SITE INFORMATION

	Repo	ort Type: C	losure Rep	oort NAP	P221185	6195				
General Site Info	ormation:									
Site:		Bear Booste	r							
Company:		EOG Resources								
Section, Townsh	nip and Range	Unit M	Sec. 36	T 25S	R 33E					
Lease Number:										
County:		Lea County								
GPS:			32.080277			-103.530642				
Surface Owner:		State								
Mineral Owner:				004050 400 5						
Directions:			0.44 miles. Turn r			Battle Axe Road, follow the lease road				
Release Data:										
Date Released:		4/14/2022								
Type Release:		Produced Wa	iter							
Source of Contan	nination:	Transfer Pum								
Fluid Released:		1,100 bbl wat								
Fluids Recovered	l:	930 bbl water	•							
Official Commun	nication:									
Name:	Todd Wells				Clair Gonza	lles				
Company:	EOG Resources				Tetra Tech					
Address:	5509 Champions	Dr.			901 W. Wal	I St.				
	·				Ste 100					
City:	Midland, Texas, 7	9706			Midland, Te	exas. 79701				
Phone number:	(432) 686-3613				(432) 682-4					
Fax:										
Email:	Todd Wells@ed	ogresources.con	1		clair.gonza	ales@tetratech.com				
		<u>g. 2000, 000,000</u>	<u> </u>		Sidiligenze					

Site Characterization	
Depth to Groundwater:	176.81' below ground surface
Karst Potential:	Low

Recommended Remedial Action Levels (RRALs)									
Benzene	Benzene Total BTEX TPH (GRO+DRO) TPH (GRO+DRO+MRO) Chlorides								
10 mg/kg 50 mg/kg 100 mg/kg 100 mg/kg 600 mg/kg									

July 13, 2022

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Closure Report EOG Resources Bear Booster Lea County, New Mexico nAPP2211856195

Oil Conservation Division:

Tetra Tech, Inc. (Tetra Tech) was contacted by EOG Resources (EOG) to assess a release that occurred at the Bear Booster, Unit M, Section 36, Township 25 South, Range 33 East, Lea County, New Mexico (Site). The spill site coordinates are 32.080277°, -103.530642°. The site location is shown on **Figures 1 and 2**.

Background

According to the State of New Mexico C-141 Initial Report, the release at the Bear Booster was caused by failed bearings at the pump, causing the release of 1,100 bbls of produced water, the release was contained to the pad, impacting an area of 320' X 310'. Additionally, approximately 930 bbls of fluids were recovered. On April 14, 2022, the release was discovered and reported to the New Mexico Oil Conservation Division (NMOCD). The C-141 is shown in **Appendix A**.

Site Characterization

Significant Water Features

According to the NFHL (National Flood Hazard Layer) Flood Data Application and the USGS (United States Geological Survey) National Water Information System Mapper, there were no watercourses, lakebeds, sinkholes, playa lakes, springs, wetlands, subsurfaces mines, private domestic water wells, or floodplains located within the specified distances. Additionally, the site is located in a low karst area. The NFHL Map and USGS Mapper are shown in **Appendix B**.

Significant Boundaries

According to Google Earth US Government City Boundaries and US School Districts, the lateral extents of the release were not within an incorporated municipal boundaries, defined

municipal fresh water well field, or a school district. Additionally, there were no occupied permanent residences, schools, hospitals, institution, or churches located within the specified distances of the lateral extents of the release.

Groundwater Review

Groundwater research was completed for the site through the USGS (United States Geological Survey) National Water Information System and New Mexico Office of the State Engineer (NMOSE) Water Rights Reporting System. Groundwater research conducted through these two resources, show the two closest water wells within a 1 ½ mile radius of the Site. The well reported on the USGS National Water Information System reports a total depth of 360 ft bgs with water level measured at 176.81 ft bgs and is approximately 1.48 miles of the Site. The well reported on the NMOSE Water Rights Reporting System reports a total depth of 220 ft bgs and measured water level of 160 ft bgs and is approximately 1.34 miles of the Site. The groundwater information is shown in **Appendix B**.

Distance from Site	Date of Data	Resource of Information	Depth of Well	Depth to Water
1.48 Miles	1/16/2013	USGS	360'	176.81'
1.34 Miles	12/31/1949	NMOSE	220'	160'

Regulatory

A risk-based evaluation was performed for the site following the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL beyond the top 4.0' of soil, for TPH is 100 mg/kg (GRO + DRO + ORO). Additionally, based on the site characterization, the proposed RRAL beyond the top 4.0' of soil, for chlorides is 600 mg/kg.

Site Assessment Activities

Tetra Tech conducted site assessment activities on May 12, 2022. A total of eight (8) trenches (Trench-1 through Trench-8) were installed to total depths of 5.0 ft bgs to attempt to assess and vertically delineate the impacted the area. Additionally, a total of nine (9) horizontals (H-1 through H-9) were installed to total depths of 0.5 ft bgs, to horizontally delineate the impact. The impact and sample locations are shown on **Figure 3**.

The samples were submitted to Cardinal Laboratories in Hobbs, New Mexico to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 4500. The analytical results are summarized in **Table 1** and the analytical laboratory reports are included in **Appendix C**.

Referring to Table 1, trenches (Trench-4, Trench-6, and Trench-8) indicated chloride concentrations above RRALs, with concentrations ranging from 752 mg/kg to 1,490 mg/kg, at depths of 1.0 ft bgs, and showed vertical delineation at 2.0 ft bgs. Trenches (Trench-1 through Trench-3, Trench-5, and Trench-7) did not indicate chloride concentrations above RRALs. Additionally, all trenches (Trench-1 through Trench-8) indicated benzene, BTEX, and TPH concentrations below laboratory reporting limits. Horizontals (H-1 through H-8) did not indicate benzene, BTEX, TPH, or chloride concentrations above RRALs.

Remediation Activities

Tetra Tech conducted remediation activities from May 31, 2022 through June 29, 2022. The areas of impact were remediated to a depths ranging from 1.5 ft bgs to 5.0 ft bgs. Additionally, a superficial 0.5' scrape was completed on the remaining areas of the impact that did not indicate exceedances for housekeeping purposes. The remediation areas and depths are shown on **Figure 4**.

Following remediation activites, Tetra Tech conducted confirmation sampling by collecting 5-point composite bottom hole samples and 5-point composite sidewall samples every 200 square feet within the remediation. All confirmation samples are collected as a composite 5point die pattern to ensure a representative sample of full depth of sidewalls and the entire floor of the excavation are collected. The confirmation sample notification was sent to the NMOCD via email, on June 1, 2022, at 10:47 AM, a copy of the notice is shown in Appendix D. A total of sixty-one (61) bottom holes (BH-1 through BH-61) were collected and a total of fifteen (15) sidewalls (SW-1 through SW-14, SW-10A) were collected to confirm full removal of impacted soil. Sidewall (SW-10A) was mistakenly named the same as previously collected sidewall sample (SW-10). Due to this mistake, the letter "A" has been added to the sample ID on the table and figure to clarify sample identities. The sidewall (SW-10) was collected on June 28, 2022, and the sample results are shown on lab report (Cardinal H222812), shown in Appendix C. The sidewall (SW-10A) was collected on June 14, 2022, and the sample results are shown on lab report (Eurofins 880-15895-1), shown in Appendix C. The confirmation soil samples were submitted to the Cardinal Laboratory in Hobbs, New Mexico and Eurofins Laboratory in Midland, Texas to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 300.0 and EPA Method 4500. The analytical results are summarized in Table 2 and the analytical laboratory reports are included in Appendix C.

Regarding all final samples collected from the remediation, analytical results indicated benzene, BTEX, TPH, and chloride concentrations were below the RRALs.

Conclusions

Based on the C-141 (nAPP2211856195) and information provided by EOG, Tetra Tech performed site characterization and groundwater research to determine groundwater depth, proximity from significant water features, and proximity from specified populated entities to determine RRALs and assess the impacted area. Based on the OCD *Guidelines for Remediation of Leaks, Spills, and Releases*, updated August 14, 2018, according to the groundwater data found during research activites, the RRALs of 600 mg/kg for chlorides and 100 mg/kg for TPH were followed for soil beyond the top 4.0 ft of soil. Based on Tetra Tech

assessment activites, laboratory results indicated chloride concentrations in trenches (Trench-4, Trench-6, and Trench-8) exceeded RRALs and required remediation.

Following remediation of the areas of impact, Tetra Tech conducted confirmation soil sampling of the area by collecting 5-point composite confirmation bottom hole and sidewall samples to ensure the impacted soil was fully removed. Approximately 1,910 cubic yards of impacted soil was removed and properly disposed of, and the area was backfilled with clean to surface grade material. The analytical results indicated all confirmation samples reported below the RRALs for all constituents. Based on this information, it is recommended that the remediated pad at this Site requires no further action. The final C-141 is included in **Appendix A**.

If you require any additional information or have any questions or comments, please contact us at (432) 682-4559.

Respectfully submitted, TETRA TECH

Brittany Long, Project Manager

Clair Gonzales, P.G. Senior Project Manager

Figures

•

Released to Imaging: 7/19/2022 11:57:09 AM

- E0G

Released to Imaging: 7/19/2022 11:57:09 AM

EOG-

Received by OCD: 7/13/2022 1:21:36 PM

Received by OCD: 7/13/2022 1:21:36 PM

Released to Imaging: 7/19/2022 11:57:09 AM

Tables

Table 1 EOG Resources Bear Booster Lea County, New Mexico

Sample ID	Sample Date	Excavtion	Soil	Status		TPH (m	ıg/kg)		Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride
•	•	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total			(mg/kg)	, , , ,		(mg/kg)
RRALs								100	10				50	600 mg/kg
	5/40/0000	0.41	V		-10.0		110.0	mg/kg	mg/kg	-0.050	-0.050	10.450	mg/kg	
	5/12/2022 5/12/2022	0-1' 2.0'	X	-	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.150 <0.150	<0.300 <0.300	112 16.0
Trench-1		2.0		-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
Trench-1	5/12/2022 5/12/2022	3.0 4.0'	X X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
	5/12/2022	4.0 5.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
	5/12/2022	5.0	^	-	<10.0	<10.0	\$10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	10.0
	5/12/2022	0-1'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
	5/12/2022	2.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
Trench-2	5/12/2022	3.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
	5/12/2022	4.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
	5/12/2022	5.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
	5/12/2022	0-1'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	< 0.300	96.0
	5/12/2022	2.0'	Х	-	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	< 0.050	<0.150	< 0.300	32.0
Trench-3	5/12/2022	3.0'	Х	-	<10.0	<10.0	<10.0	<10.0	< 0.050	0.083	< 0.050	<0.150	< 0.300	16.0
	5/12/2022	4.0'	Х	-	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	< 0.050	<0.150	< 0.300	16.0
	5/12/2022	5.0'	Х	-	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	<0.050	<0.150	< 0.300	48.0
	5/40/2022	0.41	V		<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	< 0.050	<0.150	< 0.300	752
	5/12/2022 5/12/2022	0-1'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
Trench-4	5/12/2022	3.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
Trench-4	5/12/2022	4.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
	5/12/2022	4.0 5.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
				-										
	5/12/2022	0-1'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
	5/12/2022	2.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
Trench-5	5/12/2022	3.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
	5/12/2022	4.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
	5/12/2022	5.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
	5/12/2022	0-1'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	< 0.050	<0.050	<0.150	< 0.300	1,490
	5/12/2022	2.0'	X	-	<10.0	<10.0	<10.0	<10.0	< 0.050	< 0.050	< 0.050	<0.150	< 0.300	80.0
Trench-6	5/12/2022	3.0'	Х	-	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	< 0.050	<0.150	< 0.300	48.0
	5/12/2022	4.0'	Х	-	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	< 0.050	<0.150	< 0.300	80.0
	5/12/2022	5.0'	Х	-	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	< 0.050	<0.150	< 0.300	80.0
	5/40/2022	0.41	V		-10.0	-10.0	-10.0	-10.0	-0.050	-0.050	40.050	-0.450	<0.200	10.0
	5/12/2022 5/12/2022	0-1' 2.0'	X X	-	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.150 <0.150	<0.300 <0.300	16.0 48.0
Trench-7		2.0	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	0.064	<0.050	<0.150		48.0
Trench-7	5/12/2022 5/12/2022	3.0 4.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300 <0.300	16.0
	5/12/2022	4.0 5.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	0.064	<0.050	<0.150	< 0.300	32.0
							×10.0							
	5/12/2022	0-1'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,200
	5/12/2022	2.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
Trench-8	5/12/2022	3.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
	5/12/2022	4.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
	5/12/2022	5.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	0.053	<0.050	<0.150	<0.300	32.0

Page 12 of 223

.

Sample ID	Sample Date	Excavtion Depth (ft)	Soil	Status		TPH (m	ng/kg)		Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
		Deptil (It)	In-Situ	Removed	GRO	DRO	MRO	Total			(ing/kg)			(ing/kg)
RRALs								100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
H-1	5/12/2022	0-0.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
H-2	5/12/2022	0-0.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
H-3	5/12/2022	0-0.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
H-4	5/12/2022	0-0.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
H-5	5/12/2022	0-0.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
H-6	5/12/2022	0-0.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
H-7	5/12/2022	0-0.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
H-8	5/12/2022	0-0.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
H-9	5/12/2022	0-0.5	Х	-	<10.0	<10.0	10.5	10.5	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0

NOTES

Released to Imaging: 7/19/2022 11:57:09 AM

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills, and Releases.

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Exceedance

Table 2 EOG Resources Bear Booster Lea County, New Mexico

Occurred a UD	Dama la Data	Excavtion	Soil	Status		TPH (m	g/kg)		D	Taluana (marilar)	Ethlybenzene	Yelene (medlen)		Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	(mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	(mg/kg)
RRALs								100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
BH-1	6/14/2022	4.0	-	Х	<49.9	<49.9	<49.9	<49.9	< 0.00200	<0.00200	<0.00200	<0.00401	< 0.00401	944
DII-1	6/14/2022	5.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-2	6/14/2022	4.0	-	Х	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	< 0.00399	<0.00399	754
	6/14/2022	5.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-3	6/14/2022 6/14/2022	4.0	- X	- X	<50.0 <10.0	<50.0 <10.0	<50.0 <10.0	<50.0 <10.0	<0.00199 <0.050	<0.00199 <0.050	<0.00199 <0.050	<0.00398 <0.150	<0.00398 <0.300	714 32.0
BH-4	6/14/2022	4.0	X	I	<49.9	<49.9	<49.9	<49.9	<0.00200		<0.00200	<0.00399	<0.00399	110
BH-4 BH-5				-						<0.00200				
-	6/14/2022	4.0	X	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	< 0.00199	<0.00398	<0.00398	539
BH-6	6/14/2022	4.0	X	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	< 0.00199	<0.00398	<0.00398	157
BH-7	6/14/2022	4.0	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	30.8
BH-8	6/14/2022 6/29/2022	4.0	- X	X	<50.0 <10.0	<50.0 <10.0	<50.0 <10.0	<50.0 <10.0	<0.00200 <0.050	<0.00200 <0.050	<0.00200 <0.050	<0.00401 <0.150	<0.00401 <0.300	851 32.0
BH-9	6/14/2022	4.0	X	_	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	< 0.00398	174
BH-10	6/14/2022	4.0	X		<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	316
BH-10 BH-11	6/14/2022	4.0	X	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	294
				-								1		
BH-12	6/14/2022	4.0	X	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	< 0.00199	<0.00398	<0.00398	208
BH-13	6/14/2022	3.0	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	169
BH-14	6/14/2022	3.0	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	253
BH-15	6/14/2022	3.0	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	15.9
BH-16	6/14/2022	3.0	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	6.53
BH-17	6/14/2022	3.0	4	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	50.9
BH-18	6/14/2022	1.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	579
BH-19	6/14/2022	3.0	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	66.4
BH-20	6/14/2022	3.0	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	55.2
BH-21	6/14/2022	3.0	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	44.4
BH-22	6/14/2022	3.0	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	12.9
BH-23	6/14/2022	1.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	540
BH-24	6/14/2022	2.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	11.1
BH-25	6/14/2022	2.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	11.9
BH-26	6/14/2022	2.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	39.5
BH-27	6/14/2022	2.5	Х		<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	67.2
BH-28	6/14/2022	1.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	322
BH-29	6/14/2022	1.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	63.8
BH-30	6/14/2022	1.5	X	-	<49.9	<49.9	<49.9	<49.9	< 0.00199	< 0.00199	< 0.00199	<0.00398	<0.00398	189
	J EVEL		. ^			.0.0	.0.0	.0.0	0.00100	0.00100	0.00100	0.00000	0.00000	

.

Table 2 EOG Resources Bear Booster Lea County, New Mexico

		Excavtion	Soil	Status		TPH (m	ng/kg)		- / // \		Ethlybenzene		T () DTTY (Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	(mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	(mg/kg)
RRALs								100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
BH-31	6/14/2022	1.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	45.1
BH-32	6/14/2022	1.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	39.1
BH-33	6/14/2022	1.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	20.7
BH-34	6/14/2022	1.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	261
BH-35	6/14/2022	1.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	17.6
BH-36	6/28/2022	5.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-37	6/28/2022	5.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-38	6/28/2022	5.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
BH-39	6/28/2022	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-40	6/28/2022	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-41	6/28/2022	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-42	6/28/2022	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
BH-43	6/28/2022	5.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-44	6/28/2022	5.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
BH-45	6/28/2022	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
BH-46	6/28/2022	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-47	6/28/2022	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
BH-48	6/28/2022	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-49	6/29/2022	3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-50	6/29/2022	3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	416
BH-51	6/29/2022	3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
BH-52	6/14/2022	3.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-53	6/28/2022	1.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-54	6/29/2022	2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-55	6/29/2022	2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
BH-56	6/29/2022	2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
BH-57	6/29/2022	2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	320
BH-58	6/29/2022	1.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-59	6/29/2022	1.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
BH-60	6/29/2022	1.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
BH-61	6/29/2022	1.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	336

.

Received by OCD: 7/13/2022 1:21:36 PM

Table 2 EOG Resources Bear Booster Lea County, New Mexico

a i ia		Excavtion	Soil	Status		TPH (m	ng/kg)				Ethlybenzene			Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	(mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	(mg/kg)
RRALs								100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
SW-1	6/14/2022	-	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	143
SW-2	6/14/2022	-	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	< 0.00399	<0.00399	303
SW-3	6/14/2022	-	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	213
SW-4	6/14/2022 6/28/2022	-	- X	X -	<50.0 <10.0	<50.0 <10.0	<50.0 <10.0	<50.0 <10.0	<0.00200 <0.050	<0.00200 <0.050	<0.00200 <0.050	<0.00399 <0.150	<0.00399 <0.300	1,280 32.0
SW-5	6/14/2022	-	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	114
SW-6	6/14/2022	-	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	554
SW-7	6/14/2022	-	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	102
SW-8	6/14/2022	-	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	43.9
SW-9	6/14/2022	-	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	168
SW-10A	6/14/2022	-	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	542
SW-10	6/28/2022	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
SW-11	6/28/2022	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	256
SW-12	6/29/2022	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-13	6/29/2022	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
SW-14	6/29/2022	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0

NOTES

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills, and Releases.

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit</p>

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Remediated

Received by OCD: 7/13/2022 1:21:36 PM

Photographic Documentation

Released to Imaging: 7/19/2022 11:57:09 AM

EOG Resources Bear Booster Lea County, New Mexico

View of Remediation Activities - View Northwest

View of Remediation Activities - View Northeast

View of Remediation Activities - View Northeast

View of Remediation Activities - View Northeast

Appendix A

C-141 Document

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2211856195
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party EOG Resources	OGRID 7377
Contact Name Todd Wells	Contact Telephone (432) 686-3613
Contact email Todd_Wells@eogresources.com	Incident # (assigned by OCD) nAPP2211856195
Contact mailing address 5509 Champions Drive Midland, TX 79706	

Location of Release Source

Latitude 32.080277°

Longitude <u>-103.530642°</u> (NAD 83 in decimal degrees to 5 decimal places)

Site Name Bear Booster	Site Type SWD Pipeline Booster Pump
Date Release Discovered 4/14/22	API# (if applicable)

Unit Letter	Section	Township	Range	County
М	36	258	33E	Lea

Surface Owner: State Federal Tribal Private (Name: _____)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 1,100	Volume Recovered (bbls) 930
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
	ooster pump bearings failed causing produced water to eleased around the booster pump and on the pad with 93	be released from the pump. Approximately 1,100 bbls 30 bbls recovered.

Page 2

Incident ID	nAPP2211856195
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? More than 25 bbls
🖾 Yes 🗌 No	
If YES, was immediate	notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? E-mail
notification to the OCD E	

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: <u>Todd Wells</u>	Title: <u>Environmental Specialist</u>
Signature:	Date: <u>4/28/22</u>
email: <u>Todd_Wells@eogresources.com</u>	Telephone: <u>(432) 686-3613</u>
OCD Only	
Received by:	Date:

Received by OCD: 7/13/2022 1:21:36 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 23 of 223
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 7/13/2022 Form C-141 Page 4	<i>by OCD: 7/13/2022 1:21:36 PM</i> State of New Mexico Oil Conservation Division		Incident ID District RP Facility ID Application ID	Page 24 of 223
regulations all operators are rec public health or the environmen failed to adequately investigate addition, OCD acceptance of a and/or regulations.	ation given above is true and complete to the quired to report and/or file certain release not nt. The acceptance of a C-141 report by the 6 and remediate contamination that pose a thr C-141 report does not relieve the operator of	ifications and perform co OCD does not relieve the eat to groundwater, surfa f responsibility for compl	prective actions for rele operator of liability sho ce water, human health iance with any other fee	eases which may endanger ould their operations have or the environment. In
Signature: Todd W	ells	Date:		
email:		Telephone:		
OCD Only				
Received by:		Date:		

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following it	tems must be included in the closure report.					
A scaled site and sampling diagram as described in 19.15.29.11 NMAC						
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)						
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)						
Description of remediation activities						
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of	ations. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in					
Printed Name:	_ Title:					
Signature: Todd Wells	Date:					
email:	Telephone:					
OCD Only						
Received by:	Date:					
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.					
Closure Approved by:	Date: 07/19/2022					
Printed Name: Jennifer Nobui	Title: Environmental Specialist A					

Appendix B

Site Characterization Documents

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Search Results -- 1 sites found

Agency code = usgs

site_no list =

• 320419103302201

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320419103302201 26S.34E.06.21414

Lea County, New Mexico Latitude 32°04'37.9", Longitude 103°30'20.5" NAD83 Land-surface elevation 3,319.00 feet above NGVD29 The depth of the well is 360 feet below land surface. This well is completed in the Chinle Formation (231CHNL) local aquifer.

Output formats

Table of data

Tab-separated data

<u>Graph of data</u>

Reselect period

Date \$	Time \$? Water- level \$ date- time accuracy	? Parameter ^{\$} code	Water level, feet below land surface	Water level, feet above \$ specific vertical datum	Referenced vertical \$ datum	? \$tatus	? Method of measurement	? Measuring ^{\$} agency	? Source of measurement	? Water- level approval status
1954-07-23		D	72019	141.95				U		U	А
1971-10-20		D	72019	128.43				U		U	А
1981-03-25		D	72019	129.43				U		U	А
1986-03-04		D	72019	125.88				U		U	А
1991-06-12		D	72019	126.82				U		U	А
2013-01-16	14:00 MST	m	72019	176.81				S	USGS	R	А

Explanation						
Section \$	Code \$	Description				
Water-level date-time accuracy	D	Date is accurate to the Day				
Water-level date-time accuracy	m	Date is accurate to the Minute				
Status		The reported water-level measurement represents a static level				
Method of measurement	S	Steel-tape measurement.				
Method of measurement	U	Unknown method.				
Measuring agency		Not determined				
Measuring agency	USGS	U.S. Geological Survey				
Source of measurement	R	Reported by person other than the owner, driller, or another government agency.				
Source of measurement	U	Source is unknown.				
Water-level approval status	А	Approved for publication Processing and review completed.				

Released to Imaging: 7/19/2022 11:57:09 AM

		(quarters are 1=NW (quarters are small		<i>,</i>	NAD83 UT		
Well Tag	POD Number	Q64 Q16 Q4	Sec Tws	Rng	Х	Y	
	C 02291	1 1 2	06 26S	34E 6	540825	3550140* 🌍	
Driller Lic	ense:	Driller Company	y:				
Driller Na	me:						
Drill Start	Date:	Drill Finish Date	e: 12	2/31/1949	Plu	g Date:	
Log File D	ate:	PCW Rcv Date:			Sou	irce:	
Pump Typ	e:	Pipe Discharge S	Size:		Est	imated Yield:	15 GPM
Casing Siz	e: 6.00	Depth Well:	23	20 feet	Dei	oth Water:	160 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/20/22 10:27 AM

POINT OF DIVERSION SUMMARY

Received by OCD: 7/13/2022 1:21:36 PM

New Mexico NFHL Data

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS,

nmflood.org is made possible through a collaboration with NMDHSEM, EDAC, and FEMA This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

Appendix C

Laboratory Reports

May 18, 2022

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: BEAR BOOSTER RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 05/13/22 14:06.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: H - 1 (0-1') (H222052-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2022	ND	216	108	200	12.5	
DRO >C10-C28*	<10.0	10.0	05/13/2022	ND	208	104	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	05/13/2022	ND					
Surrogate: 1-Chlorooctane	116 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	120	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose of use, or loss of profits incurred by client, its subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: H - 2 (0-1') (H222052-02)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2022	ND	216	108	200	12.5	
DRO >C10-C28*	<10.0	10.0	05/13/2022	ND	208	104	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	05/13/2022	ND					
Surrogate: 1-Chlorooctane	123	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	128	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: H - 3 (0-1') (H222052-03)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2022	ND	216	108	200	12.5	
DRO >C10-C28*	<10.0	10.0	05/13/2022	ND	208	104	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	05/13/2022	ND					
Surrogate: 1-Chlorooctane	124 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	128 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: H - 4 (0-1') (H222052-04)

BTEX 8021B	mg	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2022	ND	216	108	200	12.5	
DRO >C10-C28*	<10.0	10.0	05/13/2022	ND	208	104	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	05/13/2022	ND					
Surrogate: 1-Chlorooctane	132	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	137	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: H - 5 (0-1') (H222052-05)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2022	ND	216	108	200	12.5	
DRO >C10-C28*	<10.0	10.0	05/13/2022	ND	208	104	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	05/13/2022	ND					
Surrogate: 1-Chlorooctane	118 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	126	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: H - 6 (0-1') (H222052-06)

BTEX 8021B	mg	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2022	ND	216	108	200	12.5	
DRO >C10-C28*	<10.0	10.0	05/13/2022	ND	208	104	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	05/13/2022	ND					
Surrogate: 1-Chlorooctane	117 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	128	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: H - 7 (0-1') (H222052-07)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2022	ND	216	108	200	12.5	
DRO >C10-C28*	<10.0	10.0	05/13/2022	ND	208	104	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	05/13/2022	ND					
Surrogate: 1-Chlorooctane	123 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	127 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: H - 8 (0-1') (H222052-08)

BTEX 8021B	mg	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2022	ND	216	108	200	12.5	
DRO >C10-C28*	<10.0	10.0	05/13/2022	ND	208	104	200	11.6	
EXT DRO >C28-C36	<10.0	10.0	05/13/2022	ND					
Surrogate: 1-Chlorooctane	119 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	126	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: H - 9 (0-1') (H222052-09)

BTEX 8021B	mg	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	10.5	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	100	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	107	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 1 (0-1') (H222052-10)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	97.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	102	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 1 (2') (H222052-11)

BTEX 8021B	mg,	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	75.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	75.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 1 (3') (H222052-12)

BTEX 8021B	mg	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	79.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	79.9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 1 (4') (H222052-13)

BTEX 8021B	mg	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.93	96.6	2.00	7.27	
Toluene*	<0.050	0.050	05/16/2022	ND	1.91	95.7	2.00	7.21	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.81	90.4	2.00	7.04	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.61	93.4	6.00	7.13	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 \$	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	71.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	73.1	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 1 (5') (H222052-14)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	QR-03
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	QR-03
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	QR-03
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	73.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	75.1	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 2 (0-1') (H222052-15)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	69.8	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	71.4	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 2 (2') (H222052-16)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	69.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	70.1	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 2 (3') (H222052-17)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	05/16/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	93.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.0	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 2 (4') (H222052-18)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	89.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	91.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 2 (5') (H222052-19)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	71.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	73.1	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 3 (0-1') (H222052-20)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	69.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	70.3	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 3 (2') (H222052-21)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	71.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	72.5	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 3 (3') (H222052-22)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	0.083	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	GC-NC1
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	78.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	78.3	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 3 (4') (H222052-23)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	68.3	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	69.9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 3 (5') (H222052-24)

BTEX 8021B	mg/	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	87.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	89.0	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 4 (0-1') (H222052-25)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	752	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	71.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	72.9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 4 (2') (H222052-26)

BTEX 8021B	mg/	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	70.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	72.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 4 (3') (H222052-27)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	78.3	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	79.8	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 4 (4') (H222052-28)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	220	110	200	4.86	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	211	106	200	5.92	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	85.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	85.3	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 4 (5') (H222052-29)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	88.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	85.2	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 5 (0-1') (H222052-30)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	87.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	88.8	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 5 (2') (H222052-31)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	89.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	88.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 5 (3') (H222052-32)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	104	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	102	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 5 (4') (H222052-33)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.94	96.8	2.00	8.57	
Toluene*	<0.050	0.050	05/16/2022	ND	1.90	95.2	2.00	9.11	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.87	93.3	2.00	8.68	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.75	95.8	6.00	8.75	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	98.3	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	96.6	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 5 (5') (H222052-34)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	96.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.4	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 6 (0-1') (H222052-35)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1490	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	95.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	93.9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 6 (2') (H222052-36)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	92.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	90.7	% 59.5-14	`						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 6 (3') (H222052-37)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	103	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	103	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 6 (4') (H222052-38)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	101	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	100	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 6 (5') (H222052-39)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	92.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	92.9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 7 (0-1') (H222052-40)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	93.3	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.3	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 7 (2') (H222052-41)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	94.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 7 (3') (H222052-42)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	0.064	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	GC-NC1
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	92.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	92.6	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 7 (4') (H222052-43)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	97.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	95.8	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 7 (5') (H222052-44)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	0.064	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	GC-NC1
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	97.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	96.2	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 8 (0-1') (H222052-45)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1200	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	98.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	98.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 8 (2') (H222052-46)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	90.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	90.8	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 8 (3') (H222052-47)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	97.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	96.6	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 8 (4') (H222052-48)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	<0.050	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/16/2022	ND	223	111	200	8.65	
DRO >C10-C28*	<10.0	10.0	05/16/2022	ND	214	107	200	10.0	
EXT DRO >C28-C36	<10.0	10.0	05/16/2022	ND					
Surrogate: 1-Chlorooctane	93.8	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	93.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/13/2022	Sampling Date:	05/12/2022
Reported:	05/18/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA CO NM		

Sample ID: T - 8 (5') (H222052-49)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2022	ND	1.80	90.2	2.00	12.8	
Toluene*	0.053	0.050	05/16/2022	ND	1.84	92.1	2.00	13.9	GC-NC1
Ethylbenzene*	<0.050	0.050	05/16/2022	ND	1.83	91.4	2.00	12.9	
Total Xylenes*	<0.150	0.150	05/16/2022	ND	5.53	92.1	6.00	13.9	
Total BTEX	<0.300	0.300	05/16/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/16/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/17/2022	ND	192	96.2	200	2.18	
DRO >C10-C28*	<10.0	10.0	05/17/2022	ND	208	104	200	4.03	
EXT DRO >C28-C36	<10.0	10.0	05/17/2022	ND					
Surrogate: 1-Chlorooctane	74.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	76.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-04	The RPD for the BS/BSD was outside of historical limits.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
GC-NC1	8260 confirmation analysis was performed; initial GC results were not supported by GC/MS analysis and are biased high with interfering compounds.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Relinquished by:	Relinquished by:	(app)	Relinquished by:	2	9-H	A -				11 H-4		<u>در</u> H-2	1 H-1	(LAB USE)	LAB #	H3205D		Comments:		Dessiving Laboratory.	Invoice fo:	Project Location: (county. state)	Project Name:	Client Name:	4	Analysis Reques
	Date: Time:	Date: Time:	-/1 DI15/22 1 100	Date: Time: U/0/0	T-1 (0-1')	H-9 (0-1)	H-8 (0-1')	H-7 (0-1')	H-6 (0-1')		H-4 (0-1')	H-3 (0-1')	H-2 (0-1')	H-1 (0-1')		SAMPLE IDENTIFICATION				Cardinal Labs	EOG Resources - Todd Wells		Lea County, NM	Bear Booster Release	EOG Resources	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:	Received by:	STORICIA	2	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	DATE	\neg	YEAR: 2020	SAMPLING			Sampler Signature:		Project #:	Brittany.L	Site Manager:		
	Date: Time:		MULT J		X X	XXX	X	X	X	X	X	X	×		HCL	D ₃		MATRIX PRESERVATIVE METHOD					212C-MD-02763	Brittany.Long@tetratech.com	Brittany Long	901W Wall Street, Ste 100 Midland, Fexas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
(Circle	2	Sam		1406 LAB	X	×	×	×	×	×	×	×	×	~ >	K BTE	ERE X 80	D (Y) 21B 005 (RS /N) BTE	EX 8260 p C35)								
(Circle) HAND DELIVERED FEDEX	J. 60 #115 []s					×	×	×	×	×	×	×			PAH Tota TCL TCL X RCI	I Met P Me P Vol	OC als Aq tals A latiles	g As I Ag As	- DRO Ba Cd C	r Pb	Se Hg	_			(Circle or Speci		
X UPS Tracking #:	Special Report Limits or TRRP Report	Rush Charges Authorized	RUSH: Same Day 24 hr	STANDARD	°	< ×	~ ~	× ×					< >	× ;	GC/ PCE NOI PLM × Chlu	MS S B's 8 RM M (As oride	Semi. 082 / besto	Vol. 608 s)		S		hed	lie4		pecify Method No.)		Page
	tP Report		48 hr 72 hr	8												ion/C	I Wat		hemistr ance	/ (se	e attac	hed	list)		-	Pag	-1 9 5 6 52 of 56

Page 84 of 223

.

Released to Imaging: 7/19/2022 11:57:09 AM

Γ	Relinquished by:	Relinquished by:	, Ver	Relinquished by:	2	Ē	~		Ko		Ę.		٤	Н	(ONLY)	LAB #			- ARA	Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	ħ	Analysis Requ
	y: Date: Time:	r: Date: Time:	22		T-3 (0-1')	T-2 (5')	T-2 (4')	T-2 (3')	T-2 (2')	T-2 (0-1')	T-1 (5')	T-1 (4')	T-1 (3')	T-1 (2')							ory: Cardinal Labs	EOG Resources - Todd Wells	Lea County, NM	Bear Booster Release	EOG Resources	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by: Date: Time:		Date: Time:	Received by: Date: Ime:	×							× ×	< >		× IC N + H H H H H H H H H H H H H H H H H H	ATEF DIL CL E DNP		RS	PRESERVATIVE			Sampler Signature:	212C-MD-02763	Brittany.Long@tetratech.com	Site Manager: Brittany Long	901W Wall Street, Ste 100 Midland,Texas 78705 Tel (432) 682-359 Fax (432) 682-3946	
(Circle)/HAND DELIVERED / FEDEX UPS Tracking #	Special Rep	(1°) (-0.5°) Rush Charges Authorized	Cample	LAB USE ONLY	X X					+	× >	× ;;	×		X B T Y T Y T T T T T T T T T T T T T T T T	EX 8 PH T) PH 80 Dtal M CLP N CLP N	41005 (1	Ag A Ag A Ag A Ag A Ag A Ag A Ag A A B Sulfi ater	TEX to C O - L s Ba s Ba lies UB / (f I. 82 3 ate Che	Cd C	- ORC Cr Pb S 625	Se Hg) ned list)		(Circle or Specify Method No.)		Page 2 01

Sh, Inc. Brittany Long Diletratech.com Far (42) as des days Circle or Sg Far (42) as des days Brittany Long Diletratech.com Brittany Long Diletratech.com Circle or Sg Far (42) as des days Brittany Long Diletratech.com Brittany Long Diletratech.com Circle or Sg Far (42) as des days Brittany Long Diletratech.com Brittany Long Diletratech.com Circle or Sg Far (42) as des days Brittany Long Diletratech.com Brittany Long Diletratech.com Circle or Sg Far (42) as days Circle or Sg Far (42) as days Brittany Long Diletratech.com Brittany Long Diletratech.com Status Circle or Sg Far (42) as days Circle or Sg Far (42) as days Brittany Long Diletratech.com Brittany Long Diletratech.com Status Status Status Brittany Long Diletratech.com Brittany Long Diletratech.com Status Status Status Brittany Long Diletratech.com Status Status Status Status Status Brittany Long Diletratech.com Status Status Status Status Status Status Time: Status Status Status Status Status Status	Terra Tech, Inc. Management the second secon		Relinquished by:	Kelinguisned by.	(EUVIA)	And a	Relinduished by:		T-4 (5')				JU 1-3 (5)				T-3 (2")			0.00	あっとろう	Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	7
Brittany Long@letratech.com 212C-MD-02763 21	Service and the service of the service				Date: Time:	12177 1	/ Date: Time:	0.19	57	4 ⁽¹⁾	2)	21) 0-1)	5)	4					SAMPLE IDENTIFICATION				Cardinal Labs		Lea County, NM	Bear Booster Release	EOG Resources	Tetra Tech, Inc.
Time: Ti	AMALYSIS RECUEST AMALYSIS REC		Received by:		Received by:	Radicio	Received by:	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022		YEAR: 2020	SAMPLING			Samplet Signature.	Constant Constant	Project #:		Site Manager:	
Image: Circle of the second	ARTYSE REPORT OF Special Report Limits or TRRP Report Limits or TR					Presistant 21373)											SOIL HCL HNO ₃ ICE	R		DECEDIATIVE				212C-MD-02763	r.Long@tetratech.com	Brittany Long	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946
AND DELIVER DE TER DE T	MATYSIS RECUEST Circle or Specify Method No. Circle or Specify Method No. X X X X X X X X X X X X X X X X X X X	(Circle)	2	1-1	Sample	ond.	2	×	×	×	×							FILTE BTEX	RED (8021E	ERS (Y/N) 3 B ⁻ 5 (Ext	TEX 1	5)						
Special Report Limits o	g# notice 24 hr X	HAND DELIVERED	17 D	C.0.50	Temperature	1 [1.1		×	×	×	×	×	×	×	×		PAH 8 Total M TCLP TCLP TCLP	270C letals Vetals Volatil	Ag As s Ag A es	s Ba (s Ba	d C	r Pb S	e Hg			0	
	RD A Chionide Suitate 100 RD A General Water Chemistry (see attached list) RD Anion/Cation Balance	UPS	Special Report Limits o	Rush Charges Authoriz	Same Day		STANDARD											GC/M GC/M PCB's NORM PLM (S Sem 8082 A Asbes	ni. Vol 2 / 608	. 827		325				- 0	

Released to Imaging: 7/19/2022 11:57:09 AM

Page 86 of 223

.

	Relinquished by:		Relinquished by:	Veitt.	Relinquished by	10 1-7 (T-6 (5')	T-6 (4')	7 1-6 (3')	210 T-6 (2')	7		2	30 T-5 (3')	3 T-5 (2')	(LAB USE)	LAB#			RUS PET	Comments:	Receiving Laboratory:		Project Location: (county, state)	Project Name.	Deciact Name:	Client Name:	F	Analysis Request
	Date: Time:		Date: Time:	- 5/13/27 HUU	Date: Time:	(0-1)	(5')	(4")	(3')	(2')	T-6 (0-1')	(5')	(4')	(3')	(2')		SAMPLE IDEN IIFICATION			~		Cardinal Labs	EOG Resources - Todd Wells	Lea County, NM	Bear Booster Release	EOG Resources		Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
	Received by:		Received by:	Sun Man	Received by:	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022			YEAR: 2020	SAMPLING				Sampler Signature:	riojavi #.			Site Manager:		
	Date: lime:		Date: Time:	PPS1-CTNM	Date: Time:	X X	X	×	X	X	X	X	x	X		WAT SOII HCL HNC ICE Non	L - D ₃		MATRIX METHOD					212C-MD-02763	Brittany.Long@tetratech.com	Dimony Long	Brittany Long	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
(Circle)	2	1	Sample	- Ithe	-	×	×	×	×	×	×	×	×	×	××	BTE	TERI	ED ()	(/N) B1	_	8260	βB				-			
de) HAND DELIVERED	Office this	12 10-0.52	Temperature		AB USE ONLY	X I I	×	×	×	×	×	×	×	>	< ×	C TPH PAH Tota TCL	801 82 1 82 1 Me	15M (70C tals A	GRC Ag As Ag A	D - D	RO -	r Pb S	- MRC e Hg Se Hg))		(Circle or	AN		
FEDEX UPS	Special Report	Rush Charges Authorized	KUSH: Salie Day	DIICH-	X STANDARD	MADKC:										RCI GC/ GC/	/MS /MS B's 8	Vol. 4 Semi 3082	8260 . Vol.	B / 6		25				r Specify Method	ANALYSIS REQUEST	4.5	
Tracking #:	Special Report Limits or TRRP Report	Authorized	11 UT 11 H2	, 24 hr 48 hr	RD		< >	< >	< >	< >	~ ~		< >	< >	× >	Chl Chl Ge	N (As oride lorid	e	Sulfa ter C	hen	-		attach	ned list)		hod No.)			Page 4
			1	72 hr												Но	old								9	_		Pag	D D

Released to Imaging: 7/19/2022 11:57:09 AM

Page 55 of 56

	Relinquished by:	Kelinguished by	Cull	Relinquished by	1 1	5	rus -	17	<u>-</u> 2	i, f		Be		4	(LAB USE ONLY)	LAB #		Haaac	Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	5
	y:	y.		1	10101	T-8 (5')	T-8 (4")	T-8 (3')	T_8 (2")	T_R (0_1")	T-7 (5')	T-7 (4")	T-7 (3')	T-7 (2')				53				_	в	п	
																SAMF				Cardinal Labs	EOG Resources -	Lea County, NM	Bear Booster Release	EOG Resources	Tet
			0													SAMPLE IDENTIFICATION				lbs		, NM	er Releas	Irces	Tetra Tech, Inc.
	Date: T		Date: T													FICATION					Todd Wells		œ		ech
	Time:		Time:	Time:																	,				, Inc
				4Mb												Ť					Sa	Pr		Sit	
	Received by		Received by:	Received by:		5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	DATE	'EAR: 2020	SAMPLING				Sampler Signature:	Project #:		Site Manager:	
	r.		JACIAN	A WIN											TIME		LING				ture:		Brittany.Long@tetratech.com		
						×	×	×	×	×	×	×	×	×	WAT SOIL	ER	MATRIX					212C	ong@tetr	Brittany Long	901W V Midla Tel Fax
	Date:		Date:	Date:										F	HCL HNO	3						212C-MD-02763	atech.c	Long	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946
	Time:		Time:	N.Y.	E	×	×	×	×	×	×	×	×	×	ICE None)	METHOD	PRESERVATIVE				763	om		3705 9705 946
				T	\vdash	\vdash	\vdash					\vdash	-	+	# CO	NTAIN	IERS								
				tolo	\vdash	\vdash	+	\vdash		\vdash	\vdash	\vdash	\vdash	+	FILTE	ERED	(Y/N))							
ł	9	-	Sample	LAB	F	×	×	×	×	×	×	×	×	×		8021 TX100				В					
	É.			3 USE	E	×	×	×	×	×	×	×	×	×	TPH		(GF			ORC) - MRO))			
	挿	0	Temperature	ONLY	\vdash	+	+	+	\vdash	\vdash	+	+	+	+	Total	Metals	Ag A	_						(Circl	
	to	U.S.	œ				-	-			-	-	-	+	_	P Metal	-	As Ba	CdC	r Pb	Se Hg			Ð	1.1
														+	_	P Semi	Volat	tiles						or Specify Meth	
FEDEX	Spe	Rust	RUSH:		DKS-	-		-	-	-	-	+	+	+	RCI GC/N	AS Vol.	826	0B / 6	24					ysis	
IDC	cial R	n Cha	÷	STANDARD	F	+	+	+					\pm	\pm	GC/N	AS Ser	ni. Vo	ol. 82		25				THE RE	
Тга	eport	rges /	Same Day	IDAF		-	-				-	+	+	+	PCB	's 8082	2 / 60	8						Net	
Tracking #	Limits	Rush Charges Authorized		RD	\vdash	+	+		+	1					PLM	(Asbe:	stos)	v						Method	
	Special Report Limits or TRRP Report	rized	24 hr		F	>	< >		×	×	>			< >	< Chlo	oride	Sulf	fate	TDS	3				No	
	RP R		48			+	+	+	+						Gen	eral W	/ater	Cher	nistry		e attach	ed list)			
	eport		hr 72		F		-			T	-	-	-	-	Anic	on/Cati	on B	aland	e		-	_			
			2 hr		E						+			+										-	
														-										-	
	1														Hol	d									

Released to Imaging: 7/19/2022 11:57:09 AM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave

Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-15895-1

Laboratory Sample Delivery Group: Eddy County, New Mexico Client Project/Site: Bear Booster

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Brittany Long

RAMER

Authorized for release by: 6/21/2022 11:58:35 AM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	39
QC Sample Results	42
QC Association Summary	57
Lab Chronicle	68
Certification Summary	82
Method Summary	83
Sample Summary	84
Chain of Custody	85
Receipt Checklists	90

2

Client: Tetra Tech, Inc. Project/Site: Bear Booster Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
*-	LCS and/or LCSD is outside acceptance limits, low biased.	
*1	LCS/LCSD RPD exceeds control limits.	
F1	MS and/or MSD recovery exceeds control limits.	8
F2	MS/MSD RPD exceeds control limits	e
S1-	Surrogate recovery exceeds control limits, low biased.	C
U	Indicates the analyte was analyzed for but not detected.	C
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	1
U	Indicates the analyte was analyzed for but not detected.	
Glossary		1
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	[]
%R	Percent Recovery	
CEI	Contains Free Liquid	

/011	1 dicent receively
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Page 92 of 223

Job ID: 880-15895-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-15895-1

Receipt

The samples were received on 6/15/2022 8:15 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.6°C

GC VOA

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-27628 and analytical batch 880-27741 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The laboratory control sample duplicate (LCSD) associated with preparation batch 880-27835 and analytical batch 880-27863 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-27556 and analytical batch 880-27563 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

Method 8015MOD_NM: The laboratory control sample (LCS) associated with preparation batch 880-27553 and analytical batch 880-27559 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-27555 and analytical batch 880-27557 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: BH-23 (880-15895-23), BH-25 (880-15895-25), BH-35 (880-15895-35), SW-2 (880-15895-37), SW-3 (880-15895-38) and SW-4 (880-15895-39). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-27637 and analytical batch 880-27860 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-27639 and analytical batch 880-27861 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00200 U

RL

0.00200

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Analyzed

06/16/22 16:50

Client Sample ID: BH-1 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Analyte

Benzene

Project/Site: Bear Booster

Lab Sample ID: 880-15895-1

MDL Unit

mg/Kg

D

Prepared

06/15/22 15:37

Matri		
ed	Dil Fac	5
16:50	1	
16:50	1	
16:50	1	
16:50	1	
16:50	1	_
16.20	1	

	1	

14

				mg/Kg		0.00200		-0.00000	
50 1	06/16/22 16:50	06/15/22 15:37		ing/itg		0.00200	0	<0.00200	Toluene
50 1	06/16/22 16:50	06/15/22 15:37		mg/Kg		0.00200	U	<0.00200	Ethylbenzene
50 1	06/16/22 16:50	06/15/22 15:37		mg/Kg		0.00401	U	<0.00401	m-Xylene & p-Xylene
50 1	06/16/22 16:50	06/15/22 15:37		mg/Kg		0.00200	U	<0.00200	o-Xylene
50 1	06/16/22 16:50	06/15/22 15:37		mg/Kg		0.00401	U	<0.00401	Xylenes, Total
Dil Fac	Analyzed	Prepared				Limits	Qualifier	%Recovery	Surrogate
50 1	06/16/22 16:50	06/15/22 15:37				70 - 130		106	4-Bromofluorobenzene (Surr)
50 1	06/16/22 16:50	06/15/22 15:37				70 - 130		100	1,4-Difluorobenzene (Surr)
								Calculation	- Method: Total BTEX - Total BTEX
Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
21 1	06/17/22 09:21			mg/Kg		0.00401	U	<0.00401	Total BTEX
							O) (GC)	Organics (DR	- Method: 8015 NM - Diesel Range
Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
49 1	06/16/22 09:49			mg/Kg		49.9	U	<49.9	Total TPH
							RO) (GC)	ge Organics (DI	_ Method: 8015B NM - Diesel Rang
Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier		Analyte
52 1	06/15/22 11:52	06/15/22 08:46		mg/Kg		49.9	U *-	<49.9	Gasoline Range Organics
									(GRO)-C6-C10
52 1	06/15/22 11:52	06/15/22 08:46		mg/Kg		49.9	U	<49.9	Diesel Range Organics (Over
									C10-C28)
	06/15/22 11:52	06/15/22 08:46		mg/Kg		49.9	U	<49.9	Oll Range Organics (Over C28-C36)
52 1	06/15/22 11:52 Analyzed	06/15/22 08:46 Prepared		mg/Kg		49.9 <i>Limits</i>		<49.9 %Recovery	Surrogate
52 1 Dil Fac				mg/Kg					
52 1 Dil Fac 52 1	Analyzed	Prepared		mg/Kg		Limits		%Recovery	Surrogate
52 1 Dil Fac 52 1	Analyzed 06/15/22 11:52	Prepared 06/15/22 08:46		mg/Kg		Limits 70 - 130	Qualifier		Surrogate 1-Chlorooctane o-Terphenyl
52 1 Dil Fac 52 1	Analyzed 06/15/22 11:52	Prepared 06/15/22 08:46	D		MDL	Limits 70 - 130	Qualifier	%Recovery 97 102 Domatography - 5	Surrogate 1-Chlorooctane
52 1 <i>Dil Fac</i> 52 1 52 1 Dil Fac	Analyzed 06/15/22 11:52 06/15/22 11:52	Prepared 06/15/22 08:46 06/15/22 08:46	<u>D</u>		MDL	Limits 70 - 130 70 - 130	Qualifier Soluble Qualifier	%Recovery 97 102 Domatography - 5	Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro
52 1 <i>Dil Fac</i> 52 1 52 1 Dil Fac 51 1	Analyzed 06/15/22 11:52 06/15/22 11:52 Analyzed	Prepared 06/15/22 08:46 06/15/22 08:46 Prepared	D	Unit	MDL	Limits 70 - 130 70 - 130 RL	Qualifier Soluble Qualifier	%Recovery 97 102 omatography - Result	Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro Analyte

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 17:11	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 17:11	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 17:11	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		06/15/22 15:37	06/16/22 17:11	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 17:11	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		06/15/22 15:37	06/16/22 17:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				06/15/22 15:37	06/16/22 17:11	1
1,4-Difluorobenzene (Surr)	101		70 - 130				06/15/22 15:37	06/16/22 17:11	1

Eurofins Midland

Released to Imaging: 7/19/2022 11:57:09 AM

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-2

Client Sample ID: BH-2 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	e Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *-	49.9		mg/Kg		06/15/22 08:46	06/15/22 12:58	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 12:58	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 12:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				06/15/22 08:46	06/15/22 12:58	1
o-Terphenyl	112		70 - 130				06/15/22 08:46	06/15/22 12:58	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	754		4.97		mg/Kg			06/20/22 09:15	1

Client Sample ID: BH-3

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Organ	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 17:31	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 17:31	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 17:31	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 15:37	06/16/22 17:31	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 17:31	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 15:37	06/16/22 17:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				06/15/22 15:37	06/16/22 17:31	1
1,4-Difluorobenzene (Surr)	99		70 - 130				06/15/22 15:37	06/16/22 17:31	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *-	50.0		mg/Kg		06/15/22 08:46	06/15/22 13:20	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 13:20	1
C10-C28)									

Eurofins Midland

Matrix: Solid

5

Lab Sample ID: 880-15895-3 Matrix: Solid

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-3

Client Sample ID: BH-3

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 13:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				06/15/22 08:46	06/15/22 13:20	1
o-Terphenyl	116		70 - 130				06/15/22 08:46	06/15/22 13:20	1
Chloride	714		5.00		mg/Kg			06/20/22 09:22	1
	714		5.00		mg/Kg				1
lient Sample ID: BH-4							Lab Sam	ple ID: 880-1	5895-4
ate Collected: 06/14/22 00:00								Matri	x: Solid
ate Received: 06/15/22 08:15									
- Method: 8021B - Volatile Organic	Compounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Reguit	quanner	••=		•	-		/	

Donzono	0.00200	0	0.00200	mg/ng	00/10/22 10:01	00/10/22 11:02	
Toluene	<0.00200	U	0.00200	mg/Kg	06/15/22 15:37	06/16/22 17:52	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	06/15/22 15:37	06/16/22 17:52	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg	06/15/22 15:37	06/16/22 17:52	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	06/15/22 15:37	06/16/22 17:52	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg	06/15/22 15:37	06/16/22 17:52	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130		06/15/22 15:37	06/16/22 17:52	1
1,4-Difluorobenzene (Surr)	100		70 - 130		06/15/22 15:37	06/16/22 17:52	1

Analyte Total BTEX	Colored Result <0.00399	Qualifier	RL 0.00399	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 06/17/22 09:21	Dil Fac
Method: 8015 NM - Diesel Range C		O) (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	6	C	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg				06/16/22 09:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *-	49.9		mg/Kg		06/15/22 08:46	06/15/22 13:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 13:41	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 13:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				06/15/22 08:46	06/15/22 13:41	1
o-Terphenyl	106		70 - 130				06/15/22 08:46	06/15/22 13:41	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Matrix: Solid

5

Released to Imaging: 7/19/2022 11:57:09 AM

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-5

Client Sample ID: BH-5 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Г

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 18:12	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 18:12	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 18:12	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 15:37	06/16/22 18:12	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 18:12	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 15:37	06/16/22 18:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				06/15/22 15:37	06/16/22 18:12	1
1,4-Difluorobenzene (Surr)	100		70 - 130				06/15/22 15:37	06/16/22 18:12	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *-	50.0		mg/Kg		06/15/22 08:46	06/15/22 14:03	1
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 14:03	1
C10-C28)					5 5				
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 14:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130				06/15/22 08:46	06/15/22 14:03	1
o-Terphenyl	103		70 - 130				06/15/22 08:46	06/15/22 14:03	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	539		4.95		mg/Kg			06/20/22 09:38	1
lient Sample ID: BH-6							Lab Sam	ple ID: 880-1	5895-6
ate Collected: 06/14/22 00:00								-	x: Solid
ate Received: 06/15/22 08:15									

Method: 8021B - Volatile Orga	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 18:32	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 18:32	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 18:32	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 15:37	06/16/22 18:32	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 15:37	06/16/22 18:32	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 15:37	06/16/22 18:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				06/15/22 15:37	06/16/22 18:32	1
1,4-Difluorobenzene (Surr)	100		70 - 130				06/15/22 15:37	06/16/22 18:32	1

Matrix: Solid

5

Released to Imaging: 7/19/2022 11:57:09 AM

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-6

Client Sample ID: BH-6 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *-	49.9		mg/Kg		06/15/22 08:46	06/15/22 14:24	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 14:24	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 14:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	117		70 - 130				06/15/22 08:46	06/15/22 14:24	1
o-Terphenyl	128		70 - 130				06/15/22 08:46	06/15/22 14:24	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	157		5.05		mg/Kg			06/20/22 10:02	1

Client Sample ID: BH-7

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Organ	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 18:53	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 18:53	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 18:53	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/15/22 15:37	06/16/22 18:53	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 18:53	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		06/15/22 15:37	06/16/22 18:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				06/15/22 15:37	06/16/22 18:53	1
1,4-Difluorobenzene (Surr)	99		70 - 130				06/15/22 15:37	06/16/22 18:53	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			06/17/22 09:21	1
 Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
_ Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *-	49.9		mg/Kg		06/15/22 08:46	06/15/22 14:46	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 14:46	1
C10-C28)									

Eurofins Midland

Page 97 of 223

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-7

Client Sample ID: BH-7

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 14:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130				06/15/22 08:46	06/15/22 14:46	1
o-Terphenyl	126		70 - 130				06/15/22 08:46	06/15/22 14:46	1
Chloride	30.8		4.99		mg/Kg		Prepared	06/20/22 10:09	
Client Sample ID: BH-8	30.8		4.99		ilig/Kg		Lah Sam	ple ID: 880-1	5905 9
Sherit Sample ID. Dir-0							Lab Sam	•	
								Matri	x: Solid
Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 19:13	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 19:13	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 19:13	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		06/15/22 15:37	06/16/22 19:13	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 19:13	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/15/22 15:37	06/16/22 19:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				06/15/22 15:37	06/16/22 19:13	1
1,4-Difluorobenzene (Surr)	101		70 - 130				06/15/22 15:37	06/16/22 19:13	1

Analyte	Result	Quanner		INDL	Unit	-	,	riepaieu	Analyzeu	Dirrac	
Total BTEX	<0.00401	U	0.00401		mg/Kg				06/17/22 09:21	1	
Method: 8015 NM - Diesel Range C	organics (DR	0) (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac	

50.0

mg/Kg

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Total TPH

<50.0 U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *-	50.0		mg/Kg		06/15/22 08:46	06/15/22 15:08	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 15:08	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 15:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 _ 130				06/15/22 08:46	06/15/22 15:08	1
o-Terphenyl	128		70 - 130				06/15/22 08:46	06/15/22 15:08	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	851		4.98		mg/Kg			06/20/22 10:17	1

Eurofins Midland

06/16/22 09:49

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-9

Client Sample ID: BH-9 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Г

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 12:09	
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 12:09	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 12:09	
m-Xylene & p-Xylene	<0.00398	U F1	0.00398		mg/Kg		06/15/22 16:00	06/17/22 12:09	
o-Xylene	<0.00199	U F1	0.00199		mg/Kg		06/15/22 16:00	06/17/22 12:09	
Xylenes, Total	<0.00398	U F1	0.00398		mg/Kg		06/15/22 16:00	06/17/22 12:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	109		70 - 130				06/15/22 16:00	06/17/22 12:09	
1,4-Difluorobenzene (Surr)	90		70 - 130				06/15/22 16:00	06/17/22 12:09	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
fotal TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	
Method: 8015B NM - Diesel Rang									
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<50.0	U *-	50.0		mg/Kg		06/15/22 08:46	06/15/22 15:30	
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 15:30	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 15:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				06/15/22 08:46	06/15/22 15:30	
o-Terphenyl	124		70 - 130				06/15/22 08:46	06/15/22 15:30	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	174		4.96		mg/Kg			06/20/22 10:25	
lient Sample ID: BH-10							Lab Samp	le ID: 880-15	895-10
ate Collected: 06/14/22 00:00								Matri	x: Solio
ate Received: 06/15/22 08:15									

Analyte MDL Unit D Prepared Dil Fac **Result Qualifier** RL Analyzed Benzene <0.00199 U 0.00199 mg/Kg 06/15/22 16:00 06/17/22 12:35 1 <0.00199 U Toluene 0.00199 06/17/22 12:35 mg/Kg 06/15/22 16:00 1 Ethylbenzene <0.00199 U 0.00199 mg/Kg 06/15/22 16:00 06/17/22 12:35 1 m-Xylene & p-Xylene <0.00398 U 0.00398 mg/Kg 06/15/22 16:00 06/17/22 12:35 1 o-Xylene <0.00199 U 0.00199 mg/Kg 06/15/22 16:00 06/17/22 12:35 1 Xylenes, Total <0.00398 U 0.00398 06/15/22 16:00 06/17/22 12:35 mg/Kg 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 118 70 - 130 06/15/22 16:00 06/17/22 12:35 4-Bromofluorobenzene (Surr) 1 1,4-Difluorobenzene (Surr) 94 70 - 130 06/15/22 16:00 06/17/22 12:35 1

Eurofins Midland

Matrix: Solid

5

Released to Imaging: 7/19/2022 11:57:09 AM

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-10

Client Sample ID: BH-10 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *-	50.0		mg/Kg		06/15/22 08:46	06/15/22 15:51	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 15:51	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 15:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				06/15/22 08:46	06/15/22 15:51	1
o-Terphenyl	101		70 - 130				06/15/22 08:46	06/15/22 15:51	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	316		5.04		mg/Kg			06/20/22 10:33	1

Client Sample ID: BH-11

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Organ	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		06/15/22 16:00	06/17/22 13:01	1
Toluene	<0.00198	U	0.00198		mg/Kg		06/15/22 16:00	06/17/22 13:01	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		06/15/22 16:00	06/17/22 13:01	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		06/15/22 16:00	06/17/22 13:01	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		06/15/22 16:00	06/17/22 13:01	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		06/15/22 16:00	06/17/22 13:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				06/15/22 16:00	06/17/22 13:01	1
1,4-Difluorobenzene (Surr)	96		70 - 130				06/15/22 16:00	06/17/22 13:01	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *-	49.9		mg/Kg		06/15/22 08:46	06/15/22 16:34	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 16:34	1
C10-C28)									

Eurofins Midland

Page 100 of 223

Matrix: Solid

Matrix: Solid

Client Sample Results

Job ID: 880-15895-1
SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-11

Lab Sample ID: 880-15895-12

Client Sample ID: BH-11 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 16:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130				06/15/22 08:46	06/15/22 16:34	1
o-Terphenyl	104		70 - 130				06/15/22 08:46	06/15/22 16:34	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride			5.03		mg/Kg			06/20/22 10:41	1

Client Sample ID: BH-12

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 13:27	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 13:27	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 13:27	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 16:00	06/17/22 13:27	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 13:27	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 16:00	06/17/22 13:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				06/15/22 16:00	06/17/22 13:27	1
1,4-Difluorobenzene (Surr)	92		70 - 130				06/15/22 16:00	06/17/22 13:27	1
_									

Method: Total BTEX - Total BTEX Ca	lculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range Or	ganics (DR	O) (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *-	49.9		mg/Kg		06/15/22 08:46	06/15/22 16:56	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 16:56	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 16:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				06/15/22 08:46	06/15/22 16:56	1
o-Terphenyl	101		70 - 130				06/15/22 08:46	06/15/22 16:56	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	208		4.98		mg/Kg		·	06/20/22 11:04	1

1 uge 101 0j 223

Matrix: Solid

Matrix: Solid

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Client Sample ID: BH-13 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Lab	Sample	ID:	880-1589

Matrix: Solid

Method: 8021B - Volatile Organi Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/Kg		06/15/22 16:00	06/17/22 13:53	
Toluene	< 0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 13:53	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 13:53	
m-Xylene & p-Xylene	< 0.00399	U	0.00399		mg/Kg		06/15/22 16:00	06/17/22 13:53	
o-Xylene	<0.00399	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 13:53	
Xylenes, Total	<0.00200		0.00200		mg/Kg		06/15/22 16:00	06/17/22 13:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		quanter	70 - 130				06/15/22 16:00	06/17/22 13:53	
1,4-Difluorobenzene (Surr)	101		70 - 130				06/15/22 16:00	06/17/22 13:53	
Method: Total BTEX - Total BTE	X Calculation								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399		0.00399		mg/Kg			06/17/22 09:21	
Method: 8015 NM - Diesel Rango	organics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0		50.0		mg/Kg			06/16/22 09:49	
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U *-	50.0		mg/Kg		06/15/22 08:46	06/15/22 17:18	
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 17:18	
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	П	50.0		mg/Kg		06/15/22 08:46	06/15/22 17:18	
On Mange Organics (Over 020-030)	\$00.0	0	30.0		ilig/itg		00/10/22 00.40	00/13/22 17:10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	115		70 - 130				06/15/22 08:46	06/15/22 17:18	
o-Terphenyl	123		70 - 130				06/15/22 08:46	06/15/22 17:18	
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	169		4.99		mg/Kg			06/20/22 11:12	
lient Sample ID: BH-14							Lab Samp	le ID: 880-15	895-14
ate Collected: 06/14/22 00:00								Matri	x: Solie
ate Received: 06/15/22 08:15									
Method: 8021B - Volatile Organi	c Compounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/Kg		06/15/22 16:00	06/17/22 14:19	
Toluene	<0.00200		0.00200		mg/Kg		06/15/22 16:00	06/17/22 14:19	
Ethylbenzene	<0.00200		0.00200		mg/Kg		06/15/22 16:00	06/17/22 14:19	
m-Xylene & p-Xylene	<0.00200		0.00200		mg/Kg		06/15/22 16:00	06/17/22 14:19	
		0	0.00400		IIIU/INU		00/10/22 10.00	00/11/22 14.19	
o-Xylene Xylenes Total	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 14:19	

Xylenes, Total <0.00400 U 0.00400 06/15/22 16:00 06/17/22 14:19 mg/Kg 1 %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 4-Bromofluorobenzene (Surr) 119 70 - 130 06/15/22 16:00 06/17/22 14:19 1 1,4-Difluorobenzene (Surr) 99 70 - 130 06/15/22 16:00 06/17/22 14:19 1

Eurofins Midland

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-14

Client Sample ID: BH-14 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	e Organics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *-	49.9		mg/Kg		06/15/22 08:46	06/15/22 17:39	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 17:39	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 17:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				06/15/22 08:46	06/15/22 17:39	1
o-Terphenyl	115		70 - 130				06/15/22 08:46	06/15/22 17:39	1
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	253		5.05		mg/Kg			06/20/22 11:36	1

Client Sample ID: BH-15

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Organ	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 14:45	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 14:45	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 14:45	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		06/15/22 16:00	06/17/22 14:45	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 14:45	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/15/22 16:00	06/17/22 14:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				06/15/22 16:00	06/17/22 14:45	1
1,4-Difluorobenzene (Surr)	101		70 - 130				06/15/22 16:00	06/17/22 14:45	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rar	ige Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *-	50.0		mg/Kg		06/15/22 08:46	06/15/22 18:01	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 18:01	1
C10-C28)									

Eurofins Midland

Page 103 of 223

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample Results

Job ID: 880-15895-1
SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-16

Client Sample ID: BH-15 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 18:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130				06/15/22 08:46	06/15/22 18:01	1
o-Terphenyl	111		70 - 130				06/15/22 08:46	06/15/22 18:01	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15.9		4.97		mg/Kg			06/20/22 11:44	1

Client Sample ID: BH-16

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 15:10	1
Toluene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 15:10	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 15:10	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/15/22 16:00	06/17/22 15:10	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 15:10	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/15/22 16:00	06/17/22 15:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				06/15/22 16:00	06/17/22 15:10	1
1,4-Difluorobenzene (Surr)	104		70 - 130				06/15/22 16:00	06/17/22 15:10	1
- Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	11	0.00402		mg/Kg			06/17/22 09:21	1

Met	hod: 8015 NM - Diesel Range C	Organics (DR	0) (GC)							
Analy	/te	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total	TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *-	50.0		mg/Kg		06/15/22 08:46	06/15/22 18:23	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 18:23	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 18:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 _ 130				06/15/22 08:46	06/15/22 18:23	1
o-Terphenyl	115		70 - 130				06/15/22 08:46	06/15/22 18:23	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.53		4.95		mg/Kg			06/20/22 11:51	1

Eurofins Midland

Lab Sample ID: 880-15895-15

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Client Sample ID: BH-17 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Lab	Sample	ID:	88	0-1	ł	589	95-	17
							-	

Matrix: Solid

5

Method: 8021B - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 15:36	
Toluene	< 0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 15:36	
Ethylbenzene	< 0.00199		0.00199		mg/Kg		06/15/22 16:00	06/17/22 15:36	
m-Xylene & p-Xylene	<0.00398		0.00398		mg/Kg		06/15/22 16:00	06/17/22 15:36	
o-Xylene	< 0.00199		0.00199		mg/Kg		06/15/22 16:00	06/17/22 15:36	
Xylenes, Total	< 0.00398		0.00398		mg/Kg		06/15/22 16:00	06/17/22 15:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130				06/15/22 16:00	06/17/22 15:36	
1,4-Difluorobenzene (Surr)	90		70 - 130				06/15/22 16:00	06/17/22 15:36	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	- · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U *-	49.9		mg/Kg		06/15/22 08:46	06/15/22 18:45	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 18:45	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 18:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	93		70 - 130				06/15/22 08:46	06/15/22 18:45	
o-Terphenyl	96		70 - 130				06/15/22 08:46	06/15/22 18:45	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	50.9		4.95		mg/Kg			06/20/22 11:59	
lient Sample ID: BH-18							Lab Samp	le ID: 880-15	895-18
ate Collected: 06/14/22 00:00								Matri	x: Solid
ate Received: 06/15/22 08:15									
Method: 8021B - Volatile Organic		· · · · · · · · · · · · · · · · · · ·							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199		0.00199		mg/Kg		06/17/22 16:12	06/19/22 09:37	
Toluene	<0.00199	U *-	0.00199		mg/Kg		06/17/22 16:12	06/19/22 09:37	
Ethylbenzene	<0.00199	U *-	0.00199		mg/Kg		06/17/22 16:12	06/19/22 09:37	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/17/22 16:12	06/19/22 09:37	
o-Xylene	<0.00199		0.00199		mg/Kg		06/17/22 16:12	06/19/22 09:37	

o-Xylene Xylenes, Total	<0.00199 <0.00398	-	0.00199 0.00398	mg/Kg mg/Kg	06/17/22 16:12 06/17/22 16:12	06/19/22 09:37 06/19/22 09:37	1 1
	~~=						
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	% <i>Recovery</i> 	Qualifier	<u>Limits</u> 70 - 130		Prepared 06/17/22 16:12	Analyzed 06/19/22 09:37	Dil Fac 1

Eurofins Midland

Released to Imaging: 7/19/2022 11:57:09 AM

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Client Sample ID: BH-18 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	D) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	e Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *-	49.9		mg/Kg		06/15/22 08:46	06/15/22 19:06	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 19:06	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 19:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				06/15/22 08:46	06/15/22 19:06	1
o-Terphenyl	104		70 - 130				06/15/22 08:46	06/15/22 19:06	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	579		5.00		mg/Kg			06/20/22 12:07	

Client Sample ID: BH-19

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Organ	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 17:50	1
Toluene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 17:50	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 17:50	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/15/22 16:00	06/17/22 17:50	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 17:50	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/15/22 16:00	06/17/22 17:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				06/15/22 16:00	06/17/22 17:50	1
1,4-Difluorobenzene (Surr)	89		70 - 130				06/15/22 16:00	06/17/22 17:50	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Ran	ige Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *-	50.0		mg/Kg		06/15/22 08:46	06/15/22 19:28	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 19:28	1
C10-C28)									

Eurofins Midland

Page 106 of 223

5

Lab Sample ID: 880-15895-18 Matrix: Solid

Released to Ima	aging: 7/19/2022	11:57:09 AM
-----------------	------------------	-------------

Lab Sample ID: 880-15895-19 Matrix: Solid

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Job ID: 880-15895-1
SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-19

Lab Sample ID: 880-15895-20

Client Sample ID: BH-19 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:46	06/15/22 19:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				06/15/22 08:46	06/15/22 19:28	1
o-Terphenyl	94		70 - 130				06/15/22 08:46	06/15/22 19:28	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	66.4		4.99		mg/Kg			06/20/22 12:15	1

Client Sample ID: BH-20

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 18:16	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 18:16	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 18:16	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		06/15/22 16:00	06/17/22 18:16	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 18:16	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		06/15/22 16:00	06/17/22 18:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				06/15/22 16:00	06/17/22 18:16	1
1,4-Difluorobenzene (Surr)	93		70 - 130				06/15/22 16:00	06/17/22 18:16	1
- Method: Total BTEX - Total B1	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399		0.00399		mg/Kg			06/17/22 09:21	1

Method: 8015 NM - Diesel	Range Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *-	49.9		mg/Kg		06/15/22 08:46	06/15/22 19:50	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 19:50	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:46	06/15/22 19:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				06/15/22 08:46	06/15/22 19:50	1
o-Terphenyl	107		70 - 130				06/15/22 08:46	06/15/22 19:50	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	55.2		5.01		mg/Kg			06/20/22 12:23	1

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Client Sample ID: BH-21 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Lab Sample ID: 880-15895-21

Matrix: Solid

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 18:42	
Toluene	< 0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 18:42	
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 18:42	
m-Xylene & p-Xylene	< 0.00398	U	0.00398		mg/Kg		06/15/22 16:00	06/17/22 18:42	
	< 0.00398	U	0.00398				06/15/22 16:00	06/17/22 18:42	
o-Xylene					mg/Kg				
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 16:00	06/17/22 18:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	114		70 - 130				06/15/22 16:00	06/17/22 18:42	
1,4-Difluorobenzene (Surr)	89		70 - 130				06/15/22 16:00	06/17/22 18:42	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	
Method: 8015B NM - Diesel Rang	o Organice (D								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics		U F2	49.9		mg/Kg		06/15/22 08:49	06/15/22 11:52	Birta
GRO)-C6-C10	~45.5	012	49.9		mg/rtg		00/13/22 00.49	00/13/22 11.32	
Diesel Range Organics (Over	<49.9	U F1 F2	49.9		mg/Kg		06/15/22 08:49	06/15/22 11:52	
C10-C28)					5.5				
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 11:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	97		70 - 130				06/15/22 08:49	06/15/22 11:52	
o-Terphenyl	95		70 - 130				06/15/22 08:49	06/15/22 11:52	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	44.4		5.00		mg/Kg			06/20/22 11:11	
lient Sample ID: BH-22							Lab Samp	le ID: 880-15	895-2
ate Collected: 06/14/22 00:00									ix: Solie
ate Received: 06/15/22 08:15									
Method: 8021B - Volatile Organic	Compounde								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/Kg		06/15/22 16:00	06/17/22 19:08	
Toluene	<0.00200		0.00200				06/15/22 16:00	06/17/22 19:08	
					mg/Kg				
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 19:08	
V. Jawa O V. Jawa			0 00 10 1				00145100 40 00	00/47/00 40 00	
n-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		06/15/22 16:00	06/17/22 19:08	

o-Xyle	ne	<0.00200	U	0.00200	mg/Kg	06/15/22 16:00	06/17/22 19:08	1
Xylene	es, Total	<0.00401	U	0.00401	mg/Kg	06/15/22 16:00	06/17/22 19:08	1
Surrog	jate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
· · · ·	yate nofluorobenzene (Surr)	%Recovery 117	Qualifier	Limits 70 - 130		Prepared 06/15/22 16:00	Analyzed 06/17/22 19:08	Dil Fac

Eurofins Midland

Released to Imaging: 7/19/2022 11:57:09 AM
Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-22

Client Sample ID: BH-22 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	e Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 12:58	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 12:58	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 12:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	72		70 - 130				06/15/22 08:49	06/15/22 12:58	1
o-Terphenyl	71		70 - 130				06/15/22 08:49	06/15/22 12:58	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.9		4.98		mg/Kg			06/20/22 11:39	1

Client Sample ID: BH-23

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Organ	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 19:34	1
Toluene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 19:34	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 19:34	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/15/22 16:00	06/17/22 19:34	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:00	06/17/22 19:34	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/15/22 16:00	06/17/22 19:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130				06/15/22 16:00	06/17/22 19:34	1
1,4-Difluorobenzene (Surr)	97		70 - 130				06/15/22 16:00	06/17/22 19:34	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rar	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 13:20	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 13:20	1
C10-C28)									

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample Results

Job ID: 880-15895-1
SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-23

Lab Sample ID: 880-15895-24

Client Sample ID: BH-23 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 13:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	74		70 - 130				06/15/22 08:49	06/15/22 13:20	1
o-Terphenyl	69	S1-	70 - 130				06/15/22 08:49	06/15/22 13:20	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	540		5.04		mg/Kg			06/20/22 11:48	1

Client Sample ID: BH-24

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 20:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 20:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 20:00	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		06/15/22 16:00	06/17/22 20:00	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 20:00	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		06/15/22 16:00	06/17/22 20:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130				06/15/22 16:00	06/17/22 20:00	1
1,4-Difluorobenzene (Surr)	95		70 - 130				06/15/22 16:00	06/17/22 20:00	1
Method: Total BTEX - Total B1	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399		mg/Kg			06/17/22 09:21	1

Methou. ou is NM - Dieser Kange C	nyanics (DR									
Analyte	Result	Qualifier	RL	MDL	Unit	6)	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg				06/16/22 09:49	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 13:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 13:41	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 13:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	73		70 - 130				06/15/22 08:49	06/15/22 13:41	1
o-Terphenyl	70		70 - 130				06/15/22 08:49	06/15/22 13:41	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.1		4.97		mg/Kg			06/20/22 11:57	1

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-25

Client Sample ID: BH-25 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 20:26	
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 20:26	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 20:26	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 16:00	06/17/22 20:26	
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 20:26	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 16:00	06/17/22 20:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	122		70 - 130				06/15/22 16:00	06/17/22 20:26	
1,4-Difluorobenzene (Surr)	99		70 - 130				06/15/22 16:00	06/17/22 20:26	
Method: Total BTEX - Total BTEX									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	
Method: 8015 NM - Diesel Range	- · ·								
Analyte Total TPH	Result <50.0	Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 06/16/22 09:49	Dil Fa
Method: 8015B NM - Diesel Ran Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0		50.0		mg/Kg		06/15/22 08:49	06/15/22 14:03	
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 14:03	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 14:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	68	S1-	70 - 130				06/15/22 08:49	06/15/22 14:03	
o-Terphenyl	66	S1-	70 - 130				06/15/22 08:49	06/15/22 14:03	
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	11.9		4.95		mg/Kg			06/20/22 12:07	
lient Sample ID: BH-26							Lab Samp	le ID: 880-15	895-2
ate Collected: 06/14/22 00:00 ate Received: 06/15/22 08:15								Matri	ix: Soli
-	• • • • • • • • • • • • • •								
Method: 8021B - Volatile Organi	e compounds (GC)							

wethou. 0021D - Volatile Organ	ne compounds (
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 20:52	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 20:52	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 20:52	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 16:00	06/17/22 20:52	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 20:52	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 16:00	06/17/22 20:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				06/15/22 16:00	06/17/22 20:52	1
1,4-Difluorobenzene (Surr)	92		70 - 130				06/15/22 16:00	06/17/22 20:52	1

Eurofins Midland

Matrix: Solid

5

Released to Imaging: 7/19/2022 11:57:09 AM

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-26

Client Sample ID: BH-26 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 14:24	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 14:24	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 14:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				06/15/22 08:49	06/15/22 14:24	1
o-Terphenyl	105		70 - 130				06/15/22 08:49	06/15/22 14:24	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	39.5		5.01		mg/Kg			06/20/22 12:35	1

Client Sample ID: BH-27

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Organi	c Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 21:18	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 21:18	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 21:18	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		06/15/22 16:00	06/17/22 21:18	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:00	06/17/22 21:18	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		06/15/22 16:00	06/17/22 21:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				06/15/22 16:00	06/17/22 21:18	1
1,4-Difluorobenzene (Surr)	100		70 - 130				06/15/22 16:00	06/17/22 21:18	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			06/17/22 09:21	1
_ Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
– Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 14:46	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 14:46	1
C10-C28)									

Eurofins Midland

Page 112 of 223

Matrix: Solid

Matrix: Solid

Matrix: Solid

5

12 13

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-27

Client Sample ID: BH-27 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 14:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	80		70 - 130				06/15/22 08:49	06/15/22 14:46	1
o-Terphenyl	84		70 - 130				06/15/22 08:49	06/15/22 14:46	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	67.2		4.99		mg/Kg			06/20/22 12:44	1

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 21:45	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 21:45	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 21:45	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 16:00	06/17/22 21:45	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:00	06/17/22 21:45	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 16:00	06/17/22 21:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				06/15/22 16:00	06/17/22 21:45	1
1,4-Difluorobenzene (Surr)	93		70 - 130				06/15/22 16:00	06/17/22 21:45	1

Method: Total BTEX - Total BTEX C	alculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range O	rganics (DR	O) (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 15:08	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 15:08	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 15:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130				06/15/22 08:49	06/15/22 15:08	1
o-Terphenyl	102		70 - 130				06/15/22 08:49	06/15/22 15:08	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	322		4.98		mg/Kg			06/20/22 12:53	1

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-29

Client Sample ID: BH-29 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Г

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 14:27	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 14:27	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 14:27	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 14:27	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 14:27	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 14:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				06/15/22 16:05	06/16/22 14:27	1
1,4-Difluorobenzene (Surr)	93		70 - 130				06/15/22 16:05	06/16/22 14:27	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Total TPH			50.0		mg/Kg			06/16/22 09:49	1
	ge Organics (D		50.0	MDL		 D	Prepared	06/16/22 09:49 Analyzed	
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier		MDL		D	Prepared 06/15/22 08:49		Dil Fa
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result	RO) (GC) Qualifier U	RL	MDL	Unit	<u>D</u>		Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <50.0	RO) (GC) Qualifier U		MDL	Unit mg/Kg	<u>D</u>	06/15/22 08:49	Analyzed 06/15/22 15:30	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D) 	RO) (GC) Qualifier U	RL 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	06/15/22 08:49 06/15/22 08:49	Analyzed 06/15/22 15:30 06/15/22 15:30	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D) 	RO) (GC) Qualifier U U	RL 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	06/15/22 08:49 06/15/22 08:49 06/15/22 08:49	Analyzed 06/15/22 15:30 06/15/22 15:30 06/15/22 15:30	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D) Result <50.0 <50.0 <50.0 <80.0 %Recovery	RO) (GC) Qualifier U U	RL 50.0 50.0 50.0 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared	Analyzed 06/15/22 15:30 06/15/22 15:30 06/15/22 15:30 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D) Result <50.0 <50.0 <50.0 <50.0 <i>%Recovery</i> 78 80	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 50.0 70.130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49	Analyzed 06/15/22 15:30 06/15/22 15:30 06/15/22 15:30 Analyzed 06/15/22 15:30	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D) <u>Result</u> <50.0 <50.0 <50.0 <i>%Recovery</i> 78 80 comatography -	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 50.0 70.130	MDL	Unit mg/Kg mg/Kg	D	06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49	Analyzed 06/15/22 15:30 06/15/22 15:30 06/15/22 15:30 Analyzed 06/15/22 15:30	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro Analyte	ge Organics (D) <u>Result</u> <50.0 <50.0 <50.0 <i>%Recovery</i> 78 80 comatography -	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 70.130 70.130		Unit mg/Kg mg/Kg		06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49 06/15/22 08:49	Analyzed 06/15/22 15:30 06/15/22 15:30 06/15/22 15:30 Analyzed 06/15/22 15:30 06/15/22 15:30	Dil Fa
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	ge Organics (D) <u>Result</u> <50.0 <50.0 <50.0 <750.0 <78 80 Comatography - Result	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 70.130 70.130 RL		Unit mg/Kg mg/Kg mg/Kg Unit		06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49 06/15/22 08:49 Prepared	Analyzed 06/15/22 15:30 06/15/22 15:30 06/15/22 15:30 Analyzed Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 14:48	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 14:48	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 14:48	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 14:48	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 14:48	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 14:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				06/15/22 16:05	06/16/22 14:48	1
1,4-Difluorobenzene (Surr)	88		70 - 130				06/15/22 16:05	06/16/22 14:48	1

Eurofins Midland

ruge 114 0J

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-30

Client Sample ID: BH-30 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	e Organics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 15:51	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 15:51	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 15:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	78		70 - 130				06/15/22 08:49	06/15/22 15:51	1
o-Terphenyl	81		70 - 130				06/15/22 08:49	06/15/22 15:51	1
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	189		4.98		mg/Kg			06/20/22 13:12	1

Client Sample ID: BH-31

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Organi	c Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 15:08	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 15:08	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 15:08	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		06/15/22 16:05	06/16/22 15:08	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 15:08	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		06/15/22 16:05	06/16/22 15:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				06/15/22 16:05	06/16/22 15:08	1
1,4-Difluorobenzene (Surr)	93		70 _ 130				06/15/22 16:05	06/16/22 15:08	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Ran	ige Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 16:34	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 16:34	1
C10-C28)									

Eurofins Midland

Matrix: Solid

5

12 13

Client Sample Results

Job ID: 880-15895-1
SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-31

Lab Sample ID: 880-15895-32

Client Sample ID: BH-31 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 16:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				06/15/22 08:49	06/15/22 16:34	1
o-Terphenyl	90		70 - 130				06/15/22 08:49	06/15/22 16:34	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	45.1	F1	4.96		mg/Kg			06/20/22 13:21	1

Client Sample ID: BH-32

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Orga	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 15:29	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 15:29	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 15:29	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 15:29	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 15:29	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 15:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				06/15/22 16:05	06/16/22 15:29	1
1,4-Difluorobenzene (Surr)	86		70 - 130				06/15/22 16:05	06/16/22 15:29	1
_									

Method: Total BTEX - Total BTEX C	alculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range O	rganics (DR	0) (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 16:56	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 16:56	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 16:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				06/15/22 08:49	06/15/22 16:56	1
o-Terphenyl	87		70 - 130				06/15/22 08:49	06/15/22 16:56	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	39.1		4.98		mg/Kg			06/20/22 14:16	1

5

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Client Sample ID: BH-33 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

mp

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 15:49	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 15:49	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 15:49	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		06/15/22 16:05	06/16/22 15:49	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 15:49	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/15/22 16:05	06/16/22 15:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				06/15/22 16:05	06/16/22 15:49	1
1,4-Difluorobenzene (Surr)	95		70 - 130				06/15/22 16:05	06/16/22 15:49	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/17/22 09:21	1
-	Organica (DB)								
Method: 8015 NM - Diesel Range	Urganics (DR	\mathbf{O}							
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH		Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 06/16/22 09:49	Dil Fac
Analyte Total TPH	Result <49.9	Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rang	result <49.9 ge Organics (Di	Qualifier U				<u>D</u> 	Prepared Prepared		
Analyte Total TPH	result <49.9 ge Organics (Di	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg			06/16/22 09:49	1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	ge Organics (DI Result	Qualifier U RO) (GC) Qualifier	49.9 		mg/Kg Unit		Prepared	06/16/22 09:49 Analyzed	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (DI Result	Qualifier U RO) (GC) Qualifier U	49.9 		mg/Kg Unit		Prepared	06/16/22 09:49 Analyzed	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 17:18 06/15/22 17:18	1 Dil Fac 1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (Di Result Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 17:18	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 17:18 06/15/22 17:18	1 Dil Fac 1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U RO) (GC) Qualifier U U U	49.9 RL 49.9 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 17:18 06/15/22 17:18 06/15/22 17:18	1 Dil Fac 1 1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U RO) (GC) Qualifier U U U	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared	06/16/22 09:49 Analyzed 06/15/22 17:18 06/15/22 17:18 06/15/22 17:18 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U RO) (GC) Qualifier U U U Qualifier	49.9 RL 49.9 49.9 49.9 <u>Limits</u> 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 17:18 06/15/22 17:18 06/15/22 17:18 Analyzed 06/15/22 17:18	1 Dil Fac 1 1 1 Dil Fac 1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U RO) (GC) Qualifier U U U Qualifier	49.9 RL 49.9 49.9 49.9 <u>Limits</u> 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 17:18 06/15/22 17:18 06/15/22 17:18 Analyzed 06/15/22 17:18	1 Dil Fac 1 1 1 Dil Fac 1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier Soluble	49.9 RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 17:18 06/15/22 17:18 06/15/22 17:18 Analyzed 06/15/22 17:18 06/15/22 17:18	1 Dil Fac 1 1 1 1 <i>Dil Fac</i> 1 1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro Analyte	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier Soluble	49.9 RL 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 RL	MDL	mg/Kg Unit mg/Kg mg/Kg Mg/Kg Unit	<u>D</u>	Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49 06/15/22 08:49 Prepared	06/16/22 09:49 Analyzed 06/15/22 17:18 06/15/22 17:18 06/15/22 17:18 Analyzed Analyzed	1 Dil Fac 1 1 1 <i>Dil Fac</i> 1 <i>Dil Fac</i> 1 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:05	06/16/22 17:12	1
Toluene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:05	06/16/22 17:12	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:05	06/16/22 17:12	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/15/22 16:05	06/16/22 17:12	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:05	06/16/22 17:12	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/15/22 16:05	06/16/22 17:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				06/15/22 16:05	06/16/22 17:12	1
1,4-Difluorobenzene (Surr)	92		70 - 130				06/15/22 16:05	06/16/22 17:12	1

Eurofins Midland

Idy County, New Mexico

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-34

Client Sample ID: BH-34 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 17:39	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 17:39	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 17:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130				06/15/22 08:49	06/15/22 17:39	1
o-Terphenyl	111		70 - 130				06/15/22 08:49	06/15/22 17:39	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	261		4.98		mg/Kg			06/20/22 15:39	1

Client Sample ID: BH-35

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 17:33	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 17:33	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 17:33	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		06/15/22 16:05	06/16/22 17:33	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 17:33	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/15/22 16:05	06/16/22 17:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				06/15/22 16:05	06/16/22 17:33	1
1,4-Difluorobenzene (Surr)	91		70 _ 130				06/15/22 16:05	06/16/22 17:33	1

Method: Total BTEX - Total BTE	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Rang	je Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rar	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 18:01	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 18:01	1
C10-C28)									

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Job ID: 880-15895-1
SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-35

Lab Sample ID: 880-15895-36

06/16/22 09:49

1

Client Sample ID: BH-35 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 18:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	62	S1-	70 - 130				06/15/22 08:49	06/15/22 18:01	1
o-Terphenyl	56	S1-	70 - 130				06/15/22 08:49	06/15/22 18:01	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17.6		4.95		mg/Kg			06/20/22 15:48	1

Client Sample ID: SW-1

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Total TPH

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:05	06/16/22 17:53	1
Toluene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:05	06/16/22 17:53	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:05	06/16/22 17:53	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/15/22 16:05	06/16/22 17:53	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/15/22 16:05	06/16/22 17:53	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/15/22 16:05	06/16/22 17:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				06/15/22 16:05	06/16/22 17:53	1
1,4-Difluorobenzene (Surr)	92		70 - 130				06/15/22 16:05	06/16/22 17:53	1

Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range				MDI	11-1-14	<u> </u>	Draward	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	ŀ

49.9

mg/Kg

– Method: 8015B NM - Diesel Range Organics (DRO) (GC)

<49.9 U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 18:23	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 18:23	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 18:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	80		70 - 130				06/15/22 08:49	06/15/22 18:23	1
o-Terphenyl	82		70 - 130				06/15/22 08:49	06/15/22 18:23	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	143		5.01		mg/Kg			06/20/22 15:58	1

5

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-37

Client Sample ID: SW-2 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 18:14	
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 18:14	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 18:14	
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		06/15/22 16:05	06/16/22 18:14	•
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 18:14	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		06/15/22 16:05	06/16/22 18:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		70 - 130				06/15/22 16:05	06/16/22 18:14	
1,4-Difluorobenzene (Surr)	89		70 - 130				06/15/22 16:05	06/16/22 18:14	
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			06/17/22 09:21	
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
-			RL	мы	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	Result	Qualifier	RL		onne		ricparca	/ linuiy200	Diria
Analyte Total TPH	Result <50.0				mg/Kg			06/16/22 09:49	
Total TPH	<50.0	U							
	<pre><50.0</pre>	U		MDL	mg/Kg		Prepared		Dil Fa
Total TPH Method: 8015B NM - Diesel Ran	<pre><50.0</pre>	U RO) (GC) Qualifier	50.0		mg/Kg		<u>.</u>	06/16/22 09:49	Dil Fa
Total TPH Method: 8015B NM - Diesel Ran Analyte	<50.0 ge Organics (D Result	U RO) (GC) Qualifier	50.0 		mg/Kg Unit		Prepared	06/16/22 09:49 Analyzed	Dil Fa
Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics	<50.0 ge Organics (D Result	U RO) (GC) Qualifier U	50.0 		mg/Kg Unit		Prepared	06/16/22 09:49 Analyzed	
Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0	U RO) (GC) Qualifier U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 18:45 06/15/22 18:45	Dil Fa
Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Solution (2010)	U RO) (GC) Qualifier U			mg/Kg Unit mg/Kg		Prepared 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 18:45	Dil Fa
Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0	U RO) (GC) Qualifier U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 18:45 06/15/22 18:45	Dil Fa
Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	specific constraints of the second	U RO) (GC) Qualifier U U U	FO.0 RL 50.0 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 18:45 06/15/22 18:45 06/15/22 18:45	Dil Fa
Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0	U RO) (GC) Qualifier U U U Qualifier	50.0 RL 50.0 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared	06/16/22 09:49 Analyzed 06/15/22 18:45 06/15/22 18:45 06/15/22 18:45 Analyzed	Dil Fa Dil Fa
Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 ige Organics (D) Result <50.0 <50.0 <50.0 <50.0 <50.0 %Recovery 55 48	U RO) (GC) Qualifier U U U U Qualifier S1- S1-	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 18:45 06/15/22 18:45 06/15/22 18:45 Analyzed 06/15/22 18:45	Dil Fa
Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	<50.0	U RO) (GC) Qualifier U U U U Qualifier S1- S1-	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 70.130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 18:45 06/15/22 18:45 06/15/22 18:45 Analyzed 06/15/22 18:45	Dil Fa Dil Fa
Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chr	<50.0	U RO) (GC) Qualifier U U U Qualifier S1- S1- Soluble	S0.0 RL 50.0 50.0 50.0 50.0 50.0 70.130 70.130 70.130	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49 06/15/22 08:49	06/16/22 09:49 Analyzed 06/15/22 18:45 06/15/22 18:45 06/15/22 18:45 Analyzed 06/15/22 18:45 06/15/22 18:45	Dil Fa Dil Fa
Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl Method: 300.0 - Anions, Ion Chi Analyte	Solution <50.0	U RO) (GC) Qualifier U U U Qualifier S1- S1- Soluble	50.0 RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 RL	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg Unit	<u>D</u>	Prepared 06/15/22 08:49 06/15/22 08:49 06/15/22 08:49 Prepared 06/15/22 08:49 06/15/22 08:49 Prepared	06/16/22 09:49 Analyzed 06/15/22 18:45 06/15/22 18:45 06/15/22 18:45 Analyzed Analyzed	Dil Fa Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 18:34	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 18:34	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 18:34	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 18:34	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 18:34	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 18:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130				06/15/22 16:05	06/16/22 18:34	1
1,4-Difluorobenzene (Surr)	94		70 - 130				06/15/22 16:05	06/16/22 18:34	1

Eurofins Midland

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-38

Lab Sample ID: 880-15895-39

Matrix: Solid

Client Sample ID: SW-3 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	e Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 19:06	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 19:06	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:49	06/15/22 19:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	38	S1-	70 - 130				06/15/22 08:49	06/15/22 19:06	1
o-Terphenyl	34	S1-	70 - 130				06/15/22 08:49	06/15/22 19:06	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	213		5.05		mg/Kg			06/20/22 16:16	1

Client Sample ID: SW-4

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 18:55	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 18:55	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 18:55	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		06/15/22 16:05	06/16/22 18:55	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 18:55	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		06/15/22 16:05	06/16/22 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				06/15/22 16:05	06/16/22 18:55	1
1,4-Difluorobenzene (Surr)	91		70 - 130				06/15/22 16:05	06/16/22 18:55	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rar	ige Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 19:28	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 19:28	1
C10-C28)									

Eurofins Midland

Matrix: Solid

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-40

Matrix: Solid

Client Sample ID: SW-4

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:49	06/15/22 19:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	45	S1-	70 - 130				06/15/22 08:49	06/15/22 19:28	1
o-Terphenyl	42	S1-	70 - 130				06/15/22 08:49	06/15/22 19:28	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1280		4.97		mg/Kg			06/20/22 16:26	1

Client Sample ID: SW-5

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:15	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:15	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:15	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 19:15	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:15	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 19:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				06/15/22 16:05	06/16/22 19:15	1
1,4-Difluorobenzene (Surr)	94		70 - 130				06/15/22 16:05	06/16/22 19:15	1
Analyte	Result	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range	Result <0.00398	U	RL 0.00398	MDL	Unit mg/Kg	<u> </u>	Prepared	Analyzed 06/17/22 09:21	Dil Fac
Analyte	Result <0.00398	U		MDL	mg/Kg	<u>D</u> 	Prepared		1
Analyte Total BTEX Method: 8015 NM - Diesel Range	Result <0.00398	U O) (GC) Qualifier	0.00398		mg/Kg			06/17/22 09:21	1
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte	e Organics (DR Result COLOGISE CO	U O) (GC) Qualifier U	0.00398 RL		mg/Kg Unit			06/17/22 09:21 Analyzed	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range	e Organics (DR Result e Organics (DR Result 49.9 ge Organics (D)	U O) (GC) Qualifier U	0.00398 RL		mg/Kg Unit mg/Kg			06/17/22 09:21 Analyzed	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	e Organics (DR Result e Organics (DR Result 49.9 ge Organics (D)	U O) (GC) Qualifier U RO) (GC) Qualifier	0.00398	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	06/17/22 09:21 Analyzed 06/16/22 09:49	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH	e Organics (DR Result e Organics (DR Result 49.9 ge Organics (D) Result	U Qualifier U RO) (GC) Qualifier U	0.00398	MDL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared	06/17/22 09:21 Analyzed 06/16/22 09:49 Analyzed	1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	73		70 - 130				06/15/22 08:49	06/15/22 19:50	1
o-Terphenyl	70		70 - 130				06/15/22 08:49	06/15/22 19:50	1
Method: 300.0 - Anions,	Ion Chromatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Midland

Lab Sample ID: 880-15895-39 Matrix: Solid

12 13

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Client Sample ID: SW-6 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Lab Sample ID: 880-15895-41

Matrix: Solid

5

Method: 8021B - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:36	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:36	1
Ethylbenzene	< 0.00199		0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:36	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/15/22 16:05	06/16/22 19:36	
o-Xylene	<0.00199		0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:36	1
Xylenes, Total	< 0.00398		0.00398		mg/Kg		06/15/22 16:05	06/16/22 19:36	1
· · · · · · · · · · · · · · · · · · ·									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130				06/15/22 16:05	06/16/22 19:36	1
1,4-Difluorobenzene (Surr)	93		70 - 130				06/15/22 16:05	06/16/22 19:36	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
Mothod: 2015P NM Discol Page	o Organica (D								
Method: 8015B NM - Diesel Rang		Qualifier	RL	MDI	Unit	D	Prepared	Applyrod	
Analyte	- Result <50.0			MDL				Analyzed 06/15/22 15:08	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	0 1	50.0		mg/Kg		06/15/22 08:52	06/15/22 15:08	I
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:52	06/15/22 15:08	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U.	50.0		mg/Kg		06/15/22 08:52	06/15/22 15:08	1
		0	00.0		ingrig		00,10,22 00.02	00,10,22 10.00	·
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130				06/15/22 08:52	06/15/22 15:08	1
o-Terphenyl	115		70 - 130				06/15/22 08:52	06/15/22 15:08	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	554		25.3		mg/Kg			06/19/22 07:58	5
Client Sample ID: SW-7							Lab Samp	le ID: 880-15	895-42
Date Collected: 06/14/22 00:00							-	Matri	ix: Solid
Date Received: 06/15/22 08:15									
- Mothody 2021 P. Volatila Organia	Compoundo								
Method: 8021B - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199		0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:56	1
Toluene	< 0.00199		0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:56	1
Ethylbenzene	<0.00199		0.00199		mg/Kg		06/15/22 16:05	06/16/22 19:56	1
m-Xylene & p-Xylene	<0.00199		0.00398		mg/Kg		06/15/22 16:05	06/16/22 19:56	1
	<0.00398								1
o-Xylene Xylenes, Total	<0.00199		0.00199 0.00398		mg/Kg mg/Kg		06/15/22 16:05 06/15/22 16:05	06/16/22 19:56 06/16/22 19:56	1
	-0.00000	-	0.00000				10, 10, 12 10.00	10, 10, 12 10.00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Released to Imaging: 7/19/2022 11:57:09 AM

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

95

93

6/21/2022

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-42

Client Sample ID: SW-7 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *1	49.9		mg/Kg		06/15/22 08:52	06/15/22 15:30	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/15/22 08:52	06/15/22 15:30	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:52	06/15/22 15:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130				06/15/22 08:52	06/15/22 15:30	1
o-Terphenyl	130		70 - 130				06/15/22 08:52	06/15/22 15:30	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	102		5.05		mg/Kg			06/19/22 08:25	1

Client Sample ID: SW-8

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 20:17	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 20:17	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 20:17	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		06/15/22 16:05	06/16/22 20:17	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 16:05	06/16/22 20:17	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		06/15/22 16:05	06/16/22 20:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				06/15/22 16:05	06/16/22 20:17	1
1,4-Difluorobenzene (Surr)	84		70 - 130				06/15/22 16:05	06/16/22 20:17	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			06/17/22 09:21	1
 Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1
 Method: 8015B NM - Diesel Rar	nge Organics (D	RO) (GC)							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *1	50.0		mg/Kg		06/15/22 08:52	06/15/22 15:51	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:52	06/15/22 15:51	1
C10-C28)									

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-43

Lab Sample ID: 880-15895-44

Client Sample ID: SW-8 Date Collected: 06/14/22 00:00

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Date Received: 06/15/22 08:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:52	06/15/22 15:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				06/15/22 08:52	06/15/22 15:51	1
o-Terphenyl	114		70 - 130				06/15/22 08:52	06/15/22 15:51	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	43.9		5.02		mg/Kg			06/19/22 08:35	1

Client Sample ID: SW-9

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Method: 8021B - Volatile Orga	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		06/16/22 08:23	06/16/22 13:23	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/16/22 08:23	06/16/22 13:23	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/16/22 08:23	06/16/22 13:23	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		06/16/22 08:23	06/16/22 13:23	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/16/22 08:23	06/16/22 13:23	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/16/22 08:23	06/16/22 13:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130				06/16/22 08:23	06/16/22 13:23	1
1,4-Difluorobenzene (Surr)	108		70 - 130				06/16/22 08:23	06/16/22 13:23	1

Method: Total BTEX - Total BTEX C	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range C	organics (DR	0) (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepa	red Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/16/22 09:49	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *1	50.0		mg/Kg		06/15/22 08:52	06/15/22 16:13	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/15/22 08:52	06/15/22 16:13	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/15/22 08:52	06/15/22 16:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				06/15/22 08:52	06/15/22 16:13	1
o-Terphenyl	112		70 - 130				06/15/22 08:52	06/15/22 16:13	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	168		4.99		mg/Kg			06/19/22 08:44	1

Eurofins Midland

15895-1

5

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Client Sample ID: SW-10 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

, ,,
Lab Sample ID: 880-15895-45

Matrix: Solid

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/16/22 08:23	06/16/22 13:44	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/16/22 08:23	06/16/22 13:44	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/16/22 08:23	06/16/22 13:44	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/16/22 08:23	06/16/22 13:44	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/16/22 08:23	06/16/22 13:44	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/16/22 08:23	06/16/22 13:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				06/16/22 08:23	06/16/22 13:44	1
1,4-Difluorobenzene (Surr)	108		70 - 130				06/16/22 08:23	06/16/22 13:44	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/17/22 09:21	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/16/22 09:49	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		06/15/22 08:52	06/15/22 17:19	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		06/15/22 08:52	06/15/22 17:19	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/15/22 08:52	06/15/22 17:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				06/15/22 08:52	06/15/22 17:19	1
o-Terphenyl	105		70 - 130				06/15/22 08:52	06/15/22 17:19	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							

Eurofins Midland

DFBZ1

(70-130)

100

99

100

101

99

100

100

100

99

101

90

102

99

94

96

92

101

99

101

104

90

93

89

93

89

94

97

95

99

92

100

93

93

88

93

86

95

92

91

92

89

94

91

94

93

93

84

108

108

BFB1

(70-130)

98

107

106

105

99

103

102

104

100

105

109

110

114

118

122

116

120

119

117

120

114

113

113

121

114

117

114

118

122

121

116

121

112

100

110

99

115

106

110

108

100

74

110

113

112

95

94

85

87

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Lab Sample ID

880-15895-1

880-15895-2

880-15895-3

880-15895-4

880-15895-5

880-15895-6

880-15895-7

880-15895-8

880-15895-9

880-15895-10

880-15895-11

880-15895-12

880-15895-13

880-15895-14

880-15895-15

880-15895-16

880-15895-17

880-15895-18

880-15895-19

880-15895-20

880-15895-21

880-15895-22

880-15895-23

880-15895-24

880-15895-25

880-15895-26

880-15895-27

880-15895-28

880-15895-29

880-15895-30

880-15895-31

880-15895-32

880-15895-33

880-15895-34

880-15895-35

880-15895-36

880-15895-37

880-15895-38

880-15895-39

880-15895-40

880-15895-41

880-15895-42

880-15895-43

880-15895-44

880-15895-44 MS

880-15895-9 MS

880-15895-9 MSD

880-15721-A-13-D MS

880-15721-A-13-E MSD

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Client Sample ID

Matrix Spike Duplicate

Matrix Spike

BH-1

BH-2

BH-3

BH-4

BH-5

BH-6

BH-7

BH-8

BH-9

BH-9

BH-9

BH-10

BH-11

BH-12

BH-13

BH-14

BH-15

BH-16

BH-17

BH-18

BH-19

BH-20

BH-21

BH-22

BH-23

BH-24

BH-25

BH-26

BH-27

BH-28

BH-29

BH-30

BH-31

BH-32

BH-33

BH-34

BH-35

SW-1

SW-2

SW-3

SW-4

SW-5

SW-6

SW-7

SW-8

SW-9

SW-9

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Percent Surrogate Recovery (Acceptance Limits)

Prep Type: Total/NA	
·	5
	6
	8
	9

Page 127 of 223

Eurofins Midland

Released to	• Imaging:	7/19/2022	11:57:09	AM

Client: Tetra Tech, Inc.

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Project/Site: Bear Booster Method: 8021B - Volatile Organic Compounds (GC) (Continued) Matrix: Solid

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-15895-44 MSD	SW-9	87	109		Ð
880-15895-45	SW-10	94	108		6
880-15903-A-1-B MS	Matrix Spike	108	100		0
880-15903-A-1-D MSD	Matrix Spike Duplicate	116	96		
890-2406-A-18-F MS	Matrix Spike	109	96		
890-2406-A-18-G MSD	Matrix Spike Duplicate	110	97		
LCS 880-27627/1-A	Lab Control Sample	96	100		X
LCS 880-27628/1-A	Lab Control Sample	109	115		
LCS 880-27629/1-A	Lab Control Sample	105	100		9
LCS 880-27654/1-A	Lab Control Sample	93	103		
LCS 880-27835/1-A	Lab Control Sample	110	96		
LCSD 880-27627/2-A	Lab Control Sample Dup	96	100		
LCSD 880-27628/2-A	Lab Control Sample Dup	114	97		
LCSD 880-27629/2-A	Lab Control Sample Dup	104	98		
LCSD 880-27654/2-A	Lab Control Sample Dup	95	103		
LCSD 880-27835/2-A	Lab Control Sample Dup	107	95		
MB 880-27627/5-A	Method Blank	94	96		13
MB 880-27628/5-A	Method Blank	84	92		
MB 880-27629/5-A	Method Blank	102	90		
MB 880-27654/5-A	Method Blank	87	108		
MB 880-27796/5-A	Method Blank	99	90		
MB 880-27835/5-A	Method Blank	99	88		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 880-15888-A-1-B MS Matrix Spike 88 91 880-15888-A-1-C MSD 92 Matrix Spike Duplicate 89 880-15895-1 BH-1 97 102 880-15895-1 MS BH-1 90 90 880-15895-1 MSD BH-1 88 89 880-15895-2 BH-2 106 112 BH-3 880-15895-3 106 116 880-15895-4 BH-4 101 106 BH-5 880-15895-5 98 103 880-15895-6 BH-6 117 128 880-15895-7 BH-7 120 126 880-15895-8 BH-8 120 128 BH-9 124 880-15895-9 115 880-15895-10 BH-10 100 101 880-15895-11 BH-11 104 102 880-15895-12 BH-12 101 101 880-15895-13 BH-13 115 123 880-15895-14 BH-14 105 115

Eurofins Midland

Prep Type: Total/NA

5 6 7

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Project/Site: Bear Booster Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

Client: Tetra Tech, Inc.

		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	_
880-15895-15	BH-15	104	111	
880-15895-16	BH-16	110	115	
880-15895-17	BH-17	93	96	
880-15895-18	BH-18	101	104	
880-15895-19	BH-19	89	94	
880-15895-20	BH-20	97	107	
880-15895-21	BH-21	97	95	
880-15895-21 MS	BH-21	98	91	
880-15895-21 MSD	BH-21	76	72	
880-15895-22	BH-22	72	71	
880-15895-23	BH-23	74	69 S1-	
880-15895-24	BH-24	73	70	
880-15895-25	BH-24 BH-25	73 68 S1-	66 S1-	
880-15895-26	BH-26	105	105	
880-15895-27	BH-27	80	84	
880-15895-28	BH-28	102	102	
880-15895-29	BH-29	78	80	
880-15895-30	BH-30	78	81	
880-15895-31	BH-31	86	90	
880-15895-32	BH-32	89	87	
880-15895-33	BH-33	84	86	
880-15895-34	BH-34	112	111	
880-15895-35	BH-35	62 S1-	56 S1-	
880-15895-36	SW-1	80	82	
880-15895-37	SW-2	55 S1-	48 S1-	
880-15895-38	SW-3	38 S1-	34 S1-	
880-15895-39	SW-4	45 S1-	42 S1-	
880-15895-40	SW-5	73	70	
880-15895-41	SW-6	96	115	
880-15895-42	SW-7	113	130	
880-15895-43	SW-8	99	130	
880-15895-44	SW-9	99	112	
880-15895-45	SW-10	91	105	
LCS 880-27553/2-A	Lab Control Sample	94	108	
LCS 880-27555/2-A	Lab Control Sample	100	106	
LCS 880-27556/2-A	Lab Control Sample	103	113	
LCSD 880-27553/3-A	Lab Control Sample Dup	88	100	
LCSD 880-27555/3-A	Lab Control Sample Dup	104	108	
LCSD 880-27556/3-A	Lab Control Sample Dup	93	106	
MB 880-27553/1-A	Method Blank	101	111	
MB 880-27555/1-A	Method Blank	98	105	
MB 880-27556/1-A	Method Blank	99	114	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Batch: 27627

Prep Type: Total/NA

Project/Site: Bear Booster

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: I	VB 880-27627/5-A

Matrix: Solid Analysis Batch: 27651

Client: Tetra Tech, Inc.

Analysis Batch: 27651								Prep Batch	n: 27627
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 10:45	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 10:45	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 10:45	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/15/22 15:37	06/16/22 10:45	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/15/22 15:37	06/16/22 10:45	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		06/15/22 15:37	06/16/22 10:45	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				06/15/22 15:37	06/16/22 10:45	1
1,4-Difluorobenzene (Surr)	96		70 - 130				06/15/22 15:37	06/16/22 10:45	1

Lab Sample ID: LCS 880-27627/1-A Matrix: Solid

Analysis Batch: 27651

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08953		mg/Kg		90	70 - 130	
Toluene	0.100	0.08917		mg/Kg		89	70 - 130	
Ethylbenzene	0.100	0.09144		mg/Kg		91	70 - 130	
m-Xylene & p-Xylene	0.200	0.1835		mg/Kg		92	70 - 130	
o-Xylene	0.100	0.09968		mg/Kg		100	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-27627/2-A

Matrix: Solid

Analysis Batch: 27651							Prep	Batch:	27627
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09170		mg/Kg		92	70 - 130	2	35
Toluene	0.100	0.08986		mg/Kg		90	70 - 130	1	35
Ethylbenzene	0.100	0.09298		mg/Kg		93	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.1865		mg/Kg		93	70 - 130	2	35
o-Xylene	0.100	0.1018		mg/Kg		102	70 - 130	2	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-15721-A-13-D MS

Matrix: Solid alveie Rotoby 27654

Analysis Batch: 27651									Prep	Batch: 27627
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0998	0.08329		mg/Kg		83	70 - 130	
Toluene	<0.00200	U	0.0998	0.08151		mg/Kg		82	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-15721-A Matrix: Solid	-13-D MS										Client S	Sample II Prep	D: Matrix Type: To	
Analysis Batch: 27651												Pre	p Batch:	2762
	Sample	Samp	le	Spike	MS	MS						%Rec		
Analyte	Result	Qualif	fier	Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
Ethylbenzene	<0.00200	U		0.0998	0.08569			mg/Kg			86	70 - 130		
m-Xylene & p-Xylene	<0.00401	U		0.200	0.1696			mg/Kg			85	70 - 130		
o-Xylene	<0.00200	U		0.0998	0.09380			mg/Kg			94	70 - 130		
	MS	мs												
Surrogate	%Recovery	Qualit	fier	Limits										
4-Bromofluorobenzene (Surr)	98			70 - 130										
1,4-Difluorobenzene (Surr)	100			70 - 130										
Lab Sample ID: 880-15721-A	-13-E MSD								Clie	nt Sa	ample ID:	Matrix S	pike Du	plicat
Matrix: Solid												Prep	Type: To	otal/N
Analysis Batch: 27651													p Batch:	
-	Sample	Samp	le	Spike	MSD	MSD						%Rec		RP
Analyte	Result	Qualif	fier	Added	Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Lim
Benzene	<0.00200	U		0.0994	0.09204			mg/Kg			93	70 - 130	10	3
Toluene	<0.00200	U		0.0994	0.09183			mg/Kg			92	70 - 130	12	3
Ethylbenzene	<0.00200	U		0.0994	0.09587			mg/Kg			96	70 - 130	11	3
m-Xylene & p-Xylene	<0.00401	U		0.199	0.1898			mg/Kg			95	70 - 130	11	
p-Xylene	<0.00200			0.0994	0.1055			mg/Kg			106	70 - 130	12	3
	Men													
	10/30	MSD												
Surrogate	%Recovery		fier	Limits										
			fier	Limits 70 - 130										
4-Bromofluorobenzene (Surr)	%Recovery		fier											
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)			fier	70 - 130							Client Sa	ample ID:	Method	l Blan
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762			fier	70 - 130							Client Sa			
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid			fier	70 - 130							Client Sa	Prep	Type: To	otal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid		Quali		70 - 130							Client Sa	Prep		otal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741		Qualit	MB	70 - 130 70 - 130		MDL	Unit		D			Prep Prej	Type: To p Batch:	otal/N : 2762
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte	%Recovery 107 99 28/5-A	Qualit MB	MB Qualifier	70 - 130 70 - 130 		MDL		1	D	Pi	repared	Prep Prej Analy	Type: To p Batch: zed	otal/N : 2762
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene	%Recovery 107 99 28/5-A R(MB esult 0200	MB Qualifier U	70 - 130 70 - 130 		MDL	mg/Kg		D	P i 06/1	repared 5/22 16:00	Prep Prej Analy 06/17/22	Type: To p Batch: zed 2 11:44	otal/N : 2762
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene	%Recovery 107 99 28/5-A <0.00 <0.00	MB esult 0200	MB Qualifier U U	70 - 130 70 - 130 		MDL	mg/Kg mg/Kg	1	<u>D</u>	Pi 06/15 06/15	repared 5/22 16:00 5/22 16:00	Prep Prej Analy 06/17/22 06/17/22	Type: To p Batch: zed 2 11:44 2 11:44	otal/N : 2762
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene	%Recovery 107 99 28/5-A <0.00 <0.00 <0.00 <0.00	MB esult 0200 0200	MB Qualifier U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200		MDL	mg/Kg mg/Kg mg/Kg) 	<u>D</u>	P 1 06/13 06/13	repared 5/22 16:00 5/22 16:00 5/22 16:00	Prep Prej 06/17/22 06/17/22 06/17/22	Type: To p Batch: 2 11:44 2 11:44 2 11:44	otal/N : 2762
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	28/5-A	Quality MB esult 0200 0200 0200 0200 0200 0200	MB Qualifier U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg]] 	<u>D</u>	Pr 06/13 06/13 06/13	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00	Prep Prej Analy 06/17/22 06/17/22 06/17/22	Type: To p Batch: 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44	otal/N : 2762
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	<u>%Recovery</u> 107 99 28/5-A Ri <0.00	Quality MB esult 0200 0200 0200 0200 0200 0200 0200 0200	MB Qualifier U U U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	 	<u>D</u>	Pr 06/19 06/19 06/19 06/19	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00	Prep Prej Analy 06/17/22 06/17/22 06/17/22 06/17/22	Type: To p Batch: 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44	otal/N : 2762
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene	<u>%Recovery</u> 107 99 28/5-A Ri <0.00	Quality MB esult 0200 0200 0200 0200 0200 0200	MB Qualifier U U U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	 	<u>D</u>	Pr 06/19 06/19 06/19 06/19	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00	Prep Prej Analy 06/17/22 06/17/22 06/17/22	Type: To p Batch: 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44	Dil Fa
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	<u>%Recovery</u> 107 99 28/5-A Ri <0.00	Quality MB esult 0200 0200 0200 0200 0200 0200 0200 0200	MB Qualifier U U U U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	 	<u>D</u>	Pr 06/19 06/19 06/19 06/19	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00	Prep Prej Analy 06/17/22 06/17/22 06/17/22 06/17/22	Type: To p Batch: 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44	otal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	<u>%Recovery</u> 107 99 28/5-A Ri <0.00	Quality MB esuit 0200 0200 0200 0200 0200 0400 0200 0400 0400 0400 0400 0400	MB Qualifier U U U U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	 	D	Pt 06/11 06/11 06/11 06/11 06/11	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00	Prep Prej Analy 06/17/22 06/17/22 06/17/22 06/17/22	Type: To p Batch: 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44	Dil Fa
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene b-Xylene Kylenes, Total Surrogate	%Recovery 107 99 28/5-A 	Quality MB esuit 0200 0200 0200 0200 0200 0400 0200 0400 0400 0400 0400 0400	MB Qualifier U U U U U U U U	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	 	<u>D</u>	Pt 06/11 06/11 06/11 06/11 06/11 06/11	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00	Prep Prej 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22	Type: Top p Batch: 2 11:44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Dil Fa
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene b-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 107 99 28/5-A 	Quality MB esult 0200 0200 0200 0200 0400 0200 0400 0400 0400 0400 0400 0400 0400 0400	MB Qualifier U U U U U U U U	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 Limits		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	 	<u>D</u>	Pr 06/13 06/13 06/13 06/13 06/13 06/13 06/13	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00	Prep Prej 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22	Type: Top p Batch: 2	Dil Fa
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene b-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)		Quality MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 MB overy 84	MB Qualifier U U U U U U U U	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	 		P1 06/11 06/11 06/11 06/11 06/11 06/11 06/11	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00	Prep Prej 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22	Type: Top p Batch: 2	Dil Fa
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Xylenes, Total		Quality MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 MB overy 84	MB Qualifier U U U U U U U U	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	 		P1 06/11 06/11 06/11 06/11 06/11 06/11 06/11	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 repared 5/22 16:00 5/22 16:00	Prep Prej 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22	Type: Top p Batch: 2	Dil Fa
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-276 Matrix: Solid		Quality MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 MB overy 84	MB Qualifier U U U U U U U U	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	 		P1 06/11 06/11 06/11 06/11 06/11 06/11 06/11	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 repared 5/22 16:00 5/22 16:00	Prep Prej 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 1D: Lab C Prep	Type: Top p Batch: zzed 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 2 11:44 Control S Type: Top	Dil Fa
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2762 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene n-Xylene & p-Xylene b-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-276		Quality MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 MB overy 84	MB Qualifier U U U U U U U U	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	 		P1 06/11 06/11 06/11 06/11 06/11 06/11 06/11	repared 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 5/22 16:00 repared 5/22 16:00 5/22 16:00	Prep Prej 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 06/17/22 1D: Lab C Prep	Type: Top p Batch: 2	Dil Fa

Eurofins Midland

Lab Sample ID: LCS 880-27628/1-A

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Analysis Batch: 27741

Matrix: Solid

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Analysis Batch: 27741											
			Spike		LCS				%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.1025		mg/Kg		102	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	109		70 - 130								
1,4-Difluorobenzene (Surr)	115		70 - 130								
											_
Lab Sample ID: LCSD 880-2	7628/2-A					Clie	nt San	nple ID:	Lab Contro		
Matrix: Solid										Type: Tot	
Analysis Batch: 27741			0 11	1.000	1.000					Batch: 2	
Anglada			Spike		LCSD	1134	-	0/ D	%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.09988		mg/Kg		100	70 - 130	10	35
Toluene			0.100	0.1025		mg/Kg		103	70 - 130	0	35
Ethylbenzene			0.100	0.1075		mg/Kg		107	70 - 130	3	35
m-Xylene & p-Xylene			0.200	0.2151		mg/Kg		108	70 - 130	3	35
o-Xylene			0.100	0.1044		mg/Kg		104	70 - 130	2	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
			70 - 130								
4-Bromofluorobenzene (Surr)											
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid	97		70 - 130							Type: Tot	tal/N/
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741	97 9 MS	Sample		MS	MS				Prep T Prep		tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741	97) MS Sample	Sample Qualifier	70 - 130 Spike Added	MS Result	MS Qualifier	Unit	D	%Rec	Prep T	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid	97) MS Sample	Qualifier	Spike			_ <mark>Unit</mark>	<u>D</u>	<u>%Rec</u> 85	Prep T Prep %Rec	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte	97) MS Sample Result	Qualifier	Spike Added	Result			<u>D</u>		Prep 1 Prep %Rec Limits	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene	97 • MS 	Qualifier U U	Spike Added 0.0998	Result 0.08470		mg/Kg	<u>D</u>	85	Prep 1 Prep %Rec Limits 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene	97 MS Sample Result <0.00199 <0.00199	Qualifier U U U	Spike Added 0.0998 0.0998	Result 0.08470 0.07795		mg/Kg mg/Kg	<u>D</u>	85 78	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene	97 MS Sample Result <0.00199 <0.00199 <0.00199	Qualifier U U U U U F1	Spike Added 0.0998 0.0998 0.0998	Result 0.08470 0.07795 0.08138		mg/Kg mg/Kg mg/Kg	<u>D</u>	85 78 82	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Qualifier U U U U F1 U F1	Spike Added 0.0998 0.0998 0.0998 0.200	Result 0.08470 0.07795 0.08138 0.1599		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	85 78 82 80	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS	Qualifier U U U U F1 U F1 MS	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998	Result 0.08470 0.07795 0.08138 0.1599		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	85 78 82 80	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	97 MS Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Qualifier U U U U F1 U F1 MS	Spike Added 0.0998 0.0998 0.200 0.0998 Limits	Result 0.08470 0.07795 0.08138 0.1599		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	85 78 82 80	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 110	Qualifier U U U U F1 U F1 MS	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.08470 0.07795 0.08138 0.1599		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	85 78 82 80	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	97 MS Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Qualifier U U U U F1 U F1 MS	Spike Added 0.0998 0.0998 0.200 0.0998 Limits	Result 0.08470 0.07795 0.08138 0.1599		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	85 78 82 80	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 110 102 	Qualifier U U U U F1 U F1 MS	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.08470 0.07795 0.08138 0.1599		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	85 78 82 80	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: 2	tal/NA 27628
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 110 102 	Qualifier U U U U F1 U F1 MS	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.08470 0.07795 0.08138 0.1599		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	85 78 82 80	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: 2	tal/NA 27628 BH-9
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 110 102 	Qualifier U U U U F1 U F1 MS	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.08470 0.07795 0.08138 0.1599		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	85 78 82 80	Prep T %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 70 - 130 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70<	Type: Tot Batch: 2	BH-9 tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 110 102 MSD	Qualifier U U U U F1 U F1 MS	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.08470 0.07795 0.08138 0.1599 0.07954		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	85 78 82 80	Prep T %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 70 - 130 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70 70 - 70<	Type: Tot Batch: 2 mple ID: Type: Tot	BH-9 tal/NA 27628
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 110 102 MSD Sample	Qualifier U U U U F1 U F1 MS Qualifier	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 0.200 0.0998 D.200 0.0998 0.200 0.0998 0.200 0.0998 D.200 0.1098	Result 0.08470 0.07795 0.08138 0.1599 0.07954 MSD	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	D	85 78 82 80	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep T Prep T	Type: Tot Batch: 2 mple ID: Type: Tot	BH-9 tal/NA 27628 BH-9 tal/NA 27628 RPD
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 110 102 MSD Sample	Qualifier U U U F1 U F1 MS Qualifier Sample Qualifier	Spike Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998	Result 0.08470 0.07795 0.08138 0.1599 0.07954 MSD	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		85 78 82 80 80	Prep T Prep %Rec Limits 70 - 130 70 - 190 70 - 190 70 - 190 70 - 190 70 - 190	mple ID: Fype: Tot Batch: 2	BH-9 tal/NA 27628 BH-9 tal/NA 27628 RPD Limit
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 110 102 MSD Sample Result	Qualifier U U U F1 U F1 MS Qualifier U	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998	Result 0.08470 0.07795 0.08138 0.1599 0.07954	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		85 78 82 80 80 80	Prep 1 Prep %Rec Limits 70 - 130 70 - 190 %Rec Limits	mple ID: Fype: Tot Batch: 2 Fype: Tot Batch: 2 RPD	BH-9 tal/NA 27628 RPD Limit 35
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00199 MS %Recovery 110 102 MSD Sample Result <0.00199	Qualifier U U U F1 U F1 MS Qualifier U U	Spike Added 0.0998 0.0998 0.200 0.298 0.200 0.0998 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.0994	Result 0.08470 0.07795 0.08138 0.1599 0.07954	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg		85 78 82 80 80 80 %Rec 78	Prep T %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	mple ID: Type: Tot Spe: Tot Batch: 2 RPD 9	BH-9 tal/NA 27628 BH-9 tal/NA 27628 RPD Limit 35 35
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-15895-9 Matrix: Solid Analysis Batch: 27741 Analyte Benzene Toluene	97 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00199 MS %Recovery 110 102 MSD Sample Result <0.00199 <0.00199 <0.00199	Qualifier U U U U F1 U F1 MS Qualifier Qualifier U U U	Spike Added 0.0998 0.0998 0.200 0.200 0.0998 Limits 70 - 130 70 - 130 Spike Added 0.0994	Result 0.08470 0.07795 0.08138 0.1599 0.07954	Qualifier MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		85 78 82 80 80 80 80 80 80 80 80 80 80 80 80 80	Prep T %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	mple ID: Type: Tot Sype: Tot Batch: 2 Batch: 2 9 10	BH-9 tal/NA

Eurofins Midland

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Client: Tetra Tech, Inc. Project/Site: Bear Booster

QC Sample Results

Page 133 of 223

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

7

1

1

1

1

Lab Sample ID: 880-15895-9 MSD Client Sample ID: BH-9 Matrix: Solid Prep Type: Total/NA Analysis Batch: 27741 Prep Batch: 27628 MSD MSD %Recovery Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) 114 70 - 130 1,4-Difluorobenzene (Surr) 99 70 - 130 Lab Sample ID: MB 880-27629/5-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 27660 Prep Batch: 27629 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <0.00200 U 0.00200 06/15/22 16:05 06/16/22 12:23 Benzene mg/Kg Toluene <0.00200 U 0.00200 06/15/22 16:05 06/16/22 12:23 mg/Kg <0.00200 U 0.00200 06/15/22 16:05 06/16/22 12:23 Ethylbenzene mg/Kg m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 06/15/22 16:05 06/16/22 12:23 o-Xylene <0.00200 U 0.00200 06/15/22 16:05 06/16/22 12:23 mg/Kg Xylenes, Total <0.00400 U 0.00400 mg/Kg 06/15/22 16:05 06/16/22 12:23 MB MB Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 4-Bromofluorobenzene (Surr) 102 70 - 130 06/15/22 16:05 06/16/22 12:23 1,4-Difluorobenzene (Surr) 90 70 - 130 06/15/22 16:05 06/16/22 12:23 Lab Sample ID: LCS 880-27629/1-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 27660 Prep Batch: 27629 LCS LCS Spike %Rec Result Qualifier Analyte Added Unit D %Rec Limits Benzene 0.100 0.1137 114 70 - 130 mg/Kg Toluene 0 100 0.1099 110 70 - 130 mg/Kg Ethylbenzene 0.100 0.1121 mg/Kg 112 70 - 130 0.200 70 - 130 m-Xylene & p-Xylene 0.2297 mg/Kg 115 o-Xylene 0.100 0.1147 mg/Kg 115 70 - 130 LCS LCS %Recovery Qualifier Limits Surrogate 105 70 - 130 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 100 70 - 130

Lab Sample ID: LCSD 880-27629/2-A Matrix: Solid Analysis Batch: 27660

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 27629

										Batom	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.09822		mg/Kg		98	70 - 130	15	35
Toluene			0.100	0.09566		mg/Kg		96	70 - 130	14	35
Ethylbenzene			0.100	0.09756		mg/Kg		98	70 - 130	14	35
m-Xylene & p-Xylene			0.200	0.2012		mg/Kg		101	70 - 130	13	35
o-Xylene			0.100	0.1004		mg/Kg		100	70 - 130	13	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	104	70 - 130

Eurofins Midland

Lab Sample ID: LCSD 880-27629/2-A

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Client Sample ID: Lab Control Sample Dup

Matrix: Solid											Prep	o Type: T	otal/NA
Analysis Batch: 27660												ep Batch	
	LCSD	105	п										
Surrogate	%Recovery	Qual		Limits									
1,4-Difluorobenzene (Surr)		Quui		70 - 130									
(())													
Lab Sample ID: 880-15903-/	A-1-B MS									Clier	nt Sample	D: Matri	x Spike
Matrix: Solid											Prep	o Type: 1	otal/NA
Analysis Batch: 27660											Pre	ep Batch	: 27629
	Sample	Sam	ple	Spike	MS	MS					%Rec		
Analyte	Result		ifier	Added	Result	Qua	lifier	Unit		D %Rec	Limits		
Benzene	<0.00200			0.0998	0.09400			mg/Kg		94	70 - 130		
Toluene	<0.00200			0.0998	0.09113			mg/Kg		91	70 - 130		
Ethylbenzene	<0.00200	U		0.0998	0.09319			mg/Kg		93	70 - 130		
m-Xylene & p-Xylene	<0.00401			0.200	0.1901			mg/Kg		95	70 - 130		
o-Xylene	<0.00200	U		0.0998	0.09450			mg/Kg		95	70 - 130		
	MS	мs											
Surrogate	%Recovery	Qual	lifier	Limits									
4-Bromofluorobenzene (Surr)	108			70 - 130									
1,4-Difluorobenzene (Surr)	100			70 - 130									
_													
Lab Sample ID: 880-15903-/	A-1-D MSD								Clie	nt Sample	ID: Matrix	Spike Dr	uplicate
Matrix: Solid											Prep	o Type: 1	'otal/NA
Analysis Batch: 27660											Pre	ep Batch	i: 27629
	Sample	Sam	ple	Spike	MSD	MSE)				%Rec		RPD
Analyte	Result	Qual	ifier	Added	Result	Qua	lifier	Unit		D %Rec	Limits		Limit
Benzene	<0.00200			0.100	0.07547			mg/Kg		75	70 - 130	22	2 35
Toluene	<0.00200	U		0.100	0.08152			mg/Kg		81	70 - 130	11	35
Ethylbenzene	<0.00200	U		0.100	0.08602			mg/Kg		86	70 - 130	8	3 35
m-Xylene & p-Xylene	<0.00401			0.200	0.1801			mg/Kg		90	70 - 130	5	
o-Xylene	<0.00200	U		0.100	0.09119			mg/Kg		91	70 - 130	4	35
	MSD	MSD	1										
Surrogate	%Recovery	Qual		Limits									
4-Bromofluorobenzene (Surr)				70 - 130									
1,4-Difluorobenzene (Surr)	96			70_130									
-													
Lab Sample ID: MB 880-276	54/5-A									Client	Sample ID	: Metho	d Blank
Matrix: Solid											Prep	o Type: 1	'otal/NA
Analysis Batch: 27652											Pre	ep Batch	i: 27654
		MB	МВ										
Analyte	R	esult	Qualifier	RL		MDL	Unit		D	Prepared	Ana	lyzed	Dil Fac
Benzene	<0.0	0200	U	0.00200			mg/Kg			06/16/22 08:	23 06/16/2	22 13:01	1
Toluene	<0.0	0200	U	0.00200			mg/Kg			06/16/22 08:	23 06/16/2	22 13:01	1
Ethylbenzene		0200		0.00200			mg/Kg			06/16/22 08:	23 06/16/2	22 13:01	1
m-Xylene & p-Xylene	<0.0	0400	U	0.00400			mg/Kg			06/16/22 08:	23 06/16/2	22 13:01	1
o-Xylene	<0.0	0200	U	0.00200			mg/Kg			06/16/22 08:	23 06/16/2	22 13:01	1
Xylenes, Total	<0.0	0400	U	0.00400			mg/Kg			06/16/22 08:	23 06/16/2	22 13:01	1
		MB	МВ										
Surrogate	%Reco		Qualifier	Limits						Prepared	Δna	lyzed	Dil Fac
4-Bromofluorobenzene (Surr)	///////////////////////////////////////	87	quainer							06/16/22 08:		22 13:01	1
		57		10 - 100						30/10/22 00.	20 00/10/2	2 10.01	'

Eurofins Midland

06/16/22 13:01

06/16/22 08:23

108

1,4-Difluorobenzene (Surr)

70 - 130

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-27	654/1-A						Client	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid									Prep 1	Гуре: To	tal/NA
Analysis Batch: 27652									Prep	Batch:	27654
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene			0.100	0.08917		mg/Kg		89	70 - 130		
Toluene			0.100	0.09001		mg/Kg		90	70 - 130		
Ethylbenzene			0.100	0.07993		mg/Kg		80	70 - 130		
m-Xylene & p-Xylene			0.200	0.1560		mg/Kg		78	70 - 130		
o-Xylene			0.100	0.08549		mg/Kg		85	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	93		70 - 130								
1,4-Difluorobenzene (Surr)	103		70 - 130								
Lab Sample ID: LCSD 880-2	7654/2-A					Clie	nt Sam	nple ID:	Lab Contro	ol Sampl	e Dur
Matrix: Solid										Type: To	
Analysis Batch: 27652										Batch:	
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
			0.100	0.09645		mg/Kg		96	70 - 130	8	3
Benzene											
			0.100	0.1028		mg/Kg		103	70 - 130	13	3

0.200

0.100

0.1815

0.09822

mg/Kg

mg/Kg

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: 880-15895-44 MS Matrix: Solid Analysis Batch: 27652

m-Xylene & p-Xylene

o-Xylene

Analysis Daton. 21002									11001	Duton. 27004
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0998	0.09628		mg/Kg		96	70 - 130	
Toluene	<0.00200	U	0.0998	0.08934		mg/Kg		90	70 - 130	
Ethylbenzene	<0.00200	U	0.0998	0.07507		mg/Kg		75	70 - 130	
m-Xylene & p-Xylene	<0.00401	U	0.200	0.1429		mg/Kg		72	70 - 130	
o-Xylene	<0.00200	U	0.0998	0.07783		mg/Kg		78	70 - 130	
	Ме	MS								
	1// 3	INI S								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	87		70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Lab Sample ID: 880-15895-44 MSD Matrix: Solid

Analysis Batch: 27652									Prep	Batch:	27654
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0994	0.09559		mg/Kg		96	70 - 130	1	35
Toluene	<0.00200	U	0.0994	0.08750		mg/Kg		88	70 - 130	2	35
Ethylbenzene	<0.00200	U	0.0994	0.07306		mg/Kg		73	70 - 130	3	35

5 6

7

Prep Batch: 27654

Client Sample ID: SW-9

Prep Type: Total/NA

15

14

35

35

91

98

70 - 130

70 - 130

Client Sample ID: SW-9 Prep Type: Total/NA

Eurofins Midland

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-15895-44 MSI Matrix: Solid)											Client Samp Prep Ty	oe: To	otal/NA
Analysis Batch: 27652												Prep B	atch:	27654
	Sample	Sam	ple	Spike	MSD	MSD)					%Rec		RPD
Analyte	Result	Qual	ifier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limi
m-Xylene & p-Xylene	<0.00401	U		0.199	0.1385			mg/Kg			70	70 - 130	3	35
o-Xylene	<0.00200	U		0.0994	0.07544			mg/Kg			76	70 - 130	3	3
	MSD	MSD												
Surrogate %		Qual		Limits										
4-Bromofluorobenzene (Surr)	87			70 - 130										
1,4-Difluorobenzene (Surr)	109			70 - 130										
,,														
Lab Sample ID: MB 880-27796/5-A											Client Sa	mple ID: Me	ethod	Blan
Matrix: Solid												Prep Ty	be: To	otal/N/
Analysis Batch: 27863												Prep B	atch:	2779
		MB	МВ											
Analyte	Re	sult	Qualifier	RL		MDL	Unit		D	P	repared	Analyzed		Dil Fa
Benzene	<0.00	200	U	0.00200			mg/Kg			06/1	7/22 10:10	06/18/22 21	00	
Toluene	<0.00	200	U	0.00200			mg/Kg			06/1	7/22 10:10	06/18/22 21	00	
Ethylbenzene	<0.00	200	U	0.00200			mg/Kg			06/1	7/22 10:10	06/18/22 21	00	
m-Xylene & p-Xylene	<0.00	400	U	0.00400			mg/Kg			06/1	7/22 10:10	06/18/22 21	00	
p-Xylene	<0.00		U	0.00200			mg/Kg			06/1	7/22 10:10	06/18/22 21		
Xylenes, Total	<0.00			0.00400			mg/Kg				7/22 10:10	06/18/22 21		
	-0.00	100	0	0.00100			iiig/itg			00/1	1722 10.10	00,10,22 21		
		MB	МВ											
Surrogate	%Reco		Qualifier	Limits							repared	Analyzeo		Dil Fa
4-Bromofluorobenzene (Surr)		99		70 - 130						06/1	7/22 10:10	06/18/22 21	:00	
1,4-Difluorobenzene (Surr)		90		70 - 130						06/1	7/22 10:10	06/18/22 21	:00	
Lab Sample ID: MB 880-27835/5-A											Client Sa	mple ID: Me	ethod	Blant
Matrix: Solid												Prep Ty		
Analysis Batch: 27863												Prep B		
Analysis Batch. 27000		мв	MB									Перв	aton.	21000
Analyte	Re		Qualifier	RL		MDL	Unit		D	P	repared	Analyzed		Dil Fa
Benzene	<0.00		U	0.00200			mg/Kg		_		7/22 16:12	06/19/22 07		
Toluene	<0.00		U	0.00200			mg/Kg				7/22 16:12	06/19/22 07		
Ethylbenzene	<0.00			0.00200			mg/Kg				7/22 16:12	06/19/22 07		
m-Xylene & p-Xylene	<0.00			0.00200			mg/Kg				7/22 16:12	06/19/22 07		
	<0.00		U	0.00400							7/22 16:12	06/19/22 07		
o-Xylene Xylenes, Total	<0.00			0.00200			mg/Kg mg/Kg				7/22 16:12	06/19/22 07		
	-0.00	400	0	0.00400			iiig/itg			00/1	1/22 10.12	00/10/22 01	.00	
		MB	МВ											
Surrogate	%Reco		Qualifier	Limits						P	repared	Analyzeo		Dil Fa
4-Bromofluorobenzene (Surr)		99		70 - 130							7/22 16:12	06/19/22 07	:33	
1,4-Difluorobenzene (Surr)		88		70 - 130						06/1	7/22 16:12	06/19/22 07	:33	
Lab Sample ID: LCS 880-27835/1-/	٨								C	liont	Sampla		trol S	ample
Matrix: Solid										nent	Jampie	ID: Lab Con		
												Prep Ty		
Analysis Batch: 27863				Colleg	1.00	1.00						Prep B	atcn:	2/83
				Spike		LCS				-	~ -	%Rec		
Analyte				Added	Result	Qua	infier	Unit		<u>D</u>	%Rec	Limits		
Benzene				0.100	0.07072			mg/Kg			71	70 - 130		
Toluene				0.100	0.07286			mg/Kg			73	70 - 130		
Ethylbenzene				0.100	0.07321			mg/Kg			73	70 - 130		

Eurofins Midland

77

mg/Kg

70 - 130

m-Xylene & p-Xylene

0.1531

0.200

Lab Sample ID: LCS 880-27835/1-A

Client: Tetra Tech, Inc.

Matrix: Solid

Project/Site: Bear Booster

QC Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Analysis Batch: 27863									Prep 1		
									Prep	Batch:	27835
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.08071		mg/Kg		81	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	96		70 - 130								
Lab Sample ID: LCSD 880-2	27835/2-A					Clier	nt Sam	nole ID: I	Lab Contro	l Sampl	e Dur
Matrix: Solid										ype: To	
Analysis Batch: 27863										Batch:	
			Spike	LCSD	LCSD				%Rec		RPI
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			0.100	0.06706	*_	mg/Kg		67	70 - 130	5	35
Toluene			0.100	0.06853		mg/Kg		69	70 - 130 70 - 130	6	35
			0.100	0.06843				68	70 - 130 70 - 130	7	35
Ethylbenzene						mg/Kg					
m-Xylene & p-Xylene			0.200	0.1445		mg/Kg		72	70 - 130	6	35
o-Xylene			0.100	0.07582		mg/Kg		76	70 - 130	6	3
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	107		70 - 130								
1,4-Difluorobenzene (Surr)	95		70 - 130								
Analysis Batch: 27863	<u> </u>	<u> </u>	Spike							Batch:	2783
Analyte	Sample	Sample	SDIKE								
	Beault	Qualifier		MS	MS Qualifiar	Unit		% Dee	%Rec		
		Qualifier	Added	Result	Qualifier	Unit	<u>D</u>	%Rec	Limits		
Benzene	<0.00201	U *-	Added	Result 0.09145		mg/Kg	<u>D</u>	91	Limits 70 - 130		
Benzene Toluene	<0.00201 <0.00201	U *- U *-	Added 0.100 0.100	Result 0.09145 0.09094		mg/Kg mg/Kg	<u>D</u>	91 89	Limits 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene	<0.00201 <0.00201 <0.00201	U *- U *- U *-	Added 0.100 0.100 0.100	Result 0.09145 0.09094 0.08828		mg/Kg mg/Kg mg/Kg	<u> </u>	91 89 88	Limits 70 - 130 70 - 130 70 - 130	······	
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	<0.00201 <0.00201 <0.00201 <0.00201 <0.00402	U *- U *- U *- U	Added 0.100 0.100 0.100 0.201	Result 0.09145 0.09094 0.08828 0.1828		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	91 89 88 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene	<0.00201 <0.00201 <0.00201	U *- U *- U *- U	Added 0.100 0.100 0.100	Result 0.09145 0.09094 0.08828		mg/Kg mg/Kg mg/Kg	<u>D</u>	91 89 88	Limits 70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i>	U *- U *- U *- U U U MS	Added 0.100 0.100 0.100 0.201	Result 0.09145 0.09094 0.08828 0.1828		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	91 89 88 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201	U *- U *- U *- U U U MS	Added 0.100 0.100 0.100 0.201	Result 0.09145 0.09094 0.08828 0.1828		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	91 89 88 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i>	U *- U *- U *- U U U MS	Added 0.100 0.100 0.100 0.201 0.100	Result 0.09145 0.09094 0.08828 0.1828		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	91 89 88 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i> <i>%Recovery</i>	U *- U *- U *- U U U MS	Added 0.100 0.100 0.201 0.201 0.100 Limits	Result 0.09145 0.09094 0.08828 0.1828		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	91 89 88 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i> <i>%Recovery</i> 109 96	U *- U *- U *- U U U MS	Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100	Result 0.09145 0.09094 0.08828 0.1828		mg/Kg mg/Kg mg/Kg mg/Kg		91 89 88 90 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130		licate
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2406-A-	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i> <i>%Recovery</i> 109 96	U *- U *- U *- U U U MS	Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100	Result 0.09145 0.09094 0.08828 0.1828		mg/Kg mg/Kg mg/Kg mg/Kg		91 89 88 90 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene <i>Surrogate</i> <i>4-Bromofluorobenzene (Surr)</i> <i>1,4-Difluorobenzene (Surr)</i> Lab Sample ID: 890-2406-A- Matrix: Solid	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i> <i>%Recovery</i> 109 96	U *- U *- U *- U U U MS	Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100	Result 0.09145 0.09094 0.08828 0.1828		mg/Kg mg/Kg mg/Kg mg/Kg		91 89 88 90 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T	Type: To	tal/NA
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2406-A-	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i> <i>%Recovery</i> 109 96 -18-G MSD	U *- U *- U *- U U U MS	Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100	Result 0.09145 0.09094 0.08828 0.1828 0.09141		mg/Kg mg/Kg mg/Kg mg/Kg		91 89 88 90 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T		tal/NA 27835
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene <i>Surrogate</i> <i>4-Bromofluorobenzene (Surr)</i> <i>1,4-Difluorobenzene (Surr)</i> Lab Sample ID: 890-2406-A- Matrix: Solid	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i> <i>%Recovery</i> 109 96 -18-G MSD Sample	U *- U *- U *- U U MS Qualifier	Added 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 D.201 0.100 D.201 0.100	Result 0.09145 0.09094 0.08828 0.1828 0.09141	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		91 89 88 90 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T Prep T	Type: To	tal/NA 2783 RPE
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2406-A- Matrix: Solid Analysis Batch: 27863	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i> <i>%Recovery</i> 109 96 -18-G MSD Sample	U *- U *- U *- U U MS Qualifier	Added 0.100 0.100 0.201 0.100 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 0.09145 0.09094 0.08828 0.1828 0.09141	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl	ient Sa	91 89 88 90 90	Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T Prep %Rec	Type: To Batch:	tal/NA 27835 RPC Limi
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene <i>Surrogate</i> 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2406-A- Matrix: Solid Analysis Batch: 27863 Analyte Benzene	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i> <i>%Recovery</i> <i>109</i> 96 -18-G MSD Sample <u>Result</u> <0.00201	U *- U *- U *- U U <i>MS</i> <i>Qualifier</i> U *-	Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 D.201 0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.0994	Result 0.09145 0.09094 0.08828 0.1828 0.09141	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	91 89 88 90 90 90 ample ID %Rec 80	Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T Prep %Rec Limits 70 - 130	Type: Tot Batch: RPD 14	tal/NA 27835 RPE Limi 35
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene <i>Surrogate</i> 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2406-A- Matrix: Solid Analysis Batch: 27863 Analyte Benzene Toluene	 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <i>MS</i> <i>%Recovery</i> 109 96 -18-G MSD Sample Result <0.00201 <0.00201 	U *- U *- U *- U U MS Qualifier U *- U *- U *-	Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.0994 0.0994	Result 0.09145 0.09094 0.08828 0.1828 0.09141 MSD Result 0.07961 0.08216	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	91 89 88 90 90 90 90 %Rec 80 81	Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 %Rec Limits 70 - 130 70 - 130	Type: TotBatch:RPD1410	tal/NA 27835 RPD Limit 35 35
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene <i>Surrogate</i> 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2406-A- Matrix: Solid Analysis Batch: 27863 Analyte Benzene	<0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <i>MS</i> <i>%Recovery</i> <i>109</i> 96 -18-G MSD Sample <u>Result</u> <0.00201	U*- U*- U*- U U MS Qualifier U U *- U*- U*- U*-	Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 D.201 0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.0994	Result 0.09145 0.09094 0.08828 0.1828 0.09141	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	91 89 88 90 90 90 ample ID <u>%Rec</u> 80	Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T Prep %Rec Limits 70 - 130	Type: Tot Batch: RPD 14	tal/NA

Eurofins Midland

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

QC Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2406-A-18 Matrix: Solid									5.01			Matrix S Prep	Type: T	-
Analysis Batch: 27863													Batch	
													Daton	
	MSD N													
Surrogate		Qualif	fier	Limits										
4-Bromofluorobenzene (Surr)	110			70 - 130										
1,4-Difluorobenzene (Surr)	97			70 - 130										
lethod: 8015B NM - Diese	el Range Org	gani	ics (DR	(GC)										
Lab Sample ID: MB 880-27553	/1- A										Client Sa	ample ID:	Metho	d Blanl
Matrix: Solid												Prep	Type: T	otal/N/
Analysis Batch: 27559												Prep	b Batch	: 2755
	, i	MB	МВ											
Analyte	Res	sult	Qualifier	RL		MDL	Unit		D	Pi	repared	Analy	zed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<50	0.0	U	50.0			mg/Kg			06/1	5/22 08:46	06/15/22	10:47	
Diesel Range Organics (Over C10-C28)	<50	50.0 I	U	50.0			mg/Kg			06/1	5/22 08:46	06/15/22	10:47	
Oll Range Organics (Over C28-C36)	<50	i0.0	U	50.0			mg/Kg			06/1	5/22 08:46	06/15/22	10:47	
			МВ											
Surrogate	%Recove	<u> </u>	Qualifier	Limits					-		repared	Analy		Dil Fa
-Chlorooctane		101		70 - 130							5/22 08:46	06/15/22		
		111		70 - 130						06/1	5/22 08:46	06/15/22	10:47	
ab Sample ID: LCS 880-2755 Aatrix: Solid									CI	ient	Sample		Type: T	otal/N
.ab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559				Spike		LCS		11-14	СІ		-	Prep Prep %Rec		otal/N
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte				Spike Added	Result			Unit	CI	ient	%Rec	Prep Prep %Rec Limits	Type: T	otal/N
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Gasoline Range Organics GRO)-C6-C10				Spike Added 1000	Result 735.0			mg/Kg	CI		% Rec	Prep Prep %Rec Limits 70 - 130	Type: T	otal/N
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over				Spike Added	Result				CI		%Rec	Prep Prep %Rec Limits	Type: T	otal/N
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	3/2-A	LCS	fier.	Spike Added 1000 1000	Result 735.0			mg/Kg	CI		% Rec	Prep Prep %Rec Limits 70 - 130	Type: T	otal/N
D-Terphenyl Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	3/2-A LCS L _%Recovery C		fier	Spike Added 1000 1000 Limits	Result 735.0			mg/Kg	CI		% Rec	Prep Prep %Rec Limits 70 - 130	Type: T	otal/N
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	3/2-A 	LCS	fier	Spike Added 1000 1000 Limits 70 - 130	Result 735.0			mg/Kg	СІ		% Rec	Prep Prep %Rec Limits 70 - 130	Type: T	otal/N
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	3/2-A LCS L _%Recovery C	LCS	fier	Spike Added 1000 1000 Limits	Result 735.0			mg/Kg	CI		% Rec	Prep Prep %Rec Limits 70 - 130	Type: T	otal/N
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-275	3/2-A 	LCS	fier	Spike Added 1000 1000 Limits 70 - 130	Result 735.0			mg/Kg mg/Kg		<u>D</u>	%Rec 74 86	Prep %Rec Limits 70 - 130 70 - 130	Type: T 9 Batch 	otal/N/ : 2755
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-275 Matrix: Solid	3/2-A 	LCS	fier	Spike Added 1000 1000 Limits 70 - 130	Result 735.0			mg/Kg mg/Kg		<u>D</u>	%Rec 74 86	Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: T D Batch	otal/N. : 2755
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-275 Matrix: Solid	3/2-A 	LCS	fier	Spike Added 1000 1000 1000 1000 0.1000 <i>Limits</i> 70 - 130 70 - 130	Result 735.0 862.6	Qua	lifier	mg/Kg mg/Kg		<u>D</u>	%Rec 74 86	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 80 Contro Prep Prep	Type: T 9 Batch 	otal/N/ : 2755
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-275 Matrix: Solid Analysis Batch: 27559	3/2-A 	LCS	fier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 Spike	Result 735.0 862.6	Qua	lifier	mg/Kg mg/Kg Cli		D	%Rec 74 86 ple ID: L	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 80 Contro Prep %Rec	DI Samı Type: T DI Samı Type: T D Batch	otal/N. : 2755 Die Du otal/N. : 2755 RP
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-275 Matrix: Solid Analysis Batch: 27559 Analyte	3/2-A 	LCS	fier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 Spike Added	Result 735.0 862.6 LCSD Result	Qua LCS Qua	lifier	mg/Kg mg/Kg Cli		<u>D</u>	%Rec 74 86 ple ID: L	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 %Rec Limits	DI Samı Type: T Di Samı Type: T Di Batch RPD	otal/N. : 2755
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-275 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics	3/2-A 	LCS	fier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 Spike	Result 735.0 862.6	Qua LCS Qua	lifier	mg/Kg mg/Kg Cli		D	%Rec 74 86 ple ID: L	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 80 Contro Prep %Rec	DI Samı Type: T DI Samı Type: T D Batch	otal/N : 2755 otal/N : 2755 RP
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-275 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	3/2-A 	LCS	fier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 70 - 130 Spike Added	Result 735.0 862.6 LCSD Result	Qua LCS Qua	lifier	mg/Kg mg/Kg Cli		D	%Rec 74 86 ple ID: L	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 %Rec Limits	DI Samı Type: T Di Samı Type: T Di Batch RPD	otal/N. : 2755
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-275 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	3/2-A 	LCS Qualit		Spike Added 1000 1000 1000 1000 1000 Limits 70 - 130 70 - 130 70 - 130 Spike Added 1000	Result 735.0 862.6 LCSD Result 690.7	Qua LCS Qua	lifier	mg/Kg mg/Kg Cli Mg/Kg		D	%Rec 74 86 ple ID: L %Rec 69	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 ab Contro Prep %Rec Limits 70 - 130	DI Samı Type: T D Batch Type: T D Batch <u>RPD</u> 6	ole Du otal/N/ : 2755 otal/N/ : 2755 RPI Lim 2
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-275 Matrix: Solid Analysis Batch: 27559 Malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	3/2-A LCS L %Recovery Q 94 108 553/3-A	LCS Qualit		Spike Added 1000 1000 1000 1000 1000 Limits 70 - 130 70 - 130 70 - 130 Spike Added 1000	Result 735.0 862.6 LCSD Result 690.7	Qua LCS Qua	lifier	mg/Kg mg/Kg Cli Mg/Kg		D	%Rec 74 86 ple ID: L %Rec 69	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 ab Contro Prep %Rec Limits 70 - 130	DI Samı Type: T D Batch Type: T D Batch <u>RPD</u> 6	ole Du otal/N/ : 2755 otal/N/ : 2755 RPI Lim 2
Lab Sample ID: LCS 880-2755 Matrix: Solid Analysis Batch: 27559 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	3/2-A LCS L %Recovery Q 94 108 553/3-A LCSD L	LCS Qualit		Spike Added 1000 1000 1000 Limits 70 - 130 70 - 130 70 - 130 1000 1000 1000	Result 735.0 862.6 LCSD Result 690.7	Qua LCS Qua	lifier	mg/Kg mg/Kg Cli Mg/Kg		D	%Rec 74 86 ple ID: L %Rec 69	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 ab Contro Prep %Rec Limits 70 - 130	DI Samı Type: T D Batch Type: T D Batch <u>RPD</u> 6	otal/N. : 2755

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-1 MS	j.										Client Sa	mple IC): BH-1
Matrix: Solid													otal/NA
Analysis Batch: 27559													27553
Analysis Baton. 21000	Sample	Sam	nlo	Spike	MS	MS					%Rec	Buton	21000
Analyta	Result		•	-		Qualifier	Unit		D	% Baa			
Analyte	<49.9			Added		Quaimer			<u> </u>	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.9	0		998	927.2		mg/Kg			91	70 - 130		
Diesel Range Organics (Over	<49.9	п		998	910.1		mg/Kg			90	70 - 130		
C10-C28)	~+3.5	0		330	310.1		ing/itg			30	70 - 100		
	MS	MS											
Surrogate		Qual	lifier	Limits									
1-Chlorooctane	90			70 - 130									
p-Terphenyl	90			70 - 130									
	_												
Lab Sample ID: 880-15895-1 MS	D										Client Sa	-	
Matrix: Solid													otal/NA
Analysis Batch: 27559												Batch	27553
	Sample	Sam	ple	Spike	MSD	MSD					%Rec		RPD
Analyte	Result		ifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U *-		999	917.0		mg/Kg			90	70 - 130	1	20
(GRO)-C6-C10					_ · · ·		<i></i>						
Diesel Range Organics (Over	<49.9	U		999	899.9		mg/Kg			88	70 - 130	1	20
C10-C28)													
	MSD	MSD	1										
Surrogate	%Recovery	Qual	lifier	Limits									
1-Chlorooctane	88			70 - 130									
p-Terphenyl	89			70 - 130									
Lab Sample ID: MB 880-27555/1	- A									Client Sa	molo ID·	Mothor	Dlank
Matrix: Solid											imple iD.	Methot	DIATIK
watrix. Soliu													otal/NA
											Prep 1	Type: To	
		мв	МВ								Prep 1	Type: To	otal/NA
Analysis Batch: 27557	Re		MB Qualifier		RL	MDL Uni	t	D		epared	Prep 1	Type: To Batch	otal/NA
Analysis Batch: 27557 Analyte			Qualifier	5	RL	MDL Uni mg/			Pr		Prep 1 Prep	Type: To Batch	otal/NA : 27555
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10		esult	Qualifier	5					Pr	epared	Prep 1 Prep Analyz	Type: To Batch	Dill Fac
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<pre></pre>	esult	Qualifier U				Kg		Pr 06/15	epared	Prep 1 Prep Analyz	Type: To Batch 2ed 10:47	Dill Fac
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<	50.0	Qualifier U U	5	50.0	mg/ mg/	Kg Kg		Pr 06/15 06/15	epared /22 08:49 /22 08:49	Prep 1 Prep Analyz 06/15/22	Example: Top Batch 2220 10:47 10:47	Dil Fac 1
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<	50.0	Qualifier U U	5	50.0	mg/	Kg Kg		Pr 06/15 06/15	epared /22 08:49	Prep 1 Prep Analyz 06/15/22	Example: Top Batch 2220 10:47 10:47	Dil Fac
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<	esult 50.0 50.0	Qualifier U U	5	50.0	mg/ mg/	Kg Kg		Pr 06/15 06/15	epared /22 08:49 /22 08:49	Prep 1 Prep Analyz 06/15/22	Example: Top Batch 2220 10:47 10:47	Dil Fac 1
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<	250.0 550.0 550.0 550.0 MB	Qualifier U U MB	5	50.0 50.0 50.0	mg/ mg/	Kg Kg		Pr/ 06/15 06/15	epared /22 08:49 /22 08:49 /22 08:49	Prep 1 Prep 06/15/22 06/15/22 06/15/22	Type: To Batch 2007 2017 2017 2017 2017 2017 2017 2017	Dil Fac 1 1
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i>	Qualifier U U U MB	5 5 	50.0 50.0 50.0	mg/ mg/	Kg Kg		Pro 06/15 06/15 06/15 Pro	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49 epared	Prep 1 Prep 06/15/22 06/15/22 06/15/22 Analyz	Type: To Batch 2004 10:47 10:47 10:47 2004 2004 2004 2004 2004 2004 2004 20	Dil Fac 1
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i> 98	Qualifier U U MB	5 5 	50.0 50.0 50.0	mg/ mg/	Kg Kg		Pr 06/15 06/15 06/15 Pr 06/15	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49	Prep 1 Prep Analyz 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22	Type: To Batch red 10:47 10:47 10:47 10:47 10:47	Dil Fac 1 1 1 1 1 1 1 1 1 1
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i>	Qualifier U U MB	5 5 	50.0 50.0 50.0	mg/ mg/	Kg Kg		Pr 06/15 06/15 06/15 Pr 06/15	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49 epared	Prep 1 Prep 06/15/22 06/15/22 06/15/22 Analyz	Type: To Batch red 10:47 10:47 10:47 10:47 10:47	Dil Fac 1 1 1 1 1 1 1 1
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	< %Reco	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i> 98	Qualifier U U MB	5 5 	50.0 50.0 50.0	mg/ mg/	Kg Kg		Prr 06/15 06/15 06/15 06/15	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49	Analyz 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22	Type: To Batch red 10:47 10:47 10:47 10:47 10:47	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: LCS 880-27555/2	< %Reco	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i> 98	Qualifier U U MB	5 5 	50.0 50.0 50.0	mg/ mg/	Kg Kg		Prr 06/15 06/15 06/15 06/15	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49	Analyz 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/24	Type: To Batch red 10:47 10:47 10:47 10:47 10:47 10:47 10:47 10:47	Dil Fac 1 1 1 1 1 1 1 5 3 5 3 5 3 5 3 5 5 5 5 5
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-27555/2 Matrix: Solid	< %Reco	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i> 98	Qualifier U U MB	5 5 	50.0 50.0 50.0	mg/ mg/	Kg Kg		Prr 06/15 06/15 06/15 06/15	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49	Analyz 06/15/22 06/15/24 06/15/25 06/15/24 06/15/25 06/15/24 06/15/25 06/15/25 06/15/26 06/15/27 06/15/28 06/15/29 06/15/29 06/15/20 06/15/25 06/15/26 06/15/27 06/15/28	Type: To Batch red 10:47 10:47 10:47 10:47 10:47 10:47 10:47 To:47 To:47	Dil Fac Dil Fac 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i> 98	Qualifier U U MB	5 5 <u>Limits</u> 70 - 13 70 - 13	50.0 50.0 50.0 50.0 50 70 70 70	mg/	Kg Kg		Prr 06/15 06/15 06/15 06/15	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49	Prep 1 Prep 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22 06/15/22	Type: To Batch red 10:47 10:47 10:47 10:47 10:47 10:47 10:47 To:47 To:47	Dil Fac 1 1 1 1 1 1 1 5 3 5 3 5 3 5 3 5 5 5 5 5
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: LCS 880-27555/2 Matrix: Solid Analysis Batch: 27557	<	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i> 98	Qualifier U U MB	5 5 <i>Limits</i> 70 - 13 70 - 13 70 - 13	50.0 50.0 50.0 50.0 50 50 50 50 50 50 50 50 50 50 50 50 50	LCS	Kg Kg		Pr: 06/15 06/15 06/15 06/15 ient	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49 Sample	Analyz 06/15/22 06/15/24 07/15/15 08/15 09/15 09/16 09/16 09/16 09/16 09/16 09/16 09/16 09/16 09/16 09/16	Type: To Batch red 10:47 10:47 10:47 10:47 10:47 10:47 10:47 To:47 To:47	Dil Fac Dil Fac 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-27555/2 Matrix: Solid Analysis Batch: 27557 Analyte	<	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i> 98	Qualifier U U MB	5 5 	0.0 50.0 50.0 50.0 60 70 80 80 80 80 80 80 80 80 80 80 80 80 80	mg/	Kg Kg Unit		Prr 06/15 06/15 06/15 06/15	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49 Sample	Analyz 06/15/22 07/15/22 08/15/15/15/15/15/15/15/15/15/15/15/15/15/	Type: To Batch red 10:47 10:47 10:47 10:47 10:47 10:47 10:47 To:47 To:47	Dil Fac Dil Fac 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane b-Terphenyl Lab Sample ID: LCS 880-27555/2 Matrix: Solid Analysis Batch: 27557 Analyte Gasoline Range Organics	<	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i> 98	Qualifier U U MB	5 5 <i>Limits</i> 70 - 13 70 - 13 70 - 13	50.0 50.0 50.0 50.0 50 50 50 50 50 50 50 50 50 50 50 50 50	LCS	Kg Kg		Pr: 06/15 06/15 06/15 06/15 ient	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49 Sample	Analyz 06/15/22 06/15/24 07/15/15 08/15 09/15 09/16 09/16 09/16 09/16 09/16 09/16 09/16 09/16 09/16 09/16	Type: To Batch red 10:47 10:47 10:47 10:47 10:47 10:47 10:47 To:47 To:47	Dil Fac Dil Fac 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-27555/2 Matrix: Solid Analysis Batch: 27557	<	esult 50.0 50.0 50.0 50.0 <i>MB</i> <i>overy</i> 98	Qualifier U U MB	5 5 	0.0 50.0 50.0 50.0 60 70 80 80 80 80 80 80 80 80 80 80 80 80 80	LCS	Kg Kg Unit		Pr: 06/15 06/15 06/15 06/15 ient	epared /22 08:49 /22 08:49 /22 08:49 /22 08:49 /22 08:49 Sample	Analyz 06/15/22 07/15/22 08/15/15/15/15/15/15/15/15/15/15/15/15/15/	Type: To Batch red 10:47 10:47 10:47 10:47 10:47 10:47 10:47 To:47 To:47	Dil Fac Dil Fac 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-2755 Matrix: Solid	5/2-A						Client	Sample	e ID: Lab Co Prep T	ontrol Sa Type: Tot	
Analysis Batch: 27557									Prep	Batch:	27555
	105	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane	100	Quanner	70 - 130								
o-Terphenyl	100		70 <u>-</u> 130								
	100		10-100								
Lab Sample ID: LCSD 880-275	555/3-A					Clier	nt Sam	nple ID:	Lab Contro	Sampl	e Dup
Matrix: Solid										· Гуре: Tot	
Analysis Batch: 27557										Batch:	
			Spike	LCSD	LCSD				• %Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	809.2		mg/Kg		81	70 - 130	5	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	882.5		mg/Kg		88	70 - 130	1	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	104		70 - 130								
o-Terphenyl	108		70 - 130								
Lab Sample ID: 880-15895-21	MS								Client Sam	ple ID: F	BH-21
Matrix: Solid									Prep T	Type: Tot	tal/NA
Analysis Batch: 27557									Prep	Batch:	27555
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U F2	998	1080		mg/Kg		108	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U F1 F2	998	835.2		mg/Kg		84	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
Surrogate 1-Chlorooctane	%Recovery 98	Qualifier	Limits								
		Qualifier									
1-Chlorooctane o-Terphenyl	98 91	Qualifier	70 - 130								
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21	98 91	Qualifier	70 - 130						Client Sam		
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21 Matrix: Solid	98 91	Qualifier	70 - 130							nple ID: I	
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21	98 91 MSD		70 - 130 70 - 130						Prep T		tal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21 Matrix: Solid	98 91 MSD Sample	Sample	70 - 130	MSD	MSD				Prep T	Type: Tot	tal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21 Matrix: Solid Analysis Batch: 27557 Analyte	98 91 MSD Sample Result	Sample Qualifier	70 - 130 70 - 130 Spike Added	Result	Qualifier	Unit	D	%Rec	Prep T Prep %Rec Limits	Type: Tot	tal/NA 27555
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21 Matrix: Solid Analysis Batch: 27557 Analyte Gasoline Range Organics	98 91 MSD Sample	Sample Qualifier	70 - 130 70 - 130 Spike		Qualifier	- <mark>Unit</mark> mg/Kg	<u>D</u>	%Rec 78	Prep T Prep %Rec	Type: Tot Batch: 2	tal/NA 27555 RPD
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21 Matrix: Solid Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10	98 91 MSD Sample <u>Result</u> <49.9	Sample Qualifier U F2	70 - 130 70 - 130 Spike Added 999	Result 779.0	Qualifier F2	mg/Kg	D	78	Prep T Prep %Rec Limits 70 - 130	RPD 32	tal/NA 27555 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21 Matrix: Solid Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	98 91 MSD Sample <u>Result</u> <49.9	Sample Qualifier	70 - 130 70 - 130 Spike Added	Result 779.0	Qualifier		<u>D</u>		Prep T Prep %Rec Limits	RPD	tal/NA 27555 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21 Matrix: Solid Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10	98 91 MSD Sample <u>Result</u> <49.9	Sample Qualifier U F2	70 - 130 70 - 130 Spike Added 999	Result 779.0	Qualifier F2	mg/Kg	D	78	Prep T Prep %Rec Limits 70 - 130	RPD 32	tal/NA 27555 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21 Matrix: Solid Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	98 91 MSD Sample <u>Result</u> <49.9 <49.9	Sample Qualifier U F2	70 - 130 70 - 130 Spike Added 999	Result 779.0	Qualifier F2	mg/Kg	D	78	Prep T Prep %Rec Limits 70 - 130	RPD 32	tal/NA 27555 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21 Matrix: Solid Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	98 91 MSD Sample <u>Result</u> <49.9 <49.9	Sample Qualifier U F2 U F1 F2 MSD	70 - 130 70 - 130 Spike Added 999	Result 779.0	Qualifier F2	mg/Kg	D	78	Prep T Prep %Rec Limits 70 - 130	RPD 32	tal/NA 27555 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15895-21 Matrix: Solid Analysis Batch: 27557 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	98 91 MSD Sample Result <49.9 <49.9 MSD	Sample Qualifier U F2 U F1 F2 MSD	70 - 130 70 - 130 Spike Added 999	Result 779.0	Qualifier F2	mg/Kg	<u>D</u>	78	Prep T Prep %Rec Limits 70 - 130	RPD 32	tal/NA 27555 RPD Limit 20

Job ID: 880-15895-1

SDG: Eddy County, New Mexico

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-27556/	'1-A										Client Sa	mple ID:	Metho	d Blank
Matrix: Solid												Prep 1	Гуре: Т	otal/NA
Analysis Batch: 27563												Prep	Batch	: 27556
	I	MB	МВ											
Analyte			Qualifier	RL		MDL	Unit		D	Pr	repared	Analyz	zed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<5	50.0	U	50.0			mg/Kg	9		06/15	5/22 08:52	06/15/22	11:07	1
Diesel Range Organics (Over C10-C28)	<5	50.0	U	50.0			mg/Ko	9		06/15	5/22 08:52	06/15/22	11:07	1
Oll Range Organics (Over C28-C36)	<5	50.0	U	50.0			mg/Ko	9		06/15	5/22 08:52	06/15/22	11:07	1
		ΜВ	МВ											
Surrogate	%Recov	very	Qualifier	Limits						Pr	repared	Analyz	zed	Dil Fac
1-Chlorooctane		99		70 - 130						06/1	5/22 08:52	06/15/22	11:07	1
o-Terphenyl	1	114		70 - 130						06/1	5/22 08:52	06/15/22	11:07	1
Lab Sample ID: LCS 880-27556	6/2-A								С	lient	Sample	ID: Lab C		
Matrix: Solid												Prep 1	Гуре: Т	otal/NA
Analysis Batch: 27563												Prep	Batch	: 27556
				Spike	LCS	LCS						%Rec		
Analyte				Added	Result	Qual	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	1104			mg/Kg			110	70 - 130		
(GRO)-C6-C10				1000	1000						100			
Diesel Range Organics (Over C10-C28)				1000	1083			mg/Kg			108	70 - 130		
	LCS I	LCS												
Surrogate		Quali	ifier	Limits										
	%Recovery 103		ifier	Limits 70 - 130										
1-Chlorooctane			ifier											
1-Chlorooctane o-Terphenyl	103 113		ifier	70 - 130				Cli	ient	Sam	ple ID: L	ab Contro	ol Samı	ple Dup
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755	103 113		ifier	70 - 130				Cli	ient	Sam	ple ID: L			
o-Terpheny/ Lab Sample ID: LCSD 880-2755 Matrix: Solid	103 113		ifier	70 - 130				Cli	ient	Sam	ple ID: L	Prep 1	Гуре: Т	otal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid	103 113		ifier	70 - 130	LCSD	LCS	D	Cli	ient	Sam	ple ID: L	Prep 1	Гуре: Т	otal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563	103 113		ifier	70 - 130 70 - 130	LCSD Result			Cli	ient	Sam	ple ID: L %Rec	Prep 1 Prep	Гуре: Т	otal/NA : 27556 RPD
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563 Analyte Gasoline Range Organics	103 113		ifier	70 - 130 70 - 130 Spike		Qual			ient		-	Prep 1 Prep %Rec	Type: T Batch	otal/NA : 27556 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	103 113		ifier	70 - 130 70 - 130 Spike Added	Result	Qual		Unit	ient		%Rec	Prep Prep %Rec Limits	Type: T Batch RPD	cotal/NA 27556 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	103 113	Quali		70 - 130 70 - 130 Spike Added 1000	Result 837.3	Qual		<mark>Unit</mark> mg/Kg	ient		%Rec	Prep 7 Prep %Rec Limits 70 - 130	Type: T Batch RPD 27	cotal/NA 27556 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	103 113 56/3-A	Quali		70 - 130 70 - 130 Spike Added 1000	Result 837.3	Qual		<mark>Unit</mark> mg/Kg	ient		%Rec	Prep 7 Prep %Rec Limits 70 - 130	Type: T Batch RPD 27	Cotal/NA 1: 27556 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755	103 113 56/3-A	Quali		70 - 130 70 - 130 Spike Added 1000	Result 837.3	Qual		<mark>Unit</mark> mg/Kg	ient		%Rec	Prep 7 Prep %Rec Limits 70 - 130	Type: T Batch RPD 27	otal/NA : 27556 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	103 113 56/3-A 	Quali		70 - 130 70 - 130 Spike Added 1000 1000	Result 837.3	Qual		<mark>Unit</mark> mg/Kg	ient		%Rec	Prep 7 Prep %Rec Limits 70 - 130	Type: T Batch RPD 27	Cotal/NA 1: 27556 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15888-A-1-	103 113 56/3-A 56/3-A <i>LCSD 1</i> % <i>Recovery 0</i> 93 106	Quali		70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 837.3	Qual		<mark>Unit</mark> mg/Kg	ient		%Rec 84 102	Prep %Rec Limits 70 - 130 70 - 130	Type: T Batch RPD 27 6 : Matri	ti 27556 RPD Limit 20 20 x Spike
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	103 113 56/3-A 56/3-A <i>LCSD 1</i> % <i>Recovery 0</i> 93 106	Quali		70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 837.3	Qual		<mark>Unit</mark> mg/Kg	ient		%Rec 84 102	Prep %Rec Limits 70 - 130 70 - 130 Sample ID Prep	Type: T Batch RPD 27 6 : Matri Type: T	otal/NA : 27556 RPD <u>Limit</u> 20 5 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15888-A-1- Matrix: Solid	103 113 56/3-A 56/3-A <i>LCSD 1</i> % <i>Recovery 0</i> 93 106	Quali LCSL Quali	D	70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 837.3 1017	Qual		<mark>Unit</mark> mg/Kg	ient		%Rec 84 102	Prep %Rec Limits 70 - 130 70 - 130 Sample ID Prep	Type: T Batch RPD 27 6 : Matri Type: T	x Spike
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15888-A-1- Matrix: Solid	103 113 56/3-A <i>LCSD I</i> %Recovery 0 93 106 -B MS	Quali LCSE Quali	D ifier	70 - 130 70 - 130 Spike Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130	Result 837.3 1017	Qual *1	lifier	<mark>Unit</mark> mg/Kg	ient		%Rec 84 102	Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep	Type: T Batch RPD 27 6 : Matri Type: T	x Spike
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-2755 Matrix: Solid Analysis Batch: 27563 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-15888-A-1- Matrix: Solid Analysis Batch: 27563	103 113 56/3-A 56/3-A - <i>LCSD L</i> %Recovery 0 93 106 -B MS Sample S	Quali LCSL Quali Samp Quali	D ifier	70 - 130 70 - 130 Spike Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 837.3 1017 MS	Qual *1	lifier	Unit mg/Kg mg/Kg	ient	D	%Rec 84 102	Prep 7 Prep % Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep 7 %Rec	Type: T Batch RPD 27 6 : Matri Type: T	x Spike

Page 141 of 223

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Client Sample ID: Matrix Spike Duplicate

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-15888-A-1-B MS	Client Sample ID: Matrix Spike
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 27563	Prep Batch: 27556

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	88		70 - 130
o-Terphenyl	91		70 - 130

Lab Sample ID: 880-15888-A-1-C MSD Matrix: Solid

Method: 300.0 - Anions, Ion Chromatography

Matrix: Solid Analysis Batch: 27563										Type: To Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	999	842.4		mg/Kg		82	70 - 130	0	20
Diesel Range Organics (Over C10-C28)	<49.9	U	999	851.7		mg/Kg		85	70 - 130	5	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	89		70 - 130								
o-Terphenyl	92		70 - 130								

_ Lab Sample ID: MB 880-27636/1	-A										CI	ient S	ample ID:	Method	Blank
Matrix: Solid														Type: S	
Analysis Batch: 27857													Trop	1990.0	
Analysis Batch. 27007		мв	мв												
Analyte	Re		Qualifier		RL		MDL	Unit		D	Prep	arod	Analyz	hav	Dil Fac
Chloride		5.00			5.00		MDL	mg/Kg			TTCP	uicu	06/19/22		1
		0.00	0		0.00			iiig/itg					00/10/22	04.44	'
Lab Sample ID: LCS 880-27636/	2-A									Clie	nt Sa	ample	ID: Lab Co	ontrol S	ample
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 27857															
-				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qua	lifier	Unit	D	%	Rec	Limits		
Chloride				250		273.8			mg/Kg			110	90 - 110		
_															
Lab Sample ID: LCSD 880-2763	6/3 -A								Cli	ent Sa	mple	e ID: I	Lab Contro	I Samp	le Dup
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 27857															
				Spike		LCSD	LCS	D					%Rec		RPD
Analyte				Added		Result	Qua	lifier	Unit	D	%	Rec	Limits	RPD	Limit
Chloride				250		270.4			mg/Kg			108	90 - 110	1	20
- Lab Sample ID: 880-15818-A-6-0	CMS										c	lient	Sample ID	: Matrix	Spike
Matrix: Solid														Type: S	
Analysis Batch: 27857															
•	Sample	Samp	ole	Spike		MS	MS						%Rec		
Analyte	Result	Quali	fier	Added		Result	Qua	lifier	Unit	D	%	Rec	Limits		
Chloride	452			253		709.0			mg/Kg			102	90 _ 110		
_															

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-15818-A-6-D M Matrix: Solid	ISD					(Client S	ample I	D: Matrix S Prep	oike Duj Type: S	
Analysis Batch: 27857											
-	Sample	Sample	Spike	MS	D MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Resu	t Qualifier	Unit	<u>D</u>	%Rec	Limits	RPD	Limi
Chloride	452		253	711.	4	mg/Kg		103	90 - 110	0	20
Lab Sample ID: MB 880-27637/1-A								Client	Sample ID:	Method	Blank
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 27860											
		MB MB									
Analyte		esult Qualifier		RL	MDL Unit		D F	Prepared	Analyz		Dil Fa
Chloride	~	<5.00 U		5.00	mg/	Kg			06/20/22	08:27	
Lab Sample ID: LCS 880-27637/2-4	4						Clien	t Sampl	e ID: Lab C	ontrol S	ample
Matrix: Solid										Type: S	
Analysis Batch: 27860											
			Spike	LC	S LCS				%Rec		
Analyte			Added	Resu	t Qualifier	Unit	D	%Rec	Limits		
Chloride			250	257.	3	mg/Kg		103	90 - 110		
Lab Sample ID: LCSD 880-27637/3	- A					Cli	ent Sar	nple ID:	Lab Contro	ol Samp	le Dur
Matrix: Solid										Type: S	-
Analysis Batch: 27860											
-			Spike	LCS	LCSD				%Rec		RPD
Analyte			Added	Resu	t Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chloride			250	261.	3	mg/Kg		105	90 - 110	2	20
Lab Sample ID: 880-15895-1 MS									Client Sa	mnle ID	• BH -1
Matrix: Solid										Type: S	
Analysis Batch: 27860										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Sample	Sample	Spike	M	S MS				%Rec		
Analyte	Result	Qualifier	Added	Resu	t Qualifier	Unit	D	%Rec	Limits		
Chloride	944	F1	249	121	4	mg/Kg		109	90 - 110		
Lab Sample ID: 880-15895-1 MSD									Client Sa	mple ID	: BH-1
Matrix: Solid										Type: S	
Analysis Batch: 27860											
-	Sample	Sample	Spike	MS	D MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Resu	t Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chloride	944	F1	249	122	2 F1	mg/Kg		111	90 - 110	1	20
Lab Sample ID: 880-15895-11 MS									Client San	nole ID:	BH-1'
Matrix: Solid										Type: S	
Analysis Batch: 27860											
	Sample	Sample	Spike	M	5 MS				%Rec		
Analyte	Result	Qualifier	Added	Resu	t Qualifier	Unit	D	%Rec	Limits		_
Chloride	294		252	558.	7	mg/Kg		105	90 - 110		
Lab Sample ID: 880-15895-11 MSD)								Client San	nple ID:	BH-11
Matrix: Solid										Type: S	
Analysis Batch: 27860											
-	Sample	Sample	Spike	MS	D MSD				%Rec		RPD
Analyte		o									
Analyte	Result	Qualifier	Added	Resu	t Qualifier	Unit	D	%Rec	Limits	RPD	Limi

Eurofins Midland

Released to Imaging: 7/19/2022 11:57:09 AM

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

QC Sample Results

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-27639/1-A											Client S	Sample ID: N		
Matrix: Solid												Prep 7	Гуре: S	oluble
Analysis Batch: 27861														
		MB MB												
Analyte		esult Qualifie	r	RL		MDL	Unit		<u>D</u>	P	repared	Analyze	ed	Dil Fac
Chloride	<	<5.00 U		5.00			mg/K	g				06/20/22 1	0:16	1
Lab Sample ID: LCS 880-27639/2-4	4								Clie	ent	Sample	e ID: Lab Co	ontrol S	ample
Matrix: Solid												Prep 1	Гуре: S	oluble
Analysis Batch: 27861														
			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Chloride			250		270.4			mg/Kg			108	90 - 110		
Lab Sample ID: LCSD 880-27639/3	- A							Cli	ent S	am	ple ID:	Lab Control	l Sampl	le Dup
Matrix: Solid													Гуре: S	
Analysis Batch: 27861														
			Spike		LCSD	LCS	D					%Rec		RPD
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride			250		270.7			mg/Kg		_	108	90 - 110	0	20
Lab Sample ID: 880-15895-21 MS												Client Sam	nle ID:	BH-21
Matrix: Solid													Type: S	
Analysis Batch: 27861													.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
·····,····	Sample	Sample	Spike		MS	MS						%Rec		
Analyte	Result	Qualifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Chloride	44.4		250		316.2			mg/Kg		_	109	90 - 110		
Lab Sample ID: 880-15895-21 MSD												Client Sam	nle ID:	BH-21
Matrix: Solid													Type: S	
Analysis Batch: 27861													.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
·····,····	Sample	Sample	Spike		MSD	MSD)					%Rec		RPD
Analyte		Qualifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride	44.4		250		315.6			mg/Kg		_	108	90 - 110	0	20
Lab Sample ID: 880-15895-31 MS												Client Sam	ple ID:	BH-31
Matrix: Solid													Гуре: S	
Analysis Batch: 27861														
	Sample	Sample	Spike		MS	MS						%Rec		
Analyte	-	Qualifier	Added		Result		lifier	Unit		D	%Rec	Limits		
Chloride	45.1	F1	248		317.0			mg/Kg		_	110	90 - 110		
Lab Sample ID: 880-15895-31 MSD)											Client Sam	ple ID:	BH-31
Matrix: Solid													Type: S	
Analysis Batch: 27861													.,	
	Sample	Sample	Spike		MSD	MSD)					%Rec		RPD
Analyte	-	Qualifier	Added		Result			Unit		D	%Rec	Limits	RPD	Limit
Chloride	45.1					F1				_				20
Client: Tetra Tech, Inc. Project/Site: Bear Booster Job ID: 880-15895-1 SDG: Eddy County, New Mexico 1

5

Page 145 of 223

GC VOA

Prep Batch: 27627

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-1	BH-1	Total/NA	Solid	5035	
880-15895-2	BH-2	Total/NA	Solid	5035	
880-15895-3	BH-3	Total/NA	Solid	5035	
880-15895-4	BH-4	Total/NA	Solid	5035	
880-15895-5	BH-5	Total/NA	Solid	5035	
880-15895-6	BH-6	Total/NA	Solid	5035	
880-15895-7	BH-7	Total/NA	Solid	5035	
880-15895-8	BH-8	Total/NA	Solid	5035	
MB 880-27627/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-27627/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-27627/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-15721-A-13-D MS	Matrix Spike	Total/NA	Solid	5035	
880-15721-A-13-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 27628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-9	BH-9	Total/NA	Solid	5035	
880-15895-10	BH-10	Total/NA	Solid	5035	
880-15895-11	BH-11	Total/NA	Solid	5035	
880-15895-12	BH-12	Total/NA	Solid	5035	
880-15895-13	BH-13	Total/NA	Solid	5035	
880-15895-14	BH-14	Total/NA	Solid	5035	
880-15895-15	BH-15	Total/NA	Solid	5035	
880-15895-16	BH-16	Total/NA	Solid	5035	
880-15895-17	BH-17	Total/NA	Solid	5035	
880-15895-19	BH-19	Total/NA	Solid	5035	
880-15895-20	BH-20	Total/NA	Solid	5035	
880-15895-21	BH-21	Total/NA	Solid	5035	
880-15895-22	BH-22	Total/NA	Solid	5035	
880-15895-23	BH-23	Total/NA	Solid	5035	
880-15895-24	BH-24	Total/NA	Solid	5035	
880-15895-25	BH-25	Total/NA	Solid	5035	
880-15895-26	BH-26	Total/NA	Solid	5035	
880-15895-27	BH-27	Total/NA	Solid	5035	
880-15895-28	BH-28	Total/NA	Solid	5035	
MB 880-27628/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-27628/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-27628/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-15895-9 MS	BH-9	Total/NA	Solid	5035	
880-15895-9 MSD	BH-9	Total/NA	Solid	5035	

Prep Batch: 27629

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-15895-29	BH-29	Total/NA	Solid	5035	
880-15895-30	BH-30	Total/NA	Solid	5035	
880-15895-31	BH-31	Total/NA	Solid	5035	
880-15895-32	BH-32	Total/NA	Solid	5035	
880-15895-33	BH-33	Total/NA	Solid	5035	
880-15895-34	BH-34	Total/NA	Solid	5035	
880-15895-35	BH-35	Total/NA	Solid	5035	
880-15895-36	SW-1	Total/NA	Solid	5035	

Client: Tetra Tech, Inc. Project/Site: Bear Booster

GC VOA (Continued)

Prep Batch: 27629 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-37	SW-2	Total/NA	Solid	5035	
880-15895-38	SW-3	Total/NA	Solid	5035	
880-15895-39	SW-4	Total/NA	Solid	5035	
880-15895-40	SW-5	Total/NA	Solid	5035	
880-15895-41	SW-6	Total/NA	Solid	5035	
880-15895-42	SW-7	Total/NA	Solid	5035	
880-15895-43	SW-8	Total/NA	Solid	5035	
MB 880-27629/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-27629/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-27629/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-15903-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
880-15903-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 27651

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-1	BH-1	Total/NA	Solid	8021B	27627
880-15895-2	BH-2	Total/NA	Solid	8021B	27627
880-15895-3	BH-3	Total/NA	Solid	8021B	27627
880-15895-4	BH-4	Total/NA	Solid	8021B	27627
880-15895-5	BH-5	Total/NA	Solid	8021B	27627
880-15895-6	BH-6	Total/NA	Solid	8021B	27627
880-15895-7	BH-7	Total/NA	Solid	8021B	27627
880-15895-8	BH-8	Total/NA	Solid	8021B	27627
MB 880-27627/5-A	Method Blank	Total/NA	Solid	8021B	27627
LCS 880-27627/1-A	Lab Control Sample	Total/NA	Solid	8021B	27627
LCSD 880-27627/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	27627
880-15721-A-13-D MS	Matrix Spike	Total/NA	Solid	8021B	27627
880-15721-A-13-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	27627

Analysis Batch: 27652

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-44	SW-9	Total/NA	Solid	8021B	27654
880-15895-45	SW-10	Total/NA	Solid	8021B	27654
MB 880-27654/5-A	Method Blank	Total/NA	Solid	8021B	27654
LCS 880-27654/1-A	Lab Control Sample	Total/NA	Solid	8021B	27654
LCSD 880-27654/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	27654
880-15895-44 MS	SW-9	Total/NA	Solid	8021B	27654
880-15895-44 MSD	SW-9	Total/NA	Solid	8021B	27654

Prep Batch: 27654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-44	SW-9	Total/NA	Solid	5035	
880-15895-45	SW-10	Total/NA	Solid	5035	
MB 880-27654/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-27654/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-27654/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-15895-44 MS	SW-9	Total/NA	Solid	5035	
880-15895-44 MSD	SW-9	Total/NA	Solid	5035	

5

8 9

Job ID: 880-15895-1

SDG: Eddy County, New Mexico

20

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

GC VOA

Analysis Batch: 27660

nalysis Batch: 27660					
_ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-15895-29	BH-29	Total/NA	Solid	8021B	27629
380-15895-30	BH-30	Total/NA	Solid	8021B	27629
880-15895-31	BH-31	Total/NA	Solid	8021B	27629
880-15895-32	BH-32	Total/NA	Solid	8021B	27629
380-15895-33	BH-33	Total/NA	Solid	8021B	27629
380-15895-34	BH-34	Total/NA	Solid	8021B	27629
380-15895-35	BH-35	Total/NA	Solid	8021B	27629
380-15895-36	SW-1	Total/NA	Solid	8021B	27629
380-15895-37	SW-2	Total/NA	Solid	8021B	27629
380-15895-38	SW-3	Total/NA	Solid	8021B	27629
380-15895-39	SW-4	Total/NA	Solid	8021B	27629
380-15895-40	SW-5	Total/NA	Solid	8021B	27629
380-15895-41	SW-6	Total/NA	Solid	8021B	27629
380-15895-42	SW-7	Total/NA	Solid	8021B	27629
380-15895-43	SW-8	Total/NA	Solid	8021B	27629
MB 880-27629/5-A	Method Blank	Total/NA	Solid	8021B	27629
LCS 880-27629/1-A	Lab Control Sample	Total/NA	Solid	8021B	27629
_CSD 880-27629/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	27629
380-15903-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	27629
880-15903-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	27629

Analysis Batch: 27741

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-9	BH-9	Total/NA	Solid	8021B	27628
880-15895-10	BH-10	Total/NA	Solid	8021B	27628
880-15895-11	BH-11	Total/NA	Solid	8021B	27628
880-15895-12	BH-12	Total/NA	Solid	8021B	27628
880-15895-13	BH-13	Total/NA	Solid	8021B	27628
880-15895-14	BH-14	Total/NA	Solid	8021B	27628
880-15895-15	BH-15	Total/NA	Solid	8021B	27628
880-15895-16	BH-16	Total/NA	Solid	8021B	27628
880-15895-17	BH-17	Total/NA	Solid	8021B	27628
880-15895-19	BH-19	Total/NA	Solid	8021B	27628
880-15895-20	BH-20	Total/NA	Solid	8021B	27628
880-15895-21	BH-21	Total/NA	Solid	8021B	27628
880-15895-22	BH-22	Total/NA	Solid	8021B	27628
880-15895-23	BH-23	Total/NA	Solid	8021B	27628
880-15895-24	BH-24	Total/NA	Solid	8021B	27628
880-15895-25	BH-25	Total/NA	Solid	8021B	27628
880-15895-26	BH-26	Total/NA	Solid	8021B	27628
880-15895-27	BH-27	Total/NA	Solid	8021B	27628
880-15895-28	BH-28	Total/NA	Solid	8021B	27628
MB 880-27628/5-A	Method Blank	Total/NA	Solid	8021B	27628
LCS 880-27628/1-A	Lab Control Sample	Total/NA	Solid	8021B	27628
LCSD 880-27628/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	27628
880-15895-9 MS	BH-9	Total/NA	Solid	8021B	27628
880-15895-9 MSD	BH-9	Total/NA	Solid	8021B	27628
Analysis Batch: 27768					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-15895-1	BH-1	Total/NA	Solid	Total BTEX	

Eurofins Midland

Prep Type

Total/NA

Matrix

Solid

Client: Tetra Tech, Inc. Project/Site: Bear Booster

GC VOA (Continued)

Lab Sample ID

880-15895-2

Analysis Batch: 27768 (Continued)

Client Sample ID

BH-2

000-10000-2	DIFZ	Total/TV/	Colla	Iotal BTEX
880-15895-3	BH-3	Total/NA	Solid	Total BTEX
880-15895-4	BH-4	Total/NA	Solid	Total BTEX
880-15895-5	BH-5	Total/NA	Solid	Total BTEX
880-15895-6	BH-6	Total/NA	Solid	Total BTEX
880-15895-7	BH-7	Total/NA	Solid	Total BTEX
880-15895-8	BH-8	Total/NA	Solid	Total BTEX
880-15895-9	BH-9	Total/NA	Solid	Total BTEX
880-15895-10	BH-10	Total/NA	Solid	Total BTEX
880-15895-11	BH-11	Total/NA	Solid	Total BTEX
880-15895-12	BH-12	Total/NA	Solid	Total BTEX
880-15895-13	BH-13	Total/NA	Solid	Total BTEX
880-15895-14	BH-14	Total/NA	Solid	Total BTEX
880-15895-15	BH-15	Total/NA	Solid	Total BTEX
880-15895-16	BH-16	Total/NA	Solid	Total BTEX
880-15895-17	BH-17	Total/NA	Solid	Total BTEX
880-15895-18	BH-18	Total/NA	Solid	Total BTEX
880-15895-19	BH-19	Total/NA	Solid	Total BTEX
880-15895-20	BH-20	Total/NA	Solid	Total BTEX
880-15895-21	BH-21	Total/NA	Solid	Total BTEX
880-15895-22	BH-22	Total/NA	Solid	Total BTEX
880-15895-23	BH-23	Total/NA	Solid	Total BTEX
880-15895-24	BH-24	Total/NA	Solid	Total BTEX
880-15895-25	BH-25	Total/NA	Solid	Total BTEX
880-15895-26	BH-26	Total/NA	Solid	Total BTEX
880-15895-27	BH-27	Total/NA	Solid	Total BTEX
880-15895-28	BH-28	Total/NA	Solid	Total BTEX
880-15895-29	BH-29	Total/NA	Solid	Total BTEX
880-15895-30	BH-30	Total/NA	Solid	Total BTEX
880-15895-31	BH-31	Total/NA	Solid	Total BTEX
880-15895-32	BH-32	Total/NA	Solid	Total BTEX
880-15895-33	BH-33	Total/NA	Solid	Total BTEX
880-15895-34	BH-34	Total/NA	Solid	Total BTEX
880-15895-35	BH-35	Total/NA	Solid	Total BTEX
880-15895-36	SW-1	Total/NA	Solid	Total BTEX
880-15895-37	SW-2	Total/NA	Solid	Total BTEX
880-15895-38	SW-3	Total/NA	Solid	Total BTEX
880-15895-39	SW-4	Total/NA	Solid	Total BTEX
880-15895-40	SW-5	Total/NA	Solid	Total BTEX
880-15895-41	SW-6	Total/NA	Solid	Total BTEX
880-15895-42	SW-7	Total/NA	Solid	Total BTEX
880-15895-43	SW-8	Total/NA	Solid	Total BTEX
880-15895-44	SW-9	Total/NA	Solid	Total BTEX
880-15895-45	SW-10	Total/NA	Solid	Total BTEX

Prep Batch: 27796

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-27796/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method

Total BTEX

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: Tetra Tech, Inc.

GC VOA

Prep Batch: 27835 Lab Sample ID

MB 880-27835/5-A

LCS 880-27835/1-A

LCSD 880-27835/2-A

890-2406-A-18-F MS

Lab Sample ID

880-15895-18

MB 880-27796/5-A

MB 880-27835/5-A

LCS 880-27835/1-A

LCSD 880-27835/2-A

890-2406-A-18-F MS

890-2406-A-18-G MSD

890-2406-A-18-G MSD

Analysis Batch: 27863

880-15895-18

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method

5035

5035

5035

5035

5035

5035

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

Page 149 of 223

Prep Batch

Prep Batch

27835

27796

27835

27835

27835

27835

27835

8

GC Semi VOA

Prep Batch: 27553

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-1	BH-1	Total/NA	Solid	8015NM Prep	
880-15895-2	BH-2	Total/NA	Solid	8015NM Prep	
880-15895-3	BH-3	Total/NA	Solid	8015NM Prep	
880-15895-4	BH-4	Total/NA	Solid	8015NM Prep	
380-15895-5	BH-5	Total/NA	Solid	8015NM Prep	
380-15895-6	BH-6	Total/NA	Solid	8015NM Prep	
380-15895-7	BH-7	Total/NA	Solid	8015NM Prep	
380-15895-8	BH-8	Total/NA	Solid	8015NM Prep	
380-15895-9	BH-9	Total/NA	Solid	8015NM Prep	
380-15895-10	BH-10	Total/NA	Solid	8015NM Prep	
380-15895-11	BH-11	Total/NA	Solid	8015NM Prep	
380-15895-12	BH-12	Total/NA	Solid	8015NM Prep	
380-15895-13	BH-13	Total/NA	Solid	8015NM Prep	
380-15895-14	BH-14	Total/NA	Solid	8015NM Prep	
380-15895-15	BH-15	Total/NA	Solid	8015NM Prep	
380-15895-16	BH-16	Total/NA	Solid	8015NM Prep	
380-15895-17	BH-17	Total/NA	Solid	8015NM Prep	
380-15895-18	BH-18	Total/NA	Solid	8015NM Prep	
380-15895-19	BH-19	Total/NA	Solid	8015NM Prep	
380-15895-20	BH-20	Total/NA	Solid	8015NM Prep	
MB 880-27553/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
_CS 880-27553/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
_CSD 880-27553/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
380-15895-1 MS	BH-1	Total/NA	Solid	8015NM Prep	
380-15895-1 MSD	BH-1	Total/NA	Solid	8015NM Prep	

Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch Total/NA 880-15895-21 BH-21 Solid 8015NM Prep BH-22 8015NM Prep 880-15895-22 Total/NA Solid

Eurofins Midland

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Method Blank

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

BH-18

Method Blank

Matrix Spike

BH-18

Client: Tetra Tech, Inc. Project/Site: Bear Booster

GC Semi VOA (Continued)

Prep Batch: 27555 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-15895-23	BH-23	Total/NA	Solid	8015NM Prep	
880-15895-24	BH-24	Total/NA	Solid	8015NM Prep	
880-15895-25	BH-25	Total/NA	Solid	8015NM Prep	
880-15895-26	BH-26	Total/NA	Solid	8015NM Prep	
880-15895-27	BH-27	Total/NA	Solid	8015NM Prep	
880-15895-28	BH-28	Total/NA	Solid	8015NM Prep	
880-15895-29	BH-29	Total/NA	Solid	8015NM Prep	_
880-15895-30	BH-30	Total/NA	Solid	8015NM Prep	
880-15895-31	BH-31	Total/NA	Solid	8015NM Prep	_
880-15895-32	BH-32	Total/NA	Solid	8015NM Prep	
880-15895-33	BH-33	Total/NA	Solid	8015NM Prep	
880-15895-34	BH-34	Total/NA	Solid	8015NM Prep	
880-15895-35	BH-35	Total/NA	Solid	8015NM Prep	
880-15895-36	SW-1	Total/NA	Solid	8015NM Prep	
880-15895-37	SW-2	Total/NA	Solid	8015NM Prep	
880-15895-38	SW-3	Total/NA	Solid	8015NM Prep	
880-15895-39	SW-4	Total/NA	Solid	8015NM Prep	
880-15895-40	SW-5	Total/NA	Solid	8015NM Prep	
MB 880-27555/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-27555/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-27555/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-15895-21 MS	BH-21	Total/NA	Solid	8015NM Prep	
880-15895-21 MSD	BH-21	Total/NA	Solid	8015NM Prep	

Prep Batch: 27556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-41	SW-6	Total/NA	Solid	8015NM Prep	
880-15895-42	SW-7	Total/NA	Solid	8015NM Prep	
880-15895-43	SW-8	Total/NA	Solid	8015NM Prep	
880-15895-44	SW-9	Total/NA	Solid	8015NM Prep	
880-15895-45	SW-10	Total/NA	Solid	8015NM Prep	
MB 880-27556/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-27556/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-27556/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-15888-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-15888-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 27557

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-15895-21	BH-21	Total/NA	Solid	8015B NM	27555
880-15895-22	BH-22	Total/NA	Solid	8015B NM	27555
880-15895-23	BH-23	Total/NA	Solid	8015B NM	27555
880-15895-24	BH-24	Total/NA	Solid	8015B NM	27555
880-15895-25	BH-25	Total/NA	Solid	8015B NM	27555
880-15895-26	BH-26	Total/NA	Solid	8015B NM	27555
880-15895-27	BH-27	Total/NA	Solid	8015B NM	27555
880-15895-28	BH-28	Total/NA	Solid	8015B NM	27555
880-15895-29	BH-29	Total/NA	Solid	8015B NM	27555
880-15895-30	BH-30	Total/NA	Solid	8015B NM	27555
880-15895-31	BH-31	Total/NA	Solid	8015B NM	27555
880-15895-32	BH-32	Total/NA	Solid	8015B NM	27555

Eurofins Midland

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Client: Tetra Tech, Inc. Project/Site: Bear Booster

GC Semi VOA (Continued)

Analysis Batch: 27557 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-33	BH-33	Total/NA	Solid	8015B NM	27555
880-15895-34	BH-34	Total/NA	Solid	8015B NM	27555
880-15895-35	BH-35	Total/NA	Solid	8015B NM	27555
880-15895-36	SW-1	Total/NA	Solid	8015B NM	27555
880-15895-37	SW-2	Total/NA	Solid	8015B NM	27555
880-15895-38	SW-3	Total/NA	Solid	8015B NM	27555
880-15895-39	SW-4	Total/NA	Solid	8015B NM	27555
880-15895-40	SW-5	Total/NA	Solid	8015B NM	27555
MB 880-27555/1-A	Method Blank	Total/NA	Solid	8015B NM	27555
LCS 880-27555/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	27555
LCSD 880-27555/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	27555
880-15895-21 MS	BH-21	Total/NA	Solid	8015B NM	27555
880-15895-21 MSD	BH-21	Total/NA	Solid	8015B NM	27555

Analysis Batch: 27559

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-1	BH-1	Total/NA	Solid	8015B NM	27553
880-15895-2	BH-2	Total/NA	Solid	8015B NM	27553
880-15895-3	BH-3	Total/NA	Solid	8015B NM	27553
880-15895-4	BH-4	Total/NA	Solid	8015B NM	27553
880-15895-5	BH-5	Total/NA	Solid	8015B NM	27553
880-15895-6	BH-6	Total/NA	Solid	8015B NM	27553
880-15895-7	BH-7	Total/NA	Solid	8015B NM	27553
880-15895-8	BH-8	Total/NA	Solid	8015B NM	27553
880-15895-9	BH-9	Total/NA	Solid	8015B NM	27553
880-15895-10	BH-10	Total/NA	Solid	8015B NM	27553
880-15895-11	BH-11	Total/NA	Solid	8015B NM	27553
880-15895-12	BH-12	Total/NA	Solid	8015B NM	27553
880-15895-13	BH-13	Total/NA	Solid	8015B NM	27553
880-15895-14	BH-14	Total/NA	Solid	8015B NM	27553
880-15895-15	BH-15	Total/NA	Solid	8015B NM	27553
880-15895-16	BH-16	Total/NA	Solid	8015B NM	27553
880-15895-17	BH-17	Total/NA	Solid	8015B NM	27553
880-15895-18	BH-18	Total/NA	Solid	8015B NM	27553
880-15895-19	BH-19	Total/NA	Solid	8015B NM	27553
880-15895-20	BH-20	Total/NA	Solid	8015B NM	27553
MB 880-27553/1-A	Method Blank	Total/NA	Solid	8015B NM	27553
LCS 880-27553/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	27553
LCSD 880-27553/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	27553
880-15895-1 MS	BH-1	Total/NA	Solid	8015B NM	27553
880-15895-1 MSD	BH-1	Total/NA	Solid	8015B NM	27553

Analysis Batch: 27563

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-15895-41	SW-6	Total/NA	Solid	8015B NM	27556
880-15895-42	SW-7	Total/NA	Solid	8015B NM	27556
880-15895-43	SW-8	Total/NA	Solid	8015B NM	27556
880-15895-44	SW-9	Total/NA	Solid	8015B NM	27556
880-15895-45	SW-10	Total/NA	Solid	8015B NM	27556
MB 880-27556/1-A	Method Blank	Total/NA	Solid	8015B NM	27556
LCS 880-27556/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	27556

Eurofins Midland

Job ID: 880-15895-1

SDG: Eddy County, New Mexico

Client: Tetra Tech, Inc. Project/Site: Bear Booster

GC Semi VOA (Continued)

Analysis Batch: 27563 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-27556/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	27556
880-15888-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	27556
880-15888-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	27556

Analysis Batch: 27670

BH-1 BH-2 BH-3 BH-4 BH-5 BH-6	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid	8015 NM 8015 NM 8015 NM	
BH-3 BH-4 BH-5	Total/NA Total/NA			
BH-4 BH-5	Total/NA	Solid	OO1E NIM	
BH-5				
	T-+-1/NIA	Solid	8015 NM	
BH-6	Total/NA	Solid	8015 NM	
0-110	Total/NA	Solid	8015 NM	
BH-7	Total/NA	Solid	8015 NM	
BH-8	Total/NA	Solid	8015 NM	
BH-9	Total/NA	Solid	8015 NM	
BH-10	Total/NA	Solid	8015 NM	
BH-11	Total/NA	Solid	8015 NM	
BH-12	Total/NA	Solid	8015 NM	
BH-13	Total/NA	Solid	8015 NM	
BH-14	Total/NA	Solid	8015 NM	
BH-15	Total/NA	Solid	8015 NM	
BH-16	Total/NA	Solid	8015 NM	
BH-17	Total/NA	Solid	8015 NM	
BH-18	Total/NA	Solid	8015 NM	
BH-19	Total/NA	Solid	8015 NM	
BH-20	Total/NA	Solid	8015 NM	
BH-21	Total/NA	Solid	8015 NM	
BH-22	Total/NA	Solid	8015 NM	
BH-23	Total/NA	Solid	8015 NM	
BH-24		Solid		
BH-30	Total/NA	Solid	8015 NM	
BH-31	Total/NA	Solid	8015 NM	
			8015 NM	
BH-33	Total/NA	Solid	8015 NM	
			8015 NM	
	BH-9 BH-10 BH-11 BH-12 BH-12 BH-13 BH-12 BH-13 BH-14 BH-15 BH-15 BH-15 BH-16 BH-17 BH-18 BH-17 BH-18 BH-19 BH-20 BH-21 BH-20 BH-21 BH-22 BH-22 BH-22 BH-23 BH-24 BH-25 BH-26 BH-27 BH-28 BH-29 BH-30 BH-31 BH-32	BH-9 Total/NA BH-10 Total/NA BH-11 Total/NA BH-12 Total/NA BH-13 Total/NA BH-14 Total/NA BH-15 Total/NA BH-16 Total/NA BH-17 Total/NA BH-18 Total/NA BH-19 Total/NA BH-20 Total/NA BH-21 Total/NA BH-22 Total/NA BH-23 Total/NA BH-24 Total/NA BH-25 Total/NA BH-26 Total/NA BH-27 Total/NA BH-28 Total/NA BH-29 Total/NA BH-29 Total/NA BH-31 Total/NA BH-32 Total/NA BH-33 Total/NA BH-34 Total/NA BH-35 Total/NA BH-36 Total/NA BH-37 Total/NA BH-38 Total/NA <	BH-9Total/NASolidBH-10Total/NASolidBH-11Total/NASolidBH-12Total/NASolidBH-13Total/NASolidBH-14Total/NASolidBH-15Total/NASolidBH-16Total/NASolidBH-17Total/NASolidBH-18Total/NASolidBH-19Total/NASolidBH-19Total/NASolidBH-20Total/NASolidBH-21Total/NASolidBH-22Total/NASolidBH-23Total/NASolidBH-24Total/NASolidBH-25Total/NASolidBH-26Total/NASolidBH-27Total/NASolidBH-28Total/NASolidBH-29Total/NASolidBH-29Total/NASolidBH-30Total/NASolidBH-31Total/NASolidBH-33Total/NASolidBH-34Total/NASolidBH-35Total/NASolidBH-36Total/NASolidBH-37Total/NASolidBH-38Total/NASolidBH-39Total/NASolidBH-30Total/NASolidBH-31Total/NASolidBH-33Total/NASolidBH-34Total/NASolidBH-35Total/NASolidSW-3Total/NASol	BH-9 Total/NA Solid 8015 NM BH-10 Total/NA Solid 6015 NM BH-11 Total/NA Solid 6015 NM BH-12 Total/NA Solid 6015 NM BH-13 Total/NA Solid 6015 NM BH-14 Total/NA Solid 6015 NM BH-15 Total/NA Solid 6015 NM BH-16 Total/NA Solid 6015 NM BH-17 Total/NA Solid 6015 NM BH-18 Total/NA Solid 6015 NM BH-19 Total/NA Solid 8015 NM BH-20 Total/NA Solid 8015 NM BH-21 Total/NA Solid 8015 NM BH-22 Total/NA Solid 8015 NM BH-23 Total/NA Solid 8015 NM BH-24 Total/NA Solid 8015 NM BH-25 Total/NA Solid 8015 NM BH-26 Total/NA Sol

Eurofins Midland

5

Job ID: 880-15895-1

SDG: Eddy County, New Mexico

Client Sample ID

SW-6

SW-7

SW-8

SW-9

SW-10

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

QC Association Summary

Prep Type

Soluble

Matrix

Solid

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Leach Batch: 27636

Lab Sample ID

880-15895-41

880-15895-42

880-15895-43

880-15895-44

880-15895-45

MB 880-27636/1-A

LCS 880-27636/2-A

LCSD 880-27636/3-A

880-15818-A-6-C MS

HPLC/IC

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method

DI Leach

Page 153 of 223

Prep Batch

1 2 3 4 5 6 7 8 8

13

880-15818-A-6-D MSD

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-1	BH-1	Soluble	Solid	DI Leach	
880-15895-2	BH-2	Soluble	Solid	DI Leach	
880-15895-3	BH-3	Soluble	Solid	DI Leach	
880-15895-4	BH-4	Soluble	Solid	DI Leach	
880-15895-5	BH-5	Soluble	Solid	DI Leach	
880-15895-6	BH-6	Soluble	Solid	DI Leach	
880-15895-7	BH-7	Soluble	Solid	DI Leach	
880-15895-8	BH-8	Soluble	Solid	DI Leach	
880-15895-9	BH-9	Soluble	Solid	DI Leach	
880-15895-10	BH-10	Soluble	Solid	DI Leach	
880-15895-11	BH-11	Soluble	Solid	DI Leach	
880-15895-12	BH-12	Soluble	Solid	DI Leach	
880-15895-13	BH-13	Soluble	Solid	DI Leach	
880-15895-14	BH-14	Soluble	Solid	DI Leach	
880-15895-15	BH-15	Soluble	Solid	DI Leach	
880-15895-16	BH-16	Soluble	Solid	DI Leach	
880-15895-17	BH-17	Soluble	Solid	DI Leach	
880-15895-18	BH-18	Soluble	Solid	DI Leach	
880-15895-19	BH-19	Soluble	Solid	DI Leach	
880-15895-20	BH-20	Soluble	Solid	DI Leach	
MB 880-27637/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-27637/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-27637/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-15895-1 MS	BH-1	Soluble	Solid	DI Leach	
880-15895-1 MSD	BH-1	Soluble	Solid	DI Leach	
880-15895-11 MS	BH-11	Soluble	Solid	DI Leach	
880-15895-11 MSD	BH-11	Soluble	Solid	DI Leach	

Leach Batch: 27639

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-15895-21	BH-21	Soluble	Solid	DI Leach	
880-15895-22	BH-22	Soluble	Solid	DI Leach	
880-15895-23	BH-23	Soluble	Solid	DI Leach	
880-15895-24	BH-24	Soluble	Solid	DI Leach	
880-15895-25	BH-25	Soluble	Solid	DI Leach	
880-15895-26	BH-26	Soluble	Solid	DI Leach	
880-15895-27	BH-27	Soluble	Solid	DI Leach	
880-15895-28	BH-28	Soluble	Solid	DI Leach	

Client: Tetra Tech, Inc. Project/Site: Bear Booster

HPLC/IC (Continued)

Leach Batch: 27639 (Continued)

SDG: Eddy County

Job ID: 880-15895-1 , New Mexico

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-29	BH-29	Soluble	Solid	DI Leach	
880-15895-30	BH-30	Soluble	Solid	DI Leach	
880-15895-31	BH-31	Soluble	Solid	DI Leach	
880-15895-32	BH-32	Soluble	Solid	DI Leach	
880-15895-33	BH-33	Soluble	Solid	DI Leach	
880-15895-34	BH-34	Soluble	Solid	DI Leach	
880-15895-35	BH-35	Soluble	Solid	DI Leach	
880-15895-36	SW-1	Soluble	Solid	DI Leach	
880-15895-37	SW-2	Soluble	Solid	DI Leach	
880-15895-38	SW-3	Soluble	Solid	DI Leach	
880-15895-39	SW-4	Soluble	Solid	DI Leach	
880-15895-40	SW-5	Soluble	Solid	DI Leach	
MB 880-27639/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-27639/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-27639/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-15895-21 MS	BH-21	Soluble	Solid	DI Leach	
880-15895-21 MSD	BH-21	Soluble	Solid	DI Leach	
880-15895-31 MS	BH-31	Soluble	Solid	DI Leach	
880-15895-31 MSD	BH-31	Soluble	Solid	DI Leach	

Analysis Batch: 27857

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-15895-41	SW-6	Soluble	Solid	300.0	27636
880-15895-42	SW-7	Soluble	Solid	300.0	27636
880-15895-43	SW-8	Soluble	Solid	300.0	27636
880-15895-44	SW-9	Soluble	Solid	300.0	27636
880-15895-45	SW-10	Soluble	Solid	300.0	27636
MB 880-27636/1-A	Method Blank	Soluble	Solid	300.0	27636
LCS 880-27636/2-A	Lab Control Sample	Soluble	Solid	300.0	27636
LCSD 880-27636/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	27636
880-15818-A-6-C MS	Matrix Spike	Soluble	Solid	300.0	27636
880-15818-A-6-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	27636

Analysis Batch: 27860

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-15895-1	BH-1	Soluble	Solid	300.0	27637
880-15895-2	BH-2	Soluble	Solid	300.0	27637
880-15895-3	BH-3	Soluble	Solid	300.0	27637
880-15895-4	BH-4	Soluble	Solid	300.0	27637
880-15895-5	BH-5	Soluble	Solid	300.0	27637
880-15895-6	BH-6	Soluble	Solid	300.0	27637
880-15895-7	BH-7	Soluble	Solid	300.0	27637
880-15895-8	BH-8	Soluble	Solid	300.0	27637
880-15895-9	BH-9	Soluble	Solid	300.0	27637
880-15895-10	BH-10	Soluble	Solid	300.0	27637
880-15895-11	BH-11	Soluble	Solid	300.0	27637
880-15895-12	BH-12	Soluble	Solid	300.0	27637
880-15895-13	BH-13	Soluble	Solid	300.0	27637
880-15895-14	BH-14	Soluble	Solid	300.0	27637
880-15895-15	BH-15	Soluble	Solid	300.0	27637
880-15895-16	BH-16	Soluble	Solid	300.0	27637

Eurofins Midland

Client: Tetra Tech, Inc. Project/Site: Bear Booster Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Page 155 of 223

5 6

HPLC/IC (Continued) Analysis Batch: 27860 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-17	BH-17	Soluble	Solid	300.0	27637
880-15895-18	BH-18	Soluble	Solid	300.0	27637
880-15895-19	BH-19	Soluble	Solid	300.0	27637
880-15895-20	BH-20	Soluble	Solid	300.0	27637
MB 880-27637/1-A	Method Blank	Soluble	Solid	300.0	27637
LCS 880-27637/2-A	Lab Control Sample	Soluble	Solid	300.0	27637
LCSD 880-27637/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	27637
880-15895-1 MS	BH-1	Soluble	Solid	300.0	27637
880-15895-1 MSD	BH-1	Soluble	Solid	300.0	27637
880-15895-11 MS	BH-11	Soluble	Solid	300.0	27637
880-15895-11 MSD	BH-11	Soluble	Solid	300.0	27637

Analysis Batch: 27861

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-15895-21	BH-21	Soluble	Solid	300.0	27639
880-15895-22	BH-22	Soluble	Solid	300.0	27639
880-15895-23	BH-23	Soluble	Solid	300.0	27639
880-15895-24	BH-24	Soluble	Solid	300.0	27639
880-15895-25	BH-25	Soluble	Solid	300.0	27639
880-15895-26	BH-26	Soluble	Solid	300.0	27639
880-15895-27	BH-27	Soluble	Solid	300.0	27639
880-15895-28	BH-28	Soluble	Solid	300.0	27639
880-15895-29	BH-29	Soluble	Solid	300.0	27639
880-15895-30	BH-30	Soluble	Solid	300.0	27639
880-15895-31	BH-31	Soluble	Solid	300.0	27639
880-15895-32	BH-32	Soluble	Solid	300.0	27639
880-15895-33	BH-33	Soluble	Solid	300.0	27639
880-15895-34	BH-34	Soluble	Solid	300.0	27639
880-15895-35	BH-35	Soluble	Solid	300.0	27639
880-15895-36	SW-1	Soluble	Solid	300.0	27639
880-15895-37	SW-2	Soluble	Solid	300.0	27639
880-15895-38	SW-3	Soluble	Solid	300.0	27639
880-15895-39	SW-4	Soluble	Solid	300.0	27639
880-15895-40	SW-5	Soluble	Solid	300.0	27639
MB 880-27639/1-A	Method Blank	Soluble	Solid	300.0	27639
LCS 880-27639/2-A	Lab Control Sample	Soluble	Solid	300.0	27639
LCSD 880-27639/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	27639
880-15895-21 MS	BH-21	Soluble	Solid	300.0	27639
880-15895-21 MSD	BH-21	Soluble	Solid	300.0	27639
880-15895-31 MS	BH-31	Soluble	Solid	300.0	27639
880-15895-31 MSD	BH-31	Soluble	Solid	300.0	27639

Initial

Amount

4.99 g

5 mL

10.02 g

5.02 g

Final

Amount

5 mL

5 mL

10 mL

50 mL

Batch

27627

27651

27768

27670

27553

27559

27637

27860

Number

Dil

1

1

1

1

1

Factor

Run

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Client Sample ID: BH-1 Date Collected: 06/14/22 00:00

Client Sample ID: BH-2

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-1 Matrix: Solid

Analyst

MR

MR

AJ

AJ

DM

AJ

СН

СН

Lab

XEN MID

Matrix: Solid

Prepared

or Analyzed

06/15/22 15:37

06/16/22 16:50

06/17/22 09:21

06/16/22 09:49

06/15/22 08:46

06/15/22 11:52

06/15/22 16:52

06/20/22 08:51

Lab Sample ID: 880-15895-2 Matrix: Solid

Lab Sample ID: 880-15895-3

Lab Sample ID: 880-15895-4

Final	Batch	Prepared	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	27627	06/15/22 15:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27651	06/16/22 17:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 12:58	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 09:15	СН	XEN MID

Client Sample ID: BH-3

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	27627	06/15/22 15:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27651	06/16/22 17:31	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 13:20	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 09:22	СН	XEN MID

Client Sample ID: BH-4 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	27627	06/15/22 15:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27651	06/16/22 17:52	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-4 Matrix: Solid

Lab Sample ID: 880-15895-6

Lab Sample ID: 880-15895-7

Matrix: Solid

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client Sample ID: BH-4

Client: Tetra Tech, Inc. Project/Site: Bear Booster

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 13:41	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 09:30	СН	XEN MID

Client Sample ID: BH-5 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	27627	06/15/22 15:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27651	06/16/22 18:12	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 14:03	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 09:38	CH	XEN MID

Client Sample ID: BH-6

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Batch Batch Dil Initial Final Batch Prepared Ргер Туре Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.03 g 5 mL 27627 06/15/22 15:37 MR XEN MID Total/NA 8021B 5 mL 5 mL 27651 06/16/22 18:32 MR XEN MID Analysis 1 Total/NA Analysis Total BTEX 1 27768 06/17/22 09:21 AJ XEN MID Total/NA Analysis 8015 NM 27670 06/16/22 09:49 AJ XEN MID 1 Total/NA Prep 8015NM Prep 10.02 g 10 mL 27553 06/15/22 08:46 DM XEN MID Total/NA Analysis 8015B NM 27559 06/15/22 14:24 A.I XEN MID 1 Soluble Leach DI Leach 4.95 g 50 mL 27637 06/15/22 16:52 СН XEN MID Soluble Analysis 300.0 27860 06/20/22 10:02 СН XEN MID 1

Client Sample ID: BH-7 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	27627	06/15/22 15:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27651	06/16/22 18:53	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 14:46	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Lab Chronicle

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-7 Matrix: Solid

Lab Sample ID: 880-15895-8

Lab Sample ID: 880-15895-9

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client Sample ID: BH-7

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 10:09	СН	XEN MID

Client Sample ID: BH-8

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	27627	06/15/22 15:37	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27651	06/16/22 19:13	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 15:08	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 10:17	СН	XEN MID

Client Sample ID: BH-9 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 12:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 15:30	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 10:25	СН	XEN MID

Client Sample ID: BH-10 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Lab Sample ID: 880-15895-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 12:35	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 15:51	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 10:33	СН	XEN MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

9

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-11

Lab Sample ID: 880-15895-12

Lab Sample ID: 880-15895-13

Lab Sample ID: 880-15895-14

Matrix: Solid

Matrix: Solid

Matrix: Solid

5 6

9

Client Sample ID: BH-11 Date Collected: 06/14/22 00:00

Project/Site: Bear Booster

Client: Tetra Tech, Inc.

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 13:01	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 16:34	AJ	XEN MID
Soluble	Leach	DI Leach			4.97 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 10:41	СН	XEN MID

Client Sample ID: BH-12

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 13:27	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 16:56	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 11:04	СН	XEN MID

Client Sample ID: BH-13

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 13:53	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 17:18	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 11:12	СН	XEN MID

Client Sample ID: BH-14 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 14:19	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Prep Type

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Client Sample ID: BH-14

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Client Sample ID: BH-15

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Batch

Туре

Prep

Analysis

Analysis

Analysis

Leach

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

8015 NM

8015NM Prep

8015B NM

DI Leach

300.0

Batch

5035

8021B

Method

Initial

Amount

10.02 g

4.95 g

Initial

Amount

4.99 g

Final

Amount

10 mL

50 mL

Batch

Number

27670

27553

27559

27637

27860

Dil

1

1

1

Dil

1

Factor

Factor

Run

Run

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-14 Matrix: Solid

Analyst

AJ

DM

AJ

CH

СН

AJ

AJ

DM

AJ

CH

СН

Lab Sample ID: 880-15895-16

Lab Sample ID: 880-15895-17

Lab Sample ID: 880-15895-15

Prepared

or Analyzed

06/16/22 09:49

06/15/22 08:46

06/15/22 17:39

06/15/22 16:52

06/20/22 11:36

Lab

XEN MID

XEN MID

XEN MID

XEN MID

XEN MID

Matrix: Solid

XEN MID

XEN MID

XEN MID

XEN MID

XEN MID

XEN MID

Matrix: Solid

9

Final Batch Prepared Amount Number or Analyzed Analyst Lab 5 mL 27628 06/15/22 16:00 MR XEN MID 27741 06/17/22 14:45 MR XEN MID

Total BTEX 1 27768 06/17/22 09:21 8015 NM 27670 06/16/22 09:49 1 8015NM Prep 10.00 g 10 mL 27553 06/15/22 08:46 8015B NM 27559 06/15/22 18:01 1 **DI Leach** 5.03 g 50 mL 27637 06/15/22 16:52 300.0 1 27860 06/20/22 11:44

Client Sample ID: BH-16

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 15:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 18:23	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 11:51	СН	XEN MID

Client Sample ID: BH-17 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 15:36	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 18:45	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 7/19/2022 11:57:09 AM

Page 72 of 90

Matrix: Solid

Matrix: Solid

9

Lab Chronicle

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-17 Matrix: Solid

Lab Sample ID: 880-15895-18

Lab Sample ID: 880-15895-19

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client Sample ID: BH-17

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 11:59	СН	XEN MID

Client Sample ID: BH-18 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	27835	06/17/22 16:12	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27863	06/19/22 09:37	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 19:06	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 12:07	СН	XEN MID

Client Sample ID: BH-19 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 17:50	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 19:28	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 12:15	СН	XEN MID

Client Sample ID: BH-20 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Lab Sample ID: 880-15895-20 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 18:16	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27553	06/15/22 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27559	06/15/22 19:50	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	27637	06/15/22 16:52	СН	XEN MID
Soluble	Analysis	300.0		1			27860	06/20/22 12:23	СН	XEN MID

Eurofins Midland

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

Client Sample ID: BH-21 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-21

Lab Sample ID: 880-15895-22

Lab Sample ID: 880-15895-23

Lab Sample ID: 880-15895-24

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 18:42	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 11:52	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 11:11	СН	XEN MID

Client Sample ID: BH-22

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 19:08	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 12:58	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 11:39	СН	XEN MID

Client Sample ID: BH-23

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 19:34	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 13:20	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 11:48	СН	XEN MID

Client Sample ID: BH-24 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 20:00	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Page 162 of 223

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Prep Type

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Client Sample ID: BH-24

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Client Sample ID: BH-25

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Batch

Туре

Prep

Analysis

Analysis

Analysis

Leach

Batch

Batch

Method

8015 NM

8015NM Prep

8015B NM

DI Leach

300.0

Batch

Initial

Amount

10.02 g

5.03 g

Final

Amount

10 mL

50 mL

Batch

Number

27670

27555

27557

27639

27861

Dil

1

1

1

Dil

Factor

Run

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-24 Matrix: Solid

Analyst

AJ

DM

AJ

CH

СН

Lab Sample ID: 880-15895-25

Lab Sample ID: 880-15895-26

Lab Sample ID: 880-15895-27

Prepared

or Analyzed

06/16/22 09:49

06/15/22 08:49

06/15/22 13:41

06/15/22 16:54

06/20/22 11:57

Lab

XEN MID

XEN MID

XEN MID

XEN MID

XEN MID

Matrix: Solid

Matrix: Solid

9

Initial Final Batch Prepared Amount Amount Number

Method Prep Type Туре Run Factor or Analyzed Analyst Lab 5035 Prep Total/NA 5.03 g 5 mL 27628 06/15/22 16:00 MR XEN MID Total/NA Analysis 8021B 27741 06/17/22 20:26 MR XEN MID 1 Total/NA Analysis Total BTEX 1 27768 06/17/22 09:21 AJ XEN MID Total/NA 8015 NM 27670 06/16/22 09:49 XEN MID Analysis AJ 1 Total/NA Prep 8015NM Prep 10.01 g 10 mL 27555 06/15/22 08:49 DM XEN MID Total/NA 8015B NM 27557 06/15/22 14:03 XEN MID Analysis AJ 1 Soluble Leach **DI Leach** 5.05 g 50 mL 27639 06/15/22 16:54 СН XEN MID Soluble Analysis 300.0 1 27861 06/20/22 12:07 СН XEN MID

Client Sample ID: BH-26

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 20:52	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 14:24	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 12:35	CH	XEN MID

Client Sample ID: BH-27

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 21:18	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 14:46	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 7/19/2022 11:57:09 AM

Page 75 of 90

Lab Chronicle

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-27 Matrix: Solid

Lab Sample ID: 880-15895-28

Lab Sample ID: 880-15895-29

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client Sample ID: BH-27

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 12:44	СН	XEN MID

Client Sample ID: BH-28 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	27628	06/15/22 16:00	MR	XEN MID
Total/NA	Analysis	8021B		1			27741	06/17/22 21:45	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 15:08	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 12:53	СН	XEN MID

Client Sample ID: BH-29 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 14:27	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 15:30	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 13:02	СН	XEN MID

Client Sample ID: BH-30 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Lab Sample ID: 880-15895-30 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 14:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 15:51	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 13:12	СН	XEN MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

9

5 6

9

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-31 Matrix: Solid

Lab Sample ID: 880-15895-32

Lab Sample ID: 880-15895-33

Lab Sample ID: 880-15895-34

Matrix: Solid

Matrix: Solid

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client Sample ID: BH-31

Client: Tetra Tech, Inc.

Project/Site: Bear Booster

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 15:08	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 16:34	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 13:21	СН	XEN MID

Client Sample ID: BH-32

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 15:29	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 16:56	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 14:16	СН	XEN MID

Client Sample ID: BH-33

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 15:49	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 17:18	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 14:25	СН	XEN MID

Client Sample ID: BH-34 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 17:12	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Client Sample ID: BH-34 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 17:39	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 15:39	СН	XEN MID

Client Sample ID: BH-35 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 17:33	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 18:01	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 15:48	СН	XEN MID

Client Sample ID: SW-1

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 17:53	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 18:23	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 15:58	CH	XEN MID

Client Sample ID: SW-2

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 18:14	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 18:45	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-34 Matrix: Solid

Lab Sample ID: 880-15895-35

Lab Sample ID: 880-15895-36

Lab Sample ID: 880-15895-37

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-37 Matrix: Solid

Lab Sample ID: 880-15895-38

Lab Sample ID: 880-15895-39

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Client Sample ID: SW-2

Client: Tetra Tech, Inc. Project/Site: Bear Booster

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 16:07	СН	XEN MID

Client Sample ID: SW-3

Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 18:34	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 19:06	AJ	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 16:16	СН	XEN MID

Client Sample ID: SW-4 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 18:55	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27555	06/15/22 08:49	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27557	06/15/22 19:28	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	27639	06/15/22 16:54	СН	XEN MID
Soluble	Analysis	300.0		1			27861	06/20/22 16:26	СН	XEN MID

Client Sample ID: SW-5 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

Lab Sample ID: 880-15895-40 Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Method Factor Amount Amount Number or Analyzed Analyst Туре Run Lab 5035 Total/NA Prep 5.03 g 5 mL 27629 06/15/22 16:05 MR XEN MID Total/NA Analysis 8021B 1 5 mL 5 mL 27660 06/16/22 19:15 MR XEN MID Total/NA Total BTEX XEN MID Analysis 27768 06/17/22 09:21 AJ 1 Total/NA Analysis 8015 NM 1 27670 06/16/22 09:49 AJ XEN MID XEN MID Total/NA Prep 8015NM Prep 10.02 g 10 mL 27555 06/15/22 08:49 DM Total/NA Analysis 8015B NM 1 27557 06/15/22 19:50 AJ XEN MID Soluble 50 mL 27639 XEN MID Leach DI Leach 5.05 g 06/15/22 16:54 CH Soluble Analysis 300.0 1 27861 06/20/22 16:35 СН XEN MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

9

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-41

Matrix: Solid

9 10

Lab Sample ID: 880-15895-42 Matrix: Solid

Lab Sample ID: 880-15895-43

Lab Sample ID: 880-15895-44

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Client Sample ID: SW-6 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 19:36	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27556	06/15/22 08:52	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27563	06/15/22 15:08	AJ	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	27636	06/15/22 18:13	СН	XEN MID
Soluble	Analysis	300.0		5			27857	06/19/22 07:58	СН	XEN MID

Client Sample ID: SW-7

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 19:56	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27556	06/15/22 08:52	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27563	06/15/22 15:30	AJ	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	27636	06/15/22 18:13	СН	XEN MID
Soluble	Analysis	300.0		1			27857	06/19/22 08:25	СН	XEN MID

Client Sample ID: SW-8

Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	27629	06/15/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27660	06/16/22 20:17	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	27556	06/15/22 08:52	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27563	06/15/22 15:51	AJ	XEN MID
Soluble	Leach	DI Leach			4.98 g	50 mL	27636	06/15/22 18:13	СН	XEN MID
Soluble	Analysis	300.0		1			27857	06/19/22 08:35	СН	XEN MID

Client Sample ID: SW-9 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	27654	06/16/22 08:23	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27652	06/16/22 13:23	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Page 168 0

Matrix: Solid

5

9

Job ID: 880-15895-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-15895-44

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: Bear Booster

Client Sample ID: SW-9 Date Collected: 06/14/22 00:00

Date Received: 06/15/22 08:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	27556	06/15/22 08:52	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27563	06/15/22 16:13	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	27636	06/15/22 18:13	СН	XEN MID
Soluble	Analysis	300.0		1			27857	06/19/22 08:44	СН	XEN MID

Client Sample ID: SW-10 Date Collected: 06/14/22 00:00 Date Received: 06/15/22 08:15

Lab Sample ID: 880-15895-45

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	27654	06/16/22 08:23	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	27652	06/16/22 13:44	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			27768	06/17/22 09:21	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			27670	06/16/22 09:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	27556	06/15/22 08:52	DM	XEN MID
Total/NA	Analysis	8015B NM		1			27563	06/15/22 17:19	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	27636	06/15/22 18:13	СН	XEN MID
Soluble	Analysis	300.0		1			27857	06/19/22 08:53	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

10

Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Project/Site: Bear Booster

Client: Tetra Tech, Inc.

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pr	ogram	Identification Number	Expiration Date
exas	NE	ELAP	T104704400-21-22	06-30-22
0,	1 /	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for v
the agency does not o	fer certification.			
the agency does not o Analysis Method	fer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

Eurofins Midland

Method Summary

Client: Tetra Tech, Inc. Project/Site: Bear Booster Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Bear Booster Job ID: 880-15895-1 SDG: Eddy County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
880-15895-1	BH-1	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-2	BH-2	Solid	06/14/22 00:00	06/15/22 08:15	
880-15895-3	BH-3	Solid	06/14/22 00:00	06/15/22 08:15	
880-15895-4	BH-4	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-5	BH-5	Solid	06/14/22 00:00	06/15/22 08:15	
880-15895-6	BH-6	Solid	06/14/22 00:00	06/15/22 08:15	
880-15895-7	BH-7	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-8	BH-8	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-9	BH-9	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-10	BH-10	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-11	BH-11	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-12	BH-12	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-13	BH-13	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-14	BH-14	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-15	BH-15	Solid	06/14/22 00:00	06/15/22 08:15	
880-15895-16	BH-16	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-17	BH-17	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-18	BH-18	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-19	BH-19	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-20	BH-20	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-21	BH-21	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-22	BH-22	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-23	BH-23	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-24	BH-24	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-25	BH-25	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-26	BH-26	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-27	BH-27	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-28	BH-28	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-29	BH-29	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-30	BH-30	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-31	BH-31	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-32	BH-32	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-33	BH-33	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-33	вн-33 ВН-34	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-35	BH-35	Solid	06/14/22 00:00	06/15/22 08:15	
	SW-1	Solid			
80-15895-36			06/14/22 00:00	06/15/22 08:15	
80-15895-37	SW-2	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-38	SW-3	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-39	SW-4	Solid	06/14/22 00:00	06/15/22 08:15	
880-15895-40	SW-5	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-41	SW-6	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-42	SW-7	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-43	SW-8	Solid	06/14/22 00:00	06/15/22 08:15	
380-15895-44	SW-9	Solid	06/14/22 00:00	06/15/22 08:15	
80-15895-45	SW-10	Solid	06/14/22 00:00	06/15/22 08:15	

eived by							$\frac{PM}{1}$	[<u> </u>	1			1					-	. -				-1		173 of 22
			Relinquished by:	Lalla L	Relinquished by											(LAB USE)	LAB #		Comments	Receiving Laboratory	Invoice to	Project Location (county, state)		Client Name	5	Analysis Reques
			Date Time	alt 6-15-22 8:130		BH-10	BH-9	BH-8	BH-7	BH-6	BH-5	BH-4	BH-3	BH-2	BH-1		SAMPLE IDENTIFICATION			Eurofins Xenco Laboratories	EOG Resources - Todd Wells	Eddy County, New Mexico	Bear Booster	EOG	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by		Received by:	TUL	Received by	6 14/22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	DATE	YEAR.	SAMPLING		Sampler Signature		Project #:	Contact Info	Site Manager [.]		
ОРҮ	Date Time		Date Time	Ban 10/15/22 A:	Date Time	×	X X	X X				x	x	x	x	TIME WATEI SOIL HCL HNO ₃ ICE		MATRIX PRESERVATIVE METHOD		e Dillon Kennedy		212C-MD-02763	Brittany Long 432-741-5813 Brittany Long@tetratech com		901 West Wall St, Suite 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946	
(Circle) HAND DELIVERED FEDEX UPS Tracking #-	JC Special Report Limits or TRRP Report	U.8 U.0 Rush Charges Authorized	Sample Temperature RUSH Same Day 24 hr	ONLY	LAB USE REMARKS	×	×	×	×		×	×	×	×	x	# CONT FILTERI BTEX 80 TPH TX TPH 80 PAH 82 TOTAL ME TCLP ME TCLP ME TCLP VC TCLP SE RCI GC/MS V GC/MS S PCB s 80 NORM PLM (Asi Chlorde	ED (Y 021B 1005 15M (70C tals A etals / olatiles emi Vo /ol 8 Semi 082 / besto 300 0	(//N) (Ext to (GRO - ag As Ba Ag As Ba s blatiles 2260B / 6 Vol 82 608 s)	DRO - O Cd Cr F a Cd Cr I 524 70C/625	°b Se H Pb Se H				ANALYSIS REQUEST	880-15895 Chain of Custody	Page
eased to)			48 hr $\sqrt{22 hr}$)	2.1		7.00							Pag		Chloride General Anion/Ca Asbestos	Wate ation	r Chem		e attac	ned list)		-		 ੧ 12022

Received by OCD: 7/13/2022 1:21:36 PM

Page 173 of 223

•

	Relinquished by		Relinquished by		Relinninshed by										LAB USE	LAB #			Comments	Receiving Laboratory	Invoice to	Project Location (county, state)	F .	Project Name	Client Name	Analysis Re
	Date Time		1 J - 10 1.		BH-20	BH-19	BH-18	BH-17	BH-16	BH-15	BH-14	BH-13	BH-12	BH-11		SAMPLE IDENTIFICATION				atory Eurofins Xenco Laboratories	EOG Resources - Todd Wells	Eddy County, New Mexico	Bear Booster	EUG	Tetra Tech, Inc.	74 Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by		Received by		6 14 22	6 14,22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	DATE	TEAA.		,		Sampler Signature		Project #		Contact Info	Site Manager	
L COPY	×														TIME		SAMPLING			nature						
	D		d d		×	×	×	×	X	×	×	X	X	x	WATE SOIL	R	MATRIX			Dillon H		212C-N	Brittany Long 432-741-5813 Brittany Long@tetratech com		901 West Midlan Tel (4 Fax (4	
	Date T		Date	Date		×	×	×	×	×	×	×	×		HCL HNO3 ICE		METHOD	PRESER		Dillon Kennedy		212C-MD-2763	ong 432- ong@tet		901 West Wall St Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946	
	Time	Č		· · · · ·														VATIVE		-			.741-5813 ratech con		100	
			0.0	`											# CON			_					om 3			
(Circle				•	×	×	×	×	×	×	×	×	×		BTEX 8			to (035)							
(Circle) HAND DELIVERED	ton.		CIALI	LAB USE	×	×	×	×	×	×	×	×	×		PAH 82	270C			DRO - O Cd Cr F		In			<u>()</u>		
ELIVEREC		D =													TCLP M TCLP V	letals olatil	Ag As es	s Ba	a Cd Cr I					Circle or		
0 FEDEX	Speci	Rush	RUSH	REMARKS											TCLP S RCI GC/MS				624					ANALYSIS		
UPS	al Repor	Charges	4 Same Dav												GC/MS PCBs8	Sem	ı Vol		70C/625					ALYSIS REQUEST Specify Method		
Tracking #	t Limits or	Rush Charges Authorized	Dav 22		×	×	×	×	×	×	×	\times	×		NORM PLM (As Chloride									JEST 9thod		Page
	Special Report Limits or TRRP Report	=	24 hr 48												Chloride Genera	e S IWa	Sulfate ter Ch	em	TDS istry (se	e attac	hed lis	st)	、	20	158915	
	leport	(=)										-	Anion/C Asbestc		Bala	nce	•						1 2	2 of
			2			_	\neg		\neg			-	Par													/20

eceived b	y OCD	: <u>7/13</u>	3/20 Z			86 P	M.	1	1	I		1	1	Γ				0	7	5	î î l		च	0	Page	175 o	f 223
			Relinguished by	Lan Pr	Relinguished hv:										(LABUSE)	LAB #		Comments	Receiving Laboratory	Invoice to	Project Location (county, state)		Project Name	Client Name	5	Analysis Reques	1 2 3
	Date lime		Date Time			BH-29	BH-28	BH-27	BH-26	BH-25	BH-24	BH-23	BH-22	BH-21		SAMPLE IDENTIFICATION			Eurofins Xenco Laboratories	EOG Resources - Todd Wells	Eddy County, New Mexico	Bear Booster		EOG	Tetra Tech, Inc.	175 Analysis Request of Chain of Custody Record	4 5 6 7 8 9 10
ORIGINAL COPY	Received by		Received by	Received by	4 22	6 14-22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	DATE	YEAR	SAMPLING		Sampler Signature		Project #:		Contact Info	Site Manager			11 12 13
СОРҮ				ANC O	×	×	×	×	×	×	×	×	×	×	TIME WATEI SOIL	R	NG MATRIX				2120	Brittany Brittany			901 Wa Mid Fa		14
	Date Time		Date Time		Ţ,	×	X	X	×	×		X	X	X	HCL HNO ₃ ICE		C PRESERVATIVE METHOD		Dillon Kennedy		212C-MD-02763	Brittany Long 432-741-5813 Brittany Long@tetratech cor			901 West Wall St, Suite 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946		
				P:K					-						# CONT							-5813 ch com					
(Circle) HAND DELIVERED	THCO 1.1.	C O H O	Sample Temperature	LAB USE	X X	X X	X X		××				××	×	PAH 827	1005 15M (70C	GRO -	C35) DRO - O a Cd Cr P		g			(Circle				
.IVERED FEDEX	Specia			REMARKS											TCLP Vo TCLP Se RCI GC/MS V	latiles mi Vo /ol 8	olatiles 260B /			Чg			<u>ç</u>	ξ			
UPS Tracking #	Special Report Limits or TRRP Report	Rush Charges Authorized	Same Day 24 hr		X	×	×	×	×	×	×	×	×	×	PCBs 80 NORM PLM (Asi Chloride 3	082 / bestos 300 0	608 s)	270C/625					Specify Method No.	REQUEST	156	Page	
	RRP Report		nr 48 hr 72 hr												Chloride General Anion/Ca Asbestos	Wate ation I	r Chen	TDS nistry (se e	e attac	hed lis	t)		lo.)		12895	3 of	
eleased to	Tmagi	<u>ng:</u> 7		/2022		57:0	09 /						Pa	ge	and 37 of 9	90									6/2	14202:	2

Receive OCD. 7/13/2022 1.21.36 PM d h

eived by)22 1:			PM	[-	-						176 of	223
	Reiniquisited by		Relinguished by	Relinquished by	-										(LAB USE ONLY)	LAB #			Comments	Invoice to	Project Location (county, state)	7	Project Name	Client Name	F	Analysis Requ	1
	Date Time		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Date Time	SW-5	SW-4	SW-3	SW-2	SW-1	BH-35	BH-34	BH-33	BH-32	BH-31		SAMPLE IDENTIFICATION			y Eurofins Xenco Laboratories	EOG Resources - Todd Wells	Eddy County, New Mexico	Bear Booster		EOG	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record	
ORIGINAL COPY	Received by		Alle	Redeived by	6 1922	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	6 14 22	DATE	YEAR.	SAMPLING		Sampler Signature		Project #·		Contact Info	Site Manager			1 1 1
Υ¢	Date	Date	TAN	Date	×	×	X	X	×	X	×	X	×	×	WATEF SOIL HCL HNO3	2	MATRIX		Dillon Kennedy		212C-MD-02763	Brittany Long 432-74 Brittany Long@tetrat			901 West Wall St, Suite 100 Midland Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946		
	Time	Lime	fer.	Time	×	×	×	×	×	×	×	×	×	×	ICE # CONT/	AINE	METHOD		ıedy)2763	Brittany Long 432-741-5813 Brittany Long@tetratech com			, Suite 100 s 79701 2-3946 2-3946		
(Circle) HAND DELIVERED	12 2 12	Sample Temperature	OULS ONLY		××							××	X X	××	PAH 827 Total Met	21B 005 5M (0C als A tals A	(Ext GRC g As	o C35) - DRO - 0 Ba Cd Cr Ba Cd Cr	Pb Se H				(Circle c	Α			
ED FEDEX UPS Tracking#	Special Report Limits or TRRP Report	Rush Charges Authorized)	REMARKS	×		×	×	×	×	×	×	×		TCLP Ser RCI GC/MS V	mi Vo ol 8 emi 982 /	260E Vol 608 s)		5				Circle or Specify Method No.	ANALYSIS REQUEST	le	Page	
	· TRRP Report	24 hr 48 hr 72 hr												, , , , ,	Chlonde General \ Anion/Ca Asbestos	Su Wate tion I	ilfate r Ch	emistry (s	ee attac	ched lis	t)	`	No.)		12895	4 of	
ased to .	Imagin	o. 7/19)/2022	2 1	1.5	7:09			T	1			Pag		lold 8 of 90)									6/2	/2022	

Released to Imaging: 7/19/2022 11:57:09 AM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 15895 List Number: 1

Creator: Rodriguez, Leticia		
Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No time on COC, logged in per container labels.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 880-15895-1

SDG Number: Eddy County, New Mexico

Eurofins Midland Released to Imaging: 7/19/2022 11:57:09 AM

July 05, 2022

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: BEAR BOOSTER RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 06/30/22 13:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: SW - 4 (0-4') (H222812-01)

BTEX 8021B	mg	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.18	109	2.00	0.415	
Toluene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.991	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.434	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.64	111	6.00	1.02	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	448	112	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	67.0	% 43-149							
Surrogate: 1-Chlorooctadecane	74.1	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whote is subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: SW - 10 (0-5') (H222812-02)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.18	109	2.00	0.415	
Toluene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.991	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.434	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.64	111	6.00	1.02	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/01/2022	ND	448	112	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	79.5	% 43-149)						
Surrogate: 1-Chlorooctadecane	85.8	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: SW - 11 (0-4') (H222812-03)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.18	109	2.00	0.415	
Toluene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.991	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.434	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.64	111	6.00	1.02	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	07/01/2022	ND	448	112	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	58.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	62.0	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: SW - 12 (0-3') (H222812-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.18	109	2.00	0.415	
Toluene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.991	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.434	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.64	111	6.00	1.02	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	63.5	% 43-149)						
Surrogate: 1-Chlorooctadecane	70.1	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: SW - 13 (0-1.5') (H222812-05)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.18	109	2.00	0.415	
Toluene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.991	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.434	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.64	111	6.00	1.02	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	68.1	% 43-149)						
Surrogate: 1-Chlorooctadecane	75.1	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: SW - 14 (0-1.5') (H222812-06)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.18	109	2.00	0.415	
Toluene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.991	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.434	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.64	111	6.00	1.02	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	65.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	73.3	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 36 (5') (H222812-07)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.18	109	2.00	0.415	
Toluene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.991	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.434	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.64	111	6.00	1.02	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	63.5	% 43-149							
Surrogate: 1-Chlorooctadecane	70.3	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 37 (5') (H222812-08)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.18	109	2.00	0.415	
Toluene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.991	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.434	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.64	111	6.00	1.02	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	66.2	% 43-149							
Surrogate: 1-Chlorooctadecane	72.9	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 38 (5') (H222812-09)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.18	109	2.00	0.415	
Toluene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.991	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.434	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.64	111	6.00	1.02	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	62.9	% 43-149)						
Surrogate: 1-Chlorooctadecane	70.9	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 39 (4') (H222812-10)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.18	109	2.00	0.415	
Toluene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.991	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.17	108	2.00	0.434	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.64	111	6.00	1.02	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	64.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	70.6	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 40 (4') (H222812-11)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	QM-07
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	66.4	% 43-149)						
Surrogate: 1-Chlorooctadecane	72.8	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 41 (4') (H222812-12)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	61.2	% 43-149)						
Surrogate: 1-Chlorooctadecane	67.6	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 42 (4') (H222812-13)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	73.7	% 43-149	1						
Surrogate: 1-Chlorooctadecane	78.0	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 43 (5') (H222812-14)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	83.0	% 43-149	1						
Surrogate: 1-Chlorooctadecane	87.5	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 44 (5') (H222812-15)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	67.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	74.4	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 45 (4') (H222812-16)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	60.1	% 43-149	1						
Surrogate: 1-Chlorooctadecane	66.8	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 46 (4') (H222812-17)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	70.6	% 43-149)						
Surrogate: 1-Chlorooctadecane	77.2	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 47 (4') (H222812-18)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	68.9	% 43-149	1						
Surrogate: 1-Chlorooctadecane	74.4	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 48 (4') (H222812-19)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	61.2	% 43-149)						
Surrogate: 1-Chlorooctadecane	66.8	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 49 (3.5') (H222812-20)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	222	111	200	19.5	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	234	117	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	61.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	66.7	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 50 (3.5') (H222812-21)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	70.9	% 43-149)						
Surrogate: 1-Chlorooctadecane	76.5	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 51 (3.5') (H222812-22)

BTEX 8021B	mg,	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	75.9	% 43-149	1						
Surrogate: 1-Chlorooctadecane	82.8	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 52 (3') (H222812-23)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	66.6	% 43-149)						
Surrogate: 1-Chlorooctadecane	72.6	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 53 (1.5') (H222812-24)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	72.8	% 43-149)						
Surrogate: 1-Chlorooctadecane	83.1	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 54 (2.5') (H222812-25)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	79.4	% 43-149)						
Surrogate: 1-Chlorooctadecane	86.6	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 55 (2.5') (H222812-26)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	76.6	% 43-149)						
Surrogate: 1-Chlorooctadecane	84.3	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 56 (2.5') (H222812-27)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	77.4	% 43-149)						
Surrogate: 1-Chlorooctadecane	86.3	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 57 (2.5') (H222812-28)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	79.1	% 43-149)						
Surrogate: 1-Chlorooctadecane	86.5	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 58 (1.5') (H222812-29)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	78.1	% 43-149)						
Surrogate: 1-Chlorooctadecane	86.6	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 59 (1.5') (H222812-30)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	2.11	105	2.00	1.85	
Toluene*	<0.050	0.050	07/01/2022	ND	2.10	105	2.00	2.03	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	2.09	105	2.00	1.66	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	6.37	106	6.00	1.82	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	72.1	% 43-149)						
Surrogate: 1-Chlorooctadecane	79.0	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 60 (1.5') (H222812-31)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	1.96	97.8	2.00	9.19	
Toluene*	<0.050	0.050	07/01/2022	ND	1.93	96.7	2.00	9.55	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	1.95	97.7	2.00	8.84	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	5.93	98.8	6.00	9.11	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	73.2	% 43-149)						
Surrogate: 1-Chlorooctadecane	79.8	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 61 (1.5') (H222812-32)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	1.96	97.8	2.00	9.19	
Toluene*	<0.050	0.050	07/01/2022	ND	1.93	96.7	2.00	9.55	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	1.95	97.7	2.00	8.84	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	5.93	98.8	6.00	9.11	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	79.5	% 43-149	1						
Surrogate: 1-Chlorooctadecane	87.7	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 1 (5') (H222812-33)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	1.96	97.8	2.00	9.19	
Toluene*	<0.050	0.050	07/01/2022	ND	1.93	96.7	2.00	9.55	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	1.95	97.7	2.00	8.84	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	5.93	98.8	6.00	9.11	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	63.5	% 43-149)						
Surrogate: 1-Chlorooctadecane	69.2	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 2 (5') (H222812-34)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	1.96	97.8	2.00	9.19	
Toluene*	<0.050	0.050	07/01/2022	ND	1.93	96.7	2.00	9.55	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	1.95	97.7	2.00	8.84	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	5.93	98.8	6.00	9.11	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	72.8	% 43-149)						
Surrogate: 1-Chlorooctadecane	79.0	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/28/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 3 (5') (H222812-35)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	1.96	97.8	2.00	9.19	
Toluene*	<0.050	0.050	07/01/2022	ND	1.93	96.7	2.00	9.55	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	1.95	97.7	2.00	8.84	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	5.93	98.8	6.00	9.11	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	73.1	% 43-149	1						
Surrogate: 1-Chlorooctadecane	79.5	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/30/2022	Sampling Date:	06/29/2022
Reported:	07/05/2022	Sampling Type:	Soil
Project Name:	BEAR BOOSTER RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 02763	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA CO NM		

Sample ID: BH - 8 (5') (H222812-36)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2022	ND	1.96	97.8	2.00	9.19	
Toluene*	<0.050	0.050	07/01/2022	ND	1.93	96.7	2.00	9.55	
Ethylbenzene*	<0.050	0.050	07/01/2022	ND	1.95	97.7	2.00	8.84	
Total Xylenes*	<0.150	0.150	07/01/2022	ND	5.93	98.8	6.00	9.11	
Total BTEX	<0.300	0.300	07/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/01/2022	ND	181	90.4	200	1.44	
DRO >C10-C28*	<10.0	10.0	07/01/2022	ND	178	88.9	200	1.23	
EXT DRO >C28-C36	<10.0	10.0	07/01/2022	ND					
Surrogate: 1-Chlorooctane	69.0	% 43-149)						
Surrogate: 1-Chlorooctadecane	77.4	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
A-01	DRO CCV failed high. All associated samples were ND.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Relinguished by:	Relinquished by:	1 te	Relinquished by:	10	2	200	-	6	. ~	4		12 1.175	100	(LAB USE ONLY)	LAB#	H222812	Commission,	Comments:	Receiving Laboratory.	(county, state)	Project Location	Project Name:	Client Name:	5
	Date: IIme:		Date: Time:	221	Date: Time:	BH-39 (4')	BH-38 (5')	BH-37 (5')	BH-36 (5')	SW-14 (0-1.5')	SW-13 (0-1.5')	SW-12 (0-3')	SW-11 (0-4')	SW-10 (0-5')	SW-4 (0-4')		SAMPLE IDENTIFICATION			Cardinal Labs	EOG Resources - Todd Wells	Lea County, NM		Bear Booster	EOG Resources	Tetra Tech, Inc.
ORIGINAL COPY	Received by:		Received by:	James	Received by:	6/28/2022	6/28/2022	6/28/2022	6/28/2022	6/29/2022	6/29/2022	6/29/2022	6/28/2022	6/28/2022	6/28/2022	DATE	YEAR: 2020	SAMPLING		Sampler Signature:		riojeci #:			Site Manager:	
~	Date:		Date:	1 Malak		×	×	×	×	×	×	×	×	×	×	WATER	2	MATRIX		Peyton Oliver		212C-MD-02763	Brittany.Long@tetratech.com		Rrittany I or	901W Wall Midland,T Tel (432 Fax (432
	Time:		Time:	10-30-	Time:	×	×	×	×	×	×	×	X	×	X	HNO ₃ ICE None # CONT/		METHOD		Oliver		D-02763	ch.com	Ū	5	901W Wall Street, Ste 100 Mdland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946
				2	┢	+	+	+	+		+	-			-	FILTERE		_								
(Circle)	たい	5	Sample	LAB	>	× >	×	×	×	×	×	×	×	×	×	BTEX 802 TPH TX1								1	-	
HAND DELIVERED	800		Temperature	AB USE	2	< >	×	×	×	×	×	×	×	×	_	TPH 8015	5M (RO - M	RO)					
DELIV	4	0	rature	ONLY	E		+									PAH 8270 Total Meta	_	As Ba	Cd Cr Pt	b Se H	3			<u>(</u>)		
ERED	(2)			2 Kanada 🧖 1993	2	+	+	+	-	-	-	-	_	-	_	TCLP Met		g As B	a Cd Cr P	b Se H	g			Circle		
FEDEX				X S											-	TCLP Sen		latiles						OL UN		
	Special Report Limits or TRRP Report	Rush Charges Authorized	RUSH	S	Vo.	+	+	+	-	-		-	-	-	_	RCI GC/MS Vo	1 97	260B / 6	324					or Specify Metho		
UPS	al Rep	Charg	Sa	STANDARD	E										_	GC/MS Vo	_							ecify		
Tracking	ort Li	les Au	Same Day	DAR	F	-	-	-	-	-	-	-		-	-	PCB's 808	32 / 6	808						Me	5	
ing #:	mits o	uthori		D	E			+	+	+		+		-	_	NORM PLM (Asbe	estos)						Method		
	or TRF	zed	24 hr		×	$\langle \rangle$	< >	× >	× >	×)	×	×	×	×	×	Chloride								d	1	
	RP R		48		F	+	+	+	+	+	+	+	+	-	_	Chloride General V			TDS nistry (see	e attac	hed lie	t)		No.)		
	eport		hr 7		F										_	Anion/Cat				Sincet		.,				
			72 hr		\vdash	+	+	+	+	+	+	+	-	-	-											
11											1	1											_			
11								T							1	lold										

Page 39 of 42

		Relinquished by:		Relinquished by:	Ven	Relinquished by	20	19	81	11	14	15	14	13	21	11	(LAB USE)	LAB #	HEZZYIZ		Comments:	Receiving Laboratory.	(county, state) Invoice to:	Project Location:	Project Name:	Client Name:
					56-6		BH-49 (3.5')	BH-48 (4')	BH-47 (4')	BH-46 (4')	BH-45 (4')	BH-44 (5')	BH-43 (5')	BH-42 (4')	BH-41 (4')	BH-40 (4')					Cardinal Labs	EOG Resources - Todd Wells	Lea County, NM		EOG Resources	Tetr
		Date: Time:		Date: Time:	22	Date: Time:												SAMPLE IDENTIFICATION				s - Todd Wells	4		3	Fetra Tech, Inc.
	incorrect by.	Received hv-		Received by:		Received by:	6/29/2022	6/28/2022	6/28/2022	6/28/2022	6/28/2022	6/28/2022	6/28/2022	6/28/2022	6/28/2022	6/28/2022	DATE	YEAR: 2020	SAMPLING		Sampler Signature:		rioject#;			Site Manager:
				Contra to 1010			×	×	X	X	×	X	×	×	×	×	TIME WATEF SOIL	~	NG MATRIX				2120	Brittany.Long@tetratech.com	Brittany Long	901V F
	Date: Ime:			Data: Time:	1.30	lime.	×	×	×	X	×	×	X	×	×	×	HCL HNO ₃ ICE None		PRESERVATIVE METHOD		Peyton Oliver		212C-MD-02763	ratech.com	Long	901W Wall Street, Ste 100 MdIand, Texes 79705 Tel (422) 682-4559 Fax (432) 682-3946
				00	500	222											# CONT/ FILTERE									
(Circle) HA	4.8	20	Sample Te		LAB U	E								×			BTEX 80 TPH TX1 TPH 801	005 (Ext to	C35)			47	_	_	1
HAND DELIVERED	2 th	10	Temperature		USE ONLY	E		-									PAH 827 Total Meta	OC						_	(Circ	
		_		7			+										TCLP Met	atiles		a Cd Cr F	Pb Se H	łg			e	
FEDEX	Spec	Rust		PIIS		ADKC-	+	+									TCLP Ser							· .	ANALYSIS	
UPS	ial Rep	Charg	0		STAN	E	+						-				GC/MS Vo	_	-							
Trackino	ort Lin	les Au	odille Day		STANDARD	F	+	-	-	-	-			-	-	-	PCB's 80	82 / 6	08		1				REQUEST	
10 #	nits or	Rush Charges Authorized	ay 24		0	Ļ	< >	×	×	×	×	×	×	×	×		PLM (Asb	estos)						QUEST Method	
	TRRP	ď	=			É	ť									-	Chloride Chloride	Su	lfate	TDS	_			_	No	
	Special Report Limits or TRRP Report		48 nr	r.		F	+	-	-	-	-	-	-	-	-	-	General V Anion/Cat	_	-		e attac	ched lis	st)	_	-	
	A		/ 2 Nr	10 5		F	-	+	-																	
						F		+	+	+		+	+	+	+	+			_							
						Г											Hold									I

Page 40 of 42

Released to Imaging: 7/19/2022 11:57:09 AM

		Relinquished by:	r sonn quagarood by	Relinquished by:	Yeuts	Relinquished by:	30 BH 50 (1.3)			BH-DD		1	-			21 BH-50 (3.5)	(LAB USE)	LAB#	Haaasia	Continents	Commonie.	Receiving Laboratory:	Invoice to:	Project Location: (county, state)		Droinof Manno.	Client Name.	Analysis Reques
		Date: Time:	Date: lime:		6/21/27 BOO	Date:	(1.5)	(2.5) (2.5)	(2.5)	(Z.5 [*])	(Z.5')	(1.5')	(3)	(3:3)	(2 E) (2.2)	(3.5")		SAMPLE IDENTIFICATION			Cardinal Labs	EOG Resources - Todd Wells		Lea County NM	Bear Booster	EOG Resources	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	incontrol by	Received hv	Received by:	A MANNE	Received by:	6/29/2022	6/29/2022	6/29/2022	6/29/2022	6/29/2022	6/29/2022	6/28/2022	6/28/2022	6/29/2022	6/29/2022	T	DATE	YEAR: 2020	SAMPLING		Sampler Signature:			Project #:	Brittar	Site Manager:		
2			Date: Time:	THE MARIN N.	Dete: Time:	XXXX			X	×	×	x	X	×	×		WATER SOIL ICL INO ₃ CE Ione		MATRIX PRESERVATIVE METHOD		Peyton Oliver		212C-MD-02763		Brittany.Long@tetratech.com	Brittany Long	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
(0			S	6-3022	1300	-										F	CONTA	D (Y	RS /N)									
(Circle) HAND DELIVERED	4.8° #13	20000	Sample Temperature	-	LAB USE ONLY	XXX	×××	XX	XX	××	XX	XX	××	××	×	TF TF P/ Tc	AH 8270 otal Meta	005 (M (C Is Ag	Ext to (GRO -		Se H	g			(Circle			
FEDEX UPS	Special Repo	Rush Charges Authorized	RUSH: Sam		REMARKS:											T(T(R(G(G(CLP Vola CLP Sem CI C/MS Vol C/MS Sei	tiles i Vo I. 82 mi. \	atiles 260B / 6 /ol. 82			-9			te or Specify	ANALYSIS		
Tracking #:	Special Report Limits or TRRP Report	s Authorized	Same Day 24 hr 48 h			X	×	X	X	×	×	×	×	×	×	NC PL Ch	CB's 808 DRM .M (Asbe aloride aloride eneral W	stos) Ifate	TDS	e attac	ched li	st)		Method No.)	REQUEST		Page
	eport		hr 72 hr														nion/Cati								_			3 of

Page 41 of 42

		Relinquished by:	invininguistical by	Pelinuithed hu:	Relinquished by:				(C) 2-Hg & C	N	IL		-	3Z BH-61 (1.5')	3/ BH-60 (1.5')	-	LAB #	Haaaso		Comments:	Receiving Laboratory.	(county, state) Invoice to:	Project Location:	Project Name:		Client Name:	Analysis Request
		Date: Time:	Date: Time:	121	Date: Time:									1.5')	1.5')		SAMPLE IDENTIFICATION			Cardinal Labs	EOG Resources - Todd Wells	Lea County, NM		Bear Booster	EOG Resources	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY		Received by:	Received by:	Jamas	Received by:				6/29/2022	6/28/2022	6/28/2022	6/28/2022		6/29/2022	6/29/2022	DATE	YEAR: 2020	SAMPLING		Sampler Signature:			Project #:		Site Manager:		
		Data	Dafe:	ra lalla	- Date				×	×	×	×	: >	×		WATER SOIL HCL		MATRIX		Peyton Oliver		212C-M	Brittany.Long@tetratech.com		Brittany Long	901W Wall Midland, Tel (43 Fax (43	
			: Time:	Kell lo-	Time				×	×	×	×	>	× ;	×	HNO ₃ ICE None		PRESERVATIVE		Oliver		212C-MD-02763	ech.com		Bu	901W Wall Street, Ste 100 Mdland, Texas 79705 Tel (432) 682-3946 Fax (432) 682-3946	,
				20.22	-		-						+	+	-	# CONTA											
(Circle)	25	20	Sample	LAB	F				×	×	×	×	>	< >	-	BTEX 802	_		(8260B				-		-	1. 	
	000	20		3 USE	F	-			×	×	×	×	>		_	TPH TX10			,	RO - MI	ROI		_	-			
HAND DELIVERED	Ħ	N	Temperature	EO	F								t		F	PAH 8270	С							_			
LIVER	13	00	ILE	ONLY	F	+		-	_	_		-	+	+		Total Meta	-	the state of the s						Circle			
		_		E RE											_	TCLP Vola	-	g As De	a cu ci P	DSen	g		_	cle			
FEDEX	L S	R	2											-	-	TCLP Sem	i Vol	atiles						or S	ANALYSIS		
	pecia	ush (RUSH:	S]		-				_		-	┝	+	+	RCI GC/MS Vol	. 82	60B / 6	24					Spe	LYS		
UPS	Rep	harg		: STANDARD											-	GC/MS Ser						_		pecify	ISR		
Tracking #:	ort L	es A	Same Day	DAR	\vdash									-	_	PCB's 808	2/6	08							EQ		
ing #:	mits	Rush Charges Authorized		Ö	\vdash	+				-	-	-	-	+	-	VORM PLM (Asbe	stos)					_	Method	REQUEST		-
	or TF	ized	24 hr						×	×	×	×	×	>	-	Chloride				_					-		Page
	Special Report Limits or TRRP Report		r 48												_	Chloride			TDS					No.			(D
	Repo		8 hr		\vdash			-	+	-	_		\vdash	+		General W				e attac	hed lis	st)		-			
	A		72 hr												f			andrice									
			T																							ľ	4 of
Ц		_										_			н	lold						6					4

Page 220 of 223

Page 42 of 42

Appendix D

State Correspondence

Long, Brittany

From:	Long, Brittany
Sent:	Wednesday, June 1, 2022 10:47 AM
То:	OCD.Enviro@state.nm.us
Cc:	Todd Wells; Gonzales, Clair; MorenoFlores, Ezequiel
Subject:	Confirmation Sampling Notification EOG Resources Bear Booster (nAPP2211856195)

Good Morning,

Tetra Tech is scheduled to collect 5 point confirmation, bottom hole and sidewall samples, for the EOG Resources Bear Booster (nAPP2211856195) remediation starting on Friday, June 3, 2022, at 9:50 AM. These samples will be placed within the remediaton taking place on the pad and will continue each day as the remediation progresses. Please let me know if you have any questions or need any additional information.

Best Regards,

Brittany D. Long,

Brittany D. Long | Biologist & Project Manager Phone: 432.682.4559 | Mobile 432.741.5813 | Fax:432.682.3946 Brittany.Long@tetratech.com

Tetra Tech | Leading with Science®

901 West Wall Street, Suite 100 Midland, Texas 79701

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

👖 💟 🛅 🔯 Please consider the environment before printing. <u>Read more</u>

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
P.O. Box 2267	Action Number:
Midland, TX 79702	125093
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jnobui	Closure Report Approved.	7/19/2022