa.FL (813) 620-2000 West Paim Beach. FL (561) 88 VOE200 Her muon Office WOP Formuon Office Sill to: (if different) KUL 0 Littre.H (181) 820-2000 West Paim Beach. FL (561) 88 3300 North A Shreet address: 310-4 Engrave Fronton Office 10201 TX 707105 city. state ZIP: Curl Shood, Mm GS220 State ZIP: Antel Shood, Mm GS220 11201 Tum Around Free: AnaLysis REQU AnaLysis REQU 1201/292 Rush: North Rush: North Rush: North Rush:	H2S04: H2			80		Quote #:		PO #:	
Chain of Custody Nulland, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Mulland, TX (480) 355-0900 Allanta, GA (770) 449-8800 Tampa, FL (815) 585-3443 Lublock, TX (806) 794-1296 Crasibad, NM (432) 704-5 VOEQON Hornon Clez Bill to: (If alfreent) VOEQON Hornon Clez Bill to: (If alfreent) VOEQON Hornon Clez Bill to: (If alfreent) VOEQON Hornon Office Office Confrabod, North A Street Address: SICH E Gregory Address: Address: <td< td=""><td>HNO3: HN</td><td></td><td></td><td>21</td><td>9 Date:</td><td></td><td>to Omi</td><td>1-1</td><td>Samp</td></td<>	HNO3: HN			21	9 Date:		to Omi	1-1	Samp
Chain of Custody BIRATERIES Midiand,TX (281) 240-4200 Number of Custody Midiand,TX (281) 240-4200 Note of Custody Midiand,TX (280) 355-0900 All 2000 Tampa FL (813) 620-2000 WOP Contention Office Company Name: XTO Address: SICH E Cordon & Crit Address: Address: SICH E Cordon & Crit AND Cordon & Crit Address: Address: Address: Address: Address: AND Cordon & Crit Address: Address: Address:	None: NO)			2	-	Droio
Chain of Custody BIRATERIES Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432) 704-5440 EL Paso,TX (915) 585-3443 Lubbock,TX (806) 794-1286 Crasibad, IMI (432) 704-5 Phoenix,AZ (480) 355-0900 Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 585-3443 Lubbock,TX (806) 794-1286 Crasibad, IMI (432) 704-5 WOP Parmin on Office WOP Parmin on Office Bill to: (if different) KUL 0 Littre II WOP Parmin on Office Company Name: XTO Enorg Y 3300 Norfth A Street Address: 3104 E Street Midland, TX 70105 City, state ZIP: Confishood, NM 66220 Analysis REQUINT	MeOH: Me			vde .	X		6	i	Proje
Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432) 704-5440 EL Paso,TX (915) 585-3443 Lubbock,TX (806) 794-1296 Crasibad. NM (432) 704-5 NoF, Formi, an Office Bill to: (# affreent) Kulo Lutroll 2000 West Palm Beach, FL (561) 689 Midland,TX 7(7105 Bill to: (# affreent) Kulo Lutroll 2000 West Palm Beach, FL (561) 689 Midland,TX 7(7105 City, state ZIP: Confederal, NIM 66220 Midland,TX 72(7105 City, state ZIP: Confederal)	Preservative Codes	JEST	ANALYSIS REQU		Turn Around		99	DLU	Pr
Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3324 Midland,TX (432) 704-5440 EL Paso,TX (915) 585-3443 Lubbock,TX (806) 794-1296 Grasibad, IM (432) 704-5 Phoenix,AZ (480) 355-0900 Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (210) 000 Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (210) 000 Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (210) 000 Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (100) Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (100) Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (100) Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (100) Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (100) Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (100) Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (100) Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 68 Houston,TX (100) Atlanta,GA (770) Atl		Deliverables: EDD			iit:	28	1	(29)	
Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432) 704-5440 EL Paso,TX (915) 585-3443 Lubbock,TX (806) 794-1296 Crasibad, NM (432) 704-5 Phoenix,AZ (480) 355-0900 Atlanta,GA (770) 449-8800 Tampa,FL (813) 820-2000 West Paim Beach, FL (561) 689 WOP FOrmi on Office Company Name: X:TO Enorgy WOP FOrmi on Office Company Name: X:TO Enorgy S3200 Norfh A Street Address: 3104 E Gradono St		Reporting:Level II	E	\Box	City, State 2	L.	lanch T	mic	City
Chain of Custody B R AT RIES Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432) 704-5440 EL Paso, TX (915) 585-3443 Lubbook, TX (806) 794-1296 Grasibad, NM (432) 704-540 VOE201 Hoenix, AZ (480) 335-0900 Atlanta, GA (770) 449-8800 Tampa, FL (813) 620-2000 West Palm Beach, FL (561) 689 WOP FOrm LOD OFFICQ Bill to: (# affreent) KULL // L/H roll 1]	State of Project:	h		Addre	50	2 North	a	
Image: Second state state Chain of Custody Work Order No: B D R AT D R IE S Midland,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Work Order No: B D R AT D R IE S Midland,TX (432) 704-5440 EL Paso,TX (915) 585-3443 Lubbock,TX (806) 794-1296 Crasibad, NM (432) 704-5440 Work Order No: Phoenix,AZ (480) 355-0900 Allanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Palm Beach, FL (561) 689-6701 Wwww.xenco.com Page 1 UOC200h HornOnCle7 Bill to: (if different) KUU 0 Li H r 0 Work Order Comments	P Brownfields RRC Superfund	Program: UST/PST 🗌 PR	DOLO N	ne: XTO Fr	Company Nar	h	Por		Com
Chain of Custody Work Order No: Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Work Order No: Midland, TX (432) 704-5440 EL Paso, TX (915) 585-3443 Lubbock, TX (806) 794-1296 Crasibad, NM (432) 704-5440 Www.xenco.com Phoenix, AZ (480) 355-0900 Atlanta, GA (770) 449-8800 Tampa, FL (813) 620-2000 West Palm Beach, FL (561) 689-6701 Www.xenco.com Page	k Order Comments		ittrell	ent KUIO	Bill to: (if differ	nonclez.	5		Proje
Chain of Custody	Page 1	2	000 San Antonio,TX (210) 509-3334 .;TX (806) 794-1296 Craslbad, NM (432) 704 113) 620-2000 West Palm Beach, FL (561) 6) Dallas,TX (214) 902-03 (915) 585-3443 Lubbock) 449-8800 Tampa,FL (8	uston,TX (281) 240-420t 704-5440 EL Paso,TX 5-0900 Atlanta,GA (770	P	TORIES	LABORA	
	Order No:	Work (ustody	Chain of C	ł				

Received by OCD: 3/19/2021 9:36:20 AM

Page 110 of 152

Job Number: 890-131-1 SDG Number: TE012921008

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 131 List Number: 1 **Creator: Clifton, Cloe**

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 3/19/2021 9:36:20 AM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-132-1

Laboratory Sample Delivery Group: TE012921008 Client Project/Site: PLU 199 Revision: 1

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 2/11/2021 9:53:55 AM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access **Have a Question?** Ask-The Expert

www.eurofinsus.com/Env Released to Imaging: 6/8/2022 8:54:45 AM

Visit us at:

•

2

Laboratory Job ID: 890-132-1 SDG: TE012921008

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

.

Definitions/Glossary

Client: WSP USA Inc. Project/Site: PLU 199

Job ID: 890-132-1 SDG: TE012921008

~

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	4
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	A	5
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	9
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	e
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

- Toxicity Equivalent Quotient (Dioxin) TEQ
- TNTC Too Numerous To Count

Eurofins Xenco, Carlsbad

Released to Imaging: 6/8/2022 8:54:45 AM

Case Narrative

Client: WSP USA Inc. Project/Site: PLU 199

Job ID: 890-132-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-132-1

REVISION

The report being provided is a revision of the original report sent on 2/10/2021. The report (revision 1) is being revised due to Corrected certificate summary page for TPH 8015.

Report revision history

Receipt

The samples were received on 2/3/2021 3:45 PM; the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

Client Sample Results

Client: WSP USA Inc. Project/Site: PLU 199

Client Sample ID: BH04 Date Col Date Re

ollected: 02/03/2	1 11:52
eceived: 02/03/2*	1 15:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/05/21 10:29	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/05/21 10:29	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/05/21 10:29	1
Total BTEX	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/05/21 10:29	1
Xylenes, Total	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/05/21 10:29	1
m,p-Xylenes	<0.00398	U	0.00398	mg/Kg		02/03/21 19:53	02/05/21 10:29	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/05/21 10:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	106		70 - 130			02/03/21 19:53	02/05/21 10:29	1
4-Bromofluorobenzene (Surr)	108		70 - 130			02/03/21 19:53	02/05/21 10:29	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
C6-C10	<49.9	U	49.9	mg/Kg		02/06/21 15:46	02/09/21 23:25	1	
Total TPH	<49.9	U	49.9	mg/Kg		02/06/21 15:46	02/09/21 23:25	1	
>C10-C28	<49.9	U	49.9	mg/Kg		02/06/21 15:46	02/09/21 23:25	1	
>C28-C35	<49.9	U	49.9	mg/Kg		02/06/21 15:46	02/09/21 23:25	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1-Chlorooctane	96		70 - 135			02/06/21 15:46	02/09/21 23:25	1	
o-Terphenyl	94		70 - 135			02/06/21 15:46	02/09/21 23:25	1	

Method: 300.0 - Anions, Ion Ch	romatography - Solub	le					
Analyte Chloride	Result Qualifier	RL 10.0	Unit mg/Kg	<u> </u>	Prepared	- Analyzed 02/03/21 22:02	Dil Fac
Client Sample ID: BH04					Lab San	nple ID: 890-	·132-2

Client Sample ID: BH04

Date Collected: 02/03/21 11:57 Date Received: 02/03/21 15:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		02/03/21 19:53	02/05/21 11:14	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		02/03/21 19:53	02/05/21 11:14	1
Toluene	<0.00201	U	0.00201	mg/Kg		02/03/21 19:53	02/05/21 11:14	1
Total BTEX	<0.00201	U	0.00201	mg/Kg		02/03/21 19:53	02/05/21 11:14	1
Xylenes, Total	<0.00201	U	0.00201	mg/Kg		02/03/21 19:53	02/05/21 11:14	1
m,p-Xylenes	< 0.00402	U	0.00402	mg/Kg		02/03/21 19:53	02/05/21 11:14	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		02/03/21 19:53	02/05/21 11:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	100		70 - 130			02/03/21 19:53	02/05/21 11:14	1
4-Bromofluorobenzene (Surr)	103		70 - 130			02/03/21 19:53	02/05/21 11:14	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<49.9	U	49.9	mg/Kg		02/06/21 15:46	02/09/21 23:45	1
Total TPH	<49.9	U	49.9	mg/Kg		02/06/21 15:46	02/09/21 23:45	1
>C10-C28	<49.9	U	49.9	mg/Kg		02/06/21 15:46	02/09/21 23:45	1
>C28-C35	<49.9	U	49.9	mg/Kg		02/06/21 15:46	02/09/21 23:45	1

Eurofins Xenco, Carlsbad

Job ID: 890-132-1 SDG: TE012921008

Lab Sample ID: 890-132-1

Matrix: Solid

alyzed	Dil Fac	
/21 23:25	1	
/21 23:25	1	
alyzed	Dil Fac	
/21 22:02	1	
D: 890-	132-2	
Matrix	: Solid	
alyzed	Dil Fac	
6/21 11:14	1	

Client Sample Results

Job ID: 890-132-1 SDG: TE012921008

Matrix: Solid

5

Lab Sample ID: 890-132-2

Client Sample ID: BH04 Date Collected: 02/03/21 11:57

Client: WSP USA Inc.

Project/Site: PLU 199

Date Received:	02/03/21	15:45	

Surrogate 1-Chlorooctane	%Recovery 106	Qualifier	Limits 70 - 135			Prepared 02/06/21 15:46	Analyzed 02/09/21 23:45	Dil Fac
o-Terphenyl	105		70 - 135			02/06/21 15:46	02/09/21 23:45	1
Method: 300.0 - Anior	ns, Ion Chromatogra	phy - Solu	ble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13.3		9.98	mg/Kg			02/03/21 22:08	1

Surrogate Summary

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) DFBZ1 BFB1 (70-130) Lab Sample ID **Client Sample ID** (70-130) 890-130-A-1-C MS Matrix Spike 100 98 890-130-A-1-D MSD Matrix Spike Duplicate 97 94 890-132-1 BH04 106 108 890-132-2 BH04 100 103 LCS 890-134/2-A Lab Control Sample 97 95 LCS 890-136/2-A Lab Control Sample 97 97 LCSD 890-134/3-A Lab Control Sample Dup 99 99 LCSD 890-136/3-A Lab Control Sample Dup 94 96 Method Blank MB 890-134/1-A 98 111 MB 890-136/1-A Method Blank 102 103

Surrogate Legend

DFBZ = 1,4-Difluorobenzene

BFB = 4-Bromofluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

			Pe
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-135)	(70-135)
890-130-A-1-F MS	Matrix Spike	117	106
890-130-A-1-G MSD	Matrix Spike Duplicate	119	108
890-132-1	BH04	96	94
890-132-2	BH04	106	105
LCS 890-186/2-A	Lab Control Sample	114	105
LCSD 890-186/3-A	Lab Control Sample Dup	110	100
MB 890-186/1-A	Method Blank	96	94

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-132-1 SDG: TE012921008

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 890-132-1 SDG: TE012921008

Prep Type: Total/NA Prep Batch: 134

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 890-134/1-A
Matrix: Solid
Analysis Batch: 146

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	98		70 - 130			02/03/21 19:53	02/05/21 06:48	1
4-Bromofluorobenzene (Surr)	111		70 - 130			02/03/21 19:53	02/05/21 06:48	1

Lab Sample ID: LCS 890-134/2-A Matrix: Solid Analysis Batch: 146

Analysis Batch: 146							Prep	Batch: 134
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09494		mg/Kg		95	70 - 130	
Ethylbenzene	0.100	0.09299		mg/Kg		93	71 - 129	
Toluene	0.100	0.09355		mg/Kg		94	70 - 130	
m,p-Xylenes	0.200	0.1846		mg/Kg		92	70 - 135	
o-Xylene	0.100	0.09335		mg/Kg		93	71 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	97		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130

Lab Sample ID: LCSD 890-134/3-A Matrix: Solid Analysis Batch: 146

Analysis Batch: 146							Pre	p Batch	n: 134
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1002		mg/Kg		100	70 - 130	5	35
Ethylbenzene	0.100	0.09780		mg/Kg		98	71 - 129	5	35
Toluene	0.100	0.09930		mg/Kg		99	70 - 130	6	35
m,p-Xylenes	0.200	0.1894		mg/Kg		95	70 - 135	3	35
o-Xylene	0.100	0.09894		mg/Kg		99	71 - 133	6	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	99		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 890-130-A-1-C MS Matrix: Solid Analysis Batch: 146						C	ient Sa	· Prep Tyj	Matrix Spike be: Total/NA Batch: 134	
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.101	0.09884		mg/Kg		98	70 - 130	

Eurofins Xenco, Carlsbad

Released to Imaging: 6/8/2022 8:54:45 AM

Client: WSP USA Inc.

Project/Site: PLU 199

QC Sample Results

Job ID: 890-132-1 SDG: TE012921008

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-130-A-1-C MS **Client Sample ID: Matrix Spike** Matrix: Solid Prep Type: Total/NA **Analysis Batch: 146** Prep Batch: 134 MS MS Sample Sample Spike %Rec. Analyte **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits Ethylbenzene <0.00199 U 0.101 0.09728 96 71 - 129 mg/Kg Toluene <0.00199 U 0.101 0.09699 mg/Kg 96 70 - 130 m,p-Xylenes <0.00398 U 0.202 0.1928 70 - 135 mg/Kg 96 97 o-Xylene <0.00199 U 0.101 0.09796 mg/Kg 71 - 133 MS MS Surrogate %Recovery Qualifier Limits 1,4-Difluorobenzene 70 - 130 98 4-Bromofluorobenzene (Surr) 100 70 - 130

Lab Sample ID: 890-130-A-1-D MSD Matrix: Solid Analysis Batch: 146

Allalysis Dalcii. 140									Fiel	Date	1. 134	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00199	U	0.0994	0.1059		mg/Kg		107	70 - 130	7	35	i
Ethylbenzene	<0.00199	U	0.0994	0.1043		mg/Kg		105	71 - 129	7	35	
Toluene	<0.00199	U	0.0994	0.1027		mg/Kg		103	70 - 130	6	35	i
m,p-Xylenes	<0.00398	U	0.199	0.2050		mg/Kg		103	70 - 135	6	35	
o-Xylene	<0.00199	U	0.0994	0.1040		mg/Kg		105	71 - 133	6	35	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	94		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

103

Lab Sample ID: MB 890-136/1-A Matrix: Solid Analysis Batch: 146

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

p Type: Total/NA Prep Batch: 134

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 136

02/03/21 20:06 02/05/21 20:06

Client Sample ID: Lab Control Sample

	INID							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	102		70 - 130			02/03/21 20:06	02/05/21 20:06	1

70 - 130

Lab Sample ID: LCS 890-136/2-A Matrix: Solid

Analysis Batch: 146

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09769		mg/Kg		98	70 - 130	
Ethylbenzene	0.100	0.09480		mg/Kg		95	71 - 129	

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Prep Batch: 136

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 890-	-136/2-A					Clier	nt Sa	mple ID	: Lab Cor		
Matrix: Solid									Prep Ty		
Analysis Batch: 146			Spike	LCS	LCS				%Rec.	p Batch	1: 136
Analyte			Added	Result		Unit	D	%Rec	Limits		
Toluene			0.100	0.09539		mg/Kg		95	70 - 130		
m,p-Xylenes			0.200	0.1870		mg/Kg		94	70 - 135		
o-Xylene			0.100	0.09692		mg/Kg		97	71 - 133		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1,4-Difluorobenzene	97		70 - 130								
4-Bromofluorobenzene (Surr)	97		70 - 130								
									Prep Ty	pe: Tot	al/NA
										pe: Tot p Batch	n: 136
Analysis Batch: 146			Spike	-	LCSD				Pre %Rec.	p Batch	
Analysis Batch: 146			Added	Result	LCSD Qualifier	Unit	D	%Rec	Pre %Rec. Limits		n: 136 RPD Limit
Analysis Batch: 146 Analyte			•	-		Unit mg/Kg	D	% Rec 98	Pre %Rec.	p Batch	n: 136 RPD
Analysis Batch: 146 Analyte Benzene			Added	Result			<u>D</u>		Pre %Rec. Limits	P Batch	n: 136 RPD Limit
Analysis Batch: 146 Analyte Benzene			Added	Result 0.09775		mg/Kg	<u>D</u>	98	Pre %Rec. Limits 70 - 130	Batch RPD	n: 136 RPD Limit 35
Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene			Added	Result 0.09775 0.09646		mg/Kg mg/Kg	<u>D</u>	98 96	Pre %Rec. Limits 70 - 130 71 - 129	RPD 2	n: 136 RPD Limit 35 35
Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene m,p-Xylenes			Added 0.100 0.100 0.100	Result 0.09775 0.09646 0.09628		mg/Kg mg/Kg mg/Kg	<u>D</u>	98 96 96	Pre %Rec. Limits 70 - 130 71 - 129 70 - 130	RPD 0 2 1	136 RPD Limit 35 35 35 35
Matrix: Solid Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene m,p-Xylenes o-Xylene	 	LCSD	Added 0.100 0.100 0.100 0.200	Result 0.09775 0.09646 0.09628 0.1919		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	98 96 96 96	Pre %Rec. Limits 70 - 130 71 - 129 70 - 130 70 - 135	RPD 0 2 1 3	n: 136 RPD Limit 35 35 35 35 35
Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene m,p-Xylenes o-Xylene	LCSD %Recovery		Added 0.100 0.100 0.100 0.200	Result 0.09775 0.09646 0.09628 0.1919		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	98 96 96 96	Pre %Rec. Limits 70 - 130 71 - 129 70 - 130 70 - 135	RPD 0 2 1 3	n: 136 RPD Limit 35 35 35 35 35
Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene m,p-Xylenes			Added 0.100 0.100 0.100 0.200 0.100	Result 0.09775 0.09646 0.09628 0.1919		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	98 96 96 96	Pre %Rec. Limits 70 - 130 71 - 129 70 - 130 70 - 135	RPD 0 2 1 3	n: 136 RPD Limit 35 35 35 35 35

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 890-186/1-A Matrix: Solid Analysis Batch: 215

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0	mg/Kg		02/06/21 15:46	02/09/21 19:43	1
Total TPH	<50.0	U	50.0	mg/Kg		02/06/21 15:46	02/09/21 19:43	1
>C10-C28	<50.0	U	50.0	mg/Kg		02/06/21 15:46	02/09/21 19:43	1
>C28-C35	<50.0	U	50.0	mg/Kg		02/06/21 15:46	02/09/21 19:43	1
	MB	MR						

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	96	70 - 135
o-Terphenyl	94	70 - 135

Lab Sample ID: LCS 890-186/2-A Matrix: Solid

Matrix: Solid Analysis Batch: 215								pe: Total/NA Batch: 186
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C10	1000	1044		mg/Kg		104	70 - 135	
>C10-C28	1000	1004		mg/Kg		100	70 - 135	

Eurofins Xenco, Carlsbad

Client Sample ID: Method Blank

Analyzed

Prepared

02/06/21 15:46 02/09/21 19:43

02/06/21 15:46 02/09/21 19:43

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 186

Dil Fac

1

1

5

Job ID: 890-132-1 SDG: TE012921008

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 890-	-186/2-A					Clier	it Sai	mple ID	: Lab Cor		
Matrix: Solid									Prep Ty		
Analysis Batch: 215									Pre	o Batch	1: 186
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	114		70 - 135								
o-Terphenyl	105		70 - 135								
Lab Sample ID: LCSD 89	0-186/3-A				c	Client Sa	mple	ID: Lab		Sample	e Dup
Matrix: Solid							÷.,		Prep Ty		
Analysis Batch: 215										Batch	
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C10			1000	1052		mg/Kg		105	70 - 135	1	25
>C10-C28			1000	1044		mg/Kg		104	70 - 135	4	25
						0 0					
Survey and the		LCSD	Limits								
Surrogate 1-Chlorooctane	%Recovery 110	Quaimer	70 - 135								
o-Terphenyl	110		70 - 135 70 - 135								
- тарианут	100		10-155								
Lab Sample ID: 890-130-/	A-1-F MS						CI	ient Sa	mple ID: I		-
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 215									Prej	o Batch	n: 186
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
C6-C10	<50.3	U	997	1090		mg/Kg		109	70 - 135		
Total TPH	<50.3	U	1990	2154		mg/Kg		0			
>C10-C28	<50.3	U	997	1064		mg/Kg		107	70 - 135		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	117		70 - 135								
o-Terphenyl	106		70 - 135								
Lab Sample ID: 890-130-/	A-1-G MSD					Client S	Samp	le ID: N	latrix Spil	ke Dup	licate
Matrix: Solid									Prep Ty		
Analysis Batch: 215										b Batch	
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C10	<50.3	U	1000	1054		mg/Kg		105	70 - 135	3	35
Total TPH	<50.3	U	2000	2108		mg/Kg		0		NC	
>C10-C28	<50.3	U	1000	1054		mg/Kg		105	70 - 135	1	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	119		70 - 135								
o-Terphenyl	108		70 - 135								

Client: WSP USA Inc.

QC Sample Results

Job ID: 890-132-1 SDG: TE012921008

Project/Site: PLU 199 Method: 300.0 - Anions, Ion Chromatography

· · ·													
Lab Sample ID: MB 890-133/ Matrix: Solid	'1-A							0	Clie	nt Sam	ple ID: M Prep T		
Analysis Batch: 137											i leb i	ype. oc	Jubie
Analysis Batch. 137		МВ МВ											
Analyta	De	sult Qualifier		RL		Unit		D	ь.	repared	Analy	- ad	Dil Fac
Analyte Chloride		$\frac{10.0}{10.0}$		10.0				<u> </u>		epareu	Analy: 02/03/21		1 1
Chionde		10.0 0		10.0		mg/k	g				02/03/21	20.49	I
Lab Sample ID: LCS 890-133	3/2-A						Cli	ent	Sar	nple ID	: Lab Cor	ntrol Sa	mple
Matrix: Solid											Prep T		
Analysis Batch: 137												,	
,			Spike		LCS	LCS					%Rec.		
Analyte			Added	R	esult	Qualifier	Unit		D	%Rec	Limits		
Chloride			500	4	496.2		mg/Kg		_	99	90 - 110		
-							0 0						
Lab Sample ID: LCSD 890-13	33/3-A					(Client S	am	ple	ID: Lab	Control	Sample	e Dup
Matrix: Solid											Prep T	ype: So	oluble
Analysis Batch: 137													
			Spike	L	.CSD	LCSD					%Rec.		RPD
Analyte			Added	R	esult	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride			500	4	493.5		mg/Kg			99	90 - 110	1	20
Lab Sample ID: 890-134-A-1	-B MS								СІ	ient Sa	mple ID:	Matrix	Snike
Matrix: Solid	-										Prep T		
Analysis Batch: 137												,	
	Sample	Sample	Spike		MS	MS					%Rec.		
Analyte	•	Qualifier	Added	R	esult	Qualifier	Unit		D	%Rec	Limits		
Chloride	82.2		500	5	588.7		mg/Kg		_	101	90 - 110		
Lab Sample ID: 890-134-A-1	-C MSD						Clien	t Sa	mp	IE ID: N	latrix Spi		
Matrix: Solid											Prep T	ype: So	Diuble
Analysis Batch: 137	. .	<u> </u>									a/ 5		
A secolo dis	Sample	-	Spike			MSD	11		_	0/ D	%Rec.		RPD
Analyte		Qualifier	Added			Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride	82.2		499	5	551.1		mg/Kg			94	90 - 110	7	20

QC Association Summary

Client: WSP USA Inc. Project/Site: PLU 199

GC VOA

Prep Batch: 134

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-132-1	BH04	Total/NA	Solid	5030C	
890-132-2	BH04	Total/NA	Solid	5030C	
MB 890-134/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 890-134/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 890-134/3-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
890-130-A-1-C MS	Matrix Spike	Total/NA	Solid	5030C	
890-130-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5030C	

Prep Batch: 136

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 890-136/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 890-136/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 890-136/3-A	Lab Control Sample Dup	Total/NA	Solid	5030C	

Analysis Batch: 146

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-132-1	BH04	Total/NA	Solid	8021B	134
890-132-2	BH04	Total/NA	Solid	8021B	134
MB 890-134/1-A	Method Blank	Total/NA	Solid	8021B	134
MB 890-136/1-A	Method Blank	Total/NA	Solid	8021B	136
LCS 890-134/2-A	Lab Control Sample	Total/NA	Solid	8021B	134
LCS 890-136/2-A	Lab Control Sample	Total/NA	Solid	8021B	136
LCSD 890-134/3-A	Lab Control Sample Dup	Total/NA	Solid	8021B	134
LCSD 890-136/3-A	Lab Control Sample Dup	Total/NA	Solid	8021B	136
890-130-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	134
890-130-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	134

GC Semi VOA

Prep Batch: 186

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-132-1	BH04	Total/NA	Solid	8015NM Prep	
890-132-2	BH04	Total/NA	Solid	8015NM Prep	
MB 890-186/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 890-186/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 890-186/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-130-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-130-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-132-1	BH04	Total/NA	Solid	8015B NM	186
890-132-2	BH04	Total/NA	Solid	8015B NM	186
MB 890-186/1-A	Method Blank	Total/NA	Solid	8015B NM	186
LCS 890-186/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	186
LCSD 890-186/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	186
890-130-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	186
890-130-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	186

Page 124 of 152

Job ID: 890-132-1 SDG: TE012921008

QC Association Summary

Client: WSP USA Inc. Project/Site: PLU 199

HPLC/IC

Leach Batch: 133

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-132-1	BH04	Soluble	Solid	DI Leach	
890-132-2	BH04	Soluble	Solid	DI Leach	
MB 890-133/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 890-133/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 890-133/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-134-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-134-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Lab Sample ID **Client Sample ID** Matrix **Prep Batch** Prep Type Method 300.0 890-132-1 BH04 Soluble Solid 133 BH04 890-132-2 Soluble Solid 300.0 133 MB 890-133/1-A Method Blank Soluble Solid 300.0 133 300.0 LCS 890-133/2-A Lab Control Sample Soluble Solid 133 Soluble 300.0 133 LCSD 890-133/3-A Lab Control Sample Dup Solid 890-134-A-1-B MS Soluble Solid 300.0 133 Matrix Spike 300.0 Solid 133 890-134-A-1-C MSD Matrix Spike Duplicate Soluble

Page 125 of 152

5 6

8

SP USA Inc.

Client: WSP USA Inc. Project/Site: PLU 199

Client Sample ID: BH04 Date Collected: 02/03/21 11:52 Date Received: 02/03/21 15:45

				Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
lotal/NA	Prep	5030C			134	02/03/21 19:53	MC	XC
lotal/NA	Analysis	8021B		1	146	02/05/21 10:29	PXS	XC
lotal/NA	Prep	8015NM Prep			186	02/06/21 15:46	MC	XC
lotal/NA	Analysis	8015B NM		1	215	02/09/21 23:25	BJH	XC
Soluble	Leach	DI Leach			133	02/03/21 17:27	MC	XC
Soluble	Analysis	300.0		1	137	02/03/21 22:02	MC	XC

Client Sample ID: BH04 Date Collected: 02/03/21 11:57 Date Received: 02/03/21 15:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			134	02/03/21 19:53	MC	XC
Total/NA	Analysis	8021B		1	146	02/05/21 11:14	PXS	XC
Total/NA	Prep	8015NM Prep			186	02/06/21 15:46	MC	XC
Total/NA	Analysis	8015B NM		1	215	02/09/21 23:45	BJH	XC
Soluble	Leach	DI Leach			133	02/03/21 17:27	MC	XC
Soluble	Analysis	300.0		1	137	02/03/21 22:08	MC	XC

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Page 126 of 152

Job ID: 890-132-1 SDG: TE012921008

Lab Sample ID: 890-132-1 Matrix: Solid

Matrix: Solid

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-132-1 SDG: TE012921008

Page 127 of 152

Laboratory: Eurofins Xenco, Carlsbad

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pr	ogram	Identification Number	Expiration Date
ouisiana	NE	LAP	05092	06-30-21
the agency does not	offer certification.		not certified by the governing authority.	This list may include analytes for whic
• •	•	rt, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes for whic
the agency does not	offer certification.		, , , , , ,	This list may include analytes for whic

Client: WSP USA Inc. Project/Site: PLU 199

Job ID: 890-132-1 SDG: TE012921008

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	XC
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XC
00.0	Anions, Ion Chromatography	MCAWW	XC
030C	Purge and Trap	SW846	XC
015NM Prep	Microextraction	SW846	XC
01 Leach	Deionized Water Leaching Procedure	ASTM	XC

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Sample Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-132-1 SDG: TE012921008

.ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	
90-132-1	BH04	Solid	02/03/21 11:52	02/03/21 15:45		
90-132-2	BH04	Solid	02/03/21 11:57	02/03/21 15:45		
						Į
						8
						9
						1
						1

Received by OCD: 3/19/2021 9:36:20 AM

Job Number: 890-132-1 SDG Number: TE012921008

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 132 List Number: 1 Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Received by OCD: 3/19/2021 9:36:20 AM

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-133-1

Laboratory Sample Delivery Group: TE012921008 Client Project/Site: PLU 199 Revision: 1

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 2/11/2021 9:54:43 AM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access Have a Question? Ask-The Expert

www.eurofinsus.com/Env Released to Imaging: 6/8/2022 8:54:45 AM

Visit us at:

.

Laboratory Job ID: 890-133-1 SDG: TE012921008

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

.

Client: WSP USA Inc. Project/Site: PLU 199 Page 134 of 152

Job ID: 890-133-1	ŝ

Project/Site: F		SDG: TE012921008	
Qualifiers			3
GC VOA Qualifier	Qualifier Description		4
F1	MS and/or MSD recovery exceeds control limits.		
F2	MS/MSD RPD exceeds control limits		5
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VO	Α		
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		8
<u>U</u>	Indicates the analyte was analyzed for but not detected.		
			0
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		

TEQToxicity Equivalent Quotient (Dioxin)TNTCToo Numerous To Count

Toxicity Equivalent Factor (Dioxin)

TEF

Case Narrative

Client: WSP USA Inc. Project/Site: PLU 199

Job ID: 890-133-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-133-1

REVISION

The report being provided is a revision of the original report sent on 2/10/2021. The report (revision 1) is being revised due to Corrected certificate summary page for TPH 8015.

Report revision history

Receipt

The samples were received on 2/3/2021 2:20 PM; the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 890-136 and analytical batch 890-146 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-133-1 SDG: TE012921008

Client Sample Results

Client: WSP USA Inc. Project/Site: PLU 199

Client Sample ID: BH05 Date Collected: 02/03/21 11:18 Date Received: 02/03/21 14:20

Method: 8021B - Volatile Organic Compounds (GC)

		-

Job ID: 890-133-1 SDG: TE012921008

Lab Sample ID: 890-133-1

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Benzene	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/06/21 05:50	1	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/06/21 05:50	1	
Toluene	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/06/21 05:50	1	
Total BTEX	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/06/21 05:50	1	7
Xylenes, Total	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/06/21 05:50	1	
m,p-Xylenes	<0.00398	U	0.00398	mg/Kg		02/03/21 19:53	02/06/21 05:50	1	8
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/03/21 19:53	02/06/21 05:50	1	
									Q
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1,4-Difluorobenzene	102		70 - 130			02/03/21 19:53	02/06/21 05:50	1	40
4-Bromofluorobenzene (Surr)	100		70 - 130			02/03/21 19:53	02/06/21 05:50	1	10
	D								
Method: 8015B NM - Diesel	Range Organ		(GC)						
			• •						
Analyte		Qualifier		Unit	D	Prepared	Analyzed	Dil Fac	
	Result <50.0	-	RL 50.0	Unit mg/Kg	<u> </u>	Prepared 02/06/21 15:46	Analyzed 02/10/21 00:06	Dil Fac	12
Analyte		U			<u>D</u>			Dil Fac 1 1	12
Analyte C6-C10	<50.0	U U	50.0	mg/Kg	<u>D</u>	02/06/21 15:46	02/10/21 00:06	Dil Fac 1 1 1	12 13
Analyte C6-C10 Total TPH	<50.0 <50.0	บ บ บ	50.0 50.0	mg/Kg mg/Kg	<u> </u>	02/06/21 15:46 02/06/21 15:46 02/06/21 15:46	02/10/21 00:06 02/10/21 00:06	Dil Fac 1 1 1 1	12 13
Analyte C6-C10 Total TPH >C10-C28 >C28-C35	<pre><50.0 <50.0 <50.0 <50.0 <50.0</pre>	U U U U	50.0 50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u> </u>	02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 02/06/21 15:46	02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 02/10/21 00:06	1 1 1 1	12 13
Analyte C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate	<50.0 <50.0 <50.0 <50.0 <50.0	U U U U	50.0 50.0 50.0 50.0 Limits	mg/Kg mg/Kg mg/Kg	<u>D</u>	02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 Prepared	02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 Analyzed	Dil Fac 1 1 1 1 Dil Fac	12 13 14
Analyte C6-C10 Total TPH >C10-C28 >C28-C35	<pre><50.0 <50.0 <50.0 <50.0 <50.0</pre>	U U U U	50.0 50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u> </u>	02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 02/06/21 15:46	02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 02/10/21 00:06	1 1 1 1	12 13 14
Analyte C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate	<50.0 <50.0 <50.0 <50.0 <50.0	U U U U	50.0 50.0 50.0 50.0 Limits	mg/Kg mg/Kg mg/Kg	<u>D</u>	02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 Prepared	02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 Analyzed	1 1 1 1	12 13 14
Analyte C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate 1-Chlorooctane o-Terphenyl	<50.0 <50.0 <50.0 <50.0 %Recovery 100 97	U U U U Qualifier	50.0 50.0 50.0 50.0 <i>Limits</i> 70 - 135 70 - 135	mg/Kg mg/Kg mg/Kg	<u> </u>	02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 Prepared 02/06/21 15:46	02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 Analyzed 02/10/21 00:06	1 1 1 1	12 13 14
Analyte C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion	<50.0 <50.0 <50.0 <50.0 %Recovery 100 97 Chromatogra	U U U Qualifier	50.0 50.0 50.0 50.0 <u>Limits</u> 70 - 135 70 - 135	mg/Kg mg/Kg mg/Kg		02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 Prepared 02/06/21 15:46 02/06/21 15:46	02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 Analyzed 02/10/21 00:06 02/10/21 00:06	1 1 1 1 Dil Fac 1 1	12 13 14
Analyte C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate 1-Chlorooctane o-Terphenyl	<50.0 <50.0 <50.0 <50.0 %Recovery 100 97 Chromatogra	U U U U Qualifier	50.0 50.0 50.0 50.0 <i>Limits</i> 70 - 135 70 - 135	mg/Kg mg/Kg mg/Kg	<u>D</u>	02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 02/06/21 15:46 Prepared 02/06/21 15:46	02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 02/10/21 00:06 Analyzed 02/10/21 00:06	1 1 1 1	12 13 14

.. ..

Client Sample ID: BH05

Date Collected: 02/03/21 11:22 Date Received: 02/03/21 14:20

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 11:51	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 11:51	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 11:51	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 11:51	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 11:51	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		02/03/21 19:53	02/05/21 11:51	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 11:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	96		70 - 130			02/03/21 19:53	02/05/21 11:51	1
4-Bromofluorobenzene (Surr)	104		70 - 130			02/03/21 19:53	02/05/21 11:51	1

Method. 60156 MM - Dieser Kange Organics (DKO) (GC)									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	C6-C10	<49.8	U	49.8	mg/Kg		02/06/21 15:46	02/10/21 00:26	1
	Total TPH	<49.8	U	49.8	mg/Kg		02/06/21 15:46	02/10/21 00:26	1
	>C10-C28	<49.8	U	49.8	mg/Kg		02/06/21 15:46	02/10/21 00:26	1
	>C28-C35	<49.8	U	49.8	mg/Kg		02/06/21 15:46	02/10/21 00:26	1

Eurofins Xenco, Carlsbad

Page 136 of 152

Lab Sample ID: 890-133-2

Matrix: Solid

Client Sample Results

Job ID: 890-133-1 SDG: TE012921008

Client Sample ID: BH05 Date Collected: 02/03/21 11:22

Client: WSP USA Inc. Project/Site: PLU 199

Dato	Received:	02/03/21	14.20
Date	Received.	02/03/21	14.20

Surrogate 1-Chlorooctane	%Recovery 96	Qualifier	Limits 70 - 135			Prepared 02/06/21 15:46	Analyzed 02/10/21 00:26	Dil Fac
o-Terphenyl	93		70 - 135			02/06/21 15:46	02/10/21 00:26	1
Method: 300.0 - Anion	s, Ion Chromatogra	phy - Solu	ıble					
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<9.96	U	9.96	mg/Kg			02/03/21 22:19	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-133-2 Matrix: Solid 5

Surrogate Summary

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

			Pe	rcent Surrogate Recovery (Acceptance Limits)
		DFBZ1	BFB1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-130-A-1-C MS	Matrix Spike	98	100	
890-130-A-1-D MSD	Matrix Spike Duplicate	94	97	
890-133-1	BH05	102	100	
890-133-2	BH05	96	104	
890-139-A-4-B MS	Matrix Spike	100	100	
890-139-A-4-C MSD	Matrix Spike Duplicate	98	96	
LCS 890-134/2-A	Lab Control Sample	97	95	
LCS 890-136/2-A	Lab Control Sample	97	97	
LCSD 890-134/3-A	Lab Control Sample Dup	99	99	
LCSD 890-136/3-A	Lab Control Sample Dup	94	96	
MB 890-134/1-A	Method Blank	98	111	
MB 890-136/1-A	Method Blank	102	103	

BFB = 4-Bromofluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

			Percent S	Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-135)	(70-135)	
890-130-A-1-F MS	Matrix Spike	117	106	
890-130-A-1-G MSD	Matrix Spike Duplicate	119	108	
890-133-1	BH05	100	97	
890-133-2	BH05	96	93	
LCS 890-186/2-A	Lab Control Sample	114	105	
LCSD 890-186/3-A	Lab Control Sample Dup	110	100	
MB 890-186/1-A	Method Blank	96	94	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

6

Job ID: 890-133-1 SDG: TE012921008

Prep Type: Total/NA .imits)

Prep Type: Total/NA

Job ID: 890-133-1 SDG: TE012921008

Prep Type: Total/NA Prep Batch: 134

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 890-134/1-A
Matrix: Solid
Analysis Batch: 146

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/03/21 19:53	02/05/21 06:48	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	98		70 - 130			02/03/21 19:53	02/05/21 06:48	1
4-Bromofluorobenzene (Surr)	111		70 - 130			02/03/21 19:53	02/05/21 06:48	1

Lab Sample ID: LCS 890-134/2-A Matrix: Solid Analysis Batch: 146

Analysis Batch: 146							Prep	Batch: 134
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09494		mg/Kg		95	70 - 130	
Ethylbenzene	0.100	0.09299		mg/Kg		93	71 - 129	
Toluene	0.100	0.09355		mg/Kg		94	70 - 130	
m,p-Xylenes	0.200	0.1846		mg/Kg		92	70 - 135	
o-Xylene	0.100	0.09335		mg/Kg		93	71 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	97		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130

Lab Sample ID: LCSD 890-134/3-A Matrix: Solid Analysis Batch: 146

Analysis Batch: 146							Prep	b Batcł	n: 134
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1002		mg/Kg		100	70 - 130	5	35
Ethylbenzene	0.100	0.09780		mg/Kg		98	71 - 129	5	35
Toluene	0.100	0.09930		mg/Kg		99	70 - 130	6	35
m,p-Xylenes	0.200	0.1894		mg/Kg		95	70 - 135	3	35
o-Xylene	0.100	0.09894		mg/Kg		99	71 - 133	6	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	99		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 890-130-A- Matrix: Solid Analysis Batch: 146	1-C MS						C	lient Sa	· Prep Typ	latrix Spike e: Total/NA Batch: 134
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.101	0.09884		mg/Kg		98	70 - 130	

Client: WSP USA Inc.

Project/Site: PLU 199

QC Sample Results

Job ID: 890-133-1 SDG: TE012921008

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-130-A-1-C MS **Client Sample ID: Matrix Spike** Matrix: Solid Prep Type: Total/NA **Analysis Batch: 146** Prep Batch: 134 MS MS Sample Sample Spike %Rec. Analyte **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits Ethylbenzene <0.00199 U 0.101 0.09728 96 71 - 129 mg/Kg Toluene <0.00199 U 0.101 0.09699 mg/Kg 96 70 - 130 m,p-Xylenes <0.00398 U 0.202 0.1928 96 70 - 135 mg/Kg o-Xylene <0.00199 U 0.101 0.09796 mg/Kg 97 71 - 133 MS MS Surrogate %Recovery Qualifier Limits 1,4-Difluorobenzene 98 70 - 130 4-Bromofluorobenzene (Surr) 100 70 - 130

Lab Sample ID: 890-130-A-1-D MSD Matrix: Solid Analysis Batch: 146

Analysis Balch: 140									Prep	Datci	1. 134
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	< 0.00199	U	0.0994	0.1059		mg/Kg		107	70 - 130	7	35
Ethylbenzene	<0.00199	U	0.0994	0.1043		mg/Kg		105	71_129	7	35
Toluene	<0.00199	U	0.0994	0.1027		mg/Kg		103	70 - 130	6	35
m,p-Xylenes	<0.00398	U	0.199	0.2050		mg/Kg		103	70 - 135	6	35
o-Xylene	<0.00199	U	0.0994	0.1040		mg/Kg		105	71 - 133	6	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	94		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

103

Lab Sample ID: MB 890-136/1-A Matrix: Solid Analysis Batch: 146

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

p Type: Total/NA Prep Batch: 134 7

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 136

02/03/21 20:06 02/05/21 20:06

Client Sample ID: Lab Control Sample

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:06	02/05/21 20:06	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	102		70 - 130			02/03/21 20:06	02/05/21 20:06	1

70 - 130

4-Bromofluorobenzene (Surr)

Lab Sample ID: LCS 890-136/2-A Matrix: Solid

Analysis Batch: 146

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09769		mg/Kg		98	70 - 130	
Ethylbenzene	0.100	0.09480		mg/Kg		95	71 - 129	

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Prep Batch: 136

Client: WSP USA Inc. Project/Site: PLU 199

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 890 Matrix: Solid Analysis Batch: 146	-136/2-A					Clier	nt Sar	nple ID	: Lab Cor Prep Ty Prer		al/NA
			Spike	-	LCS		_		%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Toluene			0.100	0.09539		mg/Kg		95	70 - 130		
m,p-Xylenes			0.200	0.1870		mg/Kg		94	70 - 135		
o-Xylene			0.100	0.09692		mg/Kg		97	71 - 133		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1,4-Difluorobenzene	97		70 - 130								
4-Bromofluorobenzene (Surr)	97		70 - 130								
Lab Sample ID: LCSD 89	0-136/3-A				c	Client Sa	mple	ID: Lab		Sample	e Dup
Matrix: Solid									Prep Ty		
Analysis Batch: 146									FIE) Batch	1: 136
Analysis Batch: 146			Spike	LCSD	LCSD				%Rec.	o Batch	1: 136 RPD
			Spike Added	-	LCSD Qualifier	Unit	D	%Rec		RPD	
Analyte			•	-		Unit mg/Kg	D	%Rec 98	%Rec.		RPD
Analyte Benzene			Added	Result			<u>D</u>		%Rec. Limits	RPD	RPD Limit
Analyte Benzene Ethylbenzene			Added	Result 0.09775		mg/Kg	<u>D</u>	98	%Rec. Limits 70 - 130	RPD	RPD Limit 35
Analysis Batch: 146 Analyte Benzene Ethylbenzene Toluene m,p-Xylenes		·	Added 0.100 0.100	Result 0.09775 0.09646		mg/Kg mg/Kg	<u>D</u>	98 96	%Rec. Limits 70 - 130 71 - 129	RPD 0 2	RPD Limit 35 35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	94		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130

Lab Sample ID: 890-139-A-4-B MS Matrix: Solid Analysis Batch: 146

Analysis Batch: 146									Prep	Batch: 136
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	< 0.00200	U	0.101	0.09904		mg/Kg		98	70 - 130	
Ethylbenzene	<0.00200	U F2 F1	0.101	0.02129	F1	mg/Kg		21	71 - 129	
Toluene	<0.00200	U	0.101	0.07812		mg/Kg		77	70 - 130	
m,p-Xylenes	<0.00399	UF1	0.202	0.1412		mg/Kg		70	70 - 135	
o-Xylene	<0.00200	U	0.101	0.09511		mg/Kg		94	71 - 133	
	MS	MS								

	1413	1013	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	100		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 890-139-A-4-C MSD Matrix: Solid Analysis Batch: 146

Analysis Batch: 146									Prep	b Batch	n: 136
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0996	0.09403		mg/Kg		94	70 - 130	5	35
Ethylbenzene	<0.00200	U F2 F1	0.0996	0.03654	F2 F1	mg/Kg		37	71 - 129	53	35
Toluene	<0.00200	U	0.0996	0.07677		mg/Kg		77	70 - 130	2	35
m,p-Xylenes	<0.00399	U F1	0.199	0.1037	F1	mg/Kg		52	70 - 135	31	35
o-Xylene	<0.00200	U	0.0996	0.09398		mg/Kg		94	71 - 133	1	35

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

5

Client: WSP USA Inc. Project/Site: PLU 199

Job ID: 890-133-1 SDG: TE012921008

Page 142 of 152

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	98		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 890-186/1-A Matrix: Solid **Analysis Batch: 215**

· · · · · · · · · · · · · · · · · · ·	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0	mg/Kg		02/06/21 15:46	02/09/21 19:43	1
Total TPH	<50.0	U	50.0	mg/Kg		02/06/21 15:46	02/09/21 19:43	1
>C10-C28	<50.0	U	50.0	mg/Kg		02/06/21 15:46	02/09/21 19:43	1
>C28-C35	<50.0	U	50.0	mg/Kg		02/06/21 15:46	02/09/21 19:43	1
	MR	MR						

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	96	70 - 135
o-Terphenyl	94	70 - 135

Lab Sample ID: LCS 890-186/2-A Matrix: Solid Analysis Batch: 215

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C10	 1000	1044		mg/Kg		104	70 - 135	
>C10-C28	1000	1004		mg/Kg		100	70 - 135	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	114		70 - 135
o-Terphenyl	105		70 - 135

Lab Sample ID: LCSD 890-186/3-A Matrix: Solid Analysis Batch: 215

Analysis Batch: 215							Pre	p Batch	n: 186
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C10	1000	1052		mg/Kg		105	70 - 135	1	25
>C10-C28	1000	1044		mg/Kg		104	70 - 135	4	25

	LCSD I	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	110		70 - 135
o-Terphenyl	100		70 - 135

Lab Sample ID: 890-130-A-1-F MS Matrix: Solid

Matrix: Solid Analysis Batch: 215										pe: Total/NA b Batch: 186
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C10	<50.3	U	997	1090		mg/Kg		109	70 - 135	
Total TPH	<50.3	U	1990	2154		mg/Kg		0		
>C10-C28	<50.3	U	997	1064		mg/Kg		107	70 - 135	

Eurofins Xenco, Carlsbad

1

1

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 186

02/06/21 15:46 02/09/21 19:43

02/06/21 15:46 02/09/21 19:43

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analyzed

Prepared

Client Sample ID: Matrix Spike

Client: WSP USA Inc.

Project/Site: PLU 199

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	117		70 - 135
o-Terphenyl	106		70 - 135

Lab Sample ID: 890-130-A-1-G MSD Matrix: Solid

Matrix: Solid Analysis Batch: 215									Prep Ty Prej	pe: Tot p Batch	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C10	<50.3	U	1000	1054		mg/Kg		105	70 - 135	3	35
Total TPH	<50.3	U	2000	2108		mg/Kg		0		NC	
>C10-C28	<50.3	U	1000	1054		mg/Kg		105	70 - 135	1	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	119		70 - 135								
o-Terphenyl	108		70 - 135								

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 890-133	3/1-A						C	lient San	nple ID: M	ethod	Blank
Matrix: Solid									Prep Ty	ype: So	oluble
Analysis Batch: 137											
		MB MB									
Analyte	Res	sult Qualifier		RL	Unit		D	Prepared	Analyz	zed	Dil Fac
Chloride	<1	0.0 U		10.0	mg/K	g			02/03/21	20:49	1
Lab Sample ID: LCS 890-13	3/2-A					Clie	ent S	ample ID	: Lab Cor	ntrol Sa	ample
Matrix: Solid									Prep Ty	ype: So	oluble
Analysis Batch: 137											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	I	D %Rec	Limits		
Chloride			500	496.2		mg/Kg		99	90 - 110		
Lab Sample ID: LCSD 890-1 Matrix: Solid Analysis Batch: 137	133/3-A				C	Client Sa	ampl	e ID: Lat	Control Prep T		
· · · · · · · · · · · · · · · · · · ·											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Spike Added		LCSD Qualifier	Unit	I	D %Rec	%Rec. Limits	RPD	RPD Limit
Analyte Chloride			•			Unit mg/Kg	[D <u>%Rec</u> 99		RPD	
	1-B MS		Added	Result				99	Limits	1	Limit 20
Chloride	1-B MS		Added	Result				99	Limits 90 - 110	1 Matrix	Limit 20 Spike
Chloride Lab Sample ID: 890-134-A-1	1-B MS		Added	Result				99	Limits 90 - 110	1 Matrix	Limit 20 Spike
Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid	1-B MS Sample	Sample	Added	Result	Qualifier			99	Limits 90 - 110	1 Matrix	Limit 20 Spike
Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid	Sample	Sample Qualifier	Added 500	Result 493.5	Qualifier			99	Limits 90 - 110 mple ID: I Prep Ty	1 Matrix	Limit 20 Spike
Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137	Sample	•	Added 500 Spike	Result 493.5	Qualifier	mg/Kg		₉₉ Client Sa	Limits 90 - 110 mple ID: I Prep Ty %Rec.	1 Matrix	Limit 20 Spike
Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte Chloride	Sample Result 82.2	•	Added 500 Spike Added	Result 493.5 MS Result	Qualifier	mg/Kg Unit mg/Kg	I	— 99 Client Sa <u>— %Rec</u> — 101	Limits 90 - 110 mple ID: I Prep Ty %Rec. Limits 90 - 110	1 Matrix ype: So	Limit 20 Spike oluble
Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte	Sample Result 82.2	•	Added 500 Spike Added	Result 493.5 MS Result	Qualifier	mg/Kg Unit mg/Kg	I	— 99 Client Sa <u>— %Rec</u> — 101	Limits 90 - 110 mple ID: I Prep Ty %Rec. Limits	Matrix ype: So ke Dup	Limit 20 Spike oluble
Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid	Sample Result 82.2	•	Added 500 Spike Added	Result 493.5 MS Result	Qualifier	mg/Kg Unit mg/Kg	I	— 99 Client Sa <u>— %Rec</u> — 101	Limits 90 - 110 mple ID: I Prep Ty %Rec. Limits 90 - 110	Matrix ype: So ke Dup	Limit 20 Spike oluble
Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1	Sample Result 82.2	Qualifier	Added 500 Spike Added	Result 493.5 MS Result	Qualifier MS Qualifier	mg/Kg Unit mg/Kg	I	— 99 Client Sa <u>— %Rec</u> — 101	Limits 90 - 110 mple ID: I Prep Ty %Rec. Limits 90 - 110	Matrix ype: So ke Dup	Limit 20 Spike oluble
Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid Analysis Batch: 137 Analyte Chloride Lab Sample ID: 890-134-A-1 Matrix: Solid	Sample Result 82.2 1-C MSD Sample	Qualifier	Added 500 Spike Added 500	Result 493.5 MS Result 588.7 MSD	Qualifier MS Qualifier	mg/Kg Unit mg/Kg	Sam	— 99 Client Sa <u>— %Rec</u> — 101	Limits 90 - 110 mple ID: I Prep Ty %Rec. Limits 90 - 110 Matrix Spil Prep Ty	Matrix ype: So ke Dup	Limit 20 Spike oluble

Job ID: 890-133-1 SDG: TE012921008

Page 143 of 152

Client Sample ID: Matrix Spike Duplicate

Released to Imaging: 6/8/2022 8:54:45 AM

Matrix Spike

Matrix Spike Duplicate

QC Association Summary

Client: WSP USA Inc. Project/Site: PLU 199

GC VOA

Prep Batch: 134

Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
BH05	Total/NA	Solid	5030C	
BH05	Total/NA	Solid	5030C	
Method Blank	Total/NA	Solid	5030C	
Lab Control Sample	Total/NA	Solid	5030C	
Lab Control Sample Dup	Total/NA	Solid	5030C	
	BH05 BH05 Method Blank Lab Control Sample	BH05 Total/NA BH05 Total/NA Method Blank Total/NA Lab Control Sample Total/NA	BH05 Total/NA Solid BH05 Total/NA Solid Method Blank Total/NA Solid Lab Control Sample Total/NA Solid	BH05Total/NASolid5030CBH05Total/NASolid5030CMethod BlankTotal/NASolid5030CLab Control SampleTotal/NASolid5030C

890-130-A-1-D MSD Prep Batch: 136

890-130-A-1-C MS

Lab Sample ID MB 890-136/1-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 5030C	Prep Batch
LCS 890-136/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 890-136/3-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
890-139-A-4-B MS	Matrix Spike	Total/NA	Solid	5030C	
890-139-A-4-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5030C	

Total/NA

Total/NA

Solid

Solid

5030C

5030C

Analysis Batch: 146

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-133-1	BH05	Total/NA	Solid	8021B	134
890-133-2	BH05	Total/NA	Solid	8021B	134
MB 890-134/1-A	Method Blank	Total/NA	Solid	8021B	134
MB 890-136/1-A	Method Blank	Total/NA	Solid	8021B	136
LCS 890-134/2-A	Lab Control Sample	Total/NA	Solid	8021B	134
LCS 890-136/2-A	Lab Control Sample	Total/NA	Solid	8021B	136
LCSD 890-134/3-A	Lab Control Sample Dup	Total/NA	Solid	8021B	134
LCSD 890-136/3-A	Lab Control Sample Dup	Total/NA	Solid	8021B	136
890-130-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	134
890-130-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	134
890-139-A-4-B MS	Matrix Spike	Total/NA	Solid	8021B	136
890-139-A-4-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	136

GC Semi VOA

Prep Batch: 186

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-133-1	BH05	Total/NA	Solid	8015NM Prep	
890-133-2	BH05	Total/NA	Solid	8015NM Prep	
MB 890-186/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 890-186/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 890-186/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-130-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-130-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-133-1	BH05	Total/NA	Solid	8015B NM	186
890-133-2	BH05	Total/NA	Solid	8015B NM	186
MB 890-186/1-A	Method Blank	Total/NA	Solid	8015B NM	186
LCS 890-186/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	186
LCSD 890-186/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	186
890-130-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	186

Eurofins Xenco, Carlsbad

Page 144 of 152

Job ID: 890-133-1 SDG: TE012921008

GC Semi VOA (Continued)

Analysis Batch: 215 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-130-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	186

HPLC/IC

Leach Batch: 133

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-133-1	BH05	Soluble	Solid	DI Leach	
890-133-2	BH05	Soluble	Solid	DI Leach	
MB 890-133/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 890-133/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 890-133/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-134-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-134-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

890-133-2 MB 890-133/1-A	BH05 Method Blank	Soluble Soluble	Solid Solid	DI Leach DI Leach		8
LCS 890-133/2-A	Lab Control Sample	Soluble	Solid	DI Leach		0
LCSD 890-133/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		3
890-134-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach		10
890-134-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach		10
Analysis Batch: 137						11
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	4.0
Lab Sample ID 890-133-1	Client Sample ID BH05	Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 133	12
	•					12
890-133-1	BH05	Soluble	Solid	300.0	133	12 13
890-133-1 890-133-2	BH05 BH05	Soluble	Solid Solid	300.0 300.0	133 133 133	12 13
890-133-1 890-133-2 MB 890-133/1-A	BH05 BH05 Method Blank	Soluble Soluble Soluble	Solid Solid Solid	300.0 300.0 300.0	133 133 133 133	12 13 14
890-133-1 890-133-2 MB 890-133/1-A LCS 890-133/2-A	BH05 BH05 Method Blank Lab Control Sample	Soluble Soluble Soluble Soluble	Solid Solid Solid Solid	300.0 300.0 300.0 300.0	133 133 133 133 133	12 13 14

2/11/2021 (Rev. 1)

Job ID: 890-133-1 SDG: TE012921008

Page 146 of 152

Job ID: 890-133-1 SDG: TE012921008

Matrix: Solid

Matrix: Solid

5

9

Lab Sample ID: 890-133-1

Lab Sample ID: 890-133-2

Client Sample ID: BH05 Date Collected: 02/03/21 11:18 Date Received: 02/03/21 14:20

Client: WSP USA Inc.

Project/Site: PLU 199

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			134	02/03/21 19:53	МС	XC
Total/NA	Analysis	8021B		1	146	02/06/21 05:50	PXS	XC
Total/NA	Prep	8015NM Prep			186	02/06/21 15:46	MC	XC
Total/NA	Analysis	8015B NM		1	215	02/10/21 00:06	BJH	XC
Soluble	Leach	DI Leach			133	02/03/21 17:27	MC	XC
Soluble	Analysis	300.0		1	137	02/03/21 22:14	MC	XC

Client Sample ID: BH05 Date Collected: 02/03/21 11:22 Date Received: 02/03/21 14:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			134	02/03/21 19:53	МС	XC
Total/NA	Analysis	8021B		1	146	02/05/21 11:51	PXS	XC
Total/NA	Prep	8015NM Prep			186	02/06/21 15:46	MC	XC
Total/NA	Analysis	8015B NM		1	215	02/10/21 00:26	BJH	XC
Soluble	Leach	DI Leach			133	02/03/21 17:27	MC	XC
Soluble	Analysis	300.0		1	137	02/03/21 22:19	MC	XC

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Eurofins Xenco, Carlsbad

Released to Imaging: 6/8/2022 8:54:45 AM

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-133-1 SDG: TE012921008

Page 147 of 152

Laboratory: Eurofins Xenco, Carlsbad

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
ouisiana	NE	LAP	05092	06-30-21
T I (II) I (
the following analytes the agency does not o	•	rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for whic
• •	•	rt, but the laboratory is r Matrix	not certified by the governing authority. Analyte	I his list may include analytes for whic
the agency does not o	offer certification.			I his list may include analytes for whit

Client: WSP USA Inc. Project/Site: PLU 199

Job ID: 890-133-1 SDG: TE012921008

/lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	XC
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XC
00.0	Anions, Ion Chromatography	MCAWW	XC
)30C	Purge and Trap	SW846	XC
015NM Prep	Microextraction	SW846	XC
I Leach	Deionized Water Leaching Procedure	ASTM	XC

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Sample Summary

Client: WSP USA Inc. Project/Site: PLU 199 Job ID: 890-133-1 SDG: TE012921008

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	Asset ID	
90-133-1	BH05	Solid		02/03/21 14:20		
90-133-2	BH05	Solid	02/03/21 11:22	02/03/21 14:20		
						1
						1

		* HEKI K 20-60	JUM M	3 Jak MA
Received by: (Signature) Date/Time	Relinquished by: (Signature)	Date/Time	ure) Received by: (Signature)	Reinquished by: (Signature)
ontrol	such losses are due to circumstances beyond the control arms will be enforced unleas previously negotiated.	sses or expenses incurred by the client if t mitted to Xenco, but not analyzed. Th <u>ese t</u>	of service. Xenco will be llable only for the cost of samples and shail not assume any responsibility for any losses or expenses incurred by the client if such losses are t of Xerro. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be and	of service. Xenco will be liable only for of Xerrco. A minimum charge of \$75.0
	An Mo Ni Se assigns standard t	8RCRA Sb As Ba Be Cd Cr C m client company to Xenco, its affiliates and su	e analyzed TCLP / SPLP 6010: tof samples constitutes a valid purchase order from	Circle Method(s) and I Notice: Signature of this document an
o Ni K Se Ag SiO2 Na Sr TI Sn U V Zn	Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni	Texas 11 Al Sb As Ba Be B C	200.8/6020: 8RCRA 13PPM Te	Total 200.7 / 6010
890-133 Chain of Custody	890-		X	
			TAL Y	
			S 2/3/21 1122 41	BHOS
		- X X X	5 2/3/21 1118 21	BHOS
Sample Comments		Numb TPF BTE Chli	n Matrix Date Time Depth	Lab Sample Identification
		+ (= x	(res No N/A Total Containers:	Sample Custody Seals:
TAT starts the day received by the lab, if		ÉI	o N/A	Cooler Custody Seals:
Zn Acetate+ NaOH: Zn		PA PA		Received Intact:
NaOH: Na		80	Thermometer ID	Temperature (°C):
HCL: HL		015)= 1	, Temp Blank: Yes No Wet Ice: Yes No	SAMPLE RECEIPT
H2S04: H2		20	Quote #:	PO#
HNO3: HN		-	at the Smith Due Date:	Sampler's Name: For
None: NO				
MOOH. Mo		Pres.		1
P	ANALVEIC DEDILECT			75
Deliverables: EDD ADaPT Other:				
Reporting:Level II CLevel III PST/UST CTRRP Level IV	00000	Contechnol	llond TV TQTOR	_
	pone St State o	12104 F A	A NALA A Street	- 1
Program: UST/PST PRP Brownfields RRC Superfund		XTO EN	Permin office	
		Bill to: (IF different) Kule LIHre	sh Hornan	Project Manager:
www.xenco.com Page of	Midland,TX (432) 704-5440 EL Paso,TX (915) 585-3443 Lubbock,TX (806) 794-1296 Crasibad, NM (432) 704-5440 Phoenix,AZ (480) 355-0900 Atlanta,GA (770) 449-8800 Tampa,FL (813) 620-2000 West Paim Beach, FL (561) 689-6701	so,TX (915) 585-3443 Lubbock,TX (806 A (770) 449-8800 Tampa,FL (813) 620.	RATORIES Midland, TX (432) 704-5440 EL Pa Phoenix, AZ (480) 355-0900 Atlanta, G	LABOR
Work Order No:	:ody Antonio, TX (210) 509-3334	Chain of Custody Houston TX (281) 240-4200 Dallas.TX (214) 902-0300 San Antonio.TX (210) 509-3334	0	XXE
			-	
		13 14	6 7 8 9 10 11	1 2 3 4 5

Received by OCD: 3/19/2021 9:36:20 AM

Released to Imaging: 6/8/2022 8:54:45 AM

·) .

Page 150 of 152

Job Number: 890-133-1 SDG Number: TE012921008

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 133 List Number: 1 Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	21346
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Approved. However, the depth to groundwater has not been adequately determined. When nearby wells are used to determine depth to groundwater, the wells should be no further than ½ mile away from the site, and data should be no more than 25 years old, and well construction information should be provided in the submission. The responsible party may choose to remediate to the most stringent levels listed in Table 1 of 19.15.29 NMAC in lieu of drilling to determine the depth to groundwater. In this particular case, please address the chloride concentration of 1,160 mg/kg at 2' found in BH-1 during P&A. Please remember to date the C141 Closure form upon submittal.	6/8/2022

CONDITIONS

Action 21346