

July 1, 2022

District I New Mexico Oil Conservation Division 1625 North French Drive Hobbs, New Mexico 88240

Re: Closure Request Hudson 001 Tank Battery Incident Number NAPP2201142906 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of Maverick Natural Resources, LLC (Maverick), has prepared this Closure Request to document site assessment, excavation, and soil sampling activities performed at the Hudson 001 Tank Battery (Site). The purpose of the site assessment, excavation, and soil sampling activities was to address impacts to soil resulting from a release of produced water at the Site. Based on the excavation activities and analytical results from the soil sampling events, Maverick is submitting this Closure Request, describing remediation that has occurred and requesting closure for Incident Number NAPP2201142906.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit M, Section 15, Township 17 South, Range 32 East, in Lea County, New Mexico (32.82928° N, 103.76147° W) and is associated with oil and gas exploration and production operations on Bureau of Land Management (BLM) Federal Land.

On January 3, 2022, a tank malfunctioned and resulted in the release of 5.13 barrels (bbls) of produced water onto the surface of the well pad. Released fluids were not recovered. The previous operator, ConocoPhillips Company, reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on January 18, 2022. The release was assigned Incident Number NAPP2201142906.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized according to Table 1, Closure Criteria for Soils Impacted by a Release of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be between 50 feet and 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater well with depth to groundwater data is New Mexico Office of the State Engineer (NMOSE) well RA-12521, located approximately 1.2 miles southwest of the Site. The groundwater well has a reported depth to

Hudson 001 Tank Battery

E ENSOLUM

groundwater of 92 feet bgs and a total depth of 105 feet bgs. Ground surface elevation at the groundwater well location is 4,014 feet above mean sea level (amsl), which is approximately 8 feet lower in elevation than the Site. Regionally, depth to water surrounding the Site ranging from 75 feet to 125 feet bgs, corroberating data from NMOSE well RA-12521, which reasonalbly estimates depth to water beneath the Site. All wells used for depth to water determination are depicted on Figure 1 and the referenced well records are included in Appendix A.

The closest continuously flowing or significant watercourse to the Site is a dry wash, located approximately 5,765 feet east of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 10,000 mg/kg

SITE ASSESSMENT ACTIVITIES AND ANALYTICAL RESULTS

On March 15, 2022, site assessment activities were conducted to evaluate the release extent based on information provided on the Form C-141 and visual observations. Six preliminary assessment soil samples (SS01 through SS06) were collected within and around the release extent from a depth of 0.5 feet bgs, to assess the lateral extent of the release. The preliminary soil samples were field screened for volatile aromatic hydrocarbons utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips. The release extent and preliminary soil sample locations were mapped utilizing a handheld global positioning system (GPS) unit and are depicted on Figure 2.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for preliminary soil samples SS01 and SS02, collected within the release extent, indicated benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Site Closure Criteria. Laboratory analytical results for preliminary soil samples SS03 through SS06, collected around the release extent, indicated benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the most stringent Table 1 Closure Criteria, and successfully defined the lateral extent of the release. Based on visible staining in the release area and elevated field screening results, delineation and excavation activities were warranted.

Hudson 001 Tank Battery

ENSOLUM

DELINEATION SOIL SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

On March 21, 2022, Ensolum personnel were at the Site to oversee vertical delineation activities. Boreholes BH01 and BH02 were advanced via hand auger in the vicinity of preliminary soil sample locations SS01 and SS02, to assess the vertical extent of impacted soil. The boreholes were advanced to a depth of 2 feet bgs. Two delineation soil samples (BH01/BH01A and BH02/BH02A) were collected from each borehole at depths of 1-foot and 2 feet bgs. Soil from the boreholes was field screened for volatile aromatic hydrocarbons and chloride. Field screening results and observations for the boreholes were collected, handled, and analyzed following the same procedures as described above. The borehole and delineation soil sample locations are depicted on Figure 3.

Laboratory analytical results for delineation soil samples BH01, BH01A, BH02, and BH02A indicated benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Site Closure Criteria. Delineation samples BH02 and BH02A were also compliant with the most stringent Table 1 Closure Criteria.

EXCAVATION SOIL SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

On June 24, 2022, Ensolum personnel returned to the Site to oversee excavation of visibly stained soil in the release area. Excavation activities were performed using a track-mounted backhoe and transport vehicle. To direct excavation activities, soil was screened for volatile aromatic hydrocarbons and chloride. The excavation was completed to depths ranging from 0.75 feet to 2.5 feet bgs.

Following removal of the stained soil, 5-point composite soil samples were collected at least every 200 square feet from the floor and sidewalls of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 and FS02 were collected from the floor of the excavation from depths ranging from 0.75 feet to 2.5 feet bgs. Composite soil sample SW01 was collected from the sidewall of the deeper portion of the excavation. The soil samples were collected, handled, and analyzed following the same procedures as described above. The excavation extent and excavation soil sample locations are presented on Figure 4. Photographic documentation was completed during the Site visits and a photographic log is included in Appendix C.

The excavation measured approximately 260 square feet in areal extent. A total of approximately 15 cubic yards of stained soil were removed during the excavation activities. The soil was transported and properly disposed of at the R360 Facility in Hobbs, New Mexico.

Laboratory analytical results for excavation soil samples FS01, FS02, and SW01 indicated benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Site Closure Criteria and compliant with the most stringent Table 1 Closure Criteria. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Appendix D.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the January 3, 2022, release of produced water. Laboratory analytical results for the excavation soil samples, collected from the final excavation extent, indicated benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Site Closure Criteria and compliant with the most stringent Table 1 Closure Criteria. Additionally, the release was laterally delineated to below the most stringent Table 1 Closure Criteria. Based on the soil sample analytical results, no further remediation appeared

necessary. Maverick will backfill the excavation with material purchased locally and recontour the Site to match pre-existing site conditions.

Excavation of stained soil has mitigated adverse impacts to this Site. Depth to groundwater has been estimated to be greater than 50 feet bgs and no other sensitive receptors were identified near the release extent. Maverick believes these remedial actions are protective of human health, the environment, and groundwater and respectfully requests closure for Incident Number NAPP2201142906. The Final C-141 is included in Appendix E.

If you have any questions or comments, please contact Ms. Kalei Jennings at (817) 683-2503 or kjennings@ensolum.com.

Sincerely, Ensolum, LLC

alei Jennings

Kalei Jennings Senior Scientist

Daniel R. Moir, P.G. Senior Managing Geologist

cc: Thomas Haigood, Maverick Natural Resources, LLC Bureau of Land Management

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Preliminary Soil Sample Locations
- Figure 3 Delineation Soil Sample Locations
- Figure 4 Excavation Soil Sample Locations
- Table 1
 Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Lithologic Soil Sampling Logs
- Appendix C Photographic Log
- Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation
- Appendix E Final C-141
- Appendix F NMOCD Notifications

FIGURES

.

Received by OCD: 7/7/2022 10:31:18 AM

Page 6 of 109

TABLES

•

ENSOLUM

				Hu Maverio	TABLE 1 PLE ANALYTIC dson 001 Tank Back k Natural Resout County, New Magnetic	attery rces, LLC				
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 (Closure Criteria (NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	10,000
				Pre	liminary Soil Sam	ples	•			
SS01	03/15/2022	0.5	<0.00198	< 0.00397	<50.0	82.0	<50.0	82.0	82.0	2,570
SS02	03/15/2022	0.5	<0.00199	<0.00398	<50.0	94.8	55.6	94.8	150	3,050
SS03	03/15/2022	0.5	<0.00200	<0.00400	<49.9	<49.9	<49.9	<49.9	<49.9	14.1
SS04	03/15/2022	0.5	<0.00202	<0.00404	<50.0	<50.0	<50.0	<50.0	<50.0	11.3
SS05	03/15/2022	0.5	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	10.3
SS06	03/15/2022	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	<9.90
				Del	ineation Soil San	nples				
BH01	03/21/2022	1	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	1,390
BH01A	03/21/2022	2	<0.00200	<0.00401	<49.8	<49.8	<49.8	<49.8	<49.8	1,170
BH02	03/21/2022	1	<0.00202	<0.00403	<49.8	<49.8	<49.8	<49.8	<49.8	123
BH02A	03/21/2022	2	<0.00202	<0.00403	<49.9	<49.9	<49.9	<49.9	<49.9	23.3
				Excav	ation Floor Soil S	amples				
FS01	06/24/2022	2.5	<0.00200	<0.00399	<49.8	<49.8	<49.8	<49.8	<49.8	29.8
FS02	06/24/2022	0.75	<0.00200	<0.00400	<49.9	<49.9	<49.9	<49.9	<49.9	21.4
				Excavat	tion Sidewall Soil	Samples				
SW01	06/24/2022	0-2.5	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	49.5

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

DRO: Diesel Range Organics ORO: Oil Range Organics

GRO: Gasoline Range Organics

Concentrations in bold exceed the NMOCD Table 1 Closure Criteria or reclamation

standard where applicable.

TPH: Total Petroleum Hydrocarbon Grey text represents samples that have been excavated

Ensolum

.

APPENDIX A

Referenced Well Records

	U	e
MON MONITORING WELL PMT PERMIT		ference: - Header: -
	-	
Status	From/	
		Acres Diversion Consumptive
	0	Other Location Desc MW-24
	RA 12521 Subbas MON MONITORING WELL PMT PERMIT Subfile 0 Cause/4 PHILLIPS 66 BECKY HESSLEN Status E/Act 1 2 Transaction (-06-30 PMT LOG RA 12521 Performed on the second secon	MON MONITORING WELL PMT PERMIT Subfile: - 0 Cause/Case: - PHILLIPS 66 BECKY HESSLEN E/Act 1 2 Transaction Desc. To -06-30 PMT LOG RA 12521 POD1 T (NAD83 UTM in meters) I Tag Source 64Q16Q4Sec Tws Rng X Y

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

3/24/22 9:00 AM

WATER RIGHT SUMMARY

New Mexico Office of the State Engineer Point of Diversion Summary

		(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest)						(NAD83 U			
Well Tag	POD	POD Number		Q64 Q16 Q4 Sec					X		
0	RA	12521 POD1	3	3	4	21	17S	32E	615127	3631271 🌍	
x Driller Lic	ense:	1456	Drille	r Com	ipan	ıy:	WF	HITE DR	ILLING C	OMPANY	
Driller Na	me:	WHITE, JOHN W									
Drill Start	Date:	07/21/2017	Drill I	Finish	Dat	e:	0	7/26/201	7 Pl	ug Date:	
Log File Date: 08/22/2017 Pump Type:		PCW	PCW Rcv Date:					So	urce:	Shallow	
		Pipe Discharge Size:					Estimated		timated Yield:	ield:	
Casing Siz	æ:	2.00	Depth	Well	:		1	05 feet	De	epth Water:	92 feet
X	Wate	er Bearing Stratifica	tions:		Toj	рB	ottom	Descri	iption		
					8	5	101	Sandst	one/Gravel	/Conglomerate	
					10	1	105	Sandst	cone/Gravel	/Conglomerate	
X		Casing Perfor	ations:		Тој	рB	ottom	l			
					7:	5	105				

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

3/24/22 9:00 AM

POINT OF DIVERSION SUMMARY

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources	(Cooperator Access)	Data	ta Category:		Geographic Area:			
obeb water Resources		Site	te Information	\checkmark	United States	\checkmark	GO	

Click to hideNews Bulletins

- Explore the *NEW* <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

USGS 325028103441301 17S.32E.11.34332

Available data for this site SUMMARY OF ALL AVAILABLE DATA 🗸 🛛 GO

Well Site

DESCRIPTION:

Latitude 32°50'32", Longitude 103°44'24" NAD27 Lea County, New Mexico , Hydrologic Unit 13060011 Well depth: not determined. Land surface altitude: 4,095.50 feet above NGVD29. Well completed in "Other aquifers" (N99990THER) national aquifer. Well completed in "Ogallala Formation" (1210GLL) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1961-03-10	1996-02-20	8
Revisions	Unavailable (site:0) (timese	eries:0)

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to <u>New Mexico Water Science Center Water-Data Inquiries</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=325028103441301

Page Contact Information: <u>New Mexico Water Data Support Team</u> Page Last Modified: 2022-03-24 10:55:51 EDT 0.27 0.25 caww01

APPENDIX B

Lithologic Soil Sampling Logs

•

								Sample Name: BH01	Date: 03/21/2022
		-		-	0			Site Name: Hudson 001	Dute: 00/11/1011
		E	R	5	OL	. U		Incident Number: NAPP22011429	906
								Job Number: 03D2057001	
			061		SAMPLING	106		Logged By: MR	Method: Hand-Auger
Coord	dinates:		.001			Hole Diameter: NA	Total Depth: 2'		
		ld screen	ing co	onducted w	ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respec	
								factors included.	,
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	scriptions
					1	0			
М	2,178	2.0	Y	BH01	1 - - -	- - - - -	ССНЕ	moist, fine sand, light brow non-cohesive, no odor.	n, poorly graded sand,
М	2,670	0.7	Y	BH01A	2	2	CCHE	SAA.	
						TD @	2 feet	bgs	

•

							Sample Name: BH02	Date: 03/21/2022
	-		-	-			Site Name: Hudson 001	Date. 03/21/2022
	E	N	S	OL	- U		Incident Number: NAPP220114	12006
							Job Number: 03D2057001	12300
		001		SAMPLING				Method: Hand-Auger
Coordinates:	LIINOL						Logged By: MR Hole Diameter: NA	Total Depth: 2'
	ld screen	ing co	nducted w	ith H∆CH Ch	loride Test 9	Strins and	PID for chloride and vapor, resp	
							factors included.	
Moisture Content Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic [Descriptions
				1	0			
				-	-			
M 201.6	0.2	Y	BH02	1	1	CCHE	moist, fine sand, light bro non-cohesive, no odor.	own, poorly graded sand,
M <128	0.2	Y	BH02A	2	2	CCHE	SAA.	
					- - - - - - - -			
					TD @	🥺 2 feet	bgs	

APPENDIX C

Photographic Log

Photographic Log

Maverick Natural Resources, LLC Hudson 001 Tank Battery Incident Number NAPP2201142906

Photograph 1 Date: March 15, 2022 Description: View of release area prior to remediation activities.

E ENSOLUM

Photograph 2 Date: March 21, 2022

Description: View of delineation activities near BH02 location.

Photographic Log

Maverick Natural Resources, LLC Hudson 001 Tank Battery Incident Number NAPP2201142906

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 7/7/2022 10:31:18 AM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2085-1

Laboratory Sample Delivery Group: 31403720.000 Task 14.02 Client Project/Site: Hudson Battery

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 4/7/2022 12:48:22 PM

Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access **Have a Question?** Ask-The Expert Visit us at: www.eurofinsus.com/Env

Released to Imaging: 7/13/2022 2:34:45 PM

Laboratory Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	18
Certification Summary	21
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	28

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Q	ua	lifi	ers

Quaimers		- 3
GC VOA		
Qualifier	Qualifier Description	
*1	LCS/LCSD RPD exceeds control limits.	_
F1	MS and/or MSD recovery exceeds control limits.	5
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	7
F1	MS and/or MSD recovery exceeds control limits.	_
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
*+	LCS and/or LCSD is outside acceptance limits, high biased.	_
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is <	
	the upper reporting limits for both.	
U	Indicates the analyte was analyzed for but not detected.	14
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	

,	
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Carlsbad

4

5

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Job ID: 890-2085-1

Project/Site: Hudson Battery

Client: WSP USA Inc.

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2085-1

Receipt

The samples were received on 3/16/2022 1:26 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-21824 and analytical batch 880-22110 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-21834 and analytical batch 880-21858 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The sample was prepared in duplicate on two prep separate prep batches. The laboratory control sample (LCS) for both batches recovered outside control limits for the following analytes:chloride at 111% and 115%. The sample results for but trial are in line and will both be reported.

Method 300_ORGFM_28D: The sample was prepared in duplicate on two prep separate prep batches. The laboratory control sample (LCS) for both batches recovered outside control limits for the following analytes:chloride at 116% and 115%. The sample results for but trial are in line and will both be reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Lab Sample ID: 890-2085-1

Matrix: Solid

Client Sample ID: SS01 Date Collected: 03/15/22 14:35 Date Received: 03/16/22 13:26 Sample Depth: 0.5

Project/Site: Hudson Battery

Client: WSP USA Inc.

o-Xylene Xylenes, Total	<0.00199 <0.00398	U *1	0.00199 0.00398	mg/Kg mg/Kg		03/22/22 16:00 03/22/22 16:00	03/22/22 20:30 03/22/22 20:30	
m-Xylene & p-Xylene	< 0.00398		0.00398	mg/Kg		03/22/22 16:00	03/22/22 20:30	
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		03/22/22 16:00	03/22/22 20:30	
Toluene	< 0.00199	U	0.00199	mg/Kg		03/22/22 16:00	03/22/22 20:30	
Benzene	< 0.00199	U	0.00199	mg/Kg		03/22/22 16:00	03/22/22 20:30	
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Method: 8021B - Volatile Organi					_			
ample Depth: 0.5								
ate Collected: 03/15/22 14:40 ate Received: 03/16/22 13:26							watr	x: Soli
lient Sample ID: SS02						l ah San	nple ID: 890-	2085
Chloride	2570	*+	499	mg/Kg			04/05/22 15:04	
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Method: EPA 300.0 R2.1 - Anion		ography - 9						
o-Terphenyl	107		70 - 130 70 - 130			03/17/22 16:29	03/18/22 17:16	
1-Chlorooctane		Quanner	70 - 130			03/17/22 16:29	03/18/22 17:16	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/17/22 16:29	03/18/22 17:16	
Diesel Range Organics (Over	82.0		50.0	mg/Kg		03/17/22 16:29	03/18/22 17:16	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/17/22 16:29	03/18/22 17:16	
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)						
Total TPH	82.0		50.0	mg/Kg			03/21/22 09:28	
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Method: 8015 NM - Diesel Rang								
Total BTEX	<0.00397	U	0.00397	mg/Kg			03/23/22 14:31	
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Method: Total BTEX - Total BTE	X Calculation							
1,4-Difluorobenzene (Surr)	105		70 - 130			03/22/22 16:00	03/22/22 20:10	
4-Bromofluorobenzene (Surr)	107		70 - 130			03/22/22 16:00	03/22/22 20:10	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		03/22/22 16:00	03/22/22 20:10	
o-Xylene	<0.00198	U *1	0.00198	mg/Kg		03/22/22 16:00	03/22/22 20:10	
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		03/22/22 16:00	03/22/22 20:10	
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		03/22/22 16:00	03/22/22 20:10	
Toluene	<0.00198	U	0.00198	mg/Kg		03/22/22 16:00	03/22/22 20:10	
Benzene	<0.00198	U	0.00198	mg/Kg		03/22/22 16:00	03/22/22 20:10	

Eurofins Carlsbad

Released to Imaging: 7/13/2022 2:34:45 PM

4-Bromofluorobenzene (Surr)

70 - 130

103

1

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

106

<0.00398 U

Client Sample Results

Limits

70 - 130

RL

RL

0.00398

Unit

Unit

mg/Kg

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Lab Sample ID: 890-2085-2 Matrix: Solid

Analyzed

03/22/22 20:30

Analyzed

03/23/22 14:31

Analyzed

Date Collected: 03/15/22 14:40 Date Received: 03/16/22 13:26 Sample Depth: 0.5

1,4-Difluorobenzene (Surr)

Project/Site: Hudson Battery **Client Sample ID: SS02**

Client: WSP USA Inc.

Surrogate

Analyte

Analyte

Total BTEX

Prepared

03/22/22 16:00

Prepared

Prepared

D

D

5 Dil Fac Dil Fac Dil Fac

1

1

Total TPH	150		50.0	mg/Kg			03/21/22 09:28	1
- Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/17/22 16:29	03/18/22 17:38	1
Diesel Range Organics (Over C10-C28)	94.8		50.0	mg/Kg		03/17/22 16:29	03/18/22 17:38	1
Oll Range Organics (Over C28-C36)	55.6		50.0	mg/Kg		03/17/22 16:29	03/18/22 17:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130			03/17/22 16:29	03/18/22 17:38	1
o-Terphenyl	94		70 - 130			03/17/22 16:29	03/18/22 17:38	1
Method: EPA 300.0 R2.1 - Anion	s, Ion Chromat	ography - S	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3050	*+	986	mg/Kg			04/05/22 22:36	100
Client Sample ID: SS03						Lab Sar	nple ID: 890-	2085-3
Date Collected: 03/15/22 14:45							Matri	ix: Solid
Date Received: 03/16/22 13:26								
Sample Depth: 0.5								
- Method: 8021B - Volatile Organi	c Compounds	(GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Devenue							00/00/00 00 54	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/22/22 16:00	03/22/22 20:51	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/22/22 16:00	03/22/22 20:51	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/22/22 16:00	03/22/22 20:51	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		03/22/22 16:00	03/22/22 20:51	1
o-Xylene	<0.00200	U *1	0.00200	mg/Kg		03/22/22 16:00	03/22/22 20:51	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		03/22/22 16:00	03/22/22 20:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			03/22/22 16:00	03/22/22 20:51	1
1,4-Difluorobenzene (Surr)	96		70 - 130			03/22/22 16:00	03/22/22 20:51	1
Method: Total BTEX - Total BT	FEX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/Kg			03/23/22 14:31	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: EPA 300.0 R2.1 - Anions, Ion Chromatography - Soluble

Result Qualifier

Result Qualifier

<49.9 U

<49.9 U

<49.9 U

<49.9 U

%Recovery Qualifier

93

89

Result Qualifier

14.1 *+

Dil Fac

Dil Fac

1

1

1

1

1

Dil Fac

Client Sample Results

RL

49.9

RL

49.9

49.9

49.9

RL

9.96

Limits

70 - 130

70 - 130

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

mg/Kg

D

D

D

Prepared

Prepared

03/17/22 16:29

03/17/22 16:29

03/17/22 16:29

Prepared

03/17/22 16:29

03/17/22 16:29

Р

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Client Sample ID: SS03

Project/Site: Hudson Battery

Date Collected: 03/15/22 14:45 Date Received: 03/16/22 13:26

Sample Depth: 0.5

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Analyte

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

Chloride

1-Chlorooctane

(GRO)-C6-C10

Total TPH

Client: WSP USA Inc.

Lab Sample ID: 890-2085-3 Matrix: Solid

Analyzed

03/21/22 09:28

Analyzed

03/18/22 17:58

03/18/22 17:58

03/18/22 17:58

Analyzed

03/18/22 17:58

03/18/22 17:58

5

repared	Analyzed	Dil Fac
	04/05/22 15:37	1
Lab San	nple ID: 890-	2085-4

Client Sample ID: SS04 Date Collected: 03/15/22 14:50

Date Received: 03/16/22 13:26 Sample Depth: 0.5

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		03/22/22 16:00	03/22/22 21:11	1
Toluene	<0.00202	U	0.00202	mg/Kg		03/22/22 16:00	03/22/22 21:11	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		03/22/22 16:00	03/22/22 21:11	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		03/22/22 16:00	03/22/22 21:11	1
o-Xylene	<0.00202	U *1	0.00202	mg/Kg		03/22/22 16:00	03/22/22 21:11	1
Kylenes, Total	<0.00404	U	0.00404	mg/Kg		03/22/22 16:00	03/22/22 21:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			03/22/22 16:00	03/22/22 21:11	1
1,4-Difluorobenzene (Surr)	102		70 - 130			03/22/22 16:00	03/22/22 21:11	1

Panaryto	Rooun	quanner		onic		rioparoa	Analyzou	Birruo
Total BTEX	<0.00404	U	0.00404	mg/Kg			03/23/22 14:31	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			03/21/22 09:28	1
Method: 8015B NM - Diesel Range Analyte	- · ·	RO) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/17/22 16:29	03/18/22 18:19	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/17/22 16:29	03/18/22 18:19	1
C10-C28)								

Eurofins Carlsbad

		Clien	it Sample Re	sults				
Client: WSP USA Inc. Project/Site: Hudson Battery						SDG: 31	Job ID: 890 403720.000 Tas	
lient Sample ID: SS04				Lab Sar	nple ID: 890-	2085-4		
ate Collected: 03/15/22 14:50							-	x: Solid
ate Received: 03/16/22 13:26								
ample Depth: 0.5								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	106		70 - 130			03/17/22 16:29	03/18/22 18:19	
o-Terphenyl	107		70 - 130			03/17/22 16:29	03/18/22 18:19	
Method: EPA 300.0 R2.1 - Anion								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	11.3	*+	9.98	mg/Kg			04/05/22 23:09	
lient Sample ID: SS05						Lab Sar	nple ID: 890-	2085-{
ate Collected: 03/15/22 14:55								x: Solic
ate Received: 03/16/22 13:26								
ample Depth: 0.5								
Method: 8021B - Volatile Organi								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201		0.00201	mg/Kg		03/22/22 16:00	03/22/22 21:32	
Toluene	<0.00201		0.00201	mg/Kg		03/22/22 16:00	03/22/22 21:32	
Ethylbenzene	<0.00201		0.00201	mg/Kg		03/22/22 16:00	03/22/22 21:32	
m-Xylene & p-Xylene	<0.00402		0.00402	mg/Kg		03/22/22 16:00	03/22/22 21:32	
o-Xylene	<0.00201		0.00201	mg/Kg		03/22/22 16:00	03/22/22 21:32	
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		03/22/22 16:00	03/22/22 21:32	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 _ 130			03/22/22 16:00	03/22/22 21:32	
1,4-Difluorobenzene (Surr)	105		70 - 130			03/22/22 16:00	03/22/22 21:32	
Method: Total BTEX - Total BTE								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402		0.00402	mg/Kg			03/23/22 14:31	Dirra
	-0.00+02	0	0.00402	ing/itg			00/20/22 14:01	
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			03/21/22 09:28	
Matheda 00455 NM Discol Dog								
Method: 8015B NM - Diesel Ran		RO) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte Gasoline Range Organics	Kesuit <49.9		49.9	Ont mg/Kg		03/17/22 16:29	03/18/22 18:40	DIF
Gasoline Range Organics (GRO)-C6-C10	~49.9	0	+9.9	ilig/ry		03/11/22 10.29	03/10/22 10.40	
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		03/17/22 16:29	03/18/22 18:40	
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/17/22 16:29	03/18/22 18:40	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane		Quantici	70 - 130			03/17/22 16:29	03/18/22 18:40	
o-Terphenyl	92 90		70 - 130 70 - 130			03/17/22 16:29	03/18/22 18:40	
o ioipiioiiyi	30		10 - 100			50/17/22 10.29	00,10/22 10.40	
Method: EPA 300.0 R2.1 - Anion	is, Ion Chromat	ography - S	oluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

method. EFA 300.0 K2.1 - Amons, for Chromatography - Soluble									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	10.3	*+	10.0	mg/Kg			04/05/22 15:26	1

Eurofins Carlsbad

RL

0.00199

0.00199

Unit

mg/Kg

mg/Kg

D

Prepared

03/22/22 16:00

03/22/22 16:00

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Lab Sample ID: 890-2085-6

Analyzed

03/22/22 21:52

03/22/22 21:52

04/05/22 23:20

1

Client Sample ID: SS06 Date Collected: 03/15/22 15:10 Date Received: 03/16/22 13:26 Sample Depth: 0.5

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<9.90 U*+

<0.00199 U

<0.00199 U

Client: WSP USA Inc.

Analyte

Benzene

Toluene

Chloride

Project/Site: Hudson Battery

Matrix: Solid

Solid	
	5
Dil Fac	6
1	
1	
1	
1	8
1	
Dil Fac	9
1 1	
Dil Fac	
1	
Dil Fac	13
1	

Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 R2.1 - Anio	97 97 97 97	<u>.</u>	70 - 130 70 - 130 501uble RL	Unit		03/17/22 16:29 03/17/22 16:29	03/18/22 19:01 03/18/22 19:01 Analyzed	1 1 Dil Fac
1-Chlorooctane	97	quamer						1
-			70 - 130			03/17/22 16:29	03/18/22 19:01	
Surrogate	/%Recovery	quanner						
	% Pacavary	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/17/22 16:29	03/18/22 19:01	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		03/17/22 16:29	03/18/22 19:01	1
(GRO)-C6-C10								
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		03/17/22 16:29	03/18/22 19:01	1
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015B NM - Diesel Ra	inge Organics (D	RO) (GC)						
Total TPH	<49.9	U	49.9	mg/Kg			03/21/22 09:28	1
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Ran	ge Organics (DR)	0) (GC)						
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/23/22 14:31	1
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: Total BTEX - Total BT	EX Calculation							
1,4-Difluorobenzene (Surr)	103		70 - 130			03/22/22 16:00	03/22/22 21:52	1
4-Bromofluorobenzene (Surr)	111		70 - 130			03/22/22 16:00	03/22/22 21:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/22/22 16:00	03/22/22 21:52	1
o-Xylene	<0.00199	U *1	0.00199	mg/Kg		03/22/22 16:00	03/22/22 21:52	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/22/22 16:00	03/22/22 21:52	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/22/22 16:00	03/22/22 21:52	1
	0.00100	•	0.00100			00,22,22 10.00	00/22/22 2002	•

9.90

mg/Kg

Eurofins Carlsbad

Released to Imaging: 7/13/2022 2:34:45 PM

Surrogate Summary

Client: WSP USA Inc. Project/Site: Hudson Battery

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-12580-A-2-F MS	Matrix Spike	107	100		
880-12580-A-2-G MSD	Matrix Spike Duplicate	115	101		
890-2085-1	SS01	107	105		
890-2085-2	SS02	103	106		
390-2085-3	SS03	105	96		
890-2085-4	SS04	108	102		
890-2085-5	SS05	111	105		
890-2085-6	SS06	111	103		
LCS 880-21824/1-A	Lab Control Sample	66 S1-	82		
LCSD 880-21824/2-A	Lab Control Sample Dup	98	101		
MB 880-21824/5-A	Method Blank	97	100		
Surrogate Legend					

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-2083-A-1-D MS	Matrix Spike	117	102
890-2083-A-1-E MSD	Matrix Spike Duplicate	98	85
890-2085-1	SS01	106	107
890-2085-2	SS02	94	94
890-2085-3	SS03	93	89
890-2085-4	SS04	106	107
890-2085-5	SS05	92	90
890-2085-6	SS06	97	97
LCS 880-21834/2-A	Lab Control Sample	115	121
LCSD 880-21834/3-A	Lab Control Sample Dup	108	108
MB 880-21834/1-A	Method Blank	117	123
Surrogate Legend			

urrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Prep Type: Total/NA 5 6

Page 34 of 109

Prep Type: Total/NA

QC Sample Results

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 21824

Project/Site: Hudson Battery

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-21824/5-A	
Marketing O all al	

Matrix: Solid Analysis Batch: 22110

Client: WSP USA Inc.

	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/Kg		03/22/22 08:30	03/22/22 11:48	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/22/22 08:30	03/22/22 11:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/22/22 08:30	03/22/22 11:48	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		03/22/22 08:30	03/22/22 11:48	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/22/22 08:30	03/22/22 11:48	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		03/22/22 08:30	03/22/22 11:48	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130			03/22/22 08:30	03/22/22 11:48	1
1,4-Difluorobenzene (Surr)	100		70 - 130			03/22/22 08:30	03/22/22 11:48	1

Lab Sample ID: LCS 880-21824/1-A Matrix: Solid

Analysis Batch: 22110

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09232		mg/Kg		92	70 - 130	
Toluene	0.100	0.07065		mg/Kg		71	70 - 130	
Ethylbenzene	0.100	0.07639		mg/Kg		76	70 - 130	
m-Xylene & p-Xylene	0.200	0.1613		mg/Kg		81	70 - 130	
o-Xylene	0.100	0.07659		mg/Kg		77	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	66	S1-	70 - 130
1,4-Difluorobenzene (Surr)	82		70 - 130

Lab Sample ID: LCSD 880-21824/2-A

Matrix: Solid

Analysis Batch: 22110							Prep	Batch:	21824
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09025		mg/Kg		90	70 - 130	2	35
Toluene	0.100	0.09279		mg/Kg		93	70 - 130	27	35
Ethylbenzene	0.100	0.09629		mg/Kg		96	70 - 130	23	35
m-Xylene & p-Xylene	0.200	0.2262		mg/Kg		113	70 - 130	34	35
o-Xylene	0.100	0.1104	*1	mg/Kg		110	70 ₋ 130	36	35

Surrogate	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-12580-A-2-F MS

Matrix: Solid Analysis Retaby 22110

Analysis Batch: 22110									Prep Bat	tch: 21824
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U F1	0.101	0.05117	F1	mg/Kg		51	70 - 130	
Toluene	<0.00198	U F1	0.101	0.04128	F1	mg/Kg		40	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

13

Released to Imaging: 7/13/2022 2:34:45 PM

Client: WSP USA Inc.

Project/Site: Hudson Battery

5 6

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-12580-A-2-	-F MS							Client	Sample ID: I		
Matrix: Solid									Prep Ty	p <mark>e: T</mark> o	otal/N/
Analysis Batch: 22110									Prep B	atch:	2182
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D %Rec	Limits		
Ethylbenzene	<0.00198	U F1	0.101	0.02784	F1	mg/Kg		26	70 - 130		
m-Xylene & p-Xylene	<0.00396	UF1	0.202	0.06306	F1	mg/Kg		31	70 - 130		
p-Xylene	<0.00198	U F1 *1	0.101	0.03119	F1	mg/Kg		30	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	107		70 - 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								
_ab Sample ID: 880-12580-A-2	-G MSD						Clier	nt Sample ID	: Matrix Spik	ce Du	plicat
Matrix: Solid									Prep Ty		-
Analysis Batch: 22110									Prep B		
····· , ··· · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec		RF
Analyte	•	Qualifier	Added	Result	Qualifier	Unit		D %Rec	Limits	RPD	Lin
Benzene	<0.00198	U F1	0.0998	0.04373		mg/Kg		44	70 - 130	16	;
Toluene	< 0.00198		0.0998	0.03568		mg/Kg		34	70 - 130	15	3
Ethylbenzene	< 0.00198		0.0998	0.02372		mg/Kg		22	70 - 130	16	:
n-Xylene & p-Xylene	< 0.00396		0.200	0.05318		mg/Kg		27	70 - 130 70 - 130	17	
p-Xylene	<0.00390		0.0998	0.02713		mg/Kg		26	70 - 130 70 - 130	14	3
, Aylene	-0.00100	0111	0.0000	0.02710		mg/rtg		20	10-100	14	,
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	115		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
ethod: 8015B NM - Diese	l Range Or	ganics (I	DRO) (GC)								
Lab Sample ID: MB 880-21834/	1-A							Client S	ample ID: M	ethod	Blan
Matrix: Solid									Prep Ty		
Analysis Batch: 21858									Prep B		
		MB MB									
Analyte	R	esult Qualifi	er	RL	Unit		D	Prepared	Analyzed	I	Dil Fa
Gasoline Range Organics	<	50.0 U		50.0	mg/k	(q		03/17/22 16:29	03/18/22 11		
GRO)-C6-C10					5	-					
Diesel Range Organics (Over	<	50.0 U	5	50.0	mg/k	٢g		03/17/22 16:29	03/18/22 11	:38	
C10-C28)											
Oll Range Organics (Over C28-C36)	<	50.0 U	5	50.0	mg/k	ίg		03/17/22 16:29	03/18/22 11	:38	
		MB MB									
Surrogate	%Reco	very Qualifi					_	Prepared	Analyzed	I	Dil Fa
1-Chlorooctane		117	70 - 13	30				03/17/22 16:29	03/18/22 11	:38	
o-Terphenyl		123	70 - 13					03/17/22 16:29	03/18/22 11		

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 21858 Prep Batch: 21834 LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits 87 Gasoline Range Organics 1000 872.7 70 - 130 mg/Kg (GRO)-C6-C10 70 - 130 Diesel Range Organics (Over 1000 1134 mg/Kg 113 C10-C28)

Eurofins Carlsbad

Lab Sample ID: LCS 880-21834/2-A

Matrix: Solid
QC Sample Results

Client: WSP USA Inc.

Project/Site: Hudson Battery

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-2183 Matrix: Solid	34/2-A						Client	Sample	ID: Lab Co Prep 1	ontrol Sa Type: To	
Analysis Batch: 21858									Prep	Batch:	21834
	LCS	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane	115		70 - 130								
o-Terphenyl	121		70 - 130								
Lab Sample ID: LCSD 880-21	834/3-A					Clier	nt Sam	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 21858									Prep	Batch:	21834
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	866.5		mg/Kg		87	70 - 130	1	20
(GRO)-C6-C10			1000	(000				100		4.0	
Diesel Range Organics (Over			1000	1026		mg/Kg		103	70 - 130	10	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	108		70 - 130								
o-Terphenyl	108		70 - 130								
	DMC							Client	Comple ID	Matula	Onilia
Lab Sample ID: 890-2083-A-1								Client	Sample ID		
Matrix: Solid										Type: To	
Analysis Batch: 21858	Sample	Sample	Spike	MS	MS				%Rec	Batch:	21034
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9		998	1574		mg/Kg		158	70 - 130		
(GRO)-C6-C10		011	000	1074		mg/rtg		100	70 - 100		
Diesel Range Organics (Over	<49.9	U F1	998	1355	F1	mg/Kg		133	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery		Limits								
1-Chlorooctane		Quanner	70 - 130								
o-Terphenyl	102		70 - 130								
	102		10-100								
Lab Sample ID: 890-2083-A-1	-E MSD					CI	ient Sa	ample IC): Matrix S	oike Dup	olicate
Matrix: Solid										Type: To	
Analysis Batch: 21858										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U F1	999	1388	F1	mg/Kg		139	70 - 130	13	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U F1	999	1149		mg/Kg		112	70 - 130	16	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	98		70 - 130								

Page 37 of 109

5

7

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

70 - 130

Project/Site: Hudson Battery

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Method: EPA 300.0 R2.1 - Anions, Ion Chromatography

- Lab Sample ID: LCS 410-238796/ [,]	1-A						Clie	nt Sample	e ID: Lab Cont	rol Sa	ample
Matrix: Solid									Prep Typ	be: So	oluble
Analysis Batch: 240174											
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit		%Rec	Limits		
Chloride			20.0	23.01	*+	mg/Kg		115	90 - 110		
Lab Sample ID: 890-2083-A-1-J M	IS							Client	Sample ID: M	atrix	Spike
Matrix: Solid									Prep Typ	be: So	oluble
Analysis Batch: 240174											
	Sample		Spike		MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit			Limits		
Chloride	13.3	*+	19.7	32.27		mg/Kg		96	90 - 110		
Lab Sample ID: MB 410-240233/2	- A							Client S	Sample ID: Me	thod	Blank
Matrix: Solid									Ргер Тур	be: So	oluble
Analysis Batch: 241096											
		MB MB									
Analyte	Re	esult Qualifier		RL	Unit		D	Prepared	Analyzed		Dil Fac
Chloride	<	:10.0 U		10.0	mg/K	3			04/05/22 10:1	2	1
Lab Sample ID: 890-2090-A-3-G N	NS							Client	Sample ID: M	atrix	Spike
· · · · · · · · · · · · · · · · · · ·									Prep Typ		
Matrix: Solid											
	Sample	Sample	Spike	MS	MS				%Rec		
Matrix: Solid Analysis Batch: 241096 Analyte		Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec Limits		
Analysis Batch: 241096	Result <498	Qualifier				Unit mg/Kg	<u>D</u>	369		atrix	Spike
Analysis Batch: 241096 Analyte Chloride	Result <498	Qualifier	Added 19.9	Result <498	Qualifier U 4		<u>D</u>	369	Limits 90 - 110 Sample ID: M Prep Typ		
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096	Result <498 MS Sample	Qualifier	Added	Result <498 MS	Qualifier U 4		<u>D</u>	369 Client	Limits 90 - 110		
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid	Result <498 MS Sample	Qualifier U *+	Added 19.9	Result <498 MS	Qualifier U 4 MS Qualifier	mg/Kg		369 Client	Limits 90 - 110 Sample ID: M Prep Typ %Rec		
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride	Result <498 MS Sample Result 464	Qualifier U *+ Sample Qualifier	Added 19.9 Spike Added	Result <498 MS Result	Qualifier U 4 MS Qualifier	mg/Kg Unit		369 Client %Rec -42	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110	be: So	bluble
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D	Result <498 MS Sample Result 464	Qualifier U *+ Sample Qualifier	Added 19.9 Spike Added	Result <498 MS Result	Qualifier U 4 MS Qualifier	mg/Kg Unit		369 Client %Rec -42	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID	: Dup	licate
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid	Result <498 MS Sample Result 464	Qualifier U *+ Sample Qualifier	Added 19.9 Spike Added	Result <498 MS Result	Qualifier U 4 MS Qualifier	mg/Kg Unit		369 Client %Rec -42	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110	: Dup	licate
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid	Result <498 MS Sample Result 464	Qualifier U *+ Sample Qualifier *+	Added 19.9 Spike Added	Result <498 MS Result 456.1	Qualifier U 4 MS Qualifier	mg/Kg Unit		369 Client %Rec -42	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID	: Dup	licate
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096	Result <498 MS Sample Result 464 DU Sample	Qualifier U *+ Sample Qualifier *+	Added 19.9 Spike Added	Result <498 MS Result 456.1	Qualifier U 4 MS Qualifier 4	mg/Kg Unit		369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ	: Dup	licate
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096	Result <498 MS Sample Result 464 DU Sample	Qualifier U *+ Sample Qualifier *+ Sample Qualifier	Added 19.9 Spike Added	Result <498 MS Result 456.1	Qualifier U 4 MS Qualifier 4 DU Qualifier	mg/Kg Unit mg/Kg	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ	: Dup De: So	licate bluble RPD Limit
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride	Result <498 MS Sample Result 464 DU Sample Result	Qualifier U *+ Sample Qualifier *+ Sample Qualifier	Added 19.9 Spike Added	Result <498 MS Result 456.1 DU Result	Qualifier U 4 MS Qualifier 4 DU Qualifier	mg/Kg Unit mg/Kg Unit	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ	: Dup be: So RPD 10	licate bluble RPE Limi
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2085-2 MS	Result <498 MS Sample Result 464 DU Sample Result	Qualifier U *+ Sample Qualifier *+ Sample Qualifier	Added 19.9 Spike Added	Result <498 MS Result 456.1 DU Result	Qualifier U 4 MS Qualifier 4 DU Qualifier	mg/Kg Unit mg/Kg Unit	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ Client Sample	: Dup ce: Sc <u>RPD</u> 10	licate pluble RPE Limi 15
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2085-2 MS Matrix: Solid	Result <498 MS Sample Result 464 DU Sample Result	Qualifier U *+ Sample Qualifier *+ Sample Qualifier	Added 19.9 Spike Added	Result <498 MS Result 456.1 DU Result	Qualifier U 4 MS Qualifier 4 DU Qualifier	mg/Kg Unit mg/Kg Unit	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ	: Dup ce: Sc <u>RPD</u> 10	licate pluble RPE Limi 15 SS02
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2085-2 MS Matrix: Solid	Result <498 MS Sample Result 464 DU Sample Result	Qualifier U*+ Sample Qualifier *+ Sample Qualifier U*+	Added 19.9 Spike Added	Result <498 MS Result 456.1 DU Result <500	Qualifier U 4 MS Qualifier 4 DU Qualifier	mg/Kg Unit mg/Kg Unit	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ Client Sample	: Dup ce: Sc <u>RPD</u> 10	licate pluble RPE Limit 15 SS02
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2085-2 MS Matrix: Solid Analysis Batch: 241583	Result <498 MS Sample Result 464 DU Sample Result <498	Qualifier U*+ Sample Qualifier *+ Sample Qualifier U*+	Added 19.9 Spike Added 20.0	Result <498 MS Result 456.1 DU Result <500	Qualifier U 4 MS Qualifier 4 DU Qualifier U *+	mg/Kg Unit mg/Kg Unit	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ Client Sampl Prep Typ	: Dup ce: Sc <u>RPD</u> 10	licate pluble RPE Limit 15 SS02
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2085-2 MS Matrix: Solid Analysis Batch: 241583 Analyte	Result <498 MS Sample Result 464 DU Sample Result <498	Qualifier U *+ Sample Qualifier *+ Sample Qualifier U *+ Sample Qualifier	Added 19.9 Spike Added 20.0	Result <498 MS Result 456.1 DU Result <500	Qualifier U 4 MS Qualifier 4 DU Qualifier U *+ MS Qualifier	Unit mg/Kg Unit mg/Kg	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ Client Sampl Prep Typ %Rec	: Dup ce: Sc <u>RPD</u> 10	licate pluble RPE Limit 15 SS02
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2085-2 MS Matrix: Solid Analysis Batch: 241583 Analyte Chloride	Result <498 MS Sample Result 464 DU Sample Result <498	Qualifier U *+ Sample Qualifier *+ Sample Qualifier U *+ Sample Qualifier	Added 19.9 Spike Added 20.0 Spike Added	Result <498 MS Result 456.1 DU Result <500	Qualifier U 4 MS Qualifier 4 DU Qualifier U *+ MS Qualifier	mg/Kg Unit mg/Kg Unit	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ Client Sampl Prep Typ %Rec Limits 90 - 110	: Dup :: Dup : Dup <td: dup<="" td=""> <td:< td=""><td>licate licate pluble <u>Limi</u> 15 SS02 pluble</td></td:<></td:>	licate licate pluble <u>Limi</u> 15 SS02 pluble
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2085-2 MS Matrix: Solid Analysis Batch: 241583 Analyte Chloride Lab Sample ID: 890-2085-2 DU	Result <498 MS Sample Result 464 DU Sample Result <498	Qualifier U *+ Sample Qualifier *+ Sample Qualifier U *+ Sample Qualifier	Added 19.9 Spike Added 20.0 Spike Added	Result <498 MS Result 456.1 DU Result <500	Qualifier U 4 MS Qualifier 4 DU Qualifier U *+ MS Qualifier	mg/Kg Unit mg/Kg Unit	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ Client Sampl Prep Typ %Rec Limits 90 - 110 Client Sampl	: Dup ce: So RPD 10 le ID: ce: So	licate licate RPC Limi 15 SS02 SS02
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2085-2 MS Matrix: Solid Analysis Batch: 241583 Analyte Chloride Lab Sample ID: 890-2085-2 DU Matrix: Solid	Result <498 MS Sample Result 464 DU Sample Result <498	Qualifier U *+ Sample Qualifier *+ Sample Qualifier U *+ Sample Qualifier	Added 19.9 Spike Added 20.0 Spike Added	Result <498 MS Result 456.1 DU Result <500	Qualifier U 4 MS Qualifier 4 DU Qualifier U *+ MS Qualifier	mg/Kg Unit mg/Kg Unit	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ Client Sampl Prep Typ %Rec Limits 90 - 110	: Dup ce: So RPD 10 le ID: ce: So	licate licate RPC Limi 15 SS02 SS02
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2085-2 MS Matrix: Solid Analysis Batch: 241583 Analyte Chloride Lab Sample ID: 890-2085-2 DU Matrix: Solid	Result <498 MS Sample Result 464 DU Sample Result <498	Qualifier U *+ Sample Qualifier *+ Sample Qualifier U *+ Sample Qualifier *+	Added 19.9 Spike Added 20.0 Spike Added	Result <498	Qualifier U 4 MS Qualifier 4 DU Qualifier U *+ MS Qualifier	mg/Kg Unit mg/Kg Unit	D	369 Client -42 Cli	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ Client Sampl Prep Typ %Rec Limits 90 - 110 Client Sampl	: Dup ce: So RPD 10 le ID: ce: So	licate bluble RPC Limit 15 SS02 bluble SS02 bluble
Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-12-G Matrix: Solid Analysis Batch: 241096 Analyte Chloride Lab Sample ID: 890-2090-A-3-H D Matrix: Solid Analysis Batch: 241096 Analyte Chloride	Result <498 MS Sample Result 464 DU Sample Result 3050 Sample	Qualifier U *+ Sample Qualifier *+ Sample Qualifier U *+ Sample Qualifier *+	Added 19.9 Spike Added 20.0 Spike Added	Result <498	Qualifier U 4 MS Qualifier 4 DU Qualifier U *+ MS Qualifier 4 *+	mg/Kg Unit mg/Kg Unit	D	369 Client 	Limits 90 - 110 Sample ID: M Prep Typ %Rec Limits 90 - 110 ent Sample ID Prep Typ %Rec Limits 90 - 110 Client Sampl 90 - 110 Client Sampl Prep Typ	: Dup ce: So RPD 10 le ID: ce: So	licate pluble RPD Limit 15 SS02 pluble

QC Association Summary

Client: WSP USA Inc. Project/Site: Hudson Battery

GC VOA

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Method

Page 39 of 109

Prep Batch

Prep Batch: 21824					
Lab Sample ID	Client Sample ID				
890-2085-1	SS01				
890-2085-2	SS02				

890-2085-1	SS01	Total/NA	Solid	5035	
890-2085-2	SS02	Total/NA	Solid	5035	
890-2085-3	SS03	Total/NA	Solid	5035	
890-2085-4	SS04	Total/NA	Solid	5035	
890-2085-5	SS05	Total/NA	Solid	5035	
890-2085-6	SS06	Total/NA	Solid	5035	
MB 880-21824/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-21824/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-21824/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-12580-A-2-F MS	Matrix Spike	Total/NA	Solid	5035	
880-12580-A-2-G MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Type

Matrix

Analysis Batch: 22110

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2085-1	SS01	Total/NA	Solid	8021B	21824
890-2085-2	SS02	Total/NA	Solid	8021B	21824
890-2085-3	SS03	Total/NA	Solid	8021B	21824
890-2085-4	SS04	Total/NA	Solid	8021B	21824
890-2085-5	SS05	Total/NA	Solid	8021B	21824
890-2085-6	SS06	Total/NA	Solid	8021B	21824
MB 880-21824/5-A	Method Blank	Total/NA	Solid	8021B	21824
LCS 880-21824/1-A	Lab Control Sample	Total/NA	Solid	8021B	21824
LCSD 880-21824/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	21824
880-12580-A-2-F MS	Matrix Spike	Total/NA	Solid	8021B	21824
880-12580-A-2-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	21824

Analysis Batch: 22213

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2085-1	SS01	Total/NA	Solid	Total BTEX	
890-2085-2	SS02	Total/NA	Solid	Total BTEX	
890-2085-3	SS03	Total/NA	Solid	Total BTEX	
890-2085-4	SS04	Total/NA	Solid	Total BTEX	
890-2085-5	SS05	Total/NA	Solid	Total BTEX	
890-2085-6	SS06	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 21834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2085-1	SS01	Total/NA	Solid	8015NM Prep	
890-2085-2	SS02	Total/NA	Solid	8015NM Prep	
890-2085-3	SS03	Total/NA	Solid	8015NM Prep	
890-2085-4	SS04	Total/NA	Solid	8015NM Prep	
890-2085-5	SS05	Total/NA	Solid	8015NM Prep	
890-2085-6	SS06	Total/NA	Solid	8015NM Prep	
MB 880-21834/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-21834/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-21834/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2083-A-1-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2083-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Client Sample ID

SS01

SS02

SS03

SS04

SS05

SS06

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

QC Association Summary

Prep Type

Total/NA

Matrix

Solid

Client: WSP USA Inc. Project/Site: Hudson Battery

GC Semi VOA

Lab Sample ID

890-2085-1

890-2085-2

890-2085-3

890-2085-4

890-2085-5

890-2085-6

MB 880-21834/1-A

LCS 880-21834/2-A

LCSD 880-21834/3-A

890-2083-A-1-D MS

890-2083-A-1-E MSD

Analysis Batch: 21858

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Method

8015B NM

Page 40 of 109

Prep Batch

21834

21834

21834

21834

21834

21834

21834

21834

21834

21834

21834

8

Analysis Batch: 21990

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-2085-1	SS01	Total/NA	Solid	8015 NM		
890-2085-2	SS02	Total/NA	Solid	8015 NM		
890-2085-3	SS03	Total/NA	Solid	8015 NM		
890-2085-4	SS04	Total/NA	Solid	8015 NM		
890-2085-5	SS05	Total/NA	Solid	8015 NM		
890-2085-6	SS06	Total/NA	Solid	8015 NM		

HPLC/IC

Leach Batch: 238796

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2085-1	SS01	Soluble	Solid	DI Leach	
890-2085-2	SS02	Soluble	Solid	DI Leach	
890-2085-3	SS03	Soluble	Solid	DI Leach	
890-2085-4	SS04	Soluble	Solid	DI Leach	
890-2085-5	SS05	Soluble	Solid	DI Leach	
890-2085-6	SS06	Soluble	Solid	DI Leach	
MB 410-238796/2-A	Method Blank	Soluble	Solid	DI Leach	
LCS 410-238796/1-A	Lab Control Sample	Soluble	Solid	DI Leach	
890-2083-A-1-J MS	Matrix Spike	Soluble	Solid	DI Leach	

Analysis Batch: 239322

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2085-1	SS01	Soluble	Solid	EPA 300.0 R2.1	238796
890-2085-2	SS02	Soluble	Solid	EPA 300.0 R2.1	238796
MB 410-238796/2-A	Method Blank	Soluble	Solid	EPA 300.0 R2.1	238796
LCS 410-238796/1-A	Lab Control Sample	Soluble	Solid	EPA 300.0 R2.1	238796

Analysis Batch: 240174

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2085-3	SS03	Soluble	Solid	EPA 300.0 R2.1	238796
890-2085-4	SS04	Soluble	Solid	EPA 300.0 R2.1	238796
890-2085-5	SS05	Soluble	Solid	EPA 300.0 R2.1	238796
890-2085-6	SS06	Soluble	Solid	EPA 300.0 R2.1	238796
LCS 410-238796/1-A	Lab Control Sample	Soluble	Solid	EPA 300.0 R2.1	238796
890-2083-A-1-J MS	Matrix Spike	Soluble	Solid	EPA 300.0 R2.1	238796

Eurofins Carlsbad

Released to Imaging: 7/13/2022 2:34:45 PM

Client Sample ID

Method Blank

Matrix Spike

Matrix Spike

Client Sample ID

Duplicate

SS02

SS04

SS06

SS02

SS02

SS01

SS03

SS05

QC Association Summary

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Client: WSP USA Inc. Project/Site: Hudson Battery

Leach Batch: 240233

HPLC/IC

Lab Sample ID

890-2085-1

890-2085-3

890-2085-5

MB 410-240233/2-A

890-2090-A-3-G MS

890-2090-A-12-G MS

Leach Batch: 240274

890-2090-A-3-H DU

Lab Sample ID

890-2085-2

890-2085-4

890-2085-6

890-2085-2 MS

890-2085-2 DU

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Method

DI Leach

Method

DI Leach

DI Leach

DI Leach

DI Leach

DI Leach

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Page 41 of 109

Prep Batch

Prep Batch

_			
Analy	/sis	Batch:	241096

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-2085-1	SS01	Soluble	Solid	EPA 300.0 R2.1	240233	
890-2085-3	SS03	Soluble	Solid	EPA 300.0 R2.1	240233	
890-2085-5	SS05	Soluble	Solid	EPA 300.0 R2.1	240233	
MB 410-240233/2-A	Method Blank	Soluble	Solid	EPA 300.0 R2.1	240233	
890-2090-A-3-G MS	Matrix Spike	Soluble	Solid	EPA 300.0 R2.1	240233	
890-2090-A-12-G MS	Matrix Spike	Soluble	Solid	EPA 300.0 R2.1	240233	
890-2090-A-3-H DU	Duplicate	Soluble	Solid	EPA 300.0 R2.1	240233	

Analysis Batch: 241583

Lab Sample ID 890-2085-2	Client Sample ID SS02	Prep Type Soluble	Matrix Solid	Method EPA 300.0 R2.1	Prep Batch 240274
890-2085-4	SS04	Soluble	Solid	EPA 300.0 R2.1	240274
890-2085-6	SS06	Soluble	Solid	EPA 300.0 R2.1	240274
890-2085-2 MS	SS02	Soluble	Solid	EPA 300.0 R2.1	240274
890-2085-2 DU	SS02	Soluble	Solid	EPA 300.0 R2.1	240274

Initial

Amount

5.04 g

5 mL

10.01 g

5.00 g

5.01 g

Final

Amount

5 mL

5 mL

10 mL

50 mL

50 mL

Batch

21824

22110

22213

21990

21834

21858

238796

239322

240233

241096

Number

Prepared

or Analyzed

03/22/22 16:00

03/22/22 20:10

03/23/22 14:31

03/21/22 09:28

03/17/22 16:29

03/18/22 17:16

03/29/22 15:26

03/30/22 18:54

04/01/22 15:26

04/05/22 15:04

Dil

1

1

1

1

50

50

Factor

Run

Client Sample ID: SS01 Date Collected: 03/15/22 14:35 Date Received: 03/16/22 13:26

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Soluble

Soluble

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Leach

Client Sample ID: SS02

Date Collected: 03/15/22 14:40

Date Received: 03/16/22 13:26

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

EPA 300.0 R2.1

EPA 300.0 R2.1

8015B NM

DI Leach

DI Leach

8015 NM

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Lab Sample ID: 890-2085-1 Matrix: Solid

Analyst

KL

KL

AJ

AJ

DM

AJ

L4QM

W5UX

L4QM

L4QM

Lab Sample ID: 890-2085-2

Lab Sample ID: 890-2085-3

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	21824	03/22/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	22110	03/22/22 20:30	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22213	03/23/22 14:31	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21990	03/21/22 09:28	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	21834	03/17/22 16:29	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21858	03/18/22 17:38	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	238796	03/29/22 15:26	L4QM	ELLE
Soluble	Analysis	EPA 300.0 R2.1		50			239322	03/30/22 19:38	W5UX	ELLE
Soluble	Leach	DI Leach			5.07 g	50 mL	240274	04/01/22 17:52	L4QM	ELLE
Soluble	Analysis	EPA 300.0 R2.1		100			241583	04/05/22 22:36	L4QM	ELLE

Client Sample ID: SS03 Date Collected: 03/15/22 14:45 Date Received: 03/16/22 13:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	21824	03/22/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	22110	03/22/22 20:51	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22213	03/23/22 14:31	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21990	03/21/22 09:28	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	21834	03/17/22 16:29	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21858	03/18/22 17:58	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	240233	04/01/22 15:26	L4QM	ELLE
Soluble	Analysis	EPA 300.0 R2.1		1			241096	04/05/22 15:37	L4QM	ELLE
Soluble	Leach	DI Leach			5.00 g	50 mL	238796	03/29/22 15:26	L4QM	ELLE
Soluble	Analysis	EPA 300.0 R2.1		1			240174	03/31/22 20:42	W5UX	ELLE

Eurofins Carlsbad

r uge 42 0J .

Lab

XEN MID

XEN MID

XEN MID

XEN MID

XEN MID

XEN MID

ELLE

ELLE

ELLE

ELLE

Released to Imaging: 7/13/2022 2:34:45 PM

Initial

Amount

4.95 g

5 mL

10.01 g

5.01 g

5.00 g

Final

Amount

5 mL

5 mL

10 mL

50 mL

50 mL

Batch

21824

22110

22213

21990

21834

21858

240274

241583

238796

240174

Number

Prepared

or Analyzed

03/22/22 16:00

03/22/22 21:11

03/23/22 14:31

03/21/22 09:28

03/17/22 16:29

03/18/22 18:19

04/01/22 17:52

04/05/22 23:09

03/29/22 15:26

03/31/22 20:50

Dil

1

1

1

1

1

1

Factor

Run

Client Sample ID: SS04 Date Collected: 03/15/22 14:50

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Soluble

Soluble

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Leach

Client Sample ID: SS05

Date Collected: 03/15/22 14:55

Date Received: 03/16/22 13:26

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

EPA 300.0 R2.1

EPA 300.0 R2.1

8015B NM

DI Leach

DI Leach

8015 NM

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Lab Sample ID: 890-2085-4 Matrix: Solid

Analyst

KL

KL

AJ

AJ

DM

AJ

L4QM

L4QM

L4QM

W5UX

Lab

XEN MID

XEN MID

XEN MID

XEN MID

XEN MID

XEN MID

ELLE

ELLE

ELLE

ELLE

5 9

Lab Sample ID: 890-2085-5

Lab Sample ID: 890-2085-6

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	21824	03/22/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	22110	03/22/22 21:32	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22213	03/23/22 14:31	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21990	03/21/22 09:28	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	21834	03/17/22 16:29	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21858	03/18/22 18:40	AJ	XEN MID
Soluble	Leach	DI Leach			5.00 g	50 mL	240233	04/01/22 15:26	L4QM	ELLE
Soluble	Analysis	EPA 300.0 R2.1		1			241096	04/05/22 15:26	L4QM	ELLE
Soluble	Leach	DI Leach			5.02 g	50 mL	238796	03/29/22 15:26	L4QM	ELLE
Soluble	Analysis	EPA 300.0 R2.1		1			240174	03/31/22 20:58	W5UX	ELLE

Client Sample ID: SS06 Date Collected: 03/15/22 15:10 Date Received: 03/16/22 13:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	21824	03/22/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	22110	03/22/22 21:52	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22213	03/23/22 14:31	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21990	03/21/22 09:28	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	21834	03/17/22 16:29	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21858	03/18/22 19:01	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	240274	04/01/22 17:52	L4QM	ELLE
Soluble	Analysis	EPA 300.0 R2.1		1			241583	04/05/22 23:20	L4QM	ELLE
Soluble	Leach	DI Leach			5.07 g	50 mL	238796	03/29/22 15:26	L4QM	ELLE
Soluble	Analysis	EPA 300.0 R2.1		1			240174	03/31/22 21:06	W5UX	ELLE

Lab Chronicle

Client: WSP USA Inc. Project/Site: Hudson Battery Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300 XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

5	
8	
9	
10	
13	

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: Hudson Battery Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Laboratory: Eurofins Lancaster Laboratories Env, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
2LA	Dept. of Defense ELAP	1.01	11-30-22
2LA	ISO/IEC 17025	0001.01	11-30-22
aska	State	PA00009	06-30-22
iska (UST)	State	17-027	02-28-23
zona	State	AZ0780	03-12-23
ansas DEQ	State	88-0660	08-10-22
ifornia	State	2792	02-02-22 *
lorado	State	PA00009	06-30-22
necticut	State	PH-0746	06-30-23
Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-23
aware (DW)	State	N/A	01-31-23
rida	NELAP	E87997	06-30-22
orgia (DW)	State	C048	01-31-22 *
waii	State	N/A	01-31-23
nois	NELAP	200027	01-31-23
lois Va	State	361	03-02-22 *
nsas	NELAP	E-10151	10-31-22
ntucky (DW)	State	KY90088	12-31-22
ntucky (UST)	State	1.01	11-30-22
tucky (WW)	State	KY90088	01-01-23
siana	NELAP	02055	06-30-22
ne	State	2019012	03-12-23
yland	State	100	06-30-22
ssachusetts	State	M-PA009	06-30-22
nigan	State	9930	01-31-23
nesota	NELAP	042-999-487	12-31-22
ouri	State	450	01-31-25
tana (DW)	State	0098	01-01-23
tana (UST)	State	<cert no.=""></cert>	02-01-23
raska	State	NE-OS-32-17	01-31-23
v Hampshire	NELAP	2730	01-10-23
w Jersey	NELAP	PA011	06-30-22
v York	NELAP	10670	04-01-23
th Carolina (DW)	State	42705	07-31-22
rth Carolina (WW/SW)	State	521	12-31-22
rth Dakota	State	R-205	01-31-23
ahoma	NELAP	R-205	08-31-22
egon	NELAP	PA200001	09-11-22
LA	Canada	1978	09-16-24
nnsylvania	NELAP	36-00037	01-31-23
ode Island	State	LAO00338	12-30-22
uth Carolina	State	89002	01-31-23
nessee	State	02838	01-31-22 *
as	NELAP	02838 T104704194-21-40	01-31-22
mont	State	VT - 36037	10-28-22
ginia	NELAP	460182	06-14-22
ashington	State	C457	04-12-22
est Virginia (DW)	State	9906 C	12-31-22
est Virginia DEP	State	055	04-30-22
yoming	State	8TMS-L	01-31-23

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

10

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: Hudson Battery Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Laboratory: Eurofins Lancaster Laboratories Env, LLC (Continued) All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Wyoming (UST)	A2LA	1.01	44.00.00
	7.227	1.01	11-30-22
Laboratory: Eurofins Midla	nd		

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-21-22	06-30-22

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
8015 NM		Solid	Total TPH
Total BTEX		Solid	Total BTEX

Eurofins Carlsbad

Released to Imaging: 7/13/2022 2:34:45 PM

Method Summary

Client: WSP USA Inc. Project/Site: Hudson Battery

Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

ethod	Method Description	Protocol	Laboratory
)21B	Volatile Organic Compounds (GC)	SW846	XEN MID
otal BTEX	Total BTEX Calculation	TAL SOP	XEN MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
PA 300.0 R2.1	Anions, Ion Chromatography	EPA	ELLE
035	Closed System Purge and Trap	SW846	XEN MID
015NM Prep	Microextraction	SW846	XEN MID
I Leach	Deionized Water Leaching Procedure	ASTM	ELLE
Protocol Refer	ences:		
ASTM = AS	TM International		
EPA = US E	Invironmental Protection Agency		
SW846 = "	Fest Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And	d Its Updates.	
TAL SOP =	TestAmerica Laboratories, Standard Operating Procedure		
Laboratory Re	ierences:		
ELLE = Eur	ofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-230	0	
XEN MID =	Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Eurofins Carlsbad

Page 47 of 109

Sample Summary

Client: WSP USA Inc. Project/Site: Hudson Battery Job ID: 890-2085-1 SDG: 31403720.000 Task 14.02

Client Sample ID	Matrix	Collected	Received	Depth	
SS01	Solid	03/15/22 14:35	03/16/22 13:26	0.5	-
SS02	Solid	03/15/22 14:40	03/16/22 13:26	0.5	
SS03	Solid	03/15/22 14:45	03/16/22 13:26	0.5	
SS04	Solid	03/15/22 14:50	03/16/22 13:26	0.5	
SS05	Solid	03/15/22 14:55	03/16/22 13:26	0.5	
SS06	Solid	03/15/22 15:10	03/16/22 13:26	0.5	
					-
					Ī
	SS01 SS02 SS03 SS04 SS05	SS01SolidSS02SolidSS03SolidSS04SolidSS05Solid	SS01 Solid 03/15/22 14:35 SS02 Solid 03/15/22 14:40 SS03 Solid 03/15/22 14:45 SS04 Solid 03/15/22 14:50 SS05 Solid 03/15/22 14:55	SS01 Solid 03/15/22 14:35 03/16/22 13:26 SS02 Solid 03/15/22 14:40 03/16/22 13:26 SS03 Solid 03/15/22 14:45 03/16/22 13:26 SS04 Solid 03/15/22 14:45 03/16/22 13:26 SS05 Solid 03/15/22 14:50 03/16/22 13:26	SS01 Solid 03/15/22 14:35 03/16/22 13:26 0.5 SS02 Solid 03/15/22 14:40 03/16/22 13:26 0.5 SS03 Solid 03/15/22 14:45 03/16/22 13:26 0.5 SS04 Solid 03/15/22 14:50 03/16/22 13:26 0.5 SS05 Solid 03/15/22 14:50 03/16/22 13:26 0.5

but not analyzed. These terms will be entiticed unless previously negotiated.	Date/ Lime	Signature) Date/1	Received by: (Signature	: (Signature)	Relinquished by: (Signature)
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service.	nt company to X ises or expenses nitted to Xenco, I	valid purchase order from clie e any responsibility for any los ge of \$5 for each sample subr	amples constitutes a s and shall not assum ach project and a char	ocument and relinquishment of liable only for the cost of sample arge of \$75.00 will be applied to e	lotice: Signature of this d f service. Xenco will be l f Xenco. A minimum cha
Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	Al Sb As E RA Sb As I	CRA 13PPM Texas 11 AI	8RCRA alyzed TCLF	otal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	Total 200.7 / 60 Circle Method
				0	
×	×	15:10 0.5'	03/15/22 1	S	SS06
××	-1 X	14:55 0.5'	03/15/22 1	S	SS05
x	×	14:50 0.5'	03/15/22 1	4 S	SS04
x	1 X	14:45 0.5'			SS03
	1 × ×	0.5'		S S	SS02
x		14:35 0.5'	03/15/22 1	s s	SS01
BTEX (I	Numbe TPH (El	Time Depth Sampled	Date T Sampled Sar	tification Matrix	Sample Identification
	PA 80		Total Containers:	Yes	Sample Custody Seals:
PA 3	015)	1.0-1	Correction Factor:	Yes No	Cooler Custody Seats:
			Tur	Yes No	Received Intact:
	ners	Thermometer ID		14/1.2	Temperature (°C):
	·····	Wet Ice: Yes No	NO NO	IPT Temp Blank:	SAMPLE RECEIPT
		Due Date:		Alexis Castro	Sampler's Name:
		Rush:		NAPP 2201142906	P.O. Number:
		Routine P	ask 14.02	31403720.000 Task 14.02	Project Number:
ANALYSIS REQUEST		Turn Around		Hudson Battery	Project Name:
Deliverables: EDD	@wsp.com	Email: Kalei.Jennings@wsp.com		432 704 5178	
Midland, Texas 79705 Reporting:Level II evel III	Midland,	City, State ZIP:		Midland, Texas 79705	te ZIP:
÷.	3300 Nor	Address:		3300 North A Street	Address:
A Program: UST/PST CRP	WSP USA	Company Name:		WSP USA	
nnings Work Order Comments	Kalei Jennings	Bill to: (if different)		Kalei Jennings	Project Manager:

Released to Imaging: 7/13/2022 2:34:45 PM

Page 49 of 109

Received by OCD: 7/7/2022 10:31:18 AM	Page 50 of 109
	1
	4
	5
	6 7
	8
	9
	13
	14

Eurofins Midland

Chain of Custody Record

eurofins Environment Testing

1211 W. Florida Ave Midland, TX 79701 Phone: 432-704-5440

	Sampler			Lab PM;						Carrie	r Trackin	J No(s):			COC No:		
Client Information (Sub Contract Lab)				Kramer E-Mail:	amer, Jessica				State of Origin				880-4085.1				
Client Contact: Shipping/Receiving									w Mexico				Page 1 of 1				
Company						ations Requir				_					Job #		
Eurofins Lancaster Laboratories Env, LLC				N	ELAF	P - Louisia	na; NEL	AP - 1	ſexas					_	890-2085-1		
Address: 2425 New Holland Pike,	Due Date Requeste 3/28/2022	id:					A	nalv	sis Re	ques	ted	Preservation Code					
City:	TAT Requested (da	iys):						TÍ							A - HCL B - NaOH	M - Hexane N - None	
Lancaster				13	85									1014	C - Zn Acetate	O - AsNaO2	
State, Zip: PA, 17601						Ĕ \								136	D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	
Phone.	PO#					۳ ۳									F - MeOH G - Amchior	R - Na2S2O3 S - H2SO4	
717-656-2300(Tel)				0		訊									H - Ascorbic Acid	T - TSP Dodecal	hydrate
Email	WO #:			or N	(0	ET									I - Ice J - DI Water	U - Acetone V - MCAA	
Project Name:	Project #			Yes	or N	32								Leu	K - EDTA L - EDA	W - pH 4-5 Z - other (specify	0
Hudson Battery	89000048			9	fes	FE					1			1 ta		E - outer (specify	,,
Site:	SSOW#			xiti xiti Filtered Sample (Yes or No	MS/MSD (Yes or No)	300_ORGEM_ZEDULLEACH JMOD PHLORIDE								of co	Other:		
			Sample Mat		SIMIS	Ĩ.↓								Der			
			Sample Ma Type (www	rater.	W u	GFN								Num			
		Sample	(C=Comp, 0=wat			ő								al N			
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) BT=Tissu			300								Total	Special In	structions/No	te:
	\sim	>	Preservation C	ode: 🗙	\mathbf{X}									X			
SS01 (890-2085-1)	3/15/22	14:35 Mountain	So	lid		x								1			
SS02 (890-2085-2)	3/15/22	14:40 Mountain	Sc	lid		x								1 1 59101			
SS03 (890-2085-3)	3/15/22	14:45 Mountain	Sc	lid		X								1			
SS04 (890-2085-4)	3/15/22	14:50 Mountain	Sc	lid		x								1			
SS05 (890-2085-5)	3/15/22	14:55 Mountain	Sc	lid		x								1			
SS06 (890-2085-6)	3/15/22	15:10 Mountain	Sc	lid		X								1 1 1 1 1 1 1 1			
														itteres.			
														and an			
														11 1 11 4			
Note: Since laboratory accreditations are subject to change, Eurofins Environ	ment Testing South Cent	rai. LLC places	the ownership of meth	od, analyte	8 & ac	creditation co	mpliance	upon o	ut subco	ntract la	oratories	This san	nple shipn	nent i	s forwarded under c	hain-of-custody If	the
laboratory does not currently maintain accreditation in the State of Origin list accreditation status should be brought to Eurofins Environment Testing Sout	ed above for analysis/tests h Central, LLC attention in	nmediately. If	analyzed, the samples all requested accredita	tions are cu	urrent	to date, retui	n the sign	ned Cha	in of Cu	stody atte	n Central esting to s	aid compli	icance to I	Eurofi	ins Environment Tes	ting South Central	ges to
Possible Hazard Identification					Sa	mple Disp	osal (/	A fee r	nay be	asses	sed if s	amples	are ret	aine	d longer than 1	month)	
Unconfirmed						 Return	To Clie	int		Dispo	sal By L	.ab		Archi	ive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank	2		Spi	ecial Instru	ictions/(QC Re	quirem	ents							
Empty Kit Relinquished by:		Date		т	ime:						Method o	of Shipmer	nt:				
Relinquished by	Date/Time		Compa	ny		Received by	r					Date/Tr	me:			Company	
Relinquished by	Date/Time		Compa	пу		Received by						Date/Ti	ime:			Company	
Relinquished by	Date/Time:		Compa	ny		Received b	12)		~		Date	TC52	22	USS	COMPLE	
Custody Seals Intact: Custody Seal No.:						Cooler Tem	erature(s) °C an	d Other	Remarks	0	.8					
						-			_		$\overline{\mathbf{v}}$		-	_		Ver: 06/08/20	21

r: 06/08/2021 4/7/2022 5

Job Number: 890-2085-1

List Source: Eurofins Carlsbad

SDG Number: 31403720.000 Task 14.02

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 2085 List Number: 1 Creator: Olivas, Nathaniel

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 2085

Job Number: 890-2085-1

SDG Number: 31403720.000 Task 14.02

List Source: Eurofins Lancaster Laboratories Env, LLC List Creation: 03/25/22 01:47 PM

List Number: 3 Creator: Bryan, Debra A

Question	Answer	Comment
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	

14

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 2085

Creator: Rodriguez, Leticia

List Number: 2

<6mm (1/4").

Job Number: 890-2085-1

SDG Number: 31403720.000 Task 14.02

List Source: Eurofins Midland List Creation: 03/17/22 02:02 PM

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Received by OCD: 7/7/2022 10:31:18 AM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2137-1

Laboratory Sample Delivery Group: 31403720.0000 task 40.02 Client Project/Site: Hudson Battery

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 4/8/2022 10:08:04 AM

Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

····· LINKS ······ **Review your project** results through Total Access Have a Question? Ask-The Expert

www.eurofinsus.com/Env Released to Imaging: 7/13/2022 2:34:45 PM

Visit us at:

Laboratory Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Page 56 of 109

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	23

Client: WSP USA Inc. Project/Site: Hudson Battery

DL

Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Qualifiers		- 3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	5
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Δ	
Qualifier	Qualifier Description	
*1	LCS/LCSD RPD exceeds control limits.	7
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
U	Indicates the analyte was analyzed for but not detected.	
Glossary		- 10
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	4.0
CNF	Contains No Free Liquid	13
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Detection Limit (DoD/DOE)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL PRES Presumptive

Quality Control QC RER Relative Error Ratio (Radiochemistry)

- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Job ID: 890-2137-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2137-1

Comments

No additional comments.

Receipt

The samples were received on 3/24/2022 2:35 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.4° C.

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-22440 and analytical batch 880-22425 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-22425 recovered above the upper control limit for m-Xylene & p-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-22425/51).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015B NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-22469 and analytical batch 880-22434 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Ethylbenzene

Xylenes, Total

o-Xylene

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

Project/Site: Hudson Battery

Client Sample ID: BH01

(GC)

Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Lab Sample ID: 890-2137-1

Matrix: Solid

5

Date Collected: 03/21/22 13: Date Received: 03/24/22 14: Sample Depth: 1	
Method: 8021B - Volatile O	organic Compounds
Analyte	Resul
Benzene	<0.00199
Toluene	<0.00199
Ethylbenzene	<0.00199

Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/28/22 08:36	03/29/22 14:16	1
Toluene	<0.00199	U	0.00199	mg/Kg		03/28/22 08:36	03/29/22 14:16	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/28/22 08:36	03/29/22 14:16	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/28/22 08:36	03/29/22 14:16	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/28/22 08:36	03/29/22 14:16	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/28/22 08:36	03/29/22 14:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130			03/28/22 08:36	03/29/22 14:16	1
1,4-Difluorobenzene (Surr)	101		70 - 130			03/28/22 08:36	03/29/22 14:16	1
Method: Total BTEX - Total BTEX	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/29/22 16:50	1
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			03/29/22 10:55	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9	mg/Kg		03/28/22 10:57	03/28/22 17:39	1
Diesel Range Organics (Over C10-C28)	<49.9	U *1	49.9	mg/Kg		03/28/22 10:57	03/28/22 17:39	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/28/22 10:57	03/28/22 17:39	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130			03/28/22 10:57	03/28/22 17:39	1
o-Terphenyl	116		70 - 130			03/28/22 10:57	03/28/22 17:39	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1390		25.0	mg/Kg			04/07/22 16:55	5
Client Sample ID: BH01A						Lab Sar	nple ID: 890-	2137-2
ate Collected: 03/21/22 13:35							Matri	ix: Solid
ate Received: 03/24/22 14:35								
ample Depth: 2								
Method: 8021B - Volatile Organio	c Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/28/22 08:36	03/29/22 14:37	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/28/22 08:36	03/29/22 14:37	1

0.00200

0.00401

0.00200

0.00401

Limits

70 - 130

mg/Kg

mg/Kg

mg/Kg

mg/Kg

03/28/22 08:36

03/28/22 08:36

03/28/22 08:36

03/28/22 08:36

Prepared

03/28/22 08:36

03/29/22 14:37

03/29/22 14:37

03/29/22 14:37

03/29/22 14:37

Analyzed

03/29/22 14:37

%Recovery Qualifier

113

<0.00200 U

<0.00401 U

<0.00200 U

<0.00401 U

Eurofins Carlsbad

4/8/2022

1

1

1

1

1

Dil Fac

Client Sample Results

Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Lab Sample ID: 890-2137-2

Matrix: Solid

5

Date Collected: 03/21/22 13:35 Date Received: 03/24/22 14:35

Project/Site: Hudson Battery

Client Sample ID: BH01A

Sample Depth: 2

Client: WSP USA Inc.

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	103		70 - 130			03/28/22 08:36	03/29/22 14:37	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			03/29/22 16:50	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			03/29/22 10:55	1
Method: 8015B NM - Diesel Range	e Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U *1	49.8	mg/Kg		03/28/22 10:57	03/28/22 18:00	1
Diesel Range Organics (Over C10-C28)	<49.8	U *1	49.8	mg/Kg		03/28/22 10:57	03/28/22 18:00	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/28/22 10:57	03/28/22 18:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			03/28/22 10:57	03/28/22 18:00	1
o-Terphenyl	114		70 - 130			03/28/22 10:57	03/28/22 18:00	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1170		25.0	mg/Kg			04/07/22 17:01	5
lient Sample ID: BH02						Lab Sar	nple ID: 890-	2137-3
ate Collected: 03/21/22 13:40 ate Received: 03/24/22 14:35							Matri	x: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		03/28/22 08:36	03/29/22 14:57	1
Toluene	<0.00202	U	0.00202	mg/Kg		03/28/22 08:36	03/29/22 14:57	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		03/28/22 08:36	03/29/22 14:57	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		03/28/22 08:36	03/29/22 14:57	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		03/28/22 08:36	03/29/22 14:57	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		03/28/22 08:36	03/29/22 14:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			03/28/22 08:36	03/29/22 14:57	1
1,4-Difluorobenzene (Surr)	97		70 - 130			03/28/22 08:36	03/29/22 14:57	1
- Method: Total BTEX - Total BTI	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			03/29/22 16:50	1
- Method: 8015 NM - Diesel Rang	ge Organics (DR	O) (GC)						
	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte								

Client Sample Results

Job ID: 890-2137-1
SDG: 31403720.0000 task 40.02

Lab Sample ID: 890-2137-3 Matrix: Solid

Client Sample ID: BH02 Date Collected: 03/21/22 13:40 Date Received: 03/24/22 14:35

Client: WSP USA Inc. Project/Site: Hudson Battery

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U *1	49.8	mg/Kg		03/28/22 10:57	03/28/22 18:21	1
Diesel Range Organics (Over C10-C28)	<49.8	U *1	49.8	mg/Kg		03/28/22 10:57	03/28/22 18:21	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/28/22 10:57	03/28/22 18:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	133	S1+	70 - 130			03/28/22 10:57	03/28/22 18:21	1
o-Terphenyl	149	S1+	70 - 130			03/28/22 10:57	03/28/22 18:21	1

wethou: 500.0 - Amons, fon Chrom	alography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	123	5.04	mg/Kg			04/07/22 17:18	1

Client Sample ID: BH02A

Date Collected: 03/21/22 13:45 Date Received: 03/24/22 14:35

Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		03/28/22 08:36	03/29/22 15:18	1
Toluene	<0.00202	U	0.00202	mg/Kg		03/28/22 08:36	03/29/22 15:18	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		03/28/22 08:36	03/29/22 15:18	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		03/28/22 08:36	03/29/22 15:18	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		03/28/22 08:36	03/29/22 15:18	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		03/28/22 08:36	03/29/22 15:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			03/28/22 08:36	03/29/22 15:18	1
1,4-Difluorobenzene (Surr)	102		70 - 130			03/28/22 08:36	03/29/22 15:18	1
Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			03/29/22 16:50	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			03/29/22 10:55	1
- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9	mg/Kg		03/28/22 10:57	03/28/22 18:42	1
Diesel Range Organics (Over	<49.9	U *1	49.9	mg/Kg		03/28/22 10:57	03/28/22 18:42	
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/28/22 10:57	03/28/22 18:42	
		0	Limits			Prepared	Analyzed	Dil Fa
Surrogate	%Recoverv	Qualifier	Limits			riepaieu	Allalyzeu	<i>DII Γα</i>
Surrogate 1-Chlorooctane	% Recovery 106	Quaimer	70 - 130			03/28/22 10:57	03/28/22 18:42	

		Client	Sample Res	sults					
Client: WSP USA Inc. Project/Site: Hudson Battery						SDG: 31	Job ID: 890 1403720.0000 tas		
Client Sample ID: BH02A Date Collected: 03/21/22 13:45						Lab Sa	mple ID: 890- Matri	2137-4 ix: Solid	
Date Received: 03/24/22 14:35 Sample Depth: 2									
 Method: 300.0 - Anions, Ion Chrom					_	- ·		215	5
Analyte Chloride	23.3	Qualifier	RL 4.99	Unit mg/Kg	D	Prepared	Analyzed 04/07/22 17:24	Dil Fac	
_									
									8
									9

Surrogate Summary

Client: WSP USA Inc. Project/Site: Hudson Battery Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Client Sample ID (70-130) (70-130) Lab Sample ID 890-2137-1 BH01 91 101 890-2137-2 BH01A 113 103 890-2137-3 BH02 99 97 BH02A 890-2137-4 89 102 890-2139-A-1-A MS Matrix Spike 96 105 890-2139-A-1-B MSD Matrix Spike Duplicate 78 102 LCS 880-22440/1-A Lab Control Sample 105 104 LCSD 880-22440/2-A Lab Control Sample Dup 118 100 MB 880-22418/5-A Method Blank 98 101 MB 880-22440/5-A Method Blank 98 98 Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2137-1	BH01	105	116	
890-2137-2	BH01A	102	114	
890-2137-3	BH02	133 S1+	149 S1+	
890-2137-4	BH02A	106	117	
890-2139-A-1-E MS	Matrix Spike	120	134 S1+	
890-2139-A-1-F MSD	Matrix Spike Duplicate	108	116	
Surrogate Legend				
1CO = 1-Chlorooctane				

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

—			
		1CO2	OTPH2
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
LCS 880-22469/2-A	Lab Control Sample	109	120
LCSD 880-22469/3-A	Lab Control Sample Dup	94	104
MB 880-22469/1-A	Method Blank	103	116
Surrogate Legend			

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

6

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

SDG: 31403720.0000 task 40.02

Job ID: 890-2137-1

Client: WSP USA Inc. Project/Site: Hudson Battery

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-22418/5								Sherit 3a	mple ID: Metho	
Matrix: Solid									Prep Type:	
Analysis Batch: 22425									Prep Batc	h: 2241
Analyte		MB Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		0mit mg/K			03/28/22 09:00	03/28/22 18:08	
Toluene	<0.00200		0.00200		-	-		03/28/22 09:00	03/28/22 18:08	
					mg/K	-				
Ethylbenzene	< 0.00200		0.00200		mg/K			03/28/22 09:00	03/28/22 18:08	
m-Xylene & p-Xylene	< 0.00400		0.00400		mg/K			03/28/22 09:00	03/28/22 18:08	
o-Xylene	< 0.00200		0.00200		mg/K	-		03/28/22 09:00	03/28/22 18:08	
Kylenes, Total	<0.00400	0	0.00400		mg/K	g	(03/28/22 09:00	03/28/22 18:08	
	ME	MB								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		3	70 - 130				(03/28/22 09:00	03/28/22 18:08	
1,4-Difluorobenzene (Surr)	10	1	70 - 130				(03/28/22 09:00	03/28/22 18:08	
Lab Sample ID: MB 880-22440/5	5-A							Client Sa	mple ID: Metho	od Blar
Aatrix: Solid									Prep Type:	
Analysis Batch: 22425									Prep Batc	
	ME	MB							r op Dato	
Analyte	Resul	Qualifier	RL		Unit		D	Prepared	Analyzed	Dil F
Benzene	<0.00200		0.00200		mg/K			03/28/22 08:36	03/29/22 05:43	
Toluene	<0.00200		0.00200		mg/K			03/28/22 08:36	03/29/22 05:43	
Ethylbenzene	<0.00200		0.00200		mg/K			03/28/22 08:36	03/29/22 05:43	
n-Xylene & p-Xylene	<0.00400		0.00400		mg/K			03/28/22 08:36	03/29/22 05:43	
-Xylene	<0.00200		0.00200		mg/K	-		03/28/22 08:36	03/29/22 05:43	
Kylenes, Total	<0.00400		0.00400		mg/K	-		03/28/22 08:36	03/29/22 05:43	
	-0.00+00	. 0	0.00400		mg/iv	9		56/26/22 00.00	00/20/22 00.40	
	ME	B MB								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	98	}	70 - 130				(03/28/22 08:36	03/29/22 05:43	
1,4-Difluorobenzene (Surr)	98	3	70 - 130				(03/28/22 08:36	03/29/22 05:43	
Lab Sample ID: LCS 880-22440/	'1-A						Cli	ent Sample	ID: Lab Control	Samp
Matrix: Solid									Prep Type:	
Analysis Batch: 22425									Prep Batc	
			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit		D %Rec	Limits	
Benzene			0.100	0.1072		mg/Kg		107	70 - 130	
oluene			0.100	0.1006		mg/Kg		101	70 - 130	
Ethylbenzene			0.100	0.1029		mg/Kg		103	70 - 130	
n-Xylene & p-Xylene			0.200	0.2474		mg/Kg		124	70 - 130	
p-Xylene			0.100	0.1219		mg/Kg		122	70 - 130	
	LCS LC	s								
Surrogate	%Recovery Qu		Limits							
4-Bromofluorobenzene (Surr)	105		70 - 130							
1,4-Difluorobenzene (Surr)	104		70 - 130							
Lab Sample ID: LCSD 880-2244	0/2-A					Clie	ent S	ample ID: L	ab Control Sam	nple Di
Matrix: Solid									Prep Type:	-
Analysis Batch: 22425									Prep Batc	
analysis Batom 22720			Spike	LCSD	LCSD				%Rec	RI
Analyte			Added		Qualifier	Unit		D %Rec	Limits RP	
100110			Audeu	nesuit	wuannen	Unit		- /0NeC	LIIIII KPI	nu – –

Project/Site: Hudson Battery

Page 65 of 109

Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid	2440/2-A					Clie	nt Sam	ple ID: I	Lab Contro	I Sampl ype: To	
Analysis Batch: 22425										Batch:	
Analysis Batch. 22425			Spike	LCSD	LCSD				%Rec	Datch.	RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.09000		mg/Kg	— -	90	70 - 130	11	35
Ethylbenzene			0.100	0.09433		mg/Kg		94	70 <u>-</u> 130	9	3
m-Xylene & p-Xylene			0.200	0.2330		mg/Kg		117	70 - 130	6	3
o-Xylene			0.100	0.1183		mg/Kg		118	70 <u>-</u> 130	3	3
o Aylene			0.100	0.1100		mg/rtg		110	70 - 100	0	00
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	118		70 - 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								
	-1-A MS							Client	Sample ID		
Lab Sample ID: 890-2139-A- Matrix: Solid Analysis Batch: 22425								Client	Prep T Prep	: Matrix ype: To Batch:	tal/NA
Matrix: Solid Analysis Batch: 22425	Sample	•	Spike		MS				Prep T Prep %Rec	ype: To	tal/NA
Matrix: Solid Analysis Batch: 22425 Analyte	Sample Result	Qualifier	Added	Result	Qualifier	Unit	<u>D</u>	%Rec	Prep T Prep %Rec Limits	ype: To	tal/NA
Matrix: Solid Analysis Batch: 22425 Analyte	Sample 	Qualifier U F1	Added	Result 0.01667	Qualifier F1	- <mark>Unit</mark> mg/Kg	D		Prep T Prep %Rec Limits 70 - 130	ype: To	tal/NA
Matrix: Solid	Sample Result	Qualifier U F1	Added	Result	Qualifier F1		<u>D</u>	%Rec	Prep T Prep %Rec Limits	ype: To	tal/NA
Matrix: Solid Analysis Batch: 22425 Analyte Benzene	Sample 	Qualifier U F1 U F1	Added	Result 0.01667	Qualifier F1 F1	mg/Kg	D	%Rec 17	Prep T Prep %Rec Limits 70 - 130	ype: To	tal/NA
Matrix: Solid Analysis Batch: 22425 Analyte Benzene Toluene	Sample Result <0.00198 <0.00198	Qualifier U F1 U F1 U F1 U F2 F1	Added 0.100 0.100	Result 0.01667 0.01424	Qualifier F1 F1 F1	mg/Kg mg/Kg	<u> </u>	%Rec 17 14	Prep T Prep %Rec Limits 70 - 130 70 - 130	ype: To	tal/NA
Matrix: Solid Analysis Batch: 22425 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00198 <0.00198 <0.00198	Qualifier U F1 U F1 U F2 F1 U F1	Added 0.100 0.100 0.100	Result 0.01667 0.01424 0.009383	Qualifier F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 17 14 9	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	ype: To	tal/NA
Matrix: Solid Analysis Batch: 22425 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00198 <0.00198 <0.00198 <0.00397	Qualifier U F1 U F1 U F2 F1 U F1 U F1 U F1	Added 0.100 0.100 0.100 0.200	Result 0.01667 0.01424 0.009383 0.02545	Qualifier F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 17 14 9 13	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To	tal/NA
Matrix: Solid Analysis Batch: 22425 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00198 <0.00198 <0.00198 <0.00397 <0.00198	Qualifier U F1 U F1 U F2 F1 U F1 U F1 U F1 <i>MS</i>	Added 0.100 0.100 0.100 0.200	Result 0.01667 0.01424 0.009383 0.02545	Qualifier F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 17 14 9 13	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To	tal/NA
Matrix: Solid Analysis Batch: 22425 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Sample Result <0.00198 <0.00198 <0.00198 <0.00397 <0.00198 MS	Qualifier U F1 U F1 U F2 F1 U F1 U F1 U F1 <i>MS</i>	Added 0.100 0.100 0.100 0.200 0.100	Result 0.01667 0.01424 0.009383 0.02545	Qualifier F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 17 14 9 13	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To	tal/NA

Lab Sample ID: 890-2139-A-1-B MSD Matrix: Solid Analysis Batch: 22425

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 22425									Prep	Batch:	22440
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00198	U F1	0.0996	0.01395	F1	mg/Kg		14	70 - 130	18	35
Toluene	<0.00198	U F1	0.0996	0.01110	F1	mg/Kg		11	70 - 130	25	35
Ethylbenzene	<0.00198	U F2 F1	0.0996	0.006320	F2 F1	mg/Kg		6	70 - 130	39	35
m-Xylene & p-Xylene	<0.00397	U F1	0.199	0.01959	F1	mg/Kg		10	70 - 130	26	35
o-Xylene	<0.00198	U F1	0.0996	0.01230	F1	mg/Kg		12	70 - 130	31	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

70 - 130

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

78

102

Lab Sample ID: MB 880-22469/1-A Matrix: Solid Analysis Batch: 22434	МВ	МВ				Client Sa	mple ID: Metho Prep Type: ٦ Prep Batch	Total/NA
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/28/22 10:57	03/28/22 11:23	1

Eurofins Carlsbad

Released to Imaging: 7/13/2022 2:34:45 PM

Project/Site: Hudson Battery

Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-22469 Matrix: Solid	/1 -A							Client	Sample ID: M Prep Ty		
Analysis Batch: 22434										Batch:	
niaiyələ Dalull. 22494	N	IB MB							гер	Datuil	2240
Analyte		IL Qualifier	RL		Unit		D	Prepared	Analyze	he	Dil Fa
Diesel Range Organics (Over	Kest <50				0111 mg/K			03/28/22 10:5			Dii Fa
C10-C28)	~50	.0 0	50.0		ing/N	.y		03/20/22 10.3	03/20/22 1	1.25	
Oll Range Organics (Over C28-C36)	<50	.0 U	50.0		mg/K	g		03/28/22 10:5	03/28/22 1	1:23	
· · /					5	-					
		IB MB									
Surrogate	%Recove	<u> </u>	Limits				_	Prepared	Analyze		Dil Fa
1-Chlorooctane		03	70 - 130					03/28/22 10:5			
o-Terphenyl	1:	16	70 - 130					03/28/22 10:5	57 03/28/22 1	11:23	
Lah Comple ID: LCC 890 2240	0/2 4							lant Campl		ntral C	
Lab Sample ID: LCS 880-2246	9/2-A						CI	ient Sampl	e ID: Lab Co		
Matrix: Solid									Prep Ty		
Analysis Batch: 22434			0 "		1.00					Batch:	22469
			Spike		LCS			B ~ -	%Rec		
Analyte			Added		Qualifier	Unit		D %Rec	Limits		
Gasoline Range Organics			1000	950.2		mg/Kg		95	70 - 130		
(GRO)-C6-C10 Discol Banga Organica (Over			1000	075.0		melle		00	70 400		
Diesel Range Organics (Over			1000	975.9		mg/Kg		98	70 - 130		
C10-C28)											
	LCS L	cs									
Surrogate	%Recovery Q	ualifier	Limits								
1-Chlorooctane	109		70 - 130								
o-Terphenyl	120		70 - 130								
Matrix: Solid Analysis Batch: 22434			0.11							Batch:	2246
			Spike		LCSD				%Rec		RPI
Analyte			Added	749.9	Qualifier *1	Unit		D %Rec 75	Limits	RPD 24	2
Gasoline Range Organics (GRO)-C6-C10			1000	749.9	I	mg/Kg		75	70 - 130	24	2
Diesel Range Organics (Over			1000	794.2	*1	mg/Kg		79	70 - 130	21	20
C10-C28)								, , ,		- 1	2
	1000	CCD									
Survey made	LCSD L		Lincita								
Surrogate		ualifier	Limits								
1-Chlorooctane	94		70 - 130 70 - 130								
o-Terphenyl	104		70 - 130								
								Clien	t Sample ID:	Matrix	Snike
Lah Sample ID: 890-2139-4-1-	EMS							Glieff	coumple iD.	matrix	- Obivi
	EMS								Pron T	vne: Tr	ntal/N/
Matrix: Solid	EMS								Prep Ty Prep		
Matrix: Solid		ample	Snike	Ме	MS				Prep	ype: To Batch:	
Matrix: Solid Analysis Batch: 22434	Sample Sa	•	Spike Added		MS Qualifier	Unit			Prep %Rec		
Matrix: Solid Analysis Batch: 22434 Analyte	Sample Sa Result	ualifier	Added	Result	MS Qualifier	_ Unit		D %Rec	Prep %Rec Limits		
Matrix: Solid Analysis Batch: 22434 Analyte Gasoline Range Organics	Sample Sa	ualifier	-			_ <mark>Unit</mark> mg/Kg		D %Rec 98	Prep %Rec		
Matrix: Solid Analysis Batch: 22434 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Sample Sa Result	ualifier	Added	Result					Prep %Rec Limits		
Matrix: Solid Analysis Batch: 22434 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Sample Sa	ualifier	Added 998	Result 995.7		mg/Kg		98	Prep %Rec Limits 70 - 130		
Matrix: Solid Analysis Batch: 22434 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Sample Sa	ualifier	Added 998 998	Result 995.7		mg/Kg		98	Prep %Rec Limits 70 - 130		
Lab Sample ID: 890-2139-A-1- Matrix: Solid Analysis Batch: 22434 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	Sample Sa	ualifier	Added 998	Result 995.7		mg/Kg		98	Prep %Rec Limits 70 - 130		

Eurofins Carlsbad

Released to Imaging: 7/13/2022 2:34:45 PM

o-Terphenyl

70 - 130

134 S1+

Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Project/Site: Hudson Battery Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid	MSD						Clien	τ 58	imple II	D: Matrix Sp Prep 1	oike Dup Type: To	
Analysis Batch: 22434										Prep	Batch:	2246
-	Sample	Sample	Spike	MSD	MSD					%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim
Gasoline Range Organics	<49.8	U *1	997	887.0		mg/Kg		_	87	70 - 130	12	2
(GRO)-C6-C10												
Diesel Range Organics (Over C10-C28)	<49.8	U *1	997	742.4		mg/Kg			70	70 - 130	13	2
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	108		70 - 130									
o-Terphenyl	116		70 - 130									
Iethod: 300.0 - Anions, Ion Lab Sample ID: MB 880-22993/1 Matrix: Solid		ography							Client S	Sample ID: Prep	Method Type: S	
Analysis Batch: 23129												
		MB MB										
Analyte	R	esult Qualifier		RL	Unit		D	Pi	repared	Analyz	zed	Dil Fa
Chloride	<	5.00 U		5.00	mg/K	g				04/07/22	13:12	
 A second s							~ ~ ~		Comple			amal
Lab Sample ID: LCS 880-22993/	2-A						Cli	ent	Sample	e ID: Lab Co	ontrol S	ampi
	2-A						Cli	ent	Sample		Type: S	
Lab Sample ID: LCS 880-22993/ Matrix: Solid Analysis Batch: 23129	/2-A						Cli	ent	Sample			
Matrix: Solid	/2-A		Spike	LCS	LCS		Cli	ent	Sample			
Matrix: Solid	'2-A		Spike Added		LCS Qualifier	Unit	Cli	D	%Rec	Prep		
Matrix: Solid Analysis Batch: 23129 Analyte	/2-A					Unit mg/Kg			-	Prep %Rec		
Matrix: Solid Analysis Batch: 23129 Analyte Chloride			Added	Result		mg/Kg		<u>D</u>	%Rec 101	Prep %Rec Limits 90 - 110	Type: S	olubl
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299			Added	Result		mg/Kg		<u>D</u>	%Rec 101	Prep %Rec Limits 90 - 110	Type: S	olubl
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid			Added	Result 253.6		mg/Kg		<u>D</u>	%Rec 101	Prep %Rec Limits 90 - 110	Type: S	e Du olubi
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid			Added 250	Result 253.6 LCSD	Qualifier	mg/Kg		<u>D</u>	%Rec 101	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: S	e Du olubl olubl RP
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129			Added 250 Spike	Result 253.6 LCSD	Qualifier	mg/Kg		D Sam	%Rec 101 ple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: S ol Sampl Type: S	e Du olubi olubi RP Lim
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride			Added 250 Spike Added	Result 253.6 LCSD Result	Qualifier	mg/Kg Cli		D Sam	%Rec 101 ple ID: %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: S DI Sampl Type: S <u>RPD</u> 0	e Du olubi olubi RP Lim 2
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS			Added 250 Spike Added	Result 253.6 LCSD Result	Qualifier	mg/Kg Cli		D Sam	%Rec 101 ple ID: %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam	Type: S ol Sampl Type: S <u></u> <u></u> ple ID: E	e Du olubi RP Lim 2 3H01/
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS Matrix: Solid			Added 250 Spike Added	Result 253.6 LCSD Result	Qualifier	mg/Kg Cli		D Sam	%Rec 101 ple ID: %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam	Type: S DI Sampl Type: S <u>RPD</u> 0	e Du olubi RP Lim 2 3H01/
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS			Added 250 Spike Added	Result 253.6 LCSD Result 254.1	Qualifier	mg/Kg Cli		D Sam	%Rec 101 ple ID: %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam	Type: S ol Sampl Type: S <u></u> <u></u> ple ID: E	e Du olubi RP Lim 2 3H01/
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS Matrix: Solid Analysis Batch: 23129	3/3-A Sample	-	Added 250 Spike Added 250	Result 253.6 LCSD Result 254.1	Qualifier LCSD Qualifier MS	mg/Kg Cli		D Sam	%Rec 101 ple ID: %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam Prep %Rec	Type: S ol Sampl Type: S <u></u> <u></u> ple ID: E	e Du olubi RP Lim 2 3H01/
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS Matrix: Solid Analysis Batch: 23129 Analyte	3/3-A Sample	Sample Qualifier	Added 250 Spike Added 250 Spike	Result 253.6 LCSD Result 254.1	Qualifier LCSD Qualifier	mg/Kg Cli Unit mg/Kg		D Sam	%Rec 101 ple ID: %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam Prep	Type: S ol Sampl Type: S <u></u> <u></u> ple ID: E	e Du olubi RP Lim 2 3H01.
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS Matrix: Solid Analysis Batch: 23129 Analyte Chloride	3/3-A Sample <u>Result</u> 1170	-	Added 250 Spike Added 250 Spike Added	Result 253.6 LCSD Result 254.1 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Cli Unit mg/Kg Unit		D Sam	%Rec 101 ple ID: %Rec 102 %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110	Type: S DI Sampl Type: S RPD 0 ple ID: E Type: S 	olubi e Du olubi RP Lim 2 BH01, olubi
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS	3/3-A Sample <u>Result</u> 1170	-	Added 250 Spike Added 250 Spike Added	Result 253.6 LCSD Result 254.1 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Cli Unit mg/Kg Unit		D Sam	%Rec 101 ple ID: %Rec 102 %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110	Type: S ol Sampl Type: S <u> RPD</u> 0 ple ID: E Type: S ple ID: E	e Du olubi RP Lim 2 BH01. olubi
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MSE Matrix: Solid	3/3-A Sample <u>Result</u> 1170	-	Added 250 Spike Added 250 Spike Added	Result 253.6 LCSD Result 254.1 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Cli Unit mg/Kg Unit		D Sam	%Rec 101 ple ID: %Rec 102 %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110	Type: S DI Sampl Type: S RPD 0 ple ID: E Type: S 	e Du olubi RP Lim 2 BH01, olubi
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS	3/3-A Sample Result 1170	Qualifier	Added 250 Spike Added 250 Spike Added 1250	Result 253.6 LCSD Result 254.1 MS Result 2445	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Cli Unit mg/Kg Unit		D Sam	%Rec 101 ple ID: %Rec 102 %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110 Client Sam Prep	Type: S ol Sampl Type: S <u> RPD</u> 0 ple ID: E Type: S ple ID: E	e Du olubi RP Lim 2 3H01/ olubi 3H01/ olubi
Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: LCSD 880-2299 Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MS Matrix: Solid Analysis Batch: 23129 Analyte Chloride Lab Sample ID: 890-2137-2 MSE Matrix: Solid	3/3-A Sample Result 1170 D Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 253.6 LCSD Result 254.1 MS Result 2445	Qualifier LCSD Qualifier MS	mg/Kg Cli Unit mg/Kg Unit		D Sam	%Rec 101 ple ID: %Rec 102 %Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110	Type: S ol Sampl Type: S <u> RPD</u> 0 ple ID: E Type: S ple ID: E	e Duj olubi RPI Lim 2 8H01/ olubi

Eurofins Carlsbad

QC Association Summary

Client: WSP USA Inc. Project/Site: Hudson Battery Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

GC VOA

Prep Batch: 22418

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-22418/5-A	Method Blank	Total/NA	Solid	5035	
nalysis Batch: 22425	;				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2137-1	BH01	Total/NA	Solid	8021B	22440
890-2137-2	BH01A	Total/NA	Solid	8021B	22440
890-2137-3	BH02	Total/NA	Solid	8021B	22440
890-2137-4	BH02A	Total/NA	Solid	8021B	22440
MB 880-22418/5-A	Method Blank	Total/NA	Solid	8021B	22418
MB 880-22440/5-A	Method Blank	Total/NA	Solid	8021B	22440
LCS 880-22440/1-A	Lab Control Sample	Total/NA	Solid	8021B	22440
LCSD 880-22440/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	22440
890-2139-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	22440
890-2139-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	22440

Prep Batch: 22440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2137-1	BH01	Total/NA	Solid	5035	
890-2137-2	BH01A	Total/NA	Solid	5035	
890-2137-3	BH02	Total/NA	Solid	5035	
890-2137-4	BH02A	Total/NA	Solid	5035	
MB 880-22440/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-22440/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-22440/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2139-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
890-2139-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 22589

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2137-1	BH01	Total/NA	Solid	Total BTEX	
890-2137-2	BH01A	Total/NA	Solid	Total BTEX	
890-2137-3	BH02	Total/NA	Solid	Total BTEX	
890-2137-4	BH02A	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 22434

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2137-1	BH01	Total/NA	Solid	8015B NM	22469
890-2137-2	BH01A	Total/NA	Solid	8015B NM	22469
890-2137-3	BH02	Total/NA	Solid	8015B NM	22469
890-2137-4	BH02A	Total/NA	Solid	8015B NM	22469
MB 880-22469/1-A	Method Blank	Total/NA	Solid	8015B NM	22469
LCS 880-22469/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	22469
LCSD 880-22469/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	22469
890-2139-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	22469
890-2139-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	22469
Prep Batch: 22469					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2137-1	BH01	Total/NA	Solid	8015NM Prep	

5

QC Association Summary

GC Semi VOA (Continued)

Prep Batch: 22469 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2137-2	BH01A	Total/NA	Solid	8015NM Prep	
890-2137-3	BH02	Total/NA	Solid	8015NM Prep	
890-2137-4	BH02A	Total/NA	Solid	8015NM Prep	
MB 880-22469/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-22469/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-22469/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2139-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2139-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2137-1	BH01	Total/NA	Solid	8015 NM	
890-2137-2	BH01A	Total/NA	Solid	8015 NM	
890-2137-3	BH02	Total/NA	Solid	8015 NM	
890-2137-4	BH02A	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 22993

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2137-1	BH01	Soluble	Solid	DI Leach	
890-2137-2	BH01A	Soluble	Solid	DI Leach	
890-2137-3	BH02	Soluble	Solid	DI Leach	
890-2137-4	BH02A	Soluble	Solid	DI Leach	
MB 880-22993/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-22993/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-22993/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2137-2 MS	BH01A	Soluble	Solid	DI Leach	
890-2137-2 MSD	BH01A	Soluble	Solid	DI Leach	

Analysis Batch: 23129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2137-1	BH01	Soluble	Solid	300.0	22993
890-2137-2	BH01A	Soluble	Solid	300.0	22993
890-2137-3	BH02	Soluble	Solid	300.0	22993
890-2137-4	BH02A	Soluble	Solid	300.0	22993
MB 880-22993/1-A	Method Blank	Soluble	Solid	300.0	22993
LCS 880-22993/2-A	Lab Control Sample	Soluble	Solid	300.0	22993
LCSD 880-22993/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	22993
890-2137-2 MS	BH01A	Soluble	Solid	300.0	22993
890-2137-2 MSD	BH01A	Soluble	Solid	300.0	22993

Page 69 of 109

Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

5

9

Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Lab Sample ID: 890-2137-1 Matrix: Solid

Lab Sample ID: 890-2137-2

Lab Sample ID: 890-2137-3

Lab Sample ID: 890-2137-4

Matrix: Solid

Matrix: Solid

Client Sample ID: BH01 Date Collected: 03/21/22 13:30 Date Received: 03/24/22 14:35

Project/Site: Hudson Battery

Client: WSP USA Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	22440	03/28/22 08:36	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	22425	03/29/22 14:16	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22589	03/29/22 16:50	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			22542	03/29/22 10:55	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	22469	03/28/22 10:57	AM	XEN MID
Total/NA	Analysis	8015B NM		1			22434	03/28/22 17:39	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	22993	04/05/22 09:10	СН	XEN MID
Soluble	Analysis	300.0		5			23129	04/07/22 16:55	СН	XEN MID

Client Sample ID: BH01A

Date Collected: 03/21/22 13:35

Date Received: 03/24/22 14:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	22440	03/28/22 08:36	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	22425	03/29/22 14:37	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22589	03/29/22 16:50	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			22542	03/29/22 10:55	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	22469	03/28/22 10:57	AM	XEN MID
Total/NA	Analysis	8015B NM		1			22434	03/28/22 18:00	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	22993	04/05/22 09:10	СН	XEN MID
Soluble	Analysis	300.0		5			23129	04/07/22 17:01	CH	XEN MID

Client Sample ID: BH02

Date Collected: 03/21/22 13:40

Date Received: 03/24/22 14:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	22440	03/28/22 08:36	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	22425	03/29/22 14:57	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22589	03/29/22 16:50	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			22542	03/29/22 10:55	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	22469	03/28/22 10:57	AM	XEN MID
Total/NA	Analysis	8015B NM		1			22434	03/28/22 18:21	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	22993	04/05/22 09:10	СН	XEN MID
Soluble	Analysis	300.0		1			23129	04/07/22 17:18	CH	XEN MID

Client Sample ID: BH02A Date Collected: 03/21/22 13:45 Date Received: 03/24/22 14:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	22440	03/28/22 08:36	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	22425	03/29/22 15:18	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			22589	03/29/22 16:50	AJ	XEN MID

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-2137-1

Matrix: Solid

SDG: 31403720.0000 task 40.02

Lab Sample ID: 890-2137-4

Lab Chronicle

Client: WSP USA Inc. Project/Site: Hudson Battery

Client Sample ID: BH02A Date Collected: 03/21/22 13:45

Date Received: 03/24/22 14:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			22542	03/29/22 10:55	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	22469	03/28/22 10:57	AM	XEN MID
Total/NA	Analysis	8015B NM		1			22434	03/28/22 18:42	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	22993	04/05/22 09:10	СН	XEN MID
Soluble	Analysis	300.0		1			23129	04/07/22 17:24	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

10

Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Project/Site: Hudson Battery Laboratory: Eurofins Midland

Client: WSP USA Inc.

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pi	rogram	Identification Number	Expiration Date
exas	N	ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report, be	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for
the agency does not o		Motrix	Analyta	
Analysis Method	fer certification. Prep Method	Matrix	Analyte	
8 ,		Matrix Solid	Analyte Total TPH	
Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: WSP USA Inc. Project/Site: Hudson Battery Job ID: 890-2137-1 SDG: 31403720.0000 task 40.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-2137-1	BH01	Solid	03/21/22 13:30	03/24/22 14:35	1	
390-2137-2	BH01A	Solid	03/21/22 13:35	03/24/22 14:35	2	
890-2137-3	BH02	Solid	03/21/22 13:40	03/24/22 14:35	1	. 5
890-2137-4	BH02A	Solid	03/21/22 13:45	03/24/22 14:35	2	
						8
						9
						1
						_
						1

5

13

Chain of Custody Record

Eurofins Carlsbad																
1089 N Canal St. Carlsbad, NM 88220 Phone: 575-988-3199 Fax 575-988-3199	c	Chain of Custody Record	Custo	dy Red	cord									🖑 eurofins	ins	Environment Testing America
ormation (Sub Contract Lab)	Sampler [.]			Lab PM Kramer	Jessica				Carri	Carrier Tracking No(s):	ing No(s	Ÿ		COC No: 890-687 1		
J/Receiving	Phone.			E-Mail jessica.l	E-Mail jessica.kramer@eurofinset.com	urofinse	t.com		State	State of Origin: New Mexico	8 3			Page Page 1 of 1		
Company Eurofins Environment Testing South Centr				NE	Accreditations Required (See note) NELAP - Louisiana, NELAP	Required () Jisiana,	See note) NELAP): - Texas						Job #: 890-2137-1		
Address. 1211 W Florida Ave,	Due Date Requested 3/30/2022						Ana	lysis Requested	eques	ted				Preservation Codes	n Code	S.
	TAT Requested (days):	в):												A HCL B NaOH		M - Hexane N None
State, Zip: TX, 79701														C Zn Acetate D - Nitric Acid E NaHSO4		O AsNaO2 P - Na2O4S Q Na2SO3
Phone: 432-704-5440(Tel)	PO#)	трн	le 								F MeOH G Amchlor	Ľ	R Na2S2O3 S H2SO4
Email.	WO #			or No		Chlorid							6			V - MCAA
Project Name Hudson Battery	Project #: 89000048			2 (Yos									ainer	- x		W pH 4-5 Z other (specify)
Site.	SSOW# [.]			Sampl			ev.						of con	Other:		
		Sample (C:	Sample N Type ()	Matrix (W-water Srsolid, E	form MS/N 5MOD_NM/8	_ORGFM_2: 18/5035FP_	MOD_Cale	<u></u>					al Number			
Sample Identification - Client ID (Lab ID)	Sample Date	6	- 399	5						2	4		Tot	Ì	ial Inst	Special Instructions/Note:
BH01 (890-2137-1)	3/21/22	13 30 Mountain		Solid	×	× ×	×××	_					_			
BH01A (890-2137-2)	3/21/22	13 35 Mountain		Solid	×	× ×	× ×	_					4			******
BH02 (890-2137-3)	3/21/22	13.40 Mountain		Solid	×	×	××									
BH02A (890-2137-4)	3/21/22	13 45 Mountain		Solid	×	××	×						<u> </u>			
									_							
													0.2.36			
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed the samples must be shipped back to the Eurofins Environment Testing South Central 1 accreditation status should be brought to Eurofins Environment Testing South Central 1 accreditation status should be brought to Eurofins Environment Testing South Central 1 accreditation status should be brought to Eurofins Environment Testing South Central 1 accreditation status should be brought to Eurofins Environment Testing South Central 1 accreditation status should be brought to Eurofins Environment Testing South Central 1 accreditation immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to sa	Testing South Central ve for analysis/tests/m ral LLC attention imm	LLC places the c atrix being analyz ediately If all rec	wnership of m red the sample quested accred	ethod, analyte s must be ship itations are cur	& accreditat ped back to rent to date	on compli the Eurofi return the	ance upor ns Enviro signed C) out subc nment Te hain of Cu	ontract la sting Sou istody att	Iboratori th Centr esting to	al LLC I said co	sample aborator mplicano	shipme y or oth xe to Eu	nt is forwarded u er instructions wii rofins Environme	nder chai Il be prov ent Testin	an out subcontract laboratories This sample shipment is forwarded under chain-of-custody If the onment Testing South Central LLC laboratory or other instructions will be provided. Any changes to Chain of Custody attesting to said complicance to Eurofins Environment Testing South Central, LLC.
Possible Hazard Identification Unconfirmed					Sample Disposal (A fee	le Disposal (A fi Return To Client	l (A fec Client	nayb □	e asse: Dispo	<mark>assessed if san</mark> Disposal By Lab	samp	les arc	⊔ retai An	may be assessed if samples are retained longer than 1 month)	han 1 n	nonth) Months
Deliverable Requested 1, 11, 111, 1V Other (specify)	Primary Deliverable Rank. 2	ile Rank. 2			Special Instructions/QC	nstructio	ns/QC F	Requirements	nents							
Empty Kit Relinguished by		Date		Time	ne D			Ь		Method	Method of Shipment:	ment:		0		
Ballowskied by MW W 3.35.33	Date/Time		Com	Company	Receive	T C	XX	X			Dat	Paterine	350	もより	/	Company
V	Date/ IIme:		Com	Company	Réceived by	ed by:					Dat	Date/Time:				Company
	Date/Time		Company	pany	Received by	ed by:					Dat	Date/Time [.]				Company
Custody Seals Intact Custody Seal No					Cooler	Cooler Temperature(s) °C	ure(s) °C	and Other Remarks.	Remark	,°						

Ver 06/08/2021

Job Number: 890-2137-1

List Source: Eurofins Carlsbad

SDG Number: 31403720.0000 task 40.02

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 2137 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-2137-1

List Source: Eurofins Midland

List Creation: 03/28/22 08:20 AM

SDG Number: 31403720.0000 task 40.02

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 2137 List Number: 2 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Received by OCD: 7/1/2022 10:31:18 AM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 7/13/2022 2:34:45 PM

Visit us at:

Ask-The Expert

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-16309-1

Laboratory Sample Delivery Group: 03D2057001 Client Project/Site: Hudson Battery

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Kalei Jennings

RAMER

signature.

Authorized for release by: 6/28/2022 7:28:13 PM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Page 80 of 109

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

Definitions/Glossary

	Deminions/Giossary		
Client: Ensolum		Job ID: 880-16309-1	
Project/Site: Hu	dson Battery	SDG: 03D2057001	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			5
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		8
Glossary			
	These commonly used abbraviations may or may not be present in this report		9
Abbreviation	These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis		
~ %R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		13
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		
TNTC	Too Numerous To Count		

.

4

5

Job ID: 880-16309-1 SDG: 03D2057001

Job ID: 880-16309-1

Project/Site: Hudson Battery

Client: Ensolum

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-16309-1

Receipt

The samples were received on 6/27/2022 8:43 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.3°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (MB 880-28419/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: 8021B - Volatile Organic Compounds (GC)

Job ID: 880-16309-1 SDG: 03D2057001

Client Sample ID: FS01

Project/Site: Hudson Battery

Date Collected: 06/24/22 08:45 Date Received: 06/27/22 08:43

Sample Depth: 2.5'

Client: Ensolum

Lab Sample ID: 880-16309-1

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/27/22 09:16	06/27/22 13:45	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/27/22 09:16	06/27/22 13:45	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/27/22 09:16	06/27/22 13:45	
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		06/27/22 09:16	06/27/22 13:45	
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/27/22 09:16	06/27/22 13:45	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		06/27/22 09:16	06/27/22 13:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130			06/27/22 09:16	06/27/22 13:45	1
1,4-Difluorobenzene (Surr)	90		70 - 130			06/27/22 09:16	06/27/22 13:45	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			06/27/22 16:11	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			06/28/22 10:27	1
Method: 8015B NM - Diesel Rang	e Organice (D							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8		49.8	mg/Kg	<u> </u>	06/27/22 09:00	06/27/22 17:42	1
GRO)-C6-C10	10.0	0	10.0	ing/ing		00/21/22 00:00	00/21/22 11:12	
, Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		06/27/22 09:00	06/27/22 17:42	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/27/22 09:00	06/27/22 17:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130			06/27/22 09:00	06/27/22 17:42	1
p-Terphenyl	114		70 - 130			06/27/22 09:00	06/27/22 17:42	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29.8		4.95	mg/Kg			06/27/22 23:27	1
lient Sample ID: FS02						Lab Sam	ple ID: 880-1	6309-2
ate Collected: 06/24/22 09:05							Matri	x: Solid
ate Received: 06/27/22 08:43								
ample Depth: 0.75								
Method: 8021B - Volatile Organic	Compounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200	mg/Kg		06/27/22 09:16	06/27/22 14:05	1

4-Bromofluorobenzene (Surr)	114		70 - 130		06/27/22 09:16	06/27/22 14:05	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00400	U	0.00400	mg/Kg	06/27/22 09:16	06/27/22 14:05	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	06/27/22 09:16	06/27/22 14:05	1
m-Xylene & p-Xylene	< 0.00400	U	0.00400	mg/Kg	06/27/22 09:16	06/27/22 14:05	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	06/27/22 09:16	06/27/22 14:05	1
Toluene	<0.00200	U	0.00200	mg/Kg	06/27/22 09:16	06/27/22 14:05	1
Benzene	<0.00200	U	0.00200	mg/Kg	06/27/22 09:16	06/27/22 14:05	1

Eurofins Midland

Released to Imaging: 7/13/2022 2:34:45 PM

Client Sample Results

Job ID: 880-16309-1 SDG: 03D2057001

Lab Sample ID: 880-16309-2

Lab Sample ID: 880-16309-3

Matrix: Solid

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

1

1

1

1

5

Date Collected: 06/24/22 09:05 Date Received: 06/27/22 08:43 Sar

Project/Site: Hudson Battery

Client Sample ID: FS02

Client: Ensolum

Sample Depth: 0.75							
Method: 8021B - Volatile Organ	nic Compounds (GC) (Contir	nued)				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed
1,4-Difluorobenzene (Surr)	93		70 - 130			06/27/22 09:16	06/27/22 14:05
Method: Total BTEX - Total BT	EX Calculation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
Total BTEX	<0.00400	U	0.00400	mg/Kg			06/27/22 16:11
Method: 8015 NM - Diesel Ran Analyte	·	<mark>O) (GC)</mark> Qualifier	RL	Unit	D	Prepared	Analyzed
Total TPH	<49.9	U	49.9	mg/Kg			06/28/22 10:27
Method: 8015B NM - Diesel Ra Analyte	• • •	RO) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		06/27/22 09:00	06/27/22 18:04
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		06/27/22 09:00	06/27/22 18:04

Oll Range Organics (Over C28-C36)	<49.9 U	49.9	mg/Kg	06/27/22 09:00	06/27/22 18:04	1
Surrogate	%Recovery Q	Qualifier Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	106	70 - 130		06/27/22 09:00	06/27/22 18:04	1
o-Terphenyl	111	70 - 130		06/27/22 09:00	06/27/22 18:04	1

Method: 300.0 - Anions, Ion Chromatography - Soluble											
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
	Chloride	21.4		4.99	mg/Kg			06/27/22 23:55	1		

Client Sample ID: SW01

Date Collected: 06/24/22 09:25 Date Received: 06/27/22 08:43 Sample Depth: 0-0.25

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		06/27/22 09:16	06/27/22 15:28	1
Toluene	<0.00199	U	0.00199	mg/Kg		06/27/22 09:16	06/27/22 15:28	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/27/22 09:16	06/27/22 15:28	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/27/22 09:16	06/27/22 15:28	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/27/22 09:16	06/27/22 15:28	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/27/22 09:16	06/27/22 15:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130			06/27/22 09:16	06/27/22 15:28	1
1,4-Difluorobenzene (Surr)	94		70 - 130			06/27/22 09:16	06/27/22 15:28	1
- Method: Total BTEX - Total B1	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			06/27/22 16:11	1
-	nge Organics (DR	O) (GC)						
Method: 8015 NM - Diesel Rar								
Method: 8015 NM - Diesel Rar Analyte	U U	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Midland

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

<50.0 U

<50.0 U

<50.0 U

%Recovery Qualifier

125

128

49.5

Result Qualifier

Client Sample Results

RL

50.0

50.0

50.0

RL

4.95

Limits

70 - 130

70 - 130

Unit

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

D

D

Prepared

06/27/22 09:00

06/27/22 09:00

06/27/22 09:00

Prepared

06/27/22 09:00

06/27/22 09:00

Prepared

Job ID: 880-16309-1 SDG: 03D2057001

Client Sample ID: SW01

Project/Site: Hudson Battery

Client: Ensolum

Analyte

C10-C28)

Surrogate 1-Chlorooctane

o-Terphenyl

Analyte

Chloride

(GRO)-C6-C10

Date Collected: 06/24/22 09:25 Date Received: 06/27/22 08:43

Sample Depth: 0-0.25

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Lab Sample ID: 880-16309-3

Analyzed

06/27/22 18:26

06/27/22 18:26

06/27/22 18:26

Analyzed

06/27/22 18:26

06/27/22 18:26

Analyzed

06/28/22 00:04

Matrix: Solid

Dil Fac	
1	
1	
1	
	8
Dil Fac	
1	
1	
Dil Fac	
Dirrac	
1	

Eurofins Midland

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Lab Sample ID Client Sample ID (70-130) (70-130) 880-16296-A-7-C MS Matrix Spike 111 98 880-16296-A-7-D MSD Matrix Spike Duplicate 116 100 880-16309-1 FS01 110 90 FS02 880-16309-2 114 93 880-16309-3 SW01 110 94 Lab Control Sample LCS 880-28399/1-A 111 98 LCSD 880-28399/2-A Lab Control Sample Dup 111 98 MB 880-28399/5-A Method Blank 105 89 Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-16295-A-1-D MS	Matrix Spike	84	80
880-16295-A-1-E MSD	Matrix Spike Duplicate	90	84
880-16309-1	FS01	108	114
880-16309-2	FS02	106	111
880-16309-3	SW01	125	128
LCS 880-28419/2-A	Lab Control Sample	95	98
LCSD 880-28419/3-A	Lab Control Sample Dup	89	91
MB 880-28419/1-A	Method Blank	129	140 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Page 86 of 109

3

Prep Type: Total/NA

QC Sample Results

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 28399

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Project/Site: Hudson Battery Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-28399/5-A

Matrix: Solid Analysis Batch: 28415

Client: Ensolum

Analysis Batch: 28415							Prep Batch	n: 28399
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/25/22 18:16	06/27/22 10:39	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/25/22 18:16	06/27/22 10:39	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/25/22 18:16	06/27/22 10:39	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		06/25/22 18:16	06/27/22 10:39	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/25/22 18:16	06/27/22 10:39	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		06/25/22 18:16	06/27/22 10:39	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			06/25/22 18:16	06/27/22 10:39	1
1,4-Difluorobenzene (Surr)	89		70 - 130			06/25/22 18:16	06/27/22 10:39	1

Lab Sample ID: LCS 880-28399/1-A Matrix: Solid

Analysis Batch: 28415

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09940		mg/Kg		99	70 - 130	
Toluene	0.100	0.09941		mg/Kg		99	70 - 130	
Ethylbenzene	0.100	0.1040		mg/Kg		104	70 - 130	
m-Xylene & p-Xylene	0.200	0.2139		mg/Kg		107	70 - 130	
o-Xylene	0.100	0.1062		mg/Kg		106	70 - 130	

	LCS LCS								
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene (Surr)	111		70 - 130						
1,4-Difluorobenzene (Surr)	98		70 - 130						

Lab Sample ID: LCSD 880-28399/2-A

Matrix: Solid

Analysis Batch: 28415						Prep Batch: 2				
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.1047		mg/Kg		105	70 - 130	5	35	
Toluene	0.100	0.1036		mg/Kg		104	70 - 130	4	35	
Ethylbenzene	0.100	0.1083		mg/Kg		108	70 - 130	4	35	
m-Xylene & p-Xylene	0.200	0.2224		mg/Kg		111	70 - 130	4	35	
o-Xylene	0.100	0.1101		mg/Kg		110	70 - 130	4	35	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Prep Type: Total/NA

QC Sample Results

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analysis Batch: 28407	МВ	МВ								Batch:	
Analyte	Result	Qualifier	RL		Unit		D	Prepared	Analyz	ed	Dil Fac
Basoline Range Organics	<50.0	U	50.0		mg/K	g		06/27/22 08:29	06/27/22	11:37	1
GRO)-C6-C10											
Diesel Range Organics (Over	<50.0	U	50.0		mg/K	g		06/27/22 08:29	06/27/22	11:37	1
C10-C28)											
II Range Organics (Over C28-C36)	<50.0	U	50.0		mg/K	g		06/27/22 08:29	06/27/22	11:37	1
	MB	МВ									
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyz	ed	Dil Fac
-Chlorooctane	129		70 - 130				-	06/27/22 08:29			1
-Terphenyl	140	S1+	70 - 130					06/27/22 08:29	06/27/22	11:37	1
_ab Sample ID: LCS 880-28419/2-/	Α						CI	ient Sample	ID: Lab Co	ontrol Sa	ample
Matrix: Solid									Prep T	Type: To	tal/NA
Analysis Batch: 28407									Prep	Batch:	28419
			Spike	LCS	LCS				%Rec		
nalyte			Added	Result	Qualifier	Unit		D %Rec	Limits		
Basoline Range Organics			1000	1036		mg/Kg		104	70 - 130		
GRO)-C6-C10											
Diesel Range Organics (Over			1000	829.9		mg/Kg		83	70 - 130		
C10-C28)											
	LCS LCS	;									
	/ D	alifier	Limits								
Surrogate %	%Recovery Qua										
•	95		70 - 130								
-Chlorooctane			70 - 130 70 - 130								
-Chlorooctane	95										
-Chlorooctane -Terphenyl	95 98					Cli	ent \$	Sample ID: L	.ab Contro	l Sampl	e Dup
-Chlorooctane -Terphenyl -ab Sample ID: LCSD 880-28419/3	95 98					Cli	ent S	Sample ID: L		l Sampl Type: To	-
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-28419/3 Matrix: Solid	95 98					Cli	ent (Sample ID: L	Prep T		tal/NA
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-28419/3 Matrix: Solid	95 98			LCSD	LCSD	Cli	ent S	Sample ID: L	Prep T	ype: To	tal/NA
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-28419/3 Matrix: Solid Analysis Batch: 28407	95 98		70 - 130		LCSD Qualifier	Cli Unit	ent S	Sample ID: L D %Rec	Prep T Prep	ype: To	tal/NA 28419
Surrogate 9 - Chlorooctane - Terphenyl Lab Sample ID: LCSD 880-28419/3 Matrix: Solid Analysis Batch: 28407 Analyte Basoline Range Organics	95 98		70 - 130 Spike				ent S	-	Prep T Prep %Rec	Type: To Batch:	tal/NA 28419 RPD
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-28419/3 Matrix: Solid Analysis Batch: 28407 Analyte Gasoline Range Organics GRO)-C6-C10	95 98		70 - 130 Spike Added 1000	Result 1104		- Unit mg/Kg	ent \$	<u>D</u> %Rec 110	Prep T Prep %Rec Limits 70 - 130	Type: Top Batch: RPD 6	tal/NA 28419 RPD Limit 20
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-28419/3 Matrix: Solid Analysis Batch: 28407 Malyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	95 98		70 - 130 Spike Added	Result		Unit	ent \$	D %Rec	Prep 1 Prep %Rec Limits	Batch:	tal/NA 28419 RPD Limit
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-28419/3 Matrix: Solid Analysis Batch: 28407 Malyte Gasoline Range Organics GRO)-C6-C10	95 98		70 - 130 Spike Added 1000	Result 1104		- Unit mg/Kg	ent S	<u>D</u> %Rec 110	Prep T Prep %Rec Limits 70 - 130	Type: Top Batch: RPD 6	tal/NA 28419 RPD Limit 20
-Chlorooctane -Terphenyl .ab Sample ID: LCSD 880-28419/3 Matrix: Solid Analysis Batch: 28407 	95 98		70 - 130 Spike Added 1000	Result 1104		- Unit mg/Kg	ent \$	<u>D</u> %Rec 110	Prep T Prep %Rec Limits 70 - 130	Type: Top Batch: RPD 6	tal/NA 28419 RPD Limit 20
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-28419/3 Matrix: Solid Analysis Batch: 28407 malyte Basoline Range Organics GRO)-C6-C10 Hiesel Range Organics (Over H10-C28)	95 98 3-A 		70 - 130 Spike Added 1000	Result 1104		- Unit mg/Kg	ent {	<u>D</u> %Rec 110	Prep T Prep %Rec Limits 70 - 130	Type: Top Batch: RPD 6	tal/NA 28419 RPD Limit 20
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-28419/3 Matrix: Solid Analysis Batch: 28407 malyte Basoline Range Organics GRO)-C6-C10 biesel Range Organics (Over 10-C28) Surrogate	95 98 3-A 		70 - 130 Spike Added 1000	Result 1104		- Unit mg/Kg	ent (<u>D</u> %Rec 110	Prep T Prep %Rec Limits 70 - 130	Type: Top Batch: RPD 6	tal/NA 28419 RPD Limit 20
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-28419/3 Matrix: Solid Analysis Batch: 28407 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane	95 98 3-A <i>LCSD LCS</i> %Recovery Qua 89		70 - 130 Spike Added 1000 1000 Limits	Result 1104		- Unit mg/Kg	ent \$	<u>D</u> %Rec 110	Prep T Prep %Rec Limits 70 - 130	Type: Top Batch: RPD 6	tal/NA 28419 RPD Limit 20
-Chlorooctane -Terphenyl ab Sample ID: LCSD 880-28419/3 fatrix: Solid malysis Batch: 28407 nalyte asoline Range Organics GRO)-C6-C10 iesel Range Organics (Over 10-C28) urrogate 9 -Chlorooctane	95 98 3-A LCSD LCS %Recovery Qua		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1104		- Unit mg/Kg	ent S	<u>D</u> %Rec 110	Prep T Prep %Rec Limits 70 - 130	Type: Top Batch: RPD 6	tal/NA 28419 RPD Limit 20
Chlorooctane -Terphenyl ab Sample ID: LCSD 880-28419/3 Matrix: Solid Analysis Batch: 28407 malyte Fasoline Range Organics GRO)-C6-C10 iesel Range Organics (Over 10-C28) urrogate	95 98 3-A <i>LCSD LCS</i> % <i>Recovery</i> Qua 89 91	SD	70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1104		- Unit mg/Kg	ent \$	<u>D</u> %Rec 110	Prep T Prep %Rec Limits 70 - 130	Type: Top Batch: RPD 6	tal/NA 28419 RPD Limit 20
-Chlorooctane -Terphenyl ab Sample ID: LCSD 880-28419/3 Matrix: Solid Malysis Batch: 28407 malyte Basoline Range Organics GRO)-C6-C10 iesel Range Organics (Over 10-C28) urrogate -Chlorooctane -Terphenyl ethod: 300.0 - Anions, Ion C	UCSD LCS %Recovery Quan 89 91 Chromatogr	SD	70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1104		- Unit mg/Kg	ent \$	D %Rec 110 78	Prep 1 Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 6 7	tal/NA 28419 RPD Limit 20 20
Chlorooctane Terphenyl ab Sample ID: LCSD 880-28419/3 latrix: Solid malysis Batch: 28407 nalyte asoline Range Organics GRO)-C6-C10 iesel Range Organics (Over 10-C28) urrogate Chlorooctane Terphenyl	UCSD LCS %Recovery Quan 89 91 Chromatogr	SD	70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1104		- Unit mg/Kg	ent \$	D %Rec 110 78	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 6 7	tal/NA 28419 RPD Limit 20 20 20 Blank

·····,···	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			06/27/22 23:00	1

Job ID: 880-16309-1 SDG: 03D2057001 Client: Ensolum

Project/Site: Hudson Battery

QC Sample Results

Job ID: 880-16309-1 SDG: 03D2057001

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880	-28435/2-A						Client	Sample	e ID: Lab C	ontrol S	ample
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 28536											
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	258.9		mg/Kg		104	90 - 110		
- Lab Sample ID: LCSD 88	0-28435/3-A					Clier	nt Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid										Type: S	
Analysis Batch: 28536											
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	258.5		mg/Kg		103	90 _ 110	0	20
- Lab Sample ID: 880-1630	09-1 MS								Client Sa	mple ID:	: FS01
Matrix: Solid										· Type: Se	
Analysis Batch: 28536											
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	29.8		248	273.3		mg/Kg		98	90 _ 110		
- Lab Sample ID: 880-1630)9-1 MSD								Client Sa	mple ID:	FS01
Matrix: Solid										Type: S	
Analysis Batch: 28536										-	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	29.8		248	272.6		mg/Kg		98	90 - 110	0	20

Eurofins Midland

QC Association Summary

Client: Ensolum Project/Site: Hudson Battery

Job ID: 880-16309-1 SDG: 03D2057001

GC VOA

Prep Batch: 28399

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-16309-1	FS01	Total/NA	Solid	5035	
380-16309-2	FS02	Total/NA	Solid	5035	
380-16309-3	SW01	Total/NA	Solid	5035	
MB 880-28399/5-A	Method Blank	Total/NA	Solid	5035	
_CS 880-28399/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-28399/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
nalysis Batch: 28415					
nalysis Batch: 28415		Ргер Туре	Matrix	Method	Prep Batch
nalysis Batch: 28415 Lab Sample ID					Prep Batch 28399
nalysis Batch: 28415 Lab Sample ID 880-16309-1	Client Sample ID	Ргер Туре	Matrix	Method	
	Client Sample ID FS01	Prep Type Total/NA	Matrix Solid	Method 8021B	28399
nalysis Batch: 28415 Lab Sample ID 880-16309-1 880-16309-2 880-16309-3	Client Sample ID FS01 FS02	Prep Type Total/NA Total/NA	Matrix Solid Solid	Method 8021B 8021B	28399 28399
nalysis Batch: 28415 Lab Sample ID 880-16309-1 880-16309-2	Client Sample ID FS01 FS02 SW01	Prep Type Total/NA Total/NA Total/NA	Matrix Solid Solid Solid	Method 8021B 8021B 8021B 8021B	28399 28399 28399 28399

Analysis Batch: 28493

	Lab Sample ID 880-16309-1	Client Sample ID FS01	Prep Type Total/NA	Matrix Solid	Method Total BTEX	Prep Batch	
	880-16309-2	FS02	Total/NA	Solid	Total BTEX		
	880-16309-3	SW01	Total/NA	Solid	Total BTEX		
_							

GC Semi VOA

Analysis Batch: 28407

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16309-1	FS01	Total/NA	Solid	8015B NM	28419
880-16309-2	FS02	Total/NA	Solid	8015B NM	28419
880-16309-3	SW01	Total/NA	Solid	8015B NM	28419
MB 880-28419/1-A	Method Blank	Total/NA	Solid	8015B NM	28419
LCS 880-28419/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	28419
LCSD 880-28419/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	28419

Prep Batch: 28419

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16309-1	FS01	Total/NA	Solid	8015NM Prep	
880-16309-2	FS02	Total/NA	Solid	8015NM Prep	
880-16309-3	SW01	Total/NA	Solid	8015NM Prep	
MB 880-28419/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-28419/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-28419/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 28516

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16309-1	FS01	Total/NA	Solid	8015 NM	
880-16309-2	FS02	Total/NA	Solid	8015 NM	
880-16309-3	SW01	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Ensolum Project/Site: Hudson Battery Page 91 of 109

Job ID: 880-16309-1 SDG: 03D2057001

HPLC/IC

Leach Batch: 28435

each Batch: 28435					
_ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-16309-1	FS01	Soluble	Solid	DI Leach	
380-16309-2	FS02	Soluble	Solid	DI Leach	
380-16309-3	SW01	Soluble	Solid	DI Leach	
MB 880-28435/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 880-28435/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
_CSD 880-28435/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
380-16309-1 MS	FS01	Soluble	Solid	DI Leach	
380-16309-1 MSD	FS01	Soluble	Solid	DI Leach	

Analysis Batch: 28536

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-16309-1	FS01	Soluble	Solid	300.0	28435	
880-16309-2	FS02	Soluble	Solid	300.0	28435	
880-16309-3	SW01	Soluble	Solid	300.0	28435	
MB 880-28435/1-A	Method Blank	Soluble	Solid	300.0	28435	
LCS 880-28435/2-A	Lab Control Sample	Soluble	Solid	300.0	28435	
LCSD 880-28435/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	28435	
880-16309-1 MS	FS01	Soluble	Solid	300.0	28435	
880-16309-1 MSD	FS01	Soluble	Solid	300.0	28435	

Client Sample ID: FS01 Date Collected: 06/24/22 08:45

Date Received: 06/27/22 08:43

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			28399	06/27/22 09:16	EL	XEN MID
Total/NA	Analysis	8021B		1	28415	06/27/22 13:45	MR	XEN MID
Total/NA	Analysis	Total BTEX		1	28493	06/27/22 16:11	SM	XEN MID
Total/NA	Analysis	8015 NM		1	28516	06/28/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			28419	06/27/22 09:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1	28407	06/27/22 17:42	SM	XEN MID
Soluble	Leach	DI Leach			28435	06/27/22 09:56	SC	XEN MID
Soluble	Analysis	300.0		1	28536	06/27/22 23:27	SC	XEN MID

Client Sample ID: FS02

Date Collected: 06/24/22 09:05

Date Received: 06/27/22 08:43

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			28399	06/27/22 09:16	EL	XEN MID
Total/NA	Analysis	8021B		1	28415	06/27/22 14:05	MR	XEN MID
Total/NA	Analysis	Total BTEX		1	28493	06/27/22 16:11	SM	XEN MID
Total/NA	Analysis	8015 NM		1	28516	06/28/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			28419	06/27/22 09:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1	28407	06/27/22 18:04	SM	XEN MID
Soluble	Leach	DI Leach			28435	06/27/22 09:56	SC	XEN MID
Soluble	Analysis	300.0		1	28536	06/27/22 23:55	SC	XEN MID

Client Sample ID: SW01

Date Collected: 06/24/22 09:25 Date Received: 06/27/22 08:43

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			28399	06/27/22 09:16	EL	XEN MID
Total/NA	Analysis	8021B		1	28415	06/27/22 15:28	MR	XEN MID
Total/NA	Analysis	Total BTEX		1	28493	06/27/22 16:11	SM	XEN MID
Total/NA	Analysis	8015 NM		1	28516	06/28/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			28419	06/27/22 09:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1	28407	06/27/22 18:26	SM	XEN MID
Soluble	Leach	DI Leach			28435	06/27/22 09:56	SC	XEN MID
Soluble	Analysis	300.0		1	28536	06/28/22 00:04	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 880-16309-1 Matrix: Solid

Lab Sample ID: 880-16309-2

Lab Sample ID: 880-16309-3

Matrix: Solid

Matrix: Solid

Accreditation/Certification Summary

		Accieultation/C	Seruncation Summary		
Client: Ensolum				Job ID: 880-16309-1	
Project/Site: Hudson B	Battery			SDG: 03D2057001	
Laboratory: Eurof	ins Midland				
Unless otherwise noted, all a	analytes for this laboratory v	vere covered under each acc	creditation/certification below.		
Authority	I	Program	Identification Number	Expiration Date	
Texas	Ī	NELAP	T104704400-21-22	06-30-22	E
The following analytes	are included in this report,	but the laboratory is not certi	fied by the governing authority. This list ma	ay include analytes for which	5
the agency does not of					
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		
					8
					0
					9
					3
					10
					13

Eurofins Midland

Page 94 of 109

Method Summary

Client: Ensolum Project/Site: Hudson Battery Job ID: 880-16309-1 SDG: 03D2057001

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	XEN MID
otal BTEX	Total BTEX Calculation	TAL SOP	XEN MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
00.0	Anions, Ion Chromatography	MCAWW	XEN MID
035	Closed System Purge and Trap	SW846	XEN MID
015NM Prep	Microextraction	SW846	XEN MID
I Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

	5
	8
	9
1	1
1	2
	3

Client: Ensolum Project/Site: Hudson Battery Page 95 of 109

Job ID: 880-16309-1 SDG: 03D2057001

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
380-16309-1	FS01	Solid	06/24/22 08:45	06/27/22 08:43	2.5'	4
380-16309-2	FS02	Solid	06/24/22 09:05	06/27/22 08:43	0.75	
880-16309-3	SW01	Solid	06/24/22 09:25	06/27/22 08:43	0-0.25	5
						6
						8
						9
						12
						1:

Revised Date: 08/25/2020 Rev 2020.2	71									
	a sur a s		0							J
			4	40-0	ne E				0 Clan	3 N and Jones
						Ŋ.		/ NHA	malant	(I-XII VAM
DataTimo	Received by: (Signature)	(Sinnature)	Relinquished by:	Date/Time		ture)	Received by (Signature)	Rece	Signature)	Relinquished by. (Signature)
	of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ese terms will be enforced	Renco, but not analyzed. Th	ubmitted to Eurofins)	ach sample s	harge of \$5 for e	each project and a c	vill be applied to	m charge of \$85.00 w	of Eurofins Xenco. A minim
	ard terms and conditions	ntractors. It assigns standard terms and conditions	nco, its affiliates and subco	mpany to Eurofins Xe	rom client co sibility for an	urchase order f	constitutes a valid per solution to the second seco	ment of samples he cost of sample	ument and relinquish /ill be liable only for ti	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or annaces because the state of the client is and in the cost of samples and shall not assume any responsibility for any losses or annaces because the state of the client is and the cost of samples and shall not assume any responsibility for any losses or annaces because the state of the client is and the cost of samples and shall not assume any responsibility for any losses or annaces because the state of the client is and the cost of samples and shall not assume any responsibility for any losses or annaces because the state of the client is and the cost of samples and shall not assume any responsibility for any losses or annaces because the state of the client is and the cost of samples and shall not assume any responsibility for any losses or annaces because the state of the client is and the cost of samples and shall not assume any responsibility for any losses or annaces because the state of the client is and the client is an and conditions of the cost of samples and shall not assume any response to the cost of the client is an advected by the client is a state of the
7470 / 7471	Ŧ	Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	d Cr Co Cu Pb M	sb As Ba Be C	BRCRA (TCLP / SPLP 6010 BRCRA	TCLP/S	nalyzed	Metal(s) to be a	Circle Method(s) and Metal(s) to be analyzed
Sn U V Zn	K Se Ag SiO ₂ Na Sr TI	Fe Pb Mg Mn Mo	Cd Ca Cr Co Cu	o As Ba Be B		13PPM Texas 11	8RCRA 13F		200.8 / 6020:	Total 200.7 / 6010
					1					
	/					7 -				
	AFE.						/			
							/	$\left \right\rangle$		
anter:	Cost Center			* * *	<	0-1.5	6925	K K		SWD1
						0.75	0905			ES02
ē	Incident ID			XXX		2.5'	5h90 22-	21-4-24-22	2	1-201
Sample Comments	Sa			BTP TP CHI	np Cont	Depth Comp	Time Sampled	Matrix Date Sampled		Sample Identification
NaOH+Ascorbic Acid SAPC	NaOH+/			H		ഗ	Corrected Temperature.	Correcte		I otal Containers:
Zn Acetate+NaOH Zn	Zn Aceta			Ż	I	0	Temperature Reading:	(N/A/ Tempera	Yes No	Sample Custody Seals.
Na ₂ S ₂ O ₃ ; NaSO ₃	Na ₂ S ₂ O ₃			07 01 57	Pa	. 2	Correction Factor:	44	S	Cooler Custody Seals:
NaHSO4: NABIS	NaHSO4			5	iran	BUT	Thermometer ID:	P	13	Samples Received Intact.
	H ₃ PO ₄ . HP			00	nete	(Yes) No	No Wet Ice:	Yes	Temp Blank:	SAMPLE RECEIPT
	H,S0, H,					the lab, if received by 4.30pm	the lab, if rec			PO #
MeOH Me	HCI - HC				<u>≜ </u>	TAT starts the day received by	TAT starts the	EN	HADLIE GREEN	
IO DI Water H ₂ O	None NO					JA LID			4412020	Project Location
Preservative Codes	Pro Pro	IS REQUEST	ANALYS		J ^r Pres.	Turn Around		RHILERA	MOUNDA RA	
Other.			W W	Pictorio inclusion Classical Mark		A LAN				
					27	UTENAL	\neg	5	211-002-1002	
	Reporting Level II KILevel III PST/UST T TRRP	Reporting La				City, State ZIP	2 2	V JAJO	MIDLAND, TX	City, State ZIP·
		State of Project:				Address.				Address'
	Program: UST/PST PRP Brownfields RRC	Program: U	-	ENSOUM	me.	Company Name			ENSOLUM	Company Name
	9		JENNINGS	KALEI JEN	rent)	Bill to. (if different)		lings	LALE JENNINGS	Project Manager
e f f	www.xenco.com Page									
			EL Paso, 1X (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	/15) 585-3443, Lubb /5) 392-7550, Carlsb	. Paso, 1X (9) bbs, NM (57	Ξ Ξ		4	2 : :	
	880-16309 Chain of Custody		Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334	2) 704-5440, San An	land, TX (43)	Mid	9 9	्रियो प्र स् स स स स स स स		
			Houston, TX (281) 240-4200, Dailas, TX (214) 902-0300	281) 240-4200, Dall	louston, TX (I	egya K. Jo	৬০° ই,ই,উ,উ ই, ই, হ, ৫	3Fg	eurotins,

5

12 13

Curofins

Chain of Custody

14

Job Number: 880-16309-1 SDG Number: 03D2057001

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 16309 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

APPENDIX E

Final C-141

.

Released to Imaging: 7/13/2022 2:34:45 PM

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141

Page 99eof 109

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	

(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page	2
1 uge	~

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:Ramona Marcus	Date: <u>1/18/2022</u>

L48 Spill Volume Estimate Form

				Eto opin volune		
Received by OCD	: 7/7/2022/10:	3181854M ame & Number:	Hudson Battery Water Tank Pag		ge1101eof 109	
		Asset Area:			2201142906	
	Re	lease Discovery Date & Time:	1/3/2022 8:00			
		Release Type:	Produced Water			
	Provide any k	nown details about the event:	Hudson Battery Wa	ter Tank		
				Spill Calculation - Subsu	Irface Spill - Rectangle	
	Was th	he release on pad or off-pad?			See reference table	e below
Has	it rained at least a	half inch in the last 24 hours?			See reference table	e below
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ff.)	Depth (in.)	Soil Spilled-Fluid Saturation	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)
Rectangle A	17.0	15.0	13.30	10.50%	50.307	5.282
Rectangle B					0.000	0.000
Rectangle C	1				0.000	0.000
Rectangle D	1.0	1.1			0.000	0.000
Rectangle E					0.000	0.000
Rectangle F	1 12	1			0.000	0.000
Rectangle G					0.000	0.000
Rectangle H	100	1			0.000	0.000
Rectangle I	100				0.000	0.000
Released to Imagi	ing: 7/13/2022	2:34:45 PM			0.000	0.000 -
					Total Volume Release:	5.282

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	73145
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

CONDITIONS

Created By		Condition Date
rmarcus	None	1/18/2022

Page1102eof 109

Action 73145

Received by OCD: 7/7/2022 10:31:18 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 103 of 109
Incident ID	NAPP2201142906
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>50-100 (fe</u> et bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗶 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141 Page 4	State of New Mexico Oil Conservation Division	I	Incident ID District RP Facility ID Application ID	NAPP2201142906
public health or the failed to adequate	at the information given above is true and complete to the erators are required to report and/or file certain release no e environment. The acceptance of a C-141 report by the by investigate and remediate contamination that pose a the ceptance of a C-141 report does not relieve the operator of Jason Thomas	OCD does not relieve the reat to groundwater, surf	orrective actions for relea e operator of liability sho ace water, human health o liance with any other fed ager	ases which may endanger ould their operations have
	n.Thomas@mavresources.com	Telephone: 903-29	1-6513	
OCD Only Received by:		Date:		

Page 104 of 109

•

601 fo SOL Form C-141 Page 6

State of New Mexico Oil Conservation Division

Incident ID	NAPP2201142906
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.11 NMAC
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name:
OCD Only Date:
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by:

APPENDIX F

NMOCD Notifications

From:	Nobui, Jennifer, EMNRD
То:	Kalei Jennings
Cc:	Bratcher, Mike, EMNRD; Hamlet, Robert, EMNRD; Harimon, Jocelyn, EMNRD
Subject:	FW: [EXTERNAL] Maverick- Sampling Notification (Week of 06/27/22-07/01/22)
Date:	Friday, June 24, 2022 11:30:50 AM
Attachments:	image001.png image002.png image003.png image004.png

[**EXTERNAL EMAIL**]

Kalei

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thanks Jennifer Nobui

From: Enviro, OCD, EMNRD <OCD.Enviro@state.nm.us>
Sent: Thursday, June 23, 2022 3:01 PM
To: Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>; Nobui, Jennifer, EMNRD
<Jennifer.Nobui@state.nm.us>; Harimon, Jocelyn, EMNRD <Jocelyn.Harimon@state.nm.us>;
Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>
Subject: Fw: [EXTERNAL] Maverick- Sampling Notification (Week of 06/27/22-07/01/22)

From: Kalei Jennings <<u>kjennings@ensolum.com</u>>
Sent: Thursday, June 23, 2022 1:30 PM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@state.nm.us</u>>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 06/27/22-07/01/22)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Natural Resources plans to complete final sampling activities at the following sites the week of June 27, 2022.

Monday:

- Hudson 001 / NAPP2201142906
- MCA 328 / NAPP2201143320
- MCA 308 / NAPP2202535435

Tuesday:

• MCA 308 / NAPP2202535435

Wednesday:

• MCA 308 / NAPP2202535435

Thursday:

Friday:

Thank you,

Kalei Jennings Senior Scientist 817-683-2503 Ensolum, LLC

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Maverick Permian LLC	331199
1111 Bagby Street Suite 1600	Action Number:
Houston, TX 77002	123418
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved. Please note that the depth to groundwater has not been adequately determined. When nearby wells are used to determine depth to groundwater, the wells should be no further than ½ mile away from the site, and data should be no more than 25 years old. However, closure can be approved as soils were remediated to the most stringent criteria.	7/13/2022

Action 123418