

July 1, 2022

District 1 New Mexico Oil Conservation Division 1625 North French Drive Hobbs, New Mexico 88240

#### Re: Closure Request MCA 328 Incident Number NAPP2201143320 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum) on behalf of Maverick Natural Resources, LLC (Maverick), has prepared this Closure Request to document site assessment, excavation, and soil sampling activities performed at the MCA 328 flow line release (Site). The purpose of the site assessment, excavation, and soil sampling activities was to address impacts to soil resulting from a release of crude oil and produced water within the pasture area at the Site. Based on the excavation activities and analytical results from the soil sampling events, Maverick is submitting this Closure Request, describing remediation that has occurred and requesting closure for Incident Number NAPP2201143320.

#### SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit N, Section 22, Township 17 South, Range 35 East, in Lea County, New Mexico (32.816111° N, 103.4475°W) and is associated with oil and gas exploration and production operations on New Mexico State Land.

On January 6, 2022, a casing vent malfunctioned due to freezing temperatures, and resulted in a flow line release of approximately 5.04 barrels (bbls) of produced water and 0.1 bbls of crude oil onto the surrounding pasture. A vacuum truck was immediately dispatched to the Site to recover free-standing fluids; however, there were no free-standing fluids to recover. The previous operator (ConocoPhillips Company) reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on January 20, 2022. The release was assigned Incident Number NAPP2201143320.

#### SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized according to Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be between 50 feet and 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater well with depth

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 601 North Marienfeld Street | Midland, TX 79701 | ensolum.com Texas PG Firm No. 50588 | Texas PE Firm No. F-21843 Received by OCD: 7/7/2022 10:33:21 AM

MCA 328

#### **ENSOLUM**

to groundwater data is New Mexico Office of the State Engineer (NMOSE) well RA-12521, located approximately 0.2 miles southwest of the Site. The groundwater well has a reported depth to groundwater of 92 feet bgs and a total depth of 105 feet bgs. All wells used for depth to groundwater determination are presented on Figure 1. The referenced well records are included in Appendix A.

The closest continuously flowing or significant watercourse to the Site is a freshwater pond, located approximately 2,532 feet southwest of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 10,000 mg/kg

A reclamation requirement of 600 mg/kg chloride and 100 mg/kg TPH was applied to the top 4 feet of the pasture area that was impacted by the release, per NMAC 19.15.29.13.D (1) for the top 4 feet of areas that will be reclaimed following remediation.

#### SITE ASSESSMENT AND EXCAVATION ACTIVITIES AND LABORATORY ANALYTICAL RESULTS

On June 28, 2022, Ensolum personnel were at the Site to oversee site assessment and excavation activities based on information provided on the Form C-141 and visible surface staining observed in the pasture release area. Four lateral delineation soil samples (SS01 through SS04) were collected around the visible release extent at a depth of 0.5 feet bgs to confirm the lateral extent of the release.

Stained soil was excavated from the release area as indicated by visible staining and field screening activities. Excavation activities were performed via hand shoveling and back-hoe. To direct excavation activities, soil was field screened for volatile aromatic hydrocarbons utilizing a calibrated photoionization detector (PID) and chloride using Hach<sup>®</sup> chloride QuanTab<sup>®</sup> test strips. The excavation was completed to depths ranging from 1-foot to 3 feet bgs. Photographic documentation is included in Appendix B.

Following removal of stained soil, 5-point composite soil samples were collected every 200 square feet from the floor and sidewalls of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 through FS03 were collected from the floor of the excavation at depths ranging from 1-foot to 3 feet bgs. Due to the shallow 1-foot depth of the northern portion of the excavation, soil from the sidewalls was incorporated into the floor samples. Composite soil sample SW01 was collected from the sidewalls of the southern portion of the excavation from depths ranging from the ground surface to 3 feet bgs. The release extent, delineation soil sample locations, and excavation soil samples locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2.

MCA 328

#### **ENSOLUM**

The delineation and excavation soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

The excavation measured approximately 500 square feet in aerial extent. A total of approximately 40 cubic yards of impacted soil was removed during the excavation activities. The impacted soil was transported and properly disposed of at the R360 Disposal Facility in Hobbs, New Mexico. After completion of confirmation sampling, the excavation was secured with fencing.

Laboratory analytical results for excavation floor samples FS01 through FS03, excavation sidewall sample SW01, and lateral delineation soil samples SS01 through SS04 indicated benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Site Closure Criteria and compliant with the reclamation requirements. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Appendix C.

#### **CLOSURE REQUEST**

Site assessment and excavation activities were conducted at the Site to address the January 6, 2022, release of produced water and crude oil. Laboratory analytical results for the excavation soil samples indicated benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Site Closure Criteria and compliant with the reclamation requirements. Additionally, the release was laterally delineated to the most stringent Table 1 Closure Criteria. Based on the soil sample analytical results, no further remediation was required. Maverick will backfill the excavation with material purchased locally and recontoured the Site to match pre-existing site conditions. The disturbed pasture area will be re-seeded with an approved BLM seed mixture.

Excavation of impacted soil has mitigated impacts at this Site. Depth to groundwater has been estimated to be greater than 50 feet bgs and no sensitive receptors were identified near the release extent. Maverick believes these remedial actions are protective of human health, the environment, and groundwater and respectfully requests closure for Incident Number NAPP2201143320. The Final C-141 is included in Appendix D.

If you have any questions or comments, please contact Ms. Kalei Jennings at (817) 683-2503 or kjennings@ensolum.com.

Sincerely, Ensolum, LLC

Jennings

Kalei Jennings Senior Scientist

Dan Moir Senior Managing Scientist

cc: Thomas Haigood, Maverick Natural Resources New Mexico State Land Office MCA 328

E ENSOLUM

#### Appendices:

| Figure 1   | Site Receptor Map                                              |
|------------|----------------------------------------------------------------|
| Figure 2   | Excavation and Delineation Soil Sample Locations               |
| Table 1    | Soil Sample Analytical Results                                 |
| Appendix A | Referenced Well Records                                        |
| Appendix B | Photographic Log                                               |
| Appendix C | Laboratory Analytical Reports & Chain-of-Custody Documentation |
| Appendix D | Final C-141                                                    |
| Appendix E | NMOCD Notifications                                            |

.



FIGURES

.

Received by OCD: 7/7/2022 10:33:21 AM



Released to Imaging: 7/13/2022 5:10:23 PM





### TABLES

•

Released to Imaging: 7/13/2022 5:10:23 PM

### **E** ENSOLUM

|                  |                  |                            |                    | Maverio               | TABLE 1<br>PLE ANALYTIC/<br>MCA 328<br>Sk Natural Resource<br>County, New Me | rces, LLC          |                    |                    |                      |                     |
|------------------|------------------|----------------------------|--------------------|-----------------------|------------------------------------------------------------------------------|--------------------|--------------------|--------------------|----------------------|---------------------|
| Sample I.D.      | Sample<br>Date   | Sample Depth<br>(feet bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg) | TPH GRO<br>(mg/kg)                                                           | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | GRO+DRO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |
| NMOCD Table 1 Cl | osure Criteria ( | NMAC 19.15.29)             | 10                 | 50                    | NE                                                                           | NE                 | NE                 | 1,000              | 2,500                | 10,000              |
|                  |                  | •                          |                    | De                    | lineation Soil Sam                                                           | ples               | •                  |                    | •                    |                     |
| SS01             | 06/28/2022       | 0.5                        | <0.00200           | <0.00399              | <49.9                                                                        | <49.9              | <49.9              | <49.9              | <49.9                | 10.0*               |
| SS02             | 06/28/2022       | 0.5                        | <0.00199           | <0.00398              | <49.9                                                                        | <49.9              | <49.9              | <49.9              | <49.9                | 14.7*               |
| SS03             | 06/28/2022       | 0.5                        | <0.00200           | <0.00399              | <50.0                                                                        | <50.0              | <50.0              | <50.0              | <50.0                | 11.8*               |
| SS04             | 06/28/2022       | 0.5                        | <0.00200           | <0.00401              | <49.9                                                                        | <49.9              | <49.9              | <49.9              | <49.9                | 16.9*               |
|                  |                  |                            |                    | Excav                 | ation Floor Soil S                                                           | amples             |                    |                    |                      |                     |
| FS01             | 06/28/2022       | 1                          | <0.00200           | <0.00401              | <50.0                                                                        | 71.1               | <50.0              | 71.1               | 71.1                 | 21.8*               |
| FS02             | 06/28/2022       | 1                          | <0.00202           | <0.00404              | <49.9                                                                        | <49.9              | <49.9              | <49.9              | <49.9                | 554*                |
| FS03             | 06/28/2022       | 3                          | <0.00202           | <0.00404              | <50.0                                                                        | <50.0              | <50.0              | <50.0              | <50.0                | 15.7*               |
|                  |                  |                            |                    | Excava                | tion Sidewall Soil                                                           | Samples            |                    |                    |                      |                     |
| SW01             | 06/28/2022       | 0-3                        | <0.00200           | <0.00399              | <49.9                                                                        | <49.9              | <49.9              | <49.9              | <49.9                | 199*                |

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

ORO: Oil Range Organics TPH: Total Petroleum Hydrocarbon

GRO: Gasoline Range Organics DRO: Diesel Range Organics

standard where applicable.

Concentrations in bold exceed the NMOCD Table 1 Closure Criteria or reclamation "\* indicates sample was collected in area to be reclaimed after remediation is complete; reclamation standard for chloride in the top 4 feet is 600 mg/kg"



### APPENDIX A

**Referenced Well Records** 

Released to Imaging: 7/13/2022 5:10:23 PM

|                       |                         | Nei    |               | ico Offico<br><b>er Rig</b>          | •                  |              |                  | 0           | r           |
|-----------------------|-------------------------|--------|---------------|--------------------------------------|--------------------|--------------|------------------|-------------|-------------|
| തി                    | WR File Number:         | RA 125 | 21            | Subbasin:                            | RA                 | Cross Ref    | erence:          | -           |             |
|                       | <b>Primary Purpose:</b> | MON    | MONITOR       | ING WELL                             |                    |              |                  |             |             |
| <u>get image list</u> | Primary Status:         | PMT    | PERMIT        |                                      |                    |              |                  |             |             |
|                       | <b>Total Acres:</b>     |        |               | Subfile:                             | -                  |              |                  | Header:     | -           |
|                       | <b>Total Diversion:</b> | 0      |               | Cause/Case                           | : -                |              |                  |             |             |
|                       | <b>Owner:</b>           | PHILLI | PS 66         |                                      |                    |              |                  |             |             |
|                       | Contact:                | BECKY  | HESSLEN       |                                      |                    |              |                  |             |             |
| Documents             | s on File               |        | <u> </u>      |                                      |                    |              |                  |             |             |
|                       | Trn # Doc File          | /Act   | Status<br>1 2 | Transaction Desc                     |                    | From/<br>To  | Acres            | Diversion   | Consumptive |
| images get            | 609310 EXPL 2017-       |        | PMT LOG       | RA 12521 POD1                        |                    | Т            | 0                | 0           |             |
| Current Po            | x<br>bints of Diversion |        | 0             | (1                                   | NAD83 UTN          | 1 in meters) |                  |             |             |
|                       | Number Well<br>521 POD1 |        |               | <b>24Sec Tws Rng</b><br>4 21 17S 32E | <b>X</b><br>615127 | Y<br>3631271 | Other I<br>MW-24 | Location De | 5C          |

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/23/22 12:35 PM

WATER RIGHT SUMMARY



## New Mexico Office of the State Engineer Point of Diversion Summary

|                  |       |                       | <b>`</b> 1 |          |        | =NE 3=S<br>to larges | W 4=SE)<br>t) | (NAD83 U   | ΓM in meters)  |         |
|------------------|-------|-----------------------|------------|----------|--------|----------------------|---------------|------------|----------------|---------|
| Well Tag         | POD   | Number                | •••        |          |        | c Tws                | ·             | X          | Y              |         |
|                  | RA    | 12521 POD1            | 3          | 3 4      | 4 21   | 17S                  | 32E           | 615127     | 3631271 🧧      |         |
| x<br>Driller Lic | ense: | 1456                  | Drille     | r Comp   | oany:  | WI                   | IITE DR       | ILLING CO  | OMPANY         |         |
| Driller Na       | me:   | WHITE, JOHN W         |            |          |        |                      |               |            |                |         |
| Drill Start      | Date: | 07/21/2017            | Drill I    | Finish I | Date:  | 0                    | 7/26/201      | 7 Plu      | ıg Date:       |         |
| Log File D       | ate:  | 08/22/2017            | PCW        | Rev Da   | te:    |                      |               | So         | urce:          | Shallow |
| Ритр Тур         | e:    |                       | Pipe I     | Dischar  | ge Siz | e:                   |               | Est        | timated Yield: |         |
| Casing Siz       | æ:    | 2.00                  | Depth      | Well:    |        | 1                    | 05 feet       | De         | pth Water:     | 92 feet |
| х                | Wate  | er Bearing Stratifica | tions:     | ,        | Гор    | Botton               | Descri        | iption     |                |         |
|                  |       |                       |            |          | 85     | 101                  | Sandst        | one/Gravel | /Conglomerate  |         |
|                  |       |                       |            |          | 101    | 105                  | 5 Sandst      | one/Gravel | /Conglomerate  |         |
| X                |       | Casing Perfor         | ations:    | ,        | Гор    | Botton               | l             |            |                |         |
|                  |       |                       |            |          | 75     | 105                  | 5             |            |                |         |

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

2/23/22 12:36 PM

POINT OF DIVERSION SUMMARY



USGS Home Contact USGS Search USGS

#### **National Water Information System: Web Interface**

| USGS Water Resources | (Cooperator Access) | Da | ata Category:    |              | Geographic Area: |              |    |
|----------------------|---------------------|----|------------------|--------------|------------------|--------------|----|
|                      | (cooperator Access) | S  | Site Information | $\checkmark$ | United States    | $\checkmark$ | GO |

#### Click to hideNews Bulletins

- Explore the *NEW* <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

### USGS 324954103420301 17S.33E.18.322332

Available data for this site SUMMARY OF ALL AVAILABLE DATA 🗸 🛛 GO

### **Well Site**

#### **DESCRIPTION:**

Latitude 32°49'59", Longitude 103°42'15" NAD27 Lea County, New Mexico , Hydrologic Unit 13060011 Well depth: 220 feet Land surface altitude: 4,224.00 feet above NGVD29. Well completed in "High Plains aquifer" (N100HGHPLN) national aquifer. Well completed in "Ogallala Formation" (1210GLL) local aquifer

#### AVAILABLE DATA:

| Data Type                            | <b>Begin Date</b> | End Date        | Count    |
|--------------------------------------|-------------------|-----------------|----------|
| Field groundwater-level measurements | 1961-03-13        | 1986-03-26      | 4        |
| Revisions                            | Unavailable (     | site:0) (timese | eries:0) |

#### OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to <u>New Mexico Water Science Center Water-Data Inquiries</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory?agency\_code=USGS&site\_no=324954103420301

Page Contact Information: <u>New Mexico Water Data Support Team</u> Page Last Modified: 2022-02-23 14:15:33 EST 0.26 0.25 caww02







APPENDIX B

Photographic Log

#### Photographic Log

Maverick Natural Resources MCA 328 Incident Number NAPP2201143320



Photograph 1 Date: June 28, 2022 Description: View of release area prior to excavation activities.

**E** ENSOLUM



Photograph 2 Date: June 28, 2022 Description: View of release area prior to excavation activities.





APPENDIX C

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 7/7/2022 10:33:21 AM

LINKS

Review your project results through

EOL

**Have a Question?** 

www.eurofinsus.com/Env

Released to Imaging: 7/13/2022 5:10:23 PM

Visit us at:

Ask— The Expert

# 🛟 eurofins | \_

## Environment Testing America

### **ANALYTICAL REPORT**

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

#### Laboratory Job ID: 890-2482-1

Laboratory Sample Delivery Group: 0302057003 Client Project/Site: MCA 328

#### For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Kalei Jennings

RAMER

Authorized for release by: 6/30/2022 3:50:51 PM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Page 21 of 75

## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Client Sample Results  | 5  |
| Surrogate Summary      | 8  |
| QC Sample Results      | 9  |
| QC Association Summary | 13 |
| Lab Chronicle          | 15 |
| Certification Summary  | 16 |
| Method Summary         | 17 |
| Sample Summary         | 18 |
| Chain of Custody       | 19 |
| Receipt Checklists     | 20 |
|                        |    |

Page 22 of 75

|                                     | Definitions/Glossary                                                                                        |                                       | 1 |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------|---|
| Client: Ensolum<br>Project/Site: M0 |                                                                                                             | Job ID: 890-2482-1<br>SDG: 0302057003 | 2 |
| Qualifiers                          |                                                                                                             |                                       | 3 |
| GC VOA                              |                                                                                                             |                                       |   |
| Qualifier                           | Qualifier Description                                                                                       |                                       |   |
| F1                                  | MS and/or MSD recovery exceeds control limits.                                                              |                                       |   |
| U                                   | Indicates the analyte was analyzed for but not detected.                                                    |                                       | 5 |
| GC Semi VOA                         |                                                                                                             |                                       |   |
| Qualifier                           | Qualifier Description                                                                                       |                                       |   |
| U                                   | Indicates the analyte was analyzed for but not detected.                                                    |                                       |   |
| HPLC/IC                             |                                                                                                             |                                       |   |
| Qualifier                           | Qualifier Description                                                                                       |                                       |   |
| <u>U</u>                            | Indicates the analyte was analyzed for but not detected.                                                    |                                       | 5 |
|                                     | · · ·                                                                                                       |                                       |   |
| Glossary                            |                                                                                                             |                                       | 9 |
| Abbreviation                        | These commonly used abbreviations may or may not be present in this report.                                 |                                       |   |
| ¤                                   | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |                                       |   |
| %R                                  | Percent Recovery                                                                                            |                                       |   |
| CFL                                 | Contains Free Liquid                                                                                        |                                       |   |
| CFU                                 | Colony Forming Unit                                                                                         |                                       |   |
| CNF                                 | Contains No Free Liquid                                                                                     |                                       |   |
| DER                                 | Duplicate Error Ratio (normalized absolute difference)                                                      |                                       |   |
| Dil Fac                             | Dilution Factor                                                                                             |                                       |   |
| DL                                  | Detection Limit (DoD/DOE)                                                                                   |                                       | 1 |
| DL, RA, RE, IN                      | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |                                       |   |
| DLC                                 | Decision Level Concentration (Radiochemistry)                                                               |                                       |   |
| EDL                                 | Estimated Detection Limit (Dioxin)                                                                          |                                       |   |
| LOD                                 | Limit of Detection (DoD/DOE)                                                                                |                                       |   |
| LOQ<br>MCL                          | Limit of Quantitation (DoD/DOE)<br>EPA recommended "Maximum Contaminant Level"                              |                                       |   |
| MDA                                 | Minimum Detectable Activity (Radiochemistry)                                                                |                                       |   |
| MDC                                 | Minimum Detectable Concentration (Radiochemistry)                                                           |                                       |   |
| MDL                                 | Method Detection Limit                                                                                      |                                       |   |
| ML                                  | Minimum Level (Dioxin)                                                                                      |                                       |   |
| MPN                                 | Most Probable Number                                                                                        |                                       |   |
| MQL                                 | Method Quantitation Limit                                                                                   |                                       |   |
| NC                                  | Not Calculated                                                                                              |                                       |   |
| ND                                  | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |                                       |   |
| NEG                                 | Negative / Absent                                                                                           |                                       |   |
| POS                                 | Positive / Present                                                                                          |                                       |   |
| PQL                                 | Practical Quantitation Limit                                                                                |                                       |   |
| PRES                                | Presumptive                                                                                                 |                                       |   |
| QC                                  | Quality Control                                                                                             |                                       |   |
| RER                                 | Relative Error Ratio (Radiochemistry)                                                                       |                                       |   |
| RL                                  | Reporting Limit or Requested Limit (Radiochemistry)                                                         |                                       |   |
| RPD                                 | Relative Percent Difference, a measure of the relative difference between two points                        |                                       |   |
| TEF                                 | Toxicity Equivalent Factor (Dioxin)                                                                         |                                       |   |
|                                     |                                                                                                             |                                       |   |
| TEQ                                 | Toxicity Equivalent Quotient (Dioxin)                                                                       |                                       |   |

.

Project/Site: MCA 328

Job ID: 890-2482-1 SDG: 0302057003

#### Job ID: 890-2482-1

#### Laboratory: Eurofins Carlsbad

#### Narrative

Job Narrative 890-2482-1

#### Receipt

The samples were received on 6/28/2022 4:34 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 29.0°C

#### GC VOA

Method 8021B: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for preparation batch 880-28678 and analytical batch 880-28710 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

Job ID: 890-2482-1 SDG: 0302057003

#### **Client Sample ID: FS01**

Client: Ensolum

Project/Site: MCA 328

#### Lab Sample ID: 890-2482-1 ....

| : Compounds (        | (GC)                      |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|---------------------------|-------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                           | RL                                                                      | Unit                                                   | D                                                                   | Prepared                                                                      | Analyzed                                                                                       | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <0.00200             | U                         | 0.00200                                                                 | mg/Kg                                                  |                                                                     | 06/29/22 15:01                                                                | 06/30/22 12:51                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.00200             | U                         | 0.00200                                                                 | mg/Kg                                                  |                                                                     | 06/29/22 15:01                                                                | 06/30/22 12:51                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.00200             | U                         | 0.00200                                                                 | mg/Kg                                                  |                                                                     | 06/29/22 15:01                                                                | 06/30/22 12:51                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.00401             | U                         | 0.00401                                                                 | mg/Kg                                                  |                                                                     | 06/29/22 15:01                                                                | 06/30/22 12:51                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.00200             | U                         | 0.00200                                                                 | mg/Kg                                                  |                                                                     | 06/29/22 15:01                                                                | 06/30/22 12:51                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.00401             | U                         | 0.00401                                                                 | mg/Kg                                                  |                                                                     | 06/29/22 15:01                                                                | 06/30/22 12:51                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| %Recovery            | Qualifier                 | Limits                                                                  |                                                        |                                                                     | Prepared                                                                      | Analyzed                                                                                       | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 105                  |                           | 70 - 130                                                                |                                                        |                                                                     | 06/29/22 15:01                                                                | 06/30/22 12:51                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100                  |                           | 70 - 130                                                                |                                                        |                                                                     | 06/29/22 15:01                                                                | 06/30/22 12:51                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calculation          |                           |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Result               | Qualifier                 | RL                                                                      | Unit                                                   | D                                                                   | Prepared                                                                      | Analyzed                                                                                       | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <0.00401             | U                         | 0.00401                                                                 | mg/Kg                                                  |                                                                     |                                                                               | 06/30/22 15:11                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Organics (DR         | O) (GC)                   |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Result               | Qualifier                 | RL                                                                      | Unit                                                   | D                                                                   | Prepared                                                                      | Analyzed                                                                                       | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 71.1                 |                           | 50.0                                                                    | mg/Kg                                                  |                                                                     |                                                                               | 06/30/22 15:56                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| je Organics (D       | RO) (GC)                  |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Result               | Qualifier                 | RL                                                                      | Unit                                                   | D                                                                   | Prepared                                                                      | Analyzed                                                                                       | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <50.0                | U                         | 50.0                                                                    | mg/Kg                                                  |                                                                     | 06/30/22 11:00                                                                | 06/30/22 15:01                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 71.1                 |                           | 50.0                                                                    | mg/Kg                                                  |                                                                     | 06/30/22 11:00                                                                | 06/30/22 15:01                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <50.0                | U                         | 50.0                                                                    | mg/Kg                                                  |                                                                     | 06/30/22 11:00                                                                | 06/30/22 15:01                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| %Recovery            | Qualifier                 | Limits                                                                  |                                                        |                                                                     | Prepared                                                                      | Analyzed                                                                                       | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 89                   |                           | 70 - 130                                                                |                                                        |                                                                     | 06/30/22 11:00                                                                | 06/30/22 15:01                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 98                   |                           | 70 - 130                                                                |                                                        |                                                                     | 06/30/22 11:00                                                                | 06/30/22 15:01                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| matography -         | Soluble                   |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Result               | Qualifier                 | RL                                                                      | Unit                                                   | D                                                                   | Prepared                                                                      | Analyzed                                                                                       | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 21.8                 |                           | 4.97                                                                    | mg/Kg                                                  |                                                                     |                                                                               | 06/30/22 14:58                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                           |                                                                         |                                                        |                                                                     | Lab Sar                                                                       | nple ID: 890-                                                                                  | 2482-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                           |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                | x: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |                           |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                           |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                           |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                           |                                                                         | 1114                                                   | _                                                                   | December                                                                      | Ameliand                                                                                       | D!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                           |                                                                         |                                                        | <u> </u>                                                            |                                                                               |                                                                                                | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                           |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                           |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                           |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                           |                                                                         |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <0.00404<br><0.00202 |                           | 0.00404<br>0.00202                                                      | mg/Kg<br>mg/Kg                                         |                                                                     | 06/29/22 15:01<br>06/29/22 15:01                                              | 06/30/22 13:11<br>06/30/22 13:11                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | Result           <0.00200 | 100         Calculation         Result       Qualifier         <0.00401 | Result         Qualifier         RL           <0.00200 | Result         Qualifier         RL         Unit           <0.00200 | Result         Qualifier         RL         Unit         D           <0.00200 | Result         Qualifier         RL         Unit         D         Prepared           <0.00200 | Result         Qualifier         RL         Unit         D         Prepared         Analyzed           -0.00200         U         0.00200         mg/Kg         06/29/22 15:01         06/30/22 12:51           -0.00200         U         0.00200         mg/Kg         06/29/22 15:01         06/30/22 12:51           -0.00401         U         0.00401         mg/Kg         06/29/22 15:01         06/30/22 12:51           -100         70.130         D         Prepared         Analyzed           -0.00401         0.00401         mg/Kg         D         Prepared         Analyzed |

o-Xylene Xylenes, Total <0.00404 U 0.00404 06/29/22 15:01 mg/Kg 06/30/22 13:11 1 %Recovery Qualifier Limits Prepared Surrogate Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 100 70 - 130 06/29/22 15:01 06/30/22 13:11 1

**Eurofins Carlsbad** 

#### **Client Sample Results**

Job ID: 890-2482-1 SDG: 0302057003

### Lab Sample ID: 890-2482-2

Matrix: Solid

5

**Client Sample ID: FS02** Date Collected: 06/28/22 14:00 Date Received: 06/28/22 16:34

Sample Depth: 1'

Client: Ensolum

Project/Site: MCA 328

| %Recovery     | Qualifier                                                    | Limits                                                                 |                                                                                                          |                                                                                                                       | Prepared                                                                                                                        | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dil Fac                                                                                                                                                                                                         |
|---------------|--------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 96            |                                                              | 70 - 130                                                               |                                                                                                          |                                                                                                                       | 06/29/22 15:01                                                                                                                  | 06/30/22 13:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                               |
| Calculation   |                                                              |                                                                        |                                                                                                          |                                                                                                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 |
| Result        | Qualifier                                                    | RL                                                                     | Unit                                                                                                     | D                                                                                                                     | Prepared                                                                                                                        | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dil Fac                                                                                                                                                                                                         |
| <0.00404      | U                                                            | 0.00404                                                                | mg/Kg                                                                                                    |                                                                                                                       |                                                                                                                                 | 06/30/22 15:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |
| Organics (DR  | O) (GC)                                                      |                                                                        |                                                                                                          |                                                                                                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 |
| Result        | Qualifier                                                    | RL                                                                     | Unit                                                                                                     | D                                                                                                                     | Prepared                                                                                                                        | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dil Fa                                                                                                                                                                                                          |
| <49.9         | U                                                            | 49.9                                                                   | mg/Kg                                                                                                    |                                                                                                                       |                                                                                                                                 | 06/30/22 15:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                               |
| e Organics (D | RO) (GC)                                                     |                                                                        |                                                                                                          |                                                                                                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 |
|               |                                                              | RL                                                                     | Unit                                                                                                     | D                                                                                                                     | Prepared                                                                                                                        | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dil Fa                                                                                                                                                                                                          |
| <49.9         | U                                                            | 49.9                                                                   | mg/Kg                                                                                                    |                                                                                                                       | 06/30/22 11:00                                                                                                                  | 06/30/22 15:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |
| <49.9         | U                                                            | 49.9                                                                   | mg/Kg                                                                                                    |                                                                                                                       | 06/30/22 11:00                                                                                                                  | 06/30/22 15:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |
| <49.9         | U                                                            | 49.9                                                                   | mg/Kg                                                                                                    |                                                                                                                       | 06/30/22 11:00                                                                                                                  | 06/30/22 15:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |
| %Recovery     | Qualifier                                                    | Limits                                                                 |                                                                                                          |                                                                                                                       | Prepared                                                                                                                        | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dil Fa                                                                                                                                                                                                          |
| 89            |                                                              | 70 - 130                                                               |                                                                                                          |                                                                                                                       | 06/30/22 11:00                                                                                                                  | 06/30/22 15:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |
| 99            |                                                              | 70 - 130                                                               |                                                                                                          |                                                                                                                       | 06/30/22 11:00                                                                                                                  | 06/30/22 15:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                               |
| matography -  | Soluble                                                      |                                                                        |                                                                                                          |                                                                                                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 |
| Result        | Qualifier                                                    | RL                                                                     | Unit                                                                                                     | D                                                                                                                     | Prepared                                                                                                                        | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dil Fac                                                                                                                                                                                                         |
| 554           |                                                              | 4.99                                                                   | mg/Kg                                                                                                    |                                                                                                                       |                                                                                                                                 | 06/30/22 15:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                               |
|               |                                                              |                                                                        |                                                                                                          |                                                                                                                       | Lab Sar                                                                                                                         | nple ID: 890-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2482-3                                                                                                                                                                                                          |
|               |                                                              |                                                                        |                                                                                                          |                                                                                                                       |                                                                                                                                 | Matri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x: Solic                                                                                                                                                                                                        |
|               |                                                              |                                                                        |                                                                                                          |                                                                                                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 |
|               | 96           Calculation           Result           <0.00404 | 96         Calculation         Result       Qualifier         <0.00404 | 96         70 - 130           Calculation         Result         Qualifier         RL           <0.00404 | 96         70 - 130           Calculation         Result         Qualifier         RL         Unit           <0.00404 | 96         70 - 130           Calculation         Result         Qualifier         RL         Unit         D           <0.00404 | $\overline{96}$ $\overline{70.130}$ $\overline{06/29/22}$ 15.01CalculationResultQualifierRLUnitDPrepared $<0.00404$ $\overline{U}$ $0.00404$ $\overline{mg/Kg}$ $\overline{D}$ PreparedOrganics (DRO) (GC)ResultQualifierRLUnitDPrepared $<49.9$ $\overline{U}$ $49.9$ $\overline{mg/Kg}$ $\overline{D}$ Preparede Organics (DRO) (GC)ResultQualifierRLUnitDPrepared $<49.9$ $\overline{U}$ $49.9$ $\overline{mg/Kg}$ $\overline{D}$ Prepared $<49.9$ $\overline{U}$ $49.9$ $mg/Kg$ $06/30/22$ 11:00 $<60/22 11:00$ $99$ $70.130$ $06/30/22$ 11:00 $matography - Soluble$ $Result$ $Qualifier$ $RL$ $Unit$ $D$ $Result$ $Qualifier$ $RL$ $4.99$ $mg/Kg$ $D$ | 96         70 - 130         06/29/22 15:01         06/30/22 13:11           Calculation         Result         Qualifier         RL         Unit         D         Prepared         Analyzed           <0.00404 |

| Method: 8021B - Volatile Orgar      | nic Compounds ( | (GC)      |          |       |   |                |                |         |
|-------------------------------------|-----------------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                             | Result          | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                             | <0.00200        | U         | 0.00200  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 13:32 | 1       |
| Toluene                             | <0.00200        | U         | 0.00200  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 13:32 | 1       |
| Ethylbenzene                        | <0.00200        | U         | 0.00200  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 13:32 | 1       |
| m-Xylene & p-Xylene                 | <0.00399        | U         | 0.00399  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 13:32 | 1       |
| o-Xylene                            | <0.00200        | U         | 0.00200  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 13:32 | 1       |
| Xylenes, Total                      | <0.00399        | U         | 0.00399  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 13:32 | 1       |
| Surrogate                           | %Recovery       | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)         | 100             |           | 70 - 130 |       |   | 06/29/22 15:01 | 06/30/22 13:32 | 1       |
| 1,4-Difluorobenzene (Surr)          | 100             |           | 70 - 130 |       |   | 06/29/22 15:01 | 06/30/22 13:32 | 1       |
| –<br>Method: Total BTEX - Total BTI | EX Calculation  |           |          |       |   |                |                |         |
| Analyte                             | Result          | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                          | <0.00399        | U         | 0.00399  | mg/Kg |   |                | 06/30/22 15:11 | 1       |
| –<br>Method: 8015 NM - Diesel Rang  | ge Organics (DR | O) (GC)   |          |       |   |                |                |         |
| Analyte                             | Result          | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                           | <49.9           | U         | 49.9     | mg/Kg |   |                | 06/30/22 15:56 | 1       |

Eurofins Carlsbad

#### **Client Sample Results**

Job ID: 890-2482-1 SDG: 0302057003

Matrix: Solid

5

Lab Sample ID: 890-2482-3

#### Client Sample ID: SW01

Date Collected: 06/28/22 14:45 Date Received: 06/28/22 16:34

#### /22 14:45 /22 16:34

Sample Depth: 0-3'

Project/Site: MCA 328

Client: Ensolum

| <br>Method: 8015B NM - Diesel Rang | ge Organics (D | RO) (GC)                          |          |       |   |                |                |              |
|------------------------------------|----------------|-----------------------------------|----------|-------|---|----------------|----------------|--------------|
| Analyte                            | Result         | Qualifier                         | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac      |
| Gasoline Range Organics            | <49.9          | U                                 | 49.9     | mg/Kg |   | 06/30/22 11:00 | 06/30/22 15:45 | 1            |
| (GRO)-C6-C10                       |                |                                   |          |       |   |                |                |              |
| Diesel Range Organics (Over        | <49.9          | U                                 | 49.9     | mg/Kg |   | 06/30/22 11:00 | 06/30/22 15:45 | 1            |
| C10-C28)                           |                |                                   |          |       |   |                |                |              |
| Oll Range Organics (Over C28-C36)  | <49.9          | U                                 | 49.9     | mg/Kg |   | 06/30/22 11:00 | 06/30/22 15:45 | 1            |
| Surrogate                          | %Recovery      | Qualifier                         | Limits   |       |   | Prepared       | Analyzed       | Dil Fac      |
| 1-Chlorooctane                     | 87             |                                   | 70 - 130 |       |   | 06/30/22 11:00 | 06/30/22 15:45 | 1            |
| o-Terphenyl                        | 93             |                                   | 70 - 130 |       |   | 06/30/22 11:00 | 06/30/22 15:45 | 1            |
| _ , ,                              |                |                                   | 10 - 100 |       |   | 00,00,22 11.00 | 00/00/22 10.40 | 1            |
| Method: 300.0 - Anions, Ion Chro   |                | Soluble                           | 70 - 700 |       |   | 00,00,22 11.00 | 00/00/22 10.40 | 1            |
|                                    | omatography -  | <mark>Soluble</mark><br>Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | ,<br>Dil Fac |

#### Surrogate Summary

Client: Ensolum Project/Site: MCA 328

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Lab Sample ID Client Sample ID (70-130) (70-130) 880-16436-A-31-C MS Matrix Spike 101 99 880-16436-A-31-D MSD Matrix Spike Duplicate 109 91 890-2482-1 FS01 105 100 FS02 890-2482-2 100 96 890-2482-3 SW01 100 100 Lab Control Sample LCS 880-28678/1-A 99 97 LCSD 880-28678/2-A Lab Control Sample Dup 99 95 MB 880-28678/5-A Method Blank 101 98 Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance |
|---------------------|------------------------|----------|----------|----------------------------------------|
|                     |                        | 1CO1     | OTPH1    |                                        |
| ab Sample ID        | Client Sample ID       | (70-130) | (70-130) |                                        |
| 30-16373-A-21-C MS  | Matrix Spike           | 100      | 96       |                                        |
| 80-16373-A-21-D MSD | Matrix Spike Duplicate | 99       | 99       |                                        |
| 390-2482-1          | FS01                   | 89       | 98       |                                        |
| 90-2482-2           | FS02                   | 89       | 99       |                                        |
| 90-2482-3           | SW01                   | 87       | 93       |                                        |
| CS 880-28614/2-A    | Lab Control Sample     | 79       | 75       |                                        |
| CSD 880-28614/3-A   | Lab Control Sample Dup | 82       | 83       |                                        |
| B 880-28614/1-A     | Method Blank           | 111      | 125      |                                        |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

**Eurofins Carlsbad** 

Page 27 of 75

#### Job ID: 890-2482-1 SDG: 0302057003

Prep Type: Total/NA

Prep Type: Total/NA 6

#### **QC Sample Results**

Project/Site: MCA 328

#### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-28678/ | 5-A          |           |          |       |   | Client Sa      | mple ID: Metho | d Blank         |
|------------------------------|--------------|-----------|----------|-------|---|----------------|----------------|-----------------|
| Matrix: Solid                |              |           |          |       |   |                | Prep Type: 1   | fotal/NA        |
| Analysis Batch: 28710        |              |           |          |       |   |                | Prep Batch     | 1: <b>28678</b> |
| -                            | MB           | МВ        |          |       |   |                | -              |                 |
| Analyte                      | Result       | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac         |
| Benzene                      | <0.00200     | U         | 0.00200  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 12:01 | 1               |
| Toluene                      | <0.00200     | U         | 0.00200  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 12:01 | 1               |
| Ethylbenzene                 | <0.00200     | U         | 0.00200  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 12:01 | 1               |
| m-Xylene & p-Xylene          | <0.00400     | U         | 0.00400  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 12:01 | 1               |
| o-Xylene                     | <0.00200     | U         | 0.00200  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 12:01 | 1               |
| Xylenes, Total               | <0.00400     | U         | 0.00400  | mg/Kg |   | 06/29/22 15:01 | 06/30/22 12:01 | 1               |
|                              | МВ           | МВ        |          |       |   |                |                |                 |
| Surrogate                    | %Recovery    | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac         |
| 4-Bromofluorobenzene (Surr)  | 101          |           | 70 - 130 |       |   | 06/29/22 15:01 | 06/30/22 12:01 | 1               |
| 1,4-Difluorobenzene (Surr)   | 98           |           | 70 - 130 |       |   | 06/29/22 15:01 | 06/30/22 12:01 | 1               |
| Lab Sample ID: LCS 880-28678 | / <b>1-A</b> |           |          |       | c | lient Sample I | D: Lab Control | Sample          |

#### Matrix: Solid

#### Analysis Batch: 28710

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.08532 |           | mg/Kg |   | 85   | 70 - 130 |  |
| Toluene             | 0.100 | 0.09806 |           | mg/Kg |   | 98   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08863 |           | mg/Kg |   | 89   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1788  |           | mg/Kg |   | 89   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1012  |           | mg/Kg |   | 101  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 99        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 97        |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-28678/2-A

#### Matrix: Solid

| Analysis Batch: 28710 |       |         |           |       |   |      | Prep     | Batch: | 28678 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08687 |           | mg/Kg |   | 87   | 70 - 130 | 2      | 35    |
| Toluene               | 0.100 | 0.09372 |           | mg/Kg |   | 94   | 70 - 130 | 5      | 35    |
| Ethylbenzene          | 0.100 | 0.08625 |           | mg/Kg |   | 86   | 70 - 130 | 3      | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1738  |           | mg/Kg |   | 87   | 70 - 130 | 3      | 35    |
| o-Xylene              | 0.100 | 0.09882 |           | mg/Kg |   | 99   | 70 - 130 | 2      | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 99        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 95        |           | 70 - 130 |

#### Lab Sample ID: 880-16436-A-31-C MS

#### Matrix: Solid aluaia Batahi 29740

| Analysis Batch: 28710 |          |           |       |         |           |       |   |      | Prep     | Batch: 28678 |
|-----------------------|----------|-----------|-------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00201 | U F1      | 0.100 | 0.07794 |           | mg/Kg |   | 78   | 70 - 130 |              |
| Toluene               | <0.00201 | U         | 0.100 | 0.08319 |           | mg/Kg |   | 83   | 70 - 130 |              |

Eurofins Carlsbad

Prep Type: Total/NA

Job ID: 890-2482-1

SDG: 0302057003

#### Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 28678

13

**Client Sample ID: Matrix Spike** 

Released to Imaging: 7/13/2022 5:10:23 PM

Client: Ensolum

Project/Site: MCA 328

#### **QC Sample Results**

#### Job ID: 890-2482-1 SDG: 0302057003

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

|                                                                                                                                                                                                                                                                                                                 | -31-C MS                   |                                                                         |                                      |                                        |         |          |        |       | Clie                                                                                                                                                                                        |                                                                                | ple ID: Mati                                                                                                                                                                                                                                                                                                                               |                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|--------------------------------------|----------------------------------------|---------|----------|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                   |                            |                                                                         |                                      |                                        |         |          |        |       |                                                                                                                                                                                             | F                                                                              | Prep Type:                                                                                                                                                                                                                                                                                                                                 |                                                           |
| Analysis Batch: 28710                                                                                                                                                                                                                                                                                           |                            |                                                                         |                                      |                                        |         |          |        |       |                                                                                                                                                                                             |                                                                                | Prep Batc                                                                                                                                                                                                                                                                                                                                  | h: 2867                                                   |
|                                                                                                                                                                                                                                                                                                                 | Sample                     |                                                                         |                                      | Spike                                  | MS      | MS       |        |       |                                                                                                                                                                                             | %R                                                                             |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| Analyte                                                                                                                                                                                                                                                                                                         | Result                     |                                                                         |                                      | Added                                  | Result  | Qualifie |        |       | D %Re                                                                                                                                                                                       |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| Ethylbenzene                                                                                                                                                                                                                                                                                                    | <0.00201                   |                                                                         |                                      | 0.100                                  | 0.07129 |          | mg/Kg  |       | 7                                                                                                                                                                                           |                                                                                | 130                                                                                                                                                                                                                                                                                                                                        |                                                           |
| n-Xylene & p-Xylene                                                                                                                                                                                                                                                                                             | <0.00402                   | U F1                                                                    |                                      | 0.200                                  | 0.1432  |          | mg/Kg  |       | 7                                                                                                                                                                                           | 1 70 -                                                                         | 130                                                                                                                                                                                                                                                                                                                                        |                                                           |
| -Xylene                                                                                                                                                                                                                                                                                                         | <0.00201                   | U                                                                       |                                      | 0.100                                  | 0.08106 |          | mg/Kg  |       | 8                                                                                                                                                                                           | 1 70-                                                                          | 130                                                                                                                                                                                                                                                                                                                                        |                                                           |
|                                                                                                                                                                                                                                                                                                                 | MS                         | MS                                                                      |                                      |                                        |         |          |        |       |                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| Surrogate                                                                                                                                                                                                                                                                                                       | %Recovery                  | Qual                                                                    | ifier                                | Limits                                 |         |          |        |       |                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                     | 101                        |                                                                         |                                      | 70 - 130                               |         |          |        |       |                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                                                      | 99                         |                                                                         |                                      | 70 - 130                               |         |          |        |       |                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| _ab Sample ID: 880-16436-A-                                                                                                                                                                                                                                                                                     | -31-D MSD                  |                                                                         |                                      |                                        |         |          |        | Clien | t Sample                                                                                                                                                                                    | D: Mat                                                                         | trix Spike D                                                                                                                                                                                                                                                                                                                               | uplica                                                    |
| Matrix: Solid                                                                                                                                                                                                                                                                                                   |                            |                                                                         |                                      |                                        |         |          |        |       |                                                                                                                                                                                             | F                                                                              | Prep Type:                                                                                                                                                                                                                                                                                                                                 | Total/N                                                   |
| Analysis Batch: 28710                                                                                                                                                                                                                                                                                           |                            |                                                                         |                                      |                                        |         |          |        |       |                                                                                                                                                                                             |                                                                                | Prep Batc                                                                                                                                                                                                                                                                                                                                  | h: 2867                                                   |
|                                                                                                                                                                                                                                                                                                                 | Sample                     | Sam                                                                     | ple                                  | Spike                                  | MSD     | MSD      |        |       |                                                                                                                                                                                             | %R                                                                             | ec                                                                                                                                                                                                                                                                                                                                         | RF                                                        |
| Analyte                                                                                                                                                                                                                                                                                                         | Result                     | Qual                                                                    | ifier                                | Added                                  | Result  | Qualifie | r Unit |       | D %Re                                                                                                                                                                                       | c Lim                                                                          | its RP                                                                                                                                                                                                                                                                                                                                     | D Lin                                                     |
| Benzene                                                                                                                                                                                                                                                                                                         | <0.00201                   | UF1                                                                     |                                      | 0.0990                                 | 0.06358 | F1       | mg/Kg  |       | 6                                                                                                                                                                                           | 4 70 -                                                                         | 130 2                                                                                                                                                                                                                                                                                                                                      | 0 3                                                       |
| Foluene                                                                                                                                                                                                                                                                                                         | <0.00201                   | U                                                                       |                                      | 0.0990                                 | 0.07789 |          | mg/Kg  |       | 7                                                                                                                                                                                           | 9 70-                                                                          | 130                                                                                                                                                                                                                                                                                                                                        | 7 :                                                       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                    | <0.00201                   | U F1                                                                    |                                      | 0.0990                                 | 0.06727 | F1       | mg/Kg  |       | 6                                                                                                                                                                                           | 8 70-                                                                          | 130                                                                                                                                                                                                                                                                                                                                        | 6                                                         |
| n-Xylene & p-Xylene                                                                                                                                                                                                                                                                                             | <0.00402                   | U F1                                                                    |                                      | 0.198                                  | 0.1373  | F1       | mg/Kg  |       | 6                                                                                                                                                                                           | 9 70-                                                                          | 130                                                                                                                                                                                                                                                                                                                                        | 4                                                         |
| o-Xylene                                                                                                                                                                                                                                                                                                        | <0.00201                   | U                                                                       |                                      | 0.0990                                 | 0.07979 |          | mg/Kg  |       | 8                                                                                                                                                                                           | 1 70-                                                                          | 130                                                                                                                                                                                                                                                                                                                                        | 2                                                         |
|                                                                                                                                                                                                                                                                                                                 | MSD                        | MSD                                                                     |                                      |                                        |         |          |        |       |                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| Surrogate                                                                                                                                                                                                                                                                                                       | %Recovery                  | Qual                                                                    | ifier                                | Limits                                 |         |          |        |       |                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                     | 109                        |                                                                         |                                      | 70 - 130                               |         |          |        |       |                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
|                                                                                                                                                                                                                                                                                                                 | ~ ~ ~                      |                                                                         |                                      |                                        |         |          |        |       |                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                                                      | 91                         |                                                                         |                                      | 70 - 130                               |         |          |        |       |                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
|                                                                                                                                                                                                                                                                                                                 |                            | gan                                                                     | ics (DR                              |                                        |         |          |        |       |                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| ethod: 8015B NM - Dies                                                                                                                                                                                                                                                                                          | el Range Or                | gan                                                                     | iics (DR                             |                                        |         |          |        |       | Clien                                                                                                                                                                                       | it Sampl                                                                       | e ID: Metho                                                                                                                                                                                                                                                                                                                                | od Blar                                                   |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861                                                                                                                                                                                                                                                            | el Range Or                | gan                                                                     | iics (DR                             |                                        |         |          |        |       | Clien                                                                                                                                                                                       |                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                           |
| lethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid                                                                                                                                                                                                                                          | el Range Or                | gan                                                                     | iics (DR                             |                                        |         |          |        |       | Clien                                                                                                                                                                                       |                                                                                | Prep Type:                                                                                                                                                                                                                                                                                                                                 | Total/N                                                   |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid                                                                                                                                                                                                                                           | el Range Or                | gan                                                                     |                                      |                                        |         |          |        |       | Clien                                                                                                                                                                                       |                                                                                |                                                                                                                                                                                                                                                                                                                                            | Total/N                                                   |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713                                                                                                                                                                                                                  | sel Range Or<br>14/1-A     | МВ                                                                      |                                      |                                        |         | Un       | it     | D     | Clien                                                                                                                                                                                       | Ĩ                                                                              | Prep Type:                                                                                                                                                                                                                                                                                                                                 | Total/N<br>h: 2861                                        |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte                                                                                                                                                                                                       | sel Range Or<br>14/1-A<br> | МВ                                                                      | MB<br>Qualifier                      | O) (GC)                                |         |          | it     |       |                                                                                                                                                                                             | d                                                                              | Prep Type:<br>Prep Batc                                                                                                                                                                                                                                                                                                                    | Total/N<br>h: 2861                                        |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10                                                                                                                                                             | sel Range Or<br>14/1-A<br> | MB                                                                      | MB<br>Qualifier                      | O) (GC)                                |         |          |        |       | Prepare                                                                                                                                                                                     | d                                                                              | Prep Type:<br>Prep Batc<br>Analyzed                                                                                                                                                                                                                                                                                                        | Total/N<br>h: 2861                                        |
| lethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                            | sel Range Or<br>14/1-A<br> | MB                                                                      | MB<br>Qualifier<br>U                 | O) (GC)                                |         | mg       |        |       | Prepare                                                                                                                                                                                     | d<br><u>d</u><br>3:55 06                                                       | Prep Type:<br>Prep Batc<br>Analyzed                                                                                                                                                                                                                                                                                                        | Total/N<br>h: 2861                                        |
| 1,4-Difluorobenzene (Surr)<br>lethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                  | sel Range Or<br>14/1-A<br> | <b>MB</b><br>esult<br>50.0<br>50.0                                      | MB<br>Qualifier<br>U                 | O) (GC)<br>                            |         | mg<br>mg | ı/Kg   |       | <b>Prepare</b><br>06/29/22 08<br>06/29/22 08                                                                                                                                                | <b>d</b><br>3:55 06<br>3:55 06                                                 | Prep Type:<br>Prep Batc<br>Analyzed<br>/30/22 12:30                                                                                                                                                                                                                                                                                        | Total/N                                                   |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                  | sel Range Or<br>14/1-A<br> | MB<br>esult<br>50.0<br>50.0<br>50.0                                     | MB<br>Qualifier<br>U<br>U            | O) (GC)                                |         | mg<br>mg | J/Kg   |       | <b>Prepare</b><br>06/29/22 08                                                                                                                                                               | <b>d</b><br>3:55 06<br>3:55 06                                                 | Prep Type:<br>Prep Batc<br>Analyzed<br>//30/22 12:30                                                                                                                                                                                                                                                                                       | Total/N<br>h: 286′                                        |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>DII Range Organics (Over C28-C36)                                                                             | sel Range Or<br> 4/1-A<br> | MB<br>esult<br>50.0<br>50.0<br>50.0<br><i>MB</i>                        | MB<br>Qualifier<br>U<br>U<br>U<br>MB | O) (GC)<br>                            |         | mg<br>mg | ı/Kg   |       | Prepare<br>06/29/22 08<br>06/29/22 08<br>06/29/22 08                                                                                                                                        | <b>d</b><br>3:55 06<br>3:55 06<br>3:55 06                                      | Prep Type:<br>Prep Batc<br>/30/22 12:30<br>/30/22 12:30<br>/30/22 12:30                                                                                                                                                                                                                                                                    | Total/N<br>h: 2861<br>Dil F                               |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>DII Range Organics (Over C28-C36)<br>Surrogate                                                                | sel Range Or<br> 4/1-A<br> | MB<br>250.0<br>50.0<br>50.0<br>50.0<br><i>MB</i><br>very                | MB<br>Qualifier<br>U<br>U            | O) (GC)<br>                            |         | mg<br>mg | ı/Kg   |       | Prepare<br>06/29/22 08<br>06/29/22 08<br>06/29/22 08<br>Prepare                                                                                                                             | d<br>3:55 06<br>3:55 06<br>3:55 06<br>d                                        | Prep Type:<br>Prep Batc<br>Analyzed<br>/30/22 12:30<br>/30/22 12:30<br>/30/22 12:30<br>Analyzed                                                                                                                                                                                                                                            | Total/N<br>h: 2861                                        |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>DII Range Organics (Over C28-C36)<br>Surrogate<br>I-Chlorooctane                                              | sel Range Or<br> 4/1-A<br> | MB<br>esult<br>50.0<br>50.0<br>50.0<br><i>MB</i>                        | MB<br>Qualifier<br>U<br>U<br>U<br>MB | O) (GC)<br>                            |         | mg<br>mg | ı/Kg   |       | Prepare<br>06/29/22 08<br>06/29/22 08<br>06/29/22 08                                                                                                                                        | d<br>3:55 06<br>3:55 06<br>3:55 06<br>3:55 06                                  | Prep Type:<br>Prep Batc<br>/30/22 12:30<br>/30/22 12:30<br>/30/22 12:30                                                                                                                                                                                                                                                                    | Total/N<br>h: 2861<br>Dil F                               |
| ethod: 8015B NM - Dies<br>ab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>biesel Range Organics (Over<br>210-C28)<br>DII Range Organics (Over C28-C36)<br>Burrogate<br>-Chlorooctane<br>-Terphenyl                                  | sel Range Or<br>14/1-A<br> | MB<br>esult<br>50.0<br>50.0<br>50.0<br>50.0<br><i>MB</i><br>very<br>111 | MB<br>Qualifier<br>U<br>U<br>U<br>MB | O) (GC)<br>RL 50.0 50.0 50.0 50.0 70.0 |         | mg<br>mg | ı/Kg   |       | Prepare           06/29/22         08           06/29/22         08           06/29/22         08           06/29/22         08           06/29/22         08           06/29/22         08 | d<br>3:55 06<br>3:55 06<br>3:55 06<br>3:55 06<br>8:55 06                       | Prep Type:<br>Prep Batc<br>Analyzed<br>/30/22 12:30<br>/30/22 12:30<br>/30/22 12:30<br>Analyzed<br>/30/22 12:30<br>/30/22 12:30                                                                                                                                                                                                            | Total/N<br>h: 286'<br>Dil F                               |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>210-C28)<br>DII Range Organics (Over C28-C36)<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: LCS 880-286 | sel Range Or<br>14/1-A<br> | MB<br>esult<br>50.0<br>50.0<br>50.0<br>50.0<br><i>MB</i><br>very<br>111 | MB<br>Qualifier<br>U<br>U<br>U<br>MB | O) (GC)<br>RL 50.0 50.0 50.0 50.0 70.0 |         | mg<br>mg | ı/Kg   |       | Prepare           06/29/22         08           06/29/22         08           06/29/22         08           06/29/22         08           06/29/22         08           06/29/22         08 | d<br>3:55 06<br>3:55 06<br>3:55 06<br>3:55 06<br>8:55 06<br>8:55 06<br>8:55 06 | Analyzed           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30           /30/22 12:30 | Total/N<br>h: 286'<br>Dil F<br>Dil F<br>Samp              |
| ethod: 8015B NM - Dies<br>Lab Sample ID: MB 880-2861<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                              | sel Range Or<br>14/1-A<br> | MB<br>esult<br>50.0<br>50.0<br>50.0<br>50.0<br><i>MB</i><br>very<br>111 | MB<br>Qualifier<br>U<br>U<br>U<br>MB | O) (GC)<br>RL 50.0 50.0 50.0 50.0 70.0 |         | mg<br>mg | ı/Kg   |       | Prepare           06/29/22         08           06/29/22         08           06/29/22         08           06/29/22         08           06/29/22         08           06/29/22         08 | d<br>3:55 06<br>3:55 06<br>3:55 06<br>3:55 06<br>8:55 06<br>8:55 06<br>8:55 06 | Prep Type:<br>Prep Batc<br>Analyzed<br>/30/22 12:30<br>/30/22 12:30<br>/30/22 12:30<br>Analyzed<br>/30/22 12:30<br>/30/22 12:30                                                                                                                                                                                                            | Total/N<br>h: 2861<br>Dil F:<br>Dil F:<br>Samp<br>Total/N |

|                             | Spike    | LCS    | LCS       |       |   |      | %Rec     |  |
|-----------------------------|----------|--------|-----------|-------|---|------|----------|--|
| Analyte                     | Added    | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Gasoline Range Organics     | <br>1000 | 1015   |           | mg/Kg |   | 102  | 70 - 130 |  |
| (GRO)-C6-C10                |          |        |           |       |   |      |          |  |
| Diesel Range Organics (Over | 1000     | 766.3  |           | mg/Kg |   | 77   | 70 - 130 |  |
| C10-C28)                    |          |        |           |       |   |      |          |  |

Eurofins Carlsbad

#### **QC Sample Results**

#### Job ID: 890-2482-1 SDG: 0302057003

Client: Ensolum Project/Site: MCA 328

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

|                                                                                                                                                                                                                                                                                                                                                | 14/2-A                                      |                                                                 |                                                                                                                                                      |                                                                                    |                 |                                       | Client   | Sample                                       | e ID: Lab Co                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------|---------------------------------------|----------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                  |                                             |                                                                 |                                                                                                                                                      |                                                                                    |                 |                                       |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type: Tot                             |                                                |
| Analysis Batch: 28713                                                                                                                                                                                                                                                                                                                          |                                             |                                                                 |                                                                                                                                                      |                                                                                    |                 |                                       |          |                                              | Prep                                                                                                                                                                                                                                                                                                                                                                                                                                           | Batch:                                | 2861 <sup>,</sup>                              |
|                                                                                                                                                                                                                                                                                                                                                | LCS                                         | LCS                                                             |                                                                                                                                                      |                                                                                    |                 |                                       |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |
| Surrogate                                                                                                                                                                                                                                                                                                                                      | %Recovery                                   | Qualifier                                                       | Limits                                                                                                                                               |                                                                                    |                 |                                       |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                 | 79                                          |                                                                 | 70 - 130                                                                                                                                             |                                                                                    |                 |                                       |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                    | 75                                          |                                                                 | 70 - 130                                                                                                                                             |                                                                                    |                 |                                       |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |
| Lab Sample ID: LCSD 880-28                                                                                                                                                                                                                                                                                                                     | 614/3-A                                     |                                                                 |                                                                                                                                                      |                                                                                    |                 | Clier                                 | nt Sam   | ple ID:                                      | Lab Contro                                                                                                                                                                                                                                                                                                                                                                                                                                     | ol Sample                             | e Dur                                          |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                  |                                             |                                                                 |                                                                                                                                                      |                                                                                    |                 |                                       |          | · · · ·                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type: Tot                             |                                                |
| Analysis Batch: 28713                                                                                                                                                                                                                                                                                                                          |                                             |                                                                 |                                                                                                                                                      |                                                                                    |                 |                                       |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                | Batch:                                |                                                |
| -                                                                                                                                                                                                                                                                                                                                              |                                             |                                                                 | Spike                                                                                                                                                | LCSD                                                                               | LCSD            |                                       |          |                                              | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | RP                                             |
| Analyte                                                                                                                                                                                                                                                                                                                                        |                                             |                                                                 | Added                                                                                                                                                | Result                                                                             | Qualifier       | Unit                                  | D        | %Rec                                         | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPD                                   | Limi                                           |
| Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                        |                                             |                                                                 | 1000                                                                                                                                                 | 1192                                                                               |                 | mg/Kg                                 |          | 119                                          | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                    | 20                                             |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                        |                                             |                                                                 | 1000                                                                                                                                                 | 896.8                                                                              |                 | mg/Kg                                 |          | 90                                           | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                    | 20                                             |
|                                                                                                                                                                                                                                                                                                                                                | LCSD                                        | LCSD                                                            |                                                                                                                                                      |                                                                                    |                 |                                       |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |
| Surrogate                                                                                                                                                                                                                                                                                                                                      | %Recovery                                   |                                                                 | Limits                                                                                                                                               |                                                                                    |                 |                                       |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                 | 82                                          |                                                                 | 70 - 130                                                                                                                                             |                                                                                    |                 |                                       |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                    | 83                                          |                                                                 | 70 - 130                                                                                                                                             |                                                                                    |                 |                                       |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |
|                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                 |                                                                                                                                                      |                                                                                    |                 |                                       |          |                                              | Prep                                                                                                                                                                                                                                                                                                                                                                                                                                           | Satch:                                |                                                |
| Analysis Batch: 28713                                                                                                                                                                                                                                                                                                                          | -                                           | Sample                                                          | Spike                                                                                                                                                |                                                                                    | MS              |                                       |          |                                              | Prep<br>%Rec                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                |
| Matrix: Solid<br>Analysis Batch: 28713<br>Analyte                                                                                                                                                                                                                                                                                              | Result                                      | Qualifier                                                       | Added                                                                                                                                                | Result                                                                             | MS<br>Qualifier | Unit                                  | D        | %Rec                                         | Prep<br>%Rec<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                |
| Analysis Batch: 28713                                                                                                                                                                                                                                                                                                                          | -                                           | Qualifier                                                       | -                                                                                                                                                    |                                                                                    |                 | - <mark>Unit</mark><br>mg/Kg          | <u>D</u> | <b>%Rec</b>                                  | Prep<br>%Rec                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                     | Result                                      | Qualifier<br>U                                                  | Added                                                                                                                                                | Result                                                                             |                 |                                       | <u> </u> |                                              | Prep<br>%Rec<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                     | Result<br><49.9<br><49.9                    | <b>Qualifier</b><br>U<br>U                                      | Added<br>996                                                                                                                                         | <b>Result</b><br>1186                                                              |                 | mg/Kg                                 | <u>D</u> | 119                                          | Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                         | Result<br><49.9<br><49.9                    | Qualifier<br>U<br>U                                             | Added<br>996                                                                                                                                         | <b>Result</b><br>1186                                                              |                 | mg/Kg                                 | <u> </u> | 119                                          | Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                            | Result<br><49.9<br><49.9<br>MS              | Qualifier<br>U<br>U                                             | Added996                                                                                                                                             | <b>Result</b><br>1186                                                              |                 | mg/Kg                                 | <u>D</u> | 119                                          | Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane                                                                                                                                                                                          | Result<br><49.9<br><49.9<br>MS<br>%Recovery | Qualifier<br>U<br>U<br>MS                                       | Added<br>996<br>996<br>Limits                                                                                                                        | <b>Result</b><br>1186                                                              |                 | mg/Kg                                 | <u>D</u> | 119                                          | Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                     | Result           <49.9                      | Qualifier<br>U<br>U<br>MS                                       | Added<br>996<br>996<br>Limits<br>70 - 130                                                                                                            | <b>Result</b><br>1186                                                              |                 | mg/Kg                                 |          | 119                                          | Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                             | Batch: :                              | 28614                                          |
| Analysis Batch: 28713 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl                                                                                                                                                                                                   | Result           <49.9                      | Qualifier<br>U<br>U<br>MS                                       | Added<br>996<br>996<br>Limits<br>70 - 130                                                                                                            | <b>Result</b><br>1186                                                              |                 | mg/Kg                                 |          | 119                                          | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                     | Batch: :                              | licate                                         |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-16373-A-                                                                                                                                            | Result           <49.9                      | Qualifier<br>U<br>U<br>MS                                       | Added<br>996<br>996<br>Limits<br>70 - 130                                                                                                            | <b>Result</b><br>1186                                                              |                 | mg/Kg                                 |          | 119                                          | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130                                                                                                                                                                                                                                                                                                                                                  | Batch: :                              | licate                                         |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-16373-A-<br>Matrix: Solid                                                                                                                           | Result           <49.9                      | Qualifier<br>U<br>MS<br>Qualifier<br>Sample                     | Added<br>996<br>996<br>Limits<br>70 - 130                                                                                                            | <b>Result</b><br>1186<br>1095                                                      |                 | mg/Kg                                 |          | 119<br>110                                   | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130                                                                                                                                                                                                                                                                                                                                                  | Dike Dup<br>Type: Tot<br>Batch: 2     | licate                                         |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-16373-A-<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte                                                                                       | Result           <49.9                      | Qualifier<br>U<br>MS<br>Qualifier<br>Sample<br>Qualifier        | Added<br>996<br>996<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                    | Result           1186           1095           MSD           Result                | Qualifier       | mg/Kg<br>mg/Kg<br>Cl                  |          | 119<br>110<br>ample IE                       | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 190<br>70 - 190 | bike Dup<br>Type: Tot<br>Batch: 2<br> | 28614<br>ital/NA<br>28614<br>RPC<br>Limi       |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-16373-A-<br>Matrix: Solid<br>Analysis Batch: 28713                                                                                                  | Result           <49.9                      | Qualifier<br>U<br>MS<br>Qualifier<br>Sample<br>Qualifier        | Added<br>996<br>996<br>Limits<br>70 - 130<br>70 - 130<br>Spike                                                                                       | Result<br>1186<br>1095<br>MSD                                                      | Qualifier       | mg/Kg<br>mg/Kg<br>CI                  | ient Sa  | 119<br>110                                   | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 190<br>70 - 190                                                                                                                                                                                                             | Dike Dup<br>Type: Tot<br>Batch: 2     | licate<br>al/NA<br>RPC<br>Limi                 |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-16373-A-<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                            | Result           <49.9                      | Qualifier<br>U<br>MS<br>Qualifier<br>Qualifier<br>U             | Added<br>996<br>996<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                    | Result           1186           1095           MSD           Result                | Qualifier       | mg/Kg<br>mg/Kg<br>Cl                  | ient Sa  | 119<br>110<br>ample IE                       | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 190<br>70 - 190 | bike Dup<br>Type: Tot<br>Batch: 2<br> | alicate<br>al/NA<br>28614<br>RPI<br>Limi<br>20 |
| Analysis Batch: 28713 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-16373-A- Matrix: Solid Analysis Batch: 28713 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                                          | Result           <49.9                      | Qualifier<br>U<br>MS<br>Qualifier<br>Qualifier<br>U             | Added<br>996<br>996<br><u>Limits</u><br>70 - 130<br>70 - 130<br>70 - 130<br>80<br>50<br>80<br>80<br>996                                              | Result           1186           1095           MSD           Result           1209 | Qualifier       | mg/Kg<br>mg/Kg<br>Cl<br>Unit<br>mg/Kg | ient Sa  | 119<br>110<br>ample IE<br><u>%Rec</u><br>121 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130           %Rec           Prep 1           %Rec           Limits           70 - 130                                                                                                                                                                                                                                            | bike Dup<br>Type: Tot<br>Batch: 2<br> | alicato<br>al/N/<br>28614<br>RPI<br>Limi<br>20 |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-16373-A-<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics                                                            | Result           <49.9                      | Qualifier<br>U<br>MS<br>Qualifier<br>Qualifier<br>U             | Added<br>996<br>996<br><u>Limits</u><br>70 - 130<br>70 - 130<br>70 - 130<br>80<br>50<br>80<br>80<br>996                                              | Result           1186           1095           MSD           Result           1209 | Qualifier       | mg/Kg<br>mg/Kg<br>Cl<br>Unit<br>mg/Kg | ient Sa  | 119<br>110<br>ample IE<br><u>%Rec</u><br>121 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130           %Rec           Prep 1           %Rec           Limits           70 - 130                                                                                                                                                                                                                                            | bike Dup<br>Type: Tot<br>Batch: 2<br> | alicate<br>al/NA<br>28614<br>RPI<br>Limi<br>20 |
| Analysis Batch: 28713 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-16373-A- Matrix: Solid Analysis Batch: 28713 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                                          | Result           <49.9                      | Qualifier<br>U<br>MS<br>Qualifier<br>Qualifier<br>U<br>U<br>MSD | Added<br>996<br>996<br><u>Limits</u><br>70 - 130<br>70 - 130<br>70 - 130<br>80<br>50<br>80<br>80<br>996                                              | Result           1186           1095           MSD           Result           1209 | Qualifier       | mg/Kg<br>mg/Kg<br>Cl<br>Unit<br>mg/Kg | ient Sa  | 119<br>110<br>ample IE<br><u>%Rec</u><br>121 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130           %Rec           Prep 1           %Rec           Limits           70 - 130                                                                                                                                                                                                                                            | bike Dup<br>Type: Tot<br>Batch: 2<br> | licate<br>tal/NA<br>28614<br>RPI               |
| Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-16373-A-<br>Matrix: Solid<br>Analysis Batch: 28713<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28) | Result           <49.9                      | Qualifier<br>U<br>MS<br>Qualifier<br>Qualifier<br>U<br>U<br>MSD | Added           996           996           Limits           70 - 130           70 - 130           Spike           Added           996           996 | Result           1186           1095           MSD           Result           1209 | Qualifier       | mg/Kg<br>mg/Kg<br>Cl<br>Unit<br>mg/Kg | ient Sa  | 119<br>110<br>ample IE<br><u>%Rec</u><br>121 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130           %Rec           Prep 1           %Rec           Limits           70 - 130                                                                                                                                                                                                                                            | bike Dup<br>Type: Tot<br>Batch: 2<br> | 28614<br>sal/NA<br>28614<br>RPC<br>Limi<br>20  |

Client: Ensolum

Project/Site: MCA 328

#### **QC Sample Results**

Job ID: 890-2482-1 SDG: 0302057003

#### Method: 300.0 - Anions, Ion Chromatography

|                                      |            |                |       |        |           |       |         | Client    | Sample ID:  | Method   | Blank   |
|--------------------------------------|------------|----------------|-------|--------|-----------|-------|---------|-----------|-------------|----------|---------|
| Matrix: Solid                        |            |                |       |        |           |       |         |           |             | Type: S  |         |
| Analysis Batch: 28753                |            |                |       |        |           |       |         |           |             |          |         |
|                                      |            | MB MB          |       |        |           |       |         |           |             |          |         |
| Analyte                              | R          | esult Qualifie | er    | RL     | Unit      |       | D       | Prepared  | Analy       | zed      | Dil Fac |
| _Chloride                            | ~          | <5.00 U        |       | 5.00   | mg/ł      | Κg    |         |           | 06/30/22    | 14:30    | 1       |
|                                      | 4          |                |       |        |           |       | Clie    | nt Sampl  | e ID: Lab C | ontrol S | ample   |
| Matrix: Solid                        |            |                |       |        |           |       |         |           | Prep        | Type: S  | oluble  |
| Analysis Batch: 28753                |            |                |       |        |           |       |         |           |             |          |         |
|                                      |            |                | Spike | LCS    | LCS       |       |         |           | %Rec        |          |         |
| Analyte                              |            |                | Added |        | Qualifier | Unit  | !       | D %Rec    | Limits      |          |         |
| Chloride                             |            |                | 250   | 257.4  |           | mg/Kg |         | 103       | 90 _ 110    |          |         |
| _<br>Lab Sample ID: LCSD 880-28711/3 | - <b>A</b> |                |       |        |           | CI    | ient Sa | ample ID: | Lab Contro  | ol Sampl | e Dup   |
| Matrix: Solid                        |            |                |       |        |           |       |         |           | Prep        | Type: S  | oluble  |
| Analysis Batch: 28753                |            |                |       |        |           |       |         |           |             |          |         |
|                                      |            |                | Spike | LCSD   | LCSD      |       |         |           | %Rec        |          | RPD     |
| Analyte                              |            |                | Added | Result | Qualifier | Unit  |         | D %Rec    | Limits      | RPD      | Limit   |
| Chloride                             |            |                | 250   | 263.2  |           | mg/Kg |         | 105       | 90 _ 110    | 2        | 20      |
| Lab Sample ID: 890-2482-1 MS         |            |                |       |        |           |       |         |           | Client Sa   | mple ID: | : FS01  |
| Matrix: Solid                        |            |                |       |        |           |       |         |           | Prep        | Type: S  | oluble  |
| Analysis Batch: 28753                |            |                |       |        |           |       |         |           |             |          |         |
|                                      | Sample     | Sample         | Spike | MS     | MS        |       |         |           | %Rec        |          |         |
| Analyte                              | Result     | Qualifier      | Added | Result | Qualifier | Unit  | I       | D %Rec    | Limits      |          |         |
| Chloride                             | 21.8       |                | 249   | 269.3  |           | mg/Kg |         | 100       | 90 - 110    |          |         |
| Lab Sample ID: 890-2482-1 MSD        |            |                |       |        |           |       |         |           | Client Sa   | mple ID: | : FS01  |
| Matrix: Solid                        |            |                |       |        |           |       |         |           |             | Type: S  |         |
| Analysis Batch: 28753                |            |                |       |        |           |       |         |           |             |          |         |
|                                      | Sample     | Sample         | Spike | MSD    | MSD       |       |         |           | %Rec        |          | RPD     |
| Analyte                              | Result     | Qualifier      | Added | Result | Qualifier | Unit  | I       | D %Rec    | Limits      | RPD      | Limit   |
| Chloride                             | 21.8       |                | 249   | 270.2  |           | mg/Kg |         | 100       | 90 - 110    | 0        | 20      |

Eurofins Carlsbad

Released to Imaging: 7/13/2022 5:10:23 PM

### **QC Association Summary**

Client: Ensolum Project/Site: MCA 328

5 6

Job ID: 890-2482-1 SDG: 0302057003

#### **GC VOA**

#### Prep Batch: 28678

| Lab Sample ID        | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|----------------------|------------------------|-----------|--------|--------|------------|
| 890-2482-1           | FS01                   | Total/NA  | Solid  | 5035   |            |
| 890-2482-2           | FS02                   | Total/NA  | Solid  | 5035   |            |
| 890-2482-3           | SW01                   | Total/NA  | Solid  | 5035   |            |
| MB 880-28678/5-A     | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-28678/1-A    | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-28678/2-A   | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-16436-A-31-C MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-16436-A-31-D MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 28710

| 880-16436-A-31-C MS   | Matrix Spike           | Total/NA   | Solid    | 5035   |            |     |
|-----------------------|------------------------|------------|----------|--------|------------|-----|
| 880-16436-A-31-D MSD  | Matrix Spike Duplicate | Total/NA   | Solid    | 5035   |            | 8   |
| Analysis Batch: 28710 |                        |            |          |        |            | 9   |
| Lab Sample ID         | Client Sample ID       | Prep Type  | Matrix   | Method | Prep Batch |     |
| 890-2482-1            | FS01                   | Total/NA   | Solid    | 8021B  | 28678      |     |
| 890-2482-2            | FS02                   | Total/NA   | Solid    | 8021B  | 28678      |     |
| 890-2482-3            | SW01                   | Total/NA   | Solid    | 8021B  | 28678      |     |
| MB 880-28678/5-A      | Method Blank           | Total/NA   | Solid    | 8021B  | 28678      |     |
| LCS 880-28678/1-A     | Lab Control Sample     | Total/NA   | Solid    | 8021B  | 28678      |     |
| LCSD 880-28678/2-A    | Lab Control Sample Dup | Total/NA   | Solid    | 8021B  | 28678      |     |
| 880-16436-A-31-C MS   | Matrix Spike           | Total/NA   | Solid    | 8021B  | 28678      | 4.9 |
| 880-16436-A-31-D MSD  | Matrix Spike Duplicate | Total/NA   | Solid    | 8021B  | 28678      | 13  |
| Analysis Batch: 28764 |                        |            |          |        |            |     |
| Lab Camala ID         | Olivert Ormalia ID     | Deve Trees | M = 4-4- |        | Dura Datah |     |

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 890-2482-1    | FS01             | Total/NA  | Solid  | Total BTEX |            |
| 890-2482-2    | FS02             | Total/NA  | Solid  | Total BTEX |            |
| 890-2482-3    | SW01             | Total/NA  | Solid  | Total BTEX |            |
|               |                  |           |        |            |            |

#### GC Semi VOA

#### Prep Batch: 28614

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|----------------------|------------------------|-----------|--------|-------------|------------|
| 890-2482-1           | FS01                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-2482-2           | FS02                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-2482-3           | SW01                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-28614/1-A     | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-28614/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-28614/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16373-A-21-C MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16373-A-21-D MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 28713

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|----------------------|------------------------|-----------|--------|----------|------------|
| 890-2482-1           | FS01                   | Total/NA  | Solid  | 8015B NM | 28614      |
| 890-2482-2           | FS02                   | Total/NA  | Solid  | 8015B NM | 28614      |
| 890-2482-3           | SW01                   | Total/NA  | Solid  | 8015B NM | 28614      |
| MB 880-28614/1-A     | Method Blank           | Total/NA  | Solid  | 8015B NM | 28614      |
| LCS 880-28614/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 28614      |
| LCSD 880-28614/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 28614      |
| 880-16373-A-21-C MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 28614      |
| 880-16373-A-21-D MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 28614      |

#### **QC Association Summary**

Client: Ensolum Project/Site: MCA 328 Page 33 of 75

5

Job ID: 890-2482-1 SDG: 0302057003

### GC Semi VOA

#### Analysis Batch: 28773

| Client Sample ID | Ргер Туре    | Matrix                         | Method                                                        | Prep Batch                                       |
|------------------|--------------|--------------------------------|---------------------------------------------------------------|--------------------------------------------------|
| FS01             | Total/NA     | Solid                          | 8015 NM                                                       |                                                  |
| FS02             | Total/NA     | Solid                          | 8015 NM                                                       |                                                  |
| SW01             | Total/NA     | Solid                          | 8015 NM                                                       |                                                  |
|                  | FS01<br>FS02 | FS01 Total/NA<br>FS02 Total/NA | FS01     Total/NA     Solid       FS02     Total/NA     Solid | FS01Total/NASolid8015 NMFS02Total/NASolid8015 NM |

#### HPLC/IC

#### Leach Batch: 28711

| Lab Sample ID             | Client Sample ID              | Prep Type | Matrix | Method   | Prep Batch | 0  |
|---------------------------|-------------------------------|-----------|--------|----------|------------|----|
| 890-2482-1                | FS01                          | Soluble   | Solid  | DI Leach |            | 8  |
| 890-2482-2                | FS02                          | Soluble   | Solid  | DI Leach |            | 0  |
| 890-2482-3                | SW01                          | Soluble   | Solid  | DI Leach |            | 9  |
| MB 880-28711              | /1-A Method Blank             | Soluble   | Solid  | DI Leach |            |    |
| LCS 880-2871 <sup>2</sup> | 1/2-A Lab Control Sample      | Soluble   | Solid  | DI Leach |            |    |
| LCSD 880-287              | 11/3-A Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |    |
| 890-2482-1 MS             | S FS01                        | Soluble   | Solid  | DI Leach |            |    |
| 890-2482-1 MS             | SD FS01                       | Soluble   | Solid  | DI Leach |            |    |
| Analysis Bat              | ch: 28753                     |           |        |          |            |    |
| Lab Sample ID             | Client Sample ID              | Prep Type | Matrix | Method   | Prep Batch | 13 |
| 890-2482-1                | FS01                          | Soluble   | Solid  | 300.0    |            |    |
| 000 0400 0                | 5000                          | 0.1.11    | 0      | 000.0    | 00711      |    |

#### Analysis Batch: 28753

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-2482-1         | FS01                   | Soluble   | Solid  | 300.0  | 28711      |
| 890-2482-2         | FS02                   | Soluble   | Solid  | 300.0  | 28712      |
| 890-2482-3         | SW01                   | Soluble   | Solid  | 300.0  | 28711      |
| MB 880-28711/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 28712      |
| LCS 880-28711/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 28712      |
| LCSD 880-28711/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 28711      |
| 890-2482-1 MS      | FS01                   | Soluble   | Solid  | 300.0  | 2871       |
| 890-2482-1 MSD     | FS01                   | Soluble   | Solid  | 300.0  | 28711      |

5

9

Job ID: 890-2482-1 SDG: 0302057003

#### Lab Sample ID: 890-2482-1 Matrix: Solid

Lab Sample ID: 890-2482-2

Lab Sample ID: 890-2482-3

Matrix: Solid

Matrix: Solid

Date Collected: 06/28/22 12:10 Date Received: 06/28/22 16:34

**Client Sample ID: FS01** 

Client: Ensolum

Project/Site: MCA 328

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 28678  | 06/29/22 15:01 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 28710  | 06/30/22 12:51 | MR      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 28764  | 06/30/22 15:11 | SM      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 28773  | 06/30/22 15:56 | SM      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 28614  | 06/30/22 11:00 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      |         |        | 28713  | 06/30/22 15:01 | SM      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 28711  | 06/30/22 08:22 | СН      | XEN MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 28753  | 06/30/22 14:58 | СН      | XEN MID |

#### Client Sample ID: FS02

#### Date Collected: 06/28/22 14:00

Date Received: 06/28/22 16:34

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.95 g  | 5 mL   | 28678  | 06/29/22 15:01 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 28710  | 06/30/22 13:11 | MR      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 28764  | 06/30/22 15:11 | SM      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 28773  | 06/30/22 15:56 | SM      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 28614  | 06/30/22 11:00 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      |         |        | 28713  | 06/30/22 15:23 | SM      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 28711  | 06/30/22 08:22 | СН      | XEN MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 28753  | 06/30/22 15:25 | СН      | XEN MID |

#### Client Sample ID: SW01

#### Date Collected: 06/28/22 14:45 Date Received: 06/28/22 16:34

#### Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.01 g 5 mL 28678 06/29/22 15:01 MR XEN MID Total/NA Analysis 8021B 1 5 mL 5 mL 28710 06/30/22 13:32 MR XEN MID Total/NA Analysis Total BTEX 28764 06/30/22 15:11 SM XEN MID 1 Total/NA Analysis 8015 NM 1 28773 06/30/22 15:56 SM XEN MID Total/NA XEN MID Prep 8015NM Prep 10.03 g 10 mL 28614 06/30/22 11:00 DM Total/NA Analysis 8015B NM 28713 06/30/22 15:45 SM XEN MID 1 Soluble Leach **DI Leach** 5.03 g 50 mL 28711 06/30/22 08:22 СН XEN MID Soluble Analysis 300.0 1 28753 06/30/22 15:35 СН XEN MID

#### Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

#### Accreditation/Certification Summary

|                                       | Acci cultution#0                         | or anoual of the output of the |                 |                    |   |
|---------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|---|
| Client: Ensolum                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Job ID: 890-2482-1 | 2 |
| Project/Site: MCA 328                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | SDG: 0302057003    |   |
| Laboratory: Eurofins                  | Midland                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ·                  |   |
| The accreditations/certifications lis | ted below are applicable to this report. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                    |   |
| Authority                             | Program                                  | Identification Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Expiration Date |                    |   |

Texas

NELAP

T104704400-21-22

Expiration Date

Eurofins Carlsbad

Client: Ensolum Project/Site: MCA 328 Job ID: 890-2482-1 SDG: 0302057003

| Method      | Method Description                 | Protocol | Laboratory |
|-------------|------------------------------------|----------|------------|
| 8021B       | Volatile Organic Compounds (GC)    | SW846    | XEN MID    |
| Total BTEX  | Total BTEX Calculation             | TAL SOP  | XEN MID    |
| 8015 NM     | Diesel Range Organics (DRO) (GC)   | SW846    | XEN MID    |
| 8015B NM    | Diesel Range Organics (DRO) (GC)   | SW846    | XEN MID    |
| 300.0       | Anions, Ion Chromatography         | MCAWW    | XEN MID    |
| 5035        | Closed System Purge and Trap       | SW846    | XEN MID    |
| 8015NM Prep | Microextraction                    | SW846    | XEN MID    |
| DI Leach    | Deionized Water Leaching Procedure | ASTM     | XEN MID    |

#### Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 36 of 75
### Sample Summary

Client: Ensolum Project/Site: MCA 328 Page 37 of 75

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth |
|---------------|------------------|--------|----------------|----------------|-------|
| 890-2482-1    | FS01             | Solid  | 06/28/22 12:10 | 06/28/22 16:34 | 1'    |
| 890-2482-2    | FS02             | Solid  | 06/28/22 14:00 | 06/28/22 16:34 | 1'    |
| 890-2482-3    | SW01             | Solid  | 06/28/22 14:45 | 06/28/22 16:34 | 1'    |

.

| 1509-3334<br>1509-3334<br>94-1296<br>988-3199<br>1377 - CED (in in PiDiess                                                                                                                                                                                                    |                                                                                                                                                 | ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST Analysis Requestion of Water: H <sub>2</sub> O and the second meditive and the second meditive and the second meditive and the second and the seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr Tl Sn U V Zn<br>Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Hg: 1631/245.1/7470 /7471                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environment Testing Midland, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Carlsbad, NM (575) 988-3199 | Bill to: (if different)<br>Company Name:<br>Address:<br>City, State ZIP:<br>Email: L. H. M. M. M. G. C. M.                                      | In Around<br>In Around<br>In Around<br>In Around<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres.<br>Pres. | A 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co C<br>TCLP/SPLP6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb                                                                                                                                                   |
| Xenco                                                                                                                                                                                                                                                                         | Project Manager: K.Q.I.C. J.C.M.IN/OS<br>Company Name: E.M.O.W.M.M.<br>Address: 3/22 N.Q.H. POLY HMM<br>City, State ZIP: C.A.Y.I. 1972, 2507 Fr | Project Name:     M.C.M. 32 Y     Turn       Project Number:     03.0205 71003     IRoutine       Project Location:     E.O.G.M. Currin, N.M.     Due Date:       Sampler's Name:     U.Z. Crwti     Traf starts th       Samples Received Intact:     M.M.     Correction Factor:       Samples Received Intact:     Yes     No       Cooler Custody Seals:     Yes     No       Sample Custody Seals:     Yes     No       Sample Custody Seals:     Yes     No       Total Containers:     Correction Factor:       Sample dentification     Matrix     Date       FSOI     S     U.Z.ND       FSOI     S     U.Z.ND       FSOI     V     U.US       FSOI     V     U.US       FSOI     V     U.US       FSOI     V     U.US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total 200.7 / 6010       200.8 / 6020:       8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo N         Circle Method(s) and Metal(s) to be analyzed       TCLP / SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U |

Page 19 of 21

Released to Imaging: 7/13/2022 5:10:23 PM

4 5 6

12 13 14

6/30/2022

### Login Sample Receipt Checklist

Client: Ensolum

#### Login Number: 2482 List Number: 1 Creator: Stutzman, Amanda

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | True   |         |
| Sample custody seals, if present, are intact.                                    | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-2482-1 SDG Number: 0302057003

#### List Source: Eurofins Carlsbad

Job Number: 890-2482-1 SDG Number: 0302057003

List Source: Eurofins Midland

List Creation: 06/30/22 12:06 PM

### Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2482 List Number: 2 Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Received by OCD: 7/7/2022 10:33:21 AM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 7/13/2022 5:10:23 PM

Visit us at:

Ask— The Expert

# f 75 1 2 3 4 5 6 7 8 9 10 11 12

🛟 eurofins

Environment Testing America

# **ANALYTICAL REPORT**

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

### Laboratory Job ID: 880-16415-1

Laboratory Sample Delivery Group: 03D2057003 Client Project/Site: MCA 328

### For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Kalei Jennings

RAMER

Authorized for release by: 6/30/2022 2:53:21 PM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Page 42 of 75

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Client Sample Results  | 5  |
| Surrogate Summary      | 9  |
| QC Sample Results      | 10 |
| QC Association Summary | 13 |
| Lab Chronicle          | 15 |
| Certification Summary  | 17 |
| Method Summary         | 18 |
| Sample Summary         | 19 |
| Chain of Custody       | 20 |
| Receipt Checklists     | 21 |
|                        |    |

|                                     | Definitions/Glossary                                                                                        |                                        |    |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------|----|
| Client: Ensolum<br>Project/Site: MC |                                                                                                             | Job ID: 880-16415-1<br>SDG: 03D2057003 | 2  |
| Qualifiers                          |                                                                                                             |                                        | 3  |
| GC VOA<br>Qualifier                 | Qualifier Description                                                                                       |                                        | 4  |
| U                                   | Indicates the analyte was analyzed for but not detected.                                                    |                                        |    |
| GC Semi VOA                         |                                                                                                             |                                        | 5  |
| Qualifier                           | Qualifier Description                                                                                       |                                        |    |
| U                                   | Indicates the analyte was analyzed for but not detected.                                                    |                                        |    |
| HPLC/IC                             |                                                                                                             |                                        |    |
| Qualifier                           | Qualifier Description                                                                                       |                                        |    |
| U                                   | Indicates the analyte was analyzed for but not detected.                                                    |                                        |    |
|                                     |                                                                                                             |                                        | 8  |
| Glossary                            |                                                                                                             |                                        |    |
| Abbreviation                        | These commonly used abbreviations may or may not be present in this report.                                 |                                        | 9  |
| ¤                                   | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |                                        |    |
| %R                                  | Percent Recovery                                                                                            |                                        |    |
| CFL                                 | Contains Free Liquid                                                                                        |                                        |    |
| CFU                                 | Colony Forming Unit                                                                                         |                                        |    |
| CNF                                 | Contains No Free Liquid                                                                                     |                                        |    |
| DER                                 | Duplicate Error Ratio (normalized absolute difference)                                                      |                                        |    |
| Dil Fac                             | Dilution Factor                                                                                             |                                        |    |
| DL                                  | Detection Limit (DoD/DOE)                                                                                   |                                        | 11 |
| DL, RA, RE, IN                      | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |                                        | 13 |
| DLC                                 | Decision Level Concentration (Radiochemistry)                                                               |                                        |    |
| EDL                                 | Estimated Detection Limit (Dioxin)                                                                          |                                        |    |
| LOD                                 | Limit of Detection (DoD/DOE)                                                                                |                                        |    |
| LOQ                                 | Limit of Quantitation (DoD/DOE)                                                                             |                                        |    |
| MCL                                 | EPA recommended "Maximum Contaminant Level"                                                                 |                                        |    |
| MDA                                 | Minimum Detectable Activity (Radiochemistry)                                                                |                                        |    |
| MDC                                 | Minimum Detectable Concentration (Radiochemistry)                                                           |                                        |    |
| MDL                                 | Method Detection Limit                                                                                      |                                        |    |
| ML                                  | Minimum Level (Dioxin)                                                                                      |                                        |    |
| MPN                                 | Most Probable Number                                                                                        |                                        |    |
| MQL                                 | Method Quantitation Limit                                                                                   |                                        |    |
| NC                                  | Not Calculated                                                                                              |                                        |    |
| ND                                  | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |                                        |    |
| NEG                                 | Negative / Absent                                                                                           |                                        |    |
| POS                                 | Positive / Present                                                                                          |                                        |    |
| PQL                                 | Practical Quantitation Limit                                                                                |                                        |    |
| PRES                                | Presumptive                                                                                                 |                                        |    |
| QC                                  | Quality Control                                                                                             |                                        |    |
| RER                                 | Relative Error Ratio (Radiochemistry)                                                                       |                                        |    |
| RL                                  | Reporting Limit or Requested Limit (Radiochemistry)                                                         |                                        |    |
| RPD                                 | Relative Percent Difference, a measure of the relative difference between two points                        |                                        |    |

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

TEF

TEQ

TNTC

### **Case Narrative**

Client: Ensolum Project/Site: MCA 328 Job ID: 880-16415-1 SDG: 03D2057003

### Job ID: 880-16415-1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-16415-1

#### Receipt

The samples were received on 6/29/2022 9:18 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

#### GC VOA

Method 8021B: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for preparation batch 880-28624 and analytical batch 880-28610 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-28627 and analytical batch 880-28605 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

RL

0.00202

0.00202

0.00202

0.00404

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

06/29/22 12:00

06/29/22 12:00

06/29/22 12:00

06/29/22 12:00

Job ID: 880-16415-1 SDG: 03D2057003

### **Client Sample ID: FS03**

Date Collected: 06/28/22 15:50 Date Received: 06/29/22 09:18

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00202 U

<0.00202 U

<0.00202 U

<0.00404 U

Sample Depth: 3'

Analyte

Benzene

Toluene

Ethylbenzene

m-Xylene & p-Xylene

Project/Site: MCA 328

Client: Ensolum

### Lab Sample ID: 880-16415-1

Analyzed

06/30/22 06:06

06/30/22 06:06

06/30/22 06:06

06/30/22 06:06

Matrix: Solid

Dil Fac

1

1

1

5

|                                         | -0.00404    | 0         | 0.00404  | ing/itg |   | 00/20/22 12.00 | 00,00,22 00.00 |          |
|-----------------------------------------|-------------|-----------|----------|---------|---|----------------|----------------|----------|
| o-Xylene                                | <0.00202    | U         | 0.00202  | mg/Kg   |   | 06/29/22 12:00 | 06/30/22 06:06 | 1        |
| Xylenes, Total                          | <0.00404    | U         | 0.00404  | mg/Kg   |   | 06/29/22 12:00 | 06/30/22 06:06 | 1        |
| Surrogate                               | %Recovery   | Qualifier | Limits   |         |   | Prepared       | Analyzed       | Dil Fac  |
| 4-Bromofluorobenzene (Surr)             | 109         |           | 70 - 130 |         |   | 06/29/22 12:00 | 06/30/22 06:06 | 1        |
| 1,4-Difluorobenzene (Surr)              | 95          |           | 70 - 130 |         |   | 06/29/22 12:00 | 06/30/22 06:06 | 1        |
| Method: Total BTEX - Total BTEX C       | alculation  |           |          |         |   |                |                |          |
| Analyte                                 | Result      | Qualifier | RL       | Unit    | D | Prepared       | Analyzed       | Dil Fac  |
| Total BTEX                              | <0.00404    | U         | 0.00404  | mg/Kg   |   |                | 06/30/22 15:24 | 1        |
| Method: 8015 NM - Diesel Range O        | rganics (DR | O) (GC)   |          |         |   |                |                |          |
| Analyte                                 | Result      | Qualifier | RL       | Unit    | D | Prepared       | Analyzed       | Dil Fac  |
| Total TPH                               | <50.0       | U         | 50.0     | mg/Kg   |   |                | 06/30/22 09:27 | 1        |
| Method: 8015B NM - Diesel Range         | Organics (D | RO) (GC)  |          |         |   |                |                |          |
| Analyte                                 | Result      | Qualifier | RL       | Unit    | D | Prepared       | Analyzed       | Dil Fac  |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0       | U         | 50.0     | mg/Kg   |   | 06/29/22 09:57 | 06/29/22 13:18 | 1        |
| Diesel Range Organics (Over<br>C10-C28) | <50.0       | U         | 50.0     | mg/Kg   |   | 06/29/22 09:57 | 06/29/22 13:18 | 1        |
| Oll Range Organics (Over C28-C36)       | <50.0       | U         | 50.0     | mg/Kg   |   | 06/29/22 09:57 | 06/29/22 13:18 | 1        |
| Surrogate                               | %Recovery   | Qualifier | Limits   |         |   | Prepared       | Analyzed       | Dil Fac  |
| 1-Chlorooctane                          | 100         |           | 70 - 130 |         |   | 06/29/22 09:57 | 06/29/22 13:18 | 1        |
| o-Terphenyl                             | 106         |           | 70 - 130 |         |   | 06/29/22 09:57 | 06/29/22 13:18 | 1        |
| Method: 300.0 - Anions, Ion Chrom       | atography - | Soluble   |          |         |   |                |                |          |
| Analyte                                 | Result      | Qualifier | RL       | Unit    | D | Prepared       | Analyzed       | Dil Fac  |
| Chloride                                | 15.7        |           | 5.00     | mg/Kg   |   |                | 06/29/22 20:44 | 1        |
| Client Sample ID: SS01                  |             |           |          |         |   | Lab Sam        | ple ID: 880-1  | 6415-2   |
| ate Collected: 06/28/22 16:00           |             |           |          |         |   |                | Matri          | x: Solid |
| Date Received: 06/29/22 09:18           |             |           |          |         |   |                |                |          |
| ample Depth: 0.5'                       |             |           |          |         |   |                |                |          |
| -<br>Method: 8021B - Volatile Organic C | compounds ( | GC)       |          |         |   |                |                |          |
| Analyte                                 | -           | Qualifier | RL       | Unit    | D | Prepared       | Analyzed       | Dil Fac  |
| Benzene                                 | <0.00200    | U         | 0.00200  | mg/Kg   |   | 06/29/22 12:00 | 06/30/22 06:27 | 1        |
| Toluene                                 | <0.00200    | U         | 0.00200  | mg/Kg   |   | 06/29/22 12:00 | 06/30/22 06:27 | 1        |
| Ethylbenzene                            | <0.00200    |           | 0 00200  | ma/Ka   |   | 06/20/22 12:00 | 06/30/22 06:27 | 1        |

#### Benze Toluer Ethylbenzene <0.00200 U 0.00200 mg/Kg 06/29/22 12:00 06/30/22 06:27 1 <0.00399 U 0.00399 mg/Kg 06/29/22 12:00 06/30/22 06:27 m-Xylene & p-Xylene 1 <0.00200 U 0.00200 06/29/22 12:00 06/30/22 06:27 o-Xylene mg/Kg 1 Xylenes, Total <0.00399 U 0.00399 06/29/22 12:00 06/30/22 06:27 mg/Kg 1 Qualifier Limits Prepared Surrogate %Recovery Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 104 70 - 130 06/29/22 12:00 06/30/22 06:27

**Eurofins Midland** 

Released to Imaging: 7/13/2022 5:10:23 PM

6/30/2022

### **Client Sample Results**

Job ID: 880-16415-1 SDG: 03D2057003

## Lab Sample ID: 880-16415-2

Matrix: Solid

5

Client Sample ID: SS01 Date Collected: 06/28/22 16:00 Date Received: 06/29/22 09:18

Sample Depth: 0.5'

Client: Ensolum

Project/Site: MCA 328

| Surrogate                         | %Recovery      | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fa   |
|-----------------------------------|----------------|-----------|----------|-------|---|----------------|----------------|----------|
| 1,4-Difluorobenzene (Surr)        | 92             |           | 70 - 130 |       |   | 06/29/22 12:00 | 06/30/22 06:27 |          |
| Method: Total BTEX - Total BTEX   | (Calculation   |           |          |       |   |                |                |          |
| Analyte                           | Result         | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Total BTEX                        | <0.00399       | U         | 0.00399  | mg/Kg |   |                | 06/30/22 15:24 |          |
| Method: 8015 NM - Diesel Range    | Organics (DR   | 0) (GC)   |          |       |   |                |                |          |
| Analyte                           | Result         | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Total TPH                         | <49.9          | U         | 49.9     | mg/Kg |   |                | 06/30/22 09:27 |          |
| Method: 8015B NM - Diesel Rang    | ge Organics (D | RO) (GC)  |          |       |   |                |                |          |
| Analyte                           |                | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Gasoline Range Organics           | <49.9          | U         | 49.9     | mg/Kg |   | 06/29/22 09:57 | 06/29/22 13:40 |          |
| (GRO)-C6-C10                      |                |           |          |       |   |                |                |          |
| Diesel Range Organics (Over       | <49.9          | U         | 49.9     | mg/Kg |   | 06/29/22 09:57 | 06/29/22 13:40 |          |
| C10-C28)                          |                |           |          |       |   |                |                |          |
| Oll Range Organics (Over C28-C36) | <49.9          | U         | 49.9     | mg/Kg |   | 06/29/22 09:57 | 06/29/22 13:40 |          |
| Surrogate                         | %Recovery      | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fa   |
| 1-Chlorooctane                    | 94             |           | 70 - 130 |       |   | 06/29/22 09:57 | 06/29/22 13:40 |          |
| o-Terphenyl                       | 100            |           | 70 - 130 |       |   | 06/29/22 09:57 | 06/29/22 13:40 |          |
| Method: 300.0 - Anions, Ion Chro  | omatography -  | Soluble   |          |       |   |                |                |          |
| Analyte                           | Result         | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Chloride                          | 10.0           |           | 4.98     | mg/Kg |   |                | 06/29/22 21:08 |          |
| lient Sample ID: SS02             |                |           |          |       |   | Lab Sam        | ple ID: 880-1  | 6415-3   |
| ate Collected: 06/28/22 16:03     |                |           |          |       |   |                | Matri          | x: Solid |

| Method: 8021B - Volatile Organ      | ic Compounds (  | (GC)      |          |       |   |                |                |         |
|-------------------------------------|-----------------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                             | Result          | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                             | <0.00199        | U         | 0.00199  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 06:47 | 1       |
| Toluene                             | <0.00199        | U         | 0.00199  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 06:47 | 1       |
| Ethylbenzene                        | <0.00199        | U         | 0.00199  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 06:47 | 1       |
| m-Xylene & p-Xylene                 | <0.00398        | U         | 0.00398  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 06:47 | 1       |
| o-Xylene                            | <0.00199        | U         | 0.00199  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 06:47 | 1       |
| Xylenes, Total                      | <0.00398        | U         | 0.00398  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 06:47 | 1       |
| Surrogate                           | %Recovery       | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)         | 105             |           | 70 - 130 |       |   | 06/29/22 12:00 | 06/30/22 06:47 | 1       |
| 1,4-Difluorobenzene (Surr)          | 97              |           | 70 - 130 |       |   | 06/29/22 12:00 | 06/30/22 06:47 | 1       |
| -<br>Method: Total BTEX - Total BTE | EX Calculation  |           |          |       |   |                |                |         |
| Analyte                             | Result          | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                          | <0.00398        | U         | 0.00398  | mg/Kg |   |                | 06/30/22 15:24 | 1       |
| -<br>Method: 8015 NM - Diesel Rang  | ge Organics (DR | O) (GC)   |          |       |   |                |                |         |
| Analyte                             | Result          | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                           | <49.9           | U         | 49.9     | mg/Kg |   |                | 06/30/22 09:27 | 1       |

Eurofins Midland

Released to Imaging: 7/13/2022 5:10:23 PM

Job ID: 880-16415-1 SDG: 03D2057003

Lab Sample ID: 880-16415-3

### Client Sample ID: SS02

Date Collected: 06/28/22 16:03 Date Received: 06/29/22 09:18

Sample Depth: 0.5'

Project/Site: MCA 328

Client: Ensolum

| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <49.9     | U         | 49.9     | mg/Kg |   | 06/29/22 09:57 | 06/29/22 14:01 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.9     | U         | 49.9     | mg/Kg |   | 06/29/22 09:57 | 06/29/22 14:01 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.9     | U         | 49.9     | mg/Kg |   | 06/29/22 09:57 | 06/29/22 14:01 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 93        |           | 70 - 130 |       |   | 06/29/22 09:57 | 06/29/22 14:01 | 1       |
| o-Terphenyl                       | 102       |           | 70 - 130 |       |   | 06/29/22 09:57 | 06/29/22 14:01 | 1       |

| Analyte  | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|--------|-----------|------|-------|---|----------|----------------|---------|
| Chloride | 14.7   |           | 4.98 | mg/Kg |   |          | 06/29/22 21:16 | 1       |

### Client Sample ID: SS03 Date Collected: 06/28/22 16:05

### Date Received: 06/29/22 09:18

Sample Depth: 0.5'

| Analyte                                 | Result        | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|---------------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                                 | <0.00200      | U         | 0.00200  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:07 | 1       |
| Toluene                                 | <0.00200      | U         | 0.00200  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:07 | 1       |
| Ethylbenzene                            | <0.00200      | U         | 0.00200  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:07 | 1       |
| m-Xylene & p-Xylene                     | <0.00399      | U         | 0.00399  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:07 | 1       |
| o-Xylene                                | <0.00200      | U         | 0.00200  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:07 | 1       |
| Xylenes, Total                          | <0.00399      | U         | 0.00399  | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:07 | 1       |
| Surrogate                               | %Recovery     | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)             | 105           |           | 70 - 130 |       |   | 06/29/22 12:00 | 06/30/22 07:07 | 1       |
| 1,4-Difluorobenzene (Surr)              | 95            |           | 70 - 130 |       |   | 06/29/22 12:00 | 06/30/22 07:07 | 1       |
| Method: Total BTEX - Total BTEX         | Calculation   |           |          |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                              | <0.00399      | U         | 0.00399  | mg/Kg |   |                | 06/30/22 15:24 | 1       |
| Method: 8015 NM - Diesel Range          | Organics (DR  | 0) (GC)   |          |       |   |                |                |         |
| Analyte                                 |               | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                               | <50.0         | U         | 50.0     | mg/Kg |   |                | 06/30/22 09:27 | 1       |
| Method: 8015B NM - Diesel Rang          | e Organics (D | RO) (GC)  |          |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics                 | <50.0         | U         | 50.0     | mg/Kg |   | 06/29/22 09:57 | 06/29/22 14:23 | 1       |
| (GRO)-C6-C10                            | <50.0         |           | 50.0     | malka |   | 06/29/22 09:57 | 06/29/22 14:23 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | ~50.0         | 0         | 50.0     | mg/Kg |   | 00/29/22 09:37 | 00129122 14.23 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0         | U         | 50.0     | mg/Kg |   | 06/29/22 09:57 | 06/29/22 14:23 | 1       |
| Surrogate                               | %Recovery     | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 91            |           | 70 - 130 |       |   | 06/29/22 09:57 | 06/29/22 14:23 | 1       |
| I-Chiorooclarie                         | 31            |           | 10-100   |       |   | 00/23/22 03.07 | 00/25/22 14.20 | ,       |

Eurofins Midland

|                                                     |               | Clien     | t Sample Re | sults |   |                |                |         |
|-----------------------------------------------------|---------------|-----------|-------------|-------|---|----------------|----------------|---------|
| Client: Ensolum                                     |               |           |             |       |   |                | Job ID: 880-   | 16415-  |
| Project/Site: MCA 328                               |               |           |             |       |   |                | SDG: 03D2      | 205700  |
| Client Sample ID: SS03                              |               |           |             |       |   | Lab Sam        | ple ID: 880-1  | 6415-4  |
| Date Collected: 06/28/22 16:05                      |               |           |             |       |   |                | Matri          | x: Soli |
| Date Received: 06/29/22 09:18                       |               |           |             |       |   |                |                |         |
| Sample Depth: 0.5'                                  |               |           |             |       |   |                |                |         |
| - Mathadi 200 0 Aniana Jan Ohna                     |               | Calubla   |             |       |   |                |                |         |
| Method: 300.0 - Anions, Ion Chro<br>Analyte         |               | Qualifier | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Chloride                                            | 11.8          |           | 4.98        | mg/Kg |   |                | 06/29/22 21:23 |         |
| Client Sample ID: SS04                              |               |           |             |       |   | Lab Sam        | ple ID: 880-1  | 6415-   |
| Date Collected: 06/28/22 16:07                      |               |           |             |       |   |                |                | x: Soli |
| Date Received: 06/29/22 09:18<br>Sample Depth: 0.5' |               |           |             |       |   |                | Wath           | x. 50m  |
| -                                                   | Compounde     |           |             |       |   |                |                |         |
| Method: 8021B - Volatile Organic<br>Analyte         |               | Qualifier | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Benzene                                             | <0.00200      |           | 0.00200     |       |   | 06/29/22 12:00 | 06/30/22 07:28 |         |
| Toluene                                             | < 0.00200     |           | 0.00200     | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:28 |         |
| Ethylbenzene                                        | < 0.00200     |           | 0.00200     | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:28 |         |
| m-Xylene & p-Xylene                                 | < 0.00401     |           | 0.00401     | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:28 |         |
| o-Xylene                                            | < 0.00200     |           | 0.00200     | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:28 |         |
| Xylenes, Total                                      | <0.00401      | U         | 0.00401     | mg/Kg |   | 06/29/22 12:00 | 06/30/22 07:28 |         |
| Surrogate                                           | %Recovery     | Qualifier | Limits      |       |   | Prepared       | Analyzed       | Dil Fa  |
| 4-Bromofluorobenzene (Surr)                         | 103           |           | 70 - 130    |       |   | 06/29/22 12:00 | 06/30/22 07:28 |         |
| 1,4-Difluorobenzene (Surr)                          | 95            |           | 70 - 130    |       |   | 06/29/22 12:00 | 06/30/22 07:28 |         |
| _<br>Method: Total BTEX - Total BTEX                | Calculation   |           |             |       |   |                |                |         |
| Analyte                                             |               | Qualifier | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Total BTEX                                          | <0.00401      | U         | 0.00401     | mg/Kg |   |                | 06/30/22 15:24 |         |
| -<br>Method: 8015 NM - Diesel Range                 | Organics (DR  | O) (GC)   |             |       |   |                |                |         |
| Analyte                                             | Result        | Qualifier | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Total TPH                                           | <49.9         | U         | 49.9        | mg/Kg |   |                | 06/30/22 09:27 |         |
| -<br>Method: 8015B NM - Diesel Rang                 | e Organics (D | RO) (GC)  |             |       |   |                |                |         |
| Analyte                                             |               | Qualifier | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Gasoline Range Organics                             | <49.9         | U         | 49.9        | mg/Kg |   | 06/29/22 09:57 | 06/29/22 14:44 |         |
| (GRO)-C6-C10<br>Diesel Range Organics (Over         | <49.9         | U         | 49.9        | mg/Kg |   | 06/29/22 09:57 | 06/29/22 14:44 |         |
| C10-C28)                                            | .5.0          |           |             |       |   |                |                |         |
| Oll Range Organics (Over C28-C36)                   | <49.9         | U         | 49.9        | mg/Kg |   | 06/29/22 09:57 | 06/29/22 14:44 |         |
| Surrogate                                           | %Recovery     | Qualifier | Limits      |       |   | Prepared       | Analyzed       | Dil Fa  |
| 1-Chlorooctane                                      | 96            |           | 70 - 130    |       |   | 06/29/22 09:57 | 06/29/22 14:44 |         |
| o-Terphenyl                                         | 104           |           | 70 - 130    |       |   | 06/29/22 09:57 | 06/29/22 14:44 |         |
| Method: 300.0 - Anions, Ion Chro                    | matography -  | Soluble   |             |       |   |                |                |         |
| Analyte                                             | Result        | Qualifier | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Chloride                                            | 16.9          |           | 5.04        | mg/Kg |   |                | 06/29/22 21:31 |         |

Eurofins Midland

### **Surrogate Summary**

Client: Ensolum Project/Site: MCA 328

### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Lab Sample ID Client Sample ID (70-130) (70-130) 880-16414-A-21-A MS Matrix Spike 107 103 880-16414-A-21-B MSD Matrix Spike Duplicate 113 101 880-16415-1 FS03 109 95 SS01 880-16415-2 104 92 880-16415-3 SS02 105 97 SS03 880-16415-4 105 95 880-16415-5 SS04 103 95 LCS 880-28624/1-A 107 98 Lab Control Sample LCSD 880-28624/2-A Lab Control Sample Dup 110 102 MB 880-28616/5-A Method Blank 99 96 MB 880-28624/5-A Method Blank 99 97 Surrogate Legend BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|                      |                        | 1CO1     | OTPH1    |
|----------------------|------------------------|----------|----------|
| Lab Sample ID        | Client Sample ID       | (70-130) | (70-130) |
| 880-16414-A-21-E MS  | Matrix Spike           | 107      | 97       |
| 880-16414-A-21-F MSD | Matrix Spike Duplicate | 92       | 83       |
| 880-16415-1          | FS03                   | 100      | 106      |
| 880-16415-2          | SS01                   | 94       | 100      |
| 880-16415-3          | SS02                   | 93       | 102      |
| 880-16415-4          | SS03                   | 91       | 98       |
| 880-16415-5          | SS04                   | 96       | 104      |
| LCS 880-28627/2-A    | Lab Control Sample     | 99       | 104      |
| LCSD 880-28627/3-A   | Lab Control Sample Dup | 90       | 93       |
| MB 880-28627/1-A     | Method Blank           | 99       | 111      |

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

**Eurofins Midland** 

**Page 49 of 75** 

Job ID: 880-16415-1 SDG: 03D2057003

Prep Type: Total/NA

### Prep Type: Total/NA

### **QC Sample Results**

5

| Job ID: | 880-16415-1 |
|---------|-------------|
| SDG:    | 03D2057003  |

۰,

Client: Ensolum Project/Site: MCA 328

### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-28616/5-A  |          |          |           |          |         |              |       |       |      | Client Sa   | mple ID: Meth           |        |       |
|----------------------------------|----------|----------|-----------|----------|---------|--------------|-------|-------|------|-------------|-------------------------|--------|-------|
| Matrix: Solid                    |          |          |           |          |         |              |       |       |      |             | Prep Type:              |        |       |
| Analysis Batch: 28610            |          |          |           |          |         |              |       |       |      |             | Prep Bate               | :h: 28 | 361   |
| Analyta                          |          | MB M<br> |           | ы        |         | Unit         |       | n     | ь.   | renered     | Analyzad                |        | il Fa |
| Analyte<br>Benzene               | <0.002   |          | Qualifier |          |         | Unit<br>mg/K |       | D     |      | repared     | Analyzed 06/29/22 11:24 |        | ГГа   |
|                                  |          |          |           |          |         | -            | -     |       |      | 9/22 09:14  |                         |        |       |
|                                  | < 0.002  |          |           | 0.00200  |         | mg/K         | -     |       |      | 9/22 09:14  | 06/29/22 11:24          |        |       |
| Ethylbenzene                     | <0.002   |          |           | 0.00200  |         | mg/K         |       |       |      | 9/22 09:14  | 06/29/22 11:24          |        |       |
| m-Xylene & p-Xylene              | < 0.004  |          |           | 0.00400  |         | mg/K         |       |       |      | 9/22 09:14  | 06/29/22 11:24          |        |       |
| o-Xylene                         | <0.002   |          |           | 0.00200  |         | mg/K         |       |       |      | 9/22 09:14  | 06/29/22 11:24          |        |       |
| Xylenes, Total                   | <0.004   | 00 l     | J         | 0.00400  |         | mg/K         | g     |       | 06/2 | 9/22 09:14  | 06/29/22 11:24          |        |       |
|                                  |          | ИВ І     | ИВ        |          |         |              |       |       |      |             |                         |        |       |
| Surrogate                        | %Recov   | ery (    | Qualifier | Limits   |         |              |       |       | PI   | repared     | Analyzed                | Di     | il Fa |
| 4-Bromofluorobenzene (Surr)      |          | 99       |           | 70 - 130 |         |              |       | _     | 06/2 | 9/22 09:14  | 06/29/22 11:24          |        |       |
| 1,4-Difluorobenzene (Surr)       |          | 96       |           | 70 - 130 |         |              |       |       | 06/2 | 9/22 09:14  | 06/29/22 11:24          |        |       |
| Lab Sample ID: MB 880-28624/5-A  |          |          |           |          |         |              |       |       |      | Client Sa   | mple ID: Meth           | od Bl  | lar   |
| Matrix: Solid                    |          |          |           |          |         |              |       |       |      | onent oa    | Prep Type:              |        |       |
| Analysis Batch: 28610            |          |          |           |          |         |              |       |       |      |             | Prep Bate               |        |       |
| Analysis Datch. 20010            |          | иви      | /IB       |          |         |              |       |       |      |             | Frep Date               |        | 102   |
| Analyte                          |          |          | Qualifier | RL       |         | Unit         |       | D     | D,   | repared     | Analyzed                | ы      | il Fa |
| Benzene                          | <0.002   |          |           | 0.00200  |         | mg/K         |       |       |      | 9/22 09:20  | 06/29/22 23:02          |        |       |
| Toluene                          | <0.002   |          |           | 0.00200  |         | mg/K         | -     |       |      | 9/22 09:20  | 06/29/22 23:02          |        |       |
|                                  |          |          |           |          |         | -            | -     |       |      |             |                         |        |       |
| Ethylbenzene                     | <0.002   |          |           | 0.00200  |         | mg/K         |       |       |      | 9/22 09:20  | 06/29/22 23:02          |        |       |
| m-Xylene & p-Xylene              | < 0.004  |          |           | 0.00400  |         | mg/K         |       |       |      | 9/22 09:20  | 06/29/22 23:02          |        |       |
| o-Xylene                         | < 0.002  |          |           | 0.00200  |         | mg/K         | -     |       |      | 9/22 09:20  | 06/29/22 23:02          |        |       |
| Xylenes, Total                   | <0.004   | .00 l    | J         | 0.00400  |         | mg/K         | g     |       | 06/2 | 9/22 09:20  | 06/29/22 23:02          |        |       |
|                                  |          | ив і     | ИВ        |          |         |              |       |       |      |             |                         |        |       |
| Surrogate                        | %Recov   | ery (    | Qualifier | Limits   |         |              |       |       | PI   | repared     | Analyzed                | Di     | il Fa |
| 4-Bromofluorobenzene (Surr)      |          | 99       |           | 70 - 130 |         |              |       | _     | 06/2 | 9/22 09:20  | 06/29/22 23:02          |        |       |
| 1,4-Difluorobenzene (Surr)       |          | 97       |           | 70 - 130 |         |              |       |       | 06/2 | 9/22 09:20  | 06/29/22 23:02          |        |       |
| Lab Sample ID: LCS 880-28624/1-/ | ^        |          |           |          |         |              |       | CI    | iont | Sample      | D: Lab Contro           | I San  |       |
| Matrix: Solid                    |          |          |           |          |         |              |       | 01    | em   | Jampie      | Prep Type:              |        |       |
| Analysis Batch: 28610            |          |          |           |          |         |              |       |       |      |             | Prep Bate               |        |       |
| Analysis Datch. 20010            |          |          |           | Spike    | LCS     | LCS          |       |       |      |             | %Rec                    |        | 102   |
| Analyte                          |          |          |           | Added    |         | Qualifier    | Unit  |       | п    | %Rec        | Limits                  |        |       |
| Benzene                          |          |          |           | 0.100    | 0.08406 | Quanner      | mg/Kg |       | _    | 84          | 70 - 130                |        |       |
| Toluene                          |          |          |           | 0.100    | 0.09562 |              |       |       |      | 96          | 70 - 130                |        |       |
|                                  |          |          |           |          |         |              | mg/Kg |       |      |             |                         |        |       |
| Ethylbenzene                     |          |          |           | 0.100    | 0.08441 |              | mg/Kg |       |      | 84          | 70 - 130                |        |       |
| m-Xylene & p-Xylene              |          |          |           | 0.200    | 0.1710  |              | mg/Kg |       |      | 86<br>100   | 70 - 130                |        |       |
| p-Xylene                         |          |          |           | 0.100    | 0.1001  |              | mg/Kg |       |      | 100         | 70 - 130                |        |       |
|                                  | LCS I    |          |           |          |         |              |       |       |      |             |                         |        |       |
|                                  | Recovery | Qualif   | ier       | Limits   |         |              |       |       |      |             |                         |        |       |
| 4-Bromofluorobenzene (Surr)      | 107      |          |           | 70 - 130 |         |              |       |       |      |             |                         |        |       |
| 1,4-Difluorobenzene (Surr)       | 98       |          |           | 70 - 130 |         |              |       |       |      |             |                         |        |       |
| Lab Sample ID: LCSD 880-28624/2  | 2-A      |          |           |          |         |              | Clie  | ent S | Sam  | ple ID: La  | ab Control Sar          | nple l | Du    |
| Matrix: Solid                    |          |          |           |          |         |              |       |       |      |             | Prep Type:              |        |       |
| Analysis Batch: 28610            |          |          |           |          |         |              |       |       |      |             | Prep Bate               |        |       |
| -                                |          |          |           | Spike    | LCSD    | LCSD         |       |       |      |             | %Rec                    |        | RF    |
|                                  |          |          |           |          |         |              |       |       | _    | 0/ <b>D</b> | Line Mar D              |        |       |
| Analyte                          |          |          |           | Added    | Result  | Qualifier    | Unit  |       | D    | %Rec        | Limits RI               | ו טי   | Lim   |

Eurofins Midland

Client: Ensolum

Project/Site: MCA 328

### **QC Sample Results**

Page 51 of 75

Job ID: 880-16415-1 SDG: 03D2057003

### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCSD 880-286<br>Matrix: Solid                  | 24/2-A      |              |                |         |                   | Cli   | ent S | Sam      | ple ID: L  | ab Control ۱<br>Prep Ty |          |        |
|---------------------------------------------------------------|-------------|--------------|----------------|---------|-------------------|-------|-------|----------|------------|-------------------------|----------|--------|
|                                                               |             |              |                |         |                   |       |       |          |            |                         |          |        |
| Analysis Batch: 28610                                         |             |              | 0              | 1.000   | 1.000             |       |       |          |            | Prep B                  | atch.    |        |
| Analyta                                                       |             |              | Spike<br>Added |         | LCSD<br>Qualifier | Unit  |       | n        | % Boo      | %Rec                    | RPD      | RPE    |
| Analyte                                                       |             |              |                |         |                   | Unit  |       | <u>D</u> | %Rec       | Limits                  |          | Limi   |
| Toluene                                                       |             |              | 0.100          | 0.1002  |                   | mg/Kg |       |          | 100        | 70 - 130                | 5        | 3      |
| Ethylbenzene                                                  |             |              | 0.100          | 0.08941 |                   | mg/Kg |       |          | 89         | 70 - 130                | 6        | 3      |
| m-Xylene & p-Xylene                                           |             |              | 0.200          | 0.1805  |                   | mg/Kg |       |          | 90         | 70 - 130                | 5        | 3      |
| o-Xylene                                                      |             |              | 0.100          | 0.1055  |                   | mg/Kg |       |          | 105        | 70 - 130                | 5        | 3      |
|                                                               | LCSD LO     | CSD          |                |         |                   |       |       |          |            |                         |          |        |
| Surrogate                                                     | %Recovery Q | ualifier     | Limits         |         |                   |       |       |          |            |                         |          |        |
| 4-Bromofluorobenzene (Surr)                                   | 110         |              | 70 - 130       |         |                   |       |       |          |            |                         |          |        |
| 1,4-Difluorobenzene (Surr)                                    | 102         |              | 70 - 130       |         |                   |       |       |          |            |                         |          |        |
| Nethod: 8015B NM - Diese<br>-<br>Lab Sample ID: MB 880-28627/ |             | anics (DF    | RO) (GC)       |         |                   |       |       |          | Client Sa  | ample ID: Me            | ethod    | Blan   |
| Matrix: Solid                                                 |             |              |                |         |                   |       |       |          |            | Prep Ty                 |          |        |
| Analysis Batch: 28605                                         |             |              |                |         |                   |       |       |          |            | Prep B                  |          |        |
|                                                               | м           | в мв         |                |         |                   |       |       |          |            |                         |          |        |
| Analyte                                                       |             | It Qualifier | RL             |         | Unit              |       | D     | Р        | repared    | Analyzed                | 1        | Dil Fa |
| Gasoline Range Organics                                       |             | .0 U         |                |         | mg/Kg             |       |       |          | 9/22 09:57 | 06/29/22 10:            |          | Diria  |
| (GRO)-C6-C10                                                  |             |              | 0010           |         |                   |       |       | 00/2     | 0,22 00.01 | 00/20/22 10             |          |        |
| Diesel Range Organics (Over<br>C10-C28)                       | <50         | .0 U         | 50.0           |         | mg/Kg             |       |       | 06/2     | 9/22 09:57 | 06/29/22 10:            | :05      |        |
| Oll Range Organics (Over C28-C36)                             | <50         | .0 U         | 50.0           |         | mg/Kg             |       |       | 06/2     | 9/22 09:57 | 06/29/22 10:            | :05      |        |
|                                                               |             | B MB         |                |         |                   |       |       |          |            |                         |          |        |
| Surrogate                                                     |             | ry Qualifier | Limits         |         |                   |       | _     | P        | repared    | Analyzed                | <u> </u> | Dil Fa |
| 1-Chlorooctane                                                | ç           | 99           | 70 - 130       |         |                   |       |       | 06/2     | 9/22 09:57 | 06/29/22 10             | :05      |        |
| o-Terphenyl                                                   | 1:          | 11           | 70 - 130       |         |                   |       |       | 06/2     | 9/22 09:57 | 06/29/22 10             | :05      |        |
| Lab Sample ID: LCS 880-2862                                   | 7/2-4       |              |                |         |                   |       | Cli   | iont     | Sample     | ID: Lab Con             | trol S   | amnl   |
| Matrix: Solid                                                 |             |              |                |         |                   |       |       |          | oumpio     | Prep Typ                |          |        |
| Analysis Batch: 28605                                         |             |              |                |         |                   |       |       |          |            | Prep B                  |          |        |
| Analysis Batch. 20005                                         |             |              | Spike          | LCS     | LCS               |       |       |          |            | %Rec                    | aton.    | 2002   |
| Analyte                                                       |             |              | Added          |         | Qualifier         | Unit  |       | D        | %Rec       | Limits                  |          |        |
| Gasoline Range Organics                                       |             |              | 1000           | 874.4   |                   | mg/Kg |       | _        |            | 70 - 130                |          |        |
| (GRO)-C6-C10                                                  |             |              |                | 074.4   |                   |       |       |          | 07         |                         |          |        |
| Diesel Range Organics (Over<br>C10-C28)                       |             |              | 1000           | 1061    |                   | mg/Kg |       |          | 106        | 70 - 130                |          |        |
|                                                               | LCS L       | cs           |                |         |                   |       |       |          |            |                         |          |        |
| Surrogate                                                     |             | ualifier     | Limits         |         |                   |       |       |          |            |                         |          |        |
| 1-Chlorooctane                                                | 99          |              | 70 - 130       |         |                   |       |       |          |            |                         |          |        |
| o-Terphenyl                                                   | 104         |              | 70 - 130       |         |                   |       |       |          |            |                         |          |        |
| · · · · · · · · · · · · · · · · · · ·                         |             |              |                |         |                   |       |       |          |            |                         |          |        |
| Lab Sample ID: LCSD 880-286                                   | 27/3-A      |              |                |         |                   | Cli   | ent S | Sam      | ple ID: L  | ab Control S            | Sampl    | e Duj  |
| Matrix: Solid                                                 |             |              |                |         |                   |       |       |          |            | Ргер Ту                 | be: To   | tal/N  |
| Analysis Batch: 28605                                         |             |              |                |         |                   |       |       |          |            | Prep B                  | atch:    | 2862   |
| -                                                             |             |              | Spike          | LCSD    | LCSD              |       |       |          |            | %Rec                    |          | RP     |
| Analyte                                                       |             |              | Added          | Result  | Qualifier         | Unit  |       | D        | %Rec       | Limits                  | RPD      | Limi   |
| Gasoline Range Organics                                       |             |              | 1000           | 791.5   |                   | mg/Kg |       | _        | 79         | 70 - 130                | 10       | 2      |
| (GRO)-C6-C10                                                  |             |              |                |         |                   |       |       |          |            |                         |          |        |
| Diesel Range Organics (Over                                   |             |              | 1000           | 917 5   |                   | ma/Ka |       |          | 92         | 70 130                  | 15       | 20     |

Eurofins Midland

15

20

Diesel Range Organics (Over

C10-C28)

917.5

mg/Kg

92

70 - 130

1000

### Job ID: 880-16415-1 SDG: 03D2057003

Client: Ensolum Project/Site: MCA 328

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: LCSD 880-280<br>Matrix: Solid | 627/3-A    |                 |          |        |           | CI    | ient Sa | mple ID:  | Lab Contro<br>Prep 1 | l Sampl<br>ype: To | -      |
|----------------------------------------------|------------|-----------------|----------|--------|-----------|-------|---------|-----------|----------------------|--------------------|--------|
| Analysis Batch: 28605                        |            |                 |          |        |           |       |         |           | Prep                 | Batch:             | 28627  |
|                                              | LCSD       | LCSD            |          |        |           |       |         |           |                      |                    |        |
| Surrogate                                    | %Recovery  | Qualifier       | Limits   |        |           |       |         |           |                      |                    |        |
| 1-Chlorooctane                               | 90         |                 | 70 - 130 | -      |           |       |         |           |                      |                    |        |
| o-Terphenyl                                  | 93         |                 | 70 _ 130 |        |           |       |         |           |                      |                    |        |
| Method: 300.0 - Anions, Io                   | on Chromat | ography         |          |        |           |       |         |           |                      |                    |        |
| Lab Sample ID: MB 880-28628                  | B/1-A      |                 |          |        |           |       |         | Client    | Sample ID:           | Method             | Blan   |
| Matrix: Solid                                |            |                 |          |        |           |       |         |           | Prep                 | Type: S            | olubl  |
| Analysis Batch: 28663                        |            |                 |          |        |           |       |         |           |                      |                    |        |
|                                              |            | MB MB           |          |        |           |       |         |           |                      |                    |        |
| Analyte                                      | R          | esult Qualifier |          | RL     | Unit      |       | D       | Prepared  | Analyz               | ed                 | Dil Fa |
| Chloride                                     | <          | <5.00 U         |          | 5.00   | mg/K      | g     |         |           | 06/29/22             | 20:21              |        |
| Lab Sample ID: LCS 880-2862                  | 28/2-A     |                 |          |        |           |       | Clier   | nt Sample | e ID: Lab Co         | ontrol S           | ample  |
| Matrix: Solid                                |            |                 |          |        |           |       |         |           |                      | Type: S            |        |
| Analysis Batch: 28663                        |            |                 |          |        |           |       |         |           |                      |                    |        |
| -                                            |            |                 | Spike    | LCS    | LCS       |       |         |           | %Rec                 |                    |        |
| Analyte                                      |            |                 | Added    | Result | Qualifier | Unit  | D       | %Rec      | Limits               |                    |        |
| Chloride                                     |            |                 | 250      | 255.2  |           | mg/Kg |         | 102       | 90 _ 110             |                    |        |
| Lab Sample ID: LCSD 880-28                   | 628/3-A    |                 |          |        |           | CI    | ient Sa | mple ID:  | Lab Contro           | I Sampl            | e Dur  |
| Matrix: Solid                                |            |                 |          |        |           |       |         |           | Prep                 | Type: S            | olubl  |
| Analysis Batch: 28663                        |            |                 |          |        |           |       |         |           |                      |                    |        |
|                                              |            |                 | Spike    | LCSD   | LCSD      |       |         |           | %Rec                 |                    | RPI    |
| Analyte                                      |            |                 | Added    | Result | Qualifier | Unit  | D       | %Rec      | Limits               | RPD                | Limi   |
| Chloride                                     |            |                 | 250      | 253.3  |           | mg/Kg |         | 101       | 90 - 110             | 1                  | 20     |
| -<br>Lab Sample ID: 880-16415-1 M            | <b>NS</b>  |                 |          |        |           |       |         |           | Client Sa            | mple ID:           | : FS0: |
| Matrix: Solid                                |            |                 |          |        |           |       |         |           |                      | ·<br>Type: S       |        |
| Analysis Batch: 28663                        |            |                 |          |        |           |       |         |           |                      |                    |        |
| -                                            | Sample     | Sample          | Spike    | MS     | MS        |       |         |           | %Rec                 |                    |        |
| Analyte                                      | Result     | Qualifier       | Added    | Result | Qualifier | Unit  | D       | %Rec      | Limits               |                    |        |
| Chloride                                     | 15.7       |                 | 250      | 266.3  |           | mg/Kg |         | 100       | 90 _ 110             |                    |        |
| Lab Sample ID: 880-16415-1                   | ISD        |                 |          |        |           |       |         |           | Client Sa            | mple ID:           | : FS0: |
| Matrix: Solid                                |            |                 |          |        |           |       |         |           |                      | Type: S            |        |
| Analysis Batch: 28663                        |            |                 |          |        |           |       |         |           |                      |                    |        |
| -                                            | Sample     | Sample          | Spike    | MSD    | MSD       |       |         |           | %Rec                 |                    | RPI    |
| Analyte                                      | Result     | Qualifier       | Added    | Result | Qualifier | Unit  | D       | %Rec      | Limits               | RPD                | Limi   |
|                                              | 15.7       |                 | 250      | 271.0  |           |       |         | 102       | 90 - 110             | 2                  | 20     |

### **QC Association Summary**

Client: Ensolum Project/Site: MCA 328 Job ID: 880-16415-1 SDG: 03D2057003

### **GC VOA**

### Analysis Batch: 28610

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-16415-1        | FS03                   | Total/NA  | Solid  | 8021B  | 28624      |
| 880-16415-2        | SS01                   | Total/NA  | Solid  | 8021B  | 28624      |
| 880-16415-3        | SS02                   | Total/NA  | Solid  | 8021B  | 28624      |
| 880-16415-4        | SS03                   | Total/NA  | Solid  | 8021B  | 28624      |
| 880-16415-5        | SS04                   | Total/NA  | Solid  | 8021B  | 28624      |
| MB 880-28616/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 28616      |
| MB 880-28624/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 28624      |
| LCS 880-28624/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 28624      |
| LCSD 880-28624/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 28624      |

# Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep BatchMB 880-28616/5-AMethod BlankTotal/NASolid5035

#### Prep Batch: 28624

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |  |
|--------------------|------------------------|-----------|--------|--------|------------|--|
| 880-16415-1        | FS03                   | Total/NA  | Solid  | 5035   |            |  |
| 880-16415-2        | SS01                   | Total/NA  | Solid  | 5035   |            |  |
| 880-16415-3        | SS02                   | Total/NA  | Solid  | 5035   |            |  |
| 880-16415-4        | SS03                   | Total/NA  | Solid  | 5035   |            |  |
| 880-16415-5        | SS04                   | Total/NA  | Solid  | 5035   |            |  |
| MB 880-28624/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |  |
| LCS 880-28624/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |  |
| LCSD 880-28624/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |  |

#### Analysis Batch: 28768

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-16415-1   | FS03             | Total/NA  | Solid  | Total BTEX |            |
| 880-16415-2   | SS01             | Total/NA  | Solid  | Total BTEX |            |
| 880-16415-3   | SS02             | Total/NA  | Solid  | Total BTEX |            |
| 880-16415-4   | SS03             | Total/NA  | Solid  | Total BTEX |            |
| 880-16415-5   | SS04             | Total/NA  | Solid  | Total BTEX |            |

### GC Semi VOA

#### Analysis Batch: 28605

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 880-16415-1        | FS03                   | Total/NA  | Solid  | 8015B NM | 28627      |
| 880-16415-2        | SS01                   | Total/NA  | Solid  | 8015B NM | 28627      |
| 880-16415-3        | SS02                   | Total/NA  | Solid  | 8015B NM | 28627      |
| 880-16415-4        | SS03                   | Total/NA  | Solid  | 8015B NM | 28627      |
| 880-16415-5        | SS04                   | Total/NA  | Solid  | 8015B NM | 28627      |
| MB 880-28627/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM | 28627      |
| LCS 880-28627/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 28627      |
| LCSD 880-28627/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 28627      |
|                    |                        |           |        |          |            |

### Prep Batch: 28627

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method      | Prep Batch |
|---------------|------------------|-----------|--------|-------------|------------|
| 880-16415-1   | FS03             | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16415-2   | SS01             | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16415-3   | SS02             | Total/NA  | Solid  | 8015NM Prep |            |

Eurofins Midland

5

8

## **QC Association Summary**

Client: Ensolum Project/Site: MCA 328

### GC Semi VOA (Continued)

### Prep Batch: 28627 (Continued)

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|-----------------------|------------------------|-----------|--------|-------------|------------|
| 880-16415-4           | SS03                   | Total/NA  | Solid  | 8015NM Prep |            |
| 880-16415-5           | SS04                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-28627/1-A      | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-28627/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-28627/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| Analysia Patahy 29724 |                        |           |        |             |            |
| Analysis Batch: 28731 |                        |           |        |             |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-16415-1   | FS03             | Total/NA  | Solid  | 8015 NM |            |
| 880-16415-2   | SS01             | Total/NA  | Solid  | 8015 NM |            |
| 880-16415-3   | SS02             | Total/NA  | Solid  | 8015 NM |            |
| 880-16415-4   | SS03             | Total/NA  | Solid  | 8015 NM |            |
| 880-16415-5   | SS04             | Total/NA  | Solid  | 8015 NM |            |
|               |                  |           |        |         |            |

### HPLC/IC

### Leach Batch: 28628

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 880-16415-1        | FS03                   | Soluble   | Solid  | DI Leach | /          |
| 880-16415-2        | SS01                   | Soluble   | Solid  | DI Leach |            |
| 880-16415-3        | SS02                   | Soluble   | Solid  | DI Leach |            |
| 880-16415-4        | SS03                   | Soluble   | Solid  | DI Leach |            |
| 880-16415-5        | SS04                   | Soluble   | Solid  | DI Leach |            |
| MB 880-28628/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-28628/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-28628/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 880-16415-1 MS     | FS03                   | Soluble   | Solid  | DI Leach |            |
| 880-16415-1 MSD    | FS03                   | Soluble   | Solid  | DI Leach |            |

#### Analysis Batch: 28663

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-16415-1        | FS03                   | Soluble   | Solid  | 300.0  | 28628      |
| 880-16415-2        | SS01                   | Soluble   | Solid  | 300.0  | 28628      |
| 880-16415-3        | SS02                   | Soluble   | Solid  | 300.0  | 28628      |
| 880-16415-4        | SS03                   | Soluble   | Solid  | 300.0  | 28628      |
| 880-16415-5        | SS04                   | Soluble   | Solid  | 300.0  | 28628      |
| MB 880-28628/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 28628      |
| LCS 880-28628/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 28628      |
| LCSD 880-28628/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 28628      |
| 880-16415-1 MS     | FS03                   | Soluble   | Solid  | 300.0  | 28628      |
| 880-16415-1 MSD    | FS03                   | Soluble   | Solid  | 300.0  | 28628      |

8

Job ID: 880-16415-1

SDG: 03D2057003

5

9

Job ID: 880-16415-1 SDG: 03D2057003

### Lab Sample ID: 880-16415-1 Matrix: Solid

Lab Sample ID: 880-16415-2

Lab Sample ID: 880-16415-3

Lab Sample ID: 880-16415-4

Matrix: Solid

Matrix: Solid

**Client Sample ID: FS03** Date Collected: 06/28/22 15:50 Date Received: 06/29/22 09:18

Client: Ensolum

Project/Site: MCA 328

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |          | 28624  | 06/29/22 12:00 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 1        | 28610  | 06/30/22 06:06 | MR      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1        | 28768  | 06/30/22 15:24 | SM      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1        | 28731  | 06/30/22 09:27 | AJ      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |          | 28627  | 06/29/22 09:57 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1        | 28605  | 06/29/22 13:18 | AJ      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |          | 28628  | 06/29/22 09:58 | СН      | XEN MID |
| Soluble   | Analysis | 300.0       |     | 1        | 28663  | 06/29/22 20:44 | СН      | XEN MID |

### **Client Sample ID: SS01**

### Date Collected: 06/28/22 16:00

Date Received: 06/29/22 09:18

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |          | 28624  | 06/29/22 12:00 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 1        | 28610  | 06/30/22 06:27 | MR      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1        | 28768  | 06/30/22 15:24 | SM      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1        | 28731  | 06/30/22 09:27 | AJ      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |          | 28627  | 06/29/22 09:57 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1        | 28605  | 06/29/22 13:40 | AJ      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |          | 28628  | 06/29/22 09:58 | СН      | XEN MID |
| Soluble   | Analysis | 300.0       |     | 1        | 28663  | 06/29/22 21:08 | СН      | XEN MID |

### **Client Sample ID: SS02**

### Date Collected: 06/28/22 16:03

Date Received: 06/29/22 09:18

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |          | 28624  | 06/29/22 12:00 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 1        | 28610  | 06/30/22 06:47 | MR      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1        | 28768  | 06/30/22 15:24 | SM      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1        | 28731  | 06/30/22 09:27 | AJ      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |          | 28627  | 06/29/22 09:57 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1        | 28605  | 06/29/22 14:01 | AJ      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |          | 28628  | 06/29/22 09:58 | СН      | XEN MID |
| Soluble   | Analysis | 300.0       |     | 1        | 28663  | 06/29/22 21:16 | СН      | XEN MID |

### **Client Sample ID: SS03** Date Collected: 06/28/22 16:05 Date Received: 06/29/22 09:18

| _         | Batch    | Batch      |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method     | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |          | 28624  | 06/29/22 12:00 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B      |     | 1        | 28610  | 06/30/22 07:07 | MR      | XEN MID |
| Total/NA  | Analysis | Total BTEX |     | 1        | 28768  | 06/30/22 15:24 | SM      | XEN MID |

**Eurofins Midland** 

Matrix: Solid

### Released to Imaging: 7/13/2022 5:10:23 PM

Job ID: 880-16415-1 SDG: 03D2057003

Matrix: Solid

Matrix: Solid

5

9

Lab Sample ID: 880-16415-4

### Client Sample ID: SS03 Date Collected: 06/28/22 16:05

Client: Ensolum

Project/Site: MCA 328

Date Received: 06/29/22 09:18

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1        | 28731  | 06/30/22 09:27 | AJ      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |          | 28627  | 06/29/22 09:57 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1        | 28605  | 06/29/22 14:23 | AJ      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |          | 28628  | 06/29/22 09:58 | СН      | XEN MID |
| Soluble   | Analysis | 300.0       |     | 1        | 28663  | 06/29/22 21:23 | СН      | XEN MID |

### Client Sample ID: SS04 Date Collected: 06/28/22 16:07

#### Date Received: 06/29/22 09:18

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |          | 28624  | 06/29/22 12:00 | MR      | XEN MID |
| Total/NA  | Analysis | 8021B       |     | 1        | 28610  | 06/30/22 07:28 | MR      | XEN MID |
| Total/NA  | Analysis | Total BTEX  |     | 1        | 28768  | 06/30/22 15:24 | SM      | XEN MID |
| Total/NA  | Analysis | 8015 NM     |     | 1        | 28731  | 06/30/22 09:27 | AJ      | XEN MID |
| Total/NA  | Prep     | 8015NM Prep |     |          | 28627  | 06/29/22 09:57 | DM      | XEN MID |
| Total/NA  | Analysis | 8015B NM    |     | 1        | 28605  | 06/29/22 14:44 | AJ      | XEN MID |
| Soluble   | Leach    | DI Leach    |     |          | 28628  | 06/29/22 09:58 | СН      | XEN MID |
| Soluble   | Analysis | 300.0       |     | 1        | 28663  | 06/29/22 21:31 | СН      | XEN MID |

#### Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Page 56 of 75

Accreditation/Certification Summary

Client: Ensolum Project/Site: MCA 328

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority                                 | P                                 | rogram                          | Identification Number                        | Expiration Date         |
|------------------------------------------|-----------------------------------|---------------------------------|----------------------------------------------|-------------------------|
| exas                                     | N                                 | ELAP                            | T104704400-21-22                             | 06-30-22                |
| The following analytes                   | are included in this report, b    | ut the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for |
| the agency does not o                    | fer certification.                |                                 |                                              |                         |
| the agency does not o<br>Analysis Method | fer certification.<br>Prep Method | Matrix                          | Analyte                                      |                         |
| 8 ,                                      |                                   | Matrix<br>Solid                 | Analyte<br>Total TPH                         |                         |

Eurofins Midland

Page 57 of 75

10

Job ID: 880-16415-1

SDG: 03D2057003

Client: Ensolum Project/Site: MCA 328 Job ID: 880-16415-1 SDG: 03D2057003

| Method      | Method Description                 | Protocol | Laboratory |
|-------------|------------------------------------|----------|------------|
| 8021B       | Volatile Organic Compounds (GC)    | SW846    | XEN MID    |
| Total BTEX  | Total BTEX Calculation             | TAL SOP  | XEN MID    |
| 8015 NM     | Diesel Range Organics (DRO) (GC)   | SW846    | XEN MID    |
| 8015B NM    | Diesel Range Organics (DRO) (GC)   | SW846    | XEN MID    |
| 300.0       | Anions, Ion Chromatography         | MCAWW    | XEN MID    |
| 5035        | Closed System Purge and Trap       | SW846    | XEN MID    |
| 8015NM Prep | Microextraction                    | SW846    | XEN MID    |
| DI Leach    | Deionized Water Leaching Procedure | ASTM     | XEN MID    |

#### Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 58 of 75

Eurofins Midland

### **Sample Summary**

Client: Ensolum Project/Site: MCA 328

| b Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth |  |
|-------------|------------------|--------|----------------|----------------|-------|--|
| 0-16415-1   | FS03             | Solid  | 06/28/22 15:50 | 06/29/22 09:18 | 3'    |  |
| 0-16415-2   | SS01             | Solid  | 06/28/22 16:00 | 06/29/22 09:18 | 0.5'  |  |
| 0-16415-3   | SS02             | Solid  | 06/28/22 16:03 | 06/29/22 09:18 | 0.5'  |  |
| 0-16415-4   | SS03             | Solid  | 06/28/22 16:05 | 06/29/22 09:18 | 0.5'  |  |
| 0-16415-5   | SS04             | Solid  | 06/28/22 16:07 | 06/29/22 09:18 | 0.5'  |  |
|             |                  |        |                |                |       |  |
|             |                  |        |                |                |       |  |
|             |                  |        |                |                |       |  |
|             |                  |        |                |                |       |  |
|             |                  |        |                |                |       |  |
|             |                  |        |                |                |       |  |
|             |                  |        |                |                |       |  |
|             |                  |        |                |                |       |  |

.

Page 59 of 75

| Revised Date: 08/25/2020 Rev 2020                                 |                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                           |                                                                |                                                                  | σ                           |
|-------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|
|                                                                   |                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                           |                                                                | 0                                                                | 3                           |
|                                                                   |                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.22                                              | 6                                                         | A / M                                                          | MMros 7                                                          | the Xaley Xun               |
| lure) Date/Time                                                   | ) Received by: (Signature)                        | Relinquished by: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                     | Date/Time                                          | ture)                                                     | Received by. (Signature)                                       | (Signature)                                                      | Relinquished by (Signature) |
| ed.                                                               | the enforced unless previously negotiat           | of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.                                                                                                                                                                                                                     | le submitted to Eurofins                           | harge of \$5 for each samp                                | pplied to each project and a c                                 | um charge of \$85.00 will be a                                   | of Eurofins Xenco. A minim  |
|                                                                   | ssigns standard terms and conditions              | Notice Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of sarvice. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances havond the contro | company to Eurofins Xe<br>iny losses or expenses i | urchase order from client<br>ime any responsibility for a | samples constitutes a valid p<br>of samples and shall not assu | cument and relinquishment of<br>will be liable only for the cost | of service. Eurofins Xenco  |
| Hg 1631/2451/7470/7471                                            | Se Ag TIU Hg 1631                                 | Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U                                                                                                                                                                                                                                                                                                                                                                                                   | Sb As Ba Be C                                      | ICLY / SPLP SUID BRUKA                                    |                                                                |                                                                  |                             |
| Na Sr TI Sn U V Zn                                                | K Se Ag SiO <sub>2</sub>                          | Cd Ca Cr Co Cu Fe Pb Mg                                                                                                                                                                                                                                                                                                                                                                                                                          | Sb As Ba Be B                                      |                                                           | 8RC                                                            | 0 200.8 / 6020:                                                  | iotal 200.7 / 6010          |
|                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                           | HI                                                             |                                                                  |                             |
|                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                           |                                                                |                                                                  |                             |
| -                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                           |                                                                |                                                                  |                             |
|                                                                   | 880-16415 Chain of Custody                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                           |                                                                |                                                                  |                             |
|                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                           |                                                                |                                                                  |                             |
|                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXX                                                | 0.5 0 1                                                   | 0-28-22 16°07                                                  | S                                                                | 1055                        |
|                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXX                                                |                                                           | 16.05                                                          |                                                                  | SS03                        |
|                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXX                                                | 05<br>C                                                   | 6-28-22 16 03                                                  |                                                                  | 5502                        |
|                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXX                                                | 05' C I                                                   | 16:00                                                          |                                                                  | 5501                        |
|                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXX                                                | 3<br>C                                                    | 10-28-22 15.50                                                 | 5                                                                | FS03                        |
| Sample Comments                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHLO<br>TPH (4<br>BTEX                             | Depth Grap/ # of<br>Comp Cont                             | Sampled Sampled                                                | Matrix                                                           | Sample Identification       |
| NaOH+Ascorbic Acid SAPC                                           |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3015)                                              | 2                                                         |                                                                |                                                                  | Total Containers.           |
| Zn Acetate+NaOH Zn                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·····                                              | ė                                                         | Temperature Reading                                            | Yes No MA                                                        | Sample Custody Seals        |
| Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> . NaSO <sub>3</sub> |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PA, :                                              | ,1<br> 2<br> Pi                                           | Correction Factor                                              | Yes NO ( NA)                                                     | Cooler Custody Seals.       |
| NaHSO4 NABIS                                                      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 300.1                                              | HDD                                                       | Thermometer ID:                                                | (Yes) No                                                         | Samples Received Intact:    |
| •                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0)                                                 | Kes<br>Zo                                                 | Yes No Wet Ice:                                                | T Teans Blank                                                    | SAMPLE RECEIPT              |
| H-SO4 H- NaOH Na                                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                           |                                                                |                                                                  | PO#                         |
|                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | TAT starts the day received by                            |                                                                | Hadlie Green                                                     | Sampler's Name:             |
| -                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | 24 HR /                                                   | Due Date:                                                      |                                                                  | Project Location            |
| None NO Di Water: H.O                                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | X Rush Code                                               | / Routine                                                      | 0302057003                                                       | Project Number              |
| Preservative Codes                                                | T                                                 | ANALYSIS REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | Turn Around                                               | Tum                                                            | MCA .328                                                         | Project Name:               |
| ADaPT  Other                                                      | Deliverables. EDD X ADal                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n com                                              | Email kjennings@ensolum.com                               | Email                                                          | 817-683-2503                                                     | Phone: 8                    |
|                                                                   | Reporting Level II 🕅 Level III 🗍 PST/UST 🗍 TRRP 🗍 | R                                                                                                                                                                                                                                                                                                                                                                                                                                                | Midland, TX 79701                                  | City, State ZIP                                           |                                                                | Midland, TX 79701                                                | City, State ZIP A           |
|                                                                   | State of Project:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 601 N Marienfeld St Suite 400                      | Address.                                                  | ite 400                                                        | 601 N Marienfeld St Suite 400                                    | Address. 6                  |
| vnfields RRC Superfund                                            | Program: UST/PST PRP Brownfields RRC Superfund    | Pr                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ensolum, LLC                                       | Company Name.                                             |                                                                | Ensolum, LLC                                                     | Company Name: E             |
| omments                                                           | Work Order Comments                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kalei Jennigns                                     | Bill to (if different)                                    |                                                                | Kaler Jennings                                                   | Project Manager K           |
| n Page of                                                         | www.xenco.com                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                           |                                                                |                                                                  |                             |
|                                                                   |                                                   | EL Fasy, FA (919) 303-3443, Lubbock, FA (806) 794-1296<br>Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199                                                                                                                                                                                                                                                                                                                                  | (919) 303-3443, Lubbo<br>(575) 392-7550, Cartsb    | Hobbs, NM (                                               |                                                                |                                                                  |                             |
| o: Trocho                                                         | Work Order No:                                    | Midland TX (432) 704-5440, San Antonio, TX (210) 509-3334                                                                                                                                                                                                                                                                                                                                                                                        | (32) 704-5440, San Ani                             | Midland TX (4                                             | 0                                                              | Xerco                                                            |                             |
|                                                                   |                                                   | Houston TX (281) 240-4200 Dallas TX (214) 902-0300                                                                                                                                                                                                                                                                                                                                                                                               | (281) 240-4200 Dall                                | Houston T                                                 | Townonment Testing                                             |                                                                  |                             |

se eurofins

5 6

12 13

Chain of Custody

Job Number: 880-16415-1 SDG Number: 03D2057003

List Source: Eurofins Midland

### Login Sample Receipt Checklist

Client: Ensolum

#### Login Number: 16415 List Number: 1 Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14



APPENDIX D

Final C-141

•

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 63 bf 75

| Incident ID    | NAPP2201143320 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

## **Release Notification**

### **Responsible Party**

| Responsible Party       | OGRID                        |
|-------------------------|------------------------------|
| Contact Name            | Contact Telephone            |
| Contact email           | Incident # (assigned by OCD) |
| Contact mailing address |                              |

### **Location of Release Source**

| Latitude |  |
|----------|--|
|          |  |

(NAD 83 in decimal degrees to 5 decimal places)

| Site Name               | Site Type            |
|-------------------------|----------------------|
| Date Release Discovered | API# (if applicable) |

| Unit Letter | Section | Township | Range | County |
|-------------|---------|----------|-------|--------|
|             |         |          |       |        |

Surface Owner: State Federal Tribal Private (Name: \_

### Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

| Crude Oil        | Volume Released (bbls)                                                         | Volume Recovered (bbls)                 |
|------------------|--------------------------------------------------------------------------------|-----------------------------------------|
| Produced Water   | Volume Released (bbls)                                                         | Volume Recovered (bbls)                 |
|                  | Is the concentration of dissolved chloride in the produced water >10,000 mg/l? | Yes No                                  |
| Condensate       | Volume Released (bbls)                                                         | Volume Recovered (bbls)                 |
| Natural Gas      | Volume Released (Mcf)                                                          | Volume Recovered (Mcf)                  |
| Other (describe) | Volume/Weight Released (provide units)                                         | Volume/Weight Recovered (provide units) |
| Cause of Release |                                                                                |                                         |
|                  |                                                                                |                                         |
|                  |                                                                                |                                         |

Page 2

| Incident ID    | NAPP2201143320 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

| Was this a major        | If YES, for what reason(s) does the responsible party consider this a major release?  |
|-------------------------|---------------------------------------------------------------------------------------|
| release as defined by   |                                                                                       |
| 19.15.29.7(A) NMAC?     |                                                                                       |
|                         |                                                                                       |
| Yes No                  |                                                                                       |
|                         |                                                                                       |
|                         |                                                                                       |
|                         |                                                                                       |
| If YES, was immediate n | otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? |
|                         |                                                                                       |
|                         |                                                                                       |
|                         |                                                                                       |

### **Initial Response**

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The impacted area has been secured to protect human health and the environment.

The source of the release has been stopped.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

| Printed Name               | Title:                 |
|----------------------------|------------------------|
| Signature:                 | Date:                  |
| email:                     | Telephone:             |
|                            |                        |
| OCD Only                   |                        |
| Received by: Ramona Marcus | Date: <u>1/21/2022</u> |

### L48 Spill Volume Estimate Form

| # /# /0\0 0 0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 / | 004/1386                                                                                 |                                                                                                                                                                                                                                                    | L48 Spill Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Estimate Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D D (22) (22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1/1/2022/10:33                                   | 321 OAM Ty Name & Number:                                                                | MCA 328                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Page 65 of 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | Asset Area:                                                                              | Maljamar                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NAPP22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01143320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rele                                             | ease Discovery Date & Time:                                                              | 01/06/2022 8:00ar                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                  | Release Type:                                                                            | Oil Mixture                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Provide any kn                                   | own details about the event:                                                             | Flowline Leak due                                                                                                                                                                                                                                  | to freezing Temps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                  |                                                                                          |                                                                                                                                                                                                                                                    | Spill Calculation - Subsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rface Spill - Rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Was the                                          | e release on pad or off-pad?                                                             |                                                                                                                                                                                                                                                    | and the second se | See reference table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| rained at least a h                              | alf inch in the last 24 hours?                                                           |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | See reference table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Length<br>(ft.)                                  | Width<br>(ft.)                                                                           | Depth<br>(in.)                                                                                                                                                                                                                                     | Soil Spilled-Fluid Saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Estimated volume of each area (bbl.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Estimated<br>Volume of Spill<br>(bbl.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Percentage of Oil if<br>Spilled Fluid is a<br>Mixture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Estimated<br>Volume of Spilled Oil<br>(bbl.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Estimated<br>Volume of Spilled<br>Liquid other than Oil<br>(bbl.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40.0                                             | 12.0                                                                                     | 8.00                                                                                                                                                                                                                                               | 8.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56.960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0                                              | 0.0                                                                                      | 0.00                                                                                                                                                                                                                                               | 0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 31                                               |                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                |                                                                                          | 1                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 31                                               |                                                                                          | 2                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 31                                               |                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                                                |                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                  |                                                                                          | 2                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                |                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| a. 7/12/2022 5                                   | ·10·22 DM                                                                                |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5. 11 13/ 40 44 3.                               | 10.25 1 11                                                                               |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Volume Release:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                  | Rel<br>Provide any kn<br>Was the<br>ained at least a h<br>Length<br>(ft.)<br>40.0<br>0.0 | Asset Area:<br>Release Discovery Date & Time:<br>Release Type:<br>Provide any known details about the event:<br>Was the release on pad or off-pad?<br>ained at least a half inch in the last 24 hours?<br>Length Width<br>(ft.) (ft.)<br>40.0 12.0 | Release Type:       Oil Mixture         Provide any known details about the event:       Flowline Leak due         Was the release on pad or off-pad?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MARY Name & Number:       MCA 328         Asset Area:       Maljamar         Release Discovery Date & Time:       01/06/2022 8:00am         Release Type:       Oil Mixture         Provide any known details about the event:       Flowline Leak due to freezing Temps.         Spill Calculation - Subsu         Was the release on pad or off-pad?         ained at least a half inch in the last 24 hours?         Length       Width       Depth         (ft.)       (ft.)       Soil Spilled-Fluid Saturation         40.0       12.0       8.00       8.00%         0.0       0.0       0.00       0.00% | Asset Area:         Maijamar           Release Discovery Date & Time:         01/06/2022 8:00 am           Release Type:         011 Mixture           Provide any known details about the event:         Flowline Leak due to freezing Temps.           Spill Calculation - Subsurface Spill - Rectangle           See reference table           ained at least a half inch in the last 24 hours?           Length         Width         Depth         Soil Spilled-Fluid Saturation         Estimated volume of each area           (ft.)         (ft.)         8.00         8.00%         56.960           0.0         0.0         0.000         0.000         0.000           0.0         0.00         0.000         0.000         0.000           0.0         0.00         0.000         0.000         0.000           0.0         0.00         0.000         0.000         0.000           0         0.000         0.000         0.000         0.000           0         0         0.000         0.000         0.000 | With the second secon | WI202210333214444 y Name & Number:         MCA 328         NAPP22           Asset Area:         Majamar         NAPP22           Release Discovery Date & Time:         01/06/2022 8:00am         01/06/2022 8:00am           Release Discovery Date & Time:         01/06/2022 8:00am         01/06/2022 8:00am           Provide any known details about the event:         Flowine Leak due to freezing Temps.         See reference table below           Was the release on pad or off-pad?         Spill Calculation - Subsurface Spill - Rectangle         Vertails         Percentage of Oil if           Length         Width         Depth         Soil Spilled-Fluid Saturation         Estimated volume of each area         Total Estimated Volume of 5pill         Percentage of Oil if           40.0         12.0         8.00         8.00%         56.960         4.557         2.00%           0.0         0.00         0.00%         0.000         0.000         0.00%         0.000         0.00%           0.0         0.00         0.00%         0.000         0.000         0.00%         0.000         0.00% | MCA 328           NAPP2201143320           Asset Area         Majamar         NAPP2201143320           Release Discovery Date & Time:         DIMOS/2022 8:00am           Spill Calculation - Subsurface Spill - Rectangle           Was the release on pad or off-pad?         See reference table below           Length         Width         Depth<br>(ft.)         Soil Spilled-Fluid Saturation         Total Estimated<br>Volume of Spill<br>(bbl.)         Mixture           A 0.0         8.00         8.00%         Colspan= 2.00%         OUMStruct           Under Call Estimated volume of each area<br>(bbl.)         Total Estimated<br>Volume of Spill<br>(bbl.)         Mixture         Volume of Spill<br>(bbl.)         Mixture |

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:          | OGRID:                                    |
|--------------------|-------------------------------------------|
| COG OPERATING LLC  | 229137                                    |
| 600 W Illinois Ave | Action Number:                            |
| Midland, TX 79701  | 73870                                     |
|                    | Action Type:                              |
|                    | [C-141] Release Corrective Action (C-141) |
| CONDITIONS         |                                           |

| Created By |      | Condition<br>Date |
|------------|------|-------------------|
| rmarcus    | None | 1/21/2022         |

Page 66 66 75

NAPP2201143320

Action 73870

Page 3

Oil Conservation Division

|                | I uge 07 0j    |
|----------------|----------------|
| Incident ID    | NAPP2201143320 |
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

Page 67 of 75

## Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                           | <u>50-100 (fe</u> et bgs) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Did this release impact groundwater or surface water?                                                                                                                                           | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                              | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                    | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                            | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes? | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                           | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                            | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                             | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                        | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                            | 🗌 Yes 🛛 No                |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                            | X Yes 🗌 No                |

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

#### Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- $\square$  Depth to water determination
- Determination of water sources and significant watercourses within <sup>1</sup>/<sub>2</sub>-mile of the lateral extents of the release
- $\boxtimes$  Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

| Form C-141<br>Page 4                                                                                                                           | State of New Me<br>Oil Conservation I                                                                                                                                                                                        |                                                                                                                                        | Incident ID<br>District RP<br>Facility ID<br>Application ID                                 | NAPP2201143320                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| regulations all operators and<br>public health or the enviro<br>failed to adequately invest<br>addition, OCD acceptance<br>and/or regulations. | formation given above is true and com<br>re required to report and/or file certain<br>nment. The acceptance of a C-141 rep<br>igate and remediate contamination tha<br>of a C-141 report does not relieve the<br>ason Thomas | release notifications and perfo<br>port by the OCD does not relie<br>t pose a threat to groundwater,<br>operator of responsibility for | orm corrective actions for releve the operator of liability sh, surface water, human health | eases which may endanger<br>ould their operations have<br>or the environment. In |
| Signature:                                                                                                                                     | nas@mavresources.com                                                                                                                                                                                                         | Date:                                                                                                                                  | 05/2022                                                                                     |                                                                                  |
| OCD Only Received by:                                                                                                                          |                                                                                                                                                                                                                              | Date:                                                                                                                                  |                                                                                             |                                                                                  |

Page 68 of 75

Page 69 of 75

State of New Mexico Oil Conservation Division

| Incident ID    | NAPP2201143320 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

## Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

| we can end of the sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Closure Report Attachment Checklist: Each of the following items must be included in the closure report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| A scaled site and sampling diagram as described in 19.15.29.11 NMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Description of remediation activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules<br>and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which<br>may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability<br>should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water,<br>human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for<br>compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially<br>restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in<br>accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.<br>Printed Name: |  |  |  |
| OCD Only         Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and<br>remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible<br>party of compliance with any other federal, state, or local laws and/or regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Closure Approved by: Qennifer Nobui Date:07/13/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Printed Name: Jennifer Nobui Title: Environmental Specialist A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |



APPENDIX E

**NMOCD** Notifications

| From:        | Nobui, Jennifer, EMNRD                                                     |
|--------------|----------------------------------------------------------------------------|
| То:          | Kalei Jennings                                                             |
| Cc:          | Bratcher, Mike, EMNRD; Hamlet, Robert, EMNRD; Harimon, Jocelyn, EMNRD      |
| Subject:     | FW: [EXTERNAL] Maverick- Sampling Notification (Week of 06/27/22-07/01/22) |
| Date:        | Friday, June 24, 2022 11:30:50 AM                                          |
| Attachments: | image001.png                                                               |
|              | image002.png                                                               |
|              | image003.png                                                               |
|              | image004.png                                                               |

### [ \*\*EXTERNAL EMAIL\*\*]

Kalei

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thanks Jennifer Nobui

From: Enviro, OCD, EMNRD <OCD.Enviro@state.nm.us>
Sent: Thursday, June 23, 2022 3:01 PM
To: Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>; Nobui, Jennifer, EMNRD
<Jennifer.Nobui@state.nm.us>; Harimon, Jocelyn, EMNRD <Jocelyn.Harimon@state.nm.us>;
Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>
Subject: Fw: [EXTERNAL] Maverick- Sampling Notification (Week of 06/27/22-07/01/22)

From: Kalei Jennings <<u>kjennings@ensolum.com</u>>
Sent: Thursday, June 23, 2022 1:30 PM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@state.nm.us</u>>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 06/27/22-07/01/22)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Natural Resources plans to complete final sampling activities at the following sites the week of June 27, 2022.

Monday:

- Hudson 001 / NAPP2201142906
- MCA 328 / NAPP2201143320
- MCA 308 / NAPP2202535435

Tuesday:

• MCA 308 / NAPP2202535435

Wednesday:

• MCA 308 / NAPP2202535435

Thursday:

Friday:

Thank you,



Kalei Jennings Senior Scientist 817-683-2503 Ensolum, LLC

| From:        | Nobui, Jennifer, EMNRD                                                |
|--------------|-----------------------------------------------------------------------|
| То:          | Kalei Jennings                                                        |
| Cc:          | Bratcher, Mike, EMNRD; Harimon, Jocelyn, EMNRD; Hamlet, Robert, EMNRD |
| Subject:     | FW: [EXTERNAL] Sampling Notification (Week of 06/20/22-06/24/22)      |
| Date:        | Tuesday, June 21, 2022 12:04:02 PM                                    |
| Attachments: | image001.png                                                          |
|              | image002.png                                                          |
|              | image003.png                                                          |
|              | image004.png                                                          |

### [ \*\*EXTERNAL EMAIL\*\*]

Kalei

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thanks Jennifer Nobui

From: Enviro, OCD, EMNRD <OCD.Enviro@state.nm.us>
Sent: Tuesday, June 21, 2022 8:34 AM
To: Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>; Nobui, Jennifer, EMNRD
<Jennifer.Nobui@state.nm.us>; Harimon, Jocelyn, EMNRD <Jocelyn.Harimon@state.nm.us>;
Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>
Subject: Fw: [EXTERNAL] Sampling Notification (Week of 06/20/22-06/24/22)

From: Kalei Jennings <<u>kjennings@ensolum.com</u>>
Sent: Tuesday, June 21, 2022 8:33 AM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@state.nm.us</u>>
Cc: Thomas Haigood <<u>Thomas.Haigood@mavresources.com</u>>
Subject: [EXTERNAL] Sampling Notification (Week of 06/20/22-06/24/22)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Natural Resources plans to complete final sampling activities at the following sites the week of June 20, 2022.

Monday:

Tuesday:

Wednesday:

Thursday:

- MCA 330 / NAPP2201136360
- MCA 328 / NAPP2201143320

Friday:

• Hudson 001 / NAPP2201142906

Thank you,



Kalei Jennings Senior Scientist 817-683-2503 Ensolum, LLC

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:                    | OGRID:                                    |
|------------------------------|-------------------------------------------|
| Maverick Permian LLC         | 331199                                    |
| 1111 Bagby Street Suite 1600 | Action Number:                            |
| Houston, TX 77002            | 123419                                    |
|                              | Action Type:                              |
|                              | [C-141] Release Corrective Action (C-141) |

CONDITIONS

| Created<br>By |                                                                                                                                                                                                                                                                                                                                                                                    | Condition<br>Date |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| jnobui        | Closure Report Approved. Please note that the depth to groundwater has not been adequately determined. When nearby wells are used to determine depth to groundwater, the wells should be no further than ½ mile away from the site, and data should be no more than 25 years old. However, as the site has been remediated to the most stringent criteria, closure can be granted. | 7/13/2022         |

Page 75 of 75

Action 123419