District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page leof 160

Incident ID	NAPP2200746777
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380		
Contact Name Shelby Pennington	Contact Telephone 281-723-9353		
Contact email shelby.g.pennington@exxonmobil.com Incident # (assigned by OCD)			
Contact mailing address 6401 Holiday Hill Rd Bldg 5, Midland, Texas, 79707			

Location of Release Source

Latitude 32.57039

(NAD 83 in decimal degrees to 5 decimal places)

-103.85194

Site Name Big Eddy Unit DI 30	Site Type Central Tank Battery
Date Release Discovered 12/24/2021	API# (if applicable)

Unit Letter	Section	Township	Range	County
Ι	15	208	31E	Eddy

Surface Owner: State 🗵 Federal 🗌 Tribal 🗌 Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

▼ Crude Oil	Volume Released (bbls) 4.22	Volume Recovered (bbls) 2.75
▼ Produced Water	Volume Released (bbls) 4.22	Volume Recovered (bbls) 2.75
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes X No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Course of Dalassa		

Cause of Release Corrsion caused a buried 8" flow line to release fluids on location. A vacuum truck was dispatched to recover standing fluids. A third-party contractor has been retained for remediation activities.

Oil Conservation Division

Incident ID	NAPP2200746777
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
	N/A
19.15.29.7(A) NMAC?	
🗌 Yes 🗶 No	
If VES was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
If TES, was infinediate if	the given to the OCD. By whom: To whom: which and by what means (phone, email, etc).
N/A	

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

★ The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

▲ All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have <u>not</u> been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Adrian Baker	Title:
Signature: afres	Date:
email:	Telephone:
OCD Only	
Received by: Ramona Marcus	Date: 1/10/2022

Page 2

NA

NAPP2200746777

Location:	BEU DI 30 CTB			
Spill Date:	12/24/2021			
	Area 1			
Approximate A	rea = 2650.00	sq. ft.		
Average Satura	tion (or depth) of spill = 2.50	inches		
Average Porosi	ty Factor = 0.03			
	VOLUME OF LEAK			
Total Crude Oil	= 4.22	bbls		
Total Produced	Water = 4.22	bbls		
	TOTAL VOLUME OF LEAK			
Total Crude Oil	= 4.22	bbls		
Total Produced	l Water = 4.22	bbls		
	TOTAL VOLUME RECOVERED			
Total Crude Oil	= 2.75	bbls		
Total Produced Water = 2.75		bbls		

Received by OCD: 5/23/2022 2:39:09 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 4 of 16
Incident ID	NAPP2200746777
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>< 50</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data

Page 3

- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/23/2022 2:39:09 PM Form C-141 State of New Mexico				Page 5 of 160	
		Oil Conservation Division		Incident ID	NAPP2200746777
Page 4	Oil Conservation Division			District RP	
				Facility ID	
				Application ID	
regulations all op public health or the failed to adequate addition, OCD ac and/or regulations Printed Name: Signature:	hat the information given above is true and complete to the berators are required to report and/or file certain release not the environment. The acceptance of a C-141 report by the C ely investigate and remediate contamination that pose a thro- teceptance of a C-141 report does not relieve the operator of s. Adrian Baker Cadrian Baker baker@exxonmobil.com	ifications OCD doe eat to gro responsi 	and perform co s not relieve the undwater, surfa- bility for compl Environmer 05/23/2022	rrective actions for relea operator of liability sho ce water, human health	ases which may endanger build their operations have or the environment. In leral, state, or local laws
OCD Only					
Received by:			Date:		

Received by OCD: 5/23/2022 2:39:09 PM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

73	1		۰. at	1	0
Page	0	01	1	0	U
	-	~ J	_	÷.	

Incident ID	NAPP2200746777
District RP	
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points \boxtimes Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Adrian Baker _____ Title: Environmental Coordinator Signature: advion Bats Date: 05/23/2022 Telephone: 432-236-3808 email: adrian.baker@exxonmobil.com OCD Only Received by: Date: Approved Approved with Attached Conditions of Approval Denied Deferral Approved ennifer Nobui Date: 08/23/2022 Signature:

May 23, 2022

District II New Mexico Oil Conservation Division 811 S. First Street Artesia, New Mexico 88210

Re: Remediation Work Plan Big Eddy Unit DI 30 Incident Number NAPP2200746777 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum) on behalf of XTO Energy, Inc. (XTO), has prepared the following Remediation Work Plan to document the site assessment and soil sampling activities completed to date and propose a method to address the impacted soil identified at the Big Eddy Unit DI 30 (Site), resulting from a release of crude oil and produced water. The following Work Plan proposes lateral and vertical delineation of the release and excavation of the impacted soil.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit I, Section 15, Township 20 South, Range 31 East, in Eddy County, New Mexico (32.57039° N, 103.85194° W) and is associated with oil and gas exploration and production operations on Bureau of Land Management (BLM) federal land.

On December 24, 2021, corrosion caused a buried flow line to release approximately 4.22 barrels (bbls) of crude oil and 4.22 bbls of produced water onto the well pad. A vacuum truck was immediately dispatched to the Site to recover the free-standing fluids; approximately 2.75 bbls of crude oil and 2.75 bbls produced water were recovered. XTO reported the release to the NMOCD on a Release Notification Form C-141 (Form C-141) on January 7, 2022. The release was assigned Incident Number NAPP2200746777.

SITE CHARATERIZATION AND CLOSURE CRITERIA

The Site was characterized according to Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on Figure 1.

Depth to groundwater at the Site is less than 50 feet below ground surface (bgs) based on the nearest groundwater well data. The nearest groundwater well with depth to groundwater data is United States Geological Suvery (USGS) well 323421103515501 located approximately 0.8 miles northwest of the Site. The groundwater well has a reported depth to groundwater of 49 feet bgs and a total depth of 106

Big Eddy Unit DI 30

feet bgs. All wells used for depth to water determination are depicted on Figure 1 and the referenced well records are included in Appendix A.

The closest continuously flowing or significant watercourse to the Site is an emergent wetland approximately 3,455 feet southeast of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH): 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT AND SAMPLING ACTIVITIES

On February 14, 2022, site assessment activities were conducted to evaluate the release extent based on information provided on the Form C-141 and visual observations. Five preliminary assessment soil samples (SS01 through SS05) were collected within and around the release extent from a depth of 0.5 feet bgs to assess the lateral exent of the release. The preliminary soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride Hach[®] chloride QuanTab[®] test strips. The release extent and preliminary soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation was completed during the Site visit and a photographic log is included in Appendix B.

The preliminary soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for preliminary soil samples SS01 and SS02, collected within the release extent indicated that TPH and chloride concentrations exceeded the Closure Criteria. Laboratory analytical results for preliminary soil samples SS03 through SS05, collected around the release extent, indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria, and confirmed the lateral extent of the release. Laboratory analytical results are summarized on Table 1 and the complete laboratory analytical reports are included in Appendix C. Based on the laboratory analytical results, additional remediation activities were warranted.

EXCAVATION SOIL SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

On March 23, 2022, remediation contractor personnel returned to the Site to oversee delineation and excavation activites. Upon arrival to the Site, XTO production crews had already completed a 5-foot deep excavation that overlapped a portion of the release extent, in order to access multiple burried flow

Big Eddy Unit DI 30

ENSOLUM

lines. Since excavation activities had been partially completed, 5-point composite samples were collected every 200 square feet from the floor and sidewalls of the open excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite floor samples FS01 through FS16 were collected from the floor of the excavation from a depth of 5 feet bgs. Composite sidewall samples SW01 through SW06 were collected from the sidewalls of the excavation from depths ranging from ground surface to 5 feet bgs. The excavation soil samples were collected, handled, and analyzed following the same procedures as described above. XTO's ongoing work on the buried flow lines within the open excavation prohibited additional delineation or excavation from being completed at the time. Additional remediation activities will be scheduled once the on-site operations are complete. The excavation extent, excavation soil sample locations, and flow lines were mapped utilizing a handheld GPS and are presented on Figure 3.

Laboratory analytical results for excavation floor samples FS06 through FS13, FS15, and FS16 and excavation sidewall samples SW04 through SW06 indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria and no further remediation was required in these areas. Laboratory analytical results for excavation floor samples FS01 through FS05, and FS14 and excavation sidewall samples SW01 through SW03 indicated that TPH and/or chloride concentrations exceeded the Closure Criteria. Chloride concentrations in these samples ranged from 2,140 mg/kg to 13,700 mg/kg and TPH concentrations ranged from 236 mg/kg to 2,720 mg/kg. The laboratory analytical results are summarized on the attached Table 1 and the complete laboratory analytical reports are included in Appendix C. Based on the laboratory analytical results, additional remediation activities are required.

PROPOSED REMEDIATION WORK PLAN

The results from the preliminary assessment and excavation soil samples indicate soil containing elevated TPH and chloride concentrations is present across the approximate 1,800 square foot release area and extends from the ground surface to greater than 5 feet bgs. XTO proposes additional delineation activities to confirm the extent of the release and excavation of the impacted soil to below the Site Closure Criteria.

XTO requests approval to complete the following remediation activities:

- XTO will complete lateral and vertical delineation of the release to below the Site Closure Criteria. The proposed delineation locations are shown on Figure 4.
- Following delineation activities, XTO will proceed with lateral and vertical excavation of the TPH and chloride impacted soil to below the Site Closure Criteria. An estimated 250 cubic yards of impacted soil will be excavated and disposed of at a licensed disposal facility. The estimated excavation extent is shown on Figure 4.
- Following removal of the impacted soil, 5-point composite samples will be collected at least every 200 square feet from the sidewalls and floor of the excavation.
- The delineation and excavation soil samples will be handled as described and submitted for laboratory analysis of BTEX, TPH, and chloride.
- The excavation will be backfilled and recontoured to match pre-existing conditions.
- If impacted soil is identified in areas immediately beneath or adjacent to active production equipment where remediation would require a major facility deconstruction, a deferral request

Big Eddy Unit DI 30

ENSOLUM

may be required. Any impacted soil left in-place for deferral will be fully laterally and vertically delineated.

XTO will complete the delineation and excavation activities within 90 days of the date of approval of this Work Plan by the NMOCD. A final report requesting closure or deferral will be submitted within 4 weeks of receipt of final laboratory analytical results.

If you have any questions or comments, please contact Ms. Aimee Cole at (720) 384-7365 or acole@ensolum.com.

Sincerely, Ensolum, LLC

Mouissey

Tacoma Morrissey Senior Geologist

mée Cole

Aimee Cole Senior Managing Scientist

cc: Adrian Baker, XTO Bureau of Land Management

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Preliminary Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations
- Figure 4 Proposed Delineation Locations and Estimated Excavation Extent
- Table 1Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Photographic Log
- Appendix C Laboratory Analytical Reports & Chain-of-Custody Documentation
- Appendix D NMOCD Notifications

FIGURES

.

Received by OCD: 5/23/2022 2:39:09 PM

Released to Imaging: 8/23/2022 3:34:00 PM

TABLES

•

Released to Imaging: 8/23/2022 3:34:00 PM

ENSOLUM

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Big Eddy Unit DI 30 XTO Energy, Inc. Eddy County, New Mexico										
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)	
NMOCD Table 1 Closure Criteria (NMAC 19.15.29) 10 50 NE NE NE NE 100 600									600		
	Preliminary Soil Samples										
SS01	02/14/2022	0.5	0.0888	0.0888	<50.0	307	<50.0	307	307	16,700	
SS02	02/14/2022	0.5	0.114	0.114	<49.9	189	<49.9	189	189	23,200	
SS03	02/14/2022	0.5	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	267	
SS04	02/14/2022	0.5	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	176	
SS05	02/14/2022	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	280	
				Exca	vation Floor San	nples					
FS01	03/23/2022	5	<0.00201	0.021	104	2,620	<49.8	2,720	2,720	4,420	
FS02	03/23/2022	5	<0.00199	0.017	68.5	2,100	<50.0	2,170	2,170	8,730	
FS03	03/23/2022	5	<0.00200	0.00506	<49.8	381	<49.8	381	381	5,570	
FS04	03/23/2022	5	<0.00198	<0.00396	<50.0	810	<50.0	810	810	9,530	
FS05	03/23/2022	5	<0.00200	<0.00399	<50.0	236	<50.0	236	236	2,140	
FS06	03/23/2022	5	<0.00200	<0.00399	<49.8	<49.8	<49.8	<49.8	<49.8	339	
FS07	03/23/2022	5	<0.00198	<0.00397	<50.0	<50.0	<50.0	<50.0	<50.0	267	
FS08	03/23/2022	5	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	287	
FS09	03/23/2022	5	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	201	
FS10	03/23/2022	5	<0.00198	<0.00397	<49.9	<49.9	<49.9	<49.9	<49.9	176	
FS11	03/23/2022	5	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	134	
FS12	03/23/2022	5	<0.00200	0.0662	<50.0	<50.0	<50.0	<50.0	<50.0	413	
FS13	03/23/2022	5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	352	
FS14	03/23/2022	5	<0.00202	<0.00403	<49.9	197	<49.9	197	197	7,720	
FS15	03/23/2022	5	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	266	
FS16	03/23/2022	5	<0.00200	<0.00399	<49.8	<49.8	<49.8	<49.8	<49.8	123	

•

ENSOLUM

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Big Eddy Unit DI 30 XTO Energy, Inc. Eddy County, New Mexico									
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	NE	100	600
				Excav	vation Sidewall Sa	mples	•			
SW01	03/23/2022	0 - 5	<0.00200	0.0148	<50.0	90.8	<50.0	90.8	90.8	2,120
SW02	03/23/2022	0 - 5	<0.00201	0.0368	56.9	1,060	<50.0	1,120	1,120	13,700
SW03	03/23/2022	0 - 5	<0.00200	0.00558	<49.8	515	<49.8	515	515	6,970
SW04	03/23/2022	0 - 5	<0.00202	<0.00403	<49.9	<49.9	<49.9	<49.9	<49.9	101
SW05	03/23/2022	0 - 5	<0.00200	<0.00399	<49.8	<49.8	<49.8	<49.8	<49.8	95
SW06	03/23/2022	0 - 5	<0.00202	<0.00403	<49.9	72.0	<49.9	72.0	72.0	284

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in bold exceed the NMOCD Table 1 Closure Criteria or reclamation standard where applicable.

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics TPH: Total Petroleum Hydrocarbon

APPENDIX A

Referenced Well Records

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources (Cooperator Access)

Site Information

Geographic Area: United States

States

GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access realtime water data from over 13,500 stations nationwide.
- <u>Full News</u> 🔊

USGS 323421103515501 20S.31E.16.24334

Available data for this site SUMMARY OF ALL AVAILABLE DATA 🗸 GO

Well Site

DESCRIPTION:

Latitude 32°34'21", Longitude 103°51'55" NAD27 Eddy County, New Mexico , Hydrologic Unit 13060011 Well depth: 106 feet Land surface altitude: 3,459 feet above NAVD88. Well completed in "Other aquifers" (N99990THER) national aquifer. Well completed in "Rustler Formation" (312RSLR) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1971-02-02	1994-03-02	7
Revisions	Unavailable (site:0) (timese	eries:0)

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to <u>New Mexico Water Science Center Water-Data</u> <u>Inquiries</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Released to Imaging: 8/23/2022 3:34:00 PM

U.S. Department of the Interior | U.S. Geological Survey

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory? agency_code=USGS&site_no=323421103515501

Page Contact Information: <u>New Mexico Water Data Support Team</u> Page Last Modified: 2022-02-03 12:20:35 EST 0.26 0.25 caww02

Page 21 of 160

Received by OCD: 5/23/2022 2:39:09 PM

the Mar				ico Offico er Rig	U			0	r
~	WR File Number:	CP 0052	0	Subbasin:	СР	Cross Ref	erence:	-	
	Primary Purpose:	PRO	72-12-1 PR	OSPECTING OR	DEVELO	OPMENT OF	NATUR	RAL RESOU	JRCE
<u>et image list</u>	Primary Status:	PMT	PERMIT						
	Total Acres:			Subfile:	-			Header: -	
	Total Diversion:	0		Cause/Case	: -				
	Owner:	PERRY	R. BASS						
ocuments	on File					F (
ŗ	F	. /	Status	T		From/		D!!	C
-	Frn # Doc File 473818 72121 1973	e/Act -07-18	1 2 PMT LOG	Transaction Desc CP 00520		То Т	Acres	Diversion 3	Consumptive
irrent Po	^x bints of Diversion		_	()	IAD83 UTN	M in meters)			
POD N	Jumbor Woll	Tag Sou	Q **** 64.0160)4Sec Tws Rng	X	V	Other	Location Des	
<u>CP 005</u>		0		1 10 20S 31E	607163	3606278*		Location Des	L
	An () after nort	hing value in	dicates UTM l	ocation was derived t	from PLSS	- see Help			
	nished by the NMOSE/IS	SC and is acc	cepted by the r	ecipient with the exp	ressed unde	erstanding that th		C make no wa	rranties, expi

2/3/22 10:41 AM

WATER RIGHT SUMMARY

New Mexico Office of the State Engineer Point of Diversion Summary

				(quarters are smallest to largest)			(NAD83 UTM in meters)		
Well Tag	POD	Number	Q64 Q16 Q	4 Sec	Tws	Rng	X	Y	
	CP (00520	4 4	1 10	20S	31E	607163	3606278* 🌍)
Driller Lice	ense:	46	Driller Comp	oany:	AB	BOTT BF	ROTHERS	S COMPANY	
Driller Nar	ne:	ABBOTT, MUR	RELL						
Drill Start	Date:	07/23/1973	Drill Finish I	Date:	0	7/25/1973	Pl	ug Date:	
Log File Da	ate:	07/31/1973	PCW Rev Da	ite:			So	urce:	Shallow
Ритр Тура	e:		Pipe Dischar	ge Size	:		Es	timated Yield:	
Casing Size	e:	7.00	Depth Well:		2	80 feet	De	epth Water:	130 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/3/22 11:39 AM

POINT OF DIVERSION SUMMARY

APPENDIX B

Photographic Log

Released to Imaging: 8/23/2022 3:34:00 PM

APPENDIX C

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 5/23/2022 2:39:09 PM

difference en la construction de la construction de

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1950-1

Laboratory SDG: 31403236.022.0129 TASK 16.02 Client Project/Site: BEU DI 30

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 2/25/2022 3:57:26 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

 The Expert

 Visit us at: www.eurofinsus.com/Env

Ask-

LINKS

Review your project results through

Total Access

Have a Question?

Released to Imaging: 8/23/2022 3:34:00 PM

Laboratory Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

2

Client: WSP USA Inc. Project/Site: BEU DI 30

Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

•		_				
			нт	ie		
	ч	a		10	13	

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA		
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
U	Indicates the analyte was analyzed for but not detected.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	4 9
Dil Fac	Dilution Factor	13
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Too Numerous To Count

TNTC

4

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Job ID: 890-1950-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1950-1

Receipt

The samples were received on 2/15/2022 9:25 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

GC VOA

Method 8021B: The following sample was diluted due to the nature of the sample matrix: SS01 (890-1950-1) at 20.0. Elevated reporting limits (RLs) are provided.

Method 8021B: The following sample was diluted due to the nature of the sample matrix: SS02 (890-1950-2) at 20.0. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: SS01 (890-1950-1), (MB 880-19554/1-A), (880-11287-A-35-E), (880-11287-A-35-F MS) and (880-11287-A-35-G MSD). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Lab Sample ID: 890-1950-1

Matrix: Solid

5

Client Sample ID: SS01 Date Collected: 02/14/22 04:50 Date Received: 02/15/22 09:25 Sample Depth: 0.5

Client: WSP USA Inc.

Project/Site: BEU DI 30

Analyte	Compounds (Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.0888		0.0400	mg/Kg		02/24/22 10:19	02/25/22 14:27	2
Toluene	<0.0400	U	0.0400	mg/Kg		02/24/22 10:19	02/25/22 14:27	2
Ethylbenzene	<0.0400	U	0.0400	mg/Kg		02/24/22 10:19	02/25/22 14:27	2
n-Xylene & p-Xylene	<0.0800	U	0.0800	mg/Kg		02/24/22 10:19	02/25/22 14:27	2
o-Xylene	<0.0400	U	0.0400	mg/Kg		02/24/22 10:19	02/25/22 14:27	2
Xylenes, Total	<0.0800	U	0.0800	mg/Kg		02/24/22 10:19	02/25/22 14:27	2
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	83		70 - 130			02/24/22 10:19	02/25/22 14:27	2
1,4-Difluorobenzene (Surr)	95		70 - 130			02/24/22 10:19	02/25/22 14:27	2
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.0888		0.0800	mg/Kg			02/25/22 13:43	
Method: 8015 NM - Diesel Range	- · ·							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	307		50.0	mg/Kg			02/17/22 13:52	
Method: 8015B NM - Diesel Range					_			
nalyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/16/22 08:36	02/16/22 19:26	
Diesel Range Organics (Over	307		50.0	mg/Kg		02/16/22 08:36	02/16/22 19:26	
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/16/22 08:36	02/16/22 19:26	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
Junogate	66	S1-	70 - 130			02/16/22 08:36	02/16/22 19:26	
-	00					02/16/22 08:36	02/16/22 19:26	
I-Chlorooctane	77		70 - 130			01.10.11.000	02/10/22 10:20	
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	77 matography -							
-Chlorooctane -Terphenyl Method: 300.0 - Anions, Ion Chro	77 matography -	Soluble Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
-Chlorooctane -Terphenyl Method: 300.0 - Anions, Ion Chro Analyte Chloride	77 matography -			Unit mg/Kg	<u>D</u>	Prepared	Analyzed 02/20/22 20:33	Dil Fa
I-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro Analyte Chloride lient Sample ID: SS02	77 matography - Result		RL		<u>D</u>	Prepared	Analyzed 02/20/22 20:33	Dil Fa 5 1950-2
1-Chlorooctane p-Terphenyl Method: 300.0 - Anions, Ion Chro Analyte Chloride lient Sample ID: SS02 ate Collected: 02/14/22 04:52	77 matography - Result		RL		<u>D</u>	Prepared	Analyzed 02/20/22 20:33	Dil Fa 5 1950-2
d-Chlorooctane b-Terphenyl Method: 300.0 - Anions, Ion Chron Analyte Chloride Ilient Sample ID: SS02 ate Collected: 02/14/22 04:52 ate Received: 02/15/22 09:25	77 matography - Result		RL		<u>D</u>	Prepared	Analyzed 02/20/22 20:33	Dil Fa 5 1950-2
-Chlorooctane -Terphenyl Method: 300.0 - Anions, Ion Chron Analyte Chloride lient Sample ID: SS02 ate Collected: 02/14/22 04:52 ate Received: 02/15/22 09:25 ample Depth: 0.5	77 matography - Result 16700	Qualifier	RL		<u>D</u>	Prepared	Analyzed 02/20/22 20:33	Dil Fa 5 1950-2
-Chlorooctane -Terphenyl Method: 300.0 - Anions, Ion Chron Malyte Chloride lient Sample ID: SS02 Ate Collected: 02/14/22 04:52 Ate Received: 02/15/22 09:25 Ample Depth: 0.5 Method: 8021B - Volatile Organic	77 matography - Result 16700	Qualifier GC)	<u>RL</u> 250	mg/Kg		Prepared Lab San	Analyzed 02/20/22 20:33 nple ID: 890- Matri	Dil Fa 5 1950-/ x: Solio
A-Chlorooctane - Terphenyl Method: 300.0 - Anions, Ion Chron Analyte Chloride lient Sample ID: SS02 ate Collected: 02/14/22 04:52 ate Received: 02/15/22 09:25 ample Depth: 0.5 Method: 8021B - Volatile Organic Analyte	77 matography - Result 16700 Compounds (Result	Qualifier	<u></u> 250	mg/Kg	<u>D</u>	Prepared Lab San	Analyzed 02/20/22 20:33 nple ID: 890- Matri Analyzed	Dil Fa 5 1950-7 x: Solid Dil Fa
-Chlorooctane -Terphenyl Method: 300.0 - Anions, Ion Chron Analyte Chloride lient Sample ID: SS02 ate Collected: 02/14/22 04:52 ate Received: 02/15/22 09:25 ample Depth: 0.5 Method: 8021B - Volatile Organic Analyte Benzene	77 matography - Result 16700 Compounds (Result 0.114	Qualifier GC) Qualifier	RL	Unit mg/Kg		Prepared Lab San	Analyzed 02/20/22 20:33 nple ID: 890- Matri Analyzed 02/25/22 14:48	Dil Fa 5 1950-2 x: Solic Dil Fa 2
I-Chlorooctane -Terphenyl Method: 300.0 - Anions, Ion Chron Analyte Chloride lient Sample ID: SS02 ate Collected: 02/14/22 04:52 ate Received: 02/15/22 09:25 ample Depth: 0.5 Method: 8021B - Volatile Organic Analyte Benzene Toluene	77 matography - Result 16700 Compounds (<u>Result</u> 0.114 <0.0402	Qualifier GC) Qualifier U	RL 250 RL 0.0402 0.0402	Unit mg/Kg mg/Kg mg/Kg		Prepared Lab San Prepared 02/24/22 10:19 02/24/22 10:19	Analyzed 02/20/22 20:33 nple ID: 890- Matri 02/25/22 14:48 02/25/22 14:48	Dil Fa 5 1950-2 x: Solic Dil Fa 2 2
A-Chlorooctane - Terphenyl Method: 300.0 - Anions, Ion Chron Analyte Chloride lient Sample ID: SS02 ate Collected: 02/14/22 04:52 ate Received: 02/15/22 09:25 ample Depth: 0.5 Method: 8021B - Volatile Organic Analyte Benzene	77 matography - Result 16700 Compounds (Result 0.114	Qualifier GC) Qualifier U U	RL	Unit mg/Kg		Prepared Lab San	Analyzed 02/20/22 20:33 nple ID: 890- Matri Analyzed 02/25/22 14:48	Dil Fa 5 1950-2 x: Solic Dil Fa 2

Eurofins Carlsbad

2/25/2022

Client Sample Results

Limits

70 - 130

RL

RL

RL

49.9

49.9

0.0805

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

Clie	nt:	WSP	USA	Inc.
Proj	ect	/Site:	BEU	DI 30

Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Prepared

02/24/22 10:19

Prepared

Prepared

Prepared

02/16/22 08:36

D

D

D

Client Sample ID: SS02

Date Collected: 02/14/22 04:52 Date Received: 02/15/22 09:25

Sample Depth: 0.5

1,4-Difluorobenzene (Surr)

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Lab Sample ID: 890-1950-2

Analyzed

02/25/22 14:48

Analyzed

02/25/22 13:43

Analyzed

02/17/22 13:52

Analyzed

02/16/22 19:46

Matrix: Solid

5

1	8
Dil Fac	9
1	
Dil Fac	
1	

Dil Fac	
20	
Dil Fac	
1	
Dil Fac	
1	

Method: 8015B NM - Diesel Range Organics (DRO) (GC)									
Analyte	Result	Qualifier							
Gasoline Range Organics	<49.9	U							
(GRO)-C6-C10									

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

96

0.114

189

	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
ſ	– Method: 300.0 - Anions, Ion Chro	matography - S	Soluble						
l	o-Terphenyl	96		70 - 130			02/16/22 08:36	02/16/22 19:46	1
	1-Chlorooctane	84		70 - 130			02/16/22 08:36	02/16/22 19:46	1
	Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
	Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/16/22 08:36	02/16/22 19:46	1
	Diesel Range Organics (Over C10-C28)	189		49.9	mg/Kg		02/16/22 08:36	02/16/22 19:46	1

Analyto	Roount	quannoi		0111		Troparoa	Analyzou	Birrao
Chloride	23200		253		Kg		02/20/22 20:39	50

Surrogate Summary

Client: WSP USA Inc. Project/Site: BEU DI 30

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

-				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-11452-A-21-H MS	Matrix Spike	106	97	
880-11452-A-21-I MSD	Matrix Spike Duplicate	102	100	
890-1950-1	SS01	83	95	
890-1950-2	SS02	66 S1-	96	
LCS 880-20196/1-A	Lab Control Sample	102	103	
LCSD 880-20196/2-A	Lab Control Sample Dup	100	100	
MB 880-20196/5-A	Method Blank	95	95	
Surrogate Legend				
BFB = 4-Bromofluorober	nzene (Surr)			

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
ample ID	Client Sample ID	(70-130)	(70-130)	
287-A-35-F MS	Matrix Spike	64 S1-	57 S1-	
287-A-35-G MSD	Matrix Spike Duplicate	66 S1-	59 S1-	
50-1	SS01	66 S1-	77	
)-2	SS02	84	96	
0-19554/2-A	Lab Control Sample	107	111	
) 880-19554/3-A	Lab Control Sample Dup	101	103	
380-19554/1-A	Method Blank	59 S1-	68 S1-	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 34 of 160

Client: WSP USA Inc.

QC Sample Results

Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Project/Site: BEU DI 30 Mathad: 2021B Valatila Organic Compounds (GC)

Lab Sample ID: MB 880-20196/5-A								C	lient Sa	mple ID: Metho	d Blank
Matrix: Solid										Prep Type: ⁻	Total/NA
Analysis Batch: 20289										Prep Batcl	h: 20196
	М	B MB									
Analyte	Resu	t Qualifier	RL		Unit		D	Pre	pared	Analyzed	Dil Fac
Benzene	<0.0020	D U	0.00200		mg/K	g		02/24/	22 10:19	02/25/22 11:22	1
Toluene	<0.0020	U U	0.00200		mg/K	g		02/24/	22 10:19	02/25/22 11:22	1
Ethylbenzene	<0.0020	U U	0.00200		mg/K	g		02/24/	22 10:19	02/25/22 11:22	1
m-Xylene & p-Xylene	<0.0040	D U	0.00400		mg/K	g		02/24/	22 10:19	02/25/22 11:22	1
o-Xylene	<0.0020	U U	0.00200		mg/K	g		02/24/	22 10:19	02/25/22 11:22	1
Xylenes, Total	<0.0040	U U	0.00400		mg/K	g		02/24/	22 10:19	02/25/22 11:22	1
	М	3 <i>MB</i>									
Surrogate	%Recover	y Qualifier	Limits					Pre	pared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	9	5	70 - 130					02/24/	/22 10:19	02/25/22 11:22	1
1,4-Difluorobenzene (Surr)	9	5	70 - 130					02/24/	/22 10:19	02/25/22 11:22	1
Lab Sample ID: LCS 880-20196/1-A							Cli	ient S	Sample	D: Lab Control	Sample
Matrix: Solid										Prep Type: [•]	
Analysis Batch: 20289										Prep Batcl	
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Benzene			0.100	0.1161		mg/Kg			116	70 _ 130	
Toluene			0.100	0.1132		mg/Kg			113	70 - 130	
Ethylbenzene			0.100	0.1112		mg/Kg			111	70 _ 130	
m-Xylene & p-Xylene			0.200	0.2292		mg/Kg			115	70 - 130	
o-Xylene			0.100	0.1181		mg/Kg			118	70 - 130	
	LCS LC	s									
Surrogate %	Recovery Qu	alifier	Limits								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-20196/2-A

Matrix: Solid

Analysis Batch: 20289							Prep	Batch:	20196
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1058		mg/Kg		106	70 - 130	9	35
Toluene	0.100	0.1026		mg/Kg		103	70 - 130	10	35
Ethylbenzene	0.100	0.1021		mg/Kg		102	70 - 130	9	35
m-Xylene & p-Xylene	0.200	0.2103		mg/Kg		105	70 - 130	9	35
o-Xylene	0.100	0.1046		mg/Kg		105	70 - 130	12	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-11452-A-21-H MS

Matrix: Solid

Analysis Batch: 20289									Prep	Batch: 20196
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	< 0.00202	U	0.0990	0.08009		mg/Kg		81	70 - 130	
Toluene	<0.00202	U	0.0990	0.07921		mg/Kg		80	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

ntrol Sample

Client Sample ID: Lab Control Sample Dup

pe: Total/NA Batch: 201

Prep Type: Total/NA

96	
	13

QC Sample Results

Client: WSP USA Inc.

Project/Site: BEU DI 30

Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-11452-A	-21-H MS									Client S	Sample ID:		
Matrix: Solid												ype: To	
Analysis Batch: 20289		_										Batch:	2019
	Sample S			Spike		MS			_		%Rec.		
Analyte	Result		her	Added	Result	Qualif			D	%Rec	Limits		
thylbenzene	<0.00202 (0.0990	0.07612		mg/Kg			77	70 _ 130		
n-Xylene & p-Xylene	<0.00404 \			0.198	0.1607		mg/Kg			81	70 - 130		
-Xylene	<0.00202 (J		0.0990	0.08296		mg/Kg			84	70 - 130		
urro goto		MS Qualii	fior	Limits									
Surrogate -Bromofluorobenzene (Surr)		zuan		70 - 130									
,4-Difluorobenzene (Surr)	97			70 - 130 70 - 130									
	31			10 - 150									
ab Sample ID: 880-11452-A	-21-I MSD							Clie	nt Sa	mple ID:	Matrix Sp		-
Aatrix: Solid												ype: To	
Analysis Batch: 20289	• • •	_		0.11								Batch:	
	Sample S			Spike	MSD	MSD			_	~ =	%Rec.		RF
nalyte			ner	Added	Result	Qualif			<u>D</u>	%Rec	Limits	RPD	Lin
lenzene				0.100	0.08579		mg/Kg			86	70 - 130	7	
	<0.00202			0.100	0.08092		mg/Kg			81	70 ₋ 130	2	
thylbenzene	<0.00202			0.100	0.07672		mg/Kg			77	70 - 130	1	
n-Xylene & p-Xylene	<0.00404 0			0.200 0.100	0.1576 0.07783		mg/Kg			79 78	70 ₋ 130	2 6	
-Xylene	<0.00202 (J		0.100	0.07765		mg/Kg			70	70 - 130	0	
Nume 1040		MSD	<i>f</i> in <i>u</i>	Limite									
currogate -Bromofluorobenzene (Surr)	_ <u>%Recovery</u> 102	Quali		Limits 70 - 130									
,4-Difluorobenzene (Surr)	102			70 - 130 70 - 130									
ethod: 8015B NM - Dies	sel Range Orç	jani	ics (DR)) (GC)									
	54/1-A									Client Sa	ample ID: I	Method	Blar
ab Sample ID: MB 880-1955.	54/1-A								•	Client Sa	-	Method 'ype: To	
.ab Sample ID: MB 880-1955 Aatrix: Solid	54/1-A									Client Sa	Prep T		otal/N
ab Sample ID: MB 880-1955 Aatrix: Solid		МВ	МВ							Client Sa	Prep T	ype: To	otal/N
ab Sample ID: MB 880-1955 Iatrix: Solid Inalysis Batch: 19566			MB Qualifier	RL		L	Jnit	D		epared	Prep T	ype: To Batch:	otal/N 195
ab Sample ID: MB 880-1955 Matrix: Solid Analysis Batch: 19566 Malyte Basoline Range Organics	Res		Qualifier				<mark>Jnit</mark> ng/Kg	_ <u>D</u>	Pr		Prep T Prep	ype: To Batch:	otal/N 195
Lab Sample ID: MB 880-1955 Matrix: Solid Analysis Batch: 19566 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Res <5	sult	Qualifier U			r		_ <u>D</u>	Pr/ 02/16	epared	Prep T Prep Analyze	bype: Tc Batch: ed 11:26	otal/N 1958
Lab Sample ID: MB 880-1955 Matrix: Solid Analysis Batch: 19566 Malyte Basoline Range Organics GRO)-C6-C10	Res <5 <5	50.0	Qualifier U	50.0		r	ng/Kg	_ <u>D</u>	Pr 02/16 02/16	epared //22 08:36	Prep T Prep Analyze	ype: To Batch: ed 11:26	otal/N
ab Sample ID: MB 880-1955 Matrix: Solid Analysis Batch: 19566 malyte Easoline Range Organics GRO)-C6-C10 liesel Range Organics (Over 10-C28) III Range Organics (Over C28-C36)	Res <5 <5 <5	sult 50.0 50.0 50.0 MB	Qualifier U U MB	50.0 50.0 50.0		r	ng/Kg ng/Kg	<u> </u>	Pr/ 02/16 02/16 02/16	epared /22 08:36 /22 08:36 /22 08:36	Analyz 02/16/22 02/16/22 02/16/22	ype: To Batch: ed 11:26 11:26 11:26	Dill F
ab Sample ID: MB 880-1955 Matrix: Solid Analysis Batch: 19566 malyte asoline Range Organics GRO)-C6-C10 iesel Range Organics (Over 10-C28) II Range Organics (Over C28-C36) urrogate	Res <5 <5 <5	sult 50.0 50.0 50.0 50.0 MB 7ery	Qualifier U U MB Qualifier	50.0 50.0 50.0 <i>Limits</i>		r	ng/Kg ng/Kg	_ <u>D</u>	Pr 02/16 02/16 02/16	epared /22 08:36 /22 08:36 /22 08:36 epared	Prep T Prep Analyz 02/16/22 02/16/22 02/16/22 02/16/22 Analyz	ype: To Batch: ed 11:26 11:26 11:26	otal/N 1958
Lab Sample ID: MB 880-1955 Matrix: Solid Analysis Batch: 19566 malyte Basoline Range Organics GRO)-C6-C10 Biesel Range Organics (Over 10-C28) III Range Organics (Over C28-C36) III Range Organics (Over C28-C36)	Res <5 <5 <5	sult 50.0 50.0 50.0 MB 759	Qualifier U U MB Qualifier S1-			r	ng/Kg ng/Kg	_ <u>D</u>	Pr 02/16 02/16 02/16 Pr 02/16	epared //22 08:36 5/22 08:36 5/22 08:36 epared 5/22 08:36	Prep T Prep Analyz 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22	type: To Batch: ed 11:26 11:26 ed 11:26 ed 11:26 11:26	Dill F
ab Sample ID: MB 880-1955 latrix: Solid analysis Batch: 19566 nalyte asoline Range Organics SRO)-C6-C10 iesel Range Organics (Over 10-C28) II Range Organics (Over C28-C36) urrogate Chlorooctane	Res <5 <5 <5	sult 50.0 50.0 50.0 50.0 MB 7ery	Qualifier U U MB Qualifier S1-	50.0 50.0 50.0 <i>Limits</i>		r	ng/Kg ng/Kg	<u> </u>	Pr 02/16 02/16 02/16 Pr 02/16	epared /22 08:36 /22 08:36 /22 08:36 epared	Prep T Prep Analyz 02/16/22 02/16/22 02/16/22 02/16/22 Analyz	type: To Batch: ed 11:26 11:26 ed 11:26 ed 11:26 11:26	Dill F
ab Sample ID: MB 880-1955 latrix: Solid malysis Batch: 19566 nalyte asoline Range Organics SRO)-C6-C10 iesel Range Organics (Over 10-C28) II Range Organics (Over C28-C36) urrogate	Res <5 <5 <5 %Recov	sult 50.0 50.0 50.0 MB 759	Qualifier U U MB Qualifier S1-			r	ng/Kg ng/Kg		Pr/ 02/16 02/16 02/16 02/16 02/16	epared /22 08:36 /22 08:36 /22 08:36 epared /22 08:36 /22 08:36	Prep T Prep Analyz 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22	ype: To Batch: ed 11:26 11:26 11:26 11:26 11:26 11:26	Dil F
ab Sample ID: MB 880-1955 latrix: Solid analysis Batch: 19566 nalyte asoline Range Organics GRO)-C6-C10 iesel Range Organics (Over 10-C28) II Range Organics (Over C28-C36) urrogate Chlorooctane Terphenyl	Res <5 <5 <5 %Recov	sult 50.0 50.0 50.0 MB 759	Qualifier U U MB Qualifier S1-			r	ng/Kg ng/Kg		Pr/ 02/16 02/16 02/16 02/16 02/16	epared /22 08:36 /22 08:36 /22 08:36 epared /22 08:36 /22 08:36	Analyze 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22 02/16/22	ype: To Batch: ed 11:26 11:26 11:26 11:26 11:26 11:26	Dill F

Allalysis Batch. 19500						11011. 19554		
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	844.6		mg/Kg		84	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	909.4		mg/Kg		91	70 - 130	
C10-C28)								

Eurofins Carlsbad
Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Client: WSP USA Inc. Project/Site: BEU DI 30

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-195	554/2-A						Client	Sample	D: Lab C		
Matrix: Solid										Type: To	
Analysis Batch: 19566									Prep	Batch:	1955
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	107		70 - 130								
o-Terphenyl	111		70 - 130								
Lab Sample ID: LCSD 880-19	9554/3-A					Clier	nt Sam	ple ID:	Lab Contro	I Sample	e Du
Matrix: Solid									Prep 1	Type: To	tal/N
Analysis Batch: 19566										Batch:	
-			Spike	LCSD	LCSD				%Rec.		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics			1000	792.3		mg/Kg		79	70 - 130	6	2
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	839.6		mg/Kg		84	70 - 130	8	2
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	103		70 - 130								
Matrix: Solid Analysis Batch: 19566	Sample	Sample	Spike	MS	MS					Type: Tot Batch:	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	1000	922.5		mg/Kg		92	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.0	U	1000	945.4		mg/Kg		90	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	64	S1-	70 - 130								
o-Terphenyl	57	S1-	70 - 130								
Lab Sample ID: 880-11287-A	-35-G MSD					CI	ient Sa	ample IE): Matrix Sp	oike Dup	licat
									Prep 1	Type: Tot	tal/N
Matrix: Solid									Prep	Batch:	1955
	Sample	Sample	Spike	MSD	MSD				%Rec.		RP
Analysis Batch: 19566	-	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	
Analysis Batch: 19566 Analyte Gasoline Range Organics	-	Qualifier	-			<mark>Unit</mark>	D	% Rec 95		RPD 3	Lim
Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	Added	Result			<u>D</u>		Limits		Lim 2
Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		Qualifier U U	Added 998	Result 948.8		mg/Kg	<u>D</u>	95	Limits 70 - 130	3	Lim 2
Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		Qualifier U U	Added	Result 948.8		mg/Kg	<u>D</u>	95	Limits 70 - 130	3	Lim 2
Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	Result <50.0	Qualifier U U	Added 998	Result 948.8		mg/Kg	<u>D</u>	95	Limits 70 - 130	3	RP Lim 2 2

Client: WSP USA Inc.

Project/Site: BEU DI 30

Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Method: 300.0 - Anions, Ion Chromatography

 Lab Sample ID: MB 880-19776	5/1-A							Client 9	Sample ID:	Method	Blank
Matrix: Solid								onone		Type: S	
Analysis Batch: 19882									i i op	1900.0	orabio
		МВ МВ									
Analyte	Re	sult Qualifie	r	RL	Unit		D	Prepared	Analy	zed	Dil Fac
Chloride	<	5.00 U		5.00	mg/K	(g		•	02/20/22		1
Lab Sample ID: LCS 880-1977	′6/2-A						Clie	nt Sample	e ID: Lab C	ontrol S	ample
Matrix: Solid										Type: S	-
Analysis Batch: 19882											
· · · · · , · · · · · · · · · · · · · · · · · · ·			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	I	D %Rec	Limits		
Chloride			250	256.5		mg/Kg		103	90 - 110		
Lab Sample ID: LCSD 880-197	776/3-A					CI	ient Sa	ample ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid										Type: S	
Analysis Batch: 19882										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
-			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	I	D %Rec	Limits	RPD	Limit
Chloride			250	259.0		mg/Kg		104	90 - 110	1	20
– Lab Sample ID: 890-1938-A-6-	-M MS							Client	Sample ID): Matrix	Spike
Matrix: Solid										Type: S	
Analysis Batch: 19882											
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	I	D %Rec	Limits		
Chloride	89.9		250	327.9		mg/Kg		95	90 - 110		
– Lab Sample ID: 890-1938-A-6-	N MSD						Client	Sample II	D: Matrix S	pike Dur	olicate
Matrix: Solid										Type: S	
Analysis Batch: 19882											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Pocult	Qualifier	Added	Posult	Qualifier	Unit	, I	D %Rec	Limits	RPD	Limit
Analyte	Result	quannoi	Auueu	Result	quanner	0		///////////////////////////////////////	Emito		

Client Sample ID

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

SS01

SS02

SS01

SS02

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: WSP USA Inc. Project/Site: BEU DI 30

Prep Batch: 20196

MB 880-20196/5-A

LCS 880-20196/1-A

LCSD 880-20196/2-A

880-11452-A-21-H MS

880-11452-A-21-I MSD

Lab Sample ID

MB 880-20196/5-A

LCS 880-20196/1-A

LCSD 880-20196/2-A

880-11452-A-21-H MS

890-1950-1

890-1950-2

Analysis Batch: 20289

GC VOA

890-1950-1

890-1950-2

Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Method

5035

5035

5035

5035

5035

5035

5035

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

Page 39 of 160

Prep Batch

Prep Batch

20196

20196

20196

20196

20196

20196

20196

880-11452-A-21-I MSD Matrix Spike Duplicate

Analysis Batch: 203	25				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1950-1	SS01	Total/NA	Solid	Total BTEX	
890-1950-2	SS02	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 19554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1950-1	SS01	Total/NA	Solid	8015NM Prep	
890-1950-2	SS02	Total/NA	Solid	8015NM Prep	
MB 880-19554/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-19554/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-19554/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-11287-A-35-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-11287-A-35-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 19566

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1950-1	SS01	Total/NA	Solid	8015B NM	19554
890-1950-2	SS02	Total/NA	Solid	8015B NM	19554
MB 880-19554/1-A	Method Blank	Total/NA	Solid	8015B NM	19554
LCS 880-19554/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	19554
LCSD 880-19554/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	19554
880-11287-A-35-F MS	Matrix Spike	Total/NA	Solid	8015B NM	19554
880-11287-A-35-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	19554

Analysis Batch: 19719

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1950-1	SS01	Total/NA	Solid	8015 NM	
890-1950-2	SS02	Total/NA	Solid	8015 NM	

Client Sample ID

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

SS01

SS02

SS01

SS02

QC Association Summary

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: WSP USA Inc. Project/Site: BEU DI 30

Leach Batch: 19776

Lab Sample ID

MB 880-19776/1-A

LCS 880-19776/2-A

LCSD 880-19776/3-A

890-1938-A-6-M MS

890-1938-A-6-N MSD

Lab Sample ID

MB 880-19776/1-A

LCS 880-19776/2-A

LCSD 880-19776/3-A

890-1938-A-6-N MSD

890-1938-A-6-M MS

890-1950-1

890-1950-2

Analysis Batch: 19882

890-1950-1

890-1950-2

HPLC/IC

Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Method

DI Leach

Method

300.0

300.0

300.0

300.0

300.0

300.0

300.0

Prep Batch

Prep Batch

19776

19776

19776

19776

19776

19776

19776

8

Lab Chronicle

Client: WSP USA Inc. Project/Site: BEU DI 30

Client Sample ID: SS01 Date Collected: 02/14/22 04:50

Date Received: 02/15/22 09:25

Job ID: 890-1950-1
SDG: 31403236.022.0129 TASK 16.02

Lab Sample ID: 890-1950-1 Matrix: Solid

9

Lab Sample ID: 890-1950-2 Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			20196	02/24/22 10:19	KL	XEN MID
Total/NA	Analysis	8021B		20	20289	02/25/22 14:27	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	20325	02/25/22 13:43	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	19719	02/17/22 13:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			19554	02/16/22 08:36	DM	XEN MID
Total/NA	Analysis	8015B NM		1	19566	02/16/22 19:26	AJ	XEN MID
Soluble	Leach	DI Leach			19776	02/17/22 21:54	СН	XEN MID
Soluble	Analysis	300.0		50	19882	02/20/22 20:33	СН	XEN MID

Client Sample ID: SS02

Date Collected: 02/14/22 04:52 Date Received: 02/15/22 09:25

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			20196	02/24/22 10:19	KL	XEN MID
Total/NA	Analysis	8021B		20	20289	02/25/22 14:48	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	20325	02/25/22 13:43	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	19719	02/17/22 13:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			19554	02/16/22 08:36	DM	XEN MID
Total/NA	Analysis	8015B NM		1	19566	02/16/22 19:46	AJ	XEN MID
Soluble	Leach	DI Leach			19776	02/17/22 21:54	СН	XEN MID
Soluble	Analysis	300.0		50	19882	02/20/22 20:39	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

10

Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Laboratory: Eurofins Midland

Client: WSP USA Inc. Project/Site: BEU DI 30

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pi	rogram	Identification Number	Expiration Date
exas	N	ELAP	T104704400-21-22	06-30-22
The following enalyter	are included in this report by	ut the laboratory is not certif	ed by the governing authority. This list ma	w include analytes for
the agency does not o	fer certification.	,		
the agency does not o Analysis Method		Matrix	Analyte	
the agency does not o	fer certification.	,		

Method Summary

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 8/23/2022 3:34:00 PM

Sample Summary

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1950-1 SDG: 31403236.022.0129 TASK 16.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1950-1	SS01	Solid	02/14/22 04:50	02/15/22 09:25	0.5	4
890-1950-2	SS02	Solid	02/14/22 04:52	02/15/22 09:25	0.5	
						5
				8		
						9
						12
						13

X		Ŧ	ouston,TX (281) 240-4200	Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX	JSTOCY San Antonio,TX (210) 509-3334	4	Work Order No:
LAB	ORATORIES	N Hobbs,NM (57	Vidland,TX (432-704-5440 '5-392-7550) Phoenix,AZ	Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800)	00	13-620-2000)	www.xenco.com [⊃] age
Project Manager: Ka	Kalei Jennings		Bill to: (if different)	Amy Ruth			ŏ
	WSP USA		Company Name:			Program: UST/PST	RP rownfields RC
	3300 North A Street		Address:		ət		
e ZIP:	Midland, Texas 79705		City, State ZIP:	Carlsbad, NM 88220	0	Reporting:Level II	
	432 704 5178		Email: amy.ruth@exx	amy.ruth@exxonmobil.com,aimee.cole@wsp.com	ole@wsp.com	Deliverables: EDD	ADaPT []
Name:	BEU DI 30		Turn Around		ANALYSIS REQUEST	QUEST	Work Order Notes
er:	31403236.022.0129 Task 16.02	129 Task 16.02	Routine 4				
P.O. Number:	NAPP2200746777						CC: 2096141001
ne:	Mercy Rotich.		Due Date:				
SAMPLE RECEIPT	Temp Blank:	(Yes No	Wet Ice: Yes No				
Temperature (°C):	12.6/2.4	(Thermometer ID	-			
Received Intact:	(Yes No	MNL	4	021)	890-195	890-1950 Chain of Custody	
Cooler Custody Seals:	Yes No MA	Correction Factor:	-0-7	015) 0=8(-	-	TAT starts the day received by the
Sample Custody Seals:	Yes No NA	Total Containers:		PA 8			lat
Sample Identification	cation Matrix	Date Sampled Sa	Depth	Numbe TPH (EI BTEX (I Chlorid			Sample Comments
SS01	S	02/14/22 4:50	50 0.5'	×			
SS02	N		52 0.5 ¹				
Total 200.7 / 6010 Circle Method(s)	otal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	ер Н	ICRA 13PPM Texas 11 A TCLP / SPLP 6010: 8RCRA	I Sb As Ba Be Sb As Ba Be	Cd Ca Cr d Cr Co Cu	Lo Cu Fe Pb Mg Mn Mo Ni K S J Pb Mn Mo Ni Se Ag TI U	Se Ag SiO2 Na Sr TI Sn U V Zn 1631/245.1/7470/7471:Hg
otice: Signature of this docu service. Xenco will be liabl Xenco. A minimum charge	ument and relinquishment le only for the cost of sam of \$75.00 will be applied t	of samples constitutes a va ples and shall not assume a o each project and a charge	alld purchase order from clie any responsibility for any lo: e of \$5 for each sample subr	ant company to Xenco, its aff sses or expenses incurred by mitted to Xenco, but not analy	lliates and subcontractors. It ass / the client if such losses are due /zed. These terms will be enforce	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	yns Itrol
Relinquished by: (Signature)	Signature)	Received by: (Si	(Signature)	Date/Time	Relinquished by: (Signature)	nature) Receive	Received by: (Signature)
C.		The real		0 1 2 2 U 12	4		
					0		

Job Number: 890-1950-1

List Source: Eurofins Carlsbad

SDG Number: 31403236.022.0129 TASK 16.02

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1950 List Number: 1

Creator: Clifton, Cloe Question Answer Comment The cooler's custody seal, if present, is intact. True Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1950

List Number: 2

Job Number: 890-1950-1

SDG Number: 31403236.022.0129 TASK 16.02

List Source: Eurofins Midland List Creation: 02/16/22 12:10 PM

Creator: Kramer, Jessica			
Question	Answer	Comment	
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is	N/A		

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 5/23/2022 2:39:09 PM

difference en la construction de la construction de

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1949-1

Laboratory SDG: 31403236.022.0129 TASK 16.02 Client Project/Site: BEU DI 30

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 2/24/2022 6:47:23 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.eurofinsus.com/Env

LINKS

Review your project results through

Total Access

Have a Question?

Released to Imaging: 8/23/2022 3:34:00 PM

Laboratory Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

Client: WSP USA Inc. Project/Site: BEU DI 30 Page 50 of 160

Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

-		
Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		5
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
<u>U</u>	Indicates the analyte was analyzed for but not detected.	8
Glossary		Q
Abbreviation	These commonly used abbreviations may or may not be present in this report.	3
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	4.0
DL	Detection Limit (DoD/DOE)	13
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive

Quality Control

PQL

PRES

QC

RER

RPD TEF

TEQ

TNTC

RL

4

5

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Job ID: 890-1949-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1949-1

Receipt

The sample was received on 2/15/2022 9:25 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: SS03 (890-1949-1), (MB 880-19554/1-A),	
(880-11287-A-35-E), (880-11287-A-35-F MS) and (880-11287-A-35-G MSD). Evidence of matrix interferences is not obvious.	

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Lab Sample ID: 890-1949-1

Matrix: Solid

Client Sample ID: SS03 Date Collected: 02/14/22 04:56 Date Received: 02/15/22 09:25 Sample Depth: 0.5

Client: WSP USA Inc. Project/Site: BEU DI 30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/24/22 10:30	02/24/22 14:46	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/24/22 10:30	02/24/22 14:46	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/24/22 10:30	02/24/22 14:46	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		02/24/22 10:30	02/24/22 14:46	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/24/22 10:30	02/24/22 14:46	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		02/24/22 10:30	02/24/22 14:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130			02/24/22 10:30	02/24/22 14:46	1
1,4-Difluorobenzene (Surr)	95		70 - 130			02/24/22 10:30	02/24/22 14:46	1
- Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			02/24/22 16:58	1
- Method: 8015 NM - Diesel Rang	o Organice (DP							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
							· · · · · , · ·	DIFAC
Total TPH	<50.0	U	50.0	mg/Kg			02/17/22 13:52	1
Total TPH Method: 8015B NM - Diesel Ran			50.0	mg/Kg				1
	ige Organics (D		50.0 RL	mg/Kg Unit	 D	Prepared		Dil Fac
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics	ige Organics (D	RO) (GC) Qualifier				<u>·</u>	02/17/22 13:52	1
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	nge Organics (D Result	RO) (GC) Qualifier U	RL	Unit		Prepared	02/17/22 13:52 Analyzed	1
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	rige Organics (D Result <50.0	<mark>RO) (GC)</mark> Qualifier U	RL 50.0	Unit mg/Kg		Prepared 02/16/22 08:36	02/17/22 13:52 Analyzed 02/16/22 19:05	1
: Method: 8015B NM - Diesel Ran	rige Organics (D Result <50.0 <50.0	RO) (GC) Qualifier U U	RL 50.0 50.0	Unit mg/Kg mg/Kg		Prepared 02/16/22 08:36 02/16/22 08:36	02/17/22 13:52 Analyzed 02/16/22 19:05 02/16/22 19:05	1 Dil Fac 1
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	rge Organics (D Result <50.0 <50.0 <50.0	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0	Unit mg/Kg mg/Kg		Prepared 02/16/22 08:36 02/16/22 08:36 02/16/22 08:36	02/17/22 13:52 Analyzed 02/16/22 19:05 02/16/22 19:05 02/16/22 19:05	1 Dil Fac 1 1 1
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	nge Organics (D Result <50.0 <50.0 <50.0 <50.0	RO) (GC) Qualifier U U U Qualifier	RL 50.0 50.0 50.0 <i>Limits</i>	Unit mg/Kg mg/Kg		Prepared 02/16/22 08:36 02/16/22 08:36 02/16/22 08:36 Prepared	02/17/22 13:52 Analyzed 02/16/22 19:05 02/16/22 19:05 02/16/22 19:05 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	RO) (GC) Qualifier U U U Qualifier S1-	RL 50.0 50.0 50.0 50.0 50.0 70 - 130	Unit mg/Kg mg/Kg		Prepared 02/16/22 08:36 02/16/22 08:36 02/16/22 08:36 Prepared 02/16/22 08:36	02/17/22 13:52 Analyzed 02/16/22 19:05 02/16/22 19:05 02/16/22 19:05 Analyzed 02/16/22 19:05	1 Dil Fac 1 1 1 1 Dil Fac 1
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <50.0	RO) (GC) Qualifier U U U Qualifier S1-	RL 50.0 50.0 50.0 50.0 50.0 70 - 130	Unit mg/Kg mg/Kg		Prepared 02/16/22 08:36 02/16/22 08:36 02/16/22 08:36 Prepared 02/16/22 08:36	02/17/22 13:52 Analyzed 02/16/22 19:05 02/16/22 19:05 02/16/22 19:05 Analyzed 02/16/22 19:05	1 Dil Fac 1 1 1 1 Dil Fac 1

Released to Imaging: 8/23/2022 3:34:00 PM

Surrogate Summary

Client: WSP USA Inc.

Project/Site: BEU DI 30

Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
890-1948-A-1-J MS	Matrix Spike	97	97	·	
890-1948-A-1-K MSD	Matrix Spike Duplicate	98	98		6
890-1949-1	SS03	101	95		
LCS 880-19723/1-A	Lab Control Sample	97	97		
LCSD 880-19723/2-A	Lab Control Sample Dup	99	98		
MB 880-19723/5-A	Method Blank	99	95		8
Surrogate Legend					
BFB = 4-Bromofluorober	nzene (Surr)				9
DEDZ = 1.4 Diffuereben					

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 Lab Sample ID **Client Sample ID** (70-130) (70-130) 880-11287-A-35-F MS Matrix Spike 64 S1-57 S1-880-11287-A-35-G MSD Matrix Spike Duplicate 66 S1-59 S1-890-1949-1 SS03 69 S1-78 LCS 880-19554/2-A Lab Control Sample 107 111 LCSD 880-19554/3-A Lab Control Sample Dup 101 103 MB 880-19554/1-A Method Blank 59 S1-68 S1-

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 53 of 160

Prep Type: Total/NA

Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 19723

Project/Site: BEU DI 30

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID:	MB 880-19723/5-A

Matrix: Solid Analysis Batch: 20184

Client: WSP USA Inc.

Analysis Batch: 20184							Prep Batch	1: 19723
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			02/24/22 07:45	02/24/22 11:10	1
1,4-Difluorobenzene (Surr)	95		70 - 130			02/24/22 07:45	02/24/22 11:10	1

Lab Sample ID: LCS 880-19723/1-A Matrix: Solid

Analysis Batch: 20184

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1025		mg/Kg		103	70 - 130	
Toluene	0.100	0.1011		mg/Kg		101	70 - 130	
Ethylbenzene	0.100	0.09945		mg/Kg		99	70 - 130	
m-Xylene & p-Xylene	0.200	0.2055		mg/Kg		103	70 - 130	
o-Xylene	0.100	0.09841		mg/Kg		98	70 - 130	

	LCS L	CS	
Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: LCSD 880-19723/2-A

Matrix: Solid

Analysis Batch: 20184							Prep	Batch:	19723
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1127		mg/Kg		113	70 - 130	9	35
Toluene	0.100	0.1117		mg/Kg		112	70 - 130	10	35
Ethylbenzene	0.100	0.1097		mg/Kg		110	70 - 130	10	35
m-Xylene & p-Xylene	0.200	0.2288		mg/Kg		114	70 - 130	11	35
o-Xylene	0.100	0.1101		mg/Kg		110	70 - 130	11	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: 890-1948-A-1-J MS Matrix: Solid

Analysis Potoby 20194

Analysis Batch: 20184									Prep	Batch: 19723
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0996	0.1097		mg/Kg		110	70 - 130	
Toluene	<0.00200	U	0.0996	0.1098		mg/Kg		110	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

3

Client: WSP USA Inc.

Project/Site: BEU DI 30

Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-1948-A-1-J	JMS								Client	Sample ID: N	latrix	Spike
Matrix: Solid										Prep Typ	e: To	tal/N/
Analysis Batch: 20184										Prep Ba	atch:	1972
	Sample	Samp	le	Spike	MS	MS				%Rec.		
Analyte	Result	Qualif	fier	Added	Result	Qualifier	Unit		D %Rec	Limits		
Ethylbenzene	<0.00200	υ		0.0996	0.1061		mg/Kg		107	70 - 130		
m-Xylene & p-Xylene	< 0.00399	U		0.199	0.2214		mg/Kg		111	70 - 130		
p-Xylene	<0.00200	U		0.0996	0.1059		mg/Kg		106	70 - 130		
	MS	MS										
Surrogate	%Recovery	Quali	fier	Limits								
4-Bromofluorobenzene (Surr)	97			70 - 130								
1,4-Difluorobenzene (Surr)	97			70 - 130								
Lab Sample ID: 890-1948-A-1-k	K MSD							Clien	t Sample ID	: Matrix Spik	e Dup	olicat
Matrix: Solid										Prep Typ		
Analysis Batch: 20184										Prep Ba		
-	Sample	Samp	le	Spike	MSD	MSD				%Rec.		RP
Analyte	Result	Quali	fier	Added	Result	Qualifier	Unit		D %Rec	Limits	RPD	Lim
Benzene	<0.00200	υ		0.100	0.1099		mg/Kg		110	70 - 130	0	3
Toluene	<0.00200	U		0.100	0.1088		mg/Kg		109	70 ₋ 130	1	3
Ethylbenzene	<0.00200	U		0.100	0.1059		mg/Kg		106	70 ₋ 130	0	3
n-Xylene & p-Xylene	<0.00399			0.200	0.2203		mg/Kg		110	70 ₋ 130	1	3
p-Xylene	<0.00200			0.100	0.1056		mg/Kg		106	70 - 130	0	3
	MSD	MSD										
Surve mete			fier	Lingita								
Surrogate		Quali		Limits								
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	98 98			70 ₋ 130 70 ₋ 130								
lethod: 8015B NM - Diese	I Range Org	gani	ics (DR	O) (GC)								
Lab Sample ID: MB 880-19554/		gani	ics (DR	O) (GC)					Client S	ample ID: Me		
Lab Sample ID: MB 880-19554/ Matrix: Solid		gani	ics (DR	O) (GC)					Client S	Prep Typ	e: To	tal/N/
Lab Sample ID: MB 880-19554/ Matrix: Solid		gani	ics (DR	O) (GC)					Client S		e: To	tal/N/
Lab Sample ID: MB 880-19554/ Matrix: Solid	/1-A	gani мв		O) (GC)					Client S	Prep Typ	e: To	tal/N/
Lab Sample ID: MB 880-19554/ Matrix: Solid Analysis Batch: 19566 ^{Analyte}	/1-A 	MB sult	MB Qualifier	O) (GC)		Unit		D	Client S	Prep Typ	e: To	tal/N/ 1955
Lab Sample ID: MB 880-19554/ Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics	/1-A 	MB	MB Qualifier			Unit mg/l				Prep Typ Prep Ba Analyzed	e: To atch:	tal/N/ 1955 Dil Fa
Lab Sample ID: MB 880-19554/ Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	/1-A 	MB sult	MB Qualifier U	RL			≺g		Prepared	Prep Typ Prep Ba Analyzed 02/16/22 11:2	e: To atch:	tal/N/ 1955 Dil Fa
Lab Sample ID: MB 880-19554/ Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	/1-A 	MB sult 50.0	MB Qualifier U			mg/ł	≺g ≺g		Prepared 02/16/22 08:36	Prep Typ Prep Ba Analyzed 02/16/22 11:: 02/16/22 11::	26 26	tal/N/ 1955 Dil Fa
Lab Sample ID: MB 880-19554/ Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	/1-A 	MB sult 50.0	MB Qualifier U U			mg/l	≺g ≺g		Prepared 02/16/22 08:36 02/16/22 08:36	Prep Typ Prep Ba 02/16/22 11:: 02/16/22 11::	26 26	tal/N/ 1955 Dil Fa
Lab Sample ID: MB 880-19554/ Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	/1-A 	MB sult 50.0 50.0 50.0	MB Qualifier U U			mg/l	≺g ≺g		Prepared 02/16/22 08:36 02/16/22 08:36	Prep Typ Prep Ba 02/16/22 11:: 02/16/22 11::	26 26	tal/N/ 1955 Dil Fa
lethod: 8015B NM - Diese Lab Sample ID: MB 880-19554/ Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	/1-A 	MB sult 50.0 50.0 50.0	MB Qualifier U U U MB Qualifier			mg/l	≺g ≺g		Prepared 02/16/22 08:36 02/16/22 08:36 02/16/22 08:36	Prep Typ Prep Ba 02/16/22 11:: 02/16/22 11:: 02/16/22 11:: Analyzed	26	tal/N/

Client Sample ID: Lab Control Sample

Matrix: Solid							Prep T	ype: Total/NA
Analysis Batch: 19566							Prep	Batch: 19554
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	1000	844.6		mg/Kg		84	70 - 130	
Diesel Range Organics (Over C10-C28)	1000	909.4		mg/Kg		91	70 ₋ 130	

Eurofins Carlsbad

Released to Imaging: 8/23/2022 3:34:00 PM

Lab Sample ID: LCS 880-19554/2-A

Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Client: WSP USA Inc. Project/Site: BEU DI 30

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS									Type: Tot Batch:	
LCS								Prep	Batch:	1955
LCS										
	LCS									
%Recovery		Limits								
107		70 - 130								
111		70 - 130								
						_				_
554/3-A					Clier	nt San	ple ID: I			
								-	Batch:	
		-				_				RP
				Qualifier		D				Lim
		1000	792.3		mg/Kg		79	70 - 130	6	2
		1000	839.6		ma/Ka		84	70 - 130	8	2
		1000	000.0					10 - 100	0	2
	Qualifier									
103		70 - 130								
35-F MS							Client	Sample ID	: Matrix	Spik
Sample	Sample	Spike	MS	MS						
	-	-			Unit	D	%Rec			
			922.5				92	70 - 130		
					0 0					
<50.0	U	1000	945.4		mg/Kg		90	70 - 130		
MS	MS									
%Recovery	Qualifier	Limits								
64	S1-	70 - 130								
57	S1-	70 - 130								
35-G MSD					CI	ient S	ample IL			
	. .	• "							Batch:	
-	-	-			11	_	0/ D			RPI
				Qualifier						Limi
<50.0	U	998	948.8		mg/rkg		95	70 - 130	3	2
<50.0	U	998	983.0		mg/Kg		94	70 - 130	4	2
-00.0	-		000.0				5.		•	-
	MSD	1 500 11								
%Recovery		Limits								
	107 111 554/3-A <i>kecovery</i> 101 103 35-F MS Sample Result <50.0 <i>kg</i> %Recovery 64 57 35-G MSD Sample Result 57	IO7 107 111 554/3-A %Recovery Qualifier 101 103 35-F MS Sample Result Qualifier <50.0	107 70 - 130 111 70 - 130 554/3-A Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 %Recovery Qualifier Limits 101 70 - 130 103 70 - 130 35-F MS Sample Spike Result Qualifier Limits Added <50.0	107 70 - 130 111 70 - 130 554/3-A Spike LCSD Added Result 1000 792.3 1000 839.6 Sample Spike LCSD %Recovery Qualifier Limits 70 - 130 1000 839.6 339.6 Sample Sample %Recovery Qualifier Limits 70 - 130 103 70 - 130 70 - 130 35 Sample Sample Spike MS Qualifier Added Result Qualifier Limits Sample Spike MS MS MS Sample Spike MS MS MS Si - 70 - 130 Si - 70 - 130	107 70 - 130 111 70 - 130 554/3-A Spike LCSD LCSD Added Result Qualifier Qualifier 1000 839.6 1000 839.6 LCSD LCSD LCSD Qualifier Limits 101 70 - 130 103 70 - 130 35-F MS Sample Spike MS MS Result Qualifier Limits Qualifier Qualifier <50.0	107 111 70.130 70.130 554/3-A Client	IO7 TO - 130 111 70 - 130 554/3-A Client San Spike LCSD LCSD Added Result Qualifier Unit D 1000 839.6 mg/Kg D Servery Qualifier Limits mg/Kg D 101 70 - 130 70 - 130 D D Sample Sample Spike MS MS MS Sample Sample Spike MS MS MS D <50.0	IOT T0 - 130 111 70 - 130 554/3-A Client Sample ID: 1 Spike LCSD LCSD Added Result Qualifier Unit D %Rec 1000 792.3 mg/Kg 84 LCSD LCSD Mg/Kg 84 LCSD LCSD Mg/Kg 84 %Recovery Qualifier Limits mg/Kg 84 %Recovery Qualifier Limits MS MS 35-F MS Client Mg/Kg 90 92.5 35-F MS Unit D %Rec Sample Sample Spike MS MS %Recovery Qualifier Limits mg/Kg 90 %Recovery Qualifier Limits Mg/Kg 90 %Recovery Qualifier Limits Gits To . 130 %Recovery Qualifier Limits Gits To . 130 35-G MSD Singli	IO7 T0.130 554/3-A Client Sample ID: Lab Control Prep 1 Spike LCSD LCSD MRec. Added Result Qualifier Unit D %Rec. Mide No 70.130 T0.130 Spike LCSD LCSD Mide Added Result Qualifier Unit D %Rec. Mide 1000 839.6 mg/Kg 84 70.130 Mide Client Sample 84 70.130 Mide Result Qualifier Unit Prep 1 103 70.130 T0.130 Sis-F MS Client Sample ID Sample Sample Spike MS MS <	107 70.130 111 70.130 554/3-A Client Sample ID: Lab Control Sampl Prep Type: To Prep Batch: Spike LCSD LCSD Addod Result Qualifier Unit D %Rec. 1000 839.6 mg/Kg 84 70.130 8 LCSD LCSD Z mg/Kg 84 70.130 8 %Recovery Qualifier Limits 70.130 70.130 35-F MS Client Sample ID: Matrix Prep Batch: Prep Batch: %Rec 4 Sample Sample Spike MS MS 4 Stifter Added Result Qualifier Unit D %Rec 4 Stifter To.130 3 Stifter To.130 Prep Type: To 5 Stifter To.130 Stifter To.130

Client: WSP USA Inc.

Project/Site: BEU DI 30

Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-19776/1-A										Client	Sample ID:		
Matrix: Solid											Prep	o Type: S	oluble
Analysis Batch: 19882													
		MB N	ИB										
Analyte			Qualifier		RL		Unit		<u>D</u>	Prepared	Analy	zed	Dil Fac
Chloride	~	<5.00 U	J		5.00		mg/K	g			02/20/22	2 17:28	1
Lab Sample ID: LCS 880-19776/2-4	4								Clie	nt Samp	le ID: Lab C	Control S	ample
Matrix: Solid											Prep	Type: S	oluble
Analysis Batch: 19882													
				Spike		LCS	LCS				%Rec.		
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits		
Chloride				250		256.5		mg/Kg		103	90 - 110		
Lab Sample ID: LCSD 880-19776/3	-A							CI	ient Sa	mple ID:	Lab Contr	ol Sampl	e Dup
Matrix: Solid												· Type: S	
Analysis Batch: 19882													
				Spike		LCSD	LCSD				%Rec.		RPD
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride				250		259.0		mg/Kg		104	90 - 110	1	20
Lab Sample ID: 890-1938-A-6-M M	s									Clien	t Sample II	D: Matrix	Spike
Matrix: Solid											Prep	Type: S	oluble
Analysis Batch: 19882													
	Sample	Sample	е	Spike		MS	MS				%Rec.		
Analyte	Result	Qualifi	ier	Added		Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	89.9			250		327.9		mg/Kg		95	90 - 110		
Lab Sample ID: 890-1938-A-6-N M	SD								Client	Sample I	D: Matrix S	pike Dur	olicate
Matrix: Solid										•		Type: S	
Analysis Batch: 19882													
	Sample	Sample	e	Spike		MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifi	ier	Added		Result	Qualifier	Unit	D) %Rec	Limits	RPD	Limit

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Method Blank

Matrix Spike

SS03

SS03

Method Blank

Matrix Spike

SS03

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: WSP USA Inc. Project/Site: BEU DI 30

Prep Batch: 19723 Lab Sample ID

MB 880-19723/5-A

LCS 880-19723/1-A

890-1948-A-1-J MS

Lab Sample ID

MB 880-19723/5-A

LCS 880-19723/1-A

890-1948-A-1-J MS

LCSD 880-19723/2-A

890-1948-A-1-K MSD

Analysis Batch: 20263

890-1949-1

LCSD 880-19723/2-A

890-1948-A-1-K MSD

Analysis Batch: 20184

GC VOA

890-1949-1

Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Method

5035

5035

5035

5035

5035

5035

Method

8021B

8021B

8021B

8021B

8021B

8021B

8015 NM

Page 58 of 160

Prep Batch

Prep Batch

19723

19723

19723

19723

19723

19723

8

 _ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
390-1949-1	SS03	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 19554

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1949-1	SS03	Total/NA	Solid	8015NM Prep	
MB 880-19554/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-19554/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-19554/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-11287-A-35-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-11287-A-35-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 19566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1949-1	SS03	Total/NA	Solid	8015B NM	19554
MB 880-19554/1-A	Method Blank	Total/NA	Solid	8015B NM	19554
LCS 880-19554/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	19554
LCSD 880-19554/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	19554
880-11287-A-35-F MS	Matrix Spike	Total/NA	Solid	8015B NM	19554
880-11287-A-35-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	19554

Total/NA

HPLC/IC

890-1949-1

Leach Batch: 19776

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1949-1	SS03	Soluble	Solid	DI Leach	
MB 880-19776/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-19776/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-19776/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Released to Imaging: 8/23/2022 3:34:00 PM

QC Association Summary

Prep Type

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Client: WSP USA Inc.

Leach Batch: 19776 (Continued)

Client Sample ID

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Method Blank

Matrix Spike

SS03

Matrix Spike Duplicate

Matrix Spike

Project/Site: BEU DI 30

HPLC/IC (Continued)

Lab Sample ID

Lab Sample ID

MB 880-19776/1-A

LCS 880-19776/2-A

LCSD 880-19776/3-A

890-1938-A-6-M MS

890-1938-A-6-N MSD

890-1949-1

890-1938-A-6-M MS

890-1938-A-6-N MSD

Analysis Batch: 19882

Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Method

DI Leach

DI Leach

Method

300.0

300.0

300.0

300.0

300.0

300.0

Matrix

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Prep Batch

Prep Batch

19776

19776

19776

19776

19776

19776

> 12 13

9

Lab Chronicle

Client: WSP USA Inc. Project/Site: BEU DI 30

Client Sample ID: SS03 Date Collected: 02/14/22 04:56

Lab Sample ID: 890-1949-1 Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
р Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
١A	Prep	5035			19723	02/24/22 10:30	KL	XEN MID
NA	Analysis	8021B		1	20184	02/24/22 14:46	KL	XEN MID
'NA	Analysis	Total BTEX		1	20263	02/24/22 16:58	AJ	XEN MID
A	Analysis	8015 NM		1	19718	02/17/22 13:52	AJ	XEN MID
A	Prep	8015NM Prep			19554	02/16/22 08:36	DM	XEN MID
NA	Analysis	8015B NM		1	19566	02/16/22 19:05	AJ	XEN MID
le	Leach	DI Leach			19776	02/17/22 21:54	СН	XEN MID
	Analysis	300.0		1	19882	02/20/22 20:27	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 8/23/2022 3:34:00 PM

Accreditation/Certification Summary

10

Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority exas		ogram	Identification Number	Expiration Date
		ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report bu	it the laboratory is not certif	ied by the governing authority. This list ma	av include analytes for
the agency does not o	fer certification.	-		, , , , , , , , , , , , , , , , , , ,
• ,	•	Matrix	Analyte	
the agency does not o	fer certification.	-		

Method Summary

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Sample Summary

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1949-1 SDG: 31403236.022.0129 TASK 16.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1949-1	SS03	Solid	02/14/22 04:56	02/15/22 09:25	0.5	4
						5
						8
						9
						12
						13

Relinquished by: (Signature)	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco. Its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed			SS03	Sample Identification	s: Yes	Seals: Yes	Temperature (°C):		Sampler's Name: Mercy Rotich.	P.O. Number: NAPP2	Project Number: 3140323	Project Name: BEU DI 30	Phone: 432 704 5178	City, State ZIP: Midland, Texas 79705	Address: 3300 North A Street		Project Manager: Kalei Jennings	XENC
Received by: (Signature)	nquishment of samples constitutes a v cost of samples and shall not assume l be applied to each project and a charg	<u>چ</u>			S 02/14/22 4:	Matrix Date Ti Matrix Sampled Sam	NIA	IO NA C	No.4	Temp Blank: (es) No W		NAPP2200746777	31403236.022.0129 Task 16.02			(as 79705	A Street			Hobbs,NM (5
ignature)	alid purchase order from client any responsibility for any loss ye of \$5 for each sample submit	13PPM Texas 11 / SPLP 6010: 8RCF			4:56 0.5' 1	Time Depth Depth		5.0	eter ID	Wet Ice: Yes No	Due Date:	Rush:	Routine J	Turn Around	Email: amy.ruth@exxonmobil.com,aimee.cole@wsp.com	City, State ZIP:	Address:	Company Name:	Bill to: (if different)	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (8 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800)
Date/Time	company to Xenco, its affi es or expenses incurred by ted to Xenco, but not analy	 Sb As Ba Be Sb As Ba Be			× × ×	TPH (E BTEX (Chloric	EPA 0	=80							nmobil.com,aimee.cc	Carlsbad, NM 88220	3104 E Green Street	XTO Energy	Amy Ruth	Dallas,TX (214) 902-0300 San Antonio,T EL Paso,TX (915)585-3443 Lubbock,T) 480-355-0900) Atlanta,GA (770-449-880
Relinquished by: (Signature)	liates and subcontractors. It assigns the client if such losses are due to ci rzed. These terms will be enforced unl	d Ca Cr Co Cu Fe d Cr Co Cu Pb Mn N							890-1949 C					ANALYSIS REQUEST	ole@wsp.com	0	st			touston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 75-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)
ure) Received by: (Signature)	standard terms and conditions ircumstances beyond the control less previously negotiated.	Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Pb Mn Mo Ni Se Ag TI U							890-1949 Chain of Custody					EST	Deliverables: EDD ADa	Reporting:Level II evel III	I H	Program: UST/PST CRP Crov	Work Orde	320-2000) <u>www.xenco.com</u>
ature		L 2 Na Sr Tl Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Hg			Discrete	Sample Comments	lab, if received by 4:30pm	TAT starts the				CC: 2096141001		Work Order Notes	ADaPT Cother:	ST)	☐rownfields ☐RC	Work Order Comments	om ^D age

Page 17 of 19

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1949 List Number: 1 Creator: Clifton, Cloe

Question Answer Comment The cooler's custody seal, if present, is intact. True Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-1949-1

List Source: Eurofins Carlsbad

SDG Number: 31403236.022.0129 TASK 16.02

14

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1949

List Number: 2

<6mm (1/4").

Job Number: 890-1949-1

SDG Number: 31403236.022.0129 TASK 16.02

List Source: Eurofins Midland List Creation: 02/16/22 12:10 PM

Creator: Kramer, Jessica			
Question	Answer	Comment	
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is	N/A		

Received by OCD: 5/23/2022 2:39:09 PM

2 3 4 5 6 7 8 9 10 11 12 13

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1948-1

Laboratory SDG: 31403236.022.0129 TASK 16.02 Client Project/Site: BEU DI 30

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 2/24/2022 6:47:23 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access **Have a Question?** Ask-The Expert Visit us at: www.eurofinsus.com/Env Released to Imaging: 8/23/2022 3:34:00 PM

Laboratory Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

2

Client: WSP USA Inc. Project/Site: BEU DI 30 Page 69 of 160

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

-		
Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		5
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	8
	· · ·	
Glossary		Q
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	10
DL	Detection Limit (DoD/DOE)	15
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive

Quality Control

PQL

PRES

QC

RER

RPD TEF

TEQ

TNTC

RL

4

5

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Job ID: 890-1948-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1948-1

Receipt

The sample was received on 2/15/2022 9:25 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were ou	utside control limits: SS04 (890-1948-1), (MB 880-19554/1-A),
(880-11287-A-35-E), (880-11287-A-35-F MS) and (880-11287-A-35-G MSD).	Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Lab Sample ID: 890-1948-1

Matrix: Solid

5

Client Sample ID: SS04 Date Collected: 02/14/22 05:00 Date Received: 02/15/22 09:25 Sample Dopth: 0.5

Client: WSP USA Inc.

Project/Site: BEU DI 30

Method: 8021B - Volatile Organic	c Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:32	
Toluene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:32	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:32	
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		02/24/22 07:45	02/24/22 11:32	
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:32	
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		02/24/22 07:45	02/24/22 11:32	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	97		70 - 130			02/24/22 07:45	02/24/22 11:32	
1,4-Difluorobenzene (Surr)	95		70 - 130			02/24/22 07:45	02/24/22 11:32	
Method: Total BTEX - Total BTE	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399	mg/Kg			02/24/22 16:58	
Method: 8015 NM - Diesel Range Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			02/17/22 13:52	
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/16/22 08:36	02/16/22 18:45	
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		02/16/22 08:36	02/16/22 18:45	
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/16/22 08:36	02/16/22 18:45	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	66	S1-	70 - 130			02/16/22 08:36	02/16/22 18:45	
o-Terphenyl	75		70 - 130			02/16/22 08:36	02/16/22 18:45	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
			4.95	mg/Kg			02/20/22 20:20	

Released to Imaging: 8/23/2022 3:34:00 PM

Surrogate Summary

Client: WSP USA Inc. Project/Site: BEU DI 30

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid				Prep Type: Total/NA	
_				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
890-1948-1	SS04	97	95		
890-1948-1 MS	SS04	97	97		6
890-1948-1 MSD	SS04	98	98		
LCS 880-19723/1-A	Lab Control Sample	97	97		
LCSD 880-19723/2-A	Lab Control Sample Dup	99	98		
MB 880-19723/5-A	Method Blank	99	95		8
• • • •					
Surrogate Legend					0
BFB = 4-Bromofluorobe	nzene (Surr)				3

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matelia Oalist

Matrix: Solid				Prep Type: Total/NA	: 1
				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-11287-A-35-F MS	Matrix Spike	64 S1-	57 S1-		1
880-11287-A-35-G MSD	Matrix Spike Duplicate	66 S1-	59 S1-		- 2
890-1948-1	SS04	66 S1-	75		
LCS 880-19554/2-A	Lab Control Sample	107	111		
LCSD 880-19554/3-A	Lab Control Sample Dup	101	103		
MB 880-19554/1-A	Method Blank	59 S1-	68 S1-		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 72 of 160
Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 19723

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample	ID: MB	880-19723/5-A

Matrix: Solid Analysis Batch: 20184

Client: WSP USA Inc.

Project/Site: BEU DI 30

Analysis Batch: 20184							Prep Batch	1: 19723
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/24/22 07:45	02/24/22 11:10	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			02/24/22 07:45	02/24/22 11:10	1
1,4-Difluorobenzene (Surr)	95		70 - 130			02/24/22 07:45	02/24/22 11:10	1

Lab Sample ID: LCS 880-19723/1-A Matrix: Solid

Analysis Batch: 20184

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1025		mg/Kg		103	70 _ 130	
Toluene	0.100	0.1011		mg/Kg		101	70 - 130	
Ethylbenzene	0.100	0.09945		mg/Kg		99	70 - 130	
m-Xylene & p-Xylene	0.200	0.2055		mg/Kg		103	70 - 130	
o-Xylene	0.100	0.09841		mg/Kg		98	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: LCSD 880-19723/2-A

Matrix: Solid

Analysis Batch: 20184							Prep	Batch:	19723
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1127		mg/Kg		113	70 - 130	9	35
Toluene	0.100	0.1117		mg/Kg		112	70 - 130	10	35
Ethylbenzene	0.100	0.1097		mg/Kg		110	70 - 130	10	35
m-Xylene & p-Xylene	0.200	0.2288		mg/Kg		114	70 - 130	11	35
o-Xylene	0.100	0.1101		mg/Kg		110	70 - 130	11	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: 890-1948-1 MS Matrix: Solid

Analysis Batch: 20184

Analysis Batch: 20184									Prep B	atch: 19723
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0996	0.1097		mg/Kg		110	70 - 130	
Toluene	<0.00200	U	0.0996	0.1098		mg/Kg		110	70 - 130	

Client Sample ID: SS04

Prep Type: Total/NA

Client: WSP USA Inc. Project/Site: BEU DI 30

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-1948-1 MS									Client Sa	mple ID:	SS04
Matrix: Solid									Prep 1	Гуре: То	tal/NA
Analysis Batch: 20184									Prep	Batch:	19723
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00200	U	0.0996	0.1061		mg/Kg		107	70 - 130		
m-Xylene & p-Xylene	<0.00399	U	0.199	0.2214		mg/Kg		111	70 - 130		
o-Xylene	<0.00200	U	0.0996	0.1059		mg/Kg		106	70 _ 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	97		70 - 130								
1,4-Difluorobenzene (Surr)	97		70 - 130								
Matrix: Solid	D									Гуре: То	tal/NA
Matrix: Solid		Sample	Spike	MSD	MSD				Prep 1		tal/NA
Matrix: Solid Analysis Batch: 20184	Sample	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	Prep 1 Prep	Гуре: То	tal/NA 19723
Matrix: Solid Analysis Batch: 20184 Analyte	Sample	Qualifier				_ <mark>Unit</mark> mg/Kg	<u>D</u>	%Rec	Prep 1 Prep %Rec.	Type: To Batch:	tal/NA 19723 RPD
Matrix: Solid Analysis Batch: 20184 Analyte Benzene	Sample Result	Qualifier U	Added	Result			<u>D</u>		Prep 1 Prep %Rec. Limits	Batch:	tal/NA 19723 RPD Limit
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene	Sample Result <0.00200	Qualifier U U	Added	Result 0.1099		mg/Kg	<u>D</u>	110	Prep 7 Prep %Rec. Limits 70 - 130	Type: Top Batch: RPD 0	tal/NA 19723 RPD Limit 35
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00200 <0.00200	Qualifier U U U	Added 0.100 0.100	Result 0.1099 0.1088		mg/Kg mg/Kg	<u>D</u>	110 109	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130	Batch: RPD 0 1	tal/NA 19723 RPD Limit 35 35
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00200 <0.00200 <0.00200	Qualifier U U U U	Added 0.100 0.100 0.100	Result 0.1099 0.1088 0.1059		mg/Kg mg/Kg mg/Kg	<u> </u>	110 109 106	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: RPD 0 1 0	tal/NA 19723 RPD Limit 35 35 35
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200	Qualifier U U U U U U	Added 0.100 0.100 0.100 0.200	Result 0.1099 0.1088 0.1059 0.2203		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	110 109 106 110	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: Batch: RPD 0 1 0 1 0	tal/NA 19723 RPD Limit 35 35 35 35
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Sample Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200	Qualifier U U U U U MSD	Added 0.100 0.100 0.100 0.200	Result 0.1099 0.1088 0.1059 0.2203		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	110 109 106 110	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: Batch: RPD 0 1 0 1 0	tal/NA 19723 RPD Limit 35 35 35 35
Lab Sample ID: 890-1948-1 MSI Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	Sample Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200 <i>MSD</i>	Qualifier U U U U U MSD	Added 0.100 0.100 0.100 0.200 0.100	Result 0.1099 0.1088 0.1059 0.2203		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	110 109 106 110	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: Batch: RPD 0 1 0 1 0	tal/NA 19723 RPD Limit 35 35 35 35

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

 Lab Sample ID: MB 880-19554/1-A						Client Sa	mple ID: Metho	d Blank
Matrix: Solid							Prep Type: 1	Total/NA
Analysis Batch: 19566							Prep Batch	n: 19554
-	МВ	МВ					-	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/16/22 08:36	02/16/22 11:26	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/16/22 08:36	02/16/22 11:26	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/16/22 08:36	02/16/22 11:26	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	59	S1-	70 - 130			02/16/22 08:36	02/16/22 11:26	1
o-Terphenyl	68	S1-	70 - 130			02/16/22 08:36	02/16/22 11:26	1
_ Lab Sample ID: LCS 880-19554/2-/ Matrix: Solid	A				C	lient Sample I	D: Lab Control Prep Type: 1	

Analysis Batch: 19566 Prep Batch: 19554 %Rec. Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits D Gasoline Range Organics 1000 844.6 84 70 - 130 mg/Kg (GRO)-C6-C10 70 - 130 Diesel Range Organics (Over 1000 909.4 mg/Kg 91 C10-C28)

Eurofins Carlsbad

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Client: WSP USA Inc. Project/Site: BEU DI 30

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-19	554/2-A						Client	Sample	ID: Lab Co		
Matrix: Solid										Гуре: То	
Analysis Batch: 19566									Prep	Batch:	1955
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	111		70 _ 130								
Lab Sample ID: LCSD 880-1	9554/3-A					Clie	nt San	ple ID:	Lab Contro	I Sampl	e Du
Matrix: Solid									Prep 1	Type: To	tal/N
Analysis Batch: 19566										Batch:	
-			Spike	LCSD	LCSD				%Rec.		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics			1000	792.3		mg/Kg		79	70 - 130	6	2
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	839.6		mg/Kg		84	70 - 130	8	2
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	103		70 - 130								
Analysis Batch: 19566		Sample	Spike		MS		_		%Rec.	Batch:	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	1000	922.5		mg/Kg		92	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.0	U	1000	945.4		mg/Kg		90	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	64	S1-	70 - 130								
o-Terphenyl	57	S1-	70 - 130								
Lab Sample ID: 880-11287-4	4-35-G WISD					CI	ient S): Matrix Sp		
Matrix: Solid										Type: To	
Analysis Batch: 19566	ComI-	Comple	Calles	MOD	MED					Batch:	
Analuto	=	Sample Qualifier	Spike Addod		MSD Qualifier	Unit		0/ Da-	%Rec.	885	RP
Analyte	Result <50.0		Added	948.8	Qualifier	Unit	D	95	Limits	RPD 3	Lim
Gasoline Range Organics (GRO)-C6-C10	<50.0	0	390	940.8		mg/Kg		90	70 - 130	3	2
	<50.0	U	998	983.0		mg/Kg		94	70 - 130	4	2
Diesel Range Organics (Over	00.0	-								·	-
	MSD	MSD									
Diesel Range Organics (Over C10-C28) Surrogate	%Recovery	Qualifier	Limits								
C10-C28)	%Recovery		Limits 70 - 130								

Client: WSP USA Inc.

Project/Site: BEU DI 30

QC Sample Results

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Method: 300.0 - Anions, Ion Chromatography

	1-A							Client S	Sample ID:	Method	Blank
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 19882											
-	ſ	MB MB									
Analyte	Res	sult Qualifier		RL	Uni	t	D	Prepared	Analyz	zed	Dil Fac
Chloride	<5	.00 U		5.00	mg/	Кg			02/20/22	17:28	1
- Lab Sample ID: LCS 880-19776	/2-A						Clie	nt Sample	BID: Lab Co	ontrol S	ample
Matrix: Solid									Prep	Type: Se	oluble
Analysis Batch: 19882											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Resul	t Qualifier	Unit	[0 %Rec	Limits		
Chloride			250	256.5	5	mg/Kg		103	90 - 110		
Lab Sample ID: LCSD 880-1977	76/3-A					CI	ient Sa	mple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 19882											
			Spike	LCSE	LCSD				%Rec.		RPD
Analyte			Added	Resul	Qualifier	Unit		0 %Rec	Limits	RPD	Limit
Chloride			250	259.0)	mg/Kg		104	90 - 110	1	20
_ Lab Sample ID: 890-1938-A-6-N	/ MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 19882											
	Sample S	Sample	Spike	MS	MS				%Rec.		
Analyte	Result C	Qualifier	Added	Resul	t Qualifier	Unit	[0 %Rec	Limits		
/ indi j to			250	327.9)	mg/Kg		95	90 _ 110		
Chloride	89.9		200								
			200				Client	Sample II): Matrix S	pike Dup	olicate
Chloride			200				Client	Sample II		pike Dup Type: S	
Chloride Lab Sample ID: 890-1938-A-6-N							Client	Sample II			
Chloride Lab Sample ID: 890-1938-A-6-N Matrix: Solid		Sample	Spike	MSE) MSD		Client	Sample II			
Chloride Lab Sample ID: 890-1938-A-6-N Matrix: Solid	I MSD	•) MSD t Qualifier	Unit		Sample II	Prep		oluble

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Client: WSP USA Inc. Project/Site: BEU DI 30

Prep Batch: 19723

MB 880-19723/5-A

LCS 880-19723/1-A

890-1948-1 MS

890-1948-1 MSD

Lab Sample ID

890-1948-1 MS

890-1948-1 MSD

MB 880-19723/5-A

LCS 880-19723/1-A

LCSD 880-19723/2-A

Analysis Batch: 20260

890-1948-1

LCSD 880-19723/2-A

Analysis Batch: 20184

Lab Sample ID

890-1948-1

GC VOA

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Method

5035

5035

5035

5035

5035

5035

Method

8021B

8021B

8021B

8021B

8021B

8021B

Method

Total BTEX

Page 77 of 160

Prep Batch

Prep Batch

19723

19723

19723

19723

19723

19723

Prep Batch

8

GC Semi VOA

Lab Sample ID

890-1948-1

Prep Batch: 19554

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1948-1	SS04	Total/NA	Solid	8015NM Prep	
MB 880-19554/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-19554/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-19554/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-11287-A-35-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-11287-A-35-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 19566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1948-1	SS04	Total/NA	Solid	8015B NM	19554
MB 880-19554/1-A	Method Blank	Total/NA	Solid	8015B NM	19554
LCS 880-19554/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	19554
LCSD 880-19554/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	19554
880-11287-A-35-F MS	Matrix Spike	Total/NA	Solid	8015B NM	19554
880-11287-A-35-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	19554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1948-1	SS04	Total/NA	Solid	8015 NM	
—					

HPLC/IC

Leach Batch: 19776

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1948-1	SS04	Soluble	Solid	DI Leach	
MB 880-19776/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-19776/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-19776/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Client Sample ID

Lab Control Sample

Client Sample ID

Lab Control Sample

Client Sample ID

Lab Control Sample Dup

Method Blank

Lab Control Sample Dup

Method Blank

SS04

SS04

SS04

SS04

SS04

SS04

SS04

Released to Imaging: 8/23/2022 3:34:00 PM

QC Association Summary

Client: WSP USA Inc.

Project/Site: BEU DI 30

HPLC/IC (Continued)

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Method

Page 78 of 160

Prep Batch

Eurofins Carlsbad

Leach Batch: 19776 (Continued)

890-1938-A-6-M MS	Matrix Spike	Soluble	Solid	DI Leach	
890-1938-A-6-N MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Analysis Batch: 19882					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1948-1	SS04	Soluble	Solid	300.0	19776
MB 880-19776/1-A	Method Blank	Soluble	Solid	300.0	19776
LCS 880-19776/2-A	Lab Control Sample	Soluble	Solid	300.0	19776
LCSD 880-19776/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	19776
890-1938-A-6-M MS	Matrix Spike	Soluble	Solid	300.0	19776
890-1938-A-6-N MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	19776

Prep Type

Matrix

5 6

9

Lab Chronicle

Client: WSP USA Inc. Project/Site: BEU DI 30

Client Sample ID: SS04 Date Collected: 02/14/22 05:00

Date Received: 02/15/22 09:25

Job ID: 890-1948-1
SDG: 31403236.022.0129 TASK 16.02

Lab Sample ID: 890-1948-1 Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			19723	02/24/22 07:45	KL	XEN MID
Total/NA	Analysis	8021B		1	20184	02/24/22 11:32	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	20260	02/24/22 16:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	19717	02/17/22 13:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			19554	02/16/22 08:36	DM	XEN MID
Total/NA	Analysis	8015B NM		1	19566	02/16/22 18:45	AJ	XEN MID
Soluble	Leach	DI Leach			19776	02/17/22 21:54	СН	XEN MID
Soluble	Analysis	300.0		1	19882	02/20/22 20:20	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 8/23/2022 3:34:00 PM

Accreditation/Certification Summary

10

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority		rogram	Identification Number	Expiration Date	
xas	N	ELAP	AP T104704400-21-22		
The following analytes	are included in this report, be	ut the laboratory is not certif	ed by the governing authority. This list ma	ay include analytes for	
the agency does not o		Motrix	Analyta		
the agency does not o Analysis Method	fer certification. Prep Method	Matrix	Analyte		
the agency does not o		Matrix Solid	Analyte Total TPH	· ·	

Eurofins Carlsbad

Method Summary

Client: WSP USA Inc. Project/Site: BEU DI 30

Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Sample Summary

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1948-1 SDG: 31403236.022.0129 TASK 16.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1948-1	SS04	Solid	02/14/22 05:00	02/15/22 09:25	0.5	4
						5
						8
						9
						12
						13

Þ X		Hobbs,NM (5	Midland,TX (432-704-5440 75-392-7550) Phoenix,AZ Bill to: (ii different)	Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (81) Bill to: (# different) Amy Ruth	Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 75-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) Bill to: (if different) Amy Ruth	WW	www.xenco.com [⊃] age Work Order Comments
Project Manager:	Kalei Jennings		Bill to: (if different)	Amy Ruth		W	ork Order Comme
	WSP USA		Company Name:	: XTO Energy		Program: UST/PST	RP rownfields RC
	3300 North A Street		Address:	3104 E Green Street	et	State of Project:	
e ZIP:	Midland, Texas 79705	5	City, State ZIP:	Carlsbad, NM 88220	0	Reporting:Level II evel III	
	432 704 5178		Email: amy.ruth@exx	Email: amy.ruth@exxonmobil.com,aimee.cole@wsp.com	ole@wsp.com	Deliverables: EDD	ADaPT
Name:	BEU DI 30		Turn Around		ANALYSIS REQUEST	JEST	
er:	31403236.022.0	31403236.022.0129 Task 16.02	Routine 4				
P.O. Number:	NAPP2200746777	777					CC: 2096141001
ne:	Mercy Rotich.		Due Date:				
			-11				_
SAMIFLE NECEIF I	1 emp	Tes NO	WEITCE, TES IND	rs 			
Temperature (°C):	1.0/2.6		ter ID)			
Heceived Intact:	Te		74	5) 802 ⁻	890-1948 Chain of Custody	of Custody	
Sample Custody Seals:	Yes No	A/ Total Containers:		A 80 PA 0			lab, if received by 4:30pm
Sample Identification	tification Matrix	Date Sampled	Time Depth	Numbe TPH (EF BTEX (F Chlorid			
SS04	4 S		5:00 0.5'	×			
	-						
Total 200.7 / 6010	010 200.8 / 6020:	8RCRA	13PPM Texas 11	Al Sb As Ba Be B	Cd Ca Cr Co Cu Fe	Pb Mg Mn Mo Ni K Se /	Ag SiO2 Na Sr
Circle Method(Circle Method(s) and Metal(s) to be analyzed		TCLP / SPLP 6010: 8RCRA	Sb As Ba Be	Cd Cr Co Cu Pb Mn Mo	Pb Mn Mo Ni Se Ag Tl U	1631 / 245.1 / 7470 / 7471 :
otice: Signature of this du service. Xenco will be ll Xenco. A minimum char	locument and relinquishmer liable only for the cost of sa arge of \$75.00 will be applied	it of samples constitutes a mples and shall not assume I to each project and a char	alid purchase order from clie any responsibility for any los je of \$5 for each sample subr	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontr of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such ic of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms w	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	actors. It assigns standard terms and conditions pases are due to circumstances beyond the control rill be enforced unless previously negotiated.	
Relinquished by: (Signature)	: (Signature)	Received by: (Signature)	ignature)	Date/Time	Relinquished by: (Signature)	-	Received by: (Signature)
NA		loe hat		3.15.22.09	Lak		
					4		

Received by QCD: 5/23/2022 2:39:09 PM

Page 83 of 160

13

2/24/2022

Page 17 of 19

Released to Imaging: 8/23/2022 3:34:00 PM

5

Job Number: 890-1948-1

List Source: Eurofins Carlsbad

SDG Number: 31403236.022.0129 TASK 16.02

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1948 List Number: 1 Creator: Clifton, Cloe

Question Answer Comment The cooler's custody seal, if present, is intact. True Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

MS/MSDS Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1948

List Number: 2

Job Number: 890-1948-1

SDG Number: 31403236.022.0129 TASK 16.02

List Source: Eurofins Midland List Creation: 02/16/22 12:10 PM

Creator: Kramer, Jessica			
Question	Answer	Comment	
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is	N/A		

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 5/23/2022 2:39:09 PM

difference en la construction de la construction de

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1947-1

Laboratory SDG: 31403236.022.0129 TASK16.02 Client Project/Site: BEU DI 30

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 2/25/2022 2:58:06 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS Review your project results through TOTOLACCESS Have a Question? Ask The Expert Visit us at: vww.eurofinsus.com/Env

•

Laboratory Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

2

Client: WSP USA Inc. Project/Site: BEU DI 30 Page 88 of 160

Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

-		
Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	4
U	Indicates the analyte was analyzed for but not detected.	_
GC Semi VOA		5
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	6
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	8
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	3
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	1
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Error Ratio (Radiochemistry)

- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)

Quality Control

- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

QC

RER

4

5

Job ID: 890-1947-1

SDG: 31403236.022.0129 TASK16.02

Project/Site: BEU DI 30 Job ID: 890-1947-1

Client: WSP USA Inc.

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1947-1

Receipt

The sample was received on 2/15/2022 9:25 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: SS05 (890-1947-1), (MB 880-19554/1-A),
(880-11287-A-35-E), (880-11287-A-35-F MS) and (880-11287-A-35-G MSD). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-1947-1

Matrix: Solid

5

Client Sample ID: SS05 Date Collected: 02/14/22 05:10 Date Received: 02/15/22 09:25 Sample Depth: 0.5

Client: WSP USA Inc. Project/Site: BEU DI 30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/24/22 09:39	02/25/22 00:57	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/24/22 09:39	02/25/22 00:57	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/24/22 09:39	02/25/22 00:57	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/24/22 09:39	02/25/22 00:57	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/24/22 09:39	02/25/22 00:57	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/24/22 09:39	02/25/22 00:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130			02/24/22 09:39	02/25/22 00:57	1
1,4-Difluorobenzene (Surr)	90		70 - 130			02/24/22 09:39	02/25/22 00:57	1
Method: Total BTEX - Total BTEX C	alculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/25/22 13:43	1
Method: 8015 NM - Diesel Range O	rganics (DR	0) (GC)						
Method: 8015 NM - Diesel Range O Analyte Total TPH		Qualifier	RL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 02/17/22 13:52	Dil Fac
Analyte Total TPH	Result <49.9	Qualifier U			<u>D</u>	Prepared		Dil Fac
Analyte	Result <49.9 Organics (DI	Qualifier U			<u>D</u> 	Prepared		Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	Result <49.9 Organics (DI	Qualifier U RO) (GC) Qualifier	49.9	mg/Kg			02/17/22 13:52	1
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 Organics (DI Result	Qualifier U RO) (GC) Qualifier U	49.9 RL	mg/Kg Unit		Prepared	02/17/22 13:52 Analyzed	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 Organics (DI Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9	mg/Kg Unit mg/Kg		Prepared 02/16/22 08:36	02/17/22 13:52 Analyzed 02/16/22 18:24	1
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/16/22 08:36 02/16/22 08:36	02/17/22 13:52 Analyzed 02/16/22 18:24 02/16/22 18:24	1 Dil Fac 1 1
Analyte Total TPH Method: 8015B NM - Diesel Range (Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U RO) (GC) Qualifier U U U Qualifier	49.9 RL 49.9 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/16/22 08:36 02/16/22 08:36 02/16/22 08:36	02/17/22 13:52 Analyzed 02/16/22 18:24 02/16/22 18:24 02/16/22 18:24	1 Dil Fac 1 1
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U RO) (GC) Qualifier U U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/16/22 08:36 02/16/22 08:36 02/16/22 08:36 Prepared	02/17/22 13:52 Analyzed 02/16/22 18:24 02/16/22 18:24 02/16/22 18:24 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range (Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U RO) (GC) Qualifier U U U Qualifier S1-	49.9 RL 49.9 49.9 49.9 <u>Limits</u> 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/16/22 08:36 02/16/22 08:36 02/16/22 08:36 Prepared 02/16/22 08:36	02/17/22 13:52 Analyzed 02/16/22 18:24 02/16/22 18:24 02/16/22 18:24 Analyzed 02/16/22 18:24	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range (Result <49.9	Qualifier U RO) (GC) Qualifier U U U Qualifier S1-	49.9 RL 49.9 49.9 49.9 <u>Limits</u> 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/16/22 08:36 02/16/22 08:36 02/16/22 08:36 Prepared 02/16/22 08:36	02/17/22 13:52 Analyzed 02/16/22 18:24 02/16/22 18:24 02/16/22 18:24 Analyzed 02/16/22 18:24	1 Dil Fac 1 1 1 <i>Dil Fac</i> 1

Eurofins Carlsbad

Surrogate Summary

Client: WSP USA Inc.

Project/Site: BEU DI 30

Prep Type: Total/NA

Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		j
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-11351-A-1-C MS	Matrix Spike	101	99		- 1
880-11351-A-1-D MSD	Matrix Spike Duplicate	104	100		
890-1947-1	SS05	118	90		
LCS 880-20192/1-A	Lab Control Sample	102	99		
LCSD 880-20192/2-A	Lab Control Sample Dup	104	101		
MB 880-19723/5-A	Method Blank	99	95		
MB 880-20192/5-A	Method Blank	98	94		
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Sample ID	Client Sample ID	(70-130)	(70-130)	
7-A-35-F MS	Matrix Spike	64 S1-	57 S1-	
37-A-35-G MSD	Matrix Spike Duplicate	66 S1-	59 S1-	
947-1	SS05	69 S1-	79	
-19554/2-A	Lab Control Sample	107	111	
80-19554/3-A	Lab Control Sample Dup	101	103	
380-19554/1-A	Method Blank	59 S1-	68 S1-	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 91 of 160 Prep Type: Total/NA

5

Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Project/Site: BEU DI 30

Client: WSP USA Inc.

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-197 Matrix: Solid									mple ID: Metho Prep Type:	
Analysis Batch: 20184	ме	MB							Prep Batc	n: 1972
Analyte		Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200			a	_	02/24/22 07:45	02/24/22 11:10	
Foluene	<0.00200		0.00200		mg/K	-		02/24/22 07:45	02/24/22 11:10	
Ethylbenzene	<0.00200		0.00200		mg/K	-		02/24/22 07:45	02/24/22 11:10	
n-Xylene & p-Xylene	<0.00200		0.00200		mg/K			02/24/22 07:45	02/24/22 11:10	
p-Xylene	<0.00400		0.00200		mg/K	-		02/24/22 07:45	02/24/22 11:10	
Kylenes, Total	<0.00200		0.00200		mg/K	-		02/24/22 07:45	02/24/22 11:10	
Aylenes, Total	<0.00 1 00	0	0.00400		iiig/it	9		02/24/22 01:40	02/24/22 11:10	
	ME	B MB								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99)	70 - 130					02/24/22 07:45	02/24/22 11:10	
1,4-Difluorobenzene (Surr)	98	5	70 - 130					02/24/22 07:45	02/24/22 11:10	
Lab Sample ID: MB 880-201	92/5-A							Client Sa	mple ID: Metho	d Blan
Matrix: Solid									Prep Type:	Total/N
Analysis Batch: 20184									Prep Batc	h: 2019
	ME	B MB								
Analyte	Resul	d Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/K	g		02/24/22 09:39	02/24/22 22:54	
Toluene	<0.00200	U	0.00200		mg/K	g		02/24/22 09:39	02/24/22 22:54	
Ethylbenzene	<0.00200	U	0.00200		mg/K	g		02/24/22 09:39	02/24/22 22:54	
n-Xylene & p-Xylene	<0.00400) U	0.00400		mg/K	g		02/24/22 09:39	02/24/22 22:54	
o-Xylene	<0.00200	U	0.00200		mg/K	g		02/24/22 09:39	02/24/22 22:54	
Xylenes, Total	<0.00400	U	0.00400		mg/K	g		02/24/22 09:39	02/24/22 22:54	
	МЕ	MB								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	98	}	70 - 130					02/24/22 09:39	02/24/22 22:54	
1,4-Difluorobenzene (Surr)	94	1	70 - 130					02/24/22 09:39	02/24/22 22:54	
Lab Sample ID: LCS 880-20 [,]	192/1-A						С	lient Sample	ID: Lab Control	Sampl
Matrix: Solid									Prep Type:	Total/N
Analysis Batch: 20184									Prep Batc	h: 2019
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit		D %Rec	Limits	
Benzene			0.100	0.1094		mg/Kg		109	70 - 130	_
Toluene			0.100	0.1080		mg/Kg		108	70 ₋ 130	
Ethylbenzene			0.100	0.1082		mg/Kg		108	70 - 130	
m-Xylene & p-Xylene			0.200	0.2226		mg/Kg		111	70 ₋ 130	
o-Xylene			0.100	0.1088		mg/Kg		109	70 - 130	
	LCS LC	s								
Surrogate		alifier	Limits							
4-Bromofluorobenzene (Surr)	102		70 - 130							
1,4-Difluorobenzene (Surr)	99		70 - 130							
Lab Sample ID: LCSD 880-2	0192/2-A					Cli	ent	Sample ID: La	ab Control Sam	-
Matrix: Solid									Prep Type:	
Amelia Detals 00404									Prep Batc	h: 2019
Analysis Batch: 20184										
Analysis Batch: 20184			Spike	LCSD	LCSD				%Rec.	RP

Eurofins Carlsbad

Client: WSP USA Inc. Project/Site: BEU DI 30

Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-2	0192/2-A					Clier	nt Sam	ple ID: I	_ab Contro		
Matrix: Solid									Prep T	Type: To	tal/N/
Analysis Batch: 20184									Prep	Batch:	2019
			Spike	LCSD	LCSD				%Rec.		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Toluene			0.100	0.1044		mg/Kg		104	70 - 130	3	3
Ethylbenzene			0.100	0.1037		mg/Kg		104	70 - 130	4	3
m-Xylene & p-Xylene			0.200	0.2138		mg/Kg		107	70 - 130	4	3
o-Xylene			0.100	0.1055		mg/Kg		105	70 - 130	3	3
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
,, , , , , , , , , , , , , , , , , , , ,											
Lab Sample ID: 880-11351-4	A-1-C MS							Client	Sample ID:	: Matrix	Spik
Matrix: Solid										Type: To	
Analysis Batch: 20184										Batch:	
	Sample	Sample	Spike	MS	MS				• %Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	< 0.00199	U	0.0996	0.1030		mg/Kg		103	70 - 130		
Toluene	<0.00199	U	0.0996	0.1018		mg/Kg		102	70 - 130		
Ethylbenzene	<0.00199	U	0.0996	0.1002		mg/Kg		101	70 - 130		
m-Xylene & p-Xylene	<0.00398	U	0.199	0.2090		mg/Kg		105	70 - 130		
o-Xylene	<0.00199	U	0.0996	0.1073		mg/Kg		108	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	101		70 - 130								
1,4-Difluorobenzene (Surr)	99		70 - 130								
						CI	iont Se	ample ID	: Matrix Sp	oiko Dur	licat
l ah Sample ID: 880-11351-/								inpic ib		me Dup	
	A-1-D MSD								Dron T	Vne: To	tal/N/
Matrix: Solid	A-1-D MSD									ype: To	
Matrix: Solid		Sample	Snike	MSD	MSD				Prep	Satch:	2019
Matrix: Solid Analysis Batch: 20184	Sample	Sample Qualifier	Spike Added		MSD Qualifier			%Rec	Prep %Rec.	Batch:	2019 RP
Matrix: Solid Analysis Batch: 20184 ^{Analyte}	Sample Result	Qualifier	Added	Result	MSD Qualifier	Unit	<u>D</u>	%Rec	Prep %Rec. Limits	Batch:	2019 RPI Lim
Matrix: Solid Analysis Batch: 20184 Analyte Benzene	Sample 	Qualifier	Added 0.0998	Result 0.1114		_ <mark>Unit</mark> mg/Kg		112	Prep %Rec. Limits 70 - 130	Batch:	2019 RP Lim 3
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene	Sample Result <0.00199 <0.00199	Qualifier U U	Added 0.0998 0.0998	Result 0.1114 0.1105		_ <mark>Unit</mark> mg/Kg mg/Kg		112 111	Prep %Rec. Limits 70 - 130 70 - 130	Batch:	2019: RPI Lim 3 3
Lab Sample ID: 880-11351-4 Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m. Yulene & n. Yulene	Sample Result <0.00199 <0.00199 <0.00199	Qualifier U U U	Added 0.0998 0.0998 0.0998	Result 0.1114 0.1105 0.1094		 mg/Kg mg/Kg mg/Kg		112 111 110	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130	Batch:	2019: RPI Lim 3 3 3
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398	Qualifier U U U U	Added 0.0998 0.0998 0.0998 0.200	Result 0.1114 0.1105 0.1094 0.2279		Unit mg/Kg mg/Kg mg/Kg mg/Kg		112 111 110 114	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	2019 RP Lim 3 3 3 3
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00199 <0.00199 <0.00199	Qualifier U U U U	Added 0.0998 0.0998 0.0998	Result 0.1114 0.1105 0.1094		 mg/Kg mg/Kg mg/Kg		112 111 110	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130	Batch:	2019: RPI Lim 3 3 3 3 3
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398	Qualifier U U U U	Added 0.0998 0.0998 0.0998 0.200	Result 0.1114 0.1105 0.1094 0.2279		Unit mg/Kg mg/Kg mg/Kg mg/Kg		112 111 110 114	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	2019: RPI Lim 3 3 3 3 3
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Qualifier U U U U U U WSD	Added 0.0998 0.0998 0.0998 0.200	Result 0.1114 0.1105 0.1094 0.2279		Unit mg/Kg mg/Kg mg/Kg mg/Kg		112 111 110 114	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MSD	Qualifier U U U U U U WSD	Added 0.0998 0.0998 0.0998 0.200 0.0998	Result 0.1114 0.1105 0.1094 0.2279		Unit mg/Kg mg/Kg mg/Kg mg/Kg		112 111 110 114	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	2019: RPI Lim 3 3 3 3 3
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MSD %Recovery	Qualifier U U U U U U WSD	Added 0.0998 0.0998 0.200 0.0998 Limits	Result 0.1114 0.1105 0.1094 0.2279		Unit mg/Kg mg/Kg mg/Kg mg/Kg		112 111 110 114	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	2019 RP Lim 3 3 3 3
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MSD %Recovery 104 100	Qualifier U U U U U MSD Qualifier	Added 0.0998 0.0998 0.0998 0.200 0.0998	Result 0.1114 0.1105 0.1094 0.2279		Unit mg/Kg mg/Kg mg/Kg mg/Kg		112 111 110 114	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	2019 RP Lim 3 3 3 3
Matrix: Solid Analysis Batch: 20184 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MSD %Recovery 104 100	Qualifier U U U U U MSD Qualifier	Added 0.0998 0.0998 0.0998 0.200 0.0998	Result 0.1114 0.1105 0.1094 0.2279		Unit mg/Kg mg/Kg mg/Kg mg/Kg		112 111 110 114	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	2019 RP Lim 3 3 3 3

Prep Type: Total/NA Prep Batch: 19554

Analysis Batch: 19566							Prep Batch	n: 19554
	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		02/16/22 08:36	02/16/22 11:26	1
(GRO)-C6-C10								

Eurofins Carlsbad

Client: WSP USA Inc.

Project/Site: BEU DI 30

QC Sample Results

Page 94 of 160

Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-19554	l/1-A							Clie	ent Sa	mple ID:	Method	l Blanl
Matrix: Solid											Type: To	
Analysis Batch: 19566											Batch	
Analysis Datch. 15500	M	IB MB								iich	Daten	. 1333.
Analyta		ult Qualifier	RL		Unit		D	Brono	rad	Analy	a d	Dil Fa
Analyte								Prepa		Analyz		
Diesel Range Organics (Over	<50	.0 U	50.0		mg/K	g		02/16/22	08:36	02/16/22	11:26	
C10-C28)	~50	0.11	50.0		malk	'n		02/16/22	00.26	02/16/22	11.26	
Oll Range Organics (Over C28-C36)	<50	.0 U	50.0		mg/k	.g		02/16/22	06.30	02/16/22	11.20	
	N	1B MB										
Surrogate	%Recove	ry Qualifier	Limits					Prepa	red	Analyz	zed	Dil Fa
1-Chlorooctane		59 S1-	70 - 130				-	02/16/22		02/16/22		
p-Terphenyl		58 S1-	70 - 130					02/16/22		02/16/22		
5 Telphenyi	· · · · ·		10 - 100					02/10/22	00.00	02/10/22	11.20	
Lab Sample ID: LCS 880-1955	A/2-A						Cli	iont Sa	mnlo	ID: Lab C	ontrol S	amn
Matrix: Solid							01		inpic		Гуре: То	
Analysis Batch: 19566			Califo	1.00	1.00						Batch	1955
			Spike		LCS			_	_	%Rec.		
Analyte			Added		Qualifier	Unit		D_%F	Rec	Limits		
Gasoline Range Organics			1000	844.6		mg/Kg			84	70 - 130		
(GRO)-C6-C10			4000						0.4	70 165		
Diesel Range Organics (Over			1000	909.4		mg/Kg			91	70 - 130		
C10-C28)												
	LCS L	cs										
Surrogate	%Recovery Q	ualifier	Limits									
-	107		70 - 130									
I-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-195	111		70 - 130 70 - 130			Cli	ent S	Sample	ID: L	ab Contro Prep 1		
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid	111					Cli	ent S	Sample	ID: L	Prep 1	ol Samp Type: To Batch	otal/N
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566	111			LCSD	LCSD	Cli	ent S	Sample	ID: L	Prep 1	Type: To	otal/N : 1955
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid	111		70 - 130		LCSD Qualifier	Cli Unit	ent S		ID: L	Prep 1 Prep	Type: To	otal/N : 1955 RF
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566	111		70 - 130 Spike				ent S			Prep 1 Prep %Rec.	Type: To Batch	otal/N : 1955 RF Lim
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte	111		70 - 130 Spike Added	Result		Unit	ent S		Rec	Prep Prep %Rec. Limits	Batch	otal/N : 1955 RF Lim
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics	111		70 - 130 Spike Added	Result		Unit	ent S		Rec	Prep Prep %Rec. Limits	Batch	otal/N : 1955 RF Lim
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10	111		70 - 130 Spike Added 1000	Result 792.3		_ <mark>Unit</mark> mg/Kg	ent S		Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To Batch RPD 6	otal/N : 1955 RF Lim
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	111 554/3-A		70 - 130 Spike Added 1000	Result 792.3		_ <mark>Unit</mark> mg/Kg	ent \$		Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To Batch RPD 6	otal/N : 1955 RP Lim 2
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	111 554/3-A 		70 - 130 Spike Added 1000	Result 792.3		_ <mark>Unit</mark> mg/Kg	ent S		Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To Batch RPD 6	otal/N : 1955 RP Lim 2
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	111 554/3-A 		70 - 130 Spike Added 1000 1000 Limits	Result 792.3		_ <mark>Unit</mark> mg/Kg	ent \$		Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To Batch RPD 6	otal/N : 1955 RP <u>Lim</u> 2
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	111 554/3-A 		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 792.3		_ <mark>Unit</mark> mg/Kg	ent S		Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To Batch RPD 6	otal/N : 1955 RP Lim 2
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	111 554/3-A 		70 - 130 Spike Added 1000 1000 Limits	Result 792.3		_ <mark>Unit</mark> mg/Kg	ent \$		Rec	Prep 7 Prep %Rec. Limits 70 - 130	Type: To Batch RPD 6	otal/N : 1955 RF Lim
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl	111 554/3-A 		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 792.3		_ <mark>Unit</mark> mg/Kg	ent \$	<u>D %</u> F	Rec 79 84	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130	Type: To Batch RPD 6 8	otal/N : 1955 RF Lim 2
1-Chlorooctane p-Terpheny/ Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terpheny/ Lab Sample ID: 880-11287-A-3	111 554/3-A 		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 792.3		_ <mark>Unit</mark> mg/Kg	ent \$	<u>D %</u> F	Rec 79 84	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130	Type: To Batch RPD 6 8	c Spik
1-Chlorooctane p-Terpheny/ Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terpheny/ Lab Sample ID: 880-11287-A-3 Matrix: Solid	111 554/3-A 		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 792.3		_ <mark>Unit</mark> mg/Kg	ent \$	<u>D %</u> F	Rec 79 84	Prep %Rec. Limits 70 - 130 70 - 130 Sample ID Prep	Type: To Batch RPD 6 8 : Matrix Type: To	c Spik
1-Chlorooctane p-Terpheny/ Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terpheny/ Lab Sample ID: 880-11287-A-3	111 554/3-A LCSD L <u>%Recovery Q</u> 101 103 85-F MS	ualifier _	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130	Result 792.3 839.6	Qualifier	_ <mark>Unit</mark> mg/Kg	ent \$	<u>D %</u> F	Rec 79 84	Prep 7 Prep % Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep	Type: To Batch RPD 6 8	c Spik
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19566	111 554/3-A <i>LCSD LC</i> <i>%Recovery Q</i> 101 103 35-F MS Sample Si	ualifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130 70 - 130	Result 792.3 839.6 MS	Qualifier	– <mark>Unit</mark> mg/Kg mg/Kg	ent \$	<u>D</u> %F	Rec 79 84	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 6 8 : Matrix Type: To	c Spik
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19566 Analyte	111 554/3-A <i>LCSD LC</i> <i>%Recovery Q</i> 101 103 35-F MS Sample Si Result Q	ualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 70 - 130 Spike Added	Result 792.3 839.6 MS Result	Qualifier	_ Unit mg/Kg mg/Kg	ent \$	<u>D</u> %F	Rec 79 84	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 6 8 : Matrix Type: To	c Spik
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics	111 554/3-A <i>LCSD LC</i> <i>%Recovery Q</i> 101 103 35-F MS Sample Si	ualifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130 70 - 130	Result 792.3 839.6 MS	Qualifier	– <mark>Unit</mark> mg/Kg mg/Kg	ent \$ 	<u>D</u> %F	Rec 79 84	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 6 8 : Matrix Type: To	c Spik
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10	111 554/3-A <i>LCSD Li</i> <i>%Recovery Q</i> 101 103 35-F MS Sample Sample Sample Sample Q <50.0 U	ualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike Added 1000 Limits 70 - 130 70 - 130 Spike Added 1000	Result 792.3 839.6 MS Result 922.5	Qualifier	- Unit mg/Kg mg/Kg - Unit mg/Kg	ent \$	<u>D</u> %F	Rec	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep 7 %Rec. Limits 70 - 130	Type: To Batch RPD 6 8 : Matrix Type: To	c Spik
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	111 554/3-A <i>LCSD LC</i> <i>%Recovery Q</i> 101 103 35-F MS Sample Si Result Q	ualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 70 - 130 Spike Added	Result 792.3 839.6 MS Result	Qualifier	_ Unit mg/Kg mg/Kg	ent \$	<u>D</u> %F	Rec 79 84	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 6 8 : Matrix Type: To	c Spik
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10	111 554/3-A <i>LCSD Li</i> <i>%Recovery Q</i> 101 103 35-F MS Sample Sample Sample Sample Q <50.0 U	ualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike Added 1000 Limits 70 - 130 70 - 130 Spike Added 1000	Result 792.3 839.6 MS Result 922.5	Qualifier	- Unit mg/Kg mg/Kg - Unit mg/Kg	ent \$	<u>D</u> %F	Rec	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep 7 %Rec. Limits 70 - 130	Type: To Batch RPD 6 8 : Matrix Type: To	c Spik
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	111 554/3-A <i>LCSD Li</i> <i>%Recovery Q</i> 101 103 35-F MS Sample Sample Sample Sample Q <50.0 U	ualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike Added 1000 Limits 70 - 130 70 - 130 Spike Added 1000	Result 792.3 839.6 MS Result 922.5	Qualifier	- Unit mg/Kg mg/Kg - Unit mg/Kg	ent \$	<u>D</u> %F	Rec	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep 7 %Rec. Limits 70 - 130	Type: To Batch RPD 6 8 : Matrix Type: To	c Spik
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	111 554/3-A <i>LCSD Li</i> <i>%Recovery Q</i> 101 103 85-F MS Sample Sa <u>Result Q</u> <50.0 U	ualifier ample ualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike Added 1000 Limits 70 - 130 70 - 130 Spike Added 1000	Result 792.3 839.6 MS Result 922.5	Qualifier	- Unit mg/Kg mg/Kg - Unit mg/Kg	ent \$	<u>D</u> %F	Rec	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep 7 %Rec. Limits 70 - 130	Type: To Batch RPD 6 8 : Matrix Type: To	c Spik
1-Chlorooctane p-Terpheny/ Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terpheny/ Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19566 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	111 554/3-A <i>LCSD Li</i> <i>%Recovery Q</i> 101 103 35-F MS Sample Sa Result Q <50.0 U <50.0 U <i>MS M</i>	ualifier ample ualifier VS ualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 Spike Added 1000 1000 1000 1000 1000 1000 1000	Result 792.3 839.6 MS Result 922.5	Qualifier	- Unit mg/Kg mg/Kg	ent \$	<u>D</u> %F	Rec	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep 7 %Rec. Limits 70 - 130	Type: To Batch RPD 6 8 : Matrix Type: To	c Spik

Eurofins Carlsbad

Released to Imaging: 8/23/2022 3:34:00 PM

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-11287-A Matrix: Solid							ient Oc): Matrix Sp Prep 1	лке Бир Гуре: То	
Analysis Batch: 19566										Batch:	
Analysis Batch. 19500	Sample	Sample	Spike	MSD	MSD				%Rec.	Datch.	RPE
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<50.0		998	948.8	quamer	mg/Kg		95	70 - 130	3	2
(GRO)-C6-C10	-00.0	0	000	040.0		mg/itg		00	70 - 100	0	2
Diesel Range Organics (Over	<50.0	U	998	983.0		mg/Kg		94	70 - 130	4	2
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane		<u>s1-</u>	70 - 130								
o-Terphenyl		S1-	70 - 130								
lethod: 300.0 - Anions,		ography									
Lab Sample ID: MB 880-197	76/1-A							Client S	Sample ID:		
Matrix: Solid									Prep	Type: S	olubi
Analysis Batch: 19882											
	_	MB MB				-					
Analyte		esult Qualifier		RL	Unit		D P	repared	Analyz		Dil Fa
Chloride	<	5.00 U		5.00	mg/Kg	9			02/20/22	17:28	
	11012-A							Sample			
Matrix: Solid	11012-4		Snike	105	108			oumpre	Prep	Type: S	
Matrix: Solid Analysis Batch: 19882	11012-4		Spike Added		LCS Qualifier	Unit			Prep %Rec.		
Matrix: Solid Analysis Batch: 19882 ^{Analyte}			Spike Added 250		LCS Qualifier	Unit mg/Kg	<u>D</u>	%Rec 103	Prep		
Matrix: Solid Analysis Batch: 19882 Analyte Chloride			Added	Result		mg/Kg	D	% Rec	Prep %Rec. Limits 90 - 110	Type: S	olub
Matrix: Solid Analysis Batch: 19882 Analyte Chloride			Added	Result		mg/Kg	D	% Rec	Prep %Rec. Limits 90 - 110	Type: So	olub
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid			Added	Result		mg/Kg	D	% Rec	Prep %Rec. Limits 90 - 110	Type: S	e Du
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid			Added 250	Result 256.5	Qualifier	mg/Kg	D	% Rec	Prep %Rec. Limits 90 - 110 Lab Contro Prep	Type: So	e Du olub
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882			Added 250 Spike	Result 256.5 LCSD	Qualifier	mg/Kg	D	%Rec 103 aple ID:	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec.	Type: So 	e Du olub
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte			Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Cliet	D	%Rec 103 pple ID: %Rec	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits	Type: So Di Sampi Type: So <u>RPD</u>	e Du olub olub RP Lim
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte			Added 250 Spike	Result 256.5 LCSD	Qualifier	mg/Kg	D	%Rec 103 aple ID:	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec.	Type: So 	e Du olub olub RP Lim
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride	9776/3-A		Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Cliet	D	%Rec 103 ople ID: %Rec 104	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110	Type: So DI Sampl Type: So <u>RPD</u> 1	e Du olub olub RF Lim
Lab Sample ID: LCS 880-19 Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid	9776/3-A		Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Cliet	D	%Rec 103 ople ID: %Rec 104	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	Type: So ol Sampl Type: So <u></u> 1 : Matrix	e Du olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid	9776/3-A		Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Cliet	D	%Rec 103 ople ID: %Rec 104	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	Type: So DI Sampl Type: So <u>RPD</u> 1	e Du olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-	9776/3-A 9776/3-A 6-M MS		Added 250 Spike Added 250	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier	mg/Kg Cliet	D	%Rec 103 ople ID: %Rec 104	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep	Type: So ol Sampl Type: So <u></u> 1 : Matrix	e Du olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882	9776/3-A 6-M MS Sample	Sample Qualifier	Added 250 Spike Added 250 Spike	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D	%Rec 103 ple ID: %Rec 104 Client	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec.	Type: So ol Sampl Type: So <u></u> 1 : Matrix	e Du olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882 Analyte	9776/3-A 6-M MS Sample	Sample Qualifier	Added 250 Spike Added 250	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier	Unit Unit	D	%Rec 103 ople ID: %Rec 104	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits	Type: So ol Sampl Type: So <u></u> 1 : Matrix	e Du olub RF Lin Spik
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882 Analyte	9776/3-A 6-M MS Sample Result	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D	%Rec 103 ple ID: %Rec 104 Client	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec.	Type: So ol Sampl Type: So <u></u> 1 : Matrix	e Du olub RF Lin Spik
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882 Analyte Chloride	9776/3-A 6-M MS 	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	D	%Rec 103 ple ID: %Rec 104 Client %Rec 95	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	Type: So DI Sampl Type: So <u>RPD</u> 1 : Matrix Type: So	e Du olub RF Lin Spiłkolub
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid	9776/3-A 6-M MS 	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	D	%Rec 103 ple ID: %Rec 104 Client %Rec 95	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	Type: So ol Sampl Type: So <u>RPD</u> 1 : Matrix Type: So oike Dup	e Du olubi RP Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid	9776/3-A 6-M MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result 327.9	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	D	%Rec 103 ple ID: %Rec 104 Client %Rec 95	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	Type: So ol Sampl Type: So <u>RPD</u> 1 : Matrix Type: So oike Dup	e Du olubi RP Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid	9776/3-A 6-M MS 	Qualifier	Added 250 Spike Added 250 Spike Added 250	Result 256.5 LCSD Result 259.0 MS Result 327.9	Qualifier LCSD Qualifier MS Qualifier	Unit Unit mg/Kg	D	%Rec 103 ple ID: %Rec 104 Client %Rec 95	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 0: Matrix Sp Prep	Type: So ol Sampl Type: So <u>RPD</u> 1 : Matrix Type: So oike Dup	e Du olubl RP Lim 2 Spik olubl

Eurofins Carlsbad

Client Sample ID

Client Sample ID

Method Blank

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Method Blank

Matrix Spike

SS05

SS05

Method Blank

QC Association Summary

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid Solid

Solid

Solid

Solid

Solid

Client: WSP USA Inc. Project/Site: BEU DI 30

Prep Batch: 19723

MB 880-19723/5-A

Analysis Batch: 20184

Lab Sample ID

Lab Sample ID

MB 880-19723/5-A

MB 880-20192/5-A

LCS 880-20192/1-A

LCSD 880-20192/2-A

880-11351-A-1-C MS

880-11351-A-1-D MSD

Prep Batch: 20192

MB 880-20192/5-A

LCS 880-20192/1-A

LCSD 880-20192/2-A

880-11351-A-1-C MS

890-1947-1

890-1947-1

GC VOA

Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Method

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

Method

5035

5035

5035

5035

5035

5035

5035

Page 96 of 160

11 12 13

880-11351-A-1-D MSD
Analysis Batch: 20323

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1947-1	SS05	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 19554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1947-1	SS05	Total/NA	Solid	8015NM Prep	
MB 880-19554/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-19554/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-19554/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-11287-A-35-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-11287-A-35-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 19566

890-1947-1

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1947-1	SS05	Total/NA	Solid	8015B NM	19554
MB 880-19554/1-A	Method Blank	Total/NA	Solid	8015B NM	19554
LCS 880-19554/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	19554
LCSD 880-19554/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	19554
880-11287-A-35-F MS	Matrix Spike	Total/NA	Solid	8015B NM	19554
880-11287-A-35-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	19554
Analysis Batch: 19716					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Total/NA

8015 NM

Solid

SS05

QC Association Summary

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Eurofins Carlsbad

Leach	Batch:	19776

HPLC/IC

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1947-1	SS05	Soluble	Solid	DI Leach	
MB 880-19776/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-19776/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-19776/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1938-A-6-M MS	Matrix Spike	Soluble	Solid	DI Leach	
890-1938-A-6-N MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
nalysis Batch: 19882		Colubic	00.10		
-		Colubic	Cond		
nalysis Batch: 19882 Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
nalysis Batch: 19882 Lab Sample ID				Method 300.0	Prep Batch 19776
nalysis Batch: 19882 Lab Sample ID 890-1947-1	Client Sample ID	Ргер Туре	Matrix		
Lab Sample ID 890-1947-1 MB 880-19776/1-A	Client Sample ID	Prep Type Soluble	Matrix Solid	300.0	19776
nalysis Batch: 19882 Lab Sample ID 890-1947-1 MB 880-19776/1-A LCS 880-19776/2-A	Client Sample ID SS05 Method Blank	Prep Type Soluble Soluble	Matrix Solid Solid	300.0 300.0	
-	Client Sample ID SS05 Method Blank Lab Control Sample	Prep Type Soluble Soluble Soluble	Matrix Solid Solid Solid	300.0 300.0 300.0	19776 19776 19776 19776

Lab Chronicle

Dilution

Batch

Prepared

Client: WSP USA Inc. Project/Site: BEU DI 30

Client Sample ID: SS05 Date Collected: 02/14/22 05:10

Date Received: 02/15/22 09:25

Batch

Job ID: 890-1947-1	
SDG: 31403236.022.0129 TASK16.02	

Lab Sample ID: 890-1947-1 Matrix: Solid

Eurofins Carlsbad

Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			20192	02/24/22 09:39	KL	XEN MIC
Total/NA	Analysis	8021B		1	20184	02/25/22 00:57	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	20323	02/25/22 13:43	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	19716	02/17/22 13:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			19554	02/16/22 08:36	DM	XEN MID
Total/NA	Analysis	8015B NM		1	19566	02/16/22 18:24	AJ	XEN MID
Soluble	Leach	DI Leach			19776	02/17/22 21:54	СН	XEN MID
Soluble	Analysis	300.0		5	19882	02/20/22 20:14	СН	XEN MID

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Batch

Accreditation/Certification Summary

10

Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Client: WSP USA Inc. Project/Site: BEU DI 30

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	P	rogram	Identification Number	Expiration Date	
exas		ELAP	T104704400-21-22	06-30-22	
The following analytes	are included in this report, b	ut the laboratory is not certif	ed by the governing authority. This list ma	av include analytes for wh	
the agency does not c	ffer certification.	·		,	
the agency does not c Analysis Method	• •	Matrix	Analyte		
the agency does not c	ffer certification.	·			

Eurofins Carlsbad

Method Summary

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
3015NM Prep	Microextraction	SW846	XEN MID
OI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

2/25/2022

Sample Summary

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-1947-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1947-1	SS05	Solid	02/14/22 05:10	02/15/22 09:25	0.5	4
						5
						8
						9
						12
						13

Page 102 of 160

Job Number: 890-1947-1

List Source: Eurofins Carlsbad

SDG Number: 31403236.022.0129 TASK16.02

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1947 List Number: 1 Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Eurofins Carlsbad Released to Imaging: 8/23/2022 3:34:00 PM 14

14

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1947

List Number: 2

Job Number: 890-1947-1

SDG Number: 31403236.022.0129 TASK16.02

List Source: Eurofins Midland List Creation: 02/16/22 12:10 PM

Creator: Kramer, Jessica			
Question	Answer	Comment	
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is	N/A		

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 5/23/2022 2:39:09 PM

1 2 3 4 5 6 7 8 9 10 11 12 13

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2142-1

Laboratory SDG: 31403236.022.0129 TASK16.02 Client Project/Site: BEU DI 30

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 4/8/2022 10:09:07 AM

Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Total Access Have a Question? Ask The Expert Visit us at: www.eurofinsus.com/Env Released to Imaging: 8/23/2022 3:34:00 PM

LINKS

Review your project results through

•

Laboratory Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	23
QC Sample Results	25
QC Association Summary	33
Lab Chronicle	39
Certification Summary	46
Method Summary	47
Sample Summary	48
Chain of Custody	49
Receipt Checklists	52

Client: WSP USA Inc. Project/Site: BEU DI 30

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

3

5 6

Qualifiers GC VOA Qualifier **Qualifier Description** *+ LCS and/or LCSD is outside acceptance limits, high biased. F1 MS and/or MSD recovery exceeds control limits.

Surrogate recovery exceeds control limits, low biased. Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected. GC Semi VOA

S1-

S1+

υ

Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	- s
S1+	Surrogate recovery exceeds control limits, high biased.	U
U	Indicates the analyte was analyzed for but not detected.	0
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	- 11
U	Indicates the analyte was analyzed for but not detected.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

4/8/2022

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Job ID: 890-2142-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2142-1

Receipt

The samples were received on 3/28/2022 2:48 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-22509 and analytical batch 880-22605 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-22563 and analytical batch 880-22719 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-22591 and analytical batch 880-22514 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (MB 880-22521/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-22997 and analytical batch 880-23131 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 108 of 160
Client Sample Results

		Clien	it Sample Re	sults				
Client: WSP USA Inc. Project/Site: BEU DI 30						SDG: 3140323	Job ID: 890 6.022.0129 TAS	
Client Sample ID: FS01 Date Collected: 03/23/22 08:50 Date Received: 03/28/22 14:48 Sample Depth: 5						Lab Sar	nple ID: 890- Matri	2142- ix: Soli
_ Method: 8021B - Volatile Organi	c Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U F1	0.00201	mg/Kg		03/29/22 12:01	04/01/22 03:00	
Toluene	<0.00201	U F1	0.00201	mg/Kg		03/29/22 12:01	04/01/22 03:00	
Ethylbenzene	<0.00201		0.00201	mg/Kg		03/29/22 12:01	04/01/22 03:00	
m-Xylene & p-Xylene	0.00649		0.00402	mg/Kg		03/29/22 12:01	04/01/22 03:00	
o-Xylene	0.0145		0.00201	mg/Kg		03/29/22 12:01	04/01/22 03:00	
Xylenes, Total	0.0210	F1	0.00402	mg/Kg		03/29/22 12:01	04/01/22 03:00	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	<u></u>		70 - 130			03/29/22 12:01	04/01/22 03:00	
1,4-Difluorobenzene (Surr)	97		70 - 130			03/29/22 12:01	04/01/22 03:00	
Method: Total BTEX - Total BTE	V. Coloulation							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.0210	Quaimer	0.00402	mg/Kg		Flepaleu	03/31/22 10:09	Dii Fa
	0.0210		0.00402	ingrig			00/01/22 10:00	
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	2720		49.8	mg/Kg			03/30/22 10:27	
Mathada 2015D NM Discal Day								
Method: 8015B NM - Diesel Ran Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics			49.8			03/29/22 17:09	03/29/22 20:35	
(GRO)-C6-C10	104		10.0			00/20/22 11:00	00/20/22 20:00	
Diesel Range Organics (Over	2620	F1	49.8	mg/Kg		03/29/22 17:09	03/29/22 20:35	
C10-C28) Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/29/22 17:09	03/29/22 20:35	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130			03/29/22 17:09	03/29/22 20:35	
o-Terphenyl	115		70 - 130			03/29/22 17:09	03/29/22 20:35	
Method: 300.0 - Anions, Ion Chr			DI DI	11-14		Drawarad	A we have d	
Analyte		Qualifier		Unit mg/Kg	D	Prepared	Analyzed 04/02/22 22:11	Dil Fa
Chloride	4420		49.9	ilig/Kg			04/02/22 22.11	1
Client Sample ID: FS02						Lab Sar	nple ID: 890-	2142-2
Date Collected: 03/23/22 08:55							Matri	ix: Soli
Date Received: 03/28/22 14:48								
Sample Depth: 5								
- Mothod: 2021B Volatila Organi	o Compoundo /							
Method: 8021B - Volatile Organi Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199		0.00199			03/29/22 12:01	04/01/22 03:21	
Toluene	< 0.00199		0.00199	mg/Kg		03/29/22 12:01	04/01/22 03:21	
Ethylbenzene	0.00321	-	0.00199	mg/Kg		03/29/22 12:01	04/01/22 03:21	
m-Xylene & p-Xylene	< 0.00398		0.00398	mg/Kg		03/29/22 12:01	04/01/22 03:21	
o-Xylene	0.0138	-	0.00199	mg/Kg		03/29/22 12:01	04/01/22 03:21	
Xylenes, Total	0.0138		0.00398	mg/Kg		03/29/22 12:01	04/01/22 03:21	
•				0.0				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa

4-Bromofluorobenzene (Surr)

Eurofins Carlsbad

03/29/22 12:01 04/01/22 03:21

Page

Released to Imaging: 8/23/2022 3:34:00 PM

70 - 130

113

Client Sample Results

Limits

70 - 130

RL

RL

50.0

RL

50.0

50.0

0.00398

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Client: WSP USA Inc.
Project/Site: BEU DI 30

Client Sample ID: FS02

Date Collected: 03/23/22 08:55

Date Received: 03/28/22 14:48

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

82

0.0170

2170

68.5

2100

Sample Depth: 5

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Surrogate

Analyte

Analyte

Analyte

(GRO)-C6-C10

C10-C28)

Total TPH

Total BTEX

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Prepared

03/29/22 12:01

Prepared

Prepared

Prepared

03/29/22 17:09

03/29/22 17:09

D

D

D

Lab Sample ID: 890-2142-2

Analyzed

04/01/22 03:21

Analyzed

03/31/22 10:09

Analyzed

03/30/22 10:27

Analyzed

03/29/22 21:38

03/29/22 21:38

Lab Sample ID: 890-2142-3

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

1

1

1

Dil Fac

Matrix: Solid

5

Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	03/29/22 17:09	03/29/22 21:38
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed
1-Chlorooctane	111		70 - 130		03/29/22 17:09	03/29/22 21:38
o-Terphenyl	115		70 - 130		03/29/22 17:09	03/29/22 21:38
Mothod: 300.0 - Anione Jon Chro		Coluble				

Method: 300.0 - Anions, ion Chron	natograpny -	Soluple						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8730		99.6	mg/Kg			04/02/22 22:20	20

Client Sample ID: FS03

Date Collected: 03/23/22 09:00 Date Received: 03/28/22 14:48 Sample Depth: 5

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/Kg 03/29/22 12:01 04/01/22 03:42 Toluene <0.00200 U 0.00200 mg/Kg 03/29/22 12:01 04/01/22 03:42 1 Ethylbenzene <0.00200 U 0.00200 03/29/22 12:01 04/01/22 03:42 mg/Kg <0.00400 U 03/29/22 12:01 04/01/22 03:42 m-Xylene & p-Xylene 0.00400 mg/Kg 1 o-Xylene 0.00506 0.00200 mg/Kg 03/29/22 12:01 04/01/22 03:42 0.00400 mg/Kg 03/29/22 12:01 04/01/22 03:42 **Xylenes**, Total 0.00506 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analvzed 70 - 130 4-Bromofluorobenzene (Surr) 119 03/29/22 12:01 04/01/22 03:42 1 1,4-Difluorobenzene (Surr) 85 70 - 130 03/29/22 12:01 04/01/22 03:42 1 Method: Total BTEX - Total BTEX Calculation Analvte RL D Dil Fac Result Qualifier Unit Prepared Analvzed 0.00400 03/31/22 10:09 **Total BTEX** 0.00506 mg/Kg Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac **Total TPH** 49.8 mg/Kg 03/30/22 10:27 381 1

Matrix: Solid

5

Client Sample Results

Job ID: 890-2142-	1
SDG: 31403236.022.0129 TASK16.02	2

Lab Sample ID: 890-2142-3

Lab Sample ID: 890-2142-4

Matrix: Solid

Client Sample ID: FS03

Client: WSP USA Inc. Project/Site: BEU DI 30

Date Collected: 03/23/22 09:00 Date Received: 03/28/22 14:48

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		03/29/22 17:09	03/29/22 21:59	1
Diesel Range Organics (Over C10-C28)	381		49.8	mg/Kg		03/29/22 17:09	03/29/22 21:59	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/29/22 17:09	03/29/22 21:59	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	110		70 - 130			03/29/22 17:09	03/29/22 21:59	1
o-Terphenyl	124		70 - 130			03/29/22 17:09	03/29/22 21:59	1

Analyte	Result Qual		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5570	50.0	mg/Kg			04/02/22 22:47	10

Client Sample ID: FS04

Date Collected: 03/23/22 09:05

Date Received: 03/28/22 14:48 Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		03/29/22 12:01	04/01/22 04:02	1
Toluene	<0.00198	U	0.00198	mg/Kg		03/29/22 12:01	04/01/22 04:02	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		03/29/22 12:01	04/01/22 04:02	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		03/29/22 12:01	04/01/22 04:02	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		03/29/22 12:01	04/01/22 04:02	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		03/29/22 12:01	04/01/22 04:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/29/22 12:01	04/01/22 04:02	1
1,4-Difluorobenzene (Surr)	100		70 - 130			03/29/22 12:01	04/01/22 04:02	1

Method: Total BTEX - Total BTEX C	alculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			03/31/22 10:09	1
Method: 8015 NM - Diesel Range O	rganics (DR	D) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Total TPH	810		50.0	mg/Kg			03/30/22 10:27	1
- Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/29/22 22:20	1
Diesel Range Organics (Over C10-C28)	810		50.0	mg/Kg		03/29/22 17:09	03/29/22 22:20	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/29/22 22:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130			03/29/22 17:09	03/29/22 22:20	1
o-Terphenyl	128		70 - 130			03/29/22 17:09	03/29/22 22:20	1

		Clien	t Sample Res	sults				
Client: WSP USA Inc. Project/Site: BEU DI 30						SDG: 3140323	Job ID: 890 6.022.0129 TAS	
Client Sample ID: FS04 Date Collected: 03/23/22 09:05 Date Received: 03/28/22 14:48 Sample Depth: 5						Lab Sar	nple ID: 890- Matri	2142-4 ix: Solid
Method: 300.0 - Anions, Ion Chro Analyte		Soluble Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9530		99.0	mg/Kg			04/02/22 22:56	20
Client Sample ID: FS05						Lab Sar	nple ID: 890-	2142 5
Date Collected: 03/23/22 09:20 Date Received: 03/28/22 14:48 Sample Depth: 5						Lub Our	-	ix: Solid
Method: 8021B - Volatile Organi			-		_	_		
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200		0.00200	mg/Kg		03/29/22 12:01	04/01/22 04:23	1
Toluene	<0.00200		0.00200	mg/Kg		03/29/22 12:01	04/01/22 04:23	1
Ethylbenzene	<0.00200		0.00200	mg/Kg		03/29/22 12:01	04/01/22 04:23	1
m-Xylene & p-Xylene	< 0.00399		0.00399	mg/Kg		03/29/22 12:01	04/01/22 04:23	1
o-Xylene	<0.00200		0.00200	mg/Kg		03/29/22 12:01	04/01/22 04:23	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		03/29/22 12:01	04/01/22 04:23	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	140	S1+	70 - 130			03/29/22 12:01	04/01/22 04:23	1
1,4-Difluorobenzene (Surr)	91		70 - 130			03/29/22 12:01	04/01/22 04:23	1
– Method: Total BTEX - Total BTEX	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			03/31/22 10:09	1
Method: 8015 NM - Diesel Range	organics (DR	0) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	236		50.0	mg/Kg			03/30/22 10:27	1
 Method: 8015B NM - Diesel Rang	ne Organics (D							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0		50.0	mg/Kg		03/29/22 17:09	03/29/22 22:40	1
Diesel Range Organics (Over C10-C28)	236		50.0	mg/Kg		03/29/22 17:09	03/29/22 22:40	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/29/22 22:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130			03/29/22 17:09	03/29/22 22:40	1
o-Terphenyl	119		70 - 130			03/29/22 17:09	03/29/22 22:40	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
mounou, ovolo - Aniona, ion onio	sinatography -	SOUDIC						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

Client Sample Results

		Clien	t Sample Re	sults				
lient: WSP USA Inc. roject/Site: BEU DI 30						SDG: 3140323	Job ID: 890 6.022.0129 TAS	
lient Sample ID: FS06						Lab Sar	nple ID: 890-	2142-
ate Collected: 03/23/22 09:25							Matri	ix: Soli
ate Received: 03/28/22 14:48								
ample Depth: 5								
	_							
Method: 8021B - Volatile Organic		· · · · ·	-		_	- ·		
Analyte	·	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Benzene Toluene	<0.00200 <0.00200	U	0.00200	mg/Kg		03/29/22 12:01 03/29/22 12:01	04/01/22 04:44 04/01/22 04:44	
Ethylbenzene		U	0.00200	mg/Kg mg/Kg		03/29/22 12:01	04/01/22 04:44	
m-Xylene & p-Xylene	<0.00200		0.00200	mg/Kg		03/29/22 12:01	04/01/22 04:44	
o-Xylene	<0.00399		0.00200	mg/Kg		03/29/22 12:01	04/01/22 04:44	
Xylenes, Total	<0.00200		0.00399	mg/Kg		03/29/22 12:01	04/01/22 04:44	
	-0.00000	0	0.00000	ing/itg		00/20/22 12:01	04/01/22 04.44	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil I
4-Bromofluorobenzene (Surr)	108		70 - 130			03/29/22 12:01	04/01/22 04:44	
1,4-Difluorobenzene (Surr)	102		70 - 130			03/29/22 12:01	04/01/22 04:44	
Method: Total BTEX - Total BTEX								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	<0.00399	U	0.00399	mg/Kg			03/31/22 10:09	
Method: 8015 NM - Diesel Range	Organice (DB							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	<49.8		49.8	mg/Kg			03/30/22 10:27	
	10.0	0	10.0	ingitig			00/00/22 10:27	
Method: 8015B NM - Diesel Range	e Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		03/29/22 17:09	03/29/22 23:01	
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		03/29/22 17:09	03/29/22 23:01	
C10-C28) Oll Range Organics (Over C28-C36)	<49.8		49.8	ma/Ka		03/29/22 17:09	03/29/22 23:01	
On Range Organics (Over 626-636)	~49.0	0	49.0	mg/Kg		05/29/22 17.09	03/29/22 23:01	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil I
1-Chlorooctane	109		70 - 130			03/29/22 17:09	03/29/22 23:01	
o-Terphenyl	121		70 - 130			03/29/22 17:09	03/29/22 23:01	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Chloride	339		4.99	mg/Kg			04/02/22 23:31	
lient Comple ID: E007						Lab Car		04.40
lient Sample ID: FS07						Lab Sar	nple ID: 890-	
ate Collected: 03/23/22 09:40							Matri	ix: So
ate Received: 03/28/22 14:48								
ample Depth: 5								
Method: 8021B - Volatile Organic	Compounds							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil
Benzene	<0.00198		0.00198	mg/Kg	— <u>-</u>	03/29/22 12:01	04/01/22 05:04	
Toluene	<0.00198		0.00198	mg/Kg		03/29/22 12:01	04/01/22 05:04	
Ethylbenzene	<0.00198		0.00198	mg/Kg		03/29/22 12:01	04/01/22 05:04	
m-Xylene & p-Xylene	<0.00190		0.00397	mg/Kg		03/29/22 12:01	04/01/22 05:04	
o-Xylene	<0.00397		0.00198	mg/Kg		03/29/22 12:01	04/01/22 05:04	
Xylenes, Total								
Ayiches, Iulai	<0.00397	0	0.00397	mg/Kg		03/29/22 12:01	04/01/22 05:04	

Surrogate 4-Bromofluorobenzene (Surr)

Eurofins Carlsbad

Analyzed

04/01/22 05:04

Prepared

03/29/22 12:01

Limits

70 - 130

%Recovery Qualifier

114

Dil Fac

Client Sample Results

Job ID: 890-2142-1
SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-7

Matrix: Solid

5

Date Collected: 03/23/22 09:40 Date Received: 03/28/22 14:48

Client Sample ID: FS07

Sample Depth: 5

Client: WSP USA Inc. Project/Site: BEU DI 30

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	102		70 - 130			03/29/22 12:01	04/01/22 05:04	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397	mg/Kg			03/31/22 10:09	
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			03/30/22 10:27	
Method: 2045D NM Discol Down	Ormanias (D)							
Method: 8015B NM - Diesel Rang Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/29/22 23:22	
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/29/22 23:22	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/29/22 23:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130			03/29/22 17:09	03/29/22 23:22	1
o-Terphenyl	121		70 - 130			03/29/22 17:09	03/29/22 23:22	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	267		5.01	mg/Kg			04/02/22 23:40	1
lient Sample ID: FS08						Lab San	nple ID: 890-	2142-8
ate Collected: 03/23/22 09:45								x: Solid
ate Received: 03/28/22 14:48							Watri	
ate Received. 05/20/22 14.40								

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/29/22 12:01	04/01/22 05:25	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/29/22 12:01	04/01/22 05:25	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/29/22 12:01	04/01/22 05:25	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		03/29/22 12:01	04/01/22 05:25	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/29/22 12:01	04/01/22 05:25	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		03/29/22 12:01	04/01/22 05:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/29/22 12:01	04/01/22 05:25	1
1,4-Difluorobenzene (Surr)	104		70 - 130			03/29/22 12:01	04/01/22 05:25	1
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			03/31/22 10:09	1
Method: 8015 NM - Diesel Rar	ige Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9		49.9	mg/Kg			03/30/22 10:27	

		Clien	t Sample Re	suits				
Client: WSP USA Inc. Project/Site: BEU DI 30						SDG: 3140323	Job ID: 890 6.022.0129 TAS	
Client Sample ID: FS08						l ah Sar	nple ID: 890-	2142-
Date Collected: 03/23/22 09:45						Lab Gai	-	x: Soli
							Watri	x. 301
Date Received: 03/28/22 14:48								
Sample Depth: 5								
Method: 8015B NM - Diesel Rang Analyte		RO) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9		49.9	mg/Kg		03/29/22 17:09	03/29/22 23:43	
(GRO)-C6-C10				5 5				
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		03/29/22 17:09	03/29/22 23:43	
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/29/22 17:09	03/29/22 23:43	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	107		70 - 130			03/29/22 17:09	03/29/22 23:43	
o-Terphenyl	122		70 - 130			03/29/22 17:09	03/29/22 23:43	
	122		70 - 130			03/29/22 11.09	03/29/22 23.43	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride			4.95		<u>_</u>		04/02/22 23:49	
- Chionde	207		4.55	ilig/itg			04/02/22 20.43	
Client Sample ID: FS09						Lab Sar	nple ID: 890-	2142-
Date Collected: 03/23/22 10:20							-	ix: Soli
Date Received: 03/28/22 14:48							inati	
Sample Depth: 5								
Sample Depth: 5	Compounds (GC)						
Sample Depth: 5 Method: 8021B - Volatile Organic			PI	Unit		Prenared	Analyzad	Dil Ea
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte	Result	Qualifier		Unit	<u>D</u>	Prepared		
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene	Result <0.00199	Qualifier U	0.00199	mg/Kg	<u>D</u>	03/29/22 12:01	04/01/22 05:46	
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene	Result <0.00199	Qualifier U U	0.00199	mg/Kg mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46	
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene	Result <0.00199	Qualifier U U U	0.00199 0.00199 0.00199	mg/Kg mg/Kg mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46	
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00199	Qualifier U U U U U	0.00199 0.00199 0.00199 0.00199 0.00398	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46	
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene	Result <0.00199	Qualifier U U U U U	0.00199 0.00199 0.00199	mg/Kg mg/Kg mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46	
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00199	Qualifier U U U U U U U	0.00199 0.00199 0.00199 0.00199 0.00398	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46	Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	Result <0.00199	Qualifier U U U U U U U U	0.00199 0.00199 0.00199 0.00398 0.00199 0.00398	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46	
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	Result <0.00199	Qualifier U U U U U U U U	0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 <i>Limits</i>	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 Analyzed	
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	Result <0.00199	Qualifier U U U U U U U U	0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 <i>Analyzed</i> 04/01/22 05:46	
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	Result <0.00199	Qualifier U U U U U U U U	0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 <i>Limits</i>	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 Analyzed	
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Result <0.00199	Qualifier U U U U U U U U	0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 <i>Analyzed</i> 04/01/22 05:46	
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX	Result <0.00199	Qualifier U U U U U U Qualifier	0.00199 0.00199 0.00398 0.00199 0.00398 0.00199 0.00398 Limits 70 - 130 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 Analyzed 04/01/22 05:46 04/01/22 05:46	Dil Fé
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte	Result <0.00199	Qualifier U U U U U Qualifier	0.00199 0.00199 0.00398 0.00199 0.00398 0.00199 0.00398 <i>Limits</i> 70 - 130 70 - 130 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 Analyzed	Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX	Result <0.00199	Qualifier U U U U U Qualifier	0.00199 0.00199 0.00398 0.00199 0.00398 0.00199 0.00398 Limits 70 - 130 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 Analyzed 04/01/22 05:46 04/01/22 05:46	Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX	Result <0.00199	Qualifier U U U U U U Qualifier U	0.00199 0.00199 0.00398 0.00199 0.00398 0.00199 0.00398 <i>Limits</i> 70 - 130 70 - 130 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 Analyzed	Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range	Result <0.00199	Qualifier U U U U U U Qualifier U O) (GC)	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46	Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte	Result <0.00199	Qualifier U U U U U U U Qualifier U O) (GC) Qualifier	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg		03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46	Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range	Result <0.00199	Qualifier U U U U U U U Qualifier U O) (GC) Qualifier	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46	Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte	Result <0.00199	Qualifier U U U U U U U Qualifier U O) (GC) Qualifier U	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46	Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range	Result <0.00199	Qualifier U U U U U U U Qualifier U O) (GC) Qualifier U	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398 <u>RL</u> 50.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg	<u>D</u>	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 03/31/22 10:09 Analyzed 03/30/22 10:27	Dil Fa Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Method: 8015B NM - Diesel Range Analyte	Result <0.00199	Qualifier U U U U U U U Qualifier U O) (GC) Qualifier U RO) (GC) Qualifier	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398 <u>RL</u> 50.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg Unit	D	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared Prepared Prepared	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 03/31/22 10:09 Analyzed 03/30/22 10:27 Analyzed	Dil Fa Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	Result <0.00199	Qualifier U U U U U U U Qualifier U O) (GC) Qualifier U RO) (GC) Qualifier	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398 <u>RL</u> 50.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg	D	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01 03/29/22 12:01 Prepared Prepared	04/01/22 05:46 04/01/22 05:46 03/31/22 10:09 Analyzed 03/30/22 10:27	Dil Fa Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	Result <0.00199	Qualifier U U U U U Qualifier U Qualifier U Qualifier U Qualifier U Qualifier U Qualifier U	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398 <u>RL</u> 50.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg Unit mg/Kg	D	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared Prepared 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 03/31/22 10:09 Analyzed 03/30/22 10:27 Analyzed 03/30/22 00:04	Dil Fa Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <0.00199	Qualifier U U U U U Qualifier U Qualifier U Qualifier U Qualifier U Qualifier U Qualifier U	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398 <u>RL</u> 50.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg Unit	D	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared Prepared Prepared	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 03/31/22 10:09 Analyzed 03/30/22 10:27 Analyzed	Dil Fa Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	Result <0.00199	Qualifier U U U U U Qualifier U	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398 <u>RL</u> 50.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg Unit mg/Kg	D	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared Prepared 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 03/31/22 10:09 Analyzed 03/30/22 10:27 Analyzed 03/30/22 00:04	Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <0.00199	Qualifier U U U U U Qualifier U	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398 <u>RL</u> 50.0 <u>RL</u> 50.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg	D	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared 03/29/22 12:01 03/29/22 12:01 Prepared Prepared 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 03/31/22 10:09 Analyzed 03/30/22 10:27 Analyzed 03/30/22 00:04	Dil Fa Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <0.00199	Qualifier U U U U Qualifier Qualifier U U	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398 <u>RL</u> 50.0 <u>RL</u> 50.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg	D	03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01 Prepared Prepared 03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 03/31/22 10:09 Analyzed 03/30/22 10:27 Analyzed 03/30/22 00:04	Dil Fa Dil Fa Dil Fa
Sample Depth: 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <0.00199	Qualifier U U U U Qualifier Qualifier U U	0.00199 0.00199 0.00398 0.00199 0.00398 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL 0.00398 RL 50.0 RL 50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg	D	03/29/22 12:01 03/29/22 12:01	04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 04/01/22 05:46 03/31/22 10:09 Analyzed 03/30/22 10:27 Analyzed 03/30/22 00:04 03/30/22 00:04	Dil Fa Dil Fa Dil Fa

		Clien	t Sample Re	sults				
Client: WSP USA Inc.							Job ID: 890	
Project/Site: BEU DI 30						SDG: 3140323	6.022.0129 TAS	3K16.02
Client Sample ID: FS09						Lab San	nple ID: 890-	2142-9
Date Collected: 03/23/22 10:20							Matri	ix: Solid
Date Received: 03/28/22 14:48								
Sample Depth: 5								
_ Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	201		4.95	mg/Kg			04/02/22 23:58	1
Client Sample ID: FS10						Lab Sam	ple ID: 890-2	142-10
Date Collected: 03/23/22 10:25							-	ix: Solid
Date Received: 03/28/22 14:48							inati	X. 00110
Sample Depth: 5								
– Method: 8021B - Volatile Organic	Compounde							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198		0.00198	mg/Kg		03/29/22 12:01	04/01/22 06:07	1
Toluene	< 0.00198		0.00198	mg/Kg		03/29/22 12:01	04/01/22 06:07	1
Ethylbenzene	< 0.00198		0.00198	mg/Kg		03/29/22 12:01	04/01/22 06:07	1
m-Xylene & p-Xylene	<0.00397		0.00397	mg/Kg		03/29/22 12:01	04/01/22 06:07	
o-Xylene	< 0.00198		0.00198	mg/Kg		03/29/22 12:01	04/01/22 06:07	1
Xylenes, Total	<0.00397		0.00397	mg/Kg		03/29/22 12:01	04/01/22 06:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/29/22 12:01	04/01/22 06:07	1
1,4-Difluorobenzene (Surr)	102		70 - 130			03/29/22 12:01	04/01/22 06:07	1
 Method: Total BTEX - Total BTEX	Calculation							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397	mg/Kg			03/31/22 10:09	1
 Method: 8015 NM - Diesel Range	Organics (DR							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			03/30/22 10:27	1
– Method: 8015B NM - Diesel Rang	pe Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9		49.9	mg/Kg		03/29/22 17:09	03/30/22 00:24	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		03/29/22 17:09	03/30/22 00:24	1
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/29/22 17:09	03/30/22 00:24	1
	10.0	-				20.20.22 11.00		
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130			03/29/22 17:09	03/30/22 00:24	1
o-Terphenyl	119		70 - 130			03/29/22 17:09	03/30/22 00:24	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

04/03/22 00:07

Chloride

4.96

mg/Kg

Client: WSP USA Inc.

Project/Site: BEU DI 30

Client Sample ID: FS11

Client Sample Results

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Unit

Unit

mg/Kg

mg/Kg

D

D

D

Prepared

03/29/22 12:01

03/29/22 12:01

03/29/22 12:01

03/29/22 12:01

03/29/22 12:01

03/29/22 12:01

Prepared

03/29/22 12:01

03/29/22 12:01

Prepared

Prepared

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-11

Analyzed

04/01/22 07:31

04/01/22 07:31

04/01/22 07:31

04/01/22 07:31

04/01/22 07:31

04/01/22 07:31

Analyzed

04/01/22 07:31

04/01/22 07:31

Analyzed

03/31/22 10:09

Analyzed

03/30/22 10:27

Lab Sample ID: 890-2142-12

Matrix: Solid

Matrix: Solid

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

Dil Fac

Dil Fac

5

Method: 8021B - Volatile Orga	nic Compounds ((GC)	
Analyte	Result	Qualifier	RI
Benzene	<0.00199	U	0.00199
Toluene	<0.00199	U	0.00199
Ethylbenzene	<0.00199	U	0.00199
m-Xylene & p-Xylene	<0.00398	U	0.00398
o-Xylene	<0.00199	U	0.00199
Xylenes, Total	<0.00398	U	0.00398
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130
Method: Total BTEX - Total B	EX Calculation		
Analyte	Result	Qualifier	RI
Total BTEX	< 0.00398	U	0.00398

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/30/22 01:06	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/30/22 01:06	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/30/22 01:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130			03/29/22 17:09	03/30/22 01:06	1
o-Terphenyl	123		70 - 130			03/29/22 17:09	03/30/22 01:06	1
Method: 300.0 - Anions, Ion Chron	natography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	134		5.04	mg/Kg			04/03/22 00:15	1

Client Sample ID: FS12 Date Collected: 03/23/22 10:35 Date Received: 03/28/22 14:48

Sample Depth: 5

Method: 8021B - Volatile Orga	nic Compounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/29/22 12:01	04/01/22 08:14	1
Toluene	0.00365		0.00200	mg/Kg		03/29/22 12:01	04/01/22 08:14	1
Ethylbenzene	0.0122		0.00200	mg/Kg		03/29/22 12:01	04/01/22 08:14	1
m-Xylene & p-Xylene	0.0125		0.00400	mg/Kg		03/29/22 12:01	04/01/22 08:14	1
o-Xylene	0.0378		0.00200	mg/Kg		03/29/22 12:01	04/01/22 08:14	1
Xylenes, Total	0.0503		0.00400	mg/Kg		03/29/22 12:01	04/01/22 08:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130			03/29/22 12:01	04/01/22 08:14	1

Client Sample Results

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-12

Matrix: Solid

5

Date Collected: 03/23/22 10:35 Date Received: 03/28/22 14:48

Client Sample ID: FS12

Sample Depth: 5

Client: WSP USA Inc.

Project/Site: BEU DI 30

94		70 - 130			00/00/00 40 01		
					03/29/22 12:01	04/01/22 08:14	1
Calculation							
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
0.0662		0.00400	mg/Kg			03/31/22 10:09	1
Organics (DR	0) (GC)						
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0	mg/Kg			03/30/22 10:27	1
Organics (D	RO) (GC)						
		RL	Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/30/22 01:26	1
<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/30/22 01:26	
~50.0		50.0	malka		02/20/22 17:00	02/20/22 01.26	
<50.0	U	50.0	mg/Kg		03/29/22 17.09	03/30/22 01.20	
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
106		70 - 130			03/29/22 17:09	03/30/22 01:26	1
114		70 - 130			03/29/22 17:09	03/30/22 01:26	1
natography -	Soluble						
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
413	F1	4.96	mg/Kg		,	04/08/22 04:49	1
					Lab Sam	ple ID: 890-2 ⁻	142-13
	0.0662 Drganics (DR) Corganics (DR) Corgan	0.0662 Result Qualifier <50.0	0.0662 0.00400 Result Qualifier RL <50.0	0.0662 0.00400 mg/Kg Organics (DRO) (GC) Result Qualifier RL Unit <50.0	0.0662 0.00400 mg/Kg Organics (DRO) (GC) Result Qualifier RL Unit D <50.0	0.0662 0.00400 mg/Kg Organics (DRO) (GC) Result Qualifier RL Unit D Prepared <50.0	0.0662 0.00400 mg/Kg 0.011 0.03/31/22 10:09 Organics (DRO) (GC) Result Qualifier RL Unit D Prepared Analyzed <50.0

Sample Depth: 5

Method: 8021B - Volatile Organ	nic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/29/22 12:01	04/01/22 08:35	1
Toluene	<0.00199	U	0.00199	mg/Kg		03/29/22 12:01	04/01/22 08:35	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/29/22 12:01	04/01/22 08:35	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/29/22 12:01	04/01/22 08:35	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/29/22 12:01	04/01/22 08:35	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/29/22 12:01	04/01/22 08:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/29/22 12:01	04/01/22 08:35	1
1,4-Difluorobenzene (Surr)	100		70 - 130			03/29/22 12:01	04/01/22 08:35	1
- Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/31/22 10:09	1
Method: 8015 NM - Diesel Rang	ge Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			03/30/22 10:27	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

<49.9 U

<49.9 U

<49.9 U

%Recovery Qualifier

Result Qualifier

108

119

352

Dil Fac

1

1

1

1

1

Dil Fac

Dil Fac

Client Sample Results

RL

49.9

49.9

49.9

RL

5.00

Limits

70 - 130

70 - 130

Unit

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

D

D

Prepared

03/29/22 17:09

03/29/22 17:09

03/29/22 17:09

Prepared

03/29/22 17:09

03/29/22 17:09

Prepared

Job ID: 890-2142-1
SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-13

Analyzed

03/30/22 01:47

03/30/22 01:47

03/30/22 01:47

Analyzed

03/30/22 01:47

03/30/22 01:47

Analyzed

04/08/22 05:06

Date Collected: 03/23/22 10:45

Matrix: Solid

Client Sample ID: FS14 Date Collected: 03/23/22 10:50 Date Received: 03/28/22 14:48 Sample Depth: 5	Collected: 03/23/22 10:50 Matr Received: 03/28/22 14:48						2142-14 rix: Solid	
- Method: 8021B - Volatile Organic	c Compounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		03/29/22 12:01	04/01/22 08:56	1
Toluene	<0.00202	U	0.00202	mg/Kg		03/29/22 12:01	04/01/22 08:56	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		03/29/22 12:01	04/01/22 08:56	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		03/29/22 12:01	04/01/22 08:56	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		03/29/22 12:01	04/01/22 08:56	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		03/29/22 12:01	04/01/22 08:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/29/22 12:01	04/01/22 08:56	1
1,4-Difluorobenzene (Surr)	102		70 - 130			03/29/22 12:01	04/01/22 08:56	1
- Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			03/31/22 10:09	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	197		49.9	mg/Kg			03/30/22 10:27	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		03/29/22 17:09	03/30/22 02:07	1
Diesel Range Organics (Over C10-C28)	197		49.9	mg/Kg		03/29/22 17:09	03/30/22 02:07	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/29/22 17:09	03/30/22 02:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Surrogate 1-Chlorooctane	%Recovery	Qualifier	Limits 70 - 130			Prepared 03/29/22 17:09	Analyzed 03/30/22 02:07	Dil Fac

Eurofins Carlsbad

Client: WSP USA Inc. Project/Site: BEU DI 30

Client Sample ID: FS13

Date Received: 03/28/22 14:48

Sample Depth: 5

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Analyte

C10-C28)

Surrogate 1-Chlorooctane

o-Terphenyl

Analyte

Chloride

(GRO)-C6-C10

Released to Imaging: 8/23/2022 3:34:00 PM

4/8/2022

		Clien	t Sample Re	sults				
Client: WSP USA Inc.						000.0440000	Job ID: 890	
Project/Site: BEU DI 30						SDG: 3140323	6.022.0129 TAS	SK 10.02
Client Sample ID: FS14						Lab Sam	ple ID: 890-2	142-14
Date Collected: 03/23/22 10:50							Matri	ix: Solid
Date Received: 03/28/22 14:48								
Sample Depth: 5								
	natography -	Soluble						
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7720		49.9	mg/Kg			04/08/22 05:12	10
Client Sample ID: FS15						Lab Sam	ple ID: 890-2	142-15
Date Collected: 03/23/22 10:55							-	ix: Solid
Date Received: 03/28/22 14:48								
Sample Depth: 5								
 Method: 8021B - Volatile Organic (Compounde (6 C)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199		0.00199	mg/Kg		03/29/22 12:01	04/01/22 09:16	1
Toluene	< 0.00199	U	0.00199	mg/Kg		03/29/22 12:01	04/01/22 09:16	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/29/22 12:01	04/01/22 09:16	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/29/22 12:01	04/01/22 09:16	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/29/22 12:01	04/01/22 09:16	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/29/22 12:01	04/01/22 09:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130			03/29/22 12:01	04/01/22 09:16	1
1,4-Difluorobenzene (Surr)	107		70 - 130			03/29/22 12:01	04/01/22 09:16	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/31/22 10:09	1
 Method: 8015 NM - Diesel Range 0	Prophice (DP							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			03/30/22 10:27	1
Method: 8015B NM - Diesel Range	Organics (D							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0		50.0	mg/Kg		03/29/22 17:09	03/30/22 02:28	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/30/22 02:28	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/30/22 02:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130			03/29/22 17:09	03/30/22 02:28	1
o-Terphenyl	121		70 - 130			03/29/22 17:09	03/30/22 02:28	1
 Method: 300.0 - Anions, Ion Chron	natography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	266		4.96	mg/Kg			04/08/22 05:17	1

Eurofins Carlsbad

Method: 8021B - Volatile Organic Compounds (GC)

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

U

Qualifier

Qualifier

U

Result Qualifier

<49.8 U

<0.00200 U

<0.00200 U

<0.00200 U

<0.00200 U

<0.00399 U

113

104

Result

<0.00399

%Recovery

104

Qualifier

%Recovery

<0.00399

Client Sample Results

RL

0.00200

0.00200

0.00200

0.00399

0.00200

0.00399

Limits

70 - 130

70 - 130

RL

RL

49.8

0.00399

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Unit

Unit

mg/Kg

mg/Kg

D

D

D

Prepared

03/29/22 12:01

03/29/22 12:01

03/29/22 12:01

03/29/22 12:01

03/29/22 12:01

03/29/22 12:01

Prepared

03/29/22 12:01

03/29/22 12:01

Prepared

Prepared

Prepared

03/29/22 12:01

Client: WSP USA Inc.	
Project/Site: BEU DI 30	

Client Sample ID: FS16

Date Collected: 03/23/22 11:05 Date Received: 03/28/22 14:48

Sample Depth: 5

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Analyte

Total TPH

Surrogate

4-Bromofluorobenzene (Surr)

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Job ID: 890-2142-1
SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-16

Analyzed

04/01/22 09:37

04/01/22 09:37

04/01/22 09:37

04/01/22 09:37

04/01/22 09:37

04/01/22 09:37

Analyzed

04/01/22 09:37

04/01/22 09:37

Analyzed

03/31/22 10:09

Analyzed

03/30/22 10:27

Matrix: Solid

Dil Fac

1

1

1

1

1

Dil Fac

Dil Fac

Dil Fac

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		03/29/22 17:09	03/30/22 02:48	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		03/29/22 17:09	03/30/22 02:48	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/29/22 17:09	03/30/22 02:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130			03/29/22 17:09	03/30/22 02:48	1
o-Terphenyl	125		70 - 130			03/29/22 17:09	03/30/22 02:48	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
							04/08/22 05:23	1
Chloride	123		5.04	mg/Kg			04/06/22 05.25	1
Chloride	123		5.04	mg/Kg		Lab Sam	ple ID: 890-2	
-	123		5.04	тg/кg		Lab Sam	ple ID: 890-2	
Client Sample ID: SW01 Date Collected: 03/23/22 11:50 Date Received: 03/28/22 14:48 Dample Depth: 0 - 5 Method: 8021B - Volatile Organic	c Compounds (Lab Sam	ple ID: 890-2	142-17 x: Solid
Client Sample ID: SW01 Date Collected: 03/23/22 11:50 Date Received: 03/28/22 14:48 Sample Depth: 0 - 5 Method: 8021B - Volatile Organic Analyte	c Compounds (Result	Qualifier	RL	<u>Unit</u>	D	Prepared	ple ID: 890-2 Matri 	142-17
Client Sample ID: SW01 Date Collected: 03/23/22 11:50 Date Received: 03/28/22 14:48 Dample Depth: 0 - 5 Method: 8021B - Volatile Organic	c Compounds (Qualifier			<u>D</u>		ple ID: 890-2 Matri	142-17 x: Solid
Client Sample ID: SW01 Date Collected: 03/23/22 11:50 Date Received: 03/28/22 14:48 Sample Depth: 0 - 5 Method: 8021B - Volatile Organic Analyte	c Compounds (Result	Qualifier	RL	<u>Unit</u>	<u>D</u>	Prepared	ple ID: 890-2 Matri 	142-17 x: Solid
Client Sample ID: SW01 Date Collected: 03/23/22 11:50 Date Received: 03/28/22 14:48 Dample Depth: 0 - 5 Method: 8021B - Volatile Organic Analyte Benzene	c Compounds (Qualifier	RL	Unit mg/Kg	<u>D</u>	Prepared 03/29/22 12:01	ple ID: 890-2 Matri Analyzed 04/01/22 09:58	142-17 x: Solid Dil Fac
Client Sample ID: SW01 Date Collected: 03/23/22 11:50 Date Received: 03/28/22 14:48 Sample Depth: 0 - 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene	c Compounds (Qualifier U U	RL 0.00200 0.00200	Unit mg/Kg mg/Kg	D	Prepared 03/29/22 12:01 03/29/22 12:01	ple ID: 890-2 Matri Analyzed 04/01/22 09:58 04/01/22 09:58	142-17 x: Solid Dil Fac
Client Sample ID: SW01 Date Collected: 03/23/22 11:50 Date Received: 03/28/22 14:48 Dample Depth: 0 - 5 Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene	c Compounds (Qualifier U U	RL 0.00200 0.00200 0.00200	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 03/29/22 12:01 03/29/22 12:01 03/29/22 12:01	Analyzed 04/01/22 09:58 04/01/22 09:58 04/01/22 09:58	142-17 x: Solid Dil Fac

Eurofins Carlsbad

Analyzed

04/01/22 09:58

Limits

70 - 130

Dil Fac

Client Sample Results

Limits

70 - 130

RL

RL

RL

50.0

50.0

50.0

0.00400

Client: WS	P USA I	nc.
Project/Site	e: BEU [DI 30

Client Sample ID: SW01

Date Collected: 03/23/22 11:50

Date Received: 03/28/22 14:48

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

<50.0 U

90.8

102

0.0148

90.8

Sample Depth: 0 - 5

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Surrogate

Analyte

Analyte

Analyte

(GRO)-C6-C10

C10-C28)

Total TPH

Total BTEX

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Prepared

03/29/22 12:01

Prepared

Prepared

Prepared

03/29/22 17:09

03/29/22 17:09

D

D

D

Lab Sample ID: 890-2142-17

Analyzed

04/01/22 09:58

Analyzed

03/31/22 10:09

Analyzed

03/30/22 10:27

Analyzed

03/30/22 03:08

03/30/22 03:08

Lab Sample ID: 890-2142-18

Matrix: Solid

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

5

Oll Range Organics (Over C28-C36)	<50.0 U	50.0	mg/Kg		03/29/22 17:09	03/30/22 03:08	1
Surrogate	%Recovery Qualif	ier Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	110	70 - 130			03/29/22 17:09	03/30/22 03:08	1
o-Terphenyl	122	70 - 130			03/29/22 17:09	03/30/22 03:08	1
Method: 300.0 - Anions, Ion Chro	matography - Solub	le					
Analyte	Result Qualifi	ier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2120	25.0	mg/Kg			04/08/22 05:40	5

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Client Sample ID: SW02

Date Collected: 03/23/22 11:55 Date Received: 03/28/22 14:48 Sample Depth: 0 - 5

Method: 8021B - Volatile Organio	Compounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		03/29/22 12:01	04/01/22 10:19	1
Toluene	<0.00201	U	0.00201	mg/Kg		03/29/22 12:01	04/01/22 10:19	1
Ethylbenzene	0.00843		0.00201	mg/Kg		03/29/22 12:01	04/01/22 10:19	1
m-Xylene & p-Xylene	0.0111		0.00402	mg/Kg		03/29/22 12:01	04/01/22 10:19	1
o-Xylene	0.0173		0.00201	mg/Kg		03/29/22 12:01	04/01/22 10:19	1
Xylenes, Total	0.0284		0.00402	mg/Kg		03/29/22 12:01	04/01/22 10:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130			03/29/22 12:01	04/01/22 10:19	1
1,4-Difluorobenzene (Surr)	111		70 - 130			03/29/22 12:01	04/01/22 10:19	1
 Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0368		0.00402	mg/Kg			03/31/22 10:09	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1120		50.0	mg/Kg			03/30/22 10:27	1

Client Sample Results

Job ID: 890-2142-1
SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-18

Lab Sample ID: 890-2142-19

Matrix: Solid

Matrix: Solid

Date Collected: 03/23/22 11:55 Date Received: 03/28/22 14:48 Sample Depth: 0 - 5

Client Sample ID: SW02

Client: WSP USA Inc. Project/Site: BEU DI 30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	56.9		50.0	mg/Kg		03/29/22 17:09	03/30/22 03:29	1
Diesel Range Organics (Over C10-C28)	1060		50.0	mg/Kg		03/29/22 17:09	03/30/22 03:29	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/30/22 03:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			03/29/22 17:09	03/30/22 03:29	1
o-Terphenyl	113		70 - 130			03/29/22 17:09	03/30/22 03:29	1

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13700	99.0	mg/Kg			04/08/22 05:46	20

Client Sample ID: SW03 Date Collected: 03/23/22 12:05

Date Received: 03/28/22 14:48

Sample Depth: 0 - 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/29/22 12:01	04/01/22 10:39	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/29/22 12:01	04/01/22 10:39	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/29/22 12:01	04/01/22 10:39	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		03/29/22 12:01	04/01/22 10:39	1
o-Xylene	0.00558		0.00200	mg/Kg		03/29/22 12:01	04/01/22 10:39	1
Xylenes, Total	0.00558		0.00401	mg/Kg		03/29/22 12:01	04/01/22 10:39	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/29/22 12:01	04/01/22 10:39	1
1,4-Difluorobenzene (Surr)	105		70 - 130			03/29/22 12:01	04/01/22 10:39	1
Method: Total BTEX - Total BTE	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00558		0.00401	mg/Kg			03/31/22 10:09	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	515		49.8	mg/Kg			03/30/22 10:27	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		03/29/22 17:09	03/30/22 03:49	1
Diesel Range Organics (Over	515		49.8	mg/Kg		03/29/22 17:09	03/30/22 03:49	1
C10-C28) Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/29/22 17:09	03/30/22 03:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130			03/29/22 17:09	03/30/22 03:49	1

Eurofins Carlsbad

		Clien	t Sample Re	sults				
Client: WSP USA Inc. Project/Site: BEU DI 30						SDG: 3140323	Job ID: 890 6.022.0129 TAS	
Client Sample ID: SW03							ple ID: 890-2	
Date Collected: 03/23/22 12:05						Lub Oum	-	ix: Solid
Date Received: 03/28/22 12:03							Wath	x. 00110
Sample Depth: 0 - 5								
Method: 300.0 - Anions, Ion Ch								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6970		49.8	mg/Kg			04/08/22 05:51	10
Client Sample ID: SW04						Lab Sam	ple ID: 890-2	142-20
Date Collected: 03/23/22 12:10							Matri	ix: Solid
Date Received: 03/28/22 14:48								
Sample Depth: 0 - 5								
Method: 8021B - Volatile Orgar	nic Compounds (
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		03/29/22 12:01	04/01/22 11:00	1
Toluene	<0.00202	U	0.00202	mg/Kg		03/29/22 12:01	04/01/22 11:00	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		03/29/22 12:01	04/01/22 11:00	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		03/29/22 12:01	04/01/22 11:00	1
o-Xylene	0.00341		0.00202	mg/Kg		03/29/22 12:01	04/01/22 11:00	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		03/29/22 12:01	04/01/22 11:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		· · · · · · · · · · · · · · · · · · ·	70 - 130			03/29/22 12:01	04/01/22 11:00	1
1,4-Difluorobenzene (Surr)	105		70 - 130			03/29/22 12:01	04/01/22 11:00	1
Method: Total BTEX - Total BTI	EX Calculation							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403		0.00403	mg/Kg			03/31/22 10:09	1
				5 5				
Method: 8015 NM - Diesel Rang	ge Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			03/30/22 10:27	1
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		03/29/22 17:09	03/30/22 04:10	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		03/29/22 17:09	03/30/22 04:10	1
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/29/22 17:09	03/30/22 04:10	1
				5.5				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130			03/29/22 17:09	03/30/22 04:10	1
o-Terphenyl	114		70 - 130			03/29/22 17:09	03/30/22 04:10	1
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			· ·					

Eurofins Carlsbad

04/08/22 05:57

Chloride

4.99

mg/Kg

Client Sample Results

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-21

Matrix: Solid

5

Date Collected: 03/23/22 12:15 Date Received: 03/28/22 14:48 Sample Depth: 0 - 5

Client Sample ID: SW05

Client: WSP USA Inc.

Project/Site: BEU DI 30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00200	U *+	0.00200	mg/Kg		03/30/22 07:30	03/30/22 18:59	
Foluene	<0.00200	U	0.00200	mg/Kg		03/30/22 07:30	03/30/22 18:59	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/30/22 07:30	03/30/22 18:59	
n-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		03/30/22 07:30	03/30/22 18:59	
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/30/22 07:30	03/30/22 18:59	
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		03/30/22 07:30	03/30/22 18:59	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
I-Bromofluorobenzene (Surr)	110		70 - 130			03/30/22 07:30	03/30/22 18:59	
1,4-Difluorobenzene (Surr)	90		70 - 130			03/30/22 07:30	03/30/22 18:59	
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Fotal BTEX	<0.00399	U	0.00399	mg/Kg			03/31/22 10:09	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8		49.8	mg/Kg			03/30/22 10:27	
Method: 8015B NM - Diesel Rang	Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Basoline Range Organics	<49.8		49.8	mg/Kg		03/29/22 08:56	03/29/22 18:30	
GRO)-C6-C10 Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		03/29/22 08:56	03/29/22 18:30	
C10-C28) Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/29/22 08:56	03/29/22 18:30	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
I-Chlorooctane	107		70 - 130			03/29/22 08:56	03/29/22 18:30	
p-Terphenyl	120		70 - 130			03/29/22 08:56	03/29/22 18:30	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	94.5		4.97	mg/Kg			04/08/22 06:02	
lient Sample ID: SW06						Lab Sam	ple ID: 890-2	142-22
ate Collected: 03/23/22 12:20							Matri	x: Soli
ate Received: 03/28/22 14:48								
ample Depth: 0 - 5								
Method: 8021B - Volatile Organic	Compounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U *+	0.00202	mg/Kg		03/30/22 07:30	03/30/22 19:25	
Toluene	<0.00202	U	0.00202	mg/Kg		03/30/22 07:30	03/30/22 19:25	
Ethylbenzene	<0.00202		0.00202	mg/Kg		03/30/22 07:30	03/30/22 19:25	
n-Xylene & p-Xylene	< 0.00403		0.00403	mg/Kg		03/30/22 07:30	03/30/22 19:25	

0.00202

0.00403

Limits

70 - 130

mg/Kg

mg/Kg

Page 21 of 53

<0.00202 U

<0.00403 U

%Recovery Qualifier

75

Eurofins Carlsbad

1

1

1

Dil Fac

03/30/22 07:30

03/30/22 07:30

Prepared

03/30/22 07:30

03/30/22 19:25

03/30/22 19:25

Analyzed

03/30/22 19:25

Released to Imaging: 8/23/2022 3:34:00 PM

o-Xylene

Surrogate

Xylenes, Total

4-Bromofluorobenzene (Surr)

Job ID: 890-2142-1

Matrix: Solid

5

SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-22

Client Sample Results

Client: WSP	USA Inc.
Project/Site:	BEU DI 30

Client Sample ID: SW06

Date Collected: 03/23/22 12:20

Date Received: 03/28/22 14:48

Sample Depth: 0 - 5

epth: 0 - 5

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	100		70 - 130			03/30/22 07:30	03/30/22 19:25	1
- Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			03/31/22 10:09	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	72.0		49.9	mg/Kg			03/30/22 10:27	1
Method: 8015B NM - Diesel Rang	je Organics (DI	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		03/29/22 08:56	03/29/22 18:50	1
(GRO)-C6-C10								
Diesel Range Organics (Over	72.0		49.9	mg/Kg		03/29/22 08:56	03/29/22 18:50	1
C10-C28)						00/00/00		
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/29/22 08:56	03/29/22 18:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130			03/29/22 08:56	03/29/22 18:50	1
p-Terphenyl	121		70 - 130			03/29/22 08:56	03/29/22 18:50	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
		Qualifier	RL	Unit	D	Prepared	Analyzed	
Analyte	Result	Quaimer	RL	Unit	U	Frepared	Analyzed	Dil Fac

Released to Imaging: 8/23/2022 3:34:00 PM

Surrogate Summary

DFBZ1

(70-130)

97

104

102

111

105

105

90

100

100

101

106

103

105

105

90

97

100

Client: WSP USA Inc. Project/Site: BEU DI 30

Lab Sample ID

890-2142-1

890-2142-16

890-2142-17

890-2142-18

890-2142-19

890-2142-20

890-2142-21

890-2142-22

890-2143-A-21-E MS

890-2143-A-21-F MSD

LCS 880-22509/1-A

LCS 880-22563/1-A

LCSD 880-22509/2-A

LCSD 880-22563/2-A

MB 880-22509/5-A

MB 880-22563/5-A

MB 880-22658/5-A

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

FS01

FS16

SW01

SW02

SW03

SW04

SW05

SW06

Matrix Spike

Method Blank

Method Blank

Method Blank

Matrix Spike Duplicate

Lab Control Sample

Lab Control Sample

Lab Control Sample Dup

Lab Control Sample Dup

Client Sample ID

890-2142-1 MS FS01 117 98 890-2142-1 MSD FS01 116 99 890-2142-2 FS02 82 113 890-2142-3 FS03 119 85 890-2142-4 FS04 116 100 890-2142-5 FS05 140 S1+ 91 FS06 102 890-2142-6 108 890-2142-7 FS07 114 102 890-2142-8 FS08 112 104 890-2142-9 FS09 117 103 890-2142-10 FS10 102 111 890-2142-11 FS11 112 102 890-2142-12 FS12 118 94 890-2142-13 100 FS13 118 890-2142-14 FS14 106 102 890-2142-15 FS15 114 107

113

104

127

112

115

110

75

108

107

104

102

110

104

69 S1-

123

118

BFB1

(70-130)

107

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acc	eptance
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-12957-A-1-E MS	Matrix Spike	113	117		
880-12957-A-1-F MSD	Matrix Spike Duplicate	111	116		
890-2142-1	FS01	113	115		
890-2142-1 MS	FS01	121	123		
890-2142-1 MSD	FS01	121	125		
890-2142-2	FS02	111	115		

Percent Surrogate Recovery (Acceptance Limits)

6

Page 127 of 160

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Prep Type: Total/NA

Project/Site: BEU DI 30 Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

Client: WSP USA Inc.

		1CO1	OTPH1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		- 5
890-2142-3	FS03	110	124		- 0
890-2142-4	FS04	112	128		C
890-2142-5	FS05	109	119		6
890-2142-6	FS06	109	121		
890-2142-7	FS07	106	121		
890-2142-8	FS08	107	122		
890-2142-9	FS09	105	114		8
890-2142-10	FS10	106	119		
890-2142-11	FS11	108	123		9
890-2142-12	FS12	106	114		
890-2142-13	FS13	108	119		
890-2142-14	FS14	108	120		
890-2142-15	FS15	105	121		
890-2142-16	FS16	110	125		
890-2142-17	SW01	110	122		
890-2142-18	SW02	102	113		
890-2142-19	SW03	107	120		13
890-2142-20	SW04	104	114		
890-2142-21	SW05	107	120		
890-2142-22	SW06	106	121		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO2	OTPH2	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCS 880-22521/2-A	Lab Control Sample	111	125	
LCS 880-22591/2-A	Lab Control Sample	106	119	
LCSD 880-22521/3-A	Lab Control Sample Dup	115	127	
LCSD 880-22591/3-A	Lab Control Sample Dup	104	119	
MB 880-22521/1-A	Method Blank	123	141 S1+	
MB 880-22591/1-A	Method Blank	119	135 S1+	
Surrogate Legend				

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Client: WSP USA Inc. Project/Site: BEU DI 30

0004 P Volatilo O ~ -----.

Lab Sample ID: MB 880-22509/5-A									Client Sa	ample ID: Met	hod	Blank
Matrix: Solid										Prep Typ		
Analysis Batch: 22605										Prep Ba		
	ME	мв										
Analyte	Resul	d Qualifier	RL		Unit		D	Pr	epared	Analyzed		Dil Fa
Benzene	<0.00200	U	0.00200		mg/K	g		03/30	0/22 07:30	03/30/22 16:1	8	
Toluene	<0.00200	U	0.00200		mg/K	g		03/30	0/22 07:30	03/30/22 16:1	8	
Ethylbenzene	<0.00200	U	0.00200		mg/K	g		03/30	0/22 07:30	03/30/22 16:1	8	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/K	g		03/30	0/22 07:30	03/30/22 16:1	8	
o-Xylene	<0.00200	U	0.00200		mg/K	g		03/30	0/22 07:30	03/30/22 16:1	8	
Xylenes, Total	<0.00400	U	0.00400		mg/K	g		03/30)/22 07:30	03/30/22 16:1	8	
	МЕ	MB										
Surrogate	%Recovery	Qualifier	Limits					Pr	repared	Analyzed		Dil Fa
4-Bromofluorobenzene (Surr)	69	9 S1-	70 - 130					03/30	0/22 07:30	03/30/22 16:1	8	
1,4-Difluorobenzene (Surr)	90)	70 - 130					03/30	0/22 07:30	03/30/22 16:1	8	
										Prep Type Prep Ba		
Matrix: Solid Analysis Batch: 22605 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene			Spike Added 0.100 0.100 0.100 0.200 0.100		LCS Qualifier	Unit mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u> .	%Rec 127 114 103 105 106			
Analysis Batch: 22605 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene			Added 0.100 0.100 0.100 0.200	Result 0.1274 0.1136 0.1029 0.2096		mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u> .	127 114 103 105	Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130		
Analysis Batch: 22605 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	LCS LC Recovery Qu	S alifier	Added 0.100 0.100 0.100 0.200	Result 0.1274 0.1136 0.1029 0.2096		mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u> .	127 114 103 105	Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130		
Analysis Batch: 22605 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene			Added 0.100 0.100 0.100 0.200 0.100	Result 0.1274 0.1136 0.1029 0.2096		mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u> .	127 114 103 105	Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130		
Analysis Batch: 22605 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate %F	Recovery Qu		Added 0.100 0.100 0.100 0.200 0.100 Limits	Result 0.1274 0.1136 0.1029 0.2096		mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u> .	127 114 103 105	Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130		
Analysis Batch: 22605 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate %R 4-Bromofluorobenzene (Surr)	Recovery Qu 104 106		Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100	Result 0.1274 0.1136 0.1029 0.2096 0.1059		mg/Kg mg/Kg mg/Kg mg/Kg	ient		127 114 103 105 106	Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ample ample: Tot	e Duj
Analysis Batch: 22605 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate %F 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-22509/2-/ Matrix: Solid Analysis Batch: 22605	Recovery Qu 104 106		Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100	Result 0.1274 0.1136 0.1029 0.2096 0.1059	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	ient		127 114 103 105 106	Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 Prep Type Prep Ba %Rec	ample ample: Tot	e Du tal/N/ 2250
Analysis Batch: 22605 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate %F 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-22509/2-7 Matrix: Solid Analysis Batch: 22605 Analyte	Recovery Qu 104 106		Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 Description Jointe Jointe Jointe Spike	Result 0.1274 0.1136 0.1029 0.2096 0.1059	Qualifier LCSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg CI	ient	Sam	127 114 103 105 106	Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 Prep Type Prep Ba %Rec	ampl ampl a: Tot tch: :	e Du tal/N/ 2250 RP
Analysis Batch: 22605 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate %F 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-22509/2-7 Matrix: Solid	Recovery Qu 104 106		Added 0.100 0.100 0.200 0.100 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 0.1274 0.1136 0.1029 0.2096 0.1059	Qualifier LCSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ient	Sam	127 114 103 105 106 ple ID: L	Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Water of the state of t	ample ample a: Tot tch: :	e Du tal/N 2250 RP Lim

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: 890-2143-A-21-E MS

Matrix: Solid alvaia Bataby 22605

m-Xylene & p-Xylene

o-Xylene

Analysis Batch: 22605									Prep	Batch: 22509
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U *+	0.100	0.1253		mg/Kg		125	70 - 130	
Toluene	<0.00200	U	0.100	0.1113		mg/Kg		111	70 - 130	

0.200

0.100

0.2287

0.1174

mg/Kg

mg/Kg

114

117

70 - 130

70 - 130

Client Sample ID: Matrix Spike

Eurofins Carlsbad

Prep Type: Total/NA

35

35

9

Client: WSP USA Inc.

Project/Site: BEU DI 30

QC Sample Results

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2143-A-	21-E MS									Client	Sample ID		
Matrix: Solid												Гуре: То	
Analysis Batch: 22605		-	_									Batch:	2250
	Sample			Spike		MS			_	~	%Rec		
Analyte	Result		fier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
Ethylbenzene	<0.00200			0.100	0.1011		mg/Kg			101	70 _ 130		
n-Xylene & p-Xylene	<0.00401			0.201	0.2034		mg/Kg			101	70 - 130		
o-Xylene	<0.00200	U		0.100	0.1022		mg/Kg			102	70 - 130		
	MS	мs											
Surrogate	%Recovery	Quali	fier	Limits									
4-Bromofluorobenzene (Surr)	108			70 - 130									
1,4-Difluorobenzene (Surr)	100			70 - 130									
Lab Sample ID: 890-2143-A-	21-F MSD							Client	t Sa	mple ID:	: Matrix S	pike Duj	plicat
Matrix: Solid										-		Гуре: То	
Analysis Batch: 22605												Batch:	
	Sample	Samp	ole	Spike	MSD	MSD					%Rec		RP
Analyte	Result			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim
Benzene	<0.00200			0.0998	0.1078		mg/Kg		_	108	70 - 130	15	3
Toluene	<0.00200	U		0.0998	0.1014		mg/Kg			102	70 - 130	9	3
Ethylbenzene	<0.00200			0.0998	0.09084		mg/Kg			91	70 - 130	11	3
n-Xylene & p-Xylene	<0.00401			0.200	0.1846		mg/Kg			93	70 - 130	10	3
·····				0.0998	0.09307		mg/Kg			93	70 - 130	9	3
-Xvlene	<0.00200						mgring					•	
o-Xylene	<0.00200												
o-Xylene	MSD	MSD	fior										
Surrogate	MSD %Recovery		fier	Limits									
Surrogate 1-Bromofluorobenzene (Surr)	MSD %Recovery 107	MSD	fier	Limits 70 - 130									
Surrogate 4-Bromofluorobenzene (Surr)	MSD %Recovery	MSD	fier	Limits									
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	MSD 	MSD	fier	Limits 70 - 130						Client Sa	ample ID:	Method	Blan
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250	MSD 	MSD	fier	Limits 70 - 130						Client Sa	ample ID: Prep 1		
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid	MSD 	MSD	fier	Limits 70 - 130						Client Sa	Prep 1	Type: To	otal/N
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid	MSD 	MSD Quali	fier	Limits 70 - 130						Client Sa	Prep 1		otal/N
Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719	MSD <u>%Recovery</u> 107 101 63/5-A	MSD Quali		Limits 70 - 130 70 - 130	RL	Unit		D			Prep T Prep	Type: To Batch:	otal/N 2256
Surrogate I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte	MSD %Recovery 107 101 63/5-A	MSD Quali MB esult	MB	Limits 70 - 130 70 - 130			9		Pr	Client Sa repared 2/22 12:01	Prep 1	Type: To Batch: zed	otal/N 2256
Surrogate I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene	MSD %Recovery 107 101 63/5-A Re <0.00	MSD Quali MB esult	MB Qualifier U	Limits 70 - 130 70 - 130	200	mg/K	-	(Pr 03/29	repared	Prep Prep Analyz 04/01/22	Type: To Batch: Zed 02:38	otal/N 2256
Surrogate 4-Bromofluorobenzene (Surr) 4,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Foluene	MSD <u>%Recovery</u> 107 101 63/5-A <u>Ra</u> <0.00 <0.00	MSD Quali MB esult 0200 0200	MB Qualifier U U	Limits 70 - 130 70 - 130 0.002 0.002	200	mg/K mg/K	g	(Pr 03/29	repared 9/22 12:01 9/22 12:01	Prep 7 Prep Analyz 04/01/22 04/01/22	Type: To Batch: zed 02:38	otal/N 2256
Surrogate 4-Bromofluorobenzene (Surr) 4,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Foluene Ethylbenzene	MSD <u>%Recovery</u> 107 101 63/5-A <u>R</u> <0.00 <0.00 <0.00 <0.00	MSD Quali MB esult 0200 0200	MB Qualifier U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.002	200 200 200	mg/K mg/K mg/K	g g	— ((Pr 03/29 03/29	repared 9/22 12:01 9/22 12:01 9/22 12:01	Prep Prep 04/01/22 04/01/22 04/01/22	Type: To D Batch: 02:38 - 02:38 - 02:38 -	otal/N 2256
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene	MSD %Recovery 107 101 63/5-A	MSD Quali MB esult 0200 0200 0200 0200	MB Qualifier U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.002 0.004	200 200 200 200	mg/K mg/K mg/K mg/K	a a	(((Pr 03/29 03/29 03/29 03/29	Tepared 0/22 12:01 0/22 12:01 0/22 12:01 0/22 12:01	Prep Prep Analyz 04/01/22 04/01/22 04/01/22	Type: To Batch: 2ed 02:38 02:38 02:38 02:38 02:38	otal/N 2256
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	MSD %Recovery 107 101 63/5-A	MSD Quali MB esult 0200 0200 0400 0200	MB Qualifier U U U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.002 0.004 0.002	200 200 200 200 200	mg/K mg/K mg/K mg/K	g g	() () () () ()	Pr 03/29 03/29 03/29 03/29 03/29	Pepared 0/22 12:01 0/22 12:01 0/22 12:01 0/22 12:01 0/22 12:01	Prep Prep Analyz 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22	Type: To D Batch: 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 -	otal/N 2256
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene p-Xylene	MSD %Recovery 107 101 63/5-A	MSD Quali MB esult 0200 0200 0200 0200	MB Qualifier U U U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.002 0.004	200 200 200 200 200	mg/K mg/K mg/K mg/K	g g	() () () () ()	Pr 03/29 03/29 03/29 03/29 03/29	Tepared 0/22 12:01 0/22 12:01 0/22 12:01 0/22 12:01	Prep Prep Analyz 04/01/22 04/01/22 04/01/22	Type: To D Batch: 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 -	otal/N 2256
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	MSD %Recovery 107 101 63/5-A	MSD Qualit MB esult 0200 0200 0400 0200 0400	MB Qualifier U U U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.002 0.004 0.002	200 200 200 200 200	mg/K mg/K mg/K mg/K	g g	() () () () ()	Pr 03/29 03/29 03/29 03/29 03/29	Pepared 0/22 12:01 0/22 12:01 0/22 12:01 0/22 12:01 0/22 12:01	Prep Prep Analyz 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22	Type: To D Batch: 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 -	otal/N
Surrogate I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene Sylenes, Total Surrogate	MSD %Recovery 107 101 63/5-A	MSD Quali MB esuit 0200 0200 0200 0200 0200 0200 0200 02	MB Qualifier U U U U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.004 0.004 0.004 0.004	200 200 200 200 200 200 200 200	mg/K mg/K mg/K mg/K	g g	((((((Pr 03/29 03/29 03/29 03/29 03/29 03/29 03/29 03/29	repared 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01	Prep 7 Prep 7 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22	Type: To Datch: 2000 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38	Dil Fa
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene n-Xylene & p-Xylene Cylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	MSD %Recovery 107 101 63/5-A	MSD Quali MB esult 0200 0200 0200 0200 0200 0200 0200 02	MB Qualifier U U U U U U U U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004	000 000 000 000 000 000 000	mg/K mg/K mg/K mg/K	g g	((((((Pr 03/29 03/29 03/29 03/29 03/29 03/29 03/29 03/29	epared 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01	Prep Prep Analyz 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22	Type: To Datch: 2000 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38	otal/N 2256
Surrogate 4-Bromofiluorobenzene (Surr) 4,4-Difluorobenzene (Surr) 4,4-Difluorobenzene (Surr) 4,4-Difluorobenzene (Surr) 4 analysis Batch: 22719 4 analyte 8 analyte 8 analyte 8 analyte 9 - Xylene 4 ylenes, Total 8 arrogate 8 - Bromofiluorobenzene (Surr)	MSD %Recovery 107 101 63/5-A	MSD Quali MB esuit 0200 0200 0200 0200 0200 0200 0200 02	MB Qualifier U U U U U U U U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.004 0.004 0.004 0.004	000 000 000 000 000 000 000	mg/K mg/K mg/K mg/K	g g		Pr 03/29 03/29 03/29 03/29 03/29 03/29 03/29	repared 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01	Prep 7 Prep 7 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22	Type: To D Batch: 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38	Dil Fa
Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene n-Xylene & p-Xylene Cylenes, Total Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	MSD %Recovery 107 101 63/5-A (0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.000 <0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 <0.00 0 0 0	MSD Quali MB esult 0200 0200 0200 0200 0200 0200 0200 02	MB Qualifier U U U U U U U U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004	000 000 000 000 000 000 000	mg/K mg/K mg/K mg/K	g g		Pr 03/29 03/29 03/29 03/29 03/29 03/29 03/29	repared 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01	Prep 7 Prep 7 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22	Type: To D Batch: 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38 02:38	Dil Fa
Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene n-Xylene & p-Xylene O-Xylene Kylenes, Total Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-225	MSD %Recovery 107 101 63/5-A (0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.000 <0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 <0.00 0 0 0	MSD Quali MB esult 0200 0200 0200 0200 0200 0200 0200 02	MB Qualifier U U U U U U U U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004	000 000 000 000 000 000 000	mg/K mg/K mg/K mg/K	g g		Pr 03/29 03/29 03/29 03/29 03/29 03/29 03/29	repared 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01	Prep 7 Prep 7 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22	Type: To D Batch: 22238 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 -	Dil Fa
Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene -Xylene & y-Xylene Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-225 Matrix: Solid	MSD %Recovery 107 101 63/5-A (0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.000 <0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 <0.00 0 0 0	MSD Quali MB esult 0200 0200 0200 0200 0200 0200 0200 02	MB Qualifier U U U U U U U U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004	000 000 000 000 000 000 000	mg/K mg/K mg/K mg/K	g g		Pr 03/29 03/29 03/29 03/29 03/29 03/29 03/29	repared 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01	Prep Prep Analyz 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 1D: Lab C Prep	Type: To D Batch: 2220 - 02:38 -	Dil Fa
Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-2250 Matrix: Solid Analysis Batch: 22719 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene O-Xylene Kylenes, Total Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-225	MSD %Recovery 107 101 63/5-A (0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.000 <0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 <0.00 0 0 0	MSD Quali MB esult 0200 0200 0200 0200 0200 0200 0200 02	MB Qualifier U U U U U U U U U U	Limits 70 - 130 70 - 130 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	2000 2000 2000 2000 2000 2000 2000 200	mg/K mg/K mg/K mg/K	g g		Pr 03/29 03/29 03/29 03/29 03/29 03/29 03/29	repared 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01 9/22 12:01	Prep Prep Analyz 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 04/01/22 1D: Lab C Prep	Type: To D Batch: 22238 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 - 02:38 -	Dil Fa

Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Benzene	0.100	0.09544	mg/Kg		95	70 - 130	
Toluene	0.100	0.08131	mg/Kg		81	70 - 130	
Ethylbenzene	0.100	0.08626	mg/Kg		86	70 - 130	
m-Xylene & p-Xylene	0.200	0.1827	mg/Kg		91	70 - 130	

Lab Sample ID: LCS 880-22563/1-A

QC Sample Results

Page 131 of 160

Job ID: 890-2142-1

Client: WSP USA Inc. Project/Site: BEU DI 30

SDG: 31403236.022.0129 TASK16.02

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-22563											
Matrix: Solid									Prep 1	Type: Tot	al/NA
Analysis Batch: 22719									Prep	Batch: 2	22563
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.09205		mg/Kg		92	70 - 130		
	LCS	105									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)	102		70 - 130								
1,4-Difluorobenzene (Surr)	103		70 - 130								
-											
Lab Sample ID: LCSD 880-2256	53/2-A					Clier	nt Sam	ple ID:	Lab Contro		
Matrix: Solid										Type: Tot	
Analysis Batch: 22719										Batch: 2	
			Spike		LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.1028		mg/Kg		103	70 - 130	7	35
Toluene			0.100	0.08528		mg/Kg		85	70 - 130	5	35
Ethylbenzene			0.100	0.09027		mg/Kg		90	70 - 130	5	35
m-Xylene & p-Xylene			0.200	0.1903		mg/Kg		95	70 - 130	4	35
o-Xylene			0.100	0.09677		mg/Kg		97	70 - 130	5	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
	<u> </u>										
4-Bromofluorobenzene (Surr)	104		70 - 130								
	105		70 - 130 70 - 130						Client Sa Prep 1	mple ID: īype: Tot	
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS	105	Sample		MS	MS				Prep 1		al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid	105 Sample	Sample Qualifier	70 - 130		MS Qualifier	Unit	D	%Rec	Prep 1 Prep	Type: Tot	al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719	105 Sample	Qualifier	70 ₋ 130 Spike		Qualifier	- <mark>Unit</mark> mg/Kg	<u>D</u>	<u>%Rec</u> 49	Prep 1 Prep %Rec	Type: Tot	al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte	105 Sample Result	Qualifier U F1	70 - 130 Spike Added	Result	Qualifier F1		D		Prep 1 Prep %Rec Limits	Type: Tot	al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene	105 Sample Result <0.00201	Qualifier U F1 U F1	70 - 130 Spike Added 0.0990	Result 0.04900	Qualifier F1 F1	mg/Kg	<u>D</u>	49	Prep 7 Prep %Rec Limits 70 - 130	Type: Tot	al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene	105 Sample Result <0.00201 <0.00201	Qualifier U F1 U F1 U F1 U F1	70 - 130 Spike Added 0.0990 0.0990	Result 0.04900 0.03062	Qualifier F1 F1 F1	mg/Kg mg/Kg	<u> </u>	49 30	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene	105 Sample Result <0.00201 <0.00201 <0.00201	Qualifier U F1 U F1 U F1 U F1 F1	Spike Added 0.0990 0.0990 0.0990	Result 0.04900 0.03062 0.03386	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg	<u>D</u>	49 30 34	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	105 Sample Result <0.00201 <0.00201 0.00649 0.0145	Qualifier U F1 U F1 U F1 F1 F1 F1	Spike Added 0.0990 0.0990 0.0990 0.198	Result 0.04900 0.03062 0.03386 0.03570	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	D	49 30 34 15	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	105 Sample Result <0.00201 <0.00201 0.00649 0.0145 MS	Qualifier U F1 U F1 U F1 F1 F1 F1	Spike Added 0.0990 0.0990 0.0990 0.198	Result 0.04900 0.03062 0.03386 0.03570	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	D	49 30 34 15	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	105 Sample Result <0.00201 <0.00201 0.00649 0.0145	Qualifier U F1 U F1 U F1 F1 F1 F1	Spike Added 0.0990 0.0990 0.198 0.0990	Result 0.04900 0.03062 0.03386 0.03570	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	49 30 34 15	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	Sample Result <0.00201	Qualifier U F1 U F1 U F1 F1 F1 F1	70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 Limits	Result 0.04900 0.03062 0.03386 0.03570	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	49 30 34 15	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	105 Sample Result <0.00201 <0.00201 <0.00201 0.00649 0.0145 MS %Recovery 117 98	Qualifier U F1 U F1 U F1 F1 F1 F1	70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 70 - 130	Result 0.04900 0.03062 0.03386 0.03570	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	49 30 34 15	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: 2	al/NA 22563
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MSI	105 Sample Result <0.00201 <0.00201 <0.00201 0.00649 0.0145 MS %Recovery 117 98	Qualifier U F1 U F1 U F1 F1 F1 F1	70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 70 - 130	Result 0.04900 0.03062 0.03386 0.03570	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	49 30 34 15	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: 2	al/NA 22563 FS01
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MSI Matrix: Solid	105 Sample Result <0.00201 <0.00201 <0.00201 0.00649 0.0145 MS %Recovery 117 98	Qualifier U F1 U F1 U F1 F1 F1 F1	70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 70 - 130	Result 0.04900 0.03062 0.03386 0.03570	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	49 30 34 15	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 170 70 - 70 - 70 70 - 70 - 70 70 - 70 <tr< td=""><td>Type: Tot Batch: 2</td><td>al/NA 22563 FS01 al/NA</td></tr<>	Type: Tot Batch: 2	al/NA 22563 FS01 al/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MSI	105 Sample Result <0.00201 <0.00201 0.00649 0.0145 MS %Recovery 117 98	Qualifier U F1 U F1 F1 F1 F1 MS Qualifier	70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990	Result 0.04900 0.03062 0.03386 0.03570 0.05066	Qualifier F1 F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	49 30 34 15	Prep 7 9%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep 7 Prep 7	Type: Tot Batch: 2	al/NA 22563 FS01 al/NA 22563
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MSI Matrix: Solid Analysis Batch: 22719	105 Sample Result 0.00201 0.00201 0.00649 0.0145 MS %Recovery 117 98 D	Qualifier U F1 U F1 F1 F1 F1 MS Qualifier	70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 Spike	Result 0.04900 0.03062 0.03386 0.03570 0.05066 MSD	Qualifier F1 F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg		49 30 34 15 37	Prep 7 %Rec Limits 70 - 130 70 - 190 %Rec	mple ID: Fype: Tot Batch: 2	al/NA 22563 FS01 al/NA 22563 RPD
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MSI Matrix: Solid Analysis Batch: 22719 Analyte	105 Sample Result 0.00201 0.00201 0.00649 0.0145 MS %Recovery 117 98 D	Qualifier U F1 U F1 F1 F1 MS Qualifier Sample Qualifier	70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 Spike Added	Result 0.04900 0.03062 0.03386 0.03570 0.05066	Qualifier F1 F1 F1 F1 F1 MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	D	49 30 34 15	Prep 7 %Rec Limits 70 - 130 70 - 190 %Rec Limits	Type: Tot Batch: 2	FS01 al/NA 22563 RPD Limit
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MSI Matrix: Solid Analysis Batch: 22719	105 Sample Result <0.00201 <0.00201 0.00649 0.0145 MS %Recovery 117 98 D Sample Result <0.00201	Qualifier U F1 U F1 F1 F1 MS Qualifier U F1	70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 Spike Added 0.0996	Result 0.04900 0.03062 0.03386 0.03570 0.05066	Qualifier F1 F1 F1 F1 F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		49 30 34 15 37 %Rec 51	Prep 7 %Rec Limits 70 - 130 70 - 130 Client Sat Prep 7 %Rec Limits 70 - 130	mple ID: Fype: Tot Batch: 2 Patch: 2 RPD	FS01 al/NA 22563 FS01 al/NA 22563 RPD Limit 35
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MSI Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene	105 Sample Result 0.00201 0.00201 0.00649 0.0145 MS %Recovery 117 98 D Sample Result 0.00201 0.00201 0.00201 0.00201 	Qualifier U F1 U F1 F1 F1 MS Qualifier U F1 U F1 U F1	70 - 130 Spike Added 0.0990 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 Spike Added 0.0996 0.0996	Result 0.04900 0.03062 0.03386 0.03570 0.05066 MSD Result 0.05088 0.03088	Qualifier F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		49 30 34 15 37 37 %Rec 51 30	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	mple ID: Type: Tot Batch: 2 Type: Tot Batch: 2 RPD 4 0	al/NA 22563 FS01 al/NA 22563 RPD Limit 35 35
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22719 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-2142-1 MSI Matrix: Solid Analysis Batch: 22719 Analyte Benzene	105 Sample Result <0.00201 <0.00201 0.00649 0.0145 MS %Recovery 117 98 D Sample Result <0.00201	Qualifier U F1 U F1 F1 F1 F1 MS Qualifier U F1 U F1 U F1	70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 Spike Added 0.0996	Result 0.04900 0.03062 0.03386 0.03570 0.05066	Qualifier F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		49 30 34 15 37 %Rec 51	Prep 7 %Rec Limits 70 - 130 70 - 130 Client Sat Prep 7 %Rec Limits 70 - 130	mple ID: Fype: Tot Batch: 2 Market State Batch: 2 RPD 4	al/NA 22563 FS01 al/NA 22563 RPD Limit 35

QC Sample Results

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Client: WSP USA Inc. Project/Site: BEU DI 30

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2142-1 MSD	
Matrix: Solid	

Analysis Batch: 22719

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: MB 880-22658/5-A Matrix: Solid

Analysis Batch: 22719

	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/31/22 12:00	03/31/22 15:35	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/31/22 12:00	03/31/22 15:35	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/31/22 12:00	03/31/22 15:35	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		03/31/22 12:00	03/31/22 15:35	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/31/22 12:00	03/31/22 15:35	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		03/31/22 12:00	03/31/22 15:35	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130			03/31/22 12:00	03/31/22 15:35	1
1,4-Difluorobenzene (Surr)	100		70 - 130			03/31/22 12:00	03/31/22 15:35	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-22521/1-A									Client Sa	mple ID: Metho	d Blank
Matrix: Solid										Prep Type:	Total/NA
Analysis Batch: 22514										Prep Batcl	h: 22521
	MB	MB									
Analyte	Result	Qualifier	RL		Unit		D	P	repared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/K	g		03/2	9/22 08:56	03/29/22 11:53	1
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.0	U	50.0		mg/K	g		03/2	9/22 08:56	03/29/22 11:53	1
C10-C28)											
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/K	g		03/2	9/22 08:56	03/29/22 11:53	1
	MB	МВ									
Surrogate	%Recovery	Qualifier	Limits					P	repared	Analyzed	Dil Fac
1-Chlorooctane	123		70 _ 130				-	03/2	9/22 08:56	03/29/22 11:53	1
o-Terphenyl	141	S1+	70 - 130					03/2	9/22 08:56	03/29/22 11:53	1
Lab Sample ID: LCS 880-22521/2-A							CI	ient	Sample	ID: Lab Control	Sample
Matrix: Solid										Prep Type:	Total/NA
Analysis Batch: 22514										Prep Batc	h: 22521
-			Spike	LCS	LCS					%Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Gasoline Range Organics			1000	942.8		mg/Kg		_	94	70 - 130	
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	1012		mg/Kg			101	70 - 130	
C10-C28)											
	LCS LCS										

	LUS LUS	5
Surrogate	%Recovery Qu	alifier Limits
1-Chlorooctane	111	70 - 130
o-Terphenyl	125	70 - 130

Eurofins Carlsbad

 Client Sample ID: FS01 Prep Type: Total/NA Prep Batch: 22563
 4

 5
 5

 6
 7

 7
 6

 7
 7

 7
 7

 7
 7

 7
 7

 7
 7

 7
 7

 7
 7

 7
 7

 8
 7

 9
 7

 1/22 12:00
 03/31/22 15:35

 1/22 12:00
 03/31/22 15:35

 1/22 12:00
 03/31/22 15:35

 1/22 12:00
 03/31/22 15:35

 1/22 12:00
 03/31/22 15:35

 1/22 12:00
 03/31/22 15:35

 1/22 12:00
 03/31/22 15:35

 1/22 12:00
 03/31/22 15:35

 1/22 12:00
 03/31/22 15:35

 1/22 12:00
 03/31/22 15:35

 1/22 12:00
 11

 Lab Sample ID: LCSD 880-22521/3-A

Lab Sample ID: 880-12957-A-1-E MS

QC Sample Results

LCSD LCSD

916.3

1036

Result Qualifier

Unit

mg/Kg

mg/Kg

D

%Rec

92

104

Spike

Added

1000

1000

Limits

70 - 130

70 - 130

Analysis Batch: 22514

Gasoline Range Organics

Diesel Range Organics (Over

Matrix: Solid

(GRO)-C6-C10

Analyte

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

LCSD LCSD %Recovery Qualifier

115

127

Prep Type: Total/NA

Prep Batch: 22521

RPD

3

2

RPD

Limit

20

20

Client Sample ID: Lab Control Sample Dup

%Rec

Limits

70 - 130

70 - 130

5
7
8
9

	Client	Sample ID: Matrix Spike
		Prep Type: Total/NA
		Prep Batch: 22521
		%Rec
п	%Rec	l imits

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Dren Detak, 22524

Matrix: Solid Analysis Batch: 22514										pe: Total/l atch: 225
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	1259		mg/Kg		123	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.9	U	999	810.8		mg/Kg		79	70 - 130	
	MS	MS								

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	113	70 - 130
o-Terphenyl	117	70 - 130

Lab Sample ID: 880-12957-A-1-F MSD
Matrix: Solid
Analysis Ratch: 22514

Analysis Batch: 22514									Prep	Batch:	22521
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	1279		mg/Kg		125	70 - 130	2	20
Diesel Range Organics (Over C10-C28)	<49.9	U	999	807.0		mg/Kg		78	70 - 130	0	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	111		70 - 130
o-Terphenyl	116		70 - 130

Lab Sample ID: MB 880-22591/1-A
Matrix: Solid
Analysis Batch: 22514

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/29/22 19:32	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/29/22 19:32	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/29/22 17:09	03/29/22 19:32	1

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 22591

Dil Fac
1

QC Sample Results

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Client: WSP USA Inc. Project/Site: BEU DI 30

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	-A								Client S	ample ID:	Method	d Blank
Lab Sample ID: MB 880-22591/1 Matrix: Solid											Type: T	
Analysis Batch: 22514											Batch	
-												
		MB										
Surrogate	%Reco	-	Qualifier	Limits					Prepared	Analyz		Dil Fac
1-Chlorooctane		119		70 - 130					29/22 17:09			1
o-Terphenyl		135	S1+	70 - 130				03/2	29/22 17:09	0 03/29/22	19:32	1
Lab Sample ID: LCS 880-22591/	2-A							Client	t Sample	ID: Lab C	ontrol	Sample
Matrix: Solid										Prep ⁻	Type: To	otal/NA
Analysis Batch: 22514										Prep	Batch	: 2259
-				Spike	LCS	LCS				%Rec		
Analyte				Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics				1000	872.8		mg/Kg		87	70 - 130		
(GRO)-C6-C10												
Diesel Range Organics (Over				1000	972.0		mg/Kg		97	70 - 130		
C10-C28)												
	LCS	LCS										
Surrogate	%Recovery	Quali	fier	Limits								
1-Chlorooctane	106			70 - 130								
o-Terphenyl	119			70 - 130								
Analysis Batch: 22514										Prec	Batch	: 2259
Analysis Batch: 22514				Spike	LCSD	LCSD				-	Batch	
				Spike Added		LCSD Qualifier	Unit	D	%Rec	Prep %Rec Limits	Batch	RPI
Analyte				•			- Unit mg/Kg	<u>D</u>	%Rec	%Rec		RPI Lim
Analyte				Added	Result			<u>D</u>		%Rec Limits	RPD	RPI Limi
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over				Added	Result			<u>D</u>		%Rec Limits	RPD	RPI Limi 20
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over				Added	Result 832.0		mg/Kg	<u> </u>	83	%Rec Limits 70 - 130	RPD	RPI Limi 20
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCSD	LCSE		Added	Result 832.0		mg/Kg	<u>D</u>	83	%Rec Limits 70 - 130	RPD	RPI Limi 2
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCSD %Recovery			Added	Result 832.0		mg/Kg	<u>D</u>	83	%Rec Limits 70 - 130	RPD	RPI Limi 20
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate				Added	Result 832.0		mg/Kg	<u> </u>	83	%Rec Limits 70 - 130	RPD	RPI Limi 20
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	%Recovery			Added	Result 832.0		mg/Kg	<u>D</u>	83	%Rec Limits 70 - 130	RPD	RPI Limi 20
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 104			Added 1000 1000 Limits 70 - 130	Result 832.0		mg/Kg	<u> </u>	83	%Rec Limits 70 - 130 70 - 130	5 2	RPI
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-2142-1 MS	%Recovery 104			Added 1000 1000 Limits 70 - 130	Result 832.0		mg/Kg	<u> </u>	83	%Rec Limits 70 - 130 70 - 130 Client Sa	RPD 5 2 mple IE	RPI Limi 20 20 20 5: FS0'
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-2142-1 MS Matrix: Solid	%Recovery 104			Added 1000 1000 Limits 70 - 130	Result 832.0		mg/Kg	<u> </u>	83	%Rec Limits 70 - 130 70 - 130 Client Sa Prep	RPD 5 2 mple IC Type: To	RPI Limi 20 20 20 5: FS0 ⁴ 50tal/NA
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-2142-1 MS Matrix: Solid	%Recovery 104 119	Quali	fier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130	Result 832.0 954.9	Qualifier	mg/Kg	<u>D</u>	83	%Rec Limits 70 - 130 70 - 130 Client Sa Prep Prep	RPD 5 2 mple IE	RPI Limi 20 20 20 5: FS0 ⁴ 50tal/NA
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22514	%Recovery 104 119 Sample	<u>Quali</u> Samp	ifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 832.0 954.9 MS	Qualifier	mg/Kg mg/Kg	<u>D</u>	95	%Rec Limits 70 - 130 70 - 130 70 - 130 Client Sa Prep %Rec	RPD 5 2 mple IC Type: To	RPI
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22514 Analyte Gasoline Range Organics	%Recovery 104 119	<u>Quali</u> Samp Quali	ifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130	Result 832.0 954.9 MS	Qualifier	mg/Kg		83	%Rec Limits 70 - 130 70 - 130 Client Sa Prep Prep	RPD 5 2 mple IC Type: To	RPI
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22514 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 104 119 Sample Result	Quali Samp Quali F1	ifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 832.0 954.9 MS Result	Qualifier	mg/Kg mg/Kg Unit		83 95 %Rec	%Rec Limits 70 - 130 70 - 130	RPD 5 2 mple IC Type: To	RPI
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22514 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 104 119 Sample Result 104 2620	Quali Samp Quali F1 F1	ifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 998	Result 832.0 954.9 MS Result 1391	Qualifier	mg/Kg mg/Kg <u>Unit</u> mg/Kg		83 95 %Rec 129	%Rec Limits 70 - 130 70 - 130 70 - 130 Prep %Rec Limits 70 - 130	RPD 5 2 mple IC Type: To	RPE Limi 20 20 0: FS01 otal/NA
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-2142-1 MS Matrix: Solid Analysis Batch: 22514 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 104 119 Sample Result 104 2620 MS	Quali Samp Quali F1 F1 MS	fier	Added 1000	Result 832.0 954.9 MS Result 1391	Qualifier	mg/Kg mg/Kg <u>Unit</u> mg/Kg		83 95 %Rec 129	%Rec Limits 70 - 130 70 - 130 70 - 130 Prep %Rec Limits 70 - 130	RPD 5 2 mple IC Type: To	RPE
1-Chlorooctane	%Recovery 104 119 Sample Result 104 2620	Quali Samp Quali F1 F1 MS	fier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 998	Result 832.0 954.9 MS Result 1391	Qualifier	mg/Kg mg/Kg <u>Unit</u> mg/Kg		83 95 %Rec 129	%Rec Limits 70 - 130 70 - 130 70 - 130 Prep %Rec Limits 70 - 130	RPD 5 2 mple IC Type: To	RPD Limit 20 20 20 0: FS01

Released to Imaging: 8/23/2022 3:34:00 PM

Client: WSP USA Inc.

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Project/Site: BEU DI 30 Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-2142-1 MS	SD									Client Sa	mple ID:	FS0
Matrix: Solid										Prep 1	Type: To	tal/N/
Analysis Batch: 22514										Prep	Batch:	2259
	Sample	Sample	Spike	MSD	MSD					%Rec		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	I	D 9	%Rec	Limits	RPD	Lim
Gasoline Range Organics (GRO)-C6-C10	104	F1	998	1408	F1	mg/Kg			131	70 - 130	1	2
Diesel Range Organics (Over C10-C28)	2620	F1	998	3261	F1	mg/Kg			64	70 - 130	2	2
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	121		70 - 130									
o-Terphenyl	125		70 - 130									
lethod: 300.0 - Anions, Io	on Chromat	ography										
Lab Sample ID: MB 880-22795	5/1-A							С	lient S	ample ID:	Method	Blar
Matrix: Solid										Prep	Type: So	olub
Analysis Batch: 22867												
		MB MB										
Analyte	R	esult Qualifier		RL	Unit		D	Prep	pared	Analyz	ed	Dil F
Chloride	<	5.00 U		5.00	mg/K	9				04/02/22	19:50	
Matrix: Solid	5/2-A						Clie	nt S	ample	ID: Lab Co Prep	ontrol Sa Type: So	
Matrix: Solid Analysis Batch: 22867	5/2-A		Spike		LCS				-	Prep %Rec		
Matrix: Solid Analysis Batch: 22867 ^{Analyte}	5/2-A		Added	Result	LCS Qualifier	Unit			%Rec	Prep %Rec Limits		
Matrix: Solid Analysis Batch: 22867 ^{Analyte}	5/2-A 					Unit mg/Kg			-	Prep %Rec		
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227			Added	Result		mg/Kg	<u>!</u>	<u> </u>	% Rec 103	Prep %Rec Limits 90 - 110	Type: So ol Sampl	olub e Dı
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid			Added	Result		mg/Kg	<u>!</u>	<u> </u>	% Rec 103	Prep %Rec Limits 90 - 110	Type: So	olub e Dı
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid			Added 250	Result 256.9	Qualifier	mg/Kg	<u>!</u>	<u> </u>	% Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: So ol Sampl	e Du olub
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867			Added 250 Spike	Result 256.9 LCSD	Qualifier	mg/Kg Cli	ent Sa	o <u>s</u>	%Rec 103 le ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: So ol Sampl Type: So	e Du olub RF
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte			Added 250 Spike Added	Result 256.9 LCSD Result	Qualifier	mg/Kg Cli	ent Sa	o <u>s</u>	%Rec 103 le ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: So 	e Du olub olub RI Lin
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte			Added 250 Spike	Result 256.9 LCSD	Qualifier	mg/Kg Cli	ent Sa	o <u>s</u>	%Rec 103 le ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: So ol Sampl Type: So	e Du olub RI Lir
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte Chloride	795/3-A		Added 250 Spike Added	Result 256.9 LCSD Result	Qualifier	mg/Kg Cli	ent Sa	o <u>s</u>	%Rec 103 le ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: So ol Sampl Type: So <u>RPD</u> 0	e Du olub RI Lir
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: 890-2142-2 MS	795/3-A		Added 250 Spike Added	Result 256.9 LCSD Result	Qualifier	mg/Kg Cli	ent Sa	o <u>s</u>	%Rec 103 le ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sa	Type: So ol Sampl Type: So <u>RPD</u> 0	e Du olub RF Lin
Matrix: Solid Analysis Batch: 22867 Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: 890-2142-2 MS Matrix: Solid	795/3-A	·	Added 250 Spike Added	Result 256.9 LCSD Result	Qualifier	mg/Kg Cli	ent Sa	o <u>s</u>	%Rec 103 le ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sa	Type: So ol Sampl Type: So <u></u>	e Du olub RF Lin
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: 890-2142-2 MS Matrix: Solid	 795/3-A 		Added 250 Spike Added	Result 256.9 LCSD Result 257.5	Qualifier	mg/Kg Cli	ent Sa	o <u>s</u>	%Rec 103 le ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sa	Type: So ol Sampl Type: So <u></u>	e Du olub RP Lin
Matrix: Solid Analysis Batch: 22867 Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Chloride Lab Sample ID: 890-2142-2 MS Matrix: Solid Analysis Batch: 22867	295/3-A S Sample	Sample Qualifier	Added 250 Spike Added 250	Result 256.9 LCSD Result 257.5	Qualifier LCSD Qualifier	mg/Kg Cli	ent Sa	2 <u>*</u> amp	%Rec 103 le ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sa Prep	Type: So ol Sampl Type: So <u></u>	e Du olub RF Lin
Matrix: Solid Analysis Batch: 22867 Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: 890-2142-2 MS Matrix: Solid Analysis Batch: 22867 Analyte	295/3-A S Sample	-	Added 250 Spike Added 250 Spike	Result 256.9 LCSD Result 257.5	Qualifier LCSD Qualifier MS	mg/Kg Cli Unit mg/Kg	ent Sa	2 <u>*</u> amp	%Rec 103 le ID: I %Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sa Prep %Rec	Type: So ol Sampl Type: So <u></u>	e Du olub RP Lin
Lab Sample ID: LCS 880-2279 Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: 890-2142-2 MS Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: 890-2142-2 MS	295/3-A S S S S S S S S S S	-	Added 250 Spike Added 250 Spike Added	Result 256.9 LCSD Result 257.5 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Cli Unit mg/Kg Unit	ent Sa	2 <u>*</u> amp	%Rec 103 le ID: I %Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sa Prep %Rec Limits	Type: So ol Sampl Type: So <u>RPD</u> 0 mple ID: Type: So	e Du olub RF Lin FSC olub
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: 890-2142-2 MS Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: 890-2142-2 MS Matrix: Solid	295/3-A S S S S S S S S S S	-	Added 250 Spike Added 250 Spike Added	Result 256.9 LCSD Result 257.5 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Cli Unit mg/Kg Unit	ent Sa	2 <u>*</u> amp	%Rec 103 le ID: I %Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sa Prep %Rec Limits 90 - 110	Type: So ol Sampl Type: So <u>RPD</u> 0 mple ID: Type: So	e Du olub RR Lin FS(olub
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: 890-2142-2 MS Matrix: Solid Analyte Chloride Lab Sample ID: 890-2142-2 MS	7 95/3-A S <u>Sample</u> <u>Result</u> 8730	Qualifier	Added 250 Spike Added 250 Spike Added 4980	Result 256.9 LCSD Result 257.5 MS Result 13710	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Cli Unit mg/Kg Unit	ent Sa	2 <u>*</u> amp	%Rec 103 le ID: I %Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sa Prep %Rec Limits 90 - 110 Client Sa Prep	Type: So ol Sampl Type: So <u>RPD</u> 0 mple ID: Type: So mple ID:	e Du olub RR Lin FSC olub
Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: LCSD 880-227 Matrix: Solid Analysis Batch: 22867 Analyte Chloride Lab Sample ID: 890-2142-2 MS Matrix: Solid Analysis Batch: 22867 Analyte Chloride	295/3-A S Sample <u>Result</u> 8730 SD Sample	-	Added 250 Spike Added 250 Spike Added	Result 256.9 LCSD Result 257.5 MS Result 13710	Qualifier LCSD Qualifier MS	mg/Kg Cli Unit mg/Kg Unit	 ent Sa 	2 <u>9</u> ampl	%Rec 103 le ID: I %Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sa Prep %Rec Limits 90 - 110	Type: So ol Sampl Type: So <u>RPD</u> 0 mple ID: Type: So mple ID:	e Du olub RP Lin FS0 olub

Released to Imaging: 8/23/2022 3:34:00 PM

Client: WSP USA Inc.

Project/Site: BEU DI 30

QC Sample Results

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Me	Method: 300.0 - Anions, Ion Chromatography (Continued)							
La	Lab Sample ID: MB 880-22997/1-A							
M	Matrix: Solid							
	Analysis Batch: 23131							

Analyzed Dil F 04/08/22 04:33 Dil F ole ID: Lab Control Samp Prep Type: Solut %Rec Limits 90 - 110 D: Lab Control Sample Do Prep Type: Solut
04/08/22 04:33 ple ID: Lab Control Samp Prep Type: Solut %Rec Limits 90 - 110 D: Lab Control Sample Di
04/08/22 04:33 ple ID: Lab Control Samp Prep Type: Solut %Rec Limits 90 - 110 D: Lab Control Sample Di
ple ID: Lab Control Samp Prep Type: Solut %Rec Limits 90 - 110 D: Lab Control Sample Di
Prep Type: Solut %Rec Limits 90 - 110 D: Lab Control Sample Di
%Rec <u>Limits</u> 90 - 110 D: Lab Control Sample Di
2 Limits 90 - 110 D: Lab Control Sample Di
2 Limits 90 - 110 D: Lab Control Sample Di
90 - 110 D: Lab Control Sample Di
D: Lab Control Sample D
%Rec R
c Limits RPD Lii
<u> </u>
Olivert Commission ID: EO
Client Sample ID: FS
Prep Type: Solut
~ D
%Rec
<u>Limits</u>
3 90 - 110
Client Sample ID: FS
Prep Type: Solut
%Rec R
c Limits RPD Li
7 90 - 110 1
Client Sample ID: SW
Prep Type: Solut
%Rec
c Limits
3 90 - 110
Client Sample ID: SW
Prep Type: Solut
%Rec R
c Limits RPD Li
$\frac{1}{4} - \frac{1}{90} - \frac{110}{110} - \frac{110}{10} - \frac{110}{10}$

QC Association Summary

Client: WSP USA Inc. Project/Site: BEU DI 30

Prep Batch: 22509 Lab Sample ID

GC VOA

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Page 137 of 160

5 6

	8
	9
	3

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2142-21	SW05	Total/NA	Solid	5035	
890-2142-22	SW06	Total/NA	Solid	5035	
MB 880-22509/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-22509/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-22509/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2143-A-21-E MS	Matrix Spike	Total/NA	Solid	5035	
890-2143-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
rep Batch: 22563					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
890-2142-1	FS01	Total/NA	Solid	5035	
890-2142-2	FS02	Total/NA	Solid	5035	
890-2142-3	FS03	Total/NA	Solid	5035	
890-2142-4	FS04	Total/NA	Solid	5035	
890-2142-5	FS05	Total/NA	Solid	5035	
890-2142-6	FS06	Total/NA	Solid	5035	
890-2142-7	FS07	Total/NA	Solid	5035	
890-2142-8	FS08	Total/NA	Solid	5035	
890-2142-9	FS09	Total/NA	Solid	5035	
890-2142-10	FS10	Total/NA	Solid	5035	
890-2142-11	FS11	Total/NA	Solid	5035	
890-2142-12	FS12	Total/NA	Solid	5035	
890-2142-13	FS13	Total/NA	Solid	5035	
890-2142-14	FS14	Total/NA	Solid	5035	
890-2142-15	FS15	Total/NA	Solid	5035	
890-2142-16	FS16	Total/NA	Solid	5035	
890-2142-17	SW01	Total/NA	Solid	5035	
890-2142-18	SW02	Total/NA	Solid	5035	
890-2142-19	SW03	Total/NA	Solid	5035	
890-2142-20	SW04	Total/NA	Solid	5035	
MB 880-22563/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-22563/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-22563/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2142-1 MS	FS01	Total/NA	Solid	5035	
890-2142-1 MSD	FS01	Total/NA	Solid	5035	

Analysis Batch: 22605

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2142-21	SW05	Total/NA	Solid	8021B	22509
890-2142-22	SW06	Total/NA	Solid	8021B	22509
MB 880-22509/5-A	Method Blank	Total/NA	Solid	8021B	22509
LCS 880-22509/1-A	Lab Control Sample	Total/NA	Solid	8021B	22509
LCSD 880-22509/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	22509
890-2143-A-21-E MS	Matrix Spike	Total/NA	Solid	8021B	22509
890-2143-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	22509
Prep Batch: 22658					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-22658/5-A	Method Blank	Total/NA	Solid	5035	

Eurofins Carlsbad

Released to Imaging: 8/23/2022 3:34:00 PM

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

7 8 9 10 11 12

SDG:

GC VOA

Analysis Batch: 22717

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-2142-1	FS01	Total/NA	Solid	Total BTEX	
390-2142-2	FS02	Total/NA	Solid	Total BTEX	
390-2142-3	FS03	Total/NA	Solid	Total BTEX	
390-2142-4	FS04	Total/NA	Solid	Total BTEX	
390-2142-5	FS05	Total/NA	Solid	Total BTEX	
390-2142-6	FS06	Total/NA	Solid	Total BTEX	
390-2142-7	FS07	Total/NA	Solid	Total BTEX	
390-2142-8	FS08	Total/NA	Solid	Total BTEX	
390-2142-9	FS09	Total/NA	Solid	Total BTEX	
90-2142-10	FS10	Total/NA	Solid	Total BTEX	
390-2142-11	FS11	Total/NA	Solid	Total BTEX	
390-2142-12	FS12	Total/NA	Solid	Total BTEX	
90-2142-13	FS13	Total/NA	Solid	Total BTEX	
90-2142-14	FS14	Total/NA	Solid	Total BTEX	
90-2142-15	FS15	Total/NA	Solid	Total BTEX	
390-2142-16	FS16	Total/NA	Solid	Total BTEX	
90-2142-17	SW01	Total/NA	Solid	Total BTEX	
90-2142-18	SW02	Total/NA	Solid	Total BTEX	
90-2142-19	SW03	Total/NA	Solid	Total BTEX	
90-2142-20	SW04	Total/NA	Solid	Total BTEX	
90-2142-21	SW05	Total/NA	Solid	Total BTEX	
390-2142-22	SW06	Total/NA	Solid	Total BTEX	

Analysis Batch: 22719

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2142-1	FS01	Total/NA	Solid	8021B	22563
890-2142-2	FS02	Total/NA	Solid	8021B	22563
890-2142-3	FS03	Total/NA	Solid	8021B	22563
890-2142-4	FS04	Total/NA	Solid	8021B	22563
890-2142-5	FS05	Total/NA	Solid	8021B	22563
890-2142-6	FS06	Total/NA	Solid	8021B	22563
890-2142-7	FS07	Total/NA	Solid	8021B	22563
890-2142-8	FS08	Total/NA	Solid	8021B	22563
890-2142-9	FS09	Total/NA	Solid	8021B	22563
890-2142-10	FS10	Total/NA	Solid	8021B	22563
890-2142-11	FS11	Total/NA	Solid	8021B	22563
890-2142-12	FS12	Total/NA	Solid	8021B	22563
890-2142-13	FS13	Total/NA	Solid	8021B	22563
890-2142-14	FS14	Total/NA	Solid	8021B	22563
890-2142-15	FS15	Total/NA	Solid	8021B	22563
890-2142-16	FS16	Total/NA	Solid	8021B	22563
890-2142-17	SW01	Total/NA	Solid	8021B	22563
890-2142-18	SW02	Total/NA	Solid	8021B	22563
890-2142-19	SW03	Total/NA	Solid	8021B	22563
890-2142-20	SW04	Total/NA	Solid	8021B	22563
MB 880-22563/5-A	Method Blank	Total/NA	Solid	8021B	22563
MB 880-22658/5-A	Method Blank	Total/NA	Solid	8021B	22658
LCS 880-22563/1-A	Lab Control Sample	Total/NA	Solid	8021B	22563
LCSD 880-22563/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	22563
890-2142-1 MS	FS01	Total/NA	Solid	8021B	22563
890-2142-1 MSD	FS01	Total/NA	Solid	8021B	22563

Client: WSP USA Inc. Project/Site: BEU DI 30

GC Semi VOA

Analysis Batch: 22514

Page 139 of 160

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2142-1	FS01	Total/NA	Solid	8015B NM	22591
890-2142-2	FS02	Total/NA	Solid	8015B NM	22591
890-2142-3	FS03	Total/NA	Solid	8015B NM	22591
890-2142-4	FS04	Total/NA	Solid	8015B NM	22591
890-2142-5	FS05	Total/NA	Solid	8015B NM	22591
890-2142-6	FS06	Total/NA	Solid	8015B NM	22591
890-2142-7	FS07	Total/NA	Solid	8015B NM	22591
890-2142-8	FS08	Total/NA	Solid	8015B NM	22591
890-2142-9	FS09	Total/NA	Solid	8015B NM	22591
890-2142-10	FS10	Total/NA	Solid	8015B NM	22591
890-2142-11	FS11	Total/NA	Solid	8015B NM	22591
890-2142-12	FS12	Total/NA	Solid	8015B NM	22591
890-2142-13	FS13	Total/NA	Solid	8015B NM	22591
890-2142-14	FS14	Total/NA	Solid	8015B NM	22591
390-2142-15	FS15	Total/NA	Solid	8015B NM	22592
390-2142-16	FS16	Total/NA	Solid	8015B NM	2259
390-2142-17	SW01	Total/NA	Solid	8015B NM	2259
390-2142-18	SW02	Total/NA	Solid	8015B NM	2259 ⁻
390-2142-19	SW03	Total/NA	Solid	8015B NM	2259
390-2142-20	SW04	Total/NA	Solid	8015B NM	2259
390-2142-21	SW05	Total/NA	Solid	8015B NM	2252
390-2142-22	SW06	Total/NA	Solid	8015B NM	2252
/IB 880-22521/1-A	Method Blank	Total/NA	Solid	8015B NM	2252
/IB 880-22591/1-A	Method Blank	Total/NA	Solid	8015B NM	2259
CS 880-22521/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	2252
_CS 880-22591/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	2259
CSD 880-22521/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	2252
CSD 880-22591/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	2259
880-12957-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	2252
380-12957-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	2252
390-2142-1 MS	FS01	Total/NA	Solid	8015B NM	2259
390-2142-1 MSD	FS01	Total/NA	Solid	8015B NM	2259
ep Batch: 22521					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
890-2142-21	SW05	Total/NA	Solid	8015NM Prep	
890-2142-22	SW06	Total/NA	Solid	8015NM Prep	

MB 880-22521/1-AMethod BlankTotal/NASolid8015NLCS 880-22521/2-ALab Control SampleTotal/NASolid8015NLCSD 880-22521/3-ALab Control Sample DupTotal/NASolid8015N	Total/NA	A Solid	8015NM Prep
LCS 880-22521/2-ALab Control SampleTotal/NASolid8015NLCSD 880-22521/3-ALab Control Sample DupTotal/NASolid8015N	Total/NA	Solid	8015NM Prep
LCSD 880-22521/3-A Lab Control Sample Dup Total/NA Solid 8015N	Total/NA	Solid	8015NM Prep
	e Total/NA	solid	8015NM Prep
880-12957-A-1-E MS Matrix Spike Total/NA Solid 8015N	e Dup Total/NA	solid	8015NM Prep
	Total/NA	Solid	8015NM Prep
880-12957-A-1-F MSD Matrix Spike Duplicate Total/NA Solid 8015N	cate Total/NA	solid	8015NM Prep

Prep Batch: 22591

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2142-1	FS01	Total/NA	Solid	8015NM Prep	
890-2142-2	FS02	Total/NA	Solid	8015NM Prep	
890-2142-3	FS03	Total/NA	Solid	8015NM Prep	
890-2142-4	FS04	Total/NA	Solid	8015NM Prep	
890-2142-5	FS05	Total/NA	Solid	8015NM Prep	
890-2142-6	FS06	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Released to Imaging: 8/23/2022 3:34:00 PM

Prep Type

Total/NA

Client: WSP USA Inc. Project/Site: BEU DI 30

Lab Sample ID

890-2142-7

890-2142-8

890-2142-9

890-2142-10

890-2142-11

890-2142-12

890-2142-13

890-2142-14

890-2142-15

890-2142-16

890-2142-17

890-2142-18

890-2142-19

890-2142-20

MB 880-22591/1-A

LCS 880-22591/2-A

LCSD 880-22591/3-A

890-2142-1 MS

890-2142-1 MSD

GC Semi VOA (Continued)

Prep Batch: 22591 (Continued)

Client Sample ID

FS07

FS08

FS09

FS10

FS11

FS12

FS13

FS14

FS15

FS16

SW01

SW02

SW03

SW04

FS01

FS01

Method Blank

Lab Control Sample

Lab Control Sample Dup

Method

8015NM Prep

Matrix

Solid

Prep Batch

9 1(1

Analysis Batch: 22626

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2142-1	FS01	Total/NA	Solid	8015 NM	
890-2142-2	FS02	Total/NA	Solid	8015 NM	
890-2142-3	FS03	Total/NA	Solid	8015 NM	
890-2142-4	FS04	Total/NA	Solid	8015 NM	
890-2142-5	FS05	Total/NA	Solid	8015 NM	
890-2142-6	FS06	Total/NA	Solid	8015 NM	
890-2142-7	FS07	Total/NA	Solid	8015 NM	
890-2142-8	FS08	Total/NA	Solid	8015 NM	
890-2142-9	FS09	Total/NA	Solid	8015 NM	
890-2142-10	FS10	Total/NA	Solid	8015 NM	
890-2142-11	FS11	Total/NA	Solid	8015 NM	
890-2142-12	FS12	Total/NA	Solid	8015 NM	
890-2142-13	FS13	Total/NA	Solid	8015 NM	
890-2142-14	FS14	Total/NA	Solid	8015 NM	
890-2142-15	FS15	Total/NA	Solid	8015 NM	
890-2142-16	FS16	Total/NA	Solid	8015 NM	
890-2142-17	SW01	Total/NA	Solid	8015 NM	
890-2142-18	SW02	Total/NA	Solid	8015 NM	
890-2142-19	SW03	Total/NA	Solid	8015 NM	
890-2142-20	SW04	Total/NA	Solid	8015 NM	
890-2142-21	SW05	Total/NA	Solid	8015 NM	
890-2142-22	SW06	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 22795

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2142-1	FS01	Soluble	Solid	DI Leach	
890-2142-2	FS02	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Released to Imaging: 8/23/2022 3:34:00 PM

Client: WSP USA Inc. Project/Site: BEU DI 30

Lab Sample ID

890-2142-3

890-2142-4 890-2142-5 890-2142-6

HPLC/IC (Continued)

Leach Batch: 22795 (Continued)

Client Sample ID	Prep Type	Matrix	Method
FS03	Soluble	Solid	DI Leach
FS04	Soluble	Solid	DI Leach
FS05	Soluble	Solid	DI Leach
FS06	Soluble	Solid	DI Leach
FS07	Soluble	Solid	DI Leach

890-2142-7	FS07	Soluble	Solid	DI Leach
890-2142-8	FS08	Soluble	Solid	DI Leach
890-2142-9	FS09	Soluble	Solid	DI Leach
890-2142-10	FS10	Soluble	Solid	DI Leach
890-2142-11	FS11	Soluble	Solid	DI Leach
MB 880-22795/1-A	Method Blank	Soluble	Solid	DI Leach
LCS 880-22795/2-A	Lab Control Sample	Soluble	Solid	DI Leach
LCSD 880-22795/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach
890-2142-2 MS	FS02	Soluble	Solid	DI Leach
890-2142-2 MSD	FS02	Soluble	Solid	DI Leach

Analysis Batch: 22867

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2142-1	FS01	Soluble	Solid	300.0	22795
890-2142-2	FS02	Soluble	Solid	300.0	22795
890-2142-3	FS03	Soluble	Solid	300.0	22795
890-2142-4	FS04	Soluble	Solid	300.0	22795
890-2142-5	FS05	Soluble	Solid	300.0	22795
890-2142-6	FS06	Soluble	Solid	300.0	22795
890-2142-7	FS07	Soluble	Solid	300.0	22795
890-2142-8	FS08	Soluble	Solid	300.0	22795
890-2142-9	FS09	Soluble	Solid	300.0	22795
890-2142-10	FS10	Soluble	Solid	300.0	22795
890-2142-11	FS11	Soluble	Solid	300.0	22795
MB 880-22795/1-A	Method Blank	Soluble	Solid	300.0	22795
LCS 880-22795/2-A	Lab Control Sample	Soluble	Solid	300.0	22795
LCSD 880-22795/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	22795
890-2142-2 MS	FS02	Soluble	Solid	300.0	22795
890-2142-2 MSD	FS02	Soluble	Solid	300.0	22795

Leach Batch: 22997

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2142-12	FS12	Soluble	Solid	DI Leach	
890-2142-13	FS13	Soluble	Solid	DI Leach	
890-2142-14	FS14	Soluble	Solid	DI Leach	
890-2142-15	FS15	Soluble	Solid	DI Leach	
890-2142-16	FS16	Soluble	Solid	DI Leach	
890-2142-17	SW01	Soluble	Solid	DI Leach	
890-2142-18	SW02	Soluble	Solid	DI Leach	
890-2142-19	SW03	Soluble	Solid	DI Leach	
890-2142-20	SW04	Soluble	Solid	DI Leach	
890-2142-21	SW05	Soluble	Solid	DI Leach	
890-2142-22	SW06	Soluble	Solid	DI Leach	
MB 880-22997/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-22997/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-22997/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2142-12 MS	FS12	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Prep Batch

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

2 3 4 5 6 7

HPLC/IC (Continued)

Leach Batch: 22997 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2142-12 MSD	FS12	Soluble	Solid	DI Leach	
890-2142-22 MS	SW06	Soluble	Solid	DI Leach	
890-2142-22 MSD	SW06	Soluble	Solid	DI Leach	

Analysis Batch: 23131

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-2142-12	FS12	Soluble	Solid	300.0	22997	
890-2142-13	FS13	Soluble	Solid	300.0	22997	8
890-2142-14	FS14	Soluble	Solid	300.0	22997	
890-2142-15	FS15	Soluble	Solid	300.0	22997	9
890-2142-16	FS16	Soluble	Solid	300.0	22997	
890-2142-17	SW01	Soluble	Solid	300.0	22997	
890-2142-18	SW02	Soluble	Solid	300.0	22997	
890-2142-19	SW03	Soluble	Solid	300.0	22997	
890-2142-20	SW04	Soluble	Solid	300.0	22997	
890-2142-21	SW05	Soluble	Solid	300.0	22997	
890-2142-22	SW06	Soluble	Solid	300.0	22997	
MB 880-22997/1-A	Method Blank	Soluble	Solid	300.0	22997	
LCS 880-22997/2-A	Lab Control Sample	Soluble	Solid	300.0	22997	13
LCSD 880-22997/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	22997	
890-2142-12 MS	FS12	Soluble	Solid	300.0	22997	
890-2142-12 MSD	FS12	Soluble	Solid	300.0	22997	
890-2142-22 MS	SW06	Soluble	Solid	300.0	22997	
890-2142-22 MSD	SW06	Soluble	Solid	300.0	22997	

Lab Chronicle

Client: WSP USA Inc. Project/Site: BEU DI 30

Client Sample ID: FS01 Date Collected: 03/23/22 08:50

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 03:00	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/29/22 20:35	AJ	XEN MID
Soluble	Leach	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble	Analysis	300.0		10	22867	04/02/22 22:11	СН	XEN MID

Client Sample ID: FS02

Date Collected: 03/23/22 08:55

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 03:21	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/29/22 21:38	AJ	XEN MID
Soluble	Leach	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble	Analysis	300.0		20	22867	04/02/22 22:20	СН	XEN MID

Client Sample ID: FS03

Date Collected: 03/23/22 09:00

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 03:42	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/29/22 21:59	AJ	XEN MID
Soluble	Leach	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble	Analysis	300.0		10	22867	04/02/22 22:47	СН	XEN MID

Client Sample ID: FS04 Date Collected: 03/23/22 09:05 Date Received: 03/28/22 14:48

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 04:02	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-1 Matrix: Solid

Lab Sample ID: 890-2142-2

Lab Sample ID: 890-2142-3

Lab Sample ID: 890-2142-4

Matrix: Solid

Matrix: Solid

9

Lab Chronicle

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-4 Matrix: Solid

Date Collected: 03/23/22 09:05 Date Received: 03/28/22 14:48

Client Sample ID: FS04

Client: WSP USA Inc.

Project/Site: BEU DI 30

Total/NA An	rpe nalysis rep	Method 8015 NM 8015NM Prep	Run	Factor 1	Number 22626	or Analyzed	Analyst AJ	Lab XEN MID
	,			1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA Pre	ер	8015NM Pren						
		ooronanin Tep			22591	03/29/22 17:09	AM	XEN MID
Total/NA An	nalysis	8015B NM		1	22514	03/29/22 22:20	AJ	XEN MID
Soluble Lea	each	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble An	nalysis	300.0		20	22867	04/02/22 22:56	СН	XEN MID

Client Sample ID: FS05

Date Collected: 03/23/22 09:20 Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 04:23	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/29/22 22:40	AJ	XEN MID
Soluble	Leach	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble	Analysis	300.0		5	22867	04/02/22 23:22	СН	XEN MID

Client Sample ID: FS06

Date Collected: 03/23/22 09:25 Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 04:44	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/29/22 23:01	AJ	XEN MID
Soluble	Leach	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble	Analysis	300.0		1	22867	04/02/22 23:31	СН	XEN MID

Client Sample ID: FS07

Date Collected: 03/23/22 09:40 Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 05:04	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/29/22 23:22	AJ	XEN MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-2142-7
Lab Chronicle

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-7

Lab Sample ID: 890-2142-8

Lab Sample ID: 890-2142-9

Client Sample ID: FS07 Date Collected: 03/23/22 09:40

Client: WSP USA Inc.

Project/Site: BEU DI 30

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble	Analysis	300.0		1	22867	04/02/22 23:40	СН	XEN MID

Client Sample ID: FS08

Date Collected: 03/23/22 09:45 Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 05:25	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
īotal/NA	Analysis	8015B NM		1	22514	03/29/22 23:43	AJ	XEN MID
Soluble	Leach	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble	Analysis	300.0		1	22867	04/02/22 23:49	СН	XEN MID

Client Sample ID: FS09 Date Collected: 03/23/22 10:20

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 05:46	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 00:04	AJ	XEN MID
Soluble	Leach	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble	Analysis	300.0		1	22867	04/02/22 23:58	СН	XEN MID

Client Sample ID: FS10 Date Collected: 03/23/22 10:25

Lab Sample ID: 890-2142-10 Matrix: Solid

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 06:07	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 00:24	AJ	XEN MID
Soluble	Leach	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble	Analysis	300.0		1	22867	04/03/22 00:07	СН	XEN MID

Eurofins Carlsbad

Page 145 of 160

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: WSP USA Inc. Project/Site: BEU DI 30

Client Sample ID: FS11 Date Collected: 03/23/22 10:30

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 07:31	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 01:06	AJ	XEN MID
Soluble	Leach	DI Leach			22795	04/01/22 11:44	СН	XEN MID
Soluble	Analysis	300.0		1	22867	04/03/22 00:15	СН	XEN MID

Client Sample ID: FS12

Date Collected: 03/23/22 10:35

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 08:14	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 01:26	AJ	XEN MID
Soluble	Leach	DI Leach			22997	04/05/22 09:20	СН	XEN MID
Soluble	Analysis	300.0		1	23131	04/08/22 04:49	СН	XEN MID

Client Sample ID: FS13

Date Collected: 03/23/22 10:45

Date	Received:	03/28/22	14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 08:35	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 01:47	AJ	XEN MID
Soluble	Leach	DI Leach			22997	04/05/22 09:20	СН	XEN MID
Soluble	Analysis	300.0		1	23131	04/08/22 05:06	СН	XEN MID

Client Sample ID: FS14 Date Collected: 03/23/22 10:50 Date Received: 03/28/22 14:48

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 08:56	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-11 Matrix: Solid

Lab Sample ID: 890-2142-12

5 6 9

Lab Sample ID: 890-2142-13

Lab Sample ID: 890-2142-14

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-14 Matrix: Solid

Lab Sample ID: 890-2142-16

Lab Sample ID: 890-2142-17

Date Collected: 03/23/22 10:50 Date Received: 03/28/22 14:48

Client Sample ID: FS14

Client: WSP USA Inc.

Project/Site: BEU DI 30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 02:07	AJ	XEN MID
Soluble	Leach	DI Leach			22997	04/05/22 09:20	СН	XEN MID
Soluble	Analysis	300.0		10	23131	04/08/22 05:12	СН	XEN MID
lient Samp	le ID: FS15							Lab Sample ID: 890-2142-

Client Sample ID: FS15 Date Collected: 03/23/22 10:55

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 09:16	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 02:28	AJ	XEN MID
Soluble	Leach	DI Leach			22997	04/05/22 09:20	СН	XEN MID
Soluble	Analysis	300.0		1	23131	04/08/22 05:17	СН	XEN MID

Client Sample ID: FS16

Date Collected: 03/23/22 11:05 Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 09:37	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 02:48	AJ	XEN MID
Soluble	Leach	DI Leach			22997	04/05/22 09:20	СН	XEN MID
Soluble	Analysis	300.0		1	23131	04/08/22 05:23	СН	XEN MID

Client Sample ID: SW01

Date Collected: 03/23/22 11:50 Date Received: 03/28/22 14:48

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 09:58	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 03:08	AJ	XEN MID

Eurofins Carlsbad

Lab Chronicle

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Lab Sample ID: 890-2142-17

Lab Sample ID: 890-2142-18

Lab Sample ID: 890-2142-19

Client Sample ID: SW01 Date Collected: 03/23/22 11:50

Client: WSP USA Inc.

Project/Site: BEU DI 30

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			22997	04/05/22 09:20	СН	XEN MID
Soluble	Analysis	300.0		5	23131	04/08/22 05:40	СН	XEN MID

Client Sample ID: SW02

Date Collected: 03/23/22 11:55 Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
lotal/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
lotal/NA	Analysis	8021B		1	22719	04/01/22 10:19	KL	XEN MID
lotal/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
lotal/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
lotal/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
otal/NA	Analysis	8015B NM		1	22514	03/30/22 03:29	AJ	XEN MID
Soluble	Leach	DI Leach			22997	04/05/22 09:20	СН	XEN MID
Soluble	Analysis	300.0		20	23131	04/08/22 05:46	СН	XEN MID

Client Sample ID: SW03 Date Collected: 03/23/22 12:05

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 10:39	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 03:49	AJ	XEN MID
Soluble	Leach	DI Leach			22997	04/05/22 09:20	СН	XEN MID
Soluble	Analysis	300.0		10	23131	04/08/22 05:51	СН	XEN MID

Client Sample ID: SW04 Date Collected: 03/23/22 12:10 Date Received: 03/28/22 14:48

Lab Sample ID: 890-2142-20 Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22563	03/29/22 12:01	KL	XEN MID
Total/NA	Analysis	8021B		1	22719	04/01/22 11:00	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22591	03/29/22 17:09	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/30/22 04:10	AJ	XEN MID
Soluble	Leach	DI Leach			22997	04/05/22 09:20	СН	XEN MID
Soluble	Analysis	300.0		1	23131	04/08/22 05:57	СН	XEN MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Lab Chronicle

Client: WSP USA Inc. Project/Site: BEU DI 30

Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA

Soluble

Soluble

Client Sample ID: SW05 Date Collected: 03/23/22 12:15

Date Receiv

23/22 12:14 28/22 14:48							-	Matrix: Solid
Batch	Batch		Dilution	Batch	Prepared			
Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Prep	5035			22509	03/30/22 07:30	KL	XEN MID	
Analysis	8021B		1	22605	03/30/22 18:59	MR	XEN MID	
Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID	
Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID	
Prep	8015NM Prep			22521	03/29/22 08:56	AM	XEN MID	
Analysis	8015B NM		1	22514	03/29/22 18:30	AJ	XEN MID	

1

22997 04/05/22 09:20 CH

23131 04/08/22 06:02 CH

Client Sample ID: SW06

Leach

Analysis

DI Leach

300.0

Date Collected: 03/23/22 12:20

Date Received: 03/28/22 14:48

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			22509	03/30/22 07:30	KL	XEN MID
Total/NA	Analysis	8021B		1	22605	03/30/22 19:25	MR	XEN MID
Total/NA	Analysis	Total BTEX		1	22717	03/31/22 10:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	22626	03/30/22 10:27	AJ	XEN MID
Total/NA	Prep	8015NM Prep			22521	03/29/22 08:56	AM	XEN MID
Total/NA	Analysis	8015B NM		1	22514	03/29/22 18:50	AJ	XEN MID
Soluble	Leach	DI Leach			22997	04/05/22 09:20	СН	XEN MID
Soluble	Analysis	300.0		1	23131	04/08/22 06:08	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Job ID: 890-2142-1

SDG: 31403236.022.0129 TASK16.02

XEN MID

XEN MID

Lab Sample ID: 890-2142-21

Lab Sample ID: 890-2142-22

Matrix: Solid

4/8/2022

10

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Project/Site: BEU DI 30

Client: WSP USA Inc.

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pr	rogram	Identification Number	Expiration Date
xas	N	ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report, bu	ut the laboratory is not certil	ied by the governing authority. This list ma	ly include analytes for wi
the agency does not of Analysis Method		Matrix	Analyte	
the agency does not of Analysis Method 8015 NM	fer certification. Prep Method	Matrix Solid	Analyte Total TPH	

Eurofins Carlsbad

Method Summary

Client: WSP USA Inc. Project/Site: BEU DI 30 Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Sample Summary

Page 152 of 160

Job ID: 890-2142-1 SDG: 31403236.022.0129 TASK16.02

Client: WSP USA Inc. Project/Site: BEU DI 30

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-2142-1	FS01	Solid	03/23/22 08:50	03/28/22 14:48	5
890-2142-2	FS02	Solid	03/23/22 08:55	03/28/22 14:48	5
890-2142-3	FS03	Solid	03/23/22 09:00	03/28/22 14:48	5
890-2142-4	FS04	Solid	03/23/22 09:05	03/28/22 14:48	5
890-2142-5	FS05	Solid	03/23/22 09:20	03/28/22 14:48	5
890-2142-6	FS06	Solid	03/23/22 09:25	03/28/22 14:48	5
890-2142-7	FS07	Solid	03/23/22 09:40	03/28/22 14:48	5
890-2142-8	FS08	Solid	03/23/22 09:45	03/28/22 14:48	5
890-2142-9	FS09	Solid	03/23/22 10:20	03/28/22 14:48	5
890-2142-10	FS10	Solid	03/23/22 10:25	03/28/22 14:48	5
890-2142-11	FS11	Solid	03/23/22 10:30	03/28/22 14:48	5
890-2142-12	FS12	Solid	03/23/22 10:35	03/28/22 14:48	5
890-2142-13	FS13	Solid	03/23/22 10:45	03/28/22 14:48	5
890-2142-14	FS14	Solid	03/23/22 10:50	03/28/22 14:48	5
890-2142-15	FS15	Solid	03/23/22 10:55	03/28/22 14:48	5
890-2142-16	FS16	Solid	03/23/22 11:05	03/28/22 14:48	5
890-2142-17	SW01	Solid	03/23/22 11:50	03/28/22 14:48	0 - 5
890-2142-18	SW02	Solid	03/23/22 11:55	03/28/22 14:48	0 - 5
890-2142-19	SW03	Solid	03/23/22 12:05	03/28/22 14:48	0 - 5
890-2142-20	SW04	Solid	03/23/22 12:10	03/28/22 14:48	0 - 5
890-2142-21	SW05	Solid	03/23/22 12:15	03/28/22 14:48	0 - 5
890-2142-22	SW06	Solid	03/23/22 12:20	03/28/22 14:48	0 - 5

			Midland, TX (432-704	t-5440) EL Pas	Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806	Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296			- 2
Project Manager: Ka	Kalei Jennings		Bill to: (if different)	ferent) Adr	Adrian Baker	Bill to: (if different) Adrian Baker		S S	v
	WSP USA		Company Name:		XTO Energy		Program: UST/PST	PRP Brownfields RRC	1C Superfund
	3300 North A Street		Address:		3104 E Green Street		State of Project:		
e ZIP:	Midland, Texas 79705		City, State ZIP:		Carlsbad, NM 88220		Reporting:Level II		
	432 704 5178		Email: Kalei.Jenr	s@w	com, Adrian.Baker@exxonmobi	l.com.	Deliverables: EDD	ADaPT	Other:
Project Name: BE	BEU DI 30		Turn Around			ANALYSIS REQUEST	ST	Woi	Work Order Notes
T	31403236.022.0129,), Task 16.02	Routine h						
	NAPP 2200746777						:	API:30-015-47145	15-47145
ne:	Mercy Rotich		Due Date:					CC:2096141001	141001
2	T Temp Blank:	Yes No V	Wet Ice: Yes No	°					
Temperature (°C):	32/30		Thermometer ID	ners)				
Received Intact:	NO (Sex	1-1-100	2	ntai		890-2142 Chain of Custody	1 of Custody		
Cooler Custody Seals:	Yes No INA	Correction Factor:	Factor: - 6.7	-	0=80	_		TAT starts	TAT starts the day recevied by the
Sample Custody Seals:	Yes No WA	Total Containers:	tainers:	-	(EPA			iau, 11	Teceived by 4.30pm
Sample Identification	cation Matrix	Sampled Sar	Sampled Depth	Num TPH (BTEX			Sam	Sample Comments
FS01	S	03/23/22 8	8:50 5'		×				Discrete
FS02	S		8:55 5'	X 1					Discrete
FS03	S			1 X	x x				Discrete
FS04	S		9:05 5'	1 X	×××				Discrete
FS05	S	03/23/22 9	9:20 5'	1 ×	×××				Discrete
FS06	S		9:25 5'	1 ×	×××				Discrete
FS07	S	03/23/22 9	9:40 5'	1 ×	×××				Discrete
FS08	S	03/23/22 9	9:45 5'	1 ×	×××				Discrete
FS09	S	03/23/22 10	10:20 5'	1 X	x x				Discrete
FS10	S	03/23/22 10	10:25 5'	1 X					Discrete
Total 200.7 / 6010 Circle Method(s)	200.8 / 6	œ	ICRA 13PPM Texas 11 AI	s 11 AI Sb 8RCRA Sb	As Ba Be B Cd As Ba Be Cd	Ca Cr Co Cu Fe Pb r Co Cu Pb Mn Mo N	Mg Mn Mo Ni K Se li Se Ag Tl U	Ag SiO2	Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Hg
ice: Signature of this doct ervice. Xenco will be liabl enco. A minimum charge	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to) of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expense of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco.	samples constitutes a s and shall not assume ach project and a char	valid purchase order fro a any responsibility for ge of \$5 for each sampl	om client compa any losses or ex le submitted to 2	iny to Xenco, its affiliate: penses incurred by the tenco, but not analyzed.	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. X anco, hut not analyzed. These terms will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negoliated.	tandard terms and condition: umstances beyond the contr ss previously negotiated.	0	
Relinquished by: (Signature)	Signature)	Received by: (Signature)	Signature)	Da	Date/Time	Relinquished by: (Signature)	re) Received	Received by: (Signature)	Date/Time
H	1/4			3/28/	22 2:402				
9					4				

Page 153 of 160

)					ç		9	200	Channel of Chancel	:		
			Midland, 1	X (281) 240-42 TX (432-704-54	40) EL	as, IX (2 Paso,T)	(915)58 (915)58	5-3443	Houston, IX (281) 240-4200 Dallas, IX (214) 902-0300 San Antonio, IX (210) 309-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296		www.yenco.com Page	of 3
Project Manager: Kale	Kalei Jennings	- Income	E	Bill to: (if different)	nt)	Adrian Baker	Baker		Bill to: (if different) Adrian Baker		ğ	
	WSP USA			Company Name:		XTO Energy	hergy			Program: UST/PST		RC Superfund
	3300 North A Street			Address:		3104 E	3104 E Green Street	treet				
e ZIP:	Midland, Texas 79705			City, State ZIP		Carlsba	Carlsbad, NM 88220	8220		Reporting:Level II	here III BST/UST TORP	
	432 704 5178		Email:	Kalei.Jennin	gs@w:	sp.con	1. Adria	n.Bake	Email: Kalei.Jennings@wsp.com, Adrian.Baker@exxonmobil.com.	Deliverables: EDD	ADaPT	Other:
Project Name: BEU	BEU DI 30		Tur	Turn Around					ANALYSIS REQUEST	ST	Wo	Work Order Notes
Project Number:	31403236.022.0129,	9, Task 16.02	Ro	IE N				-				
P.O. Number: NAP	NAPP 2200746777		Rush:								API:30-0	API:30-015-47145
Sampler's Name: Merc	Mercy Rotich		Due Date:	ate:				_			CC:2096141001	3141001
SAMPLE RECEIPT	Temp Blank:	(Tes) No	Wet Ice:	Ves No		_	_					
Temperature (°C):	132/30	1.1	Thermometer ID		ners					-+		
Received Intact:	(Yes) No	1- Nr	n-col		ntai		-	00.0				
Cooler Custody Seals:	Yes No NA	Correc	Correction Factor:	-6.2	Co	015)		PA 3			TAT start	TAT starts the day recevied by the
Sample Custody Seals:	Yes No Nig	Total	Total Containers:		er of	PA 8					lab, i	lab, if received by 4:30pm
Sample Identification	ation Matrix	Date Sampled	Time Sampled	Depth	Numb	TPH (E	BTEX (Chloric			San	Sample Comments
FS11	S	03/23/22	10:30	Ωī	1	×	×	×				Discrete
FS12	S	03/23/22		5	1	×	×	×				Discrete
FS13	S	03/23/22	10:45	5	1	×	×	×				Discrete
FS14	S	03/23/22	10:50	5	1	×	×	×				Discrete
FS15	S	03/23/22	10:55	5'	1	×	×	×				Discrete
FS16	S	03/23/22	11:05	ธ	1	×	×	×				Discrete
SW01	S	03/23/22	11:50 0	0-5'	-	×	×	×				Discrete
SW02	S	03/23/22	11:55	0-5	-1	×	×	×				Discrete
SW03	S	03/23/22	12:05	0-5		×	×	×				Discrete
SW04	S	03/23/22	12:10 0	0-5'	1	×	×	×				Discrete
Total 200.7 / 6010 Circle Method(s) au	otal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	87	8RCRA 13PPM TCLP / SPLP	ICRA 13PPM Texas 11 AI TCLP / SPLP 6010: 8RCRA		Sb As Sb As	Ba Be Ba Be	B Cd C	Ca Cr Co C Co Cu Pb	u Fe Pb Mg Mn Mo Ni K (Mn Mo Ni Se Ag Tl U	Se Ag SiO2 Na Sr TI S 1631/245.1	Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Hg
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be	ent and relinquishment of only for the cost of sample f \$75.00 will be applied to c	samples constitutes and shall not as ach project and a	les a valid purch sume any respo charge of \$5 foi	nase order from onsibility for any reach sample su	client co losses c ubmitted	mpany t r expen to Xenc	o Xenco, it ses incurr o, but not	s affiliate ad by the analyzed.		 It assigns standard terms and conditions are due to circumstances beyond the control enforced unless previously negotiated. 	ions ntrol	
Relinquished by: (Signature)	gnature)	Received b	Received by: (Signature)	e)		Date/Time	ime		Relinquished by: (Signature)		Received by: (Signature)	Date/Time
	K	· ·	J		3/2	1821	2222	482				
3	,							4				
5								0		-		Revised Date 051418 Rev. 2018 1

Page 154 of 160

Chain of Custo

Revised Date 051418 Rev. 2018		0					оп с (
			3/18/22 7:48	2	t the	N	- Marin
gnature) Date/Time	 Received by: (Signature) 	Relinquished by: (Signature)	Date/Time	·e)	Beqeived by: (Signature)	ature)	Relinquished by: (Signature)
	nderd terms and conditions Imstances beyond the control s previously negotiated.	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standerd terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	nt company to Xenco, its attli ses or expenses incurred by itted to Xenco, but not analy:	hase order from clier onsibility for any loss or each sample submi	amples constitutes a valid purc and shall not assume any resp hch project and a charge of \$5 fc	it and relinquishment of s ly for the cost of samples 75.00 will be applied to ea	Notice: Signature of this documen of service. Xenco will be liable on of Xenco. A minimum charge of S
SiO2 Na Sr TI Sn U V Zn 1631/245.1/7470/7471:Hg	Cu Fe Pb Mg Mn Mo Ni K Se Ag SiQ Mn Mo Ni Se Ag TI U	B Cd Ca Cr Co Cu Fe Pb N Cd Cr Co Cu Pb Mn Mo Ni	I Sb As Ba Be Sb As Ba Be	Texas 11 6010: 8RCI	幋	200.8 / 6020: d Metal(s) to be and	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed
						0	
Discrete				0-5	12.20	n	SIMOR
Discrete				0-5' 1	03/23/22 12:15	S	SW05
Sample Comments			TPH (E BTEX (Depth	Date Time Sampled Sampled	on Matrix	Sample Identification
TAT starts the day recevied by the lab, if received by 4:30pm			PA 8015 EPA 0=8 de (EPA :	er of Co	Sorrection factor! Total Containers:	Yes NO N/A	Cooler Custody Seals: Sample Custody Seals:
) (021)		1 C CR	Yes No	Received Intact:
)		Thermometer ID		Temperature (°C):
				Yes No	Yes No Wet Ice:	Temp Blank:	SAMPLE RECEIPT
CC:2096141001)ate:	Due Date:	Mercy Rotich	Sampler's Name: Mercy
API:30-015-47145					Rush:	NAPP 2200746777	P.O. Number: NAPP
				le 🗸	, Task 16.02 Routine	31403236.022.0129,	Project Number: 3
Work Order Notes		ANALYSIS REQUEST		Turn Around	Tu	91 30	Project Name: BEU DI 30
ADaPT D Other:	Deliverables: EDD A	Adrian.Baker@exxonmobil.com.		Kalei.Jennings@wsp.com,	Email:	432 704 5178	
T T T	Reporting:Level II hevel III		Carlsbad, NM 88220	City, State ZIP:		Midland, Texas 79705	e ZIP:
			3104 E Green Street	Address:		3300 North A Street	
Brownfields RRC Superfund	Ъ ^р		XTO Energy	Company Name:		USA	Company Name: WSP USA
Work Order Comments			Adrian Baker	Bill to: (If different)		Kalei Jennings	Project Manager: Kalei
.com Page3_of3	-2000) www.xenco.com	Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	EL Paso,TX (915)585-344 180-355-0900) Atlanta,GA	TX (432-704-5440) 550) Phoenix,AZ (4	Midland, Hobbs,NM (575-392-7	RATORIES	
		Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334	Dallas, TX (214) 902-0300	X (281) 240-4200 1	Houston,T		
er No:	Work Order No:	stody	Chain of Custody	~			

Job Number: 890-2142-1

List Source: Eurofins Carlsbad

SDG Number: 31403236.022.0129 TASK16.02

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 2142 List Number: 1

Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Eurofins Carlsbad Released to Imaging: 8/23/2022 3:34:00 PM

14

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-2142-1 SDG Number: 31403236.022.0129 TASK16.02

List Source: Eurofins Midland

List Creation: 03/29/22 01:12 PM

Login Number: 2142 List Number: 2 Creator: Lowe, Katie

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

APPENDIX D

NMOCD Notifications

Released to Imaging: 8/23/2022 3:34:00 PM

Collins, Melanie

From:	Collins, Melanie
Sent:	Tuesday, March 22, 2022 9:52 AM
То:	ocd.enviro@state.nm.us; mike.bratcher@state.nm.us
Cc:	Cole, Aimee; Morrissey, Tacoma; Jennings, Kalei; DelawareSpills /SM
Subject:	XTO-Extension Request - BEU DI 30 Battery (Incident Number NAPP2200746777)

All,

BEU DI 30 Battery (Incident Number NAPP2200746777)

XTO is requesting an extension of the current March 24, 2022 deadline for submitting a remediation work plan or closure report required in 19.15.29.12.B.(1) NMAC for the BEU DI 30 Battery (Incident Number NAPP2200746777). The release was discovered on December 24, 2021 and remediation activities are ongoing. Based on the most recent laboratory analytical results, additional remediation is required. In order to complete the remediation activities and submit a remediation work plan or closure report, XTO requests a 60-day extension of the deadline until May 23, 2022.

Thank you, *Melaníe Collíns* SSHE Technician

An **ExxonMobil** Subsidiary 6401 Holiday Hill Rd, Bldg 5 Midland, TX 79707 432-218-3709

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	109566
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Remediation Plan Approved with Conditions. If you believe a certain area will require a deferral, please make sure that it has been fully delineated and specify the exact soil sample location.	8/23/2022

Action 109566